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ABSTRACT

PRATIK KULKARNI. A scalable LSTM based approach for Multi-pedestrian
Tracking in Surveillance Cameras. (Under the direction of DR. HAMED TABKHI)

There has been an ever growing interest in leveraging state of the art deep learning

techniques for tracking objects in video frames. Such works primarily focus on using

appearance based models which prove not to be effective in modelling the behaviour

of objects in frame sequences. Moreover, not much work has been done to explore

and exploit the sequence learning properties of Long Short Term Memory(LSTM)

Neural Networks for tracking objects in video sequences.

In this thesis, we propose a novel LSTM based tracker, Key-Track, which effec-

tively learns the spatial and temporal behavior of pedestrians after analyzing move-

ment patterns of human key-point features provided to it by the OpenPose[1]. Key-

Track is trained on Single-Object dataset containing a variety of human behaviours.

These sequences have been wrangled and curated from the Duke Multi-Target Multi-

Camera(Duke-MTMC)[2] dataset. We further scale the model at inference time to

track multiple people with effective batching. The results reported on the Duke-

MTMC dataset show that the tracker is capable of maintaining a high degree of

accuracy which is independent of the number of objects to be tracked in the given

scene. Along with that, we try to critically analyze the scenarios complexity and

classify it according to the best performing configuration of the model. Batching ,in

turn, helps in the effective GPU allocation of resources yielding high FPS scores for

offline tracking. The total observed size of Key-Track is under 1 megabytes which

paves its way into mobile devices for the purpose of tracking in real-time.
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CHAPTER 1: INTRODUCTION

Video cameras have proven to be an important data source for various Computer

vision applications specifically for Video analytics. There has been an increasing

trend in equipping cameras with smart systems that are capable of making sense of

their surrounding. Amongst various subdomains of video processing, visual object

tracking poses an interesting challenge in the Computer Vision domain. It is very

commonly used in applications like autonomous vehicles[7][8], robot navigation and

surveillance systems. Generally object trackers are used to track the movement of

the object and model their movements and their behaviour to predict their actions

and track in future.

Visual object tracking is broadly classified into two categories namely detection-

free tracking (DFT) or detection-based tracking (DBT)[3]. In DBT, objects in the

scene are detected using an Object-detection algorithm and then associated to their

corresponding tracks or trajectories. Generally the object detection algorithm is

run on every consecutive frame. Such techniques tend to yield high accuracy but

mostly at the cost of throughput. Hence lightweight detector frameworks favour

faster inference. On the other hand DFT requires a manual initialization of objects

in the first frame. The objects are later localised in subsequent frames. DFT based

methods are generally more throughput oriented but tend to be less accurate because

its difficult to re-associate a lost track. It also cannot cope with new objects appearing.

Fig. 1.1 Shows a comparison between DFT and DBT
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Figure 1.1: DBT vs DFT [3]

1.1 Problem Statement

Generally, tracking is performed either in an offline or online mode. Offline track-

ing, also known as batch processing makes use of the information in the past and

future frames to handle the current tracks. However, in real-time applications of-

fline tracking cannot be used,evidently. Hence, we perform online tracking which

takes into account the frames that have been seen so far and track the object accord-

ingly. Real-world scenarios often consists of many challenging characteristics such as

illumination variation, occlusion, target deformation, and background clutter[9]. To

improve robustness against these types of scenarios trackers have recently adopted

many of the deep learning techniques used in other vision tasks such as object de-

tection and classification[10] where they achieve human-like or even beyond-human

accuracy in their respective domain [11], albeit at a high computational cost. When

working on domains with real-time constraints, it is necessary to balance the com-

putational load with real-time constraints. Unfortunately many of the deep trackers

evaluated on the MOT benchmark[12] and other multi-object benchmarks are un-

able to achieve real-time throughput (FPS) and latency due to their reliance on large

Convolution neural networks (CNNs)[13]. More recent works have begun to explore

hybrid networks that combine CNNs with recurrent elements such as LSTM and GRU
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cells to reduce computational overhead and improve performance[9][14][15].

With the growing interest in deep learning, more recent works like [16], [17],[18],

and [19] use Convolution Neural Network(CNN) based appearance model to track

objects. The task of tracking inherently has a strong temporal component, which

is very costly to implement in CNNs. This has prompted interest in other solutions

using recurrent neural networks (RNN). Some works like [20], [17],[9], and [21] use

Long Short Term Memory (LSTM) but overload them with unnecessary background

noise, increasing model complexity without significantly improving accuracy. These

shortcomings have prompted us to explore more com-pact feature representations

that prioritize the spatio-temporal characteristics of tracking targets. In this work we

focus specifically on pose keypoints as a means of understanding and predicting the

movement of human targets over time.

1.2 Contributions

In this work, we propose a hybrid tracking by detection framework Key-Track, that

used OpenPose detection framework for human key-point detection. While another

LSTM based network is built as a front end for future frame prediction in surveillance

systems. The key idea here is to use only prominent human key-points instead of the

whole appearance model to understand movement behaviors and patterns in humans

using LSTM. We do this by training our LSTM model on different kinds of movement

patterns individually(single object) and then scale it to multiple objects at run time

with the help of batching. Our results show that our model scales well as we only use

key-point information for predictions, improving the scalability of the system as the

number of tracking targets increases. Furthermore the LSTM layer can be trained on

single target examples, but evaluated on multi-object scenarios of varying complexity

simply by batching.
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We achieve this training and evaluation paradigm via the following contributions:

• Training on single object and testing on multiple objects by scaling the LSTM

with effective batching

• Curation of a extensible single and multi object training/testing dataset by intro-

ducing a Data wrangling technique

• Lightweight multi-object LSTM-based tracker module less than 1 MB. capable for

deployment over edge

• Model trainable at different FPS depending on the input stream

• Creating scalable training/inference configuration knobs based on the scene com-

plexity and real-time requirements



CHAPTER 2: RELATED WORK

Recurrent neural networks handle data that showcase temporal behaviour, very

well. LSTMs[7], specifically, are able to learn long term dependencies. Here we

survey different works that use LSTMs to leverage the pattern recognition properties

and other object tracking paradigms.

2.1 Pattern Recognition

Recent works like [22] and [23] have demonstrated the effectiveness of LSTMs on

understanding patterns from unstructured data. Authors in [24] employed LSTMs for

understanding texts and putting it to semantic context. On similar lines in [25] the

authors improved the character recognition properties of CNNs by adding a recurrent

layer in their model structure. Similarly in [26] LSTMs were used to predict end

points in the Chinese language. Authors in [18] used LSTMs to model human motion

detection to predict time dependent motion representation for human poses. All these

aforementioned developments signify the importance to explore the role of LSTMs in

understanding human behavior and leverage its pattern recognition properties.

2.2 Object Tracking

Initial works, such as [27], were heavily dependent on the Kalman Filters to be able

to stabilise predictions of the movement of the object. However they do not prove to

be much reliable due to the fact that they cannot account for any historic patterns in

their predictions. Other works like [28] incorporated LSTM for applications such as

object tracking like have exhibited promising results. Another work [29], is effective in

understanding the underlying patterns in data. Recent, research like [16], [9] employed

RNNs, specifically LSTMs, for the purpose of tracking. [9] uses the YOLOv1 object
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detection framework for generating the rectangular bounding boxes. This framework

also generates a feature vector of the image with 4096 length. These 4k features

are appended to the bounding box dimensions and passed to an LSTM. This layer

is responsible for predicting the position of the bounding in future frames. This

feature vector provides ample context about the object beyond its mere position and

scale, however it also contains excessive noisy features that increase computational

overhead. Not only does this affecet the performance but also degrades the tracker

accuracy. Another work[21] makes use of a 500-dimensional feature vector with VGG-

16 as the feature generator. However it renders an FPS of merely. Another method

uses an on-line object tracking strategy[12] that implements LSTM. This technique

is inspired from Bayesian Filtering idea which makes data association, state updates

and initiation and termination of tracks. The authors end up with a model that

learns to track and gives good real time performance on the expense of accuracy.

Furthermore, another detection based tracking approach [20]uses Faster RCNN in

the backend as an object detector along with a Vanilla RNN for tacking the targets.

The Vanilla RNN is less capable of addressing the long-term dependencies in lengthy

video sequences. Further, the work focuses on a single object tracking mechanism

rather than a Multi-object



CHAPTER 3: BACKGROUND

3.1 Tracking as a time series problem

Object tracking can generally be termed as a time series/sequence problem. A

time series can be defined as a series of data points sequenced out in space in a timely

order. The time series is then analysed to find the trends and behaviour of data

points for the purpose of forecasting and estimation in future. The following example

shows an Autoregressive integrated moving average (ARIMA) model used to forecast

Australian beer sales.

Figure 3.1: ARIMA model forecasting Australian beer sales [4]

Generally when speaking of statistics, quantitative finance, econometrics etc the

prime aim of time series analysis is forecasting. While speaking of signal processing

and communication engineering it is used for estimation and signal detection. Further,

time series forecasting can be classified into various types. For example, a model pre-
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dicting immediate next time step is a One-step model while a model predicting more

than one time-step in future is a Multi-step model. Depending on how observations

of data points are made a contiguous model is uniform over time while on the other

hand, a dis-contiguous model makes observations not uniform over time. A structured

time series is characterized by a systematic patterns which are time-dependent while

an Unstructured series does not showcase a systematic time-dependent trends. Some

common examples of time series include sunspot count, closing and opening values of

stock markets, heights of tides of the sea etc.

Similarly, object tracking involves a set of data points represented terms of pixel

values that are laid out in space, in a timely order. We aim to exploit the temporal

locality and estimate the future set of data points. This corresponds to where the

particular object will be in the future frames given its past trajectory. This technique

helps for trajectory analysis and better predictive analysis. As discussed earlier, the

our model performs One-step prediction and Multi-Step prediction as well while the

time series is also characterized by structured and un-structured series.

3.2 Neural Networks

Neural networks can be defined as algorithms that are based roughly on the working

of a human brain. These networks are generally designed to recognize patterns in the

input and make predictions accordingly. They translate the sensory data using a

kind of machine perception, further classifying or clustering the input. The patterns

and trends recognized are simple numbers present in the form of vectors. Hence to

learn the patterns and representation of input data, the inputs must be translated to

these numerical vectors. This includes any sort of data ranging from sound / signals,

images, text or time series. The neural networks is comprised of multiple layers that

are made of nodes(neurons). These neurons are responsible for propagating inputs

through to the output layer. The computations take place at neurons. [30]

Further a special type of Neural networks known as Convolutional neural networks
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Figure 3.2: A neural network

are commonly used for Computer Vision tasks like object detection, object classi-

fication, object segmentation etc. A CNN has the following main components in

its pipeline, Convolution, Sub-sampling, Activation and Fully Connected. Initially

the image is convoluted with a kernel which is responsible for feature extraction.

Here different features like edges, shapes, scales are extracted. Later the features are

shrunk using sampling also known as pooling. This helps is filtering out the noise

and redundant features. It also reduces the dimensionality of the feature map but

still maintaining the important information. The activations helps the network learn

non-linear functions. A variety of activations are used depending on the task. The

final component is a fully connected layer. The feature vectors from the previous

layers are directly mapped to this layer. It can also be viewed as decoder layer which

yields the final output. While CNNs have proven one of the best algorithms for many

Computer vision problem, they fail to address temporal domain, if present in the

data.
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Figure 3.3: A Convolutional Neural network

3.3 Recurrent Neural Networks

Recurrent nets are artificial neural network algorithms used specifically for pro-

cessing data that is characterized by a time dimension. Such data typically includes

sound, time series (sensor) data or written natural language. The main idea is to

predict or output a certain value based on its past behaviors. These networks differ

from the regular neural networks because they include a feedback loop. This means

that the output from the previous time step is fed back to the network to influence

the outcome of next step or next subsequent steps. For example, if we would like to

classify what kind of event is happening at certain point in a movie, we tend to think

of the actions that took place in near past that would influence the outcome and then

predict the next step. A typical unrolled RNN[5] is show here.

Figure 3.4: An Unrolled Recurrent Neural network[5]
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The promise of RNNs is that they are able to associate previously gathered infor-

mation to the current prediction, like using the earlier video frames should influence

the understanding and behaviour of the current frame. Sometimes, we need to look

at the very recent information for the predicting the current task. For example, a

language model that predicts the immediate next word based on the previous one.

Thus, If we want to predict the last word in âthe clouds are in the sky,â we wonât

need any further context as the next word should be sky. In such cases, where the gap

between the relevant information and the place that itâs needed is small, RNNs can

learn to use the past information[5]. However, as that gap grows, RNNs become less

capable of connecting the information. Thus to address such long-term dependencies,

we use a special type or RNN known as Long short term memory â LSTM.

3.3.1 Long Short-Term Memory

Long Short Term Memory networks - LSTMs are capable of learning long-term

dependencies. Introduced by Hochreiter Schmidhuber (1997)[7], they perform well

on a variety of problems as mentioned in 2, LSTMs are designed to address long-term

dependency problem by retaining information for long periods of time. All RNNs

have a form of a chain of repeating nodes of neural network. In the basic RNNs,

this repeating nodes have a simple structure, such as a single tanh layer. While the

LSTM also exhibit a chain like structure but with different internals. Every node has

4 neural network layers instead of a single layer. Fig 3.5 shows the repeating nodes

in LSTM.

The key in LSTMS is the cell state indicated by the horizontal line in the top of

diagram 3.6. It is like a belt running through the LSTM node with linear interactions.

The LSTMs have the ability to remove or add information to the cell state using a

structure known as gates. The gates are composed of a sigmoid neural net layer and

a pointwise multiplication opration as shown in Fig. 3.7

LSTM has 3 such gates, to protect and control the state of the cell. An LSTM
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Figure 3.5: Repeating modules in LSTM[5]

Figure 3.6: LSTM cell[5]

has three of these gates, to protect and control the cell state. The initial step for

the LSTM is to decide on what information to throw away from the cell state. The

decision is made by a sigmoid layer called the âforget gate layer.â It takes into account

the last steps hidden state ht1 and xt, and outputs a number between 0 and 1 for every

number in the cell state Ct1. Here a 1 means, âcompletely keep thisâ while 0 represents

âcompletely get rid of this.â The next step is to decide which new information do we

want to retain. A sigmoid layer decides which values to update. Later a tanh layer

creates a vector of that could be added to the cell state. The third step involves

updating the old state, Ct1, into a new cell state Ct. The old state is multiplied by ft,

to forget the information that was supposed to be discarded. Then we add itCt, which

is the new value. Finally we then output based on our cell state. First a sigmoid layer
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Figure 3.7: Gate with a sigmoid layer[5]

decides what to output and then a tanh to push values in between -1 to 1 and further

multiply it by output of sigmoid gate to only output the information we decided to.

The equations for input gate it, output gate ot, forget gate ft and final state ht

defined as following:

it = σ(Wxixt +Whiht−1 + bi) (3.1)

ot = σ(Wx0xt +Wh0ht−1 + bo) (3.2)

ft = σ(Wxfxt +Whfht−1 + bf ) (3.3)

ht = ot ∗ tanh(ct) (3.4)



CHAPTER 4: APPROACH:Key-Track

In this work we propose a hybrid Multi-object tracking framework named Key-

Track. The name Key-Track is derived from Keypoints generated by OpenPose cou-

pled with a tracker system. The Fig. 5.5 shows the system architecture which is a

multi stage pipeline aimed at building an end-to-end solution. The system relies on

a preprocessing block responsible for generating unique training data. The tracker

here is characterized by the key idea of training the framework on behavior of one

object/person in the dataset and scaling it up at runtime to run an inference on

Multiple objects with effective batching. We make use of keypoints pertaining to the

object (shortened feature vector), removing unnecessary background features. This

allows us to keep the tracker size less than a megabyte.

Key-point information per object

54 

Xt LSTM

Fully 

ConnectedLSTMMulti-Person Dataset Preprocessing blockPreprocessing block

OpenPose Data WranglingOpenPose Data Wrangling

+

Figure 4.1: Overview of the System architecture pipeline depicting blocks and flow
of data

4.1 Architecture overview

The detection based tracker starts with detections generated in the form of a feature

vector of keypoints of a person by OpenPose[3]. The pre-processing block is a crucial

first stage that isolates and re-identifies the keypoints associated to individual target

groundtruth. The keypoints consist of the the X and Y coordinates along with the 18

different body parts. These are then aggregated across frames and fed to an LSTM
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network. This network further uses these keypoints to map them to a fully connected

layer. This FC layer is responsible for a regressed bounding box values (x,y,w,h)

Main advantage of using an LSTM based on keypoint detections is that the keypoints

suffice with plenty of context of the object to understand its motion. Similar works

like ROLO and Re3[12] rely on deep features to represent the context of an object

yielding bigger model sizes (100MB+) and higher training times. Our trained model

capable of producing comparable performance with a small model size(<1MB).

4.2 Multi-Person dataset

Figure 4.2: 8 different camera angles as obtained from the Duke dataset

The data-set we worked with is introduced by Ergys et al. [26] which is a large

scale dataset, possibly one of the largest dataset. The Duke MTMC dataset is a

Multi-Target Multi-Camera dataset which consists of 8 Camera angles with different

environment settings. It has a massive number of 2834 different people annotated

across those cameras. The total video comprises of more than an hour long of footage

from 8 cameras recorded at around 60 frames per second FPS inside the campus of

the Duke University. The footage is shot at a resolution of 1080p with more than

2 million frames involving a high number a occlusion scenarios (around 1800) and

partially generated ground truth bounding boxes. The pedestrians generally carry

day-to-day accessories like umbrellas and bags etc. Here, our qualitative analysis

has shown different types of motion exhibited by the objects that include linear, non-

linear behaviors, abrupt motions, occlusion, slow movements which pose an interesting
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challenge to the tracking algorithm. This provides a real world scenarios that would

be perfect for testing the robustness and efficiency of model.

4.3 Pre-processing block

4.3.1 OpenPose

A recurrent neural network, as mentioned in section 3.3, works well with data

that exhibits a sequential/timely pattern. However, it expects a data in a suitable

format to be processed and worked on. A feature generator that generates a feature

vector of the original data is coupled with a recurrent neural net. Here, OpenPose

serves as a feature detector responsible to capture the features of the object. In case

of pedestrian tracking, Human pose estimation frameworks can be effectively used.

One such widely used network is OpenPose[1] that provides accurate and fast pose

estimates which can scale irrespective of total number of people in the scene, thus

inherently scalable and capable of running at high speed in real time. It is exclusively

trained on Humans. Hence it serves as a perfect backbone as it is capable of high

quality detection at different resolutions as well.

4.3.1.1 OpenPose Architecture

Figure 4.3: Multi-Person Pose Estimation model architecture[6]

The OpenPose framework is built on VGG-19 classification network. Here, the first

10 layers of VGGnet are used to create a feature map for the input image. As seen in

fig 4.3, a 2-branch multi-stage CNN is used. Here, the first branch predicts a cluster
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of 2-dimensional Confidence maps of body part locations. A Confidence Map is a

grayscale image which has a high value at locations where the likelihood of a certain

body part is high[6]. The 2nd branch predicts a set of 2-dimensional vector fields of

Part Affinities (PAF) which represent an association between the keypoints.

Figure 4.4: OpenPose detection Examples[1]

OpenPose detection are shown in Fig. 4.4 As seen from the figure, OpenPose

returns a skeletal representation via keypoints. These individual keypoints correspond

to certain parts of the body, depending on the model(MPII, COCO, COCO+foot)

used.

4.3.2 Data wrangling

The DukeMTMC dataset as mentioned earlier consists of multiple pedestrians at

any particular frame throughout the scene. The whole promise of this work is based

on training the network with multiple behavior of a single object and scale it to be

able to infer on multiple object/pedestrian. However as the Dataset itself contains

multi-object sequences we employ a unique data wrangling technique. This lets us

isolate individuals and their respective keypoints within camera sequences. The way

this is done is we first localise objects present in the scene and associate its keypoints

that we obtain from OpenPose to its corresponding groundtruth. This data wran-

gling technique is able to generate around 2700 pedestrian sequences (the number of
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Figure 4.5: Data wrangling used to localize and isolate objects for training

pedestrians present in the dataset), thus, helping the model to generalise better.

For the purpose of testing and evaluation on the dataset, we choose an arbitrary

starting frame and an end frame. This removes any bias when testing as we select

a sequence at random from the immense test set present. This technique effectively

yields a continuous sequence. All the new objects entering the scene are assigned its

own index (exclusive ID) in the 3D input tensor with its respective keypoint-feature

vector. This serves as input to the LSTM network. Such kind of configuration is

necessary to retain its movement properties and trajectories in the subsequent frames.

In case an object moves out of the scene, the corresponding row is filled with zeros

to denote no object present. Similarly the Tensor is initially empty to be able to

accommodate any (upper cap) number of objects. This way we maintain exclusivity

for an arbitrary number of objects that enter or exit throughout the sequences.
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4.4 Key-Track implementation

The key-track network is based on detections received from the OpenPose frame-

work. Hence, we leverage the detections for every object in each frame. Here, a feature

vector consisting of 54-data points for each pedestrian is fed as the primary input to

the LSTM network. The keypoints represented here are the keypoint values in terms

of pixels along with confidence values. The format is (x1,y1,c1,...,x18,y18,c18) where

x and y is the location of the keypoint along with the confidence. This 54 dimen-

sional vector is inputted to the network for every time step. The fig shows that the

network receives the vector for 3 time steps. The crucial step further is to gather the

prediction at final step and map it to the fully connected layer.

Figure 4.6: Training instance for single iteration

The fully connected layer works like a decoder circuit. The output predicted by the

LSTM is regression based. Here the basic fully connected layer consists of 4 neurons

responsible to predict x,y,w,h where x,y is the centroid and w and h denote the width

and height of the bounding box for that person. However, this FC is responsible for

the predicting the position of the object in immediate next frame. For a high FPS
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video predicting just the immediate frame is equivalent to predicting the position at

an extremely short amount of time in future. Hence, to facilitate the frame prediction

for even more future frames, we try to employ a technique of predicting the future

location of the object in spatial domain. This is synonymous to transforming the

time domain to the space domain. The key here is to have the size of FC equal to the

number of future frames we wish to predict the location times 4; where 4 indicates

x,y,w,h

FCneurons = futureframes ∗ 4 (4.1)

Our results show that training on the centroid of the object makes the LSTM less

susceptible to abrupt bounding box changes. This helps LSTM to learn better. The

network is trained on a loss function commonly used for regression problems. The

equation for Mean Square Error is shown below

LMSE = 1/n
n∑
i=1

||Btarget −Bpred||2 (4.2)

where,

Btarget = Bpred = x, y, w, h (4.3)

4.5 Scalability of the network

Scalability is defined as the ability of a product to function at its peak performance

when changed in size or volume. Generally, the scaling is done to cater multiple re-

quirements at a higher volume but at a same or very less compromise in terms of

accuracy or speed. Similarly, in our context we train our model on a single ob-

ject/pedestrian and scale the network to be able to track multiple pedestrians at run

time. We do this by batching the detections of individual pedestrians. Batching cor-

responds to a Single Instruction Multiple Thread operation. This type of execution

model is used in parallel computing environment with multiple threads executing the
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Figure 4.7: The input tensor fed during inference to demonstrate scalability

same command, in parallel. Here, Every unique detection is assigned an index/ data

lane. Each data lane/index in the batch share the same weights and operations. This

way we can dynamically change adjust the batch size depending on the number of

objects to be tracked.



CHAPTER 5: EXPERIMENTAL RESULTS

As mentioned in the earlier chapter, we curated an altogether new dataset with

64 video sequences using our Data Wrangling technique explained in section 4.2. A

total of around 41,268 frames were randomly picked for the purpose of training from

a pool of more than 2 million frames present in the original dataset. We publish our

results on an additional of 14400 frames for single-object tracking. This is done to

specifically to obtain right model configurations to be further used for Multi-object

tracking. Furthermore, 3600 frames are used for evaluating our results on multi-object

tracking.

5.1 Environmental setup

5.1.1 Software Setup

To facilitate and incorporate the recent features provided by various frameworks,

we use the latest versions as mentioned below. We make use of the Pandas 0.24

framework for the data wrangling and curation technique, while PyTorch 1.0 has

been used to build, train and test the LSTM models. Further Numpy is used for fast

vector computations and OpenCV 4.0 for image pre and post processing techniques.

Lastly, we make use of the ONNX library to port the models to a Caffe2 version to

be able to run for optimized efficient inference for Real-time scenarios.

5.1.2 Hardware Setup

We train our LSTM model on the NVIDIA Titan V GPU with 12GB memory.

The test is carried out on the same GPU and an Intel Xeon CPU with 20 physical

cores(40 multi-threaded) for a brief comparison.
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5.2 Evaluation metrics

The object tracking community employs various different metrics according to the

use case, suitability and the information provided by the tracker in the applications

context. Some of the commonly used metrics include Center error, Tracking length,

Region overlap (Intersection over union) etc. The center prediction error[31] measures

the difference between the targetâs predicted center as predicted by the tracker and

the ground-truth center. This metric is popular due to the minimal annotation effort

required i.e only a single point per object per frame. However a drawback of this

measure is its susceptibility subjective annotation i.e. what exactly is the center

of the object. This measure also does not take into account the size of the object.

Equation 5.1 denotes the delta calculated between the ground truth and prediction

while Equation 5.2 denotes the summarized average error over N frames.

δt = ||xGt − xTt || (5.1)

∆µ(ΛG,ΛT ) = 1/N
N∑
t=1

δt (5.2)

Another measure used in this context is tracking length. It measures the number of

frames successfully tracked by the tracker from its initiation to the very first failure.

It makes use of center error, however, to keep a track of successful tracks. An error

more than a threshold is considered as a failure to track. While it overcomes the

center error drawbacks, it has some other significant drawbacks too. It only uses

the video sequence up to the first failure. If in some case, the initiation is bad due

to the target is not visible well, it would straight away fail even before beginning

to measure the accuracy for the rest of the video. Another widely used metric is

the Region Overlap or the average overlap score. The AOS can be calculated using

the Intersection over Union method. It defines a ratio of the amount of intersection

overlap between the ground truth bounding box and the predicted bounding box of
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the object to the union between the ground truth and prediction. Generally an IOU

score of 50% or more is considered as a successful detection denoting a True positive.

Further the Intersection over Union score is then averaged for the number of frames

the predictions have been made. This yields in the AOS.

Figure 5.1: Intersection over Union

5.3 Quantitative results

5.3.1 Single-Object tracking results

We report our initial results on a diverse set of tracking scenarios on multiple single

object sequences. Here, using our data wrangling technique we curate 24 unique

single object sequences. To avoid any sort of biases and generalise our predictions,

we choose these sequences from all the 8 available cameras. To evaluate which LSTM

configuration performs the best, we measure the AOS score for 4 different timesteps.

The time-step measure is crucial as it denotes the number of previous frames we

take into account for the prediction. It essentially determines how good or bad the
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Figure 5.2: AOS for time step 3

prediction in the next or next few frames will be.
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Figure 5.3: AOS for time step 6

The aforementioned graphs show various AOS scores. Here, ’C’ denotes the camera

and ’obj’ denotes the object/pedestrian ID. Here the 3-step input performed best with

a highest overlap of 78%. Based on these findings we cumulatively gathered an average

over all the videos to find the best time step, quantitatively. Fig 5.6 shows a brief

comparison as to which step performs the best for the entire test set. We found out

that there was a weak correlation between the length of the input time series and the

resulting accuracy. To further analyse why this was the case we qualitatively analyse

the characteristics of the data set and report it in section 5.4.
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Figure 5.4: AOS for time step 8
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Figure 5.5: AOS for time step 10

5.3.2 Best model configuration

We report our initial results on a diverse set of tracking scenarios on multiple single

object sequences. Here, using our data wrangling technique we curate 24 unique

single object sequences. To avoid any sort of biases and generalise our predictions,

we choose these sequences from all the 8 available cameras. To evaluate which LSTM

configuration performs the best, we measure the AOS score for 4 different timesteps.

The time-step measure is crucial as it denotes the number of previous frames we want

to take into account for the prediction. It essentially determines how good or bad the

prediction in the next or next few frames will be.

Further, we try to record a unique metric where Given a certain Average Overlap



27

Figure 5.6: Step comparison with Average AOS

score threshold, we measure how many testing sequences showcased the Average AOS

equal to or even better than the threshold score. This gives an intuition as to how

well the tracker performed for an unseen amount of data. As we see from Fig. 5.7, the

tracker maintained a high degree of accuracy for the entire test set till high threshold

values. The flatter the curve is, the better is the accuracy for the entire test set. The

results show that the tracker is able to maintain a 60% and higher average overlap

score for more than 17 videos ( 71% of the dataset )

Figure 5.7: Number of sequences compared to the AOS threshold
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5.3.3 Multi-object tracking results

After being able to find the best working model configuration by testing on single-

object sequences, we further report our results on Multi-object sequences. We try to

achieve a comprehensive comparison by using a concatenation technique. We curate

a new single person test bed with 32 different people and concatenating the sequences

to form a tensor. This technique allows us to demonstrate the effect of scaling for

arbitrary number of objects and the average AOS for the sequences. We also report

the performance numbers for scaling on edge and server, both.

First, to assess the behavior exhibited by different objects in the dataset, we analyse

the videos and classify them based on their characteristics. Table 5.1 shows our

analysis of videos. The abnormal motion class depicts scenarios with non-linear tracks

and sudden motion changes. Such scenarios are hard to handle for smaller time steps.

Hence they are naturally favoured by a longer time steps. As seen from the table

time step 6 and 8 favor this class. Using higher timesteps we tend to exploit more of

temporal history of the object resulting in better predictions. Similarly scale changes

include cases like moving closer or further away from the camera or also deformations

in the bounding box. Here an input of step 3 performs well. This way by adjusting

the model configuration rightly, we can adapt to various scenario complexities.

Table 5.1: Preferred Input Time Series Length Based on Video Characteristics

Motion type Slight Abnormal Motion Abnormal Motion Scale Change Linear
Time-steps 3 6,8 3 6

Number of Sequences 13 4 3 4

• Effect of scaling on AOS:

The number of objects in the scene has almost a negligible effect on the tracker.

Since all the objects in the scene are tracked individually and batched as inputs, the

accuracy is stable over arbitrary number of objects in the scene.
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Figure 5.8: Effect of scaling on AOS

5.3.3.1 Performance results

• Effect of scaling on Inference time for an EDGE server:

Figure 5.9: Effect of scaling on Inference time(s)

As shown in Fig. 5.9 , we vary the batch size corresponding to the number of

pedestrians in the scene. We consider a sequence of 2343 frames here. It can be

seen from the graph that an exponential increase in batch size has a linear effect on

inference time making the model robust to any scale. Here, for lower batch size, the

inference is faster for CPU. As soon as we switch to higher batch size (more pedestrians
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to track), the GPU performs better owing to its ability to handle massively parallel

applications. As mentioned earlier, the EDGE server is local server with a TITAN V

and Intel Xeon.

• Effect of scaling on Inference time for an EDGE node:

Figure 5.10: Effect of scaling on Inference time(s)

Moving on to the EDGE node, a similar behavior is observed as compared to the

EDGE server. The NVIDIA Jetson Xavier is an embedded GPU platform with a a

Xavier GPU and ARMv8 CPU. This GPU allows us to test the scalability performance

when the tracker would be deployed online. As seen from Fig. 5.10, the inference

time for lower batch size is less for the ARMv8. Naturally, as we move to higher,

the Xavier GPU performs better, thus exploiting the inherent ability of processing

parallel applications faster

• Throughput in terms of FPS:

Here 5.11 shows the throughput for different GPU devices. The throughput is

defined as the ability of the network to process a specific amount of data per unit

time. The measure we use here is Frames per second. The Frame rate recorded is

for offline tracking. As seen from the graph every Device has its own advantage and
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Figure 5.11: Frame rate vs Batch Size

drawback. The Titan V, which is the Server yields the highest FPS for every batch.

However it operates at a mammoth 250W power. As we move to the Edge GPU, the

NVIDIA Jetson Xavier, we get a comparable performance however at a peak power

usage of just 30W. Further, the NVIDIA Jetson Nano, deliver the lowest throughput

however at a very low peak power of 10W. Thus, the Xavier being the perfect choice

for edge computing can be used as an edge device.
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5.4 Qualitative results

The qualitative results indicate the robustness and performance of the system from

a human readable perspective. The following figures show 6 frames from a chosen

sequence. The Blue box is the ground truth while the red is the prediction. This

sequence contains linear and slightly abnormal motion. We can also see a case of

long term occlusion along with a person standing for long. Here, objects randomly

enter from any direction in the scene. To accommodate this the tracker requires a

warm-up time of timestep number of frames to be able to initiate tracking. Also, all

the objects have comparable and high Overlap with respect to the groundtruth.

Figure 5.12: Continuous sequences from the test set



CHAPTER 6: CONCLUSIONS

6.1 Summary of Results

This work presents a hybrid approach for Multi-object tracking for Surveillance

cameras without compromising much on throughput and maintaining the accuracy of

detections irrespective of the number of objects to be tracked. This really showcases

the pattern learning property of LSTM for object tracking. The usage of object

specific keypoints allows us to get rid of unnecessary background noise and essentially

yields in a tracker system which is super lightweight. We also introduce a unique idea

of training on single object and testing on multiple objects by effective batching.

The scalability reports show that the network scales well by maintaining throughput.

The qualitative analysis on other hand gives us insights on the scenes in the video.

Thus Sequences with varying complexities were successfully tracked using different

timesteps.

6.2 Future scope

We thoroughly evaluated the scenes and built a tracker module based on every

scenario possible. However, we would still like to improve on some aspects by incor-

porating following possible ideas:

1 Integrating the tracker module with Real-Time Object Detection and Re-id sys-

tem. This way we can rely less on heavy Object detection modules (step towards

detection free tracking) and thus increase the throughput in terms of FPS

2 Predicting many more future frames for a Trajectory analysis. This would help

in getting a sense of Object direction and speed and allow us to model a long

term behavior of the object



34

3 Extending the Multi-Object paradigm for Multiple-Cameras. This would help in

detecting and tracking an interested suspect for a spread out environment.

3 Exploiting the LSTM’s inherent pattern learning properties to predict actions.

Action detection and Recognition would allow us to further understand the

scene, semantically.
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