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ABSTRACT 

 

RISHABH SANJAY GOUD.  Distress Detection of Road Survey Images using Deep 

Learning. (Under the direction of (DR. DON CHEN) 

 

The NCDOT road survey involves capturing images of highway and later processing to 

determine an overall pavement performance. Terabytes of data is captured even over a 

small highway section, therefore, there is a need to find better solutions to process these 

images. This study aims to detect distresses on the collected images using deep learning. 

Previous studies have utilized some deep learning model to classify road survey images, 

however, this study utilizes Mask-RCNN to detect the different distresses present on an 

image and also to classify its type. In addition, previous studies have manually labelled 

images to develop a labelled dataset, however there is no documented record of this 

process. Therefore, this research enumerates the steps required to develop a labelled dataset 

from the raw images and utilize these images to develop several Mask-RCNN models. For 

labelling purposes, this study testes several software including: GIMP, Adobe Lightroom, 

Adobe Photoshop, and Whitebox. All the software expect WhiteBox are typically utilized 

in image manipulation. Whereas, WhiteBox is a geospatial analysis software which is 

utilized in measurement of lake depths or slope of mountain ranges. This study attempted 

to apply a WhiteBox for marking of road cracks by treating the cracks as mountain ranges 

at a small scale. Mask-RCNN model was developed using python with Tensorflow, Keras 

and opencv2 libraries. Several parameters were changed and a total of five models were 

tested on training and test road survey images. The results were promising, and further 

studies need to develop more accurate model to get conclusive results. This study 

developed the framework of the entire process.  
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CHAPTER 1 INTRODUCTION 
 

 

The purpose of this research is to investigate methods to create a training dataset of 

pavement distresses for application on deep learning algorithms and use the training dataset 

to train a selected deep learning algorithm. Pavement Management System (PMS) is a 

means of maintaining the road network. It consists of three aspects: collecting data on 

roadway to assess its condition; adopting a maintenance strategy based on the data 

collected; and improving maintenance and data collection in order to make the PMS more 

efficient (Han and Kobayashi 2013). Each state faces their unique challenges in terms of 

weather, traffic and population, therefore the PMS’s for all state transportation agencies 

differ. The challenges arise for state DOT’s in terms of saving costs and or time in one or 

all three aspects mentioned above. Therefore, DOT’s are constantly seeking processes to 

carry out tasks for saving time and cost in road maintenance. This study intends to assist 

the DOT’s to save cost and time with their pavement management system using deep 

learning. 

Government agencies such as state department of transport (DOT’s) or Federal highway 

Administration (FHWA), measures the road conditions in terms of pavement performance.  

There are several performance indicators to determine the condition of road network, the 

most commonly used indicators amongst government agencies are: Pavement Condition 

Index (PCI), Pavement Condition Rating (PCR), International Roughness Index (IRI) and 

Surface Distress Index (SDI) (Siswoyo and Setyawan 2017).  

North Carolina Department of Transportation (NCDOT) uses a Pavement Condition Rating 

to measure the performance of its roads. This rating requires accurately measuring various 
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distress types on roadways. Some common road distress types include alligator cracking, 

longitudinal cracking, transverse cracking, patching, rutting, and pot holes.  

Historically, a windshield survey was conducted to manually assess each segment of road 

to determine which type of distresses existed on the roadway. Windshield surveys generally 

consist of manually surveying each mile of roadway with a technician memorizing each 

different distress type and estimating its severity. This leads to many errors due to the 

difficulty of the survey. Also, this was time consuming and unsafe, as surveyors would 

have to sometimes drive on shoulder of interstate highways at low vehicle speeds.  

Therefore, recently government agencies have shifted to semi-automated survey methods 

by mounting cameras to survey vehicles (NCDOT 2011). These survey vehicles do not 

need to be stopped as the camera continuously takes images of the road. The images are 

stored and later processed to determine distresses type and severity. Currently, North 

Carolina DOT utilizes a third-party vendor for survey of roads and processing of images. 

The vendor has developed proprietary software to process the images after surveying in a 

semi-automated manner. This improves time and costs for surveying roads. However, there 

are discrepancies with the vendor’s results and the actual pavement performance rating.  

In the past when processing images used computer vision applications, the images were 

processed with some filters applied to the image to make the distress more visible to the 

technician (Sun, Salari et al. 2009). This process was time consuming as the survey vehicle 

produced a large quantity of images even within a small survey section. To overcome this, 

various techniques such as filter based, segmentation and thresholding were utilized to 

process the images (Chambon, Subirats et al. 2009). This process was still time consuming, 
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and not accurate, but more efficient than manually checking each image for cracks 

(Oliveira and Correia 2013).  

Along with advancing technologies and increase in computational abilities, new methods 

such as deep learning and machine learning have been applied for image recognition. 

Machine learning can be described as an algorithm that predicts outcomes based on 

previously learned data, also known as training data (Mohri, Rostamizadeh et al. 2018). 

Machine learning is being utilized across all fields when large quantity of data is available. 

For example, Amazon uses machine learning algorithms to predict what products a 

consumer might be interested in buying based on search history and previously bought 

products (Jin, Ho et al. 2009).  Even though machine learning proved accurate in predicting 

results from previously learned data, it was not good in handling large input of datasets 

(Bengio, 2012).  Therefore, deep learning was developed as an evolution from machine 

learning, to handle more complex datasets. Today, deep learning algorithms can classify 

multiple forms of complex data to make predictions. Some examples of complex data are:  

speech recognition, natural language processing, language translation and image 

recognition (LeCun, Bengio et al. 2015). 

In machine learning and deep learning, computer recognizes and stores an image as a 

matrix of pixel values, consequently each corresponding color on the image has a 

numerical value associated with it. This matrix of pixel values is converted into an array to 

be run by deep learning algorithms for pattern recognition in the pixel values. With 

sufficient number of images, the algorithm learns patterns in the data and can make new 

predictions on previously unseen data. For example, the algorithm can make predictions 
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on images of hand-written digits, or it can recognize various distresses on road survey 

images.  

Deep learning algorithms require large quantity of labelled data set, which mark the object 

on the image. For example, marking and categorizing of various types of distresses such 

as longitudinal, transverse or alligator crack on road survey images.  This laborious process 

is an essential part of applying deep learning algorithm for image recognition. Currently, 

there are no publicly available datasets for developing deep learning algorithms to detect 

different types of distresses on a roadway surface image. CrackNet is a deep learning 

algorithm that utilizes a manually created dataset by a team of 10 over one year marking 

3000 images to near pixel perfect accuracy (Zhang, Wang et al. 2018). However, the 

labelling method was not provided hence, there is a need to describe methods that can 

quickly and accurately mark these images to develop deep learning algorithms. 

Apparently there is a knowledge gap in terms of creating a training data set of pavement 

distress images which this study aims to address. This research’s contribution is to find 

ideal labelling methods that can quickly and efficiently mark the images as, deep learning 

algorithms require large amounts of labelled images for the models to perform accurately. 

In addition, to utilize the training dataset created in this study for development a robust 

deep learning algorithm.  

1.1 Organization of Thesis 

  

This Thesis has been organized into six chapters. Chapter 1 contains the introduction 

describing the challenges faced by State DOT’s. Chapter 2 encompasses the literature 

review whereas, Chapter 3 includes the research methodology and research objective. 
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Chapter 4 presents the expected results and discussion and Chapter 5 comprises of the 

conclusion and recommendations. Appendix I contains the Mask-RCNN Libraries. 

Appendix II contains the Code of Model. Whereas, Appendix III comprises of the Code of 

Model Training. Appendix IV encompasses the List of Library Requirements for the 

Python Mask-RCNN Environment. Appendix V includes the Test Results Without outliers 

50E_640RES vs. 50E_960RES. Appendix VI presents Test Results Without outliers 

50E_960RES vs. 75E_960RES. Appendix VII contains Test Results Without outliers 

50E_640RES Vs.  100E_1024RES. Appendix VII displays Test Results with outliers 
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CHAPTER 2 LITERATURE REVIEW 
 

 

2.1 Pavement Management System 
 

AASHTO defines pavement management (PM) as; “the effective and efficient directing of 

the various activities involved in providing and sustaining pavements in condition 

acceptable to the travelling public at the least life cycle cost” (AASHTO 1985).  According 

to the Peterson, Pavement Management System (PMS)  consists of the five essential 

elements (Peterson 1987).  

1. Pavement surveys related to condition  

2. Data base containing the pavement information  

3. Analysis method of collected data 

4. Decision criteria  

5. Implementation  

The objective of Pavement Management is to attain the best value of publicly available 

funds, while providing a safe, comfortable and economic transportation system. To achieve 

this, the five elements of PMS must be economically feasible. Pavement surveys is the 

most time consuming and expensive aspect of (PMS). Hence, state agencies are always 

trying to improve this process.  

In the past, surveys were conducted as a road test, where a panel of engineers where 

selected to ride over specific pavements to judge it on a wide range of conditions. The road 

sections would be rated on a scale from 1 to 5, very poor being the least and very good 

being the most. The engineer’s main guideline was whether the road was acceptable or 
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unacceptable to drive over a long period of time or distance (Finn 1998). This process was 

time consuming, not accurate, and expensive, therefore, better methods were adapted. 

 Windshield survey was utilized by state governments with a more robust system. Survey 

was conducted by trained personnel travelling on speed of 15-20 mph on interstates and 

major roads with full width shoulders. The raters were provided printouts with beginning 

and ending of each segments and various information regarding traffic. In addition, several 

distress types that occurred on the roads were identified and measured in terms of severity 

(Corley-Lay, Jadoun et al. 2010). The data collection was dependent on the raters and due 

to this, it had variability.  

Due to the limitations of the windshield survey, there was a need for automated high-speed 

survey that would provide accurate survey results. High speed image collection was 

available for many years, it is a faster and more economical form of survey compared to 

the windshield survey. Therefore, NCDOT adopted high speed image collection beginning 

in 2011 (Mastin 2011). This involves survey vehicles to drive vehicles mounted with 

cameras and take images while driving. The survey covers the entire width of the lane 

therefore, no section is missed. The images will be utilized in automated or semi-automated 

data processing.  

2.2 Types of Distresses  
 

Pavements encompass many different types of distresses, however, only the distresses that 

the NCDOT utilizes to calculate a pavement condition rating have been presented. 

According to the NCDOT 2010 manual (NCDOT 2010), several distresses and there their 

severity are defined below. 
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Transverse Cracking  

Transverse cracks run perpendicular to the pavement centerline but not over joints in an 

underlying jointed concrete pavement. It consists of three severity levels (NCDOT 2010): 

a) Low Severity 

A sealed crack in a good condition such that the crack width cannot be determined 

or an unsealed crack with a width less than 0.25 inch. 

b) Moderate Severity  

An open, unsealed crack between 0.25 inch and 0.5 inch in width or any crack 

sealed or unsealed with adjacent transverse cracking within 5-10 feet.  

c) High Severity  

An open unsealed crack greater than 0.5 inch in width or any crack sealed or 

unsealed within 5 feet. Frequent blocking is likely present with areas between 1 and 

10 square feet.  
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FIGURE 1: Examples of Transverse Cracking. (Courtesy of NCDOT 2010) 

 

Longitudinal Cracking – Outside of the Wheel Paths  

Longitudinal cracks are those running parallel to the centerline of the roadway, but not over 

joints in an underlying concrete pavement. However, for rating purposes, only longitudinal 

cracks outside the wheel paths are counted as longitudinal. It consists of two severity levels 

(NCDOT 2010):  

a. Low Severity 
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A crack with the sealant in good condition such that the crack width cannot be 

estimated or a closed crack with width less than 0.25 inch.  

b. High Severity  

An open unsealed crack or any crack sealed or unsealed with adjacent random 

cracking. 

 

FIGURE 2: Examples of NWP Longitudinal Cracking. (Courtesy of NCDOT 2010) 

 

Longitudinal Lane Joint Cracking 

NCDOT only classifies lane joint cracking as a distress when the joint has cracked, and it 

will allow water to penetrate the joint. It consists of two severity levels (NCDOT 2010):  

a. Low Severity 
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A longitudinal paving joint with the sealant in good condition such that the width cannot 

be estimated or an open unsealed joint.  

b. High Severity  

The longitudinal paving joint must be cracked with severe spalling or adjacent random 

cracking to be classified as high severity. 

 

FIGURE 3: Examples of Longitudinal Lane Joint Cracking. (Courtesy of NCDOT 2010) 

 

Alligator or Fatigue Cracking  

Alligator cracking occurs in areas due to heavy repetitive wheel, NCDOT considers the 

alligator cracking that are found in wheel path for rating. Typically, alligator cracks begin 

as longitudinal cracks and develop as more interconnected cracks over time. These 
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interconnected cracks have pattern similar to chicken wire or alligator hide, hence the term 

alligator cracking. It consists of three severity levels (NCDOT 2010):  

a) Low Severity 

A single sealed or unsealed longitudinal crack in the wheel path or an area of cracks with 

no or few interconnecting cracks with no spalling. Cracks are less than 0.125 inch in width.  

b) Moderate Severity 

An area of interconnecting cracks forming the characteristic alligator pattern; may have 

slight spalling. Cracks are typically about 0.25 inch in width   

c)       High Severity  

An area of moderately or severely spalled cracks forming the characteristic alligator 

pattern. Cracks are typically greater than 0.375 inch in width  
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FIGURE 4: Examples of Alligator Cracking. (Courtesy of NCDOT 2010) 

 

Patching  

Patches are areas of the pavement surface that have been removed and replaced or where 

additional material has been placed on the pavement surface to cover cracking or other 

distress. There are two types of Patching: Wheel path and non-Wheel Path. However, 

Patching does not have any severity levels. It is only calculated in terms of amount and 

which is measured in square feet (NCDOT 2010).   
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FIGURE 5: Example of Patching. (Courtesy of NCDOT 2010) 

 

2.3 Pavement Performance  
 

Most State agencies utilize the individual pavement distress data differently, to designate 

the performance of a roadway. Some performance indicators that state DOT’s utilize are 

International roughness index (IRI), Pavement Condition Rating (PCR) and Pavement 

Condition Index (PCI) (Siswoyo and Setyawan 2017).   

IRI is measured by a road profiler, by which a series of numbers represent the profile of 

the road way. Road roughness meters or profilers mounted on survey vehicles are utilized 

to collect data for IRI calculation. The device measures and records displacement of chassis 

relative to the rear axle per unit distance travelled usually miles (Shafizadeh, Mannering et 

al. 2002).  Washington D.C. Department of transportation measures the IRI of its roads in 

terms of inches/mile (Arhin and Noel 2014). 

North Carolina Department of Transportation (NCDOT) utilizes a Pavement Condition 

Rating (PCR) to describe the condition of its roadways. Initially, with this approach, each 

road way is given a score of 100 and each distress is multiplied with a certain weight and 
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subtracted from 100. A road section’s PCR decreases with respect to time and after a certain 

threshold the section undergoes rehabilitation process (Chen, Cavalline et al. 2014).  Fast 

processing of distress identification would help NCDOT calculate the performance 

indicator faster.  

2.4 Data Pre-Processing Techniques  
 

Previously, methods such as filtering, segmentation, wavelet transforms were utilized to 

detect cracks on images (Oliveira and Correia 2013).  Filtering can be described as a 

method to enhance the contrast in the image to distinguish between pavement distress and 

image background. Filtering technique is not effective, as it fails to enhance the cracks 

which are non-continuous or those cracks with width less than 3mm (Sun, Salari et al. 

2009).  

Although at the time these techniques were utilized to process images, they were eventually 

deemed time consuming and for the most part inaccurate. These techniques failed to detect 

crack that were not continuous at a pixel level and the techniques were not accurate at edge 

detection of the cracks. In essence, these methods could not properly distinguish the 

pavement distress from the image background. For these reasons, other techniques had to 

be developed for pavement distress identification in images that could automatically detect 

road cracks, save time and money.  

2.5 Machine Learning  
 

Machine learning is defined as, “a set of methods that can automatically detect patterns in 

data, and then use the uncovered patterns to predict future data, or to perform other kinds 

of decision making under uncertainty” (Robert 2014).  The aim of machine learning is to 
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allow the computers to learn patterns automatically without human intervention in order to 

make future predictions.  Machine learning algorithms are categorized in two parts: 

Supervised and Unsupervised.  

Supervised Learning is technique in which the computer can apply what is learned in the 

past to new data by utilizing labeled examples. The labelled examples are known as a 

training dataset, from which the computer programs learns. Unsupervised learning is 

utilized when classified or labelled data is not available, the computer program infers 

patterns through the data set to and finds hidden structure in unlabeled data set.  

Machine learning has been utilized in all sectors from farming, supply chain management 

and cancer detection in medical imagery (LeCun, Bengio et al. 2015). Some of the Machine 

learning methods that were utilized in cancer detection was: Support vector machine 

(SVM); Bayesian navies BN, Decision Tree (DT) and Artificial Neural Networks (ANN) 

(Kourou, Exarchos et al. 2015). From the above mentioned methods artificial neural 

networks displays the most promise in image recognition and classification.  

Artificial neural networks (ANN) models are inspired from the human brain. The ANN 

model consists of many nodes and synapses which communicate through connecting 

synapses, similar to the human brain. ANN consists of multiple layers: an input layer where 

input parameters are processed, hidden layers where the hidden parameters are processed 

and an output layer to display the results (Kalogirou 2000). Each layer has certain number 

of neurons and each neuron is a processing unit with a weight associated to it.  The process 

of ANN starts from the summation of input layer by weighted activation of each of the 

neurons. To summarize, input data is passed through input layer and hidden layer by means 

of multiplying weights of the neuron and summation of the layer.  There are various 
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algorithms available to train an ANN and selecting the correct one for a particular problem 

is only through trial and error basis (Ata 2015). 

2.6 Deep Learning 
 

Deep learning is a subset of machine learning, where the aim in deep learning is to 

determine more abstract features in higher levels of representation (Bengio 2012).  Deep 

learning neural networks consists of more number of hidden layers with more number of 

neurons; these are known as deep neural networks (Nguyen, Dosovitskiy et al. 2016).  

Conventional machine learning was inefficient in processing large amount of data such as 

speech recognition, or pixel values of high definition images. Deep learning can overcome 

this drawback by allowing the computer to be fed raw data and automatically discover 

patterns for detection or classification. For example, an image is represented in the form of 

an array of pixel values, which is the input layer into the neural network. The first hidden 

layer typically discovers the presence or absence of edges of objects in the image. The 

second layer generally discovers a pattern in particular arrangement near the edge of the 

object. Third layer arranges the patterns into larger combinations to detect familiar objects. 

This process of discovering key patterns or arranging them in a particular manner is not 

designed by human engineers, the deep learning algorithm performs this task on its own, 

and this is the reason it has become a powerful tool in all fields (LeCun, Bengio et al. 2015).  

However, deep learning models require large amounts of labelled data set in order to 

predict highly accurate results. For example, MNIST dataset was one of the first data sets 

that was created to experiment with deep learning algorithms. It contained 60,000 labelled 

training images of hand written digits in black and white with an image size of 28 x 28 

pixels (Deng 2012). Some deep learning models were able to recognize the digits with up 



18 
 

to 98.13% accuracy.  Another example is IBM’s facial recognition data set which contains 

one million labelled images, and their deep learning model has an accuracy of 99.6% in 

identifying light skinned male subjects, but a 65.3% accuracy in identifying dark skinned 

female subjects. Despite its advances in image recognition deep learning is not completely 

accurate in all types of images and it requires large amount of labelled images to predict 

with high accuracy.  

Even though deep learning algorithms have high rate of identifying images accurately in 

other fields, it is challenging to apply them to pavement distress detection as they require 

pixel perfect accuracy (Zhang, Wang et al. 2018).  The difficulty arises from unavailability 

of accurately labelled data set to train the deep learning algorithm. One of the first datasets 

created for deep learning application on pavement images was the Cracktree data set 

created at Temple University.  It contained 500 images of size 99 x 99 pixels that was 

manually annotated (Zhang, Yang et al. 2016).  These images were small in terms of size 

therefore the cracks on road surface were easily identified as each pixel contained more 

information of the road crack and road surface. However, this method is not feasible for an 

automated pavement survey system as the images were taken from a phone. Cracks exist 

in other civil infrastructure projects as well and need to be identified, in 2017, a study 

utilized DSLR camera for data collection of 500 images and manually labelled these 

images (Cha, Choi et al. 2017).  Some recent studies for deep neural network applications 

involved creating two data sets of images containing 2,000 and 3,000 images and each 

named CrackNet and CrackNet II. These images were manually marked by multiple teams 

over the period of one year, and the algorithms showed accuracy of 90.13% to 87.63%. 
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Also, these images were 3D surface images (Zhang, Wang et al. 2017, Zhang, Wang et al. 

2018). 

2.6.1 Mask –RCNN 
 

Deep learning involves many algorithms with applications which have various advantages 

and disadvantages. These have developed overtime and evolved to more task specific 

models. One of the first deep learning models was the convolutional neural network 

(CNN), which was utilized in image classification. Image classification involves 

classifying what is present on the image into predefined classes. For example, whether the 

image has a dog or cat, or whether the image has a crack present in it or not. CNN’s were 

utilized in previous studies to classify images with cracks on road survey images (Zhang, 

2018). However, the limitation of this model is that it only classifies weather a crack is 

present on the image or not. Even if it is one single crack or multiple cracks on the same 

image.  

There is more information that is required from a survey to evaluate the performance of the 

road section than classifying if that section has a crack. For evaluation of pavement 

performance, the type of crack, the location of the crack, and the width which defines the 

severity of the crack must extracted from the image. Region Convolutional Neural Network 

(RCNN) was developed from a CNN, which utilizes region proposals along with CNN’s 

to detect object on an image.  The RCNN model detects objects within certain regions and 

classifies the object within that region (Girshick, 2014). For example, if an image has 

multiple cracks present on it, the RCNN model detects each crack within a bounding box, 

in addition, it classifies the crack according to the type of crack.  
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Mask-RCNN was developed by the Facebook AI Research (FAIR) Team as an evolution 

from RCNN and CNN. The goal of the Mask-RCNN model is semantic segmentation, 

which is to classify each pixel on an image into a fixed category. It was developed using 

the Common Objects in Context (COCO) dataset. Which is a large-scale object detection, 

segmentation, and labeling dataset developed with collaboration from Microsoft and 

Facebook (Lin, Maire et al. 2014). The model detects objects within a bounding box and 

utilizes a mask to cover that object within the bounding box. The goal of this study is to 

apply this principal in detecting cracks on road survey images and mask the cracks within 

the bounding box. Further studies can use this to determine the severity level of the cracks 

by measuring the width of the masks. The Figure 6 describes the framework of the Mask-

RCNN model (He, 2017).  

 

FIGURE 6: Framework of the Mask-RCNN Model (He, 2017).   

 

2.7 Image Labelling Software  
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Image annotation is the most arduous and necessary task of applying deep learning for 

image recognition. It consists of manually selecting each pixel of an object in an image and 

masking it with a certain color to label the object type present in the image. Most images 

which have been utilized in deep learning algorithms were either colored images with 

clearly defined edges of object, or binary images with the object being one color. Due to 

these reasons, there exist commercial software that can easily annotate images and build 

data sets. However, in case of road survey images, the cracks are not always easily visible 

even to the human eye and the boundaries of the cracks are not always clearly defined. 

Therefore, it is difficult to distinguish between the pixels which can be classified as a crack 

or non-crack. To the best of the knowledge of this research, there is no software or methods 

available that describes how a road survey image can be labeled. Therefore, it is the intent 

of this research to fill that research gap.  

This research has identified some tools which can be utilized to annotate the road survey 

images. Some of the tools are free software available for download on the internet and 

others are commercial software.  The following is a description of the various software and 

its tools utilized in this study  

1) GIMP (GIMP 04/07/2019) 

GIMP stands for GNU Image Manipulation Program, it is a free software available for 

download on the internet. It assists users with image retouching, composition and 

authoring.  This software is proposed as a technique to mark road survey images. The 

software includes a wand tool, which can be utilized in marking multiple pixels of similar 

value by selecting one pixel. This can be effective to select a pixel on the image where the 
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crack exists, and the software will automatically select similar pixels within a threshold 

decided by the user.  

2) Adobe Photoshop Lightroom Creative Cloud (Lightroom 02/05/2019) 

Lightroom is an image manipulation software distributed by Adobe which is useful in 

image manipulation and image organization in large quantities. This can be utilized in 

organizing multiple images with same type of distress efficiently. In addition, Lightroom 

has image editing capabilities which were tested to mark the distress on the image in this 

research.  

3) Adobe Photoshop Creative Cloud (Adobe 10/12/2019) 

Photoshop is another image manipulation software distributed by Adobe, and it has all the 

capabilities of Lightroom. In addition, it has tools similar to that of GIMP. 

i) Magic wand  

In Photoshop, Magic wand is a tool similar to the wand tool in GIMP, where the user can 

select multiple pixels of similar value by clicking on one pixel. The tool selects all pixels 

in range that is decided by the user. Also, the user has the choice of selecting the pixels that 

are continuously connected to each other or separated by different value pixels. Since 

cracks are continuous this study proposes to select all continuous pixels. 

ii)  Lasso  

Within Photoshop there is another tool known as the lasso tool. It allows the user to make 

a freehand selection around an object on the image, similar to outlining something on a 

paper with a pen. Also, there are multiple options within the lasso tool which can utilized 
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in selecting cracks on the image. For example, there are button which will allow the user 

to add, subtract, or intersect with an existing selection which can be convenient in marking 

the cracks.  

4) Whitebox (Lindsay 1/8/2019) 

Whitebox is a software for geospatial analysis and data visualization which was developed 

for the purposes of terrain analysis. It is a novel approach that was tested to treat the 

pavement surface as a terrain analysis model. WhiteBox is a software generally utilized in 

GIS and mapping studies, it helps the users detect valleys and measure lake depths using 

satellite images. The study proposes to apply this technique to detect cracks in the road 

survey images, as the road surface can be compared to a mountain range with the cracks 

being compared to valleys on a smaller scale.  
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CHAPTER 3 RESEARCH METHODOLOGY 
 

 

The methodology for this research comprises of two aspects: identifying the ideal labelling 

method and developing a robust deep learning algorithm to detect roadway distresses. To 

accomplish these tasks, raw images need to be obtained from the NCDOT vendor to be 

utilized for this research. This study proposes to utilize 20 images with multiple cracks on 

each image. The next step is to determine various methods to label the data which have 

been discussed in detail further in this chapter. Upon the completion of this process, the 

images were used to train various deep learning algorithms for image recognition. This 

process is illustrated in Figure 7 below. 

  

 

FIGURE 7: Research Methodology Flow Chart 
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3.1 Research Objective 
 

The main objectives of this research are as follows:  

• Selecting images which have most common surface distresses  

• Identifying the most efficient technique in terms of time and ease of labeling  the 

images 

• Developing deep learning algorithms to detect distresses 

One of the most common distress types in pavement is pavement cracking, and timely 

repairs of which, can save maintenance costs associated with further deterioration to more 

extreme conditions such as pot holes.  The difficulty in maintaining roads arises from 

timely identification of deteriorated roadway section and assessing its severity. In order to 

evaluate the health of roadway, transportation agencies conduct road surveys through a 

third party. The survey consists of driving a road survey van outfitted with a camera which 

constantly takes images of the road as the vehicle is being driven at the highway speed. On 

average the vendor takes 2-3 images per second of surveying the roads and this leads to 

terabytes of data collected. The data collected from vendor is in the form of JPEG intensity 

and depth images, post survey data processing of the images is time consuming and hence, 

there is a need for expediting the processing time of images while maintaining low costs. 

As mentioned in the literature review, deep learning has been successfully utilized in order 

to detect distresses on image. Since deep learning require large amounts of annotated data, 

there is a necessity to find methods to label the images efficiently.  
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3.2 Image Labelling  
 

The workflow illustrates the proposed process of selection of the various software required 

to annotate the images and the type of images selected for annotation.  Four software have 

been identified which could assist with the annotation of the images: GIMP; Photoshop 

Lightroom; Photoshop; and Whitebox. The identified software was tested in this study in 

terms of ease of use, efficiency in marking the cracks, time, and time in generating a binary 

image. After identifying the best software it was utilized to annotate the distresses on the 

images and to generate a training dataset.   

 

FIGURE 8: Process of Labelling Road Survey Images 
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3.2.1 Images 
 

The survey images were greyscale 900 x 1800 pixel resolution, with 2 sets of each survey 

patch i.e. intensity and depth images. This study utilized intensity images to label and build 

a data set for the deep learning model. However, there are some distresses which were not 

clearly visible such as alligator cracking for which depth images were utilized as a 

reference to label the intensity images. A total of 20 images were selected at random with 

multiple distresses on each image. The distresses include: longitudinal, transverse, 

patching and alligator distress. In addition, images with manholes were also selected to 

avoid misclassification of manhole as a distress. A total of 149 individual distresses were 

labelled from the 20 selected images.  

3.2.2 Labelling Software   
 

One of the objectives of this study was to identify the most efficient technique in labelling 

the images. Therefore, the tools and their pros and cons have been listed below. This study 

identified four labelling methods to be tested for labelling the images, as previous studies 

have no enlisted tools or procedures for ideal labelling of cracks.  

GIMP  

This software is very similar to use as the Adobe Photoshop and is equipped with most of 

the same tools as Photoshop. However, this is an open source software and this study faced 

a lot of reliability issues associated with software. For example, the software often crashed 

while labelling and the work remained unsaved, therefore Adobe Photoshop was selected 

due to its reliability over GIMP. 

Adobe Lightroom  
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The Lightroom software is equipped with a magic wand tool, it is utilized in selecting 

pixels of the same color by selecting on one pixel with a specified threshold. After which, 

it automatically selects the pixels of the same color within that threshold. Since it is difficult 

to distinguish a road crack from the surface of the road with human eye, and the pixel 

values being similar to that of the crack itself this tool was not helpful in annotating the 

cracks.  

Adobe Photoshop  

Photoshop is a more advanced version of Lightroom and contains all the tools that 

Lightroom does in addition to which it contains a lasso tool which can be utilized to trace 

the crack at a pixel level. Therefore, this study determined the lasso tool as the best option 

available to annotate the data set even though it is a time consuming and laborious process, 

it is an accurate method.  

Whitebox 

Whitebox is a geospatial analysis tool which is utilized in measurement of watershed 

volume, depths of valley, or topography of mountains. This study proposed a unique 

method of using that method in order to “build” the topography of road image so that the 

cracks could easily be identified and the training data could be built. Due to the evenness 

of the surface the WhiteBox software output contained a lot of background noise in the 

image therefore it was difficult to distinguish between crack and road surface. This could 

be pursued in the future if the background noise is reduced. The figure number 9 displays 

the best output from the WhiteBox software that was generated. 
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FIGURE 9:  Example output from Whitebox 

 

3.2.3 Process of Labelling the Images   
 

After testing all the above methods, this study identified lasso tool of Adobe Photoshop to 

label the survey images. This section details the steps of how images were labelled 

Steps for Lasso Tool: 

1) Import the image into Photoshop  
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2) Count the number of distresses present on the image and make the same number 

of layers 

3) Identify one distress to labelled 

4) Turn off all the layers except one and the background, rename the layer  

5) Select the lasso tool  

6) Keep the pen size to 0 so that one pixel can be selected 

7) Zoom into the identified distress till individual pixels are clearly visible 

8) Start selecting the side of  pixel till the entire distress is selected 

9) Hold alt + backspace key to color the distress in black.  

10)  Repeat steps 4 through 9 till all the distresses have been colored 

11)  After all the layers are colored on individual layers deselect all the layers 

12)  While holding the ctrl key select one layer the selected layer’s distress will be 

highlighted  

13)  Hold the ctrl + shift + I and the rest of the image will be highlighted  

14)  While the background is highlighted hold the ctrl + back arrow key and the 

background will become white while the distress is black 

15)  Right click the layer and select quick export as PNG and export the image to a 

folder on the computer 

16)  Use ctrl + z to undo till no layers are selected  

17)  Repeat the steps 12-16  

With the above steps one image can be labelled the following images show the example 

of this study’s above mentioned method. In essence, the annotation process creates a 
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mask of each individual distress on image to train the computer algorithm which pixel 

pattern and color comprises of a crack.  

 

FIGURE 10: Example of Step 8 and Step 13 

Figure 10, on the left, displays a zoomed window the crack which is visible and is traced 

almost pixel to pixel, this will help the deep learning algorithm recognize patterns in the 
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image for it to detect the cracks. This method has been utilized to annotate all the 20 images 

utilized further in this study for the deep learning model.  

3.3 Data Pre-Processing 
 

Data pre-processing consists of utilizing the exported image from Photoshop to convert it 

into a usable data which can be applied to the deep learning algorithm. As the deep learning 

algorithms requires a .json file format for data input,  data pre-processing is done in order 

to generate a .json format of the labelled images. This is explained in detail further in this 

chapter and Figure 11 illustrates the process.  

 

FIGURE 11: Data Pre-Processing workflow 
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3.3.1 Annotated Images  
 

The images from Photoshop are exported as a .PNG format and are saved into one folder 

known as the annotations folder. Each roadway survey image contains multiple distress, 

however, each annotated image only contains one of the distress whereas all the rest are 

hidden. These individual distress images are utilized to train the algorithm on individual 

distress types. This study refers to the Coco method of labelling images. For example, the 

Figure 12 below shows the format required to label the images. 

 

 

FIGURE 12: Annotations Method (Courtesy of patrickwasp.com) 

 

In Figure 12, the <image_id> represents the image identification number given to the image 

at the time of survey which contains the time stamp of when and where the image was 

photographed. For example, 10000000223Cintensity is one of the 20 image ID’s utilized 

in this study. <object_class_name> is utilized for all the classes present in a particular 

image. This study comprises of five object classes also known as the various distresses 

present on an image which are listed below:  

• Longitudinal • Transverse • Patching 

• Manhole  • Alligator   
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The <annotation_id> represents the number of same object classes present on a single 

image, for example, if an image contains 4 different longitudinal distresses then the 

annotation ID is used to distinguish between each of the longitudinal distresses.   

 

FIGURE 13: Annotations Method Courtesy of patrickwasp.com 

 

Figure 13 shows the original image and the combined annotated image, whereas Figure 

14 shows the individual annotated distress image. Each of the individual image is saved 

in the COCO format as 10000003421Cintensity_transverse_1 and 

10000003421Cintensity_transverse_2 respectively. 
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FIGURE 14: Annotated image with individual annotations 

 

3.3.2 Data Pre-Processing 
 

Mask-RCNN models require a .json (java script object notation) file as an input in addition 

to the labelled images, .json files are explained further in section 3.4 of this chapter. 

Generation of .json files require several steps which are enlisted below.  

Data pre-processing comprised of three steps: 

i) Test-Train Data Split 

ii) Greyscale to binary conversion  

iii) Reversal of Background and Foreground colors 

Test-Train Data Split 
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The first step involved splitting the data set into training and testing for the deep learning 

algorithm. This study utilized 20 images, the training and testing was split into 15 and 5 

respectively. The 15 training images comprised of 115 individual distress images, and the 

5 test images comprised of 34 individual distress images. Due to small data set this study 

utilized training images for validation purposes.  

Greyscale to Binary Conversion  

The output of image from Photoshop is not a binary image, instead it is a grayscale image. 

Each pixel in a greyscale image have a value in the range from 0-255, 0 being complete 

black and 255 being complete white. This represents the intensity of the color that the pixel 

is displaying, this can be better explained in terms of “greyness” i.e. the intensity of the 

grey that exists in any given pixel. Photoshop exports the black and white images in a 

greyscale format. However, the Coco dataset requires the images to be binary in order to 

create masks for the deep learning algorithm i.e. each pixel must be 0 and 1, 0 representing 

black and 1 representing white.  

Due to these greyscale images there was a requirement for conversion from greyscale to 

binary. This is can be done manually by converting each greyscale image in Photoshop to 

binary which would have been labor intensive and time consuming. This study utilized the 

openCV library in order to loop through the entire annotated directory and convert the 

greyscale image to a binary image and to save it in a different directory.   

There are several algorithms which convert greyscale image to binary image. Through 

research it was concluded that Otsu’s binarization is the most commonly utilized algorithm 
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for this purpose. The openCV library contains all the necessary functions required to 

execute Otsu’s binarization algorithm. The two required functions are: 

I) THRESH_BINARY 

II) THRESH_OSTU 

The Figure 15 shows the sample code required to execute this algorithm.  

 

FIGURE 15: Sample Code of Otsu Binarization 

Reversal of Background and Foreground Color 

Binary images are utilized to generate a JSON file for the M-RCNN Model, JSON files are 

explained in depth further in this chapter. However, there were several errors while 

generating a JSON file, and one of the solutions was to inverse the binary image, i.e. the 

background of the image must be black and the distress must be white. Line 19 in Figure 

15 above shows the function which was utilized to inverse the image color before saving 
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the image in a new directory. Figure 16 shows the output of Photoshop and the inverse 

image.  

   

FIGURE 16: Inverse of Images 

 

The conversion of greyscale to binary and inverse of image was done separately on the 

train images and test images, so as to make it easier to keep track of all the images.  

3.4 Data labelling .JSON Files 
 

JSON stands for JavaScript Object Notation and it is an integral part of Mask-RCNN (M-

RCNN) algorithms. Primarily, it is a data-interchange format which is utilized across 
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multiple programming languages (json.org).  Mask-RCNN is a deep learning algorithm 

which is explained in the literature review chapter. Mask-RCNN requires .json file for 

storage of image ID and all the image’s information within one file. For example, one .json 

file can store information of all the images present in the directory and the information 

present within each image i.e. the co-ordinate information of each object/distress present 

in the image. In other words, .json file “tells” the computer on which image the object is 

located, the class of the object and the location of that object on the image.  

 

FIGURE 17: Example of JSON notation 

 

In Figure 17 on the left is an example of the different classes of figures that are utilized to 

generate a .json file; on the right, displays the figure classes this study utilized to generate 

a .json file. 

3.5 Mask-RCNN Model 
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Several factors influence the application of images on the Mask-RCNN model. For 

example, the processing capabilities of the computer, the programming language which is 

utilized and the parameters of the Mask-RCNN model itself. This section details all the 

components which were utilized in order to develop a deep learning Mask-RCNN model. 

Figure 18 illustrates all the components that were required for this process.   

3.5.1 Computer Properties  
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FIGURE 18 Workflow of MRCNN Model 
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The model utilized a windows 10 operating system using an alienware laptop with the 

following system configuration:  

Processor: Intel® Core(TM i7-7700HQ CPU @ 2.80GHz 2.80 GHz 

Installed Memory (RAM): 16.0 GB (15.9 GB usable)  

System Type: 64-bit Operating System, x64based processor  

Graphics Card Name: NVIDIA GeForce GTX 1060 

Chip Type: GeForce GTX 1060  

Total Memory 14.175 GB 

The system configuration is important to note as the deep learning algorithms are 

computational intensive programs, and are difficult to implement on computer system with 

less processing capabilities. The processing speed of the computer is directly related to the 

time it takes for the execution of the deep learning algorithm. 

3.5.2 Programming Language  

This study utilized python programming language to create the M-RCNN model due to 

its ease of use in coding and the availability of vast libraries which support deep learning 

models. This study utilized python from anaconda with a python version of 3.6.7.  

3.5.3 Libraries  
 

Although anaconda is pre-installed with most libraries, deep learning models require the 

usage of special libraries created for deep learning which must be installed. The libraries 

include:  
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i) Tensorflow GPU:  Library created by Google in 2016 for open source which 

assist programmer with building deep learning model  

ii) Keras: Modified version of the Tensorflow library which is also utilized in 

building a deep learning neural network  

iii) OpenCV2: Is an open source library which is utilized in the field of computer 

vision. This library was also required by the research in order to perform the 

object detection operation and binarization of images.  

3.5.4 Errors and Debugging 
 

The deep learning Mask-RCNN model is dependent on more than just the three libraries 

mentioned above and due to these dependencies, there are a lot of errors which occur in 

the code when the functions from these libraries are called. Therefore, a solution was to 

create a python environment where older versions of libraries can be downloaded and 

utilized within that environment. A complete list of all the libraries and version of libraries 

utilized have been provided in the Appendices.  

3.5.5 Model Configuration  
 

Figure 19 below is part of the code this study utilized to define the parameters for the M-

RCNN model. Some of the parameter which were changed for better performance was 

image size and steps per epoch and epochs. The parameters are explained in depth in the 

next chapter.  
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FIGURE 19: Code for Model Configuration 

 

Image size is the resolution of the image for which the model has to be trained, for example 

in the model above, image size is set to 960 which means the training images are fed into 

the network with a size of 960 x 960 pixels. Region Proposal Network (RPN) is the size of 

the regions on the image on which the model is trained. For example, the size 2 denotes a 

2 x 2-pixel matrix which detects all objects within a 2 x 2 grid on the image. For this study, 

the size of the RPN were kept constant at 2, 4, 8, 16, and 32. Steps per epoch is another 

parameter which can be changed to determine how often the model updates its weights.  

This is explained in more detail later, however for this study steps per epoch were changed 
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to determine a more accurate model.  Although, this study only tested some parameters 

there is a list of parameter, which can be changed to build a more accurate model. The 

Figure 20 lists all the parameters which can be changed. These parameters can be changed 

in future studies to develop more accurate models.  

 

FIGURE 20: List of Parameters 
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3.5.6 Transfer Learning 
 

Transfer learning is a concept from deep learning where a previously trained deep learning 

model is utilized to initialize weights for a new model to be trained on so that the new 

model is not initialized with weights of zero. This facilitates programmer to quickly build 

a model which is accurate without having to start from zero (Bengio 2012) . This study 

utilized resnet101 as the initial network for transferring of its weights. This is a network 

created by Microsoft research team and tested on the COCO dataset (He, Zhang et al. 

2016).  

The results and findings of these experiments are presented in the next chapter.  
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CHAPTER 4 RESULTS AND DISCUSSION 
 

 

4.1 Results 
 

There were a total of five different models which were utilized for the training and testing 

of the images. The development of these five models are summarized in the table below. 

The first column consists of the name given to this model by this study, and the epoch 

column summarizes the number of epoch which were executed for each individual model. 

For example, in the first model a total of 30 epochs were executed by the algorithm.  The 

other columns describe the resolution, learning rate, steps and training time. These terms 

are explained further below (Table 1). 

Table 1: Model configuration and description 

Model Config Epoch Resolution 

Learning 

Rate Steps AUG 

Training 

Time(hr.) 

30E_1536Res_200S 30 1536 0.001 200 0 5 

50E_640Res_400S 50 640 0.001 400 0 8 

50E_960Res_600S 50 960 0.001 600 0 9 

75E_960Res_600S 75 960 0.001 600 50% 13 

100E_1024Res_400S 100 1024 0.001 400 0 15 
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Epoch 

One epoch can be described as one full forwards and backwards iteration of the entire 

dataset through an artificial neural network. One epoch is not sufficient to train the entire 

neural network as the network calculates the weights in nodes and adjusts the weight of 

each node after each epoch to make a better prediction. However, accuracy is not solely 

dependent of the number of epochs a model is trained on (Bengio, Louradour et al. 2009).  

Resolution 

Human vision requires high resolution images to detect object on an image, for example, 

the crack on a road survey image requires high resolution to be viewed by a human eye. 

However, in the case of deep learning, the neural network determines patterns in similar 

value pixels, therefore it does not require high resolution image to make a prediction 

(LeCun, Bengio et al. 2015). In addition, the higher the resolution of the image the more 

time the algorithm will take to be trained. Due to this, the resolution can be changed while 

training the model to determine better accuracy and reduce the training time.  

Learning Rate 

Learning Rate is a parameter in the deep learning algorithm which controls the adjustment 

of weights of the neural network. Also, learning rate controls the amount of time it takes 

to train the network. For example, the lower the value the more time it takes to train the 

model and vice versa. In addition, a high learning rate can make a model less accurate, 

therefore the learning rate should be ideal (Smith 2017). 

Steps per Epoch 



48 
 

Steps in the neural network are utilized in order to update and fine tune the weights within 

the neural network. It can be described as the number of times the performance of the 

model will be evaluated within one epoch. Steps help develop a more accurate model, 

however increasing the number of steps does not necessarily increase the accuracy of the 

model as the accuracy depends on more factors. Steps can be described as a checkpoint 

which are utilized to train the model and gather information on the performance (Xin, Ma 

et al. 2018). 

Augmentation  

Deep learning models requires large annotated training, validation, and testing data in order 

to predict with high accuracy. However, when there is less training data image 

augmentation can be utilized as method to artificially build training images. In most deep 

learning algorithms image augmentation is used to mirror the image to build a larger 

training data. This study utilized image augmentation to mirror the images left to right.  

Training Time 

This study utilized an Alienware computer with a 12GB graphics processing unit (GPU) 

with a 16GB RAM. However, deep learning and image recognition is a highly 

computationally intensive program. Therefore, each model required more than a few hours 

of training time which must be accounted for, as a more powerful computer can produce 

faster results.  

Training and Testing Images 

All the images were divided into training and testing images; however, all the images were 

utilized to test the models. Since the sample size of the images for this study was small, the 
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training images were utilized for validation purpose. A total of 15 images were utilized for 

training and 5 images for testing the model, with a total of 149 individual annotated distress 

images.  

Bounding Box and Masking  

Region proposals are generated by the M-RCNN to determine which region contains an 

object, there are multiple region proposals that are generated within one prediction. 

However, the region proposal where the object is most likely to exist on the image is 

predicted. These region proposal are known as bounding boxes, i.e. the area in which the 

cracks exist (Dai, Li et al. 2016). Within these bounding boxes the M-RCNN algorithms 

masks the object simultaneously as the  bounding boxes are being classified (He, Gkioxari 

et al. 2017). 

Bounding Box and Masking Results  

The results are comprised of two aspects in this study: first the correct number of bounding 

boxes correctly identified from the original image and second the average percentage of 

correct masking within the correctly identified bounding boxes. For example, image 

10000000029C_intensity in model 50E_960Res, all the bounding boxes were correctly 

identified but only an average of half was masked therefore; the bounding box result was 

100% and the masking average score was 55%. The Figure 21 below depicts these results.  

As observed below the original image contains 3 distresses with bounding boxes and the 

model predicts all three distresses accurately. However, it masks one of the longitudinal 

bounding boxes with 100% accuracy whereas it does not mask the transverse bounding 
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box more than 5%. Therefore, the overall average masking of the correctly identified 

bounding boxes has been recorded at 55% 

  Original Image                                         Predicted Image  

Outliers 

Due to the small size of labelled data there were two images which were omitted from the 

test results as outliers to present a more accurate result. This study contained only one 

labelled alligator cracking which was utilized in testing the model. However, the model 

was not trained in detection of alligator cracking. Therefore, the results of the alligator 

cracking have been omitted in the final results. The other image which was omitted from 

test results had a background significantly different from all the train and test images, hence 

the cracks were not being detected.  

4.2 Sensitivity Analysis  
 

FIGURE 21: Original and predicted images 
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Sensitivity analysis examines how the accuracy of any model can be examined with regards 

to variations within its input parameters (Pianosi, Beven et al. 2016). In essence, the study 

can focus on changing the parameters described above in order to make a more accurate 

model. Therefore, models which share similar input parameters can be compared to 

determine which variables the models accuracy is dependent on. This can be further 

utilized to fine tune the model to make a more accurate model.  

4.3 Cases Compared 
 

As part of the sensitivity analysis, the results have been compared pairwise utilizing two 

pairs of models which share similar parameters. This was done for a sensitivity analysis in 

order to conclude which parameters were performing better in the model. This result 

presents three pairwise comparisons of the models tested:  

i) 50E_640Res_400S Vs. 50E_960Res_600S 

ii) 50E_960Res_600S Vs. 75E_960Res_600S 

iii) 50E_640Res_400S Vs. 100E_1024Res_400S 

The Results of these comparisons have been presented below. 

4.4 DISCUSSION  
 

4.4.1 50E_640Res_400S vs. 50E_960Res_600S 
 

These two models are similar due to having run the same number of epochs. However, they 

are comparable due to having two different parameters i.e. the first model differs in 

resolution and the number of steps per epoch to the second model. In the first model the 

image resolution was 640 x 640 pixels where as in the second model it was 960 x 960 
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pixels, hence the name 50E_640Res_400S vs. 50E_960Res_600S. In addition, both the 

models have different number of steps per epoch, the first model contains 400 steps 

whereas the second model contains 600 steps per epoch. The summary of the results is 

presented in Figure 22. Model 50E_960Res_600S performs 20% better in terms of 

accuracy of detecting distresses on training images therefore a case could be made that 

model with 960Res and 600 steps performs is more accurate.  However, both models 

performed similarly for the test images, therefore a conclusive claim cannot be made that 

one model is better than the other in testing on new images.  In addition, in terms of 

masking both models performed similarly with training and test images. It was concluded 

that model 50E_960Res_600S performs best in terms of accuracy in predicting distresses 

on the training images when compared with all other models. However, this is 

contradictory to the comparisons in test images as all the models perform similar when 

presented with unseen images. Since the number of epochs were the same and only the 

resolution and number of steps were increased.  

4.4.2 50E_960Res_600S vs. 75E_960Res_600S 
 

The main difference between these two models is the increase in the number of epochs and 

the image augmentation. The first model consisted of 50 epochs and no image 

augmentation whereas the second model comprised of 75 epochs and 50% image 

augmentation.  All other aspects between the two models were the same. Figure 23 displays 

the summary of the results. The model 50E_960Res_600S performed 20% better in terms 

of accuracy than the model which contained 75 epochs. However, the accuracy of the 

75E_960Res_600S model is better in testing with unseen images.  
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4.4.3 50E_640Res_400S vs. 100E_1024Res_400S 
 

These model epochs, and resolution were doubled while keeping the same number of steps 

for both the models. It must be noted that the computer program attained max memory 

usage at 100 epoch and 1280 x 1280 resolution, therefore the image size was reduced to 

1024 x 1024 resolution. The model 50E_640Res_400S performed far better than the 

100E_1024Res_400S model in terms of training and testing.  Figure 24 summarizes the 

results of these two models.  

4.5 Rationale  
 

Studies show accuracy results vary with change in image resolution. Since, most studies in 

this field have image dataset comprising of several thousand images, the image size is 

considerably reduced to process the large amount of data. Some studies reduced image size 

to 128 x 128 pixels in CNN models whereas RCNN models were built using 227 x 227 

pixel size (Sharif Razavian, Azizpour et al. 2014). The objectives of each model were 

different in both: the studies CNN involves object classification whereas, RCNN involved 

object detection (Girshick, Donahue et al. 2014). Therefore it can be concluded that 

accuracy can be increased or decreased with change in image resolution. For the purposes 

of this study, three different resolution of images were tested, and 960 x 960 image 

resolution proved to be the most accurate.  

Most deep learning models perform several 100,000s epochs on large image dataset 

utilizing super computers. In one study, The Mask-RCNN model consisted of 180,000 

epochs, 30000 steps with 135,00 training images from the COCO dataset (He, Gkioxari et 

al. 2017). However, in the case of this study the maximum number of epochs was 100.  
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Depending on the available size of the data set increasing the number of epoch causes 

overfitting of the model which yields less accuracy (Gerfo, Rosasco et al. 2008). Therefore 

the model must consist of an adequate number of epochs to avoid overfitting. For this study, 

50 epochs proved to be the most accurate model along with 960 resolution and 600 steps.  

In future studies, with larger training and testing datasets, different parameters should be 

tested in order to develop a more accurate model. This study provides details of the five 

models that were evaluated from the dataset created by this study. However, future studies 

will have to test parameters that would give accurate results by tweaking the model with 

trial and error.    
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FIGURE 22: Summary of 50E_640Res_400S vs. 50E_960Res_600S 
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FIGURE 23: Summary of 50E_960Res_600S vs. 75E_960Res_600S 
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FIGURE 24: Summary of 50E_960Res_600S vs. 100E_1024Res_400S 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Conclusions 
 

This study tested various tools to annotate images for the deep learning model. The various 

tools were GIMP, Adobe Photoshop and Lightroom, and WhiteBox. This study concludes 

that Photoshop is the most efficient tool to annotate images in terms of time, and ease of 

use. The Photoshop key board short cuts were utilized to generate black and white masks 

of the image with ease. Therefore Adobe Photoshop is a viable tool in annotating road 

survey images to build a training, validation and test dataset. Also, Whitebox can be a tool 

to determine existence of cracks on the road ways, however, further studies maybe 

required. 

The 149 individual distress images that were generated from Adobe Photoshop were 

applied to develop various Mask-RCNN models. The different parameters of the models 

included epochs, image resolution, and steps. The list of various models is presented below, 

it is named according to the parameters changed within the model.  

1. 30E_1536Res_200S 

2. 50E_640Res_400S 

3. 50E_960Res_600S 

4. 75E_960Res_600S 

5. 100E_1024Res_400S 

 

The description of these models have been explained in the previous chapter. After 

performing a sensitivity analysis of these algorithms, it was concluded that model 

50E_960Res_600S proved to be the best amongst all developed models in terms of training 

accuracy of 89%. Models 50E_640Res_400S and 75E_960Res_600S are tied for the 

second best at 69% accuracy in training images. The other two models were not accurate 
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more than 25% in training therefore have not been mentioned here. Also, all the models 

performed similarly to test images with an average accuracy of about 12%.  Deep learning 

models require large data in order to predict with high accuracy and 35 images for testing 

is not sufficient to develop an accurate model. Therefore, more time must be utilized to 

build a larger dataset to improve the performance of the Mask-RCNN model. This research 

provides a proof of concept for application of Mask-RCNN for distress detection of road 

survey images 

After development of larger dataset, future studies can utilize the results from this study as 

a reference for the development of the deep learning model. The model 50E_960Res_600S 

performed best amongst all the other models and future models can start training the 

labelled dataset with these parameters. This study built a framework for which a Mask-

RCNN model can be utilized to predict distresses on road survey images. Further studies 

will require a larger dataset to develop more accurate models. In addition, with more 

accurate masking the severity of the cracks can be determined. 

5.2 Recommendations  
 

This study provides several recommendations which are listed below:  

• Creation of Larger Dataset  

This study recommends building a larger dataset for training, validation and testing of road 

survey images. For comparison purposes, CrackNet II contained two thousand labeled 

images which required a team of 10, eighteen months to annotate (Zhang, Wang et al. 

2018). Whereas, this study comprised of 149 individual distress images for training, 

validation and testing. Even with a limited dataset the training results prove it is possible 
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to build a highly accurate model with sufficient training data. However, due to the limited 

sample size the test results were inaccurate therefore, future studies should spend more 

time in creating larger data set to identify road distresses on survey images. 

Some challenges faced in this study was the false classification of road markings as distress 

type. Therefore, this study recommends annotating road marking in order to train the model 

and prevent misclassification.   

• Changing Parameters  

This study recommends to change the parameters of the model to test the performance of 

various parameters. This research only experimented with changing epochs, steps and 

image resolution within the deep learning model. However, figure number 20 lists the 

various parameters that can be changed which could help in building a more accurate 

model. Therefore, this study recommends to evaluate more models with different 

parameters.  

• Thermal Imaging  

It is difficult to detect cracks on the image due to the similarity in the color of the crack 

and the background. A possible solution to the background problem is changing the method 

of data collection from a high resolution camera to thermal imaging. Thermal imaging is 

utilized across numerous fields for crack detection, for example detection of cracks in weld 

joints on bridges. Therefore, with the help of thermal imaging, it will be easier to label a 

data for training as the color of the crack would be different from the color of the road as 

the distress would act as black body giving a warmer heat signature than surface of theroad 

(Broberg 2013). This would also help in developing a more accurate deep learning model. 
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APPENDIX I MASK-RCNN LIBRARIES 
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APPENDIX II CODE OF MODEL 
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APPENDIX III CODE OF MODEL TRAINING 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

APPENDIX IV LIST OF LIBRARY REQUIREMENTS FOR THE PYTHON MASK-

RCNN ENVIRONMENT 
 

absl-py==0.7.0 alabaster==0.7.12 anaconda-client==1.7.2 
anaconda-project==0.8.2 asn1crypto==0.24.0 astor==0.7.1 
astroid==2.1.0 astropy==3.1 atomicwrites==1.2.1 
attrs==18.2.0 Babel==2.6.0 backcall==0.1.0 
backports.os==0.1.1 backports.shutil-get-terminal-

size==1.0.0 
beautifulsoup4==4.6.3 

bitarray==0.8.3 bkcharts==0.2 blaze==0.11.3 
bleach==3.0.2 bokeh==1.0.2 boto==2.49.0 
Bottleneck==1.2.1 certifi==2018.11.29 cffi==1.11.5 
chardet==3.0.4 Click==7.0 cloudpickle==0.6.1 
clyent==1.2.2 colorama==0.4.1 comtypes==1.1.7 
conda==4.6.7 conda-build==3.17.6 contextlib2==0.5.5 
cryptography==2.4.2 cycler==0.10.0 Cython==0.29.2 
cytoolz==0.9.0.1 dask==1.0.0 datashape==0.5.4 
decorator==4.3.0 defusedxml==0.5.0 distributed==1.25.1 
docutils==0.14 entrypoints==0.2.3 et-xmlfile==1.0.1 
fastcache==1.0.2 filelock==3.0.10 Flask==1.0.2 
Flask-Cors==3.0.7 gast==0.2.2 gevent==1.3.7 
glob2==0.6 greenlet==0.4.15 grpcio==1.19.0 
h5py==2.8.0 heapdict==1.0.0 html5lib==1.0.1 
idna==2.8 imageio==2.4.1 imagesize==1.1.0 
imgaug==0.2.8 importlib-metadata==0.6 ipykernel==5.1.0 
ipython==7.2.0 ipython-genutils==0.2.0 ipywidgets==7.4.2 
isort==4.3.4 itsdangerous==1.1.0 jdcal==1.4 
jedi==0.13.2 Jinja2==2.10 jsonschema==2.6.0 
jupyter==1.0.0 jupyter-client==5.2.4 jupyter-console==6.0.0 
jupyter-core==4.4.0 jupyterlab==0.35.3 jupyterlab-server==0.2.0 
Keras==2.2.4 Keras-Applications==1.0.7 Keras-Preprocessing==1.0.9 
keyring==17.0.0 kiwisolver==1.0.1 lazy-object-proxy==1.3.1 
libarchive-c==2.8 llvmlite==0.26.0 locket==0.2.0 
lxml==4.2.5 Mako==1.0.7 Markdown==3.0.1 
MarkupSafe==1.1.0 matplotlib==3.0.2 mccabe==0.6.1 
menuinst==1.4.14 mistune==0.8.4 mkl-fft==1.0.6 
mkl-random==1.0.2 mock==2.0.0 more-itertools==4.3.0 
mpmath==1.1.0 msgpack==0.5.6 multipledispatch==0.6.0 
nbconvert==5.4.0 nbformat==4.4.0 networkx==2.2 
nltk==3.4 nose==1.3.7 notebook==5.7.4 
numba==0.41.0 numexpr==2.6.8 numpy==1.15.4 
numpydoc==0.8.0 odo==0.5.1 olefile==0.46 
opencv-python==4.0.0.21 openpyxl==2.5.12 packaging==18.0 
pandas==0.23.4 pandocfilters==1.4.2 parso==0.3.1 
partd==0.3.9 path.py==11.5.0 pathlib2==2.3.3 
patsy==0.5.1 pbr==5.1.3 pep8==1.7.1 
pickleshare==0.7.5 Pillow==5.3.0 pkginfo==1.4.2 
pluggy==0.8.0 ply==3.11 prometheus-client==0.5.0 
prompt-toolkit==2.0.7 protobuf==3.7.0 psutil==5.4.8 
py==1.7.0 pycocotools==2.0 pycodestyle==2.4.0 
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pycosat==0.6.3 pycparser==2.19 pycrypto==2.6.1 
pycurl==7.43.0.2 pyflakes==2.0.0 Pygments==2.3.1 
pygpu==0.7.6 pylint==2.2.2 pyodbc==4.0.25 
pyOpenSSL==18.0.0 pyparsing==2.3.0 PySocks==1.6.8 
pytest==4.0.2 pytest-arraydiff==0.3 pytest-astropy==0.5.0 
pytest-doctestplus==0.2.0 pytest-openfiles==0.3.1 pytest-remotedata==0.3.1 
python-dateutil==2.7.5 pytz==2018.7 PyWavelets==1.0.1 
pywin32==223 pywinpty==0.5.5 PyYAML==3.13 
pyzmq==17.1.2 QtAwesome==0.5.3 qtconsole==4.4.3 
QtPy==1.5.2 requests==2.21.0 rope==0.11.0 
ruamel-yaml==0.15.46 scikit-image==0.14.1 scikit-learn==0.20.1 
scipy==1.1.0 seaborn==0.9.0 Send2Trash==1.5.0 
Shapely==1.6.4.post1 simplegeneric==0.8.1 singledispatch==3.4.0.3 
six==1.12.0 snowballstemmer==1.2.1 sortedcollections==1.0.1 
sortedcontainers==2.1.0 Sphinx==1.8.2 sphinxcontrib-

websupport==1.1.0 
spyder==3.3.2 spyder-kernels==0.3.0 SQLAlchemy==1.2.15 
statsmodels==0.9.0 sympy==1.3 tables==3.4.4 
tblib==1.3.2 tensorboard==1.13.0 tensorflow==1.12.0 
tensorflow-

estimator==1.13.0 
termcolor==1.1.0 terminado==0.8.1 

testpath==0.4.2 Theano==1.0.3 toolz==0.9.0 
tornado==5.1.1 tqdm==4.28.1 traitlets==4.3.2 
typed-ast==1.1.0 unicodecsv==0.14.1 urllib3==1.24.1 
wcwidth==0.1.7 webencodings==0.5.1 Werkzeug==0.14.1 
widgetsnbextension==3.4.2 win-inet-pton==1.0.1 win-unicode-console==0.5 
wincertstore==0.2 wrapt==1.10.11 xlrd==1.2.0 
XlsxWriter==1.1.2 xlwings==0.15.1 xlwt==1.3.0 
zict==0.1.3   
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APPENDIX V TEST RESULTS WITHOUT OUTLIERS 50E_640RES VS.  

50E_960RES 
 

 

 

 

 

 

  

18%

2%

14%

0%

14%

0%

14%

0%
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

BOX MASK BOX MASK

Average Median

50E_640RES Vs.  50E_960RES 

50E_640Res

50E_960Res

69%

89%

18%

14%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50E_640Res 50E_960Res

50E_640RES Vs.  

50E_960RES

BOX 

Train Test W/o Outliers

10%

10%

2%

0%0%

2%

4%

6%

8%

10%

12%

50E_640Res 50E_960Res

50E_640RES Vs.  

50E_960RES

MASK

Train Test W/o Outliers



70 
 

APPENDIX VI TEST RESULTS WITHOUT OUTLIERS 50E_960RES VS. 
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APPENDIX VII TEST RESULTS WITHOUT OUTLIERS 50E_640RES VS.  

100E_1024RES 
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APPENDIX VII TEST RESULTS WITH OUTLIERS 
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