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ABSTRACT

KELLY HIRSCHBECK SMALENBERGER. PROBABILISTIC NUMERICAL
INTEGRATION. (Under the direction of DR. XINGJIE (HELEN) LI)

In this dissertation, we consider the approximation of unknown or intractable inte-

grals using quadrature, especially when the evaluation of these integrals is considered

very costly. This is a central problem both within and without machine learning,

including model averaging, (hyper-)parameter marginalization, and computing pos-

terior predictive distributions.

Recently Batch Bayesian Quadrature has successfully combined the probabilistic

integration techniques of Bayesian Quadrature with the parallelization techniques of

Batch Bayesian Optimization, resulting in improved performance when compared to

state-of-the-art Markov Chain Monte Carlo techniques, especially when paralleliza-

tion is increased. While the selection of batches in Batch Bayesian Quadrature miti-

gates costs associated with individual point selection, every point within every batch

is nevertheless chosen serially, which impedes the realization of the full potential of

batch selection. We resolve this shortcoming.

We have developed a novel Batch Bayesian Quadrature method which allows us

to update points within a batch without incurring the costs traditionally associated

with non-serial point selection. To implement this, we also devise a novel dynamic

domain decomposition. Combining these, we show that this efficiently reduces uncer-

tainty, leads to lower error estimates of the integrand, and therefore results in more

numerically robust estimates of the integral. Furthermore, we close an open question

in the Batch Bayesian Quadrature literature about the cessation criterion, which we

determine and support using numerical methods on commonly used test functions in

one and two dimensions.
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We present our findings within the context of the history of quadrature, show how

our novel methods significantly improve what currently exists in the literature, and

provide recommendations for future improvements.
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INTRODUCTION

In mathematics, the origins of the term ’quadrature’ can be traced back to the

Pythagorean doctrine of ancient Greece, and has as its primary objective the determi-

nation of area. Specifically, ancient Greek mathematicians understood the calculation

of the area of a figure as a process of geometrically constructing a square (squaring) or

a set of rectangles which when summed have the same area. Therefore, the creation

of these rectangles eventually morphologically evolved into the term quadrature, and

provided the foundation for the development of calculus and specifically integration.

While advances in integration can be traced back to ancient Greece, it wasn’t

until Gottfried Wilhelm Leibnitz and Sir Isaac Newton independently formulated

the integral as an infinite sum of rectangles of infinitesimal width that we obtain the

definition used in calculus. Therefore, an integral assigns a numeric value to functions

which can be used to describe displacement, area, volume, or other concepts that arise

by combining infinitesimal data.

Despite the fact that integration provides modern practitioners with a powerful

and valuable tool which has applications in a seemingly endless list of fields and top-

ics, it nevertheless has its challenges. For example, suppose it is desired to determine

the signed area of the region bounded by a function, f(x), and a second limiting

constraint, say the x-axis. This task would be futile using basic calculus integra-

tion if function, f(x), governing the area to be evaluated is unknown or analytically

intractable. In these scenarios, quadrature still has an important application.

Modern quadrature techniques are predicated on the selection of points used to



2

partition a function. Much consideration has been given in the literature on how

to most effectively and efficiently select these quadrature points, and several tech-

niques have been proposed. A common theme throughout these techniques is to select

quadrature points sequentially. Even the most recent developments in the quadrature

literature, termed Batch Bayesian Quadrature where a batch of quadrature points are

selected, select points within each batch sequentially. An often employed justification

for the sequential selection of quadrature points is that non-sequentially selecting

points would increase the dimensionality of the problem significantly and therefore

the computational cost of the quadrature technique in the integration process would

be unjustifiable at best, or insurmountable at worst. Furthermore, when the inte-

grand is considered costly to evaluate, the selection of a large number of points is

untenable.

Beginning with this notion as our premise, it is here that we make our most

important contribution to the literature. We show that computationally simplistic

modifications can be done to update the selection of quadrature points, which in turn

leads to better estimates of the integrand, and hence more robust integral estimates.

In order to provide a precise definition of the problem, a holistic exploration of

the solutions already proposed in the literature, and thorough and convincing justi-

fication for the superiority of our approach to what already exists in the literature,

this document proceeds as follows: In chapter 1 we describe past accomplishments

in quadrature and use this as prelude to our novel and significant contributions. In

chapter 2 we highlight the most recent advances in the literature in order to con-

trast the results of those with our own. In chapter 3 we begin with a thorough

explanation of our novel method, along with why our technique is superior to those

which already exist. We continue this chapter by implementing our technique to

well-known test functions, and convey numerical results which make this superior-

ity explicit in practice. We also make explicit other novel contributions which allow
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for this implementation, including a novel form of dynamic domain decomposition.

Furthermore, this chapter also answers open questions in the quadrature literature

on batch Bayesian quadrature, such as numerically founded and supported cessation

criterion. This chapter concludes with an overview of applications of our novel con-

tributions on the cutting edge of machine learning, and describe potential expansions

in future work. This document ends with a conclusion section, followed by a list of

references and an appendix containing data from our numerical applications.



CHAPTER 1: PAST AS PRELUDE

The goal is to compute integrals such as

∫
Ω

f(ω)p(ω)dΩ

where ω ∈ Ω,
∫

Ω
p(ω)dΩ = 1, and without loss of generality f(ω) ≥ 0. In the one

dimensional case we have

Z =

∫ b

a

f(x)p(x)dx (1.1)

If the product f(x)p(x) are easy functions, such as polynomials, then the integral

Z will be easy to compute and the answer will be obtained in closed form using

methods taught in calculus II. However in practice, the product f(x)p(x) is rarely an

easy function and f and p are most often unrelated. Therefore, numerical techniques

must be employed in order to approximate Z.

Because the integral Z is the product of two functions f(x) and p(x), it can also be

seen as an estimate of the expectation of the function. Where p(x) is the probability

density function or pdf and f(x) is the function one would like to integrate. However,

using this integration for Bayesian models, p(x) is the posterior distribution and f(x)

is the prediction made by a model (Rasmussen et al., 2003).

1.1 History of Quadrature

A student of Galileo, Bonaventura Cavelieri (1598-1647) was one of the first to de-

termine the area beneath a curve of the form y = xk where k is a positive integer.
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Cavalieri’s process was arithmetized by John Wallis (1616-1703) in the book Arith-

metics Infinitorum. The approach Wallis used involved exploring the limit-sum of

the kth powers of the first n positive integers (Burton, 2011). For example when ap-

proximating y = xk Wallis determined the area was equal to limn→∞
0k+1k+2k+....+nk

nk+nk+nk+...+nk
.

In particular this led him to conclude that
∫ a

0
xkdx = ak+1

k+1
which is the power rule

for integration taught in every calculus class. Wallis imagined the area beneath a

curve as being made up of n infinitely narrow vertical rectangles each of width b−a
n

.

Though Wallis was able to derive the classic power rule for integration, this idea of

approximating the area under a curve by narrower and narrower rectangles is the first

appearance of classic quadrature formulas (Burton, 2011).

The use of randomness in a deterministic manner can be traced back to the 18th

century. A French scientist named Georges Louis LeClerc used randomness in a

number of studies including ”Baffon’s needle” in which he attempted to estimate π.

This is considered, by some, to be the first use of Monte Carlo simulations, though

the use of this term was not used until much later (Harrison, 2010).

The term Monte Carlo was first used by John Von Neumann, Stanislaw Ulam, and

Nicholas Metropolis to refer to stochastic simulations. The three were working at Los

Alamos National Laboratory on the Manhattan Project during World War II. Von

Neumann and Ulam were attempting to model possible outcomes from detonation of

the atomic bomb. Because of the implications, their model of what would happen

in a chain reaction caused by highly enriched uranium needed to be have little error.

Due to the complexity of the reaction, von Neumann, Ulam, and Metropolis needed

to use numerical methods instead of algebraic methods which were typically used at

the time.

The difficulty they found was that the problem had so many dimensions and

variables that because computational methods and programs were underdeveloped at

the time, calculations were far too time consuming. Thus the Monte Carlo method of
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using random numbers was developed. Because this method used random numbers

and chance, Ulam suggested naming it the Monte Carlo method after the gambling

complex located in Monaco frequented by his uncle. Calculations were done as many

times as possible and basic statistics were then used in order to model with high

accuracy the possible outcomes of the chain reactions of uranium. Because of the

high accuracy of the Monte Carlo method, it was used to help guide the design of the

atomic bomb.

Now Monte Carlo is used for a multitude of numerical simulation methods. This

includes stochastic simulations, Monte Carlo Tests, and as will be used discussed in

this dissertation, Monte Carlo Integration, as defined by Anderson (1999) ”Monte

Carlo is the art of approximating an expectation by the sample mean of a function

of simulated random variables.”

According to Karvonen et al. (2017), Bayesian Monte Carlo or Bayesian Quadra-

ture dates back to at least the 1970’s with the work of Larking. Larking proposed

a new method for numerical approximation which contrasted the classical approach

of constructing low degree polynomials to best fit the function which cannot be inte-

grated analytically.

1.2 Classical Quadrature Methods

For simplicity, in this chapter we will let f(x)p(x) = m(x) therefor our integral

becomes

Z =

∫ b

a

f(x)p(x)dx =

∫ b

a

m(x)dx

There are a multitude of well known classical numerical methods for approximat-

ing an integral. Quadrature formulas refer to the numerical approximation of Z to a

finite summation
∑n

i=1wim(xi) where xi are points in [a, b], and wi are weights.
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A few well know quadrature methods include the midpoint formula, the trape-

zoidal formula, Simpson’s formula, and Gauss Quadrature. Note that in order to use

these formulas, m must be continuous on the interval [a, b]. The interval [a, b] is then

divided into subintervals Zk = [xk−1, xk], where xk = a + kH, H = (b− a)/M is the

length of each subinterval, and k = 1, 2, ...,M .

Additionally, the function m must be approximated on each subinterval Zk. Typi-

cally m is interpolated using one or many evaluation points in Zk in order to construct

a polynomial. Polynomials are frequently used as the interpolating function because

they are easy to integrate. This new function m̃ is chosen slightly differently based

the quadrature formula used. For midpoint, trapezoidal, and Simpson’s Formula, the

interval [a, b] has been divided into subintervals of equal length. This strongly affects

the weights in each of the following quadrature formulas (Quarteroni et al., 2010). It

is also important to note that accuracy of quadrature methods increase as the number

of evaluation points increase or as the length of the sub-intervals Zk decreases.

Though the following quadrature methods work well in most cases, they are not

easily extended when integrating in higher dimensions.

1.2.1 Midpoint Quadrature Formula

To employ the midpoint quadrature formula, a point x̄k in each subinterval [xk−1, xk]

must be chosen such that x̄k is the midpoint of that subinterval. In other words

x̄k = xk−1−xk
2

. m̃ is chosen as polynomial interpolation if m on Zk. Then the midpoint

quadrature formula can be easily seen as

Zmp = H

M∑
k=1

m̃(x̄k)

This formula has also been referred to as the composite rectangle quadrature formula

when m̃ is chosen to be the constant polynomial approximation of m at x̄k because
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of its graphical representation.

The midpoint quadrature formula has second order accuracy with respect to H.

That is, if m is in C2([a, b]) then

Z − Zmp =
b− a

24
H2m′′(ξ) (1.2)

where ξ is a point in [a, b].

Figure 1.1: Example of the midpoint rule (Chorin et al., 2013)

1.2.2 Trapezoidal Quadrature Formula

To use the trapezoidal quadrature formula, m̃ must be chosen as the linear polyno-

mial interpolation of m at the end points of each subinterval. Then the trapezoidal

quadrature formula becomes

Zt =
H

2

M∑
k=1

[m̃(xk−1)− m̃(xk)] (1.3)

The trapezoidal quadrature formula has second order accuracy with respect to H.

That is, if m is in C2([a, b]) then

Z − Zt = −b− a
12

H2m′′(ξ) (1.4)

where ξ is a point in [a, b].
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Figure 1.2: Example of the trapezoidal rule (Chorin et al., 2013)

1.2.3 Simpson’s Quadrature Formula

To use Simpson’s quadrature formula, m̃ must be chosen as the quadratic polynomial

interpolation of m at the end points xk−1, and xk, as well as at the midpoint x̄k of

each subinterval Zk. That is

m̃(x) =
2(x− x̄k)(x− xk)

H2
m(xk−1) +

(xk−1 − x)(x− xk)
H2

m(x̄k)

+
(x− x̄k)(xk − xk − 1)

H2
m(xk)

Then the Simpson’s quadrature formula becomes

ZS =
H

6

M∑
k=1

[m̃(xk−1) + 4m̃(x̄k) + m̃(xk)] (1.5)

This formula has fourth order accuracy with respect to H. That is, if m is in

C4([a, b]) then

Z − ZS = −b− a
180

H4

16
m(4)(ξ)

where ξ is a point in [a, b].

1.2.4 General Quadrature Formula

Note that the above three formulas were described by partitioning the interval [a, b]

into equally distributed sub-intervals Zk of length H. However, this may not always
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be the most prudent choice. There are a multitude of different ways to choose xi

and/or ωi in order to approximate Z. One way is to vary ωi based on the variability

of the range of m. The more a function varies in the range, the more the domain

should be partitioned. Similarly, less variability in the range would indicate fewer

partitions being required with little effect on accuracy. This partitioning based on

a functions variability in the range would create subintervals of varying length but

would allow for increased efficiency and accuracy when modeling m. The general

quadrature formula is given by

Z =
n∑
i=0

ωim(xi) (1.6)

where ωi are the quadrature weights, or lengths of the sub-intervals, and xi are

the quadrature nodes, or the points which will be used to try to model the function

m. It is also important to note that
∑n

i=0 ω1 = b− a.

One type of general quadrature rule is Gauss quadrature. Gauss quadrature is

calculated using n evaluation points xi and corresponding weights ωi on the interval

[−1, 1]. These points are the roots of the Legendre polynomial Pn(x) of order n.

Weights are calculated by computing

ωi =
2

(1− x2
i )(P

′
n(xi))2

Because of the way in which xi and ωi are determined, Gauss quadrature provides

the exact integral if m is a polynomial of degree 2n− 1 (Weisstein, 2018B).

Though Gauss quadrature is typically computed on the interval [−1, 1], it can be

easily transformed to the interval [a, b]. Additionally, the weights can be transformed

to the interval [a, b]. The formulas are as follows;

xT i = a+
b− a

2
(1 + xi) ωT i =

b− a
2

ωi
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Additionally, Gauss quadrature is easily adaptable to higher dimensions and non-

uniform partitioning of the domain (Deng, 2015).

Another type of general quadrature rule is Gauss-Hermite quadrature. Gauss-

Hermite quadrature differs from Gauss quadrature in that it addresses integrals of

the form
∫∞
−∞ e

−x2f(x)dx. Gauss-Hermite quadrature is calculated using n evaluation

points xi and corresponding weights ωi on the interval (−∞,∞). These points are

the roots of the Hermite polynomial Hn(x) of order n.(Weisstein, 2018B) Weights are

calculated by computing

ωi =
2n−1n1

√
π

n2(Hn−1(xi))2

Gauss-Hermite quadrature is worth mentioning because of the numerical simula-

tions computed in this work which have a similar form, with weighting function is

W (x) = e−x
2

and f(x) = 1 + sinx.

1.2.5 Gauss Quadrature Points and Weights

Below are the Gauss Quadrature point xi and weights ωi on the interval [−1, 1].
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Gauss Quadrature Points and Weights

number of points n points xi weights ωi

1 0 2

2 ±
√

1
3

1

3 0 8
9

±
√

3
5

5
9

4 ±
√

3
7
− 2

7

√
6
5

18+
√

30
36

±
√

3
7

+ 2
7

√
6
5

18−
√

30
36

5 0 128
225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

1.2.6 Numerical Simulations

Note that the following calculations were computed for the function 1√
2π

(1+sinx)e
−x2
2

on the interval [0, 1] with 100 sub-intervals. For the computation of Gauss quadrature,

three Gauss points were found on each sub-interval.

Evaluation of Quadrature Formulas

Midpoint

Formula

Trapezoidal

Formula

Simpson’s

Formula

Gaussian

Quadrature

# of Points 201 101 201 401

Error 8.065802e− 06 1.613167e− 05 2.307243e− 11 4.896639e− 13

The information provided in this table shows the accuracy of each method. Simp-

sons Formula and Gaussian Quadrature perform significantly better than the mid-

point and trapezoidal formulas.
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1.3 Modern Quadrature Methods

1.3.1 Monte Carlo Method

Monte Carlo methods are a class of methods which can be applied to two different

types of problems involving statistical inference. Those are problems involving op-

timization and problems involving integration which are typically associated with a

Bayesian approach. Monte Carlo methods used to numerically approximate integrals

are known for their ease of use, fitness for use in higher dimensions, and because of

its use of the Law of Large Numbers (Wasserman, 2004).

We would like to apply the Monte Carlo method to integrals of the form Z =∫ 1

0
f(x)p(x)dx, where p(x) is the probability density function and f can be sampled

at arbitrary points. More specifically f(x) ≥ 0 and
∫ b
a
p(x)dx = 1, then Z = E[f(η)].

Where η is a random variable with a pdf p(x). That is, Monte Carlo method can be

used to evaluate a non-random quantity as the expected value of a random variable.

Moreover, if η is sampled so that there are n independent experiments with out-

comes η1, η2, ..., ηn, then from the Chebyshev inequality, one can make the following

approximation;

Z = E[f(η)] ∼ 1

n

n∑
i=1

f(ηi) (1.7)

The error that occurs from this approximation is of order σ(f(η))/
√
n, where

σ(f(η)) is the standard deviation of f(η) (Chorin et al., 2013). Additionally, it is

worth pointing out that this approximation uses the Law of Large Numbers.

Theorem 1.1. (Law of Large Numbers) Let ξ1, ξ2, ... be an independent identically

distributed random variable. If E[f(ξ1] <∞ then

limn−>∞
1

n

n∑
i=1

ξi = E[f(ξ1)]

This is according to Wasserman (2004). The Law of Large Numbers states that



14

after many trials, the average of the results should be close to the expected value.

Additionally, it is clear that more trials will lead to more accurate results.

The drawbacks of Monte Carlo approximation include a typically slow conver-

gence, so the sample of the random variable η must be large. Additionally, because

each sample point is weighted equally, a functional value for random numbers that are

sampled very close together are essentially counted as double. Additionally, the more

the function f fluctuates, the slower the Monte Carlo approximation will converge.

1.3.2 Monte Carlo Method with Importance Sampling

The error that occurs with the basic Monte Carlo Method can be reduced by in-

creasing the sample size, and reducing the variance of f(η). In order to reduce the

variance, importance sampling can employed. Additionally, the Monte Carlo method

requires the function p to be sampled, but this is not always optimal. An alternative

to directly sampling p is importance sampling.

A function h(x) must be found which is similar to p(x) in order to sample from h

and make computations simpler. According to Chorin et al. (2013), h must be found

with the following properties;

1. Z1 =
∫ b
a
g(x)h(x)dx can be computed

2. h(x) ≥ 0

3. A random variable with pdf g(x)h(x)/Z1 can be sampled easily

4. f(x)/h(x) varies little

Then according to Chorin et al. (2013),

Z =

∫ b

a

f(x)p(x)dx =

∫ b

a

p(x)

h(x)
f(x)h(x)dx = Z1

∫ b

a

p(x)

h(x)

p(x)h(x)

Z1

dx

= Z1E[
p

h
(η)] ≈ Z1

n

n∑
i=1

p(ηi)

h(ηi)
(1.8)
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where η has pdf f(x)h(x)/Z1. Since the last requirement dictates that p(x)/h(x)

varies little, the subsequent error will be smaller. Additionally, importance sampling

gets its name from the new random variable that places more points where f is large

or ”important” (Chorin et al., 2013).

1.3.3 Numerical Simulations

A problem similar to that in Chorin et al. (2013) is best used to explain this method

and the subsequent computations. Suppose Z =
∫ 10

−10
sin (x/7)e−x/3dx. This integra-

tion can be approximated by applying the basic Monte Carlo method. That would

mean sampling a uniform random variable ξ n times. ξ is a random number generated

on the interval [−10, 10]. Then the Monte Carlo approximating for Z is given by

Z ≈
n∑
i=1

1

n
sin ξi/7e

−ξi/3

Alternatively, the Monte Carlo method with importance sampling can be done.

The first step is to let Z1 =
∫ 10

−10
e−x/3dx = 3(e10/3−e−10/3). Then Z =

∫ 10

−10
sin (x/7)e−x/3dx =

Z1

∫ 10

−10
sin (x/7) e

−x/3

Z1
dx. Let η be a random variable with pdf

f(x) =


e−x/3

Z1
if 0 ≤ x ≤ 1

0 else

then Z can be written as Z = Z1E[sin η/7]. As can be seen graphically, the func-

tion sinx/7 has smaller variation in the range of integration [−10, 10] than the previ-

ous integrand. In order to perform the Monte Carlo integration, the random variable η

needs to be sampled n times. This can be done by solving the equation
∫ η
−10

e−x/3/Z1,

where η is a random variable consisting of random numbers generated on the interval

[−10, 10]. A straight forward calculation gives η = −3 ln (ξ − 3e10/3) − 3 ln (−Z1

3
).

This can be used to sample η n times. The resulting Monte Carlo approximation
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with importance sampling becomes

Z ≈ Z1

n

n∑
i=1

sin ηi/7

Additionally, because the sample generated were random numbers each computa-

tion of the Monte Carlo method gives a different result. Therefore, the Monte Carlo

method was calculated 100 times. Those calculations were then used to calculate the

average error.

Evaluation of Error for Quadrature Formulas

# of Points 100 1, 000 10, 000

Basic MC 0.101572 1.002346e−02 1.001022e−03

MC with Importance

sampling

... ... ...

Note that the following calculations were computed for the function 1√
2π

(1 +

sinx)e−
x2

2 on the interval [0, 1]. Due to the slow nature of convergence of the Monte

Carlo method and the Monte Carlo method with importance sampling, two different

cases were computed for each method.

Computations for the basic Monte Carlo Method were done as follows; a random

number ηi was generated on the interval [0, 1]. η was sampled 100 and 10, 000 times.

Then the Monte Carlo approximation was calculated as

Z = E[f(η)] ∼ 1

n

n∑
i=1

(1 + sin(ηi))e
− η

2
i
2

However, because the sample generated for η were random numbers each computation

of the Monte Carlo method gives a different result. Therefore, the Monte Carlo

method was calculated 100 times. Those calculations were then used to calculate the

average error.
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It was not possible for computations for Monte Carlo method with importance

sampling to be computed as in (1.8) because of the inability to integrate e−x
2/2 on the

interval [0, 1] in closed form. Therefore, it is essential to recognize that the function

p(x) = 1√
2π
e−x

2/2 is the Gaussian or normal random variable with mean, µ = 0,

and variance, σ2 = 1. So for importance sampling, a normal random variable η

was constructed and truncated to the interval [−10, 10] which was sampled 100 and

10, 000 times. Then the Monte Carlo with importance sampling approximations was

calculated to be

Z = E[f(η)] ≈ 1

n

n∑
i=1

(1 + sin x)

In Monte Carlo with importance sampling, computing the truncated Gaussian random

variable also depended on random numbers. Therefore, this method was calculated

100 times. Those calculations were then used to calculate the average error.

Evaluation of Error for Quadrature Formulas

# of Points 100 1, 000 10, 000

Basic MC 0.21966 0.06545 0.01986

MC with Importance 5.11073− 02 1.73823e− 02 5.10225e− 03

sampling

The information provided in this table shows the accuracy of each method, as

well as the rate of convergence. Clearly the Monte Carlo method with importance

sampling outperforms the basic Monte Carlo method. Additionally, the basic Monte

Carlo method converge significantly more slowly than Monte Carlo with importance

sampling.

1.4 Probabilistic Integration

Recall our integral,

Z =

∫ b

a

f(x)p(x)dx
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Bayesian Monte Carlo or Bayesian Quadrature is known for treating the function

f(x) as a random variable with the goal of reducing the variance of f , and for its

use of Bayes’ Theorem. Because Bayesian Quadrature uses Bayes’ Theorem, updat-

ing occurs and a much smaller sample is needed. This in turn saves computational

abilities.

Since this section is about Bayesian Quadrature, it is worth noting Bayes’ Theo-

rem.

Theorem 1.2. (Bayes’ Theorem) Let Al, ..., Ak be a partition of Ω such that P (Ai) >

0 for each i. If P (B) > 0 then, for each i = 1, ..., k,

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

This is according to Wasserman Wasserman (2004).

The proof of Bayes Theorem comes directly from the application of the definition

of conditional probability. That is, if P (B) > 0 then the conditional probability of A

given B is P (A|B) = P (A∩B)
P (B)

.

Here P (Ai) is the prior probability distribution of A. The prior is often the

original probability or an educated guess. However, once an experiment is done or

data is obtained the prior is improved and the posterior is obtained. Here P (Ai|B)

the conditional probability or posterior probability of A which improved the prior

based on data.

Additionally, Bayesian Quadrature uses a Gaussian process. A Gaussian process,

written as GP (m(x), k(x, x′)), is a collection of random variables, any finite number of

which have a joint Gaussian distribution. It is completely described by its mean, m(x)

and covariance function k(x, x′). The mean and covariance functions of a real process

f(x) are defined as; m(x) = E[f(x)], and k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

respectively.
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A general name for a function k of two arguments that maps x, x′ ∈ X ⊂ R→ R

is a kernel. Kernels act like filters in a Gaussian process and determine different levels

of smoothness. The kernel is a covariance function that controls the properties of a

Gaussian process. Possibly the most commonly used kernel function is the squared

exponential kernel function which is defined as covf (x, x
′) = k(x, x′) = exp(− |x−x

′|2
2l2

)

where l is the characteristic length. Another widely used kernel function is the dot

product kernel function which is defined as covf (x, x
′) = k(x, x′) = σ2

0 +xTΣx′ where

Σ is a general covariance matrix.

1.4.1 Bayesian Quadrature

The Bayesian approach to the Monte Carlo Method is a probabilistic approach to

numerically computing the integral Z =
∫ b
a
f(x)p(x)dx. As with Bayesian inference,

one is able to make better choices or more precise computations based on different

states of knowledge or updating of data.

In Bayesian Quadrature we must think of Z as being random. This way of thinking

is consistent with a Bayesian approach which views uncertainty through probabilistic

representation, states of knowledge, and expectations.

As described by Huszar et al. (2012) Bayesian Quadrature begins by placing a prior

probability distribution on f , written as p(f) through a Gaussian Process. For ease

of calculations, let this prior have kernel function k and mean 0. Then Z is estimated

by combining the prior on f with conditioned observations on f at the sample points

D = (x(i), f(x(i))|i = 1, 2, ...). Bayesian Quadrature allows for these sample points to

be selected as desired. The result is a posterior probability distribution p(f |D) which

is also Gaussian since integration is a linear projection.

The posterior expectation of f from the Gaussian Process allows for the following
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computation ;

Ef |D[I] = Ef |D(

∫
f(x)p(x)dx)

=

∫ ∫
f(x)p(x)dxp(f |D)df

=

∫ ∫
f(x)p(f |D)dfp(x)dx

=

∫
f̄D(x)p(x)dx (1.9)

where f̄D is the posterior mean function. But the standard result from the Gaus-

sian Process gives

f̄D(x) = k(x,x)K−1f

where x and f are vectors containing the observed inputs and corresponding func-

tional values. k is the kernel function, or the form of the pdf which omits factors

which are not functions of any variables in the domain. And K = k(x(i), x(i)) for

i = 1, 2, ...n is the covariant matrix where Ki,j = cov(xi, xj). One of the benefits to

Bayesian Quadrature is that any distribution can be sampled as long as p(x) can be

evaluated (Rasmussen et al., 2003). However, if p(x) is Gaussian, more specifically,

if p(x) has mean b and variance B and the Gaussian kernel on the data points are

N(xi, A = diag(ω2
1, ....ω

2
M)) then

Ef |D[I] = zTK−1f (1.10)

where

z = ω0|A−1B + I|−1/2exp[−0.5(a− b)T (A+B)−1(a− b)] (1.11)

Note that ω0 and a are scalars that come from the Gaussian Process. This formulation

of the expectation of Z is a linear combination of observed functional values of f(x).

Similarly as with all quadrature methods, this estimations can be viewed as a sum of
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weights w(i) =
∑

m z
T
j K

−1
im and points. That is

Ef |D[I] =
∑
i

w(i)f(i) (1.12)

1.4.2 Optimal Sampling

As mentioned above, we must find the value of f at certain values of x. But in order

to not waste computational abilities during this computation, x must be chosen in

a specific way. To determine the sample x(i) at which to evaluate f , Huszar et al.

(2012) recommend trying to minimize the posterior variance of the integral. The

more the posterior variance can be minimized, the fewer the number of sample points

will be required for the desired accuracy. This is because minimizing the posterior

variance of the integral also minimizes the error. Therefore, it is essential to express

the posterior variance of Z conditioned on f(x(i)) in closed form. That is

Vf |D[Z] = Vf |D[

∫
f(x)p(x)dx]

=

∫
[

∫
f(x)p(x)dx−

∫
f̄(x′)p(x′)dx′]2p(f |D)df

=

∫ ∫ ∫
[f(x)− f̄(x)][f(x′)− f̄(x′)]p(f |D)dfp(x)p(x′)dxdx′

=

∫ ∫
CovD(f(x), f(x′))p(x)p(x′)dxdx′ (1.13)

where the standard results for the Gaussian Process gives

CovD(f(x), f(x′)) = k(x, x′)− k(x,x)K−1k(x, x′)

with x and f as defined above. Similarly if p(x) is Gaussian with mean b and variance

B and the Gaussian kernel on the data points are N(xi, A = diag(ω2
1, ....ω

2
M)) then

Vf |D[Z] = ω0|2A−1B + I|−1/2 − zTK−1z (1.14)
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where z as defined in (1.11). It is worth noting that this posterior variance does not

depend on f(x(i)), but only depends on x(i)(Huszar et al., 2012). So rewriting Vf |D[Z]

as Vf |x(i) [Z] is also helpful.

The sample is constructed by adding one quadrature point, x, to the sample

x1, x2...xn at a time. This is referred to as Sequential Bayesian Quadrature.

x(n+1) = argminVf |D[I]

= argminVf |(x1,x2...xn,x)[I] (1.15)

Since Bayesian Quadrature uses a Gaussian process which ensures a type of

smoothness, points in sparsely sampled areas are much more informative than points

in densely sampled regions. As noted in Huszar et al. (2012) there are some trade-offs

between accuracy and the diversity of the sample. They point out that when points

are close to high density regions under p, this results in a decrease in the variance.

Also, when the distance between the samples decreases, this results in an increase in

the variance.

1.4.3 Numerical Simulations

Note that the following calculations were computed for the function 1√
2π

(1+sinx)e
−x2
2

on the interval [−10, 10] with a different number of sub-intervals. Similar to previous

calculations, the basic Monte Carlo method was computed 100 times because it de-

pends on a random number generator. Those calculations were then used to calculate

the average error.
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Error Calculated

MC with

Monte Carlo importance sam-

pling

Bayesian MC

Error 2.19259e− 04 2.38755e− 05 8.49210e− 05

# of points 100, 000, 000 100 10

The information provided in this table shows the accuracy of each method. Clearly

the Bayesian Quadrature performs significantly better than the basic Monte Carlo

method.



CHAPTER 2: Batch Bayesian Quadrature

Similar to Bayesian Quadrature (BQ) in a previous chapter, Batch Bayesian Quadra-

ture (BBQ) also concerns itself with integrals of the form

Z =

∫
f(x)p(x)dx (2.1)

where both f(x) (e.g., a likelihood) and p(x) (e.g., a prior) are non-negative. These

integrals are usually intractable, and we must therefore turn to approximation to

solve them.

Until recently, point selection strategies in BQ have been sequential in nature, and

are therefore collectively referred to as Sequential Bayesian Quadrature (SBQ). That

is, a single quadrature point (x1) is selected, the model is updated, and a subsequent

quadrature point (x2) is selected based on the updated model (Rasmussen et al., 2003;

Huszar et al., 2012). Therefore, it is important to note that the cost associated with

SBQ has two primary sources, namely 1) updating the model, and 2) choosing the

optimal quadrature points. We will take these in turn.

2.1 Model Updating

Since point sampling and evaluation are expected to be costly, sequentially selecting

points and updating the model is considered to be greedy. That is, the least number

of iterations of sampling and evaluation are undertaken in order to achieve a desired

result. BQ provides not only a mean estimate of the integral, but a full Gaussian
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posterior distribution. The variance of this distribution quantifies the uncertainty in

the integral estimate. Therefore, when selecting quadrature points, a frequently used

stopping criterion for SBQ is the posterior variance of the integral estimate

V [Z|f(xs)] =

∫ ∫
k(x, x′)p(x)p(x′)dxdx′ − zTK−1z, (2.2)

as was illustrated in a previous chapter. To this end, a predetermined posterior

variance is chosen, and once the integral estimate’s posterior variance reaches this

threshold, sampling and updating cease. A generally accepted posterior variance

threshold is 1.0x10−5 (Garnett et al., 2010).

Insights from the field of Bayesian Optimization (BO) have shown that sequential

model updating may not be efficient. In BO, so-called batch methods have been

proposed as an effective way of allowing parallelization of model updating, and are

called Batch Bayesian Optimization (BBO) (Ginsbourger et al., 2010; Gonzáles et al.,

2016; Nguyen et al., 2017). In BBO, a batch of samples is taken and its points are

used to simultaneously update the model. Scenarios where BBO has been shown to

be practically efficient are in alloy quality testing and machine learning, among many

others (Nguyen et al., 2017). For example, in order to test alloy quality, a sample of

the alloy must be placed in a large oven where it is subjected to high temperatures

for an extensive period. In practice this process is costly, and hence many alloy

samples are placed in an oven in order to evaluate a batch simultaneously. Similarly,

in machine learning various algorithms are developed in order to test their efficiency

in obtaining a desired result. Decision nodes in these processes can be run in parallel

at the same time using multiple cores.

Due to the similarities between BQ and BO, ideas from BBO lend themselves

well to BQ. BO uses a probabilistic model to guide exploration of a search space by

defining an acquisition function to be maximized. In BBO, so-called batch methods
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have been proposed as an effective way of allowing parallelization of this exploration.

Once a batch of samples has been chosen, the model can be updated using the samples

simultaneously and therefore reduce the cost associated with multiple iterations of the

model updating process. In this regard, SBQ is inefficient when parallel evaluations

are possible.

2.2 Point Selection

The ideas of batch selection in BBO have recently been applied to Bayesian Quadra-

ture, and are called Batch Bayesian Quadrature (BBQ) (Wagstaff, 2018A). In these

batch methods, rather than selecting one point to sample at each step, a batch of

points of size n are selected. The entire batch is then used to update the model before

which a subsequent batch could be selected.

As was illustrated in the previous chapter, the posterior variance of the integral

estimate shown in Equation 1.13 does not depend on the function values, f(x), only on

the location of the the quadrature points. This allows the optimal samples in BQ to be

computed ahead of observing any values of the integrand (Huszar et al., 2012; Minka,

2000; Osborne et al., 2012A). Therefore, in BBQ, one could theoretically predetermine

quadrature points, select a batch of size n of these points, and use these to update

the model simultaneously. However, choosing quadrature points irrespective of the

functional form of f(x) has obvious shortcomings. To this end, recent developments

in BBQ have devised more sophisticated batch selection techniques.

2.2.1 Posterior of Integral Estimate versus Posterior of Gaussian Process

BQ puts a prior distribution on f , then estimates integral 2.1 by inferring a posterior

distribution over the function f , conditioned on the observations f(xs) at some query

points xs. The posterior distribution over f then implies a distribution over Z. This

method allows us to choose sample locations xs in any desired manner (Huszar et al.,
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2012). That is, we may choose to not predetermine quadrature points to minimize

the posterior variance of the integral estimate Z, and instead take into account the

function values f(xs) and maximize some acquisition function of our choosing. One

such acquisition function could have the objective of minimizing the posterior variance

of the Gaussian Process on f .

An important advantage of Bayesian Quadrature is that the posterior variance of

the Gaussian Process (GP) can be used to model uncertainty of the integrand, and

therefore encourage the exploration of the sample space more efficiently. We will dis-

cuss later how it is possible to develop more sophisticated models where, for example,

the covariance of better-informed posteriors relies on the sampled quadrature points,

among other benefits (Wagstaff, 2018A).

It is crucially important to note that, as referenced earlier in regards to BBO

efficiency in alloy testing and machine learning, the simultaneous evaluation of a

batch of points in updating the model is one primary source of potentially significant

cost. It is, however, not the only source of potentially substantial cost. Specifically,

how the batch of points are selected can also incur substantial cost. It is in this regard

that we make a significant contribution to the existing literature.

2.2.2 Sequential Batch Points Selection Methods

One way a set of n points could be selected per batch is to naively select the n

highest points on the acquisition function. However, this has the obvious downfall

that the points selected in this manner will all be nearly the same as the maximum

of the acquisition function, leading to a potentially uninformative batch. That is,

the gain in information of the entire batch entails more than merely the sum of the

information of each separate point within the batch. Put differently, is that we require

an informative batch, and hence we must select a batch of diverse points (Wagstaff,

2018A).
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To find the optimal batch we could theoretically define an acquisition function

over all sets of n points and maximize it. In practice this is too costly since it

increases the dimensionality of the problem by a factor of n. This would lead to

the acquisition function being very costly to compute. One way past research in the

literature has side-stepped this problem is to use heuristics where each quadrature

point is selected sequentially. Subsequently the acquisition function is updated after

a point is identified and selected to be included in the batch (Wagstaff, 2018A). Two

common methods for the sequential selection of batch points are the so-called Kriging

Believer strategy (Ginsbourger et al., 2010; Wagstaff, 2018A), and Local Penalisation

(Gonzáles et al., 2016; Wagstaff, 2018A). These will be discussed in turn.

Kriging Believer

In utilizing the Kriging Believer batch selection method, we select a point which

maximizes an acquisition function, set it’s value equal to the posterior mean. Sub-

sequently the GP model is updated to reflect the new information. We select the

subsequent point based on the posterior of our updated GP. This process is repeated

until a batch of the requisite size has been gathered. Only then do we use our selected

batch points to evaluate the integrand and use these observations and evaluations to

update our model. This strategy allows for two things, namely 1) it naturally forces

further exploration of the space as the region immediately around each point will no

longer be informative, and 2) it allows for the selection of an informative batch while

only once incurring the cost of evaluating the integrand in order to update our model

(Wagstaff, 2018A; Ginsbourger et al., 2010).

Local Penalization

Another strategy that has been adopted from BO in selecting batch points is the

so-called Local Penalization (Gonzáles et al., 2016; Wagstaff, 2018A). This strategy
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directly penalizes the acquisition function around a chosen point. This leads to not

using the entire model or space, as in Kriging Believer, but instead lowering the

acquisition function around each selected point, which in turn encourages diversity in

the batch. Similar to Kriging Believer, once the batch points have been selected and

the model updated, the penalization begins anew. Therefore, as before with Kriging

Believer, this strategy also allows for the selection of an informative batch while only

once incurring the cost of evaluating the integrand in order to update our model

(Wagstaff, 2018A).

2.3 Point Selection with Batch Updating

As previously stated, the justification for the sequential selection of batch points in

Kriging Believer and Local Penalization - as opposed to defining an acquisition func-

tion over all sets of n points (e.g., by considering the expected reduction in variance)

and maximizing it - is that in practice it is less expensive since otherwise the di-

mensionality of the problem would increase by a factor of n making the acquisition

function very costly to compute (Wagstaff, 2018A). However, this argument has ob-

vious flaws. It is in the mitigation of these flaws that we improve on the existing

literature.

Since a posterior on f implies a posterior on Z, in Kriging Believer and Local

Penalization alike, an acquisition function is maximized that seeks to minimize the

posterior variance of the GP. The flaw in the argument for sequentially selecting batch

points is that the only way to achieve a more optimal set of points would increase

the dimensionality of the problem, and therefore cost, significantly. As we will show,

this is not true.
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2.3.1 Stationarity of GP Posterior Mean

Note that in Kriging Believer and Local Penalization alike, the posterior mean of the

GP is stationary. That is, since Kriging Believer is a form of simple kriging, when

a quadrature point (xi) is ”sampled”, the functional value associated with this point

prior to selecting a subsequent quadrature point (xj), where i < j, is the GP posterior

mean at (x1). This allows the GP posterior mean to remain unchanged. Similarly,

in Local Penalization, the acquisition function is penalized as previously discussed.

This, again, allows the GP posterior mean to remain stationary.

2.3.2 Symmetry of GP Posterior Variance between Training Points

As discussed in a previous chapter, the noiseless GP posterior covariance matrix is

given by

k(X2, X2)− k(X2, X1)k(X1, X1)−1k(X1, X2), (2.3)

where (X1) is the training set, (X2) is the test set, k is the kernel function, and the

posterior variance at the test set conditioned on the training set is the diagonal of

this covariance matrix. Recall that analytic results for Z =
∫
f(x)p(x)dx can be

obtained from certain combinations of kernel functions and priors p(x) (Rasmussen

et al., 2003). One such combination is a Gaussian prior and the Squared Exponential

(SE) kernel. We continue with that premise here.

First, note that the Gaussian prior naturally encourages the selection of quadra-

ture points near the center of the distribution. Furthermore, the SE kernel is given

by

k(x, x′) = σ2exp(−(x− x′)2

2l2
), (2.4)

where σ2 is a scale factor, l is the lengthscale, and x and x′ may be vectors. It is

important to note that since the value of the SE decreases with distance and ranges

between 0 (in the limit) and 1 (x = x′), it can be interpreted as a similarity measure.
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This summary of batch Bayesian quadrature will now serve as the cornerstone

upon which we build our novel method in the next chapter.



CHAPTER 3: Batch Bayesian Quadrature with Selection Updating

Problems frequently encountered in machine learning call for the approximation of

intractable integrals of the form

Z =

∫
l(x)π(x)dx (3.1)

where both l(x) (e.g., a likelihood) and π(x) (e.g., a prior) are non-negative. Various

approaches exist to complete this task, including Laplace approximation, variational

inference, and Markov Chain Monte Carlo (MCMC). However, all of these approx-

imation methods have their drawbacks (Blei et al., 2016; O’Hagan, 1987) and are

unsuitable where evaluating the desired likelihood is expensive, such as when esti-

mates based on only a few evaluations must be made.

Bayesian Quadrature (BQ), on the other hand, considers the approximation of

intractable integrals as a problem of inference from limited data to which probability

theory can be applied. Additionally, Gunter et al. (2014) and Wagstaff (2018A) have

shown that BQ techniques achieve faster convergence and smaller absolute errors

when compared to state of the art MCMC methods.

3.1 Warping

Bayesian Quadrature utilizes a probabilistic model to induce both the functional form

of the integrand and a probability distribution over the value of the integral. Gaus-

sian Process (GP) is a commonly used method for placing probability distributions
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over functions (Diaconis, 1988; O’Hagan, 1987; Minka, 2000; Rasmussen et al., 2003;

Wagstaff, 2018A), and we will use it in our probabilistic model.

Given Z =
∫
l(x)π(x)dx, we choose to place the GP on the likelihood, l, though we

could place it on the entire integrand. The GP is parameterized by a mean µ(x) and

a scaled Gaussian covariance K(x, x′). Here we choose K(x, x′) = λ2 exp(−1
2

(x−x′)2
σ2 )

where the output length-scale λ and input length-scale σ control the standard de-

viation of the output and the autocorrelation range of each function evaluation,

respectively, and will be jointly denoted by θ = {λ, σ}. Conditioned on samples

xd = {x1, ..., xN} and corresponding functional values l(xd), our GP is given by

l | D ∼ GP (mD, CD) (3.2a)

mD(x) = µ(x) +K(x, xd)K
−1(xd, xd)(l(xd)− µ(xd)) (3.2b)

CD(x, x′) = K(x, x′)−K(x, xd)K
−1(xd, xd)K(xd, x

′) (3.2c)

where D = {xd, l(xd), θ}. This leads to a Gaussian distribution of the value of Z since

GPs are closed under affine transformations (Rasmussen et al., 2006). The mean and

variance of the integral Z are given by

El|D[Z] =

∫
mD(x)π(x)dx (3.3a)

Vl|D[Z] =

∫ ∫
CD(x, x′)π(x)π(x′)dxdx′ (3.3b)

These are analytic given our K and when π(x) is Gaussian, which we use here (Briol

et al., 2015). Other combinations of K and π(x) also lead to analytic results (Gunter

et al., 2014).

Since we place the GP on l, utilizing a standard GP prior would ignore the range

and non-negativity of l leading to pathologies (Rasmussen et al., 2003). To address

this, several prior works have investigated warping the output space of the GP (Os-
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borne et al., 2012B; Gunter et al., 2014; Chai et al., 2018). That is, instead of modeling

l as a GP, a transformed likelihood g(l) is modeled, where for example g = log(x) or

g =
√
x, such that g−1(g(l)) is non-negative. While this leads to a posterior on l that

is not a GP, it is possible to derive a GP which closely approximates it. To that end,

we follow the method of Gunter et al. (2014) termed WSABI-L, which makes use of

the square-root transformation g =
√
x.

Specifically, we define l̃(x) =
√

2(l(x)− α), where α is a small scalar. Prior inves-

tigations found that the performance was insensitive to the choice of this parameter

and used α = 0.8 x min l(xd) (Gunter et al., 2014), which we also implement here.

We take a GP prior on l̃(x) : l̃(x) ∼ GP (0, K), for which the posterior is

p(l̃ | D) = GP (l̃; m̃D(·), C̃D(·, ·)) (3.4)

m̃D(x) = K(x, xd)K
−1(xd, xd)l̃(xd) (3.5)

C̃D(x, x′) = K(x, x′)−K(x, xd)K
−1(xd, xd)K(xd, x

′) (3.6)

However, with this transformation we arrive at a GP whose marginal distribution for

any l(x) is a non-central χ2 with one degree of freedom, and hence the posterior of

our integral is not closed-form.

Since GPs are closed under linear transformations and given our GP on l̃, a local

linearization of the form f : l̃ 7→ l = α + 1
2
l̃2 will give us a GP for l. That is,

lineariation around l̃0 results in l(x) ' f(l̃0) + f ′(l̃0)(l̃ − l̃0). We choose l̃ = m̃D such

that

l(x) ' (α + 1
2
m̃D(x)2) + m̃D(x)(l̃(x)− m̃D(x)) (3.7)

' α− 1
2
m̃D(x)2 + m̃D(x)l̃(x) (3.8)
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and therefore l is an affine transformation of l̃, which results in the following posterior:

p(l | D) ' GP (l; mL
D(·), CL

D(·, ·)) (3.9)

mL
D(x) = α + 1

2
m̃D(x)2 (3.10)

CL
D(x, x′) = m̃D(x)C̃D(x, x′)m̃D(x′) (3.11)

Since m̃D and C̃D are mixtures of un-normalized Gaussians K, mL
D and CL

D are

also mixtures of un-normalized Gaussians. Therefore, substituting (3.10) and (3.11)

into (3.3a) and (3.3b), respectively, yields closed-form expressions for the mean and

variance of Z.

3.2 Active Sampling

One characteristic of the standard BQ model is that the posterior covariance only

depends on the locations sampled, not on the functional values at those points (Ras-

mussen et al., 2003).

However, given the Bayesian model of the likelihood, Bayesian decision theory can

be used to define an acquisition function to guide the selection of sample locations,

including the reduction in uncertainty about either the integrand or the integral.

One possibility in selecting the next sample location xa would be to follow Osborne

et al. (2012A) in minimizing the expected entropy of the integral by selecting

xa = arg min
x
〈Vl|D, l(x)[Z]〉 (3.12)

, where

〈Vl|D, l(x)[Z]〉 =

∫
Vl|D, l(x)[Z]N(l(x); mD(x), CD(x, x))dl(x). (3.13)

Another possibility would be what is known as uncertainty sampling. Here the
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reduction of entropy in the integrand is targeted by selecting xq with the largest

uncertainty, i.e.,

xq = arg max
x

Vl|D[l(x)π(x)] (3.14)

where for our warped integrand we have

VL
l|D[l(x)π(x)] = π(x)2C̃D(x, x)m̃D(x)2 (3.15)

Figure 3.3: Warped Gaussian process posterior covariance and uncertainty sampling

In figure 3.3, the blue curve represents the warped Gaussian posterior covariance

of the integrand. xq represents the quadrature point selected through uncertainty

sampling. That is the points x value associated with the largest posterior covariance

of the integrand.

It should be noted, as the work by Gunter et al. (2014) correctly stated, that

uncertainty sampling reduces the entropy of the GP to p(l) rather than the true

intractable distribution, and that the computation of (3.12) is considerably more

expensive than that of (3.14).

3.2.1 Future Uncertainty Sampling

What we now describe is what we believe to be a novel sampling technique in Bayesian

Quadrature which we call future uncertainty sampling, and our first contribution with

this paper. First, we must define new variables. Define xn < arg max
x

VL
l|D[l(x)π(x)] <
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xn+1 where xn, xn+1 ∈ xd are quadrature points from previous batch(es). Define

x∗ = {x∗A, x∗B, ...} to be the set of potential quadrature points where xn < x∗. <

xn+1 ∀x∗. ∈ x∗, and l̃(x∗) = {l̃(x∗A), l̃(x∗B), ...} are their estimated functional values.

Then we define D∗ = {{xd, x∗·}, {l(xd), l̃(x∗·)}, θ}.

Then future uncertainty sampling is defined by

x′∗ = arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
(3.16)

where the posterior covariance is defined in 3.15, [xn, xn+1] is an interval, x′∗ = x∗.

that has the smallest maximum posterior convariance of the integrand.

It is also important to note that VL
l|D∗ [l(x)π(x)] is a set of functions which depend

on D∗. There will be the same number of functions as there are elements in x∗.

Then max
x∈[xn,xn+1]

VL
l|D∗ [l(x)π(x)] gives one value for the max of each function on the

interval [xn, xn+1]. So we have a set of values resulting from x∗. From this set of

values, arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
leads to the x∗. that is associated with the

smallest maximum posterior covariance of the integrand.

This definition will be used throughout this research when discussing the imple-

mentation of our novel technique, and should be distinguished from the quadrature

point of choice when using uncertainty sampling. Instead of choosing xq to maxi-

mize the reduction in entropy of the integrand as in uncertainty sampling, we instead

minimize the uncertainty of the integrand by selecting sample locations x′∗. While

future uncertainty sampling can be implemented as a sequential sampling technique,

it also allows for multiple sample locations to be chosen simultaneously. A common

argument against the simultaneous selection of a set of n points is that it increases

the dimensionality of the selection problem by a factor of n, and therefore in practice

becomes too costly to compute.

A mitigating factor in quadrature is that locations close to sampled points become
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uninformative. To that end, we can decompose the domain and perform a discretized

search over sample locations without incurring the usual costs of non-serial point

selection. We discuss our implementation of this domain decomposition in section 5.

Figure 3.4: Warped Gaussian process posterior covariance

Uncertainty sampling targets the reduction of entropy in the integrand by se-

lecting xq with the largest uncertainty, i.e., xq = arg max
x

Vl|D[l(x)π(x)], where for

our warped integrand we have VL
l|D[l(x)π(x)] = π(x)2C̃D(x, x)m̃D(x)2 as in equation

(3.15). Specifically, the sample location xq is chosen where the posterior covariance

of the GP is largest, without consideration about the resulting magnitude of the

posterior covariance of the GP.

Contrary to uncertainty sampling, future uncertainty sampling instead minimizes

the uncertainty of the integrand by selecting sample locations x′∗ such that x′∗ =

arg min
x∗

[
max
x

Vl|D[l(x)π(x)]
]

where again Vl|D[l(x)π(x)] is as in equation (3.15). That

is, x′∗ is chosen such that the posterior covariance of the GP is smallest within the

region bounded by both xd after the new quadrature point x′∗ is selected, without

consideration about whether x′∗ also demarcates where the posterior covariance of

the GP was largest prior to the selection of x′∗.

Figure 3.4 shows an example section of the posterior covariance of a GP, given

by the large blue curves. Here xd represents previously chosen sample locations that

the model has used to update the GP, and y1 and y2 demarcate the highest posterior
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covariance of the GP in this example section after the next quadrature point is chosen.

The posterior covariance of the GP after the next quadrature point is chosen are

indicated by the two brown curves, each of which terminates at an xd and the next

quadrature point, either xq in panel (A) or x′∗ in panel (B).

Panel (A) shows the selection of the next quadrature point xq using uncertainty

sampling. Notice here that xq is chosen where the posterior covariance of the GP is

highest, without regard to the posterior covariance of the GP after the selection of

this next quadrature point. That is, the quadrature point is chosen which reduces

the posterior covariance of the GP the most. Panel (B), on the other hand, shows the

selection of the next quadrature point x′∗ using future uncertainty sampling. Here the

next quadrature point is selected without regard to where the posterior covariance of

the GP is highest, but instead minimizes the posterior covariance of the GP after x′∗

is chosen.

This illustrates that while both use the posterior covariance of the GP as consider-

ation in the selection of quadrature points, there are fundamental differences between

uncertainty sampling and future uncertainty sampling. While uncertainty sampling

will always chose the quadrature point with the largest reduction in entropy, future

uncertainty sampling will always chose the quadrature point which results in the low-

est posterior covariance of the GP, as illustrated by y1 > y2. Furthermore, since we

warp the GP as previously discussed, and the posterior covariance of the GP is not

symmetric, it cannot be that y1 ≤ y2 whenever our search space is all real numbers

within our domain.

3.2.2 Superiority of Future Uncertainty Sampling versus Uncertainty Sampling (Part

1)

The seemingly minor difference between selecting the next quadrature point based

on future uncertainty sampling versus uncertainty sampling - that is, minimizing
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the posterior covariance of the GP versus maximizing the reduction in the posterior

covariance of the GP - in practice allows for very significant changes. One of these

changes is that quadrature point selection need not proceed in a sequential manner.

A characteristics of the standard BQ model that is important to our paper is that

the choice of sample locations is a sequential process, i.e., first xq is chosen, and only

after xq ∈ xd is the subsequent xq chosen (Rasmussen et al., 2010) Since each sample

is expensive, this sequential process is very costly.

Recently Wagstaff (2018A) drew on the Bayesian Optimization literature to im-

plement what they referred to as Batch Bayesian Quadrature (BBQ), where several

samples are taken in parallel, i.e., each xq is a batch of sample locations. To accom-

plish this, the authors utilized the probabilistic model of BQ to guide exploration of a

search space by defining an acquisition function to be maximized. Two such methods

are Kriging Believer and Local Penalization.

Utilizing GP model

In Kriging Believer (Ginsbourger et al., 2010), instead of updating the BQ model after

every sample, the functional value of a sample location is set equal to the posterior

mean, then the GP model is updated before selecting a subsequent sample location.

This process is repeated until the batch of sample locations chosen is sufficiently large,

and then the evaluations of those sample locations are made and the BQ model is

updated.

Acquisition Function Penalization

Unlike Kriging Believer which utilizes the entire GP model, Local Penalization (Gonzáles

et al., 2016; Wagstaff, 2018A) only directly modifies the acquisition function around

each selected point. This also allows for the selection of a batch of sample locations

before those location are evaluated and the BQ model is updated.
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A common characteristic of the batch selection procedures in BBQ is that sample

locations within a batch are selected serially. While such parallelization procedures

reduce the cost of sample selection, they do not consider how changes in sample

locations within a batch impact the efficiency of the reduction in uncertainty of the

integrand, ceteris paribus. In the next section we describe our method of taking

this into consideration, and subsequently show that it results in lower absolute error

estimates of the integral.

Regardless of whether the entire GP model (Kriging Believer) is used, or a tech-

nique which directly penalizes the acquisition function (Local Penalization), uncer-

tainty sampling is an inherently sequential procedure. See also Chapter 2 for a discus-

sion on Kriging and Local Penalization. To see this, it is important to make the dis-

tinction between selecting quadrature points simultaneously and selecting quadrature

points within the same batch. Since we are implementing batch Bayesian quadrature,

were are working by the premise that all points used to update the model will be se-

lected within a batch of other points, but that not every point will come from the

same batch. However, updating a model simultaneously with a batch of points is not

the same thing as selecting points within a batch simultaneously. Within each batch,

points can be selected sequentially or simultaneously.

If uncertainty sampling is used to select quadrature points, as figure 3.4 panel

(A) shows, xq is selected where the posterior covariance of the GP is largest. If

instead of picking one quadrature point, two quadrature points were to be selected

simultaneously, then the second highest point would be immediately adjacent to xq.

To see this, consider figure 3.4, where the top panel shows a function with an example

GP posterior after 6 points are chosen and the model is updated, where the black

dots are the chosen points, the blue dotted line is the function, the red solid line is

the GP posterior mean, and the red shaded area is two standard deviations of the

GP posterior covariance. The bottom panel of figure 3.4 shows the magnitude of the
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posterior covariance at each x in the search space, and therefore also represents the

acquisition function.

As can be seen in figure 3.4 since uncertainty sampling selects the location with

the highest posterior covariance, if two points were to be selected simultaneously,

then the two points with the largest posterior covariance of the GP would be chosen,

which using a unimodal distribution of posterior covariance of the GP would need to

be immediately adjacent to each other. That is, xq1 and xq2 would be chosen. Using

immediately adjacent points in quadrature is very uninformative, and much better

batches of points can be selected.

Similarly, as can be seen in figure 3.5 panel (A), if uncertainty sampling were

used to select the point with the largest posterior covariance of the GP, as in points

xq1 and xq3 , this would only be possible if first xq1 is chosen, the model updated or

the penalization to the acquisition function applied, and then choose x∗3 . However,

this would then be a sequential process, and the points would no longer be chosen

simultaneously even though they are within the same batch.

Alternatively, if the restriction were relaxed that the point with the largest poste-

rior covariance of the GP must be chosen, then it would be possible to find methods

where points could be chosen simultaneously. As previously mentioned, one such

method is future uncertainty sampling, which we devise and apply in this research.

To that end, if two or more points can be chosen simultaneously, then the question

arises of how to chose these points. Since our acquisition function utilizes the poste-

rior covariance of the GP, we select quadrature points which minimize the posterior

variance of the GP, as described by equation (3.16).
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Figure 3.5: f(x) and Gaussian process posterior

3.2.3 Superiority of Future Uncertainty Sampling versus Uncertainty Sampling (Part

2)

A significant benefit of selecting points simultaneously within a batch is the ability for

quadrature points to better work in harmony to reduce the posterior covariance of the

GP. To see this, as previously discussed, using uncertainty sampling would first chose

the quadrature point which corresponds to the maximum posterior covariance of the

GP, and after the model is updated or a penalization is applied to the acquisition

function, a subsequent quadrature point would be selected. Diagrammatically, this

would proceed by first selecting the quadrature point xq1 near x = 2.4 in figure 3.4.

For illustrative purposes it will be noted that this first quadrature point lies within

the neighborhood formed by the points xd1 = 0.8 and xd2 = 3.8, where both of

these represent quadrature points selected from previous batches. Since uncertainty

sampling is applied, once xq1 is chosen and after the model is updated or a penalization

is applied, the subsequent largest posterior covariance of the GP would be as in figure

3.5 panel (A). Here uncertainty sampling would select the next quadrature point

xq2 near x = 1.6 as this is now the location corresponding to the largest posterior
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covariance of the GP.

Figure 3.6: f(x) and Gaussian process posterior

It is extremely crucial to note, as can be seen in figure 3.5 that after xq2 is se-

lected and the GP model updated or a penalization applied, that the largest poste-

rior covariance of the GP still lies within the neighborhood defined by xd1 and xd2 .

Therefore, if uncertainty sampling would still be applied, the next quadrature point

xq3 would be selected within this neighborhood. Therefore, only after these three

quadrature points are selected would uncertainty sampling allow for the exploration

of other neighborhoods, and the selection of subsequent quadrature points outside of

the neighborhood defined by xd1 and xd2 . Specifically, uncertainty sampling and the

acquisition function would lead to xq4 = 0.

Alternatively, since we implement future uncertainty sampling instead of uncer-

tainty sampling, we not only can choose quadrature points simultaneously, but we

also do not need to choose the location where the posterior variance of the GP is

largest. Instead, as can be seen in figure 3.6, we can chose points x′∗1 near x = 1.8

and x′∗2 near x = 2.8. First note that x′∗1 6= xq1 and x′∗2 6= xq2 . Most importantly, note

that the largest posterior covariance of the GP within the neighborhood bounded by
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Figure 3.7: f(x) and Gaussian process posterior

xd1 and xd2 is smaller than the largest posterior covariance of the GP not within this

neighborhood. This means that the location for the next quadrature point x′∗3 will

not be in the neighborhood bounded by xd1 and xd2 .

Therefore another consequence which arises from using future uncertainty sam-

pling instead of uncertainty sampling, is that the posterior covariance of the GP is

more efficiently reduced, allowing us to explore the search space more efficiently. Said

differently, in order to minimize the posterior variance of the GP within the neigh-

borhood defined by xd1 and xd2 , in this example uncertainty sampling requires the

selection of three points within this neighborhood before it can explore the search

space outside of this neighborhood. On the other hand, future uncertainty sampling

in this example only requires two points within the neighborhood defined by xd1 and

xd2 in order to reduce the posterior covariance of the GP to a level which allows for the

exploration of the search space outside of this neighborhood. Therefore, despite us-

ing the same acquisition function, the seemingly minor change required to implement
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future uncertainty sampling yields this tremendous benefit.

3.3 Test Functions

Since we are interested in intractable integrals of the form Z =
∫
l(x)π(x)dx where

both l(x) (e.g., a likelihood) and π(x) (e.g., a prior) are non-negative, it is important

to evaluate our novel procedure using test functions appropriate to this scenario.

Specifically, our GP is parameterized by a mean µ(x) and a scaled Gaussian covariance

K(x, x′) = λ2exp(−1
2

(x−x′)2
σ2 ) where the output length-scale is given by λ and the input

input length-scale is given by σ. Despite our warping l̃(x) =
√

2(l(x)− α) where α is a

small scalar, and subsequent linearization f : l̃ 7→ l = α+ 1
2
l̃2 we have shown that a GP

can be approximated for our likelihood l(x) given by p(l | D) ' GP (l; mL
D(·), CL

D(·, ·))

where mL
D(x) = α + 1

2
m̃D(x)2 and CL

D(x, x′) = m̃D(x)C̃D(x, x′)m̃D(x′) and m̃D(x) =

K(x, xd)K
−1(xd, xd)l̃(xd) and C̃D(x, x′) = K(x, x′)−K(x, xd)K

−1(xd, xd)K(xd, x
′).

Furthermore, our prior π(x) is Gaussian. Given our kernel K in our GP ap-

proximation for l(x) and prior π(x) are both Gaussian, it is well established that

analytic results can be obtained for both the mean and variance of Z given by

El|D[Z] =
∫
mD(x)π(x)dx and Vl|D[Z] =

∫ ∫
CD(x, x′)π(x)π(x′)dxdx′, respectively.

(Rasmussen et al., 2006; Briol et al., 2015). Other combinations of K and π(x) also

lead to analytic results (Gunter et al., 2014), however these are not considered here.

It is important to note that any function can be chosen for l(x) as long as it meets

the restrictions applied in our procedure, namely that it conforms to the properties

of a likelihood. Comparisons and evaluations of validity, efficiency, and reliability

are frequently carried out by using a set of standard benchmarks or test functions

prevalent in the literature. The number of test functions used varies widely depend-

ing on the evaluation performed, but typically varies between the low single digits

and several dozen. The primary consideration made in comparisons and evaluations

therefore rests not on the number of test functions used, but instead on the selection
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of test functions which allow for the evaluation and comparison of the characteristics

of interest. In order to establish that our comparison of batch updating versus not

updating is complete, we first discuss the properties which distinguish test functions.

Subsequently we choose and discuss test functions for our evaluation and comparison

of batch updating versus not updating.

3.3.1 Test Function Properties

The literature abounds in benchmark test functions for global optimization problems

and in the quadrature literature. However, many of the test function originate in

Bayesian Optimization. Despite the similarities in the theoretical underpinnings be-

tween Bayesian Optimization and Bayesian Quadrature, their divergence in objectives

presents a challenge. Specifically, optimization seeks to identify one global maximum

whereas quadrature does not. Therefore, the optimization literature makes distinc-

tions among test functions which are imperative to its objective, but quadrature may

omit such distinctions, and vice versa. In order to show that the test functions we

selected are necessary and sufficient, we begin with a discussion of the relevant char-

acteristics of benchmark test functions and they pertain to both optimization and

quadrature. For reference see Suganthan et al. (2005) and Jamil et al. (2013).

Linearity

The linearity of all or part of a test function has significant implications in both op-

timization and quadrature. As linearity increases, the accuracy of estimates increase

more quickly.

Cyclicality

Functions which are not uniformly linear may be cyclic or piece-wise cyclic, where
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cyclicality is defined as

f(x1, x2, x3, ..., xn−1, xn) = f(xi, xi+1, ..., xn−1, xn, x1, x2, ...xi−1),

where 1 < i ≤ n. Cyclicality plays an important role both in optimization for the

identification of local versus global maxima, and in quadrature for symmetry impli-

cations.

Modality

Modality plays a more crucial role in optimization than in quadrature since optimiza-

tion seeks to identify global maxima and quadrature does not. Nevertheless, it is

important to note that the search algorithm applied in quadrature may be similar to

that of quadrature, and therefore if the algorithm has a strong propensity to remain

in such intervals, this can have a negative impact.

Basins and Valleys

Basins are relatively large areas surrounded by steep declines. Similarly, valleys are

relatively narrow areas of little change surrounded by regions of steep decent. In op-

timization, search algorithms functioning as minimizers are attracted to basins and

valleys alike, however these algorithms may be significantly slowed in such regions.

While the consequences are much less detrimental in quadrature as compared to op-

timization, the application of similar search algorithms can again have a negative

impact.

Oscillation

The frequency and magnitude of oscillations of a test function on an interval, I, in

the domain has significant implications both in optimization and quadrature, where
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an oscillation of a test function is defined as

ωf (I) = supf(x)− inff(x),

where x ∈ I. In regards to optimization, algorithms intended to explore the search

space can become stuck in sizable intervals defining basins, valleys, and local max-

ima. Since quadrature may employ similar algorithms, these same encumbrances may

occur.

However, in quadrature frequent and large oscillations may potentially lead to a

much more significant detriment. While optimization concerns itself with the effi-

ciency with which a global maximum is identified, quadrature concerns itself with

the entire shape of the function. Sudden and large oscillations significantly affect the

quadrature results.

Separability

A separable function is a function which contains variables or parameters which are

independent of its other variables. If all n variables within a function are independent,

then a sequence of n independent processes can be performed both in optimization

and quadrature. Therefore, separability is a measure of difficulty of test functions,

where separable functions are relatively easier to solve.

Dimensionality

The number of variables or parameters corresponds to the dimensionality of the test

functions. As the dimensionality of the test function increases, performing the search

algorithm becomes increasingly cumbersome, especially for non-separable test func-

tions as discussed above. This stems from the fact that the search space increases

drastically, which clearly applies to both optimization and quadrature. However,

since in this investigation we restrict ourselves to two dimensions, we omit many of
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the difficulties of separability and dimensionality alike.

3.3.2 Ackley, Weierstrass, and Synthetic Test Functions

Given the common consideration in the selection of test functions, we choose two test

functions very prevalent in the literature, namely the Ackley test function and the

Weierstrass test function. Subsequently we also use a synthetic test function which

is used in the literature on Batch Bayesian Quadrature.

Ackley test function

In the quadrature literature, and in many similar fields, ”black box” problems are

those where a function is either unknown or intractable, but nevertheless needs to

be evaluated at strategically relevant locations. In the optimization literature, for

example, so called ”black box optimization” problems require the optimization of

an unknown function, where the optimum is either a global maximum or minimum

depending on the evaluation objective.

To perform the search for points to evaluate the unknown function, not knowing

the structure of the function provides particular challenges. Such challenges are not

uncommon in the parallel field of quadrature, since the problems encountered in

this field similarly arises due to either not knowing the functional form of the entire

integrand or the l(x) portion thereof, or the fact that the analytic evaluation of the

resulting integral in intractable.

In the optimization literature, and subsequently borrowed into the Batch Bayesian

Quadrature literature, two vital facets of such evaluation have been articulated. The

first is the ability to learn from the information received while searching for strate-

gically relevant location to evaluate. This can be referred to as exploitation in the

relevant literature.

Secondly, the ability to continue to explore the search space is vital both in the
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optimization literature and in quadrature. If the possibilities within a region have

either been exhausted or have been deemed unsuitable for further exploitation by the

search process, then other regions must be sampled. More importantly, whenever the

current region has not been exhausted and further exploitation is warranted, having

the ability to nevertheless divert efforts to explore other regions for possible higher

rewards is important. This is highly relevant in both optimization and quadrature

and is important to balance. Many techniques have been devised to achieve a suitable

balance to reach a specified objective.

One such mechanism was proposed by Ackley (1987). He proposed a connectionist

learning machine which produces a search strategy called stochastic iterated genetic

hill-climbing (SIGH). Considered over a short time horizon, SIGH conducts a coarse-

to-fine searching strategy, similar to simulated annealing and genetic algorithms. A

notable difference is that using SIGH it is possible to reverse the convergence process.

This implementation therefore makes it possible to unpack the search after it com-

pletes. This allows for the recovery of information about the search space obtained

during convergence. To that end, SIGH can be viewed as a genetic and a stochastic

hill-climbing algorithm, in which genetic search reveals points for hill-climbing, and

hill-climbing influences subsequent genetic search. Testing was conducted by Ackley

on a set of illustrative functions. Not only has SIGH been shown to be competitive

with genetic algorithms and simulated annealing in most cases, and markedly supe-

rior where the uphill directions of functions lead away from the global maximum, but

his work has also contributed to the test function literature and become frequently

used test functions.

The most commonly used Ackley test function is given by

−20e−0.02
√
D−1

∑D
i=1 x

2
i − eD−1

∑D
i=1 cos(2πxi) + 20 + e (3.17)
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Figure 3.8: Ackley test function in 2D

Pertaining to the discussion about differences in test function properties above,

it should be noted that the Ackley test function is continuous, differentiable, non-

separable, scalable, and multi-modal. It can be applied in many dimensions, and

if necessary parameters can be changed to achieve specific effects. For example, the

addition of 20+e was appended in some literature applications of the Ackley function

in order to center the function at the origin. Nevertheless, in our application there

are no basins or valleys. Furthermore, there is a not a cyclicality in the original sense,

however there is a periodicity of some facets due to the use of the cosine function,

and therefore it is also not linear.

Of particular importance are the significant number of often large local fluctua-

tions. Not only are these difficult to traverse in optimization, but also in quadrature

they present a particular challenge. Since the posterior covariance of the GP will

be large in sections with significant fluctuations, search algorithms may be stuck in

these regions. Our novel method of more efficiently reducing the posterior covariance

of the GP will allow us to be much less susceptible to becoming stuck in these regions.
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Having a test function that will allow us to exploit this added benefit of our novel

method makes the selection of the Ackley test function particularly relevant. This is

in addition to the many applications already discussed for the Ackely test function,

and its wide use in the literature.

Weierstrass test function

The Weierstrass test function was originally used in the late 1800’s as an example

of a real-valued function that is continuous everywhere but differentiable nowhere.

Due to it being a fractal curve, it has often been utilized as a so-called pathological

function, that is one which possesses counter-intuitive or irregular properties.

Its original purpose was to investigate the concept that every continuous function

is differentiable except on a set of isolated points. This function served as an ex-

ample that proved the concept that continuity did not guarantee almost-everywhere

differentiability. Due to the difficulty of visualizing such functions, they did not gain

wide usage until models of Brownian motion required jagged functions. Due to the

fact that Brownian motion, among other applications, has characteristics lending it-

self well to the movement of particles within a medium or random walks, the use

of the Weierstrass test function has many far-reaching applications in many fields.

These include, finance, statistics, astronomy, physics, electromagnetism, etc. There-

fore, devising a method which can better estimate the functional form in black box

problems as described above, and determine more robust estimates of the integral

involving such functions, makes our novel contribution widely applicable and very

consequential.

The Weierstrass test function is given by

n∑
i=1

[
kmax∑
k=0

akcos(2πbk(xi + 0.5))− n
kmax∑
k=0

akcos(πbk)] (3.18)

where the parameter value for a, b, k, and n can be set as desired or necessitated by
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the application or investigation being conducted.

Figure 3.9: Weierstrass test function in 2D

Similar to our discussion above, the Weierstrass test function has several proper-

ties which must be noted since their are relevant to our investigation. The Weierstrass

test function stated above is continuous, differentiable only on a set of points, sepa-

rable, scalable depending on the choice of parameters stated above, and multi-modal.

Its original applications were primarily in one dimensions for reasons already articu-

lated, but it most certainly can be used in multiple dimensions including very high

dimensions. It lacks any basins or valleys. It is not cyclical in the original sense

defined, but does have a repetitive aspect to it due to the use of the cosine function.

It is therefore also not linear.

For the Weierstrass test function, as in the Ackley test function, an important

component of this test function, and therefore also a reason for its inclusion in this

study, are the frequent and often significant fluctuations. These transitions are often

difficult for optimization since search algorithms can get stuck in such regions. Simi-

larly in quadrature, search function can get stuck in these regions due to the fact that
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the posterior covariance of the GP can be significant in such regions. Therefore, in

addition to its many application described above, the functional form of the Weier-

strass test function lends itself well to differentiate the novel application devised in

this work compared to those which already exists in the literature. We will see later

in the numerical results section that the novel method devised in this study does

significantly better in not only estimating the function form of the integrand which

utilizes the Weierstrass test function in place of the likelihood, but therefore also gives

more robust numerical estimates of the integral.

Synthetic test function

The synthetic test function has the important distinction of being a test function

used in the evaluation of Batch Bayesian Quadrature in the literature. While Batch

Bayesian Optimization has been in existence for nearly a decade, Batch Bayesian

Quadrature was devised in 2018 (Wagstaff, 2018A). Due to the relative newness of

this technique, having a function used in multiple studies relevant to this topic will

serve as an easy yardstick in the comparison of various techniques and applications.

The synthetic test function is given by

sin(x) + 0.5 cos(3x)2

(x
2
)2 + 0.3

(3.19)

As the graph of the synthetic test function shows, there are much fewer fluctuations

in the synthetic test function compared to both the Ackley test function and the

Weierstrass test function. Nevertheless, especially in the two dimensional application

employed here, there are regions which, if unexplored, will significantly influence the

determination of both the functional form of the integrand as well as the expected

value of the integral. An added benefit of having significantly fewer fluctuations is

that the computational cost of running both our novel algorithm and that already

present in the literature is significantly lower. This allows for the potential comparison
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Figure 3.10: Synthetic test function in 2D

in higher dimensions as well as that of increased batch size, or even the changing of

the stopping criterion employed, as we will see later.

3.4 Dynamic Domain Decomposition

A common argument raised in simultaneous point selection is the increase in com-

putational cost. The selection of x′∗ has very high computational cost as the size of

batches is increased. Fortunately in quadrature, locations close to sampled points

are uninformative. Therefore, to mitigate the computational cost, we discretize the

search space by designating neighborhoods within our domain, and ensure each neigh-

borhood maintains a quantity of locations which balances information gleaned from

location selection with computational cost of location inclusion in the search space.

The optimal balance of these competing facets remains an open question, but will

be discussed in section 3.8. To begin our decomposition of the domain into neigh-

borhoods, it should be noted our model ensures that before any evaluations of the
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integrand its uncertainty is Gaussian (Rasmussen et al., 2003; Gunter et al., 2014).

3.4.1 One Dimension

Sample locations x′∗ are chosen according to equation (3.16). Once the model is up-

dated, these sampled locations become partitions which form neighborhoods within

the domain. At the onset of each iteration of our algorithm, each neighborhood is

populated with 100 equally spaced locations. Our search in restricted to the neigh-

borhood which initially contains arg max
x

Vl|D[l(x)π(x)]. As in Kriging Believer, af-

ter selecting x′∗ we set its functional value equal to the posterior mean of the GP,

and update our GP model to take this new evidence into account. If prior to the

completion of point selection for a given batch this neighborhood again contains

arg max
x

Vl|D[l(x)π(x)], then all sample locations within this neighborhood are up-

dated while all sample locations outside of this neighborhood remain unchanged.

That is, we select x′∗ = arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
is a vector of points and

everything else remains as previously defined.

It should be noted that the selection of x′∗ within a given neighborhood affects

the uncertainty of the integrand outside of this neighborhood. However, given our

model, the reduction of the uncertainty of locations in adjacent neighborhoods will

stem primarily from the partitions of the neighborhood containing x′∗ and less from

x′∗ itself. The impact of x′∗ on the uncertainty of the integrand will continue to

diminish in neighborhoods farther from x′∗. Therefore, any fluctuation in uncertainty

in neighborhoods not containing x′∗ but arising from its selection is not taken into

consideration.

3.4.2 Two Dimensions: Part 1

The dynamic domain decomposition method in one dimension does not lend itself well

to multiple dimensions. Specifically, the use of sampled locations from prior batches
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in the formation of neighborhoods to aid in the search process for sample locations of

the current batch, where the partitions of a neighborhood affect the uncertainty of the

integrand more than points outside of that neighborhood, would increase the com-

putational cost of the dynamic domain decomposition unjustifiable high potentially

without inducing better estimates. While an optimal domain decomposition in this

setting remains an open question that will be discussed in section 3.8, we implement

a method suitable for our intentions.

Figure 3.11: 2D domain decomposition

We naively partition the domain, opting for determining the number of partitions

rather than the length of the dimensions of each partition. That is, consider an inte-

grand, and hence a domain, in two dimensions. We allow the domain of our integrand

to be between -4 and 4 in both dimensions. To begin, we center our first partition

on the origin, and then determine how far away from the origin our partition goes,

where we determine this distance by the length of partitions we intend on achieving

in a direction instead of the number of partitions. However, this determination of

partition location could be accomplished vice versa. That is, we could determine how
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far away from the origin our partition goes, where we determine this distance by the

number of partitions we intend on achieving in a direction instead of the length of

the partition. Nevertheless, we implement the former in this research.

It should be noted that every time we form a partition we form a rectangle, and

therefore for the first partition described above the axis in a Cartesian coordinate

system bifurcated the sides of this rectangle, as can be seen in panel (A) in figure

3.11. The remaining partitions replicate the dimensions of the first, until either the

end of the domain is reached, or the end of the domain is reached after the formation

of a partial partition. We used the same number of partitions for each dimension,

and therefore also had the same length on each side of every whole partition. Clearly,

whenever the domain was not perfectly divisible by the number of partitions chosen,

then there remained a fraction of a partition which consisted of different dimensions

that the partition encompassing the origin.

It should be noted that the decomposition of the domain by either length or

number of partitions in this study was viewed as a preference, and did not impact

the results of our investigation. It was also not considered when or how the choice of

one is preferential to the other.

We subsequently form neighborhoods encompassing each partition, where the

length of the each dimension of the neighborhood is a multiple of its respective par-

tition dimension. In our research this multiple was 0.5 of the length of the partition,

were again 0.5 was a number chosen as preference and yielded suitable results for our

purposes but the optimal additional length was not investigated. This can be seen in

figure 3.12, where the brown section engulfing the blue section are the neighborhoods.

Prior to the commencement of our batch selection algorithm, we populate each

partition with 25 equally spaced sample locations, as can be seen in figure 3.11 panel

(B). This discretization of the search space allows us to minimize the computational

cost while still retaining sample locations which will be informative.
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3.4.3 Batch Selection

In this section we introduce, to our knowledge, the first Batch Bayesian Quadrature

routine where sample locations do not need to be selected sequentially, or what we

refer to as selection updating. To achieve this, we also continue to introduce a novel

form of dynamic domain decomposition which allows us to reduce the computational

cost of our search. In combination, these results facilitate a more efficient reduction in

the posterior covariance of the GP and hence lead to more robust numerical estimates

of the integral of interest.

Figure 3.12: Batch selection in 2D

To begin, we identify the partition of our domain which contains

xq = arg max
x

Vl|D[l(x)π(x)], where xq, l, D, π are as previously defined, and x ∈ R

in the domain. This is identified by the blue box in panel (A) in figure 3.12. We

then determine which one of the 25 possible sample locations within this partition

leads to the smallest posterior covariance of the GP within our neighborhood, where

the neighborhood is as previously defined and represented by the combination of the

blue partition and brown adjacent regions in figure 3.12. That is, we find x′∗ =

arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
, where x′∗ is as previously defined in the section

describing our novel method of future uncertainty sampling, and must also be one

of the 25 possible sample locations. Specifically, x∗ is to be understood as any point
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from our possible sample locations which has been evaluated as if it had been chosen

as a quadrature point, and x′∗ is the point among those which leads to the smallest

posterior covariance of the GP. This point is identified as a red star in figure 3.12.

To identify a subsequent quadrature point, we again identify the partition of our

domain which contains xq = arg max
x

Vl|D[l(x)π(x)] after the selection of any previous

sampled points have been taken into consideration, such as through Kriging Believer

of Local Penalization. We then again find x′∗ = arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
in

this partition, as shown in panel (B) and panel (C) in figure 3.12. These subsequent

quadrature points within the current batch are also identified by red stars in figure

3.12 through figure 3.14.

Figure 3.13: Batch selection in 2D

If, however, xq = arg max
x

Vl|D[l(x)π(x)] is contained within a partition which

already possesses a quadrature point in the current batch being selected, then we can

update our quadrature point selection for that region, where any other quadrature

points which may have already been identified in other regions remain unchanged.

Pictorially this can best be seen in the comparison of the partition near the top

right in figure 3.13 panel (A) to the same partition in figure 3.13 panel (B). As can be

seen is panel (A), in the current batch a quadrature point has already been sampled

in the lower right section of this partition, which is is represented by the red star.

When the search algorithm again identified this partition, two quadrature points are
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selected in this partition that are different than the first quadrature point. That

is, the location of the two red stars, while still within the partition being discussed,

are in different locations than the initial quadrature point in that partition in panel

(A). Therefore, while the quadrature point locations within that partition will be

updated and hence change in order to work better in harmony to reduce the posterior

covariance of the GP, this process does not affect the location of the quadrature points

already sampled in other regions, which also aids in reducing computational cost.

To accomplish this, we find x′∗ = arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
. Note here

that we are finding a vector of points using future uncertainty sampling. Specifically,

we evaluate all combinations of two sample locations points to determine which se-

lection of these pairs of points would lead to the smallest posterior covariance of the

GP. Similarly, the number of point combinations would increase depending on how

many times a region contained x′∗ = arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
during the

selection of a single batch.

This last step described is of tremendous importance. Unlike the methods in the

literature on batch Bayesian quadrature, this facet not only allows us to update the

selection of quadrature points through a simultaneous evaluation of multiple sample

locations, but even though computational cost can still be high in certain cases where

large batches are selected and the posterior covariance of the GP is disproportionately

high in one or a few regions, it also allows us to significantly lower the computational

cost so that simultaneous selection of quadrature points is feasible.

Once the requisite number of quadrature points has been selected, in our illustra-

tive example in figures 3.12 through 3.13 the requisite number is a batch size of 4, then

these points are used to update the model. That is, the quadrature point locations

are used to evaluate the integrand, and these values are used to update both the GP

and BQ estimates. Once this has been accomplished, the location of these quadra-

ture points cannot be changed. As we said earlier, in one dimension these quadrature
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points become the new demarcations of the partitions of our domain, but this does

not lend itself well to two or multiple dimensions for previously stated reasons. To

depict that these quadrature point locations cannot be changed, in figure 3.13 panel

(C) we transition their representation from red starts to purple rectangles.

Figure 3.14: Batch selection in 2D

Once a batch of points is complete and the model is updated, any subsequent

batch selections proceed similar to the first batch described with the exception that

all quadrature points from any previous batch which have already been used to update

the model cannot change. Again, pictorially these are the quadrature point location

represented by purple rectangles. This is shown in figure 3.14 were one batch has

been used to update the model, and now a second batch is being selected.

As can be seen, while each partition was initially populated by 25 equally spaced

quadrature points, once a batch has been selected and the model updated, any quadra-

ture point locations that were part of that batch are no longer available to subsequent
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batches. That is, once a location is used once it cannot be used again since using

that location again would provide our model with absolutely no additional new infor-

mation. For specific examples and accompanying numerical results, see the section of

this document pertaining to numerical simulations and the appropriate tables at the

end of this document.

This has two consequences regarding our novel batch selection method and novel

dynamic domain decomposition technique. First, it reduces computational cost dur-

ing the batch selection phase. If we again consider our previous example, when a

second point was selected within a region as in figure 3.13 panel (A), we needed

to evaluate all possible combinations of size two of possible quadrature points within

that region in order to determine which pair minimized the posterior covariance of the

GP. However, as can be seen in figure 3.14 panel (C), only 23 of the 25 locations have

not been used by quadrature points in previous batches. Therefore, when selecting

multiple quadrature points in the current batch from this region, say two quadrature

points, then only all combinations of pairs of quadrature points using the 23 unused

locations must be evaluated to see which pairs minimize the posterior variance of the

GP. Hence, this requires less computational cost.

Second, it is possible, especially for large batch sizes and in regions which have

a disproportionately high posterior covariance of the GP compared to other regions,

that as the number of batches taken increases that regions may require more than 25

points. This will be addressed in the next section.

3.4.4 Two Dimensions: Part 2

A defining feature of our novel domain decomposition is that it is dynamic. As

was stated above, each partition is initially populated with 25 equally spaced points,

however it is possible that these points may be exhausted before the cessation criterion

is met. For a discussion on the cessation criterion, please see that section later in this
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Figure 3.15: Dynamic domain decomposition in 2D

document.

If this exhaustion occurs for one region in the domain, then it is replenished with

additional quadrature points. To see this, consider figure 3.15. In panel (A) all

possible quadrature location have been used, either in the current batch (red stars)

or from previous batches (purple rectangles). It may, however, still be the case that

xq = arg max
x

Vl|D[l(x)π(x)] is still in this region, and hence the search algorithm

would lead to this region. In order to facilitate the selection of a quadrature point

in this region which are informative, additional sample locations must be added.

Specifically, the distance between existing used sample points is halved, and in these

new locations additional sample locations are added, as can be seen in figure 3.15

panel (B).

There are several noteworthy characteristics of our procedure that should be ad-

dressed. First is the consideration of when to add additional quadrature points. We

have chosen, out of preference, that additional quadrature points will only be added

when the previously allocated points have all been exhausted. While this allowed us

to achieve our objective and lead to meaningful and significant results, it is possible

to add these points earlier, say, when only a certain fraction of the original quadrature
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points remain instead of after they have all been exhausted. This remains an open

question.

Furthermore, another consideration is where to add these quadrature points. We

have chosen, out of computational convenience, to half the distance between existing

sample locations to determine the locations for the replenishment of sample locations.

Implications of this were not investigated.

Another consideration, which goes hand in hand with the consideration of where

to place the replenishment of quadrature points, is how many quadrature points

should be added. By halving the distance between existing quadrature points, we

add significantly more new sample locations than the 25 with which the region was

originally populated. We thought this was warranted because any region which ex-

hausts its initially allocated 25 sample locations is of particular interest to our search

algorithm, and hence should have the possibility of considering more points. How-

ever, this significant increase in quadrature points increases the computational cost of

future quadrature point selections, especially when the replenishment must happen

more than once.

All of these considerations, while not explicitly investigated in this research, will

be discussed in the future work section of this document. We believe that these

questions are of high importance, and may result in significant and large increases in

efficiency.

Finally, one aspect that aided in the reduction of computational cost and also

was crucial in the achievement of our objective, is in which regions replenishment

occurred. It is particularly important that the addition on new sample locations only

occurred in the regions where it was necessary, that is, in regions which exhausted

its initially allocated sample locations. If any time one region exhausted its initially

allocated sample location all regions would be replenished, this would unnecessarily

increase the computational cost of regions which still had some of its initially allocated
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sample locations. For that reason, this was not done in our research.

It should be noted then, that since we decompose our domain into discrete sam-

ple locations, and that these sample locations are updated as required, our domain

decomposition is dynamic. Also, since this domain decomposition was designed to

specifically address our requirements to meet our objective, and other similar types

of decomposition where not available in the literature, in the batch Bayesian quadra-

ture literature this is novel and significant. Despite the fact that it is not the most

significant contribution we make in this research, we believe that other fields with

similar objectives could use our novel contribution.

3.4.5 Higher Dimensions

Our novel dynamic domain decomposition as outlined earlier in this section is appli-

cable in higher dimensions. That is, nothing about of decomposition process would

need to change in order to apply it to multiple dimensions.

Nevertheless, what is important to note is that, specifically for our purpose in

the application of this dynamic decomposition, it makes applications in lower dimen-

sions computationally feasible. In higher dimensions, computational cost becomes

increasingly prohibitive. While this is not unlike other methods used in the litera-

ture to integrate intractable functions in high dimensions, for our specific objective

it limits the number of dimensions for which this will allow us to reach our objec-

tive. Therefore, in order to be able to apply our novel quadrature method to higher

dimensions, our dynamic domain decomposition may need to be refined. specifically,

the limiting factor in the application to high dimensions is not our novel quadrature

technique, but instead the suitability of the dynamic domain decomposition which

we have successfully employed in low dimensions. This will be discussed in the future

work section of this document.
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3.4.6 Superiority of Future Uncertainty Sampling versus Uncertainty Sampling (Part

3)

Despite the fact that Future Uncertainty Sampling was discussed in section 3.2, fol-

lowed by two subsection on the superiority of future uncertainty sampling over un-

certainty sampling, this section highlights an additional aspect of the superiority of

future uncertainty sampling building upon information from the concepts discussed

in the sections since then, including the test functions, our novel dynamic domain

decomposition, and our novel batch selection process.

To briefly reiterate the salient points, future uncertainty sampling minimizes

the uncertainty of the integrand by selecting sample locations x′∗ such that x′∗ =

arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]
is as in equation (3.15), and x∗ is to be under-

stood as any point which has been evaluated as if it had been chosen as a quadrature

point.

Two very significant benefits of using future uncertainty sampling instead of uncer-

tainty sampling have already been discussed which already make the former superior

to the latter. The first which was discussed is that future uncertainty sampling allows

us the significant benefit of being able to select points simultaneously within a batch

where previous techniques only allowed for the sequential selection of quadrature

points within a batch. The other very significant consequence discussed is that by

using future uncertainty sampling we can chose points which work better in harmony,

and hence the posterior covariance of the GP is more efficiently reduced. Again, for

a more thorough discussion, consult the appropriate sections of this document.

A third significant benefit which has yet to be discussed of using future uncertainty

sampling as opposed to uncertainty sampling or any other technique mentioned in

the batch Bayesian quadrature literature is its ability to more quickly explore the

search space while also reducing the posterior covariance of the GP more efficiently,

and hence lead to superior estimates of the integrand.
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To see this, it is now clear from our discussion of our dynamic domain decomposi-

tion and batch selection, that future uncertainty sampling requires less points within

a partition in order to obtain lower posterior covariance of the GP. Therefore, it can

select quadrature points within regions that other search techniques would not yet be

able to explore due to their relative inefficiency.

Figure 3.16: Synthetic test function and Gaussian process posterior in 2D

Pictorially this can be seen from graphs stemming from our numerical simulations.

In figure 3.16, panel (A) and (D) represent the posterior covariance of the GP, where

panel (A) is utilizing uncertainty sampling, and panel (D) is using our novel future

uncertainty sampling. What is crucially important to note here is that our novel future

uncertainty sampling has explored much more of the search space than uncertainty

sampling. That is, the yellow near the center of panels (A) and (D) are much more
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diffused in panel (D) than in panel (A).

This has significant consequences for the estimates of the integrand. Panel (B) and

panel (E) in figure 3.16 represent the posterior mean of the GP, that is, the estimate

of the integrand. Furthermore, panel (C) and panel (F) in figure 3.16 represent the

actual integrand, and are identical. Therefore, in order to see that future uncertainty

sampling better estimates the integrand as compared to the most state-of-the-art

batch quadrature techniques in the literature, we compare panel (B) to panel (C),

and panel (E) to panel (F). It should be clear that panel (E) much more closely

represents panel (F) than does panel (B) represent panel (C).

It should be noted here that figure 3.16 represents only a few batches, and hence

only the beginning stages of estimation. Figure 3.17, on the other hand, has completed

the estimation and reached the cessation criterion which will be discussed in a later

section in this research document.

The test function being evaluated in figure 3.16 and figure 3.17 is the synthetic

test function. As was discussed in the section dedicated to test functions, this test

function has many fewer fluctuations that both the Ackley test function and the

Weierstrass test function. Therefore, while our novel method allows for the more

rapid and better estimation of the integrand, and hence also more robust estimates

of the integral, by the time the cessation criterion is met, both our novel technique

and those already explored in the literature achieve accurate estimates. While our

novel method achieves the cessation criterion slightly sooner, the improvement of

evaluating such types of functions is only modest. We will see that the next set of

examples allows for much more significant improvements.

The general setup for figure 3.17 is very similar as for figure 3.16, where panels (A)

through (C) represent the simulations for uncertainty sampling, panels (D) through

(F) represent the simulations for future uncertainty sampling, panels (A) and (D)

represent the posterior covariance of the GP, panels (B) and (E) represent the poste-
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Figure 3.17: Synthetic test function and Gaussian process posterior in 2D

rior mean of the GP and hence the estimate of the integrand, and finally panels (C)

and (F) represent the true integrand and hence are once again identical.

What is significant again is that our novel method explores the search space much

more quickly and efficiently, again represented by the fact that the yellow in panel (D)

is much more diffused that the yellow in panel (A). Also, our novel method estimates

the true integrand much more closely, represented by the fact that panel (E) more

closely represents panel (F) than does panel (B) represent panel (F). These graphs

again represent just a few batches being selected and not yet reaching the cessation

criterion. Nevertheless, these graphs show that even at the very beginning of the

estimation process, our novel method significantly outperforms the methods in the

literature. This is a significant improvement, since we aim to estimate the integrand
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Figure 3.18: Weierstrass test function and Gaussian process posterior in 2D

with the fewest number of batches as possible.

One obvious distinction between figures 3.16 and 3.17 with figures 3.18 and 3.19

is that the latter now represent a different test function, namely the Weierstrass test

function which has many more fluctuations than the synthetic test function. These

fluctuations mean that there will be higher uncertainty in the Weierstrass test func-

tion estimates than in those for the synthetic test function. This larger uncertainty

is represented by larger and more frequent oscillating posterior cavariances of the

GP. Therefore, while the estimates using our novel method outperform those for the

synthetic test function, the magnitude with which our method outperforms the al-

ready existing methods grows significantly in test functions which have larger and

more frequent fluctuations, such as the Weierstrass test function and the Ackley test
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function.

Figure 3.19: Weierstrass test function and Gaussian process posterior in 2D

What is especially important to note is that our technique continues to outperform

even later in the estimation process, and can be seen in figure 3.19. Panel (E) which

uses our novel technique looks much more like panel (F) than does panel (B) look like

panel (C) despite having taken many more batches and therefore being much farther

in the estimation process. This shows that our method not only will require fewer

batches to reach the cessation criterion, but that even early on we have much better

results which persist well into the estimation process. Again, this is particularly true

for functions which have many more and larger fluctuations, such as the Weierstrass

test function depicted here, or the Ackley test function. Therefore, our method is

much better for a large class of functions, and modestly better for all here. For exact

numerical results, consult that section of this research document as well as the tables
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in the Appendix

3.5 Numerical Results

This section is broken down as follows: Since there are several novel contributions

as well as contrasting applications of these contributions, first it will be noted which

differences will be investigated in this section. Subsequently we will demonstrate the

application of these novel contributions in both one dimension and two dimensions,

and conclude with a discussion on the superiority of our novel contributions.

3.5.1 Differences to be Highlighted

It is important to note that Bayesian Quadrature utilizes a probabilistic model to

induce two things, namely both 1) the functional form of the integrand, and 2) a

probability distribution over the value of the integral. While both of these aspects play

an integral role in accomplishing the objective of Batch Bayesian Quadrature (BBQ),

those two components can be distinguished from each other. Specifically, a novel

contribution to the existing BBQ literature can arise from either an improvement in

determining the functional form of the integrand, or by better estimating the integral.

Since our process assumes that evaluating the integrand is costly, we devise a novel

technique which reduces this cost. Specifically, we not only employ batch methods to

select sample locations for our quadrature points, but we devise a novel method which

allows us to more efficiently select the most informative quadrature points. That is,

given

Z =

∫
l(x)π(x)dx

and our choice to place the GP on the likelihood, l. Conditioned on samples xd =
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{x1, ..., xN} and corresponding functional values l(xd), we have

l | D ∼ GP (mD, CD)

mD(x) = µ(x) +K(x, xd)K
−1(xd, xd)(l(xd)− µ(xd))

CD(x, x′) = K(x, x′)−K(x, xd)K
−1(xd, xd)K(xd, x

′)

where

K(x, x′) = λ2exp(−1

2

(x− x′)2

σ2
)

such that the output length-scale λ and input length-scale σ control the standard

deviation of the output and the autocorrelation range of each function evaluation,

respectively, and will be jointly denoted by θ = {λ, σ}.

Furthermore, since utilizing a standard GP prior would ignore the range and non-

negativity of l. We therefore define l̃(x) =
√

2(l(x)− α), where α is a small scalar,

in our case α = 0.8 x min l(xd). We take a GP prior on l̃(x) : l̃(x) ∼ GP (0, K), for

which the posterior is

p(l̃ | D) = GP (l̃; m̃D(·), C̃D(·, ·))

m̃D(x) = K(x, xd)K
−1(xd, xd)l̃(xd)

C̃D(x, x′) = K(x, x′)−K(x, xd)K
−1(xd, xd)K(xd, x

′)

which leads to a GP whose marginal distribution for any l(x) is a non-central χ2 with

one degree of freedom. Therefore, we perform a local linearization of the form

f : l̃ 7→ l = α +
1

2
l̃2
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This linearization around l̃0 results in

l(x) ' f(l̃0) + f ′(l̃0)(l̃ − l̃0)

We choose l̃ = m̃D such that

l(x) ' (α + 1
2
m̃D(x)2) + m̃D(x)(l̃(x)− m̃D(x))

' α− 1
2
m̃D(x)2 + m̃D(x)l̃(x)

and therefore l is an affine transformation of l̃, which results in the following posterior:

p(l | D) ' GP (l; mL
D(·), CL

D(·, ·))

mL
D(x) = α + 1

2
m̃D(x)2

CL
D(x, x′) = m̃D(x)C̃D(x, x′)m̃D(x′)

Since m̃D and C̃D are mixtures of un-normalized Gaussians K, mL
D and CL

D are also

mixtures of un-normalized Gaussians. Rasmussen et al. (2006) have shown that this

procedure leads to analytic results for

El|D[Z] =

∫
mD(x)π(x)dx

and therefore so does

El|D[Z] =

∫
mL
D(x)π(x)dx (3.20)

An important distinction can be made about how to select quadrature points. We

can select points which either better approximate the integral or the integrand. Since

both uncertainty sampling and future uncertainty sampling consider

VL
l|D[l(x)π(x)] = π(x)2C̃D(x, x)m̃D(x)2 (3.21)
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instead of

〈Vl|D, l(x)[Z]〉 =

∫
Vl|D, l(x)[Z]N(l(x); mD(x), CD(x, x))dl(x) (3.22)

a compelling argument can be made for selecting points which better determine the

integrand. As we will see, since the integrand obviously plays a large role in de-

termining the integral, better approximating the integrand can lead to more robust

estimates of the integral.

Specifically, we can choose quadrature points to either

min
∣∣El|D[Z]− Z

∣∣ (3.23)

or

min
∣∣mL

D − l
∣∣ (3.24)

where equation 3.21 would be better accomplished considering equation 3.24, and

equation 3.22 would be better accomplished by considering equation 3.23. Since both

uncertainty sampling and future uncertainty sampling consider equation 3.21, we will

focus our evaluation on equation 3.24, but we will present both for completeness of

discussion.

3.5.2 One Dimension

A common evaluation criterion in estimating an integral is to determine the absolute

error an estimation is from the truth. In our case that is
∣∣El|D[Z]− Z

∣∣. Since our test

function used for our integrand are analytically intractable in traditional integration,

we evaluate the ground truth using a fine grid. To accomplish this, our evaluations

can either only take place in one dimension or two dimensions. Therefore, we restrict

ourselves here to only two dimensions.
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Similarly, while there are a plethora of differing evaluation techniques regarding

the approximation of an unknown function, a common criterion used in estimating

the accuracy in determining the function in black box scenarios is the sum of squared

error (SSE) from the estimate to the true function. We apply this evaluation criterion

in this study to determine min
∣∣mL

D − l
∣∣.

For the second evaluation criterion it should be noted that in quadrature, espe-

cially after the model is updated, using the SSE for the quadrature points would result

in no information gleaned. To see this, it is important to note that when quadrature

points are selected using the full GP model, the posterior mean of the GP is used for

functional values of those quadrature points in the batch selection process.

Specifically, in Batch Bayesian Quadrature (BBQ) several samples are taken in

parallel, i.e., each xq is a batch of sample locations. To accomplish this, the prob-

abilistic model of BQ is used to guide exploration of a search space by defining an

acquisition function to be maximized. Two such methods are Kriging Believer and

Local Penalization.

In Kriging Believer (Ginsbourger et al., 2010), instead of updating the BQ model

after every sample, the functional value of a sample location is set equal to the pos-

terior mean, then the GP model is updated before selecting a subsequent sample

location. This process is repeated until the batch of sample locations chosen is suf-

ficiently large, and then the evaluations of those sample locations are made and the

BQ model is updated. Therefore, if the SSE were to be calculated in the quadra-

ture point selection process, all of these value would be equal to the posterior mean

of the GP, and hence no information could be gained. That is, any point selection

method, including uncertainty sampling and future uncertainty sampling would use

as the functional evaluation of the quadrature points the same posterior mean of the

GP, and hence one could not evaluate the superiority of one selection method over

the other.
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Similarly, unlike Kriging Believer which utilizes the entire GP model, Local Penal-

ization (Gonzáles et al., 2016; Wagstaff, 2018A) only directly modifies the acquisition

function around each selected point. While this technique also allows for the selection

of a batch of sample locations before those locations are evaluated and the BQ model

is updated, the obstacle of not being able to compare point selection techniques re-

mains. That is, despite not utilizing the posterior mean of the GP as the functional

evaluations of quadrature points, the posterior mean of the GP remains stationary as

in Kriging Believer. Therefore, using this quadrature point selection method, regard-

less of whether coupled with uncertainty sampling or future uncertainty sampling,

would not allow us to compare point selection algorithms.

A consequence of this process is therefore that when the model is updated, the

integrand is evaluated at the selected quadrature points, where again this step is

considered costly and a driving aspect of our research. Subsequently, these functional

evaluations of the integrand at these quadrature points are used to update the GP

model. Hence the posterior mean of the GP will traverse through these points, making

their error to the true equal to zero for all sampled locations. This, in turn, leads to

no information of the accuracy of one technique over the other.

To circumvent this obstacle, we define 2, 000 equally spaced points in our domain

in one dimension, and a grid of 2, 000 equally spaced points in two dimensions as

our evaluation points. While some of these points may overlap with the quadrature

points selected, especially in large batch sizes and if many batches are selected, the

vast majority will not. Therefore, there may be some evaluation points for which we

gain no information in the comparison of quadrature point selection methods, but for

many others we will.

It should be noted that the selection of 2, 000 equally spaced evaluation points in

one dimension and a grid of 2, 000 equally spaced evaluation points in two dimensions

was a determination suitable for our investigation. While it allowed us to perform the
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necessary comparisons, the ideal number of points to select remains an open question,

but likely not one of high importance. However, what is important to note is that the

selection of this many evaluation points, and the calculation of the sum of squared

errors for all of them, will lead to rather large numbers even when there are only minor

deviations is the estimated function to the true function. While these figures may be

unsightly, the potentially large fluctuations allows us to notice even small differences

between either both techniques, or when even minor deviations occur between the

estimated function and the true function.

Figure 3.20: Ackley test function in 1D and batch size of 4

Figure 3.21: Ackley test function in 1D and batch size of 8

In figure 3.20, panel (A) represents the difference in the absolute error of the

estimated integral to the true integral value determined as stated above. Panel (B),

on the other hand, depicts the difference in SSE of the estimated function for the
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integrand versus the true function. Both of these graphs represent the results where

batches of size 4 are selected, and a total of 25 batches were taken. Furthermore, these

estimates represent the average of ten runs of this process. Each subsequent graph in

this section follows the same description, where either the test function changes, the

size of the batch changes or the dimension our method is being applied to changes.

Note the title of each graph for details.

The calculations these graphs represent is that first quadrature points were se-

lected using uncertainty sampling and Kriging Believer, but the model was not up-

dated once the batch was completed. Subsequently, the point locations and estimated

functional values were stored, and the posterior of the GP was reset so that the model

to be evaluated appeared identical to when the points were selected using uncertainty

sampling and Kriging Believer commenced. Then a batch of quadrature points was

selected using future uncertainty sampling and Kriging Believer. Once the requisite

number of quadrature points was selected for the batch, then the model was evaluated

separately using these two batches of points.

Subsequently, the estimated integral values and the posterior mean of the GP

were calculated and compared to the true values for each method. That is, first the

estimated integral value and posterior mean of the GP were calculated for uncertainty

sampling and Kriging Believer, and subsequently the estimated integral value and

posterior mean of the GP were calculated for future uncertainty sampling and Kriging

Believer. Therefore, two values were calculated for each technique, both representing

different measures.

These pairs of values were then separately compared to the ground truth in order

to ascertain an error for each value. The pair of error values for future uncertainty

sampling and Kriging Believer, which again represent some of our novel contributions,

were individually subtracted from their counterparts resulting from uncertainty sam-

pling and Kriging Believer. Therefore, if the error for either measure was larger for
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the results arising from uncertainty sampling and Kriging Believer than those arising

from future uncertainty sampling and Kriging Believer, then this difference would be

positive. Conversely, if the error for either measure was smaller for the results aris-

ing from uncertainty sampling and Kriging Believer than those arising from future

uncertainty sampling and Kriging Believer, then this difference would be negative.

Figure 3.22: Weierstrass test function in 1D and batch size of 4

Figure 3.23: Weierstrass test function in 1D and batch size of 8

That is, panel (A) in figure 3.20 to 3.25 is calculated by

∣∣El|D;KB,US[Z]− Z
∣∣− ∣∣El|D;KB,FUS[Z]− Z

∣∣ (3.25)

where Z, l, and D are as previously defined, and KB, US, and FUS stand for Kriging

Believer, uncertainty sampling, and future uncertainty sampling, respectively.
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Panel (B) in figure 3.20 to 3.25 is calculated by

∑
x

[mL
D,KB,US(x)π(x)− l(x)π(x)]−

∑
x

[mL
D,KB,FUS(x)π(x)− l(x)π(x)] (3.26)

where mL
D, π, l, D, KB, US, and FUS are as previously defined, and x represents

the 2, 000 equally spaced points on which the error estimates are to be calculated as

also previously defined. It is important to note that since our research is driven by

the desire to better estimate the integrand, we place higher priority on panel (B) than

on panel (A). We will also see that this leads to more robust integral estimates.

First, note that in panel (B) in figures 3.20 to 3.25 our estimate are always ini-

tially superior to the techniques which already exist in the BBQ literature, that is our

estimates are initially always positive. Again, this is calculated using equation 3.26.

Specifically, when we investigate test functions with frequent and often large fluctu-

ations in magnitude, our novel method reduces the posterior covariance of the GP

more quickly, allowing us to explore our search space more efficiently. This efficiency

allows us to better estimate the integrand in neighborhoods where prior techniques

have yet to explore. It is due to this more efficient exploitation and quicker explo-

ration that gives us superior results in estimating highly fluctuating integrands. It

is particularly those types of integrands which prior techniques in the literature have

done particularly poorly in estimating.

Figure 3.24: Synthetic test function in 1D and batch size of 4
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Figure 3.25: Synthetic test function in 1D and batch size of 8

Second, regarding panel (A) in figures 3.20 to 3.25, this is calculated using equation

3.25. While it appears that our novel method sometimes does better at estimating the

integral, and sometimes worse, this can be deceiving. Since our novel method better

estimates the integrand, while our estimates for the integral may have a larger error

in comparison to previous techniques, our estimates of the integral are nevertheless

more robust. To see this, consider figure 3.26. In the top part of panel (A) we

begin by showing that the true integrand is given by line A, line B is the estimate

of the integrand using the techniques in the literature, and line C is the estimate of

the integrand using our novel technique. Here we see that the SSE estimate of our

estimate would be smaller. In the bottom half of panel A we indicate that the integral

of our estimate of the integrand given by line C would clearly be smaller that the

true integral value given by line A. On the other hand, we use the case where the

estimate of the integrand using previous techniques in the literature given by line B

coincidentally happens to have the same integral value as that of the true integrand A

despite clearly representing very different functions. For the actual numerical results

using well-known test functions, see the tables at the end of this document.

As we continue our quadrature point selection and model updating process, these

results can change, as can be seen in going from panel (A) to panel (B) in figure 3.26.

We again emphasize that our estimates of the integrand are superior. That is, as
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in panel (A), the SSE of our estimate is smaller that the SSE using the techniques

already in the literature, as can be seen in panel (B) in figures 3.20 to 3.25. The error

of our estimate of the integral as well as the error of the estimate of the integral using

techniques already in the literature both decrease in the top part of panel (B), while

our errors continue to be smaller. In the bottom part of panel (B), while our estimate

of the integral still has error, the error now is smaller that that of the techniques

previously used in the literature.

Finally, as we progress from panel (B) to panel (C), we can once again see in the

top part of panel (C) that the SSE for our estimate of the integrand decreases as well

as that for the estimate of the integrand using techniques previously shown in the

BBQ literature. What is striking now, however, is that the SSE for our estimate is

significantly smaller than that of the other estimates, but the integral value has more

error for our estimate that that of the other methods. This can be seen in the bottom

half of panel (C) where the integral estimate of the techniques in the literature again

equals the true integral value, however the integral estimate using our novel technique

is again lower than the true integral value.

Figure 3.26: Integral vs. integrand estimation

It has now been shown that we not only estimate the integrand better using our

novel technique, but that our technique therefore also has more robust estimates of

the integral. That is, our estimate of the integral converges better to the true integral



86

value that that of the BBQ techniques already mentioned in the literature, even if our

integral value at times will have a larger error. Therefore, despite the fact that panel

(A) in figures 3.20 to 3.25 show a negative value since the driving consideration of

our research is to better determine the integrand, our novel method is superior since

any larger errors than those of previous techniques are merely by chance. Again,

for the actual numerical results supporting these conclusions using well-known test

functions, see the tables at the end of this document.

3.5.3 Two Dimensions

Our novel method is applicable not just in one dimension, but in multiple dimensions

too. In fact, it is applicable even in high dimensional problems, however the suitability

of BBQ in these situations is questionable. This will be further discussed in the section

on the cessation criterion. Here we show that the results produce similar results in

two dimensions, and can therefore be extrapolated into multiple dimensions.

It should be noted here that much of this discussion uses one dimension as a pre-

text, and therefore will proceed very similarly to that discussion. However, it should

also be noted that there are differences between one dimension and two dimensions

that are relevant to our research, including those already discussed in the domain

decomposition section, and will be discussed in the cessation criterion section.

Figure 3.27: Ackley test function comparisons
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Figure 3.28: Ackley test function comparisons

Similar to the case in the discussion on the numerical results in one dimension

above, figures 3.27 through figure 3.32, panel (A) represents the difference in the

absolute error of the estimated integral to the true integral value determined as stated

above, and panel (B) depicts the difference in SSE of the estimated function for the

integrand versus the true function. Both of these graphs represent the results where

batches of quadrature points are selected, and a total of 25 batches were taken.

Furthermore, these estimates represent the average of ten runs of this process. Each

subsequent graph in this section follows the same description, where either the test

function changes between the Ackley test function, the Weierstrass test function, or

the synthetic test function, or the size of the batch changes from either size 4 or 8.

Note the title of each graph for details. Also, for specific numerical results see the

tables section of this document.

The calculations these graphs represent is similar to that for one dimension. The

first quadrature points were selected using uncertainty sampling and Kriging Believer,

but the model was not updated once the batch was completed. Subsequently, the

point locations and estimated functional values were stored, and the posterior of the

GP was reset so that the model to be evaluated appeared identical to when the points

were selected using uncertainty sampling and Kriging Believer commenced. Then a

batch of quadrature points was selected using future uncertainty sampling and Kriging
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Believer. Once the requisite number of quadrature points was selected for the batch,

then the model was evaluated separately using these two batches of points.

Subsequently, the estimated integral values and the posterior mean of the GP

were calculated and compared to the true values for each method. That is, first the

estimated integral value and posterior mean of the GP were calculated for uncertainty

sampling and Kriging Believer, and subsequently the estimated integral value and

posterior mean of the GP were calculated for future uncertainty sampling and Kriging

Believer. Therefore, two values were calculated for each technique, both representing

different measures.

These pairs of values were then separately compared to the ground truth in order

to ascertain an error for each value. The pair of error values for future uncertainty

sampling and Kriging Believer, which again represent some of our novel contributions,

were individually subtracted from their counterparts resulting from uncertainty sam-

pling and Kriging Believer. Therefore, if the error for either measure was larger for

the results arising from uncertainty sampling and Kriging Believer than those arising

from future uncertainty sampling and Kriging Believer, then this difference would be

positive. Conversely, if the error for either measure was smaller for the results aris-

ing from uncertainty sampling and Kriging Believer than those arising from future

uncertainty sampling and Kriging Believer, then this difference would be negative.

Panel (A) in figure 3.27 to 3.32 is calculated by

∣∣El|D;KB,US[Z]− Z
∣∣− ∣∣El|D;KB,FUS[Z]− Z

∣∣
as in equation 3.25, where Z, l, and D are as previously defined, and KB, US,

and FUS stand for Kriging Believer, uncertainty sampling, and future uncertainty

sampling, respectively.
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Panel (B) in figure 3.27 to 3.32 is calculated by

∑
x

[mL
D,KB,US(x)π(x)− l(x)π(x)]−

∑
x

[mL
D,KB,FUS(x)π(x)− l(x)π(x)]

as in equation 3.26, where mL
D, π, l, D, KB, US, and FUS are as previously defined,

and x represents the 2, 000 equally spaced points on which the error estimates are to

be calculated as also previously defined. Again, for specific numerical results see the

tables section of this document.

Figure 3.29: Weierstrass test function comparisons

Figure 3.30: Weierstrass test function comparisons

Again, it is important to note that since our research is driven by the desire to

better estimate the integrand, we place higher priority on panel (B) than on panel

(A). Also, particularly noteworthy is the fact that a batch size, if applied in two di-

mensions as opposed to one dimension, will result in much sparser quadrature point
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allocations. This will not only affect the cessation criterion discussed later in this

research, but also the rate at which the estimate converges with the true value for

the integrand and integral. Furthermore, in multiple dimensions, when fluctuations

can span a larger space, it is reasonable that fewer quadrature points will not be as

efficient in reducing the posterior covariance of the GP as is the case in either fewer

dimensions or one dimension. Since our novel process reduces the posterior covariance

of the GP more efficiently, and therefore has a stronger push to explore the search

space than the methods which already exist in the literature, it is possible that such

further exploration is premature. Should more quadrature points within a region be

more prudent that fewer, then the previously existing methods in the literature will

achieve superior results as can be seen in select panels in the graphs in this and the

previous sections, as well as in other potential test functions with appropriate dimen-

sionalities and batch sizes. Since in certain circumstances the integrand is assumed

to be unknown, which method will obtain superior results may be indeterminable a

priori.

Figure 3.31: Synthetic test function comparisons

3.6 Cessation Criterion

When performing the search algorithm for identifying points within a batch, and also

subsequently updating the model and filling subsequent batches, an eventual question
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Figure 3.32: Synthetic test function comparisons

that must be posed is when to end the process. There are several potential cessation

criterion which can be used. For example, given Z =
∫
l(x)π(x)dx, since standard

BQ determines a variance for its integral estimate, we have

Vl|D[Z] =

∫ ∫
CD(x, x′)π(x)π(x′)dxdx′

where CD(x, x′) = K(x, x′) −K(x, xd)K
−1(xd, xd)K(xd, x

′) and the scaled Gaussian

covariance K(x, x′) = λ2 exp(−1
2

(x−x′)2
σ2 ) such that the output length-scale λ and input

length-scale σ control the standard deviation of the output and the autocorrelation

range of each function evaluation, respectively and jointly denoted by θ = {λ, σ},

xd = {x1, ..., xN} represent the samples taken, leading to D = {xd, l(xd), θ}, and l

represents the likelihood and π represents the prior as previously defined (Rasmussen

et al., 2006).

Previous applications have set a stopping criterion of
√
VD[Z] = 0.015, and

stopped once below this threshold (Garnett et al., 2010). That is, the posterior

variance of the integral estimate was used when the driving determinant was the es-

timate of the integral itself. As was previously shown, there are ways in which better

informed decision can be made in the quadrature point selection process. Further-

more, when the driving indicator of the search algorithm was not the integral estimate

or its posterior variance, other cessation criterion have been implemented.
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One possibility in selecting sample locations and cumulatively batches would be

to follow Osborne et al. (2012B) in minimizing the expected entropy of the integral

by selecting

xa = arg min
x
〈Vl|D, l(x)[Z]〉

, where

〈Vl|D, l(x)[Z]〉 =

∫
Vl|D, l(x)[Z]N(l(x); mD(x), CD(x, x))dl(x)

as was given in equation 3.14 where, in addition to what has been previously defined,

we have mD(x) = µ(x) +K(x, xd)K
−1(xd, xd)(l(xd)−µ(xd)) where µ(x) is the partial

parameterization of the GP given by l | D ∼ GP (mD, CD).

This approach has difficulties. One of which for our application is the high com-

putational cost associated with this method. Again, whenever the integrand is con-

sidered expensive to evaluate, selecting points which require the evaluation of the

integrand, which here occurs through the approximation of the integral and hence its

variance, is extremely costly.

Another possibility would be to target the uncertainty in the integrand, where for

our warped integrand we have

VL
l|D[l(x)π(x)] = π(x)2C̃D(x, x)m̃D(x)2

where m̃D(x) = K(x, xd)K
−1(xd, xd)l̃(xd) and

C̃D(x, x′) = K(x, x′)−K(x, xd)K
−1(xd, xd)K(xd, x

′) where l̃(x) =
√

2(l(x)− α) and

α = 0.8 x min l(xd), and a local linearization of the form f : l̃ 7→ l = α + 1
2
l̃2

to achieve a GP and hence also facilitate analytic results, as was previously stated

and discussed regarding equation 3.15. Given our constraints and prerogatives, it is

this criterion which we consider in our acquisition of quadrature points and batches,

and therefore also as the consideration for our investigation into the most suitable
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cessation criterion.

First, it should be noted, as the work by Gunter et al. (2014) correctly stated,

that uncertainty sampling reduces the entropy of the GP to p(l) rather than the true

intractable distribution, and that the computation of equation 3.13 is considerably

more expensive than that of equation 3.15.

Also, similar to our application of the square-root transformation in the warping

of the GP on the likelihood, halving the dynamic range of the function we model

provides both benefits and pitfalls. On one hand, this warping mitigates typically

large variations in the likelihood, and extends the autocorrelation range of the GP

yielding improved predictive power when extrapolating away from the data. On the

other hand, the model is overconfident away from the data causing the BQ variance

to be erroneously low, making the typical threshold unsuitable as a stopping criterion.

Previous applications of BBQ have sidestepped this issue by simply setting a fixed

computational budget (Wagstaff, 2018A). That is, neither the posterior variance of

the integral estimate nor the posterior covariance of the GP were considered, but

instead a predetermined number of batches were selected regardless of the number

of quadrature points per batch. Once this predetermined number of batches was

reached, the search algorithm ceased.

While this certainly is a method to limit computational cost, better informed

cessation criterion can be formulated. To do so, we should note two important con-

sideration in accomplishing this. First, the main considerations in these kind of black

box applications of integration usually consist of the combination of finding the most

accurate estimate of the integral, coupled with having the lowest uncertainty in this

estimate, and the fewest evaluations of the integrand in this process. While there

are certainly other consideration which must be made, including the dimensionality

of the function to be integrated, the size of the search space, computational costs,

etc., most if not all studying in such application take the former three considerations
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into account for obvious reasons. In our application in particular, the integrand is

considered to be extremely costly to evaluate, and hence this criterion is of very high

importance.

Second, a driving aspect which allowed us to implement our novel contribution,

which in the previous section were shown to lead to superior results, is our novel dy-

namic domain decomposition. This decomposition allowed us to significantly reduce

computational cost while keeping our search space informative for our search algo-

rithm. However, of particular importance here again is the discretization of the search

space. This discretization allowed us to eliminate sample locations which would not

have yielded significant new information in our search space, however the elimination

of these points therefore also set a lower limit on the reduction in entropy.

Nevertheless, as the combination of the three main driving factors articulated

above will show, given our implementation of our novel method and novel domain

decomposition, we not only had significant numerical results in the previous section,

but we are also able to determine for the first time ever in the literature on Batch

Bayesian Quadrature a sufficient cessation criterion. As we will see in the following

two subsections on one dimensional evaluations and two dimensional evaluations, our

cessation criterion is established and supported by numerical results. Improvements

on these results, and possibilities for my accurate cessation criterion given other

implications of the dynamic domain decomposition follows the next two subsections.

This includes implications for higher dimensions.

3.6.1 One Dimension

For illustrative purposes several different test functions and batch sizes in one dimen-

sion will be presented in graphical form, however many different test functions and

batch sizes could be selected. Tabular versions of the data are included in the Ap-

pendix. It can be seen both in graphical form and in tabular form that the numerical
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results are similar when batch sizes remain relatively close, however can diverge for

significantly different batch sizes as expected. This will be further highlighted and

discussed in the last subsection of this section.

Figure 3.33: Ackley test function in 1D and batch size 4

Figure 3.34: Ackley test function in 1D and batch size 8

The first set of numerical results which will be analyzed to support our cessation

criterion is for the Ackley test function in one dimension. These results will be

presented for batch size 4 in figure 3.33 and batch size 8 in figure 3.34, however many

different kinds of batch sizes can be selected. Again, for numerical results see the

Appendix.

Of particular importance to note is first the error proportion to the true integral,

or panel (A) in figure 3.33 through figure 3.34 and figure 3.37 through figure 3.39.

That is, the integral estimate is calculated as previously discussed. Due to the fact

that these calculation are for one dimension, the true value of the integral is calculated

using a fine grid. Since different choices of likelihood function will result in sometimes

significantly different values of the integral, determining the absolute difference to the

true can be misleading. Specifically, if an integral estimate is, for example, 0.001 away
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from the actual integral, this would be a good result if the integral value were 1 as it

would represent a 0.1% error, but a bad result if the integral value were 0.002 as this

would represent a 50% error. Therefore, instead of reporting the error to the true

integral value, we report the error proportion to the true integral. Furthermore, while

results would be equally elucidating for our purposes, we do not take the absolute

value of this error proportion. Our method instead allows us to convey in which

direction the estimate has an error.

The average square error to the integrand given in panel (B) in figure 3.33 through

figure 3.34 and figure 3.37 through figure 3.39 is of particular importance to this

study. First the sum of square error is a standard measure for the accuracy of an

estimated function to the true function. This is calculated by taking the difference of

the estimate and the true function, squaring this value, and summing it for all test

location. It should be noted that if the SSE were to be calculated in the quadrature

point selection process using Kriging Believer, all of these value would be equal to

the posterior mean of the GP, and hence no information could be gained. That is,

any point selection method, including uncertainty sampling and future uncertainty

sampling would use as the functional evaluation of the quadrature points the same

posterior mean of the GP, and hence only using these points would not allow us to

determine a sufficient cessation criterion.

Similarly, even if a penalization technique were employed such as Local Penal-

ization (Gonzáles et al., 2016; Wagstaff, 2018A) which only directly modifies the

acquisition function around each selected point, the obstacle of not being able to only

use the selected quadrature points to evaluate a proposed cessation criterion remains.

That is, while this technique also allows for the selection of a batch of sample locations

before those location are evaluated and the BQ model is updated, despite not utilizing

the posterior mean of the GP as the functional evaluations of quadrature points, the

posterior mean of the GP remains stationary as in Kriging Believer. Therefore, using
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this quadrature point selection method, regardless of whether coupled with uncer-

tainty sampling or future uncertainty sampling, would not allow us to use only these

points in evaluating a suitable cessation criterion.

A consequence of this process is therefore that when the model is updated, the

integrand is evaluated at the selected quadrature points, where again this step is

considered costly and a driving aspect of our research. Subsequently, these functional

evaluation of the integrand at these quadrature points is used to update the GP model.

Hence the posterior mean of the GP will traverse through these points, making their

error to the true equal to zero for all locations. This, in turn, leads to no information

of the accuracy of one technique over the other.

To circumvent this obstacle, similar to our procedure in the numerical results

section, we define 2, 000 equally spaced points in our domain in one dimension, and a

grid of 2, 000 equally spaced points in two dimensions as our evaluation points. While

some of these points may overlap with the quadrature points selected, especially

in large batch sizes and if many batches are selected, the vast majority will not.

Therefore, there may be some evaluation points for which we gain no information in

the comparison of quadrature point selection methods, but for many others we will.

It should be noted that the selection of 2, 000 equally spaced evaluation points in

one dimension and a grid of 2, 000 equally spaced evaluation points in two dimensions

was a determination suitable for our investigation, as previously argued in the nu-

merical results section of this research. While it allowed us to perform the necessary

comparisons, the ideal number of points to select remains an open question, but likely

not one of high importance. However, what is important to note is that the selection

of this many evaluation points, and the calculation of the sum of squared errors for all

of them, will lead to rather large numbers even when there are only minor deviations

is the estimated function to the true function. While these figures may be unsightly,

the potentially large fluctuations allows us to notice even small differences between
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either both techniques, or when even minor deviations occur between the estimated

function and the true function. However, since we are particularly interested in the

overall convergence of our integrand estimate to the true, we average the square error

over the equally spaced evaluation points in our domain. this allows us to therefore

determine the average square error from our estimate to the true integrand.

The maximum posterior covariance of the GP is given in panel (C) in figure

3.33 through figure 3.34 and figure 3.37 through figure 3.39. The quadrature points

are selected according to our novel process articulated earlier, namely using Kriging

Believer and future uncertainty sampling. That is, during the point selection phase

of our novel method, we select quadrature points in order to minimize the posterior

covariance of the GP, and set the functional value of these quadrature points equal to

the posterior mean of the GP. Specifically, we choose sample locations x′∗ such that

x′∗ = arg min
x∗

[
max

x∈[xn,xn+1]
VL
l|D∗ [l(x)π(x)]

]

where again Vl|D[l(x)π(x)] is as in (3.15). As previously discussed, pictorially this is

given by panel (B) in the following graph.

Figure 3.35: Warped Gaussian process posterior covariance

It is important to note that during the point selection phase of our novel method,

the posterior covariance of the GP will uniformly decrease because the assumption
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is made that the functional values of these points are equal to the posterior mean of

the GP since we use Kriging Believer. However, once the batch is complete and the

integrand is evaluated using the quadrature points in the newly selected batch, we

obtain the true functional values that can be significantly different than the posterior

mean of the GP. This will be especially significant whenever our function to be esti-

mated has frequent and relatively large fluctuations, as is the case in the Ackley test

function and Weierstrass test function.

To be clear, when our search procedure selects quadrature points in a previously

unexplored region, if the functional value of the integrand is significantly different

that the posterior mean of the GP, then when the model is updated using these

quadrature points, the posterior covariance of the GP will increase despite the fact

that during the point selection phase our acquisition of quadrature points decreases

the maximum posterior covariance of the GP. This is because the acquisition of the

quadrature points takes the posterior mean of the GP as the functional values of

the quadrature points, however when the model updates it uses the true functional

values from the evaluation of the integrand. When the posterior mean of the GP is

significantly different the the true integrand values at the quadrature points, then the

posterior covariance of the GP will increase once the model is updated. Since panel

(C) figure 3.33 through figure 3.34 and figure 3.37 through figure 3.39 represent the

maximum posterior covariance of the GP after the model is updated with the new

quadrature points, this graph need not be uniformly decreasing. Instead, if there is

an increase in panel (C) in figure 3.33 through figure 3.34 and figure 3.37 through

figure 3.39 is simply means that the process discovered a new significant fluctuation

in its estimate of the integrand which it had not previously thought existed.

While panel (B) is of particular importance to our research, panel (C) represents

the information which we will use to apply our cessation criterion. That is, panel

(A) and panel (B) are only known to us because we know the integrand represented
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in part by our test functions. Knowing the functions, and therefore being able to

determine their integral on a fine grid and measure the errors of our estimates to both

the value of the integral and the integrand, is not an option in black box scenarios.

Therefore, we will use panel (A) and panel(B) to inform us in finding a cessation

criterion represented by a threshold on the maximum posterior covariance of the

GP represented in panel (C). It should be noted here specifically for the posterior

variance of the GP that, similar to our application of the square-root transformation

in the warping of the GP on the likelihood, halving the dynamic range of the function

we model provides both benefits and pitfalls. On one hand, this warping mitigates

typically large variations in the likelihood, and extends the autocorrelation range

of the GP yielding improved predictive power when extrapolating away from the

data. On the other hand, the model is overconfident away from the data causing the

estimates of the uncertainty to be low. Hence our cessation criterion here may be lower

than those proposed in reference to the application of different Bayesian quadrature

techniques, and will in fact vary based on the dimensionality of the problem at hand.

Figure 3.36: Weierstrass test function in 1D and batch size 4

Figure 3.37: Weierstrass test function in 1D and batch size 8
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The threshold for maximum posterior covariance of the GP as the cessation cri-

terion will therefore depend on the values achieved by the error proportion of the

estimated integral to the true integral, and the average square error of the estimated

integrand to the true integrand. For our purposes we select that the error proportion

of the estimated integral to the true integral should be less that 5%, and that the

average square error of the estimated integrand to the true integrand should be less

than 0.001. To accomplish this, the cessation criterion in one dimension is once the

maximum posterior covariance of the GP falls below 0.015 after selecting at least 4

batches.

Something that should be noted is the significant difference in the error proportion

of the estimated integral to the true integral, namely 0.05, and the average square

error of the estimated integrand to the true integrand, namely 0.001. To justify this

difference, and particularly the very low value for the average square error of the es-

timated integrand to the true integrand, is that a driving aspect of our research and

technique is that we can estimate the integrand significantly better than currently

available techniques in batch Bayesian Quadrature, especially when the cost of evalu-

ating the integrand is very high. Placing such stringent requirements on the average

square error of the estimated integrand to the true integrand is therefore justified

since it addresses our primary concern.

Another aspect which should be noted is that we have also stated that our cessa-

tion criterion includes a minimum number of batches. Something that is particularly

important for our novel contributions versus what has already been established in

the literature regarding other batch Bayesian quadrature techniques is that since our

method is able to minimize the posterior covariance of the GP more efficiently as

shown in the numerical results section, other evaluation techniques may require more

- and in fact significantly more - batches than our method.

Furthermore, a question which can be raised is whether the minimum number of
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batches should be specified or the minimum number of quadrature points. While this,

on its surface, is a legitimate question with relevance to other quadrature techniques

and their applications in many other fields, this is a question which has previously

been answered in the batch Bayesian quadrature literature (Wagstaff, 2018A; Gunter

et al., 2014). Again, since a driving aspect of our research is that the integrand is very

costly to evaluate, the number of times we evaluate our integrand is extremely impor-

tant. However, the number of points with which we chose to evaluate our integrand

is only a secondary concern. Therefore, for example, for our purposes evaluating

the integrand with a batch of size four quadrature points will have the approximate

same cost as evaluating the integrand with a batch of size, say, 6 quadrature points.

To be very specific, as was briefly mentioned earlier, this holds true whenever batch

sizes remain relatively similar. In the batch Bayesian quadrature literature, as in this

study here, batch sizes have ranged from one quadrature point to eight quadrature

points, and therefore the above mentioned implications hold. Varying the size of the

batches significantly and determining such implications may lead to different results.

However, it may be difficult to find practical application where such peculiar circum-

stances may apply, and therefore were also not investigated here and remains an open

question where it can be argued that it is not one of high practical importance.

Figure 3.38: Synthetic test function in 1D and batch size 4

Nevertheless, an aspect which carries significance is when integrands significantly

differ, and this implication on the cessation criterion. To investigate this, we consider

numerical results from the application of our method to the three test functions
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Figure 3.39: Synthetic test function in 1D and batch size 8

already discussed, namely the Ackley test function, the Weierstrass test function, and

the synthetic test function depicted in figures 3.33 and 3.34, 3.36 and 3.37, and 3.38

and 3.39, respectively. Here figure 3.33, figure 3.36 and figure 3.38 represent batch

size of 4 and figure 3.34, figure 3.37 and figure 3.39 represent batch size of 8. For each

graph, an ten runs of 25 batches were made and averaged. Despite the similarities

in conducting the experiment, the difference in test function properties, specifically

the number of oscillations, also only had modest impacts. While refinements can

be made to such aspects as domain decomposition, size of batches, etc., our results

and subsequent cessation criterion hold firm for our results. To our knowledge, this

establishes the first cessation criterion in batch Bayesian quadrature in the literature.

3.6.2 Two Dimensions

Many of the considerations discussed in regards to one dimension also hold true for

two dimensions. However, there are some differences with significant implications

that must be addressed. In two dimensions, a set of quadrature points are much

more sparsely distributed than the same number of quadrature points in one dimen-

sion. This also holds true for higher dimensions. Therefore, in order to estimate

the integrand, and therefore also the integral, efficiently, more quadrature points are

needed as the dimensionality of the problem increases, ceteris paribus. However, as

was previously argued, a driving consideration of our research isn’t the number of

batch points selected, but instead the number of evaluations of the integrand. To
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that end, two dimensional and higher dimension problems will require more batches

due to the sparsity of the point locations compared to one dimension.

Figure 3.40: Ackley test function in 2D and batch size 4

Figure 3.41: Ackley test function in 2D and batch size 8

In order to achieve results that support our constraints of achieving an error

proportion of the integral estimate to the true integral of no more that 5%, and an

average square error of the integrand estimate to the true integrand of no more that

0.001 as we did in one dimension, our numerical results determine and support a

cessation criterion for two dimensions of a posterior covariance of the GP of no more

than 0.001 after at least 16 batches are taken. This, again, is to our knowledge the

first cessation criterion in the literature for batch Bayesian quadrature.

There are several subtleties which must be noted and discussed. First among those

is the fact that errors tend to not increase linearly as dimensions are increased. That

is, an error of a certain size, say 0.001, in one dimension can have smaller implications

that an the same size error in all directions in multiple dimensions. Therefore, it is

important to lower the threshold of the uncertainty in order to ensure continued

robust estimates. Furthermore, increasing the size of batches may have a significant
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Figure 3.42: Weierstrass test function in 2D and batch size 4

Figure 3.43: Weierstrass test function in 2D and batch size 8

impact in multiple dimensions as compared to one dimension. As already discussed,

the sparsity of the quadrature points in multiple dimensions is much more profound

than in one dimension, or even for lower dimensions compared to higher dimensions.

Since a driving constraint of our problem is that evaluating the integrand is expensive,

in the case of multiple or higher dimensions it may not only be warranted but perhaps

even advisable to significantly increase batch sizes. This will be discussed in the next

subsection.

Figure 3.44: Synthetic test function in 2D and batch size 4

It should again be noted that one aspect the test function significantly differ is in

the number of oscillations they have, where again here the test functions we employ
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Figure 3.45: Synthetic test function in 2D and batch size 8

are the Ackley test function, Weierstrass test function, and a synthetic test function

all in two dimensions. These are depicted in figures 3.40 and 3.41, 3.42 and 3.43,

and 3.44 and 3.45, respectively. Here figure 3.40, figure 3.42 and figure 3.42 represent

batch size of 4 and figure 3.41, figure 3.43 and figure 3.44 represent batch size of

8. For each graph, ten runs of 25 batches were made and averaged. Despite the

similarities in conducting the experiment, the difference in test function properties,

specifically the number of oscillations, had a growing impact as compared to one

dimension. Increases in the dimensionality of the problem also significantly increases

the number of regions where significant fluctuations in the posterior covariance of the

GP can exist, the implications of which are discussed in the next subsection. While

refinements can be made to such aspects as domain decomposition, size of batches,

etc., our results and cessation criterion nevertheless hold firm for our results. To our

knowledge, this establishes the first cessation criterion in batch Bayesian quadrature

in the literature.

3.6.3 Higher Dimensions

An important distinction between our numerical results in one dimension versus two

dimensions, which will also bear of higher dimensions, is the significant increase in

number of batches that must be selected in order to achieve the desired results.

Specifically, in one dimension we determined that in order to meet our defined ob-

jective that the cessation criterion would be once the posterior covariance of the GP
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fell below the 0.01 threshold after at least 4 batches were taken. However, in two

dimensions we stated that in order to meet our stated objectives that the cessation

criterion would be that the maximum posterior covariance of the GP must be below

a threshold of 0.001 after at least 16 batches were selected. The reason for the lower

threshold of the posterior covariance of the GP was already discussed. However, the

significant increase in the minimum number of batches is particularly noteworthy

given the constraints imposed by batch Bayesian quadrature, namely that evaluating

the integrand is costly.

The underlying impetus for this significant increase in the number of batches was

already discussed. It is clear that these impetus will continue to have increasing impli-

cations as the dimensionality of the problem is increased. Therefore, while it was not

explicitly investigated in this research, as the dimensionality of the problem increases,

ceteris paribus, it would be reasonable to expect that the number of batches which

must be selected in three dimensions in order to meet our defined objective would

exceed 50. This is a staggering number in batch Bayesian quadrature. One possibility

of mitigating this would be to significantly increase the number of quadrature points

within a batch.

A distinction must be made here from what was stated earlier regarding increasing

batch sizes significantly. It should be noted that finding a practical application of the

comparison of, say, a batch size of 4 to a batch size of 40, ceteris paribus, would be

difficult to find. However, finding an application of only a batch size of 40 would

be possible. Therefore, it is not necessarily that large batch sizes in batch Bayesian

quadrature do not have practical applications, but rather a scenario where ceteris

paribus the batch size significantly increases would be peculiar.

It is therefore possible not only to apply our novel technique to higher dimensions,

but also to use our novel method of finding cessation criterion for these. While one

possibility of accomplishing these tasks would be to significantly increase the size of
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the batches selected, such application of batch Bayesian quadrature do not currently

exist in the literature and were not explicitly investigated here. For that reason,

further discussion of the issue is left the the section of this research addressing future

work.

3.7 Applications and Relevance of Novel Procedure

Two specific applications were discussed in reference to the test functions used in

the numerical evaluation of our novel method. Specifically, the Ackley test function

and Weierstrass test function have widespread applications in optimization, quadra-

ture, and black box algorithms that have heavily employed in the machine learning

literature. Several other applications in machine learning will be highlighted, but at

a more high level that what was previously discussed in the numerical applications

section and throughout this document.

What is of particular interest are applications in machine learning that make use of

integration of unknown or intractable integrals, the prime focus of our research. The

most prominent and common instances where such problems arise involve marginal-

izations. Marginalization is the process of summing over possible values of one or

more variables or parameters to determine the marginal contribution or effect of an-

other variable or parameter. This summation would clearly be the sum for discrete

variable or the integral for continuous variables, where we focus on the latter in this

research. It should therefore be obvious that these kinds of applications are not lim-

ited to applications of machine learning, though they feature prominently in such

applications. In fact, marginalization is a concept learned in introductory statistics

courses which highlights their ubiquitous applications.

A common instance where marginalization occurs is its application to latent vari-

ables or parameters. Such latent variables or parameters are often considered to

be nuisance variables or parameters, and clearly can take on many different forms
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depending on the field of interest. Similarly, this application can be expanded to in-

clude marginalizing over likelihoods which themselves can represent sets of variables

or parameters.

We can take an initial step in going from integrating over variables or parameters,

to marginalizing over likelihoods, but we can also continue to take steps and include

model averaging into the realm of possible applications for our novel technique. Model

averaging, or more specifically ensemble averaging in machine learning fields such as

artificial neural networks, is when multiple models are combined to represent an out-

put being investigated with the intended outcome that the ensemble better represents

the phenomena.

Lastly, there are a host of related yet distinct sub-areas of application, which

include computing posterior predictive distributions, computing model evidences, and

partition functions.

It is important to note that other techniques in machine learning have made sig-

nificant strides in addressing these same topics. For example, deep learning, currently

a particularly hot topic in machine learning, solves similar problems in the areas out-

lined above. However, what should also be noted is that the fields of batch Bayesian

quadrature and deep learning, while both are in the broader field of machine learning,

have very different constraints. Our application of batch Bayesian quadrature, and

the superior novel techniques we have devised, have a central definition that evaluat-

ing the integrand is considered to be very expensive, and therefore the fewest number

of batches should be chosen. In our numerical section we chose at most 25 batches.

In deep learning, on the other hand, a driving consideration in its application is using

high dimensional functions - often six or higher. This is many more dimensions than

would be feasible with batch Bayesian quadrature for one striking reason, namely

that some of the most state-of-the-art techniques in deep learning evaluate the inte-

grand well over 100, 000 times, and often several million times! Therefore, while batch
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Bayesian quadrature as of yet cannot match the dimensionality of deep learning, deep

learning also cannot match the efficiency of batch Bayesian quadrature.

In conclusion, the problem space adhering to the constraints of batch Bayesian

quadrature is very large. Our novel contributions significantly improve upon what

is available in the literature to tackle these problems. For these reasons, our novel

contributions are very significant and relevant to many fields, including the field of

machine learning in general, and quadrature specifically.

3.8 Future Work

The main aspect of work that can and should be accomplished, as stated several times

throughout this document, primarily pertains to the dynamic domain decomposition

and its impacts on working in higher dimensions and the cessation criterion.

To that end, one aspect of interest is how many sample locations should be al-

located to each partition of our domain. For computational convinience we utilized

100 equally spaced sample locations per partition in one dimension, and 25 equally

spaced sample locations in two dimensions. While this yielded suitable results for our

objective, there was not a determination made on whether or not different numbers

would be more beneficial. Specifically, by increasing sample locations we could have

chosen quadrature points which better illustrated the superiority of our novel method,

however this would have come at the expenditure of increased computational cost.

Conversely, we could have saved additional computational cost by allocating fewer

sample locations.

One way this may be researched is by considering the parameters θ = {λ, σ},

where these represent the output length-scale λ and input length-scale σ control

the standard deviation of the output and the autocorrelation range of each function

evaluation, respectively. Based on what these parameters are, especially after they

have been optimized as is standard practice, could inform the optimal number of
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sample locations. This holds true both in the original allocation before search begins,

as well as when sample locations have been replenished. The the appropriate sections

for a more detailed discussion on how those procedures were implemented in this

research.

A similar consideration is when to replenish sample locations within partitions.

Our current practice, which showed promising results, is to replenish the sample lo-

cations within a partition only after the previous allocation within that partition had

been completely exhausted. This may also lead to inefficiencies, particularly when

partitions are large. To see this, if a partition is relatively large, and sample loca-

tions are sparsely distributed, it is possible that the location corresponding to the

maximum posterior covariance of the GP may reside in this partition, but not near

where the remaining sample locations exist within that partition. Therefore, it may

be optimal to still chose the available sample location due to its proximity to the lo-

cation corresponding to the maximum posterior covariance of the GP - that is, other

sample locations outside of the partition would be worse choices - however efficiency

may be gained if sample locations within that partition existed which are closer to

the location which corresponds to the maximum posterior of the GP. Therefore, re-

plenishing sample locations more quickly would provide such points, but also increase

computational cost earlier.

Another consideration, which goes hand-in-hand with these, is the size of the par-

titions. In our process, we naively established where partitions would be, by either

determining the number of partitions or their length a priori. Clearly forming larger

partitions while keeping sample locations constant would potentially decrease com-

putational cost while perhaps leading to less accurate results. Conversely, decreasing

the size of partitions would perhaps lead to more accurate results, while potentially

increasing computational cost. Again, considering the parameters θ = {λ, σ} may

lead to increased efficiency.
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An interesting consideration to the size of the partitions is to research adding

an additional dynamic component to our already dynamic domain decomposition,

namely altering the size of the partitions in multiple dimensions similarly to that

which we employed in one dimension. While the technique we used in one dimension

cannot directly translate to multiple dimensions, it would be interesting to investigate

how altering partitions could improve our process. Again, see the appropriate sections

in this document for a more thorough description of our novel process.

Achieving higher efficiency from an improved dynamic domain decomposition may

allow us to increase the dimensionality of the functions which can be considered using

batch Bayesian quadrature. As was shown in our numerical results section, because

a driving consideration of batch Bayesian quadrature is that evaluating the integrand

is expensive and hence the least number of batches possible should be taken, coupled

with the fact that quadrature points become more sparse as the dimensions of the

problem increase, utilizing batch Bayesian quadrature in higher dimensions becomes

unfeasible. However, if sample locations could be allocated more efficiently, and hence

quadrature points which are more informative can be chosen, it may be possible to

slightly increase the dimensionlity of the problems which can be undertaken. However,

to be clear, morphing batch Bayesian quadrature into something like deep learning

where very high dimensional problems can be solved, should not be the objective.

These fields have different constraints, and hence are applicable to different scenarios.

Nevertheless, increasing the number of scenarios where batch Bayesian quadrature is

applicable may be feasible.

Finally, something these improvements would allow us to achieve is to further

refine our numerically supported cessation criterion. Having more accurate results

would allow us to better find and support a cessation criterion. If the aforementioned

improvements from future work also allow us to expand batch Bayesian quadrature

to higher dimensions, then we could also elaborate our existing cessation criterion to
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those dimensions.



CONCLUSION

Quadrature can trace its origins all the way back to ancient Greece, and yet it is

anything but outmoded. It is a topic that has reinvented itself, including contributions

by Gottfried Leibnitz and Sir Isaac Newton. In the 20th century, quadrature found

new, modern applications in the realm of probability, first using Monte Carlo, and

later using Bayesian principles. As more and more other bastions of knowledge have

been used in conjunction with quadrature, this once ancient idea has found its way

into even the most cutting-edge technology in such fields as machine learning. And

yet, new discoveries in this field continue to grow.

To find evidence of this one need not look any further than this document. In

it we have described a significant step forward in the use of quadrature, namely the

used of batch Bayesian quadrature with selection updating. Perhaps surprisingly, this

is the first batch quadrature method where point selection need not be sequential,

and it allows us to achieve remarkable improvements. To accomplish this, we devise a

novel point selection algorithm which uses future uncertainty sampling. Unlike other

modern techniques which often aim to select quadrature points which maximize the

reduction in uncertainty, our method instead selects quadrature points which mini-

mizes the resulting uncertainty. This seemingly trivial distinction and minor change

in method in fact leads to significant improvements in the efficiency of uncertainty

reduction, accuracy of integrand estimation, and more robust numerical estimates of

the integral. These represent significant strides forward!

In order to implement our novel technique, we devised a novel dynamic domain
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decomposition which not only enabled us to achieve superior results, but can also find

applications in other fields. Of particular interest is the ability of this dynamic domain

decomposition to be applied to many different dimensions. This can allow batch

Bayesian quadrature with selection updating to be applied even to higher dimensions

than presented in this document, and may be a promising avenue to further expand

this resilient field into the future.

Furthermore, the previous instances of batch Bayesian quadrature in the literature

left the cessation criterion as an open question. Therefore, our research presents

the first numerically founded and supported cessation criterion in batch Bayesian

quadrature. We present these for applications in one dimension and two dimensions.

Despite our numerous novel contributions and significant improvements these

achieve, there remains work to be accomplished. We highlight in the future work

section of this document that chief among these is a refinement of our dynamic do-

main decomposition. While this aspect also represents a novel contribution of ours,

it did not represent the most significant contribution. Nevertheless, it may present

the best means to facilitate the application of batch Bayesian quadrature in higher

dimensions. If this is in fact possible, which we believe it is, this would be another

significant step forward in this field.

While it should be clear that with our contributions we enable the longstanding

field of quadrature to take a significant step forward, it should also be clear that

despite its longevity, this field still has many more places to go. Our contributions

demarcate a milestone on that journey, and we look forward to continue to propel

the field of quadrature forward!
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