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ABSTRACT 
 
 

JING DENG. A GIS-based expert system to improve the accuracy of wetland 
classification. (Under the direction of Dr. Eric Delmelle) 

 
 
Wetlands play a critical role in our natural environment, such as improving water 

quality, controlling erosion and flooding, and protecting biodiversity. To better protect 

wetland systems, a comprehensive knowledge of their spatial distribution is important to 

minimize potentially devastating impacts and help with improving wetland function. For 

instance, accurate wetland delineation guides the mitigation plan in the transportation and 

construction work to protect wetlands as the US 1970 National Environmental Policy Act 

(NEPA) requires.  

Determining the precise location and extent of wetlands across large-scale regions 

requires a substantial amount of fieldwork. Therefore, automatic image classification 

with the support of remote sensing data has become a trend in studying wetland 

distribution. Current wetland classification studies leverage statistical or machine 

learning methods to build spatial models based upon the training dataset. They apply 

these models to predict the occurrence of wetlands, which can later be evaluated through 

actual fieldwork. However, current studies often face challenges introduced by the data 

quality. For example, the process of collecting data may introduce inaccuracy and the 

samples may not reflect the characteristics of the objective region. These factors have the 

potential to bias the identification of boundaries among different wetland types. 
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Therefore, a flexible framework that can take into consideration the data quality and 

produce promising results for different scenarios is necessary.  

This dissertation focuses on the development of such a wetland type classification 

framework that can predict the spatial distribution of different types of wetlands in North 

Carolina. The overall objective is to build a robust and reliable expert system that can 

accurately classify wetland types, using training datasets of various quality. To be more 

specific, this system should be able to tolerate unbalanced and less representative data 

samples in the training data.  

To improve the quality of the classification model, I use various data sources to 

generate detailed topographic information, such as high-resolution Light Detection and 

Ranging (LiDAR) data, satellite data, and soil data. I also develop an integrated method 

to combine advantages of different models and compensate for unbalanced and limited 

data samples. Lastly, I construct a GIS-based orchestration system to facilitate the 

replication of the modelling process in a different region.  

Leveraging this framework, I conduct different experiments to test the model 

performance responding to various sampling conditions. The results reveal that the 

machine learning based methods mainly rely on the quality of the data over the quantity. 

Under a representative distribution, a sampling data set using five percent of the 

population proves as accurate as a sampling data set using eighty percent. In the opposite 

scenario, the proposed integrated method can produce better prediction accuracy than any 

individual model.  
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Background  

Wetlands are transitional areas between upland and aquatic systems; water has 

periodically or continuously saturated the soil and vegetation within and therefore, 

wetland vegetation has adapted to the saturated environment (EPA 2012). According to 

the Cowardin classification system of wetlands, the definition of wetland is (Cowardin et 

al. 1979): 

“…lands transitional between terrestrial and aquatic systems where the water 
table is usually at or near the surface of the land is covered by shallow water. For 
purposes of this classification wetlands must have one or more of the following three 
attributes: (1) at least periodically, the land supports predominantly hydrophytes; (2) the 
substrate is predominantly undrained hydric soil; and (3) the substrate is nonsoil and is 
saturated within water or covered by shallow water at some time during the growing 
season of each year.” 

In the United States Code (16 U.S.C., Section 380[a] [18]), the term “wetlands” 

refers to: 

“…land that (A) has a predominance of hydric soils, (B) is inundated or saturated 
by surface or groundwater at a frequency and duration sufficient to support a prevalence 
of hydrophytic vegetation typically adapted for life in saturated soil conditions and (C) 
under normal circumstances supports a prevalence of such vegetation.” 

According to the National Wetlands Working Group of Canada (1988), a wetland 

is an area that is: 

“…saturated with water long enough to promote wetland or aquatic processes as 
indicated by poorly drained soils, hydrophytic vegetation, and various kinds of biological 
activity that are adapted to a wet environment.”
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These definitions emphasize the physical components of wetlands, including 

hydrology, soil, and vegetation. Wetlands are protected by public laws and regulations 

due to their important ecological functions benefiting the natural environment, namely 

carbon sequestration (Gorham 1991), flood mitigation (Olhan et al. 2010), wildlife 

habitat (Kennedy and Mayer 2002), water quality improvement (Keddy 2010), and 

biodiversity maintenance (Li and Chen 2005). For example, the National Environmental 

Policy Act (NEPA 1970) of the United States regulates activities that lead to possible 

long-term and short-term impacts associated with the destruction of wetlands. Mitigation 

activities should compensate wetland loss or degradation due to human construction and 

development (Boyd 2002). 

The process of wetland inventory essentially maps the distribution of wetlands 

and monitors the dynamics of wetland systems, which represent significant health 

indicators for the natural environment (Hess et al. 2003). Institutions can construct 

wetland inventories to monitor the wetland resources for local regions or larger areas. In 

the United States, government agencies at the federal level have produced wetland maps 

for many years. One such example is the U.S. Fish and Wildlife Service (USFWS), which 

has maintained the National Wetland Inventory (NWI) since the mid-1970s. The USFWS 

most recently updated its dataset in 2016, including geospatial datasets of wetlands and 

surface water. In these datasets, they classified wetlands under the national standard—the 

Cowardin classification system—which provides consistent ecological descriptors 

(Cowardin et al. 1979). 
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Trained analysts conducted the classification and mapping practices for the NWI 

by visually interpreting the presence or absence of wetlands based on high-altitude aerial 

photography overlaid with other data such as contour maps and land use maps. Although 

the NWI greatly benefits the general public, it proves inadequate for regional or site-

specific applications for several reasons. First, the wetland classification system in the 

NWI operates at the national level and may overlook the characteristics of the local 

environment. Second, given the coarse resolution of the NWI, analysts may miss small 

wetlands. Third, the manual mapping process is time consuming and—many times 

unintentionally—analysts may bias or influence the results. For instance, they cannot 

distinguish the wetlands under dense tree canopies in remote sensing images and may 

make incorrect decisions based on prior knowledge. Due to these reasons, the NWI 

suffers from several issues including low accuracy in terms of wetland location and type 

classification. More importantly, this manual mapping is a one-time evaluation approach, 

which has no ability to provide additional information of new environmental changes. 

Therefore, the map is incongruous with ever-changing wetlands, resulting in data 

becoming outdated for many applications (Melloh et al. 1999).  

To identify the wetland types that occur in North Carolina and assess their 

corresponding functions, an interagency team composed of federal and state staff was 

established in 2003 (N.C. Wetland Functional Assessment Team [WFAT]). Specifically, 

the WFAT set the objectives to develop a scientific and systematic process for classifying 

and evaluating NC wetlands. WFAT identified 16 general wetland types within a two-

level structure wetland system (see Table 1). The trained field assessors then follow a 
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written manual—the North Carolina Wetland Assessment Manual (NCWAM)—to 

conduct the classification process. The fifth version of the manual was recently updated 

in 2016. 

Table 1. NCWAM wetland types (N.C. Wetland Functional Assessment Team 2010) 

Level I Category Wetland Type 
Salt/Brackish Marsh Salt/Brackish Marsh 

Riparian Estuarine Woody Wetland 
Tidal Freshwater Marsh 
Riverine Swamp Forest 

Bog 
Non-Tidal Freshwater Marsh 

Floodplain Pool 
Headwater Forest 

Bottomland Hardwood Forest 
Non-riparian Seep 

Hardwood Flat 
Non-Riverine Swamp Forest 

Pocosin 
Pine Savanna 

Pine Flat 
Basin Wetland 

 

1.2 Problem Statement 

Wetland delineation and type classification generally require a consequential 

amount of fieldwork. Experts need to visit specific sites, collect soil samples, check the 

hydrologic conditions, and observe the type of vegetation community present at the sites 

to determine the wetland type. While this process may be accurate, it reveals substantial 

challenges. First, some areas may be extremely difficult to access. Second, the process is 

time consuming; wetland delineation of a large-scale region is nearly impossible.  
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Given these constraints, Remote Sensing (RS) technologies present a natural 

solution for efficiently acquiring information on the earth surface at a larger scale. In 

addition, Geographic Information System (GIS) provides methods to further analyze this 

data for wetland delineation purposes. This approach can partially, or in some instances, 

completely replace fieldwork. Existing studies have documented success in wetland 

classification supported by RS and GIS. The commonly used workflow includes 

analyzing relationships between environmental characteristics and wetland occurrence  

based on existing field sampling data, and then extrapolating the relationships to other 

regions to predict wetland occurrence (Rebelo et al. 2009). However, this workflow is 

very sensitive to the quality of the sample data and it usually can only apply to a small 

region in order to maintain high classification accuracy. This limitation will hinder 

studies and decision making in grand-scale applications. For instance, people who are 

planning for the construction of new state highways may not be able to avoid wetlands 

without understanding their accurate distributions. 

The objective of this research is therefore to improve current RS-based wetland 

classification workflow to build an efficient and reliable wetland classification 

framework. I apply GIS technology to extract critical information of topography, 

hydrology, soil, and vegetation, mainly from LiDAR data. I then leverage machine 

learning algorithms to mine and model the decision rules for identifying wetland types 

through a supervised training process. I also improve model accuracy by incorporating 

expert knowledge (e.g., soil type for supporting wetlands formation) in the models (N.C. 

Wetland Functional Assessment Team 2010).  
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1.3 Research Questions 

This research attempts to address the following questions: 

1. How might one efficiently extract environmental information from high 

resolution LiDAR data for detailed wetland types identification? 

2. How might one leverage various data sources and classification techniques to 

improve wetland prediction accuracy? 

3. How might one build a flexible classification system that can produce reliable 

classification results and can be easily applied to a different region? 

By answering these questions, this research will facilitate the automatic wetland 

prediction process and improve the accuracy of wetland type classification. The 

following tasks are necessary to achieve the aim of the study: 

1. Investigate environmental characteristics corresponding to different types of 

wetland in North Carolina and represent them as spatial data layers through 

GIS. 

2. Examine and evaluate the strengths and merits of several commonly used 

machine learning algorithms in wetland classification. 

3. Construct a GIS-based expert system to integrate different modeling 

approaches in order to better support wetland modeling.  
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1.4 Significance and Contributions 

My dissertation mainly contributes to the field of Geography in two aspects. First, 

it contributes to spatial modeling methodology by integrating and merging two different 

types of modeling philosophies, deductive and inductive modeling. I conduct theoretical 

analysis by reviewing several of the most commonly-used models in wetland 

classification studies. I then summarize the benefits and limitations of those models. For 

example, statistical models are constrained by many assumptions, and machine-learning 

models neglect the reasoning process behind the data. I also conduct experiments to 

illustrate the different performance of these models under “near-real-world” situations. 

According to the experiment results, the new modeling method proposed in this 

dissertation can provide a better solution in the real-world application.  

The second contribution is to the understanding of “model performance” in the 

spatial modeling field, which is often represented by the notion of “accuracy”. Current 

studies evaluate model performance by dividing the entire dataset into multiple subsets, 

and cross-validating each dataset through the calculation of accuracy. I argue that the 

spatial distribution of the sampling data will greatly affect the outcome of model 

validation, which has not been widely considered in existing literatures. These studies 

tend to over-estimate model performance when using stratified sampling method to create 

training and testing datasets which probably end up representing similar distribution 

pattern. In this dissertation, I introduce methods to avoid the high similarity between test 

and training datasets thus to generate more objective evaluations for the model 

performance. 
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In terms of the specific wetland classification models, the contribution lies in 

several aspects: 

1. Introduction of a classification system for detailed NC wetland types based on 

North Carolina Wetland Assessment Manual (NCWAM) definitions. 

2. Integration of various data sources (under different resolutions and data types) 

to derive as much information as possible from different perspectives, such as 

the surface micro-topography from LiDAR, vegetation structure, soil, land use, 

and hydrology information.  

3. Integration of different modeling methods to construct the core of the expert 

system—the knowledge base.  

4. Improvement of the efficiency of the classification workflow to increase the 

flexibility for applying it to different datasets or different study areas.  

5. Support of scenario analysis for the decision-making process to conduct 

wetland protection practice, such as wetland mitigation and restoration. 
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CHAPTER 2: LITERATURE REVIEW 
 
 
 The traditional and most accurate way for wetland delineation is to send pre-

trained assessors to corresponding locations to conduct fieldwork. Such an approach is 

time-consuming and lacks consistency due to the difference in operational preferences of 

the assessors. For instance, the results may differ based on different standards and 

methods used by the assessors, or due to the season and time that the surveys take place, 

where climate and environment change considerably (Milton and Hélie 2003, Cihlar et al. 

2000). Instead, related studies have considered remote sensing technology and computer-

based classification methods to be a more practical and applicable method for wetland 

delineation, classification, and management for relatively large areas.  

Remote sensing technologies provide a synoptic view of the earth. Image analysis 

can be conducted to extract features for identifying wetland types. This approach enables 

wetland assessors to work remotely, alleviating the constraints of location accessibility. 

There exist different methods to process collected datasets, such as manual interpretation, 

semi-automation or complete automation. For instance, the National Wetland Inventory 

(NWI) in the U.S. is a product of manual interpretation, which uses color-infrared aerial 

photography and black-and-white photography (Tiner 1990). Many wetland identification 

and mapping studies prefer the manual interpretation method since it directly 
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incorporates expert knowledge and experience (Sohl et al. 2004). However, one can 

question the efficiency and uncertainty for this method. A myriad of studies has focused  

on the development of methods that facilitate the automatic detection of wetlands (Jean 

and Bouchard 1991, Jensen et al. 1995, Munyati 2000).  

In this chapter, I conduct a literature review related to the development of this 

automated technique that supports wetland detection and classification modeling through 

GIS and remote sensing. The literature review focuses on three aspects: types of wetlands 

studied by current literature; spatial datasets which serve as the foundation of the 

modeling; spatial modelling methods that help with detecting wetland distributions. 

2.1 Targeted Wetland Types 

According to the National Wetland Inventory (NWI), the most common wetland 

classes include emergent, forested, and scrub/shrub wetlands (Corcoran et al. 2013). For 

more detailed wetland types, Ozesmi and Bauer (2002) summarized the tasks in the order 

of increasing difficulty level: water, marshes and swamps, deciduous forest wetlands, 

evergreen forested wetlands, and scrub-shrub wetlands. The wetness level in wetlands 

plays an important role since water reveals very distinct spectral reflectance (Butera 

1983, Henderson and Lewis 2008). Wetland classification can be difficult if different 

types have similar wetness level, such as swamps and marshes. Therefore, other features 

such as the occurrence of a characteristic vegetation community becomes a key factor for 

distinguishing swamp and marsh.  

Different vegetation species have different impacts on backscatter characteristics; 

further study of this relationship can help with the identification of different vegetation 
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types. The complexity has been identified in terms of classifying forest wetlands and 

scrub-shrub wetlands, as the optical signatures for these wetlands reveal similar features 

(Reese et al. 2002, MacAlister and Mahaxay 2009). 

2.1.1 Coastal and Riverine Wetlands 

A large number of studies have focused on coastal and riverine wetlands, 

including tidal marshes, swamps, and mangroves, some of which also belong to the forest 

wetland category. For this type of wetland, the hydrogeomorphic condition is a key 

detector (Hupp and Osterkamp 1996)(Butera 1983) .  

Studies applied spectral signatures to identify water regimes; however, it may fail 

to separate terrestrial water regimes within the wet regions due to the massive similarity 

of spectral features (Augusteijn and Warrender 1998).  Brisco et al. (2011) applied C-

band radar imagery to clearly separate open-water, deep-marsh, and shallow-marsh areas 

based on the scatter plots of different polarimetric decomposition parameters. 

Furthermore, the application of multi-temporal data can improve the classification 

accuracy, since the combination of data collected at different seasons (such as winter and 

spring) can help exclude the impacts of climate change and distinguish different plant 

species, such as emergent vegetation and floating vegetation (Ramsey III and Laine 

1997).  

There exists significant confusion when classifying swamps and marshes using 

radar data (Grenier et al. 2007, Gosselin et al. 2014). Instead of focusing on water 

regimes, one can also extract spectral characteristics aiming at distinguishing vegetation. 
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Several studies have analyzed the differences in leaf spectral reflectance to support 

wetland type classification, especially for marshes and swamps (Anderson and Perry 

1996, Spanglet et al. 1998). There are also applications to extract the information of 

vegetation from multiple spectral bands to identify mires (Bronge and Näslund-

Landenmark 2002, Bronge 1999). However, it is noted that there may exist a high 

correlation among different bands. To choose different band combinations may result in 

different classification performance. 

2.1.2 Forested Wetlands 

Forested wetland type poses a unique mapping problem due to the canopy 

coverage and similarity among trees (Augusteijn and Warrender 1998). Several studies 

attempted to integrate the identification of vegetation type with analyzing hydrology 

condition under the canopy to improve the classification accuracy for forest wetlands. 

Hess et al. (1990) reviewed studies applying radar for detecting flooding on forested 

floodplains from 1971 to 1990, highlighting the capability of using radar polarimetry to 

investigate the scattering matrix of different forest types, and summarized the useful 

bands for identifying them. Franklin (1991) documented the improvement of forest 

classification by analyzing topographic environments and hydrological characteristics. 

Researchers applied more complex techniques and more various data sources to tackle 

these challenges. For instance, Augusteijn and Warrender (1998) built neural network 

classifiers based on radar data together with multi-spectral datasets. They classified 

different levels of wetness in forested wetland due to the rich spectral information 
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provided by 15 channels in the visible, near-infrared, mid-infrared, and thermal-infrared 

spectrums.  

2.1.3. Scrub/Shrub Wetlands 

The challenges for distinguishing scrub-shrub wetlands are similar to forested 

wetlands. It is even harder to identify this type of wetland for several reasons. First is the 

complexity of the ecosystem for scrub and shrub wetlands. They may coexist with other 

types of wetlands, such as marshland with shrub patches, or co-occur under forest tree 

canopies, which will give the same optical response as forest wetlands. Therefore, 

traditional optical images and spectral information are no longer sufficient to discern this 

type of wetland. Second, scrub/shrub wetlands vary dramatically, in terms of 

environmental conditions, such as vegetation species and hydrologic conditions. Two 

scrub/shrub wetland sites can appear very differently on the remote sensing image. 

Therefore, research on vegetation type identification can benefit the classification of 

certain wetland types. Zhang (2014) combined hyperspectral data with LiDAR data to 

increase the accuracy of mapping diverse vegetation in complex wetlands. Third, the size 

for this type of wetland is relatively small, thus the detection is greatly limited by the 

spatial resolution of the remote sensing data. To tackle this resolution limitation, several 

studies provided potential solutions by researching mixed pixels (Hurd et al. 2006). For  

instance, they applied approaches such as spectral unmixing to discern the fractional 

composition of wetlands in the classification process (Rogers and Kearney 2004, Wei et 

al. 2008). 
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To summarize the literature on wetland types, one will mostly use spectral 

information to detect and classify different types of wetlands. Studies have also applied 

multi-spectral data, hyperspectral data, and radar data to extract spectral signatures for 

different vegetation species. Furthermore, LiDAR data have provided the possibility to 

detect vegetation species by analyzing vertical structural characteristics. However, one 

should keep in mind the limitation introduced by the resolution of the data while using 

the spatial data to analyze the ground features. For example, Wang et al. (1998) observed 

that, in the classification of multiple marsh wetland types, the classification accuracy did 

not keep increasing past a certain level as the number of SAR channels increased.  

2.2 Data Used in Wetland Classification 

Spatial data and information collected by remote sensing techniques play a 

beneficial role in wetland classification, due to their broad spatial coverage of earth 

surface and the timely manner of results production (Ozesmi and Bauer 2002). 

Identifying wetland types based on remote sensing data boils down to categorizing image 

pixels based on their dissimilarity in features. For instance, on photography images, the 

same type of ground surface objects reveals similar optical features: vegetation is green, 

water is dark, etc. Manual identification relies on the visual interpretation of the images 

and this often represents a large investment of time, labor, and expense (Lunetta and 

Balogh 1999). The semi-automatic or automatic methods refer to processing images in a 

batch through software programs. This approach does not require the same level of expert 

knowledge, where researchers can explicitly program the standards and rules into the 

classifiers. However, the automatic procedure faces difficulties in taking regional 
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environmental differences, such as topographic and hydrologic conditions, into 

consideration and adjusting the methods accordingly. The performance of both manual 

and automatic methods relies significantly on the quality of the remote sensing data.  

There exist two major types of sensors based on the type of signal used by the 

remote sensing platform. Passive sensors respond to external stimuli (e.g., sunlight) while 

active sensors leverage internal stimuli, such as laser beams, to record information. The 

platforms carry sensors include aircraft and satellites, characterized by different flying 

altitudes and cycles. Satellite platforms cost less time and resources to gather data for 

large aerial extents than airborne platforms. However, they cannot provide information as 

detailed as aerial photography (Ozesmi and Bauer 2002). 

2.2.1 Data from Passive Remote Sensing  

The community of wetland researchers first applied optical remote sensing (e.g., 

aerial photography) for wetland classification. They used visual interpretation method on 

the aerial images to map wetland spatial distributions in the National Wetland Inventory 

project (Anderson and Wobber 1973). With the launch of the Landsat satellite series in 

the early 1970s, more studies increasingly adopted data from related products like the 

Multispectral Scanner System (MSS) to identify wetlands. The MSS sensor can detect 

light in both the visible and near-infrared (NIR) spectrum (Lyon et al. 2001). NIR has 

proven particularly useful in detecting wetland vegetation due to the strong relationship 

between NIR reflectance and the biomass of photosynthetic tissue (Jensen et al. 1984, 

Hardisky et al. 1986). However, the coarse resolution of MSS data (80 meters) limited 

the accuracy of wetland classification in large study regions. 
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The advancement of remote sensing techniques introduced data with finer 

resolutions. For instance, Landsat Thematic Mapper (TM) data can provide more 

accurate information due to finer spatial resolution (30 m) and additional information in 

the mid-infrared and thermal-infrared bands. The use of Landsat TM data has improved 

the accuracy of wetland classification (Reese et al. 2002, Sader et al. 1995). The Systeme 

Pour l’Observation de la Terre (SPOT), an earth resource satellite launched by the 

French government in 1986, uses a high resolution visible (HRV) system composed of 

green, red, and near-infrared spectral bands at a 20m spatial resolution. This can provide 

better information for detecting marsh wetlands than the TM images (Hardisky et al. 

1986, Marceau et al. 1990).  

Landsat MSS, TM, and SPOT represent the most commonly used satellite 

systems for wetland classification. Repeat coverage and updated information greatly 

facilitate detailed classification of wetlands and improved model accuracy (Wright and 

Gallant 2007). Other than these common platforms, wetland studies also applied some 

other passive sensors to collect imagery data. For instance, the NOAA satellite with 

Advanced Very High-Resolution Radiometer (AVHRR) instruments can observe night 

cloud patterns, sea surface temperatures, and terrestrial vegetation. One can use this type 

of data to identify vegetation, distinguish wetland types, and estimate the biomass of 

forested wetlands (Moreau et al. 2003, Llewellyn et al. 1996). However, the coarse 

spatial resolution of 1.09 km makes it unsuitable for identifying small wetlands patches. 
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The Indian Remote Sensing Satellite (IRS), started by India in the early 1980s, 

represents another source of multispectral satellite imagery applied to wetland 

identification. It targeted several natural resources, such as agriculture, water, forestry, 

and geology (Ozesmi and Bauer 2002). The IRS-1B Linear Imaging Self-scanning Sensor 

(LISS-II) has four bands similar to Landsat TM bands—blue, green, red, and the near-

infrared band of the spectrum—at a spatial resolution of 36.5 meters. Kindscher et al. 

(1997) applied IRS-1B LISS-II data to analyze the spectral reflectance of meadows, thus 

to identify wetlands based on the percentage of wetland plant species. It emphasizes the 

capability of remote sensing data for identifying wetland vegetation communities. Chopra 

et al. (2001) visually interpreted land cover categories of wetland ecosystems using IRS 

data (including 1A LISS-I, 1A LISS-II, and 1B LISS-II). The authors obtained the 

environmental information from multiple perspectives through the multi-date and multi-

season data, such as seasonal variation of water and vegetation. However, the spectral 

overlap between different land-use types brought challenges to achieve more accurate 

classification results.  

Spanning over a few years, Adam et al. (2010) further illustrated the trend of 

using multispectral and hyperspectral data. The European Space Agency (ESA) launched 

the Sentinel-2 mission in the European Copernicus program as the follow-up for the 

Landsat. Sentinel-2 provides 13 spectral bands and various resolutions from 10 to 60 

meters. It yields 5 days between revisit, while the Landsat-7 has 16 days and SPOT 

enables 26 days for revisit (Drusch et al. 2012). Studies have applied Sentinel-2 data to 

generate a vegetation index to serve as training data for object-oriented classification in 
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wetland mapping (Kaplan and Avdan 2018). Hyperspectral data contain a large number 

of relatively narrow spectral bands, either visible or infrared. Hyperspectral remote 

sensing data hold particularly value for wetland vegetation mapping due to their rich 

radiometric content. However, high dimensionality also introduces massive amounts of 

redundant spectral information (Thenkabail et al. 2016, Adam et al. 2010, Zhang and Xie 

2014). The authors cited above generally observed that the increased use of spectral 

channels offer the potential to improve classification accuracy. However, with the 

introduction of more channels, classification accuracy first increases to a peak and then 

starts to decrease—a pattern referred to as the Hughes Phenomenon (Hughes 1968). 

Studies have applied feature extraction, such as the Principal Component Analysis and 

Minimum Noise Fraction method, to maintain the most representative information 

(Zhang et al. 2007, Zhang 2014).  

With the aforementioned satellite data, cycles may repeat on a relatively long 

scale, however, slowing the frequency of wetland classification map updates and 

affecting the monitoring of wetland dynamics. This constitutes an important limitation. 

Furthermore, the atmospheric constituents, such as clouds or canopy, can greatly affect 

the quality of the imagery products (Richards and Richards 1999).  

2.2.2 Active Remote Sensing Data 

The active remote sensing technique applies its own source to emit energy and 

record reflected energy instead of relying on natural emissions. Examples of active 

remote sensing include satellite radar imaging systems and Light Detection and Ranging 
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(LiDAR). Radar uses electromagnetic energy in the radio frequency range (microwave) 

while LiDAR uses much shorter wavelengths (visible and near-infrared). Compared to 

passive remote sensing techniques, active remote sensing has three major advantages. 

First, it can collect the data at almost any time of day since the weather affects them less. 

Second, it can easily detect ground surface information in areas covered by tree canopies. 

Radar transmits signals with a longer wavelength that will have greater penetration in 

forest canopies. LiDAR can “see around” trees, since the high density of laser beams can 

penetrate through the physical gaps of the canopies. Third, these data can provide 

supplementary information other than spectral information (Ozesmi and Bauer 2002). For 

instance, radar measures backscatter to detect water and LiDAR can depict the three-

dimensional extent of the object. 

(1) Radar  

Radar applications emerged for studying wetlands in the late 1960s (Waite and 

MacDonald 1971). Several studies have summarized the knowledge of detecting 

wetlands using the features revealed in images in terms of dielectric and geometric 

attributes (Hess et al. 1990, Kasischke and Bourgeau-Chavez 1997, Schmullius and 

Evans 1997, Ramsey III 1998, Henderson and Lewis 2008). Synthetic aperture radar 

(SAR) applies microwaves to penetrate canopies and clouds to detect the dielectric 

properties of the surface. SAR can also detect hydrologic characteristics, such as surface 

inundation and soil moisture (Henderson and Lewis 2008, Lang et al. 2008). The most 

often-utilized satellites in wetland detection include the European Remote Sensing 
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Satellite (ERS-1, 26 m range resolution, launched in 1991), the Japanese Earth Resource 

Satellite (JERS-1, launched in 1992), and the Canadian RADARSAT Satellite (launched 

in 1995) (Wang et al. 1998). These radar systems have different parameters in terms of 

wavelength, polarization, spatial resolution and so on. SAR remote sensing serves as an 

important tool for monitoring surface water due to its sensitivity to water-related 

backscatter. Researchers find it especially useful to detect forest flooding where the area 

appears bright in the images due to the double-bounced reflections from tree trunks and 

water surfaces. However, other situations—such as slopes of hills, rough surfaces, 

plowed rows in agricultural lands, buildings, and streets—can also generate corner 

reflections and cause confusions (Hess et al. 1990).  

Space-borne imaging radar, such as ERS-1, can provide greater ground coverage 

than air-borne radar. ERS-1 SAR data can detect soil moisture, water presence, and 

vegetation types (Kasischke and Bourgeau-Chavez 1997). Water under a canopy can 

increase the radar backscatter for woody wetlands while decreasing the backscatter for 

herbaceous wetlands. Compared with ERS-1, which uses the shorter C-band sensors, 

JERS-1 utilizes longer L-band sensors, resulting in better penetration of tree canopies. 

JERS-1 data makes it easier to distinguish flooded and non-flooded areas than ERS-1 

does (Townsend and Walsh 1998). Similarly, RADASAT data have frequently assisted 

the study of wetland hydrology and forest types (Töyrä et al. 2001, Li et al. 2007). 

However, the RADARSAT-1 sensor cannot penetrate high-density forest due to the use 

of C-band sensors with short wavelengths (Townsend 2001). 
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  To summarize, radar remote sensing enhances the efficiency of detecting water 

presence and certain types of vegetation; however, it requires background knowledge of 

radar scattering from different types of vegetated surface and interaction with soil 

(Ghedira et al. 2000). It requires massive efforts in studying the relationship between 

backscattered energy and the characteristics of observed objects. Gaining complete 

understanding of wetland complexity in terms of vegetation density and heterogeneity 

through radar data remains a challenge.  

(2) LiDAR 

Wetland studies have increasingly applied another active remote sensing 

technique, Light Detection and Ranging (LiDAR), to model wetland distributions (Goetz 

2006). The LiDAR technique obtains data by emitting a large number of laser pulses per 

second, then records multiple returns per pulse after the light has bounced off the ground 

objects. Based on the time delay between emission and return, it calculates the distances 

between objects and measures the dimensions of the objects. The LiDAR platform carries 

Inertial Measurement Units (IMU) and Geographic Positioning System (GPS), 

facilitating the generation of geo-referenced points with X, Y, and Z information. Similar 

to other remote sensing methods, LiDAR provides information for ground surface, 

though it produces high-resolution data for a large-scale region in a relatively shorter 

time period at a lower cost. Using LiDAR data, we can further generate various products 

such as bare-earth DEMs, intensity images, canopy models and building models.  
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The LiDAR technique provided great support for the high-resolution topographic 

mapping applications in the late 1990s. The use of LiDAR to assist with wetland 

mapping has occurred more recently. Automated wetland mapping can greatly benefit 

from LiDAR-derived DEMs for topographical analysis (Wang et al. 2015, Shaeffer 2008). 

This fine-resolution topographical information can aid identification of the landscape 

position of ground objects, such as on a side slope or within a depression. Researchers 

derived terrain metrics to quantify the landscape pattern and evaluate the possibility of 

wetland occurrence. For example, they use a wetness index to represent the possibility of 

a region being wet according to surface hydrological mechanisms and localized 

depression processes (Tenenbaum et al. 2006). Additionally, the fine resolution of 

topographical information enables the detection of relatively small wetlands, such as 

vernal pools, which other types of imagery data might easily omit (Lang et al. 2009, 

Lichvar et al. 2006).  

LiDAR data not only provide elevation and topographical information but can 

also reveal hydrological conditions under vegetative canopies. Since water strongly 

absorbs the near-infrared energy that most LiDAR sensors use, one can use the intensity 

image of bare-earth LiDAR returns to detect inundation. For example, Hofle et al. (2009) 

analyzed the reflection characteristics of water and surface roughness information using 

airborne laser scanning systems. They proposed an object-based classification workflow 

to distinguish water areas based on the high number of laser shot dropouts and the 

predominantly low backscatter energy.  
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Another advantage of LiDAR lies in its ability to provide information about the 

vertical dimension. LiDAR performs well in capturing structural characteristics of ground 

objects, such as height, biomass, and canopy shape, which can further facilitate the 

separation of vegetation types (Vierling et al. 2008). Allen et al. (2011) applied the first-

return LiDAR points to construct a vegetation canopy model and integrate it with multi-

date SAR images for discerning key vegetation classes. 

2.2.3 Data Fusion 

Remote sensing techniques have greatly facilitated automated wetland 

classification, especially for relatively large spatial expansions. However, the complexity 

of the wetland system itself remains a challenge for the pixel-based image classification. 

These difficulties involve variations of features within a single pixel, including texture 

characteristics, water saturation in soil, vegetation coverage, and habitat characteristics. 

Due to the similarity of these features represented in the images, the spectral confusion 

issue exists when distinguishing wetland types. Under this situation the spectral 

signatures for specific wetland types show great diversity and overlap with each other, 

making it a challenge to separate different wetland types on the image.  

Both passive and active remote sensing techniques have their merits and 

shortcomings. To better take advantage of different types of data and overcome their 

limitations, researchers have used data fusion techniques to improve performance through 

the integration of data and information acquired from different sources (Klemas et al. 

1974, Zhang and Xie 2014, Yang et al. 2009). In wetland classification applications, 
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Augusteijn and Warrender (1998) compared the suitability of different remote sensing 

datasets in wetland classification, including visible/near-infrared (NIR), thermal-infrared 

(TIR), and radar. They found that applying these data in isolation yields similar 

performance for wetland classification, but the combination of these data can achieve 

better performance. Multiple other studies have drawn similar conclusions about the 

advantages of data fusion techniques for wetland classification (Li and Chen 2005, Töyrä 

and Pietroniro 2005, Lichvar et al. 2006, Vierling et al. 2008). 

(1) Multi-sources 

 Previous studies have reported limitations of classification performance based on 

single-date radar images (Aschbacher et al. 1995, Wang et al. 1998). Aschbacher et al. 

(1995) compared the classification accuracies of wetland using different sensors and 

found significantly lower classification accuracy when using radar data alone compared 

to combining multiple single-dated radar images, or integrating radar data with optical 

remote sensing images (Augusteijn and Warrender 1998, Allen et al. 2011, Townsend 

and Walsh 1998, Henderson and Lewis 2008). Therefore, wetland classification 

applications commonly integrate radar data with other data.  

 Castañeda and Ducrot (2009) extracted soil surface characteristics related to 

wetness and roughness from SAR images, which improved Landsat classification by 

enhancing the contrast of radiometric features among different locations. They applied 

two fusion methods to their research: (1) concatenating radar channels to Landsat bands, 

and (2) integrating the classification results. Huang et al. (2010) applied radar data to gain 
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complementary vegetation information. They fused optical and radar to estimate the 

percent of ground cover of different vegetation types in Yellowstone National Park. 

However, in their approach, the application of radar data had a negative impact on the 

classification performance due to the speckle and noise effect in the images (Li and Chen 

2005, Chust et al. 2004).  

However, both optical and radar data lack sufficient information in terms of 

terrain characteristics and vegetation structural features. LiDAR data can help with filling 

this gap by supplying detailed information on terrain and canopy structure (Lefsky et al. 

2002, Lim et al. 2003). To classify different savannah tree species, Naidoo et al. (2012) 

constructed and trained Random Forest models using a hybrid dataset composed of 

hyperspectral data and LiDAR-derived structural information. Based on the modeling 

results, the most important variables included structural parameters such as tree height 

and spectral variables such as NDVI. Similarly, Hill and Thomson (2005) derived 

thematic classes through integrated LiDAR and spectral data. The classes contain both 

information of species composition and canopy structure which reflects the underlying 

ecological processes of woodlands. Geerling et al. (2007) fused spectral image and 

LiDAR-derived datasets on the pixel level to classify floodplain vegetation. The 

classification achieved the highest accuracy by using the fused data rather than using 

spectral or LiDAR data alone, especially for bush and forest lands. These applications of 

LiDAR represent a step forward in distinguishing structural subdivisions for different 

vegetation species—also useful in wetland mapping. 
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The data product generated through the process of analyzing remote sensing 

images represents another type of major data source for improving wetland classification. 

The remote sensing images with spectral signatures and texture characteristics can 

generate such information. For example, a tasseled-cap method can extract information 

based on three transformed components: greenness, brightness, and wetness. This 

approach has proven suitable for detecting wetlands, especially forest wetlands at the 

spring season when the water table is high (Hodgson et al. 1987, Crist and Cicone 1984). 

Other analyses can produce spectral signatures, such as measuring difference or ratios 

between different bands.  

Other than remote-sensing data, other data sources—such as vegetation mapping, 

soil distribution, and hydrological conditions—can also significantly support wetland 

mapping and improve its accuracy by further identifying the heterogeneity among or 

within wetland types (Bronge and Näslund-Landenmark 2002). For example, 

environmental datasets can refine classification maps (Bolstad and Lillesand 1992, Sader 

et al. 1995). Feature dimensions such as vegetation, soil, landform, and bedrock geology 

can facilitate the construction of classification models (Wright and Gallant 2007).  

 

 

Table 2 summarizes the type of information that different types of data can 

provide in supporting wetland classification according to three major aspects: soil, 

vegetation, and hydrology.  
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Table 2. Data perspectives in support of wetland classification 

Information Potential Data Wetland features 
Soil Vegetation Hydrology 

Spectral 
Characteristics 

photography 
images; 
multi-spectral 
data; 
hyper-spectral 
data 

level of 
moisture  

identify 
vegetation type; 
vegetation 
indices 

detection of 
flooding and 
inundation area 

Spatial 
Structure 

LiDAR data 
(intensity, 
geometry); 
photography 
image 

- canopy structure 
model;  
tree structure 
model; 
canopy surface 
model 

surface 
modeling and 
hydrological 
simulation; 
terrain 
derivatives; 
geometrical 
analysis; 
intensity image 
analysis to 
detect water 
surface 

Ancillary 
Information 

GIS layers; 
spatial 
database;  
non-spatial 
datasets 

soil type; 
soil 
components; 
hydric 
information 

vegetation type; 
land cover type 

climate data; 
precipitation; 
hydrology 
dataset 

 

(2) Multi-dates 

The rationality of integrating multi-date data has two main components: (1) to 

generate new wetland maps according to the application needs for mapping frequency, 

and (2) to compensate for data limitations. Data achieved at different time periods can 



28 

 

 

reveal different information. For example, the data can divulge more under-canopy 

information during the leaf-off season. 

Due to the changes of hydroperiod in space and time, climate and weather change 

will significantly affect the data acquisition for both remote sensing and field collection. 

The hydrology and vegetation conditions within wetlands will also vary accordingly 

(Johnston and Barson 1993). Therefore, one can rely on multi-temporal data to monitor 

the dynamics of wetland systems. For instance, Lang et al. (2008) applied edge-detection 

filters to detect North Carolina coastal wetland shoreline change based on multisensory 

SAR imagery over 12 years. 

The integration of multi-date remote sensing data under singular technology can 

significantly improve classification accuracy. Many scholars have documented the 

integration of multi-date radar data has for assisting with wetland identification (Shang 

1996, Wang et al. 1998, Milne et al. 2000, Sokol et al. 2000). These studies applied false 

color composite images to enhance spectral details generated through intensity, hue, and 

saturation (IHS) transformations (Kushwaha et al. 2000).   

2.3 Classification Methods for Wetland Identification 

Classification methods / modeling serve as the key component for wetland 

mapping. Using the remote sensing and spatial data as the training inputs, these models 

can automatically identify wetland distributions through machine-based image processing 

algorithms. Automatic image classification methods include three categories: 
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unsupervised, supervised, and hybrid method (Ozesmi and Bauer 2002). This section will 

summarize the methods that are commonly used in wetland mapping applications. 

2.3.1 Unsupervised Methods 

The unsupervised method directly groups objects into different classes, in which 

the objects will share certain common features with each other. This method requires 

little effort in data training, and the resulting classes are distinct from each other. 

However, the result of grouping greatly relies on the feature variables used for 

classification, whether these features represent the distinguishable characteristics between 

different classes. The commonly used unsupervised methods include the k-means 

approach and the Iterative Self-Organizing Data Analysis Technique Algorithm 

(ISODATA) (Pope et al. 1994). These algorithms adopt different mechanisms for 

measuring the similarity among different data samples. 

To apply the k-means approach, one needs to specify the number of classes as a 

priori. This approach then iteratively adjusts the membership of classes by assigning data 

samples to their nearest group and recalculating the centroids of the groups based on their 

updated members. Similar to the k-means algorithm, ISODATA adopts an iterative 

method governed by predefined threshold values for parameters. Certain parameters 

mainly refer to statistics of the classification results, including the average inter-center 

distance, the maximum number of classes, the standard deviation within each cluster, and 

the maximum number of iterations (Ball and Hall 1965). However, without well-defined 

thresholds, the algorithm may not generate appropriate results in a timely manner.  
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Generally, the unsupervised methods require very little effort from the users, and 

the algorithms can be effective and efficient with appropriate parameter settings. 

Furthermore, they perform well for classifying objects that appeared in nature according 

to their spectral variability in the images, such as distinguishing among different 

vegetation covers (Kindscher et al. 1997, Allen et al. 2011). Therefore, researchers 

usually conduct unsupervised methods as a pre-classification step to increase the 

classification accuracy. For instance, Huang and Jensen (1997) first pre-classified SPOT 

multispectral data into 50 spectral classes using ISODATA before other classification 

methods. Principal Component Analysis (PCA) is also used as a pre-processing step to 

reduce redundancy. Gluck et al. (1996) extracted different principal components from 

Landsat TM data to highlight different aspects of information, including vegetation 

differences, wetness differences, and differences between wetlands and uplands. They 

further employed the ISODATA classification approach, based on the results from the 

principal components to distinguish more detailed wetland types. Similarly, Lang et al. 

(2008) isolated the dominant temporal information relative to hydrological period by 

conducting PCA on multi-temporal SAR data, suggesting significant correlations 

between the first principal component and the hydrologic features, such as soil moisture. 

2.3.2 Supervised Methods 

Supervised methods require the users to specify the class labels for the training 

data in the classification modeling. The models then use a programmatic way to generate 

classification results based on the input data. Increasing applications applied the 
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supervised methods in wetland classification for the efficiency and accuracy of these 

methods.  

 (1) Conventional supervised methods 

The conventional supervised classifiers used in wetland classifications mainly 

include regression models, discriminant function analysis, parallelepiped classifier, and 

Maximum Likelihood Classification (MLC) (MacAlister and Mahaxay 2009, Munyati 

2000, Crawford et al. 1999).  

Regression models can quantify the explanatory power of the independent 

variables using the variance of the dependent variable. In wetland classification, the 

dependent variable can present as a binary form, representing wetland occurrence (Toner 

and Keddy 1997). Similar method prior to the regression model was known as 

discriminant analysis (Harper and Ross 1983). Franklin et al. (1994) applied discriminant 

function analysis to distinguish kalmia (shrub) from other land cover types and wetland 

vegetation. They compared the classification results of discriminant analysis based on 

different data sources, reaching an overall accuracy of 96% using aerial remote sensing 

and 85% using satellite data. In a regression model, the coefficients of the variables 

indicate their contributions in explaining the dependent variable. For example, Shaeffer 

(2008) constructed regression models using a set of various DEM-derivatives to predict 

the occurrence of wetlands while identifying the significant impacting factors. 

The parallelepiped classifier often fits the applications that use multispectral data; 

it classifies the data samples based on the definition of class boundaries. For each 
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dimension, the boundary represents a standard deviation surrounding the mean value of 

the defined class. If the value of a pixel falls within the range for all the spectral bands of 

the class, it will be assigned to that class. The parallelepiped classifier computes fast, 

especially when combined with a table look-up scheme. However, it lacks the capability 

to distinguish among spectral signatures that are naturally similar (Hines et al. 1992). 

The Maximum Likelihood Classifier (MLC) uses statistics (mean, variance, and 

covariance), and especially the likelihood function, to capture the features of the 

classification in the training samples as they happen, resulting in a probability that a pixel 

belongs to a particular class (Short 2010). Forgette and Shuey (1997) conducted MLC 

and minimum-distance-to-means methods based on 14 signature files and 6 spectral 

bands, processed from spring and summer SPOT images collected at different years. 

Huguenin et al. (1997) compared MLC to the unsupervised ISODATA method to classify 

cypress and tupelo wetlands in Georgia and South Carolina, where MLC yielded more 

accurate results. MacAlister and Mahaxay (2009) successfully applied MLC in a 

challenging classification task, to distinguish 31 wetland and 23 non-wetland categories. 

Brisco et al. (2011) applied MLC to evaluate polarization diversity and polarimetry of 

SAR data for wetland type classification, using three different image polarimetric 

decomposition parameter sets (Freeman-Durden, Pauli, and Cloude-Pottier). Using these 

decomposition approaches, MLC performed well for distinguishing water and vegetation 

boundaries; it produced desired accuracies for more detailed wetland vegetation species. 

This research demonstrated the potential capability of C-band SAR data for the 

classification of individual wetland vegetation communities. 
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Conventional methods oftentimes hold a number of underlying assumptions, 

which may not apply to the real-world scenarios. Furthermore, the mathematical theories 

behind these methods could remain challenging for modelers and researchers to 

understand, which affects the efficiency of model construction. Comparably, another 

major category of supervised classification is machine learning-based method, which 

provides a data-driven approach to build the relationship between features and categories. 

This type of method has gained great popularity due to its simplicity and efficiency while 

applied to the real-world applications. 

(2) Machine learning-based supervised methods 

As a subfield of artificial intelligence, machine learning has attracted wide 

attentions from various applications related to spatial analysis and modeling (Walker and 

Moore 1988, Aspinall 1992). This approach does not require assumptions on data 

distribution as certain statistical approaches. It also can perform well with complex data 

structure. Machine learning methods enable automatic knowledge extraction through an 

iterative learning process based on training data samples. The most commonly used 

methods in wetland classification include Artificial Neural Network (ANN), Support 

Vector Machine (SVM), and Decision Tree (DT) based methods (Breiman 2001, Pal and 

Mather 2003, Gislason et al. 2006, Rodríguez-Galiano et al. 2011, Loh 2011, Corcoran et 

al. 2013). 

a. Artificial Neural Network (ANN) 
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In ANN, the neural network contains at least three layers: one input layer, one 

output layer, and at least one hidden layer. Each layer includes a number of nodes, which 

gather information inputs from nodes in the previous layer, calculate the output using an 

activation function and transmit the results to the nodes in the succeeding layer. This 

information communication pattern reveals an intricate network to enable information 

passing through any pair of nodes between two contiguous layers. In a study to delineate 

forested wetlands, Augusteijn and Warrender (1998) employed a feed-forward neural 

network on radar data and multi-spectral data to distinguish among different levels of 

wetness in a forested wetland in Maryland. Ghedira et al. (2000) constructed back-

propagation neural networks and applied multi-temporal datasets of radar images to 

successfully distinguish more detailed forest wetland types in Quebec, Canada, such as 

forest, woody, and shrubby wetlands.  

b. Support Vector Machine (SVM) 

As a non-parametric machine learning method derived from statistical learning 

theory, SVM divides the input dataset into subspaces through the identification of 

optimal boundaries (hyperplane), which have the least error comparing to all the other 

possible boundaries for separating the classes in the SVM scheme (Vapnik 2013, 

Mountrakis et al. 2011). SVM works especially well at handling a large number of input 

variables and thus can achieve great performance in hyperspectral image classification 

(Melgani and Bruzzone 2004, Huang et al. 2002). However, SVM does not work 

efficiently in cases with a relatively small number of input features. For instance, Pakhale 
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and Gupta (2010) compared ANN and SVM classifiers using Landsat-7 ETM data for 

identifying wetlands, and ANN provided higher accuracy than SVM. 

c. Decision Tree (DT) 

DT-based methods have become increasingly popular for wetland mapping and 

classification due to their capability to deal with complex and non-linear relationships 

(Running et al. 1995). They represent complex classification rules as a number of 

consecutive simple decision-making processes (Safavian and Landgrebe 1991). In DT 

methods, an upside-down tree represents the classification rules and knowledge used in 

the decision process. The tree construction process will select partial input features to 

recursively divide the training dataset into smaller but more homogeneous subsets. The 

tree nodes represent the rules and criteria for splitting the dataset. For wetland 

classification, the schemes are often built based on the composition of different feature 

abundances extracted from the data (water, vegetation, and soil).  

For wetland applications, Wright and Gallant (2007) applied classification trees 

with multi-year satellite images to explore different combinations of predictors to model 

palustrine wetlands. Wei et al. (2008) applied a decision tree to analyze the best 

combination of wetland features (water, vegetation, and soil) for wetland classification. 

Hui et al. (2009) constructed a single decision tree to identify wetland from TM images 

using water features. All these applications observed significant accuracy improvement 

using DT methods compared to other supervised learning methods such as SVM. 



36 

 

 

During the construction of the DT, researchers can transfer the expert knowledge 

into the rules to affect the tree structure. Hurd et al. (2006) applied a decision tree to 

implement the rules to combine the classification results generated by pixel-based and 

object-based methods. However, they operated manual intervention to visually check the 

data layers and determine the appropriate threshold values in the decision rules. 

d. Random Forest (RF) 

To build a single classification tree may introduce an overfitting issue, where the 

classifier is tuned to a specific study area and only able to produce high accuracy for the 

trained study area. Therefore, studies questioned the applicability of the single tree model 

(Hui et al. 2009). To tackle this issue, they developed an assembling strategy to integrate 

the results from multiple classifiers. Random Forest (RF) method belongs to such 

strategy, it uses the majority vote among multiple decision trees in the forest to determine 

the final decision/classification. As such, the RF can generate robust estimations to 

handle the noise in the training dataset, as well as to reduce the risk of overfitting. 

RF offers a more robust performance by introducing bootstrap aggregation and 

random selection of feature subset for its optimization choice at each node. RF can utilize 

high-dimensional datasets to produce better results than other traditional classifiers such 

as MLC and minimum distance; it thus fits the application of hyperspectral image 

classification (Zhang and Xie 2012, Crawford et al. 2003, Naidoo et al. 2012, Zhang and 

Xie 2014). Naidoo et al. (2012) used RF to classify wetland tree species based on the 

integration of both spectral and structural datasets, revealing excellent performance. 
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Similarly, Corcoran et al. (2013) built several RF models by combining data from 

different sources, evaluating the impacts of multisource and multi-temporal datasets on 

the performance of RF. They demonstrated the significance of the quality of input data 

for RF classification accuracy.  

Supervised method proves to reveal great accuracy with the support of high 

quality and large data sample. However, the challenges remain when the data examples 

that have been assigned to the same category present various characteristics projected on 

the selected feature variables. Also, the categories predefined in the training process can 

limit the classification results. 

2.3.3 GIS Rule-based Expert System 

In prior to the wide application of unsupervised and supervised image 

classification, researchers have tested rule-based methods to improve the accuracy of 

wetland classification (Bolstad and Lillesand 1992). This method explicitly program the 

rules to guide the classification process; while the machine learning-based methods 

extract the rules from the training data. The rule-based methods often adopt GIS 

technique to translate the rule implementation process into spatial operations. 

The generic form of a rule is an “if-then scenario,” which means that certain 

“condition” can result in different decisions. In GIS rule-based expert system, spatial 

data layers represent the conditions and environmental information. Applying the expert 

system to the classification problem, models that built upon those explicitly defined rules 

play the role of a human expert to make decisions in terms of classification. For example, 
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a rule model can answer a question such as: what the wetland type for a specific location 

is according to its surrounding environmental characteristics.  

In related studies, researchers built the expert systems through the construction of 

knowledge base, which contains hypotheses or complicated rule sets derived from the 

training examples and human knowledge, and stored as a computer-usable format (Xu 

2014). Skidmore (1989) introduced the expert system to classify forest types, where he 

applied rules to quantify the relationships between forest types and terrain characteristics 

of the study area, such as gradient, aspect, and topographic position. Challenges lie in the 

process of formulating the human knowledge into a set of reliable and explicit rules to 

guide machines to make decisions (Argialas and Harlow 1990, Kontoes et al. 1993). 

Multiple studies have taken advantage of GIS to facilitate the representation of such 

information, by transferring knowledge into spatial data layers and spatial operations (Xu 

2014, Zhang et al. 2011, Hui et al. 2009, Li and Chen 2005). 

 Bolstad and Lillesand (1992) integrated spatial environmental data (roads, land 

cover, soil, and terrain) with Landsat TM data in a rule-based approach, and significantly 

improved the accuracy of wetland classification. Similarly, Sader et al. (1995) compared 

mapping accuracies of forest wetlands between image classification methods and a GIS 

rule-based model. In the GIS model, they conducted a pixel-level analysis to generate 

five data layers, including the unsupervised classification result, NWI, soil, DEM, and 

hydrography. The results show that the rule-based model has the highest overall accuracy. 
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However, it did not achieve significant improvement compared to the conventional 

methods. 

 Lunetta and Balogh (1999) implemented a simple rule-based model in wetland 

mapping. They first generated a land cover map and vegetation category map based on 

the unsupervised classification using multi-date Landsat TM data. They then integrated 

other raster data layers to construct the rule-based model, conducting an overlay process 

to mesh hydrologic soil conditions with vegetation and land cover types to further 

classify wetland types. The rule-based method significantly improved the classification 

accuracy from 69 percent to 88 percent. 

 Li and Chen (2005) documented the successful use of knowledge-based decision 

rules for detecting five types of wetlands in Canada. The conditional data layers included 

DEM, slope gradient, SAR images, Landsat ETM images, and NDVI. They applied 

object-based classification methods on the SAR images to generate different classes. 

They further applied the supervised classification method on optical data to generate land 

cover maps. Lastly, they used decision rules to integrate all the classification results and 

spatial data layers. Their research indicated that the application of rule-based method on 

top of supervised classification can improve the classification accuracy to a new level 

(higher than 90%).  

Aforementioned studies exemplified the applications of the rule-based methods 

for boosting the classification accuracy. This method provides the capability to integrate 

information collected from various data sources and prediction methods; thus to improve 
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the classification accuracy by involving more data layers (Sader et al. 1995, Bolstad and 

Lillesand 1992, Li and Chen 2005). However, the process of transferring the expert 

knowledge into classification rules can be sophisticated and difficult to validate due to 

the involvement of human intervention.  

2.3.4 Hybrid Methods 

Each aforementioned method plays a valuable role in identifying certain wetland 

types. However, one cannot identify a singular method to apply to all wetland types due 

to the great variability among different wetland types (Milton and Hélie 2003). To 

achieve better accuracy, hybrid methods have revealed increasing advantages over 

singular method in wetland classification by combining the strengths of both supervised 

and unsupervised methods, as well as better targeting different features for identifying 

different types of wetlands. 

One type of hybrid method develops classifiers at multiple stages and iteratively 

refine previous classification results. For example, one may first apply unsupervised 

classifiers to filter the data or to conduct a simple classification task, and then use 

supervised classifiers to identify more detailed and specific wetland types. For instance, 

Hurd et al. (2006) first performed a “cluster-busting” process using the ISODATA 

algorithm on Landsat ETM data to identify 150 spectral clusters, labeled into three 

specific land use types and one “others” category. They further classified pixels within 

the “others” category into different clusters. They repeated the procedure for each 
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category to form clusters and further applied object-based classifiers to identify 

vegetative composition based on the cluster results.  

The hybrid method has another advantage in processing complex datasets which 

are derived from multiple data sources. For instance, multiple factors such as the 

presence of speckle and different spectral separability of classes in SAR data can affect 

the accuracy of classifiers. The hybrid approach can utilize different techniques to 

improve the quality of input data and thus to mitigate the negative effects. Crawford et al. 

(1999) integrated a set of techniques to extract more information out of SAR data in 

terms of polarimetric and topographic features to classify coastal wetlands in Texas. They 

first applied a supervised feature selection technique to filter irrelevant features and keep 

effective ones for distinguishing specific classes. They then integrated a neural network 

and Bayesian pairwise classifier to conduct the classification. The results showed that this 

hybrid framework can achieve good classification accuracy handling multisource and 

multi-resolution SAR datasets. The accuracy of different types of marshes were all above 

90%.  

In another study, Zhang (2014) applied hyperspectral and LiDAR data to map 

wetland vegetation in Florida. They first conducted two cascaded PCA to filter the noise 

in the data and extract useful information by creating coherent eigenimages. Based on 

these datasets, they integrated three other techniques, including RF, SVM, and NN to 

conduct the classification. The synergy of all the datasets and the hybrid methodology 

leads to good classification performance with a Kappa value of 0.82. This statistic 
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coefficient measures agreement for categorical data with the consideration of the 

agreement by chance. 

2.4 Limitations of Current Studies 

 Studies have applied abundant techniques in automatic wetland classification 

focusing on different research perspectives. Previous section summarized several major 

techniques and analyzed their merits and disadvantages in wetland classification. 

Unsupervised classification can suffer from low classification performance. Statistical 

methods require many underlying assumptions that may not apply well to the real-world 

applications. Rule-based methods emerged along with the development of GIS and 

spatial analysis techniques; however, its implementation and validation remain a 

challenge. Due to the simplicity of application, machine-learning based methods become 

very popular for mapping the distributions of different wetland types. Meanwhile, the 

hybrid methods perform well in many applications since they perform well in 

distinguishing different wetland types that are covered by similar vegetation communities.  

Although the current studies have reported high classification accuracy for all 

these methods, there exists several limitations. First, the high accuracy revealed at the 

training process tends to give a false sense of a well-performed model. Which means, 

even though the models can reach a relatively high classification accuracy during the 

training phase, they are less likely to reproduce the same performance when applied to a 

different study area. Studies also consider this situation as the overfitting issue, under 
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which a trade-off exists between the generality of the model and high accuracy for 

predicting specific region.  

Second, the training data samples can greatly constraint ML-based models, since 

only the types that existed in the training samples will occur in the classification results. 

The type distribution in the classification result also tend to follow similar proportions as 

observed in the training data, which means wetlands with smaller samples could be easily 

omitted in the classification. 

Third, current studies lack emphasis on the repeatability and automation of the 

overall procedure, including data processing, model construction, model prediction, and 

post-processing. Automation plays an significant role in situation such as the need to 

rerun the classification workflow multiple times to conduct wetland mapping for different 

environmental conditions.  

This research aim at improving above listed limitations using the proposed 

methodology illustrated in the following chapter. 
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CHAPTER 3: METHODOLOGY 
 
 

This section introduces the methodology developed for this research. Methods 

include: (1) developing a GIS-based expert system for the wetland type classifications; (2) 

constructing a fusion database through data processing techniques; (3) building a 

knowledge base through two types of modeling methods, open-loop and closed-loop 

methods; (4) automating the workflow and evaluating classification results. The 

methodology aims to tackle specific objectives: (1) the expert system should perform 

better in terms of classification accuracy than traditional methods; (2) the methods should 

suit different study regions, with the consideration of local environmental characteristics 

such as topography and hydrology; (3) the method can be executed as an automatic 

process at a relatively low computational cost.  

3.1 Framework of the GIS-based Expert System 

This study proposes a hybrid expert system that combines the strengths of two 

classification approaches, which are the machine learning-based classifier approach and 

GIS rule-based approach.  

3.1.1 Two Modeling Perspectives 

Applying classification rules to categorize data samples (pixels on imageries) into 

different groups represents the core process of machine-based classification methods. 
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There mainly exist two common inference strategies to achieve knowledge: induction and 

deduction. The process of inductive learning depends on generalization from existing 

data and examples for the purpose of training, and the results are represented as 

production rules (Bratko 2001, Ahmad 2001). The deductive process requires more 

human inputs, which mostly include manual generalization and explicit summarization, 

to extract the rules from domain knowledge and expert experience. 

Corresponding to the two inference strategies, one can construct the classification 

models in different manners. Figure 1 shows the proposed workflows of the classification 

modeling that focus on different perspectives. The closed-loop modeling applies the 

inductive method to construct models based on existing data samples. The open-loop 

model relies on the knowledge deducted from expert experience. Respectively, the 

mechanisms behind the two modeling methods reveal differences. In the closed-loop 

modeling, certain evaluation processes provide feedbacks inheritably. For instance, the 

closed-loop model can apply accuracy metrics to guide the further improvement of the 

classification, such as using a regression line to fit the data through minimizing squared 

errors. This process relies on an algorithm instead of manual adjustments. In the open-

loop modeling, expert knowledge drives the decision-making process, which requires the 

explicit rules defined in advance. GIS introduces spatial analysis and spatial operations to 

generate data layers for representing the environmental features and translate human 

decision rules. Therefore, the modeling process in the closed-loop method represents a 

“black box” process guided by machine learning algorithms. To the contrary, the open-

loop modeling method explicitly defines the path to take. 
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Figure 1. Two modeling perspectives 

These two modeling perspectives can be complementary to each other. The 

closed-loop model mainly relies on the inductive process to learn from input training data. 

It extracts rules in a form that may not be intuitively straightforward for users but can 

provide high prediction accuracy. The open-loop model on the other hand provides rules 

based on reasoning and can be explained.  

3.1.2 Generating Decision Rules 

The traditional rule-based spatial models usually reveal decision rules as a 

deterministic and exclusive manner, for example: 

Define decision rule R1: 

if (A >= a AND B >= b): 
wetland type = c;  

else: 
wetland type = d; 
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In this model, we consider both A and B as key variables for identifying wetland 

types. The condition for supporting decision making is a binary statement, representing 

whether it has met certain criteria or not. Therefore, this model requires the process of 

transferring continuous real-world data into binary states. It also rely on the appropriate 

setup for parameters a and b to effectively separate different classes. This study uses 

probability-based statements instead of deterministic ones to represent the contributions 

of different variables. The form of the logic is then shown as below: 

Define decision rule R2: 

if (A >= a): 
probability of wetland type c = c + c1;  

if (B >= b): 
probability of wetland type c = c + c2;  
 

 Through the above process, when certain conditions are met, the confidence level 

of being a specific wetland type will increase. For example, in the above expression, c1 

and c2 represent probability variation on top of the previous probability. As a result, 

numerical values will be generated based on the sum of all relevant data layers, to 

indicate the potential for a wetland type to occur at the corresponding location. In general, 

a higher score indicates a higher possibility for the wetland type to occur. Users can then 

decide the cut-off threshold for determining wetland type in the final step. It relaxes the 

risk of inappropriate parameter calibrations in the earlier stage.  

3.1.3 System Framework  

In this research, the expert system integrates both modelling perspectives. Figure 

2 shows the overall framework of the expert system for supporting wetland type 

classification. 
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First, the system contains a core database to store data inputs from various 

sources, such as LiDAR data, satellite image (Sentinel-2 data), soil, and land cover data. I 

collected these spatial and nonspatial datasets for the study area, and further processed 

the source data to generate spatial data layers to represent environmental characteristics, 

mainly including the vegetation, hydrology, and topographical features. One data source 

can derive multiple data layers, for instance, we can extract geometrical features of 

LiDAR data to generate terrain derivatives or use intensity information to detect 

inundation or flooding under tree canopies. Other than environmental variables, the 

database also contains the wetland inventory information collected through fieldwork, 

which serves as ground truth information and will be used as a reference of wetland 

occurrences.  

Another core element of this system is the knowledge base, also described as the 

model base in this research. It stores rules constructed from both deductive and inductive 

methods—for instance, the classification models (tree structure rules) constructed from 

the closed-loop model training process, as well as decision rules derived from the open-

loop method based on the expert knowledge. I then derived an overall rule-based model 

to integrate rules from different sources, of which the quality depends on both the 

database and knowledge base. 
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3.2 Construction of Knowledge Base 

3.2.1 Extract Knowledge through Closed-Loop Modeling 

The major objective of the closed-loop modeling lies in extracting rules from 

algorithms to form a knowledge base for future wetland prediction. In this dissertation, I 

introduced automatic machine learning-based algorithms to this methodology framework 

as the knowledge extraction process. I selected three machine learning-based methods, 

including General Linear Model (GLM), Random Forest (RF), and Gradient Boosted 

Machine (GBM). The first two methods have occurred in several existing wetland 

classification studies and revealed good performance, while the GBM method represents 

a relatively new method. They all belong to the closed-loop modeling methods by 

extracting classification rules from the training datasets. GLM is the generalized form of 

the regression model, RF and GBM belong to the category of decision tree-based 

algorithms.  

(1) Generalized Linear Model 

A linear regression model represents the linear relationship between independent 

variables and a dependent variable. The traditional linear regression model holds several 

assumptions, such as the normal distribution assumption for the response variable and 

constancy of the variance. GLM is a generalization of the traditional linear model that 

unifies different types of regression models by relaxing data assumptions and allowing a 

non-normal form of the errors, it thus introduces more flexibility to regression model 

structure for a wider range of applications (Nykodym et al. 2016, McCullagh and Nelder 
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1989). GLM has three core components: probability distribution, linear prediction, and 

link function.  

In this study, we consider K categories, including one non-wetland type and K-1 

wetland types. Equation (1) shows the relationship between the response variable and 

independent variables for the k-th category. GLM assumes the dependent variable 𝑦!,# to 

follow a probability distribution that belongs to the exponential family, such as Gaussian, 

Poisson, and gamma distributions. Different distributions will introduce different 

transformations for probability calculation. One can assume the mean µ# to be certain 

function of linear combination  𝛽#
$𝑋! , and call the function for connecting the linear 

predictor with the mean as link function. In this study, I consider multinomial distribution 

for the dependent variable and applied softmax function as the link function. Formula (2) 

shows the probability calculation for each category (Nykodym et al. 2016). All K 

probabilities sum to one; the prediction type goes to the one with the highest probability. 

𝑦!,# = 𝛽#% + 𝛽#&𝑥&! + 𝛽#'𝑥'! +⋯+ 𝛽#(𝑥(! + 𝜖! 		 

𝑓𝑜𝑟	𝑖 ∈ {1,⋯ , 𝑛}	𝑎𝑛𝑑	𝑘 ∈ {0,1,⋯ , 𝐾 − 1}																																								(1) 

𝑃(𝑌! = 𝑘) = )!"
#$%

∑ )!&
#$%'()

&*+

																																																									(2)                         

where: i is the index for an observation (data sample; it corresponds to a grid cell in this 

study); 

k is the index for the category group which the dependent variable falls into; 
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𝑥+!, 𝑗 ∈ {1,⋯ , 𝑝}, is the j-th explanatory variable value for the i-th observation;   

𝑋! = B1, 𝑥&! , 𝑥'! , … , 𝑥(!D
$, is a vector of independent variables for the i-th observation; 

𝛽# = B𝛽#%, 𝛽#&, 𝛽#', … , 𝛽#(D
$, is a vector of parameters for category group k;  

𝛽#$𝑋! =	𝛽#% + 𝛽#&𝑥&! + 𝛽#'𝑥'! +⋯+ 𝛽#(𝑥(! , is known as the linear predictor; 

𝑌!,# = 𝛽#$𝑋! is the dependent variable for cell i which falls into the group k; 

𝑃(𝑌! = 𝑘) is the probability of observation i to be predicted as k-th wetland type based on 

measured features of the observation. 

 (2) Random Forest 

In the modeling process, RF method uses the bootstrap aggregation (bagging) 

technique to train all decision trees in the forest by randomly selected sub-datasets as 

training source data for different decision trees and to average all classification results 

from all decision trees together to vote for the final results. To build each tree, RF 

randomly selected a number of data samples from the overall training dataset. It chooses 

the variable with the highest information gain among the feature subset to split the node 

of the decision tree. It also evaluates all the trees using an internal accuracy estimation—

out-of-bag (OOB) error while constructing them. 

RF suits a wide range of datasets without the restriction of data distribution, and it 

handles well with data noise or overtraining issues. RF has another great merit as 

providing variable importance by quantifying changes in classification accuracy by 
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taking out the variable from the OOB data sample. However, RF lacks transparency due 

to the large number of trees in the model. 

(3) Gradient Boosting Model 

The Gradient Boosting Model (GBM, also known as Stochastic Gradient 

Boosting) is an improved technique based on CART methods. It combines gradient-based 

optimization and boosting strategies together. Gradient-based optimization aims at 

minimizing a model loss function for the training data, while the boosting strategy 

gathers a number of consecutively fitted trees to create a robust classification system 

(Click et al. 2016). Compared to RF, GBM applies a boosting strategy instead of a 

bagging method. It builds each tree to enhance prior trees and reduce the net error  

(Freund and Schapire 1996).  

For a K-class classification task, GBM can build K trees, each targeting at one 

class. The process of building each tree includes: (1) compute the residuals (the gradient 

values of user-specified loss function); (2) fit a regression tree to the gradients; (3) add 

current model to the fitted regression tree and improve it through a descending step, 

which gives the misclassified observations higher weights in the next iteration. The 

model is thus “boosted” over successive iterations.  

GBM uses a gradient-descent-based formulation to maximize the correlation 

between newly trained models with the negative gradient of the loss function. Users can 

define the loss function based on specific tasks in a flexible way, in terms of adjusting the 

loss function to achieve the appropriate model design. However, one needs to use an 

appropriate stopping point to reduce overfit since GBM is sensitive to data noise. Studies 
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has applied GBM in land cover classification and wetland change detection but not in 

wetland type identification yet (Baker et al. 2006, Baker et al. 2007). 

3.2.2 Summarize Expert Knowledge through Open-Loop Modeling 

In this study, I built an expert system applying open-loop modeling to introduce 

the expert knowledge for constructing the knowledge base. I used NCWAM as the source 

of truth for related expert knowledge of North Carolina wetlands classification. I 

translated the criteria in the classification rules into digital data through GIS spatial 

analysis. These data layers represent the influential environmental information for 

determining wetland types of a given location. I then calculated the probability for each 

wetland type to occur by translating the decision rules into spatial operations using 

previously generated data layers. In the end, I incorporated the prediction results from the 

closed-loop models into the final probability calculation.  

(1) Probability calculation for wetland types 

I first describe several basic definitions in this expert system, and then introduce 

the process of calculating probabilities. The expert system aims to answer a research 

question: “which wetland type is most likely to occur at a given wetland location?” 

Assuming there are K-1 wetland types in total in the classification task, and the spatial 

database contains a total number J of 𝑥+,(𝑗 ∈ {1,⋯ , 𝐽}) processed variable layers with the 

same spatial extent (the number of variables used here may differ from the closed-loop 

method), and georeferenced to the same coordinate system to support the rule-based 

model. Let 𝑥+!, 	 denote the value of cell i for input variable layer j, assuming there are I 
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cells in total in one data layer. Let 𝐻# be the hypothesis that wetland type k occurs at cell 

i, where 𝑘 ∈ {1,⋯ , 𝐾 − 1} types. I do not consider non-wetland type here in the rule-

based classification process (𝐻%). Formula (3) denotes the format of a simple rule; that 

under certain conditions, such as cell values from different layers fall within specific 

value ranges, then we can infer hypothesis 𝐻#. 𝑅+ refers to the condition using variable 

data layer j, where 𝑗 ∈ {1,⋯ , 𝐽} variable data layers. In this example, I use logic “and” 

(&) to connect all the conditions; however, in a more complicated situation, logic “or” 

operators may also be involved. The research objective is to identify the set of conditions 

that support each wetland type and formulize their contributions in the calculation of 

wetland type probability.  

𝑥&!, ∈ 𝑅&	&		𝑥'!, ∈ 𝑅'	&…&	𝑥+!, ∈ 𝑅- => 𝐻#, for cell i where 𝑖 ∈ {1,⋯ , 𝐼}							(3)  

Figure 3 illustrates the decision-making process of determining wetland types as 

an upside-down tree structure. This decision tree starts from a basic assumption that the 

location is considered as wetland based on observation or a prediction result from another 

model; it then diverges into a number of routes towards different wetland types. From 

each splitting node, it generates two alternative branches based on whether certain 

conditions have been met. A data layer with initial binary values of 0 and 1 represents 

whether the required condition is met or not met at the splitting node, and it is called a 

conditioning layer 𝐶!. We define a path as the route starting from the top node to one 

bottom leaf node (belonging to one wetland type), which goes through a series of 

splitting nodes. We call an individual path evidence 𝐸#., the t-th evidence to support 

wetland type k. In total, assume that m multiple paths can lead to the same wetland type k. 
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In this study 𝑚 = 1 for most wetland types, but few include multiple paths, e.g., 𝑚 = 2. 

Figure 3 shows that two paths lead to wetland Type 1. The probability of evidence is 

shown in Formula (4)—it is the multiplication of all the probabilities of conditions 𝐶! 

along this evidence path because it needs to fulfill all the criteria to reach the bottom leaf 

node. Formula (5) shows the probability calculation for each wetland type to occur, 

which summarizes the probabilities of all evidence, as an example to show wetland type k. 

𝑃(𝐻#|𝐸#.) is the conditional probability for 𝐻# to be true given evidence 𝐸#. is true. This 

probability depends on the reliability of this rule. In this research, we don’t consider 

uncertainty in the correctness of the expert knowledge, the value of 𝑃(𝐻#|𝐸#.) is 1. 𝑃(𝐶!) 

denotes the probability of the splitting node going towards the direction that is in the path 

(𝐸#.) towards corresponding wetland type (𝑘). The sum of the probabilities for all the K-

1 wetland types will be 1, see Formula (6). In this example, the probabilities for the two 

wetland types shown in Figure 3 are 𝑃(𝐶&)𝑃(𝐶') + (1 − 𝑃(𝐶&)) and 𝑃(𝐶&)(1 − 𝑃(𝐶')) 

respectively. 

𝑃(𝐸#.) = ∏ 𝑃(𝐶!)																																																																																			(4)/
!0&                      

𝑃(𝐻#) = ∑ 𝑃(𝐻#|𝐸#.)𝑃(𝐸#.)																																																																	(5)1
.0&           

∑ 𝑃(𝐻#) = 1														23&
#0& 																																																																										(6)  
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Figure 3. Decision tree example 

 Figure 4 shows the overall decision tree for North Carolina wetland types 

proposed by Axiom Environmental (Wang et al. 2014) based on NCWAM (N.C. Wetland 

Functional Assessment Team 2010). Here lists 15 wetland types (pine savannah and pine 

flat are combined as one type) and labels each wetland type with a code, shown in the 

parentheses beside the type name. NCWAM categorizes wetlands that are affected by 

tides as tidal wetlands, while the remainder falling into the non-tidal wetland group. It 

further classifies wetlands in the non-tidal group as riparian if they located within a 

geomorphic crenulation, floodplain, or adjacent to a 20-acre or larger lake. Non-tidal 

wetlands that are not associated with the above features are classified as non-riparian type. 

𝑃! denotes the probability at each condition node. The total of probabilities for paths that 

are derived from the same splitting node must sum up to 1.  
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Figure 4. Decision process for all wetland types based on expert knowledge 

In the probability Equation, 𝑃(𝐶!) denotes the chance of the decision tree going 

towards a particular path, given the data observed. It uses the environmental data to 

analyze the probability of each branch at the splitting node. The ideal situation is, when 

certain criteria are met, the value of the cell on this raster layer equals 1; otherwise 0. For 

instance, the first splitting node is “whether it is affected by tides.” My solution here is to 

collect Tidal Influence Zone (TIZ) data and Tidal Water Amplitude (TWA) data from the 

National Oceanic and Atmospheric Administration (NOAA), to analyze the possibility 

that of tides affecting a specific area. In the end, I divided the region to areas that are 

affected by tides and that are not affected. 

Ideally, assuming that the original data is correct, and the analysis process has no 

error, we can draw clear boundaries on the map between tidal and non-tidal areas, with 

corresponding cell values of 1 and 0. However, In reality, abrupt boundaries do not exist 

as illustrated on the simplified maps. In this example, the areas on different sides of the 
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boundary and near the boundary may not significantly differ. Furthermore, errors can 

exist in data collecting and processing steps. All these factors can result in ambiguity on 

the maps. The same situation applies to the formation of the decision tree. Misguided by 

the inaccurate splitting criteria, classification for a data sample could follow the wrong 

path and end up with a incorrect wetland type. To better deal with this situation, I set a 

tolerance at each splitting node. Instead of using 0 or 1 to denote the possibility of taking 

a path, I applied a probability value between 0 and 1 for each branch. I then calculated 

the values basing on the percentage of misclassified examples caused by the data map at 

each splitting node. I consider this process as the calibration for the open-loop method. 

In this research, I used the standards shown in Table 3 to assign a pair of 

probability values to the two branches at a splitting node. The probability values for each 

path corresponds to 𝑃(𝐶!) in Formula (4). I then calculated a final probability result 

between 0 to 1 for each wetland type by multiplying all the probability values of the paths 

taken. Higher probability value represents a higher possibility for the wetland type to 

occur given a series of evidence observed according to current environmental features. 

This process can also help with evaluating the quality of the data layers. If the error rate 

for the classification is too high, such as larger than 50%, the corresponding data layer is 

considered as unreliable, and the generation process of the data layer needs further 

examination. 
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Table 3. Value adjustment for each data layer 

Percentage of misclassified pixels Values update 
> 50% Recheck the generation of data layer 
40% ~ 50% (0.4, 0.6) 
30% ~ 40% (0.3, 0.7) 
20% ~ 30% (0.2, 0.8) 
5% ~ 20% (0.1, 0.9) 
0% ~ 5% (0, 1) 
 

3.2.3 Rules Integration from Different Models 

The models from model base will generate different classification results, which 

requires an integration mechanism to conclude the final result. Common strategies to 

integrate model results include majority vote, Bayesian average, the fuzzy integral 

method and so on (Zhang 2014, Moreno-Seco et al. 2006). By applying the average or 

majority vote method, one needs to take into consideration of results from all the models. 

However, if multiple models sharing similar essence and results, votes from these models 

may dominate all the voting. For instance, in our case, results among the three ML 

models could reveal higher similarity compared to the result of the rule-based model. 

Considering this case, a weighted summary tends to be fairer. Another potential issue for 

the current integration method relates to the reliability of different models. It is hard to 

determine which one has higher reliability and higher weight in the integration. In this 

research, I applied a strategy to conduct a precheck and eventually proceed with a 

weighted sum to determine the result.  

In this expert system, results generated by this system include one rule-based 

(open-loop) model and three results from ML models (the closed-loop method). First, I 
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combined the ML results based on a weighted sum process. Secondly, I applied the 

combined closed-loop result to impact the probability calculation process in the rule-

based model. However, whether the second integration step happens depends on a 

criterion related to the consistency among the ML models. Formula (7) shows the 

calculation of integrated probability 𝑃𝐼(𝐻#). Modifying the weights will adjust the 

relative contribution between the open-loop method and the closed-loop method, as well 

as among different machine-learning models. However, in the integration process, the 

closed-loop models can only provide the contribution to the wetland types that have 

occurred in the training dataset.  

𝑃𝐼(𝐻#) =

⎩
⎪
⎨

⎪
⎧𝑤,𝑃(𝐻#) +	𝑤4Z𝑤!𝑃56!#

7

!0&

, 𝑖𝑓	Z𝑤!𝑃56!#

7

!0&

≥ 𝑡

𝑃(𝐻#), 𝑖𝑓	Z𝑤!𝑃56!#

7

!0&

< 𝑡

																	(7) 

𝑃56!# = _ 1, 𝑖𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑎𝑠	𝑡𝑦𝑝𝑒	𝑘	𝑏𝑦	𝑀𝐿	𝑚𝑒𝑡ℎ𝑜𝑑	𝑖
0, 𝑖𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑎𝑠	𝑜𝑡ℎ𝑒𝑟	𝑡𝑦𝑝𝑒	𝑏𝑦	𝑀𝐿	𝑚𝑒𝑡ℎ𝑜𝑑	𝑖	 																(8) 

𝑤, +	𝑤4 = 1																																																								(9)       

Z𝑤!

7

!0&

= 1																																																								(10) 

where: 𝑃𝐼(𝐻#) is the integrated probability for the pixel to be assigned to wetland type k;  

𝑃(𝐻#) is the probability for the pixel to be assigned to wetland type k, calculated 
based on the rule-based model, see Formula (5);  

𝑘 ∈ (1⋯𝐾 − 1); 

𝑡 is the threshold for integrating the closed-loop models in the probability calculation; 

𝑃56!# is the binary result map generated by the machine-learning (ML) method i 
for wetland type k; 

 𝑤, is the weight for the probability calculated from the open-loop method; 
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 𝑤4 is the weight for the integrated result of all the closed-loop models. 

The first two steps derived the final probability for each wetland type. Finally, I 

conducted a competition process to compare all the probabilities among different wetland 

types and consider the type with the highest value as the classification result. If multiple 

wetland types reveal the same highest probability value, I will use the neighboring pixels 

within a three-by-three window to determine the most likely wetland type. Under this 

situation, I will calculate the sums of probability values of all the neighboring pixels for 

these wetland types and compare them. And choose the wetland type that has the highest 

probability as well as highest neighboring sum probability.  

3.3 Construction of a Fusion Database 

To support the construction of the model base in the expert system, an important 

step consists of preparing the input datasets for both the closed-loop and open-loop 

models. In this section, I summarize the key variables and data used by these two models. 

The corresponding module for database preparation is the data processing and variable 

generation module. This module contains a number of GIS functions and processes, 

which together play an important role in integrating data from different sources and 

constructing a fusion database. 

3.3.1 Variable Generation for the Closed-Loop Model 

Variables here refer to the representations of key features and critical spatial 

characteristics for the algorithms to determine wetland types. In the closed-loop model, 

variables serve as the basis for machine learning algorithms to extract knowledge and to 

build a relationship between features and classified types. Table 4 lists the variables 
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generated for this study (Wang et al. 2015). Such variables are organized and stored in a 

GIS geodatabase as either raster layers or vector data files. Each variable represents a 

dimension in the feature space, and the measurement unit represents the aggregation level. 

Each variable is associated with multiple raster layers with different resolutions 

representing different levels of aggregation.  

Table 4. Variables generated for the closed-loop modeling 

Variable 
Name 

Full Name Data Source and Illustration 

DEM Derivatives 
ELVPCD1 Elevation Elevation of each cell: z(x, y) 
SLP Slope In degree:slp(x, y) = 57.29578 ×

atan	(s(𝑑𝑧/𝑑𝑥)' + (𝑑𝑧/𝑑𝑦)'		) 
ASP Aspect ASP = 57.29578 * atan2 ([dz/dy], -[dz/dx]) 
HILL Hillshade Hillshade = 255.0 * ((cos(Zenith_rad) * 

cos(Slope_rad)) + (sin(Zenith_rad) * sin(Slope_rad) * 
cos(Azimuth_rad - Aspect_rad))) 
Zenith_rad: zenith angle in radians 
Slope_rad: slope radians calculated in 3 by 3 window 
Azimuth_rad: azimuth angle in radians 
Aspect_rad: aspect calculated in 3 by 3 window  

RF2 Roughness 
Index (Jacek 
1997) 

The roughness in a continuous raster within a 
specified window.  
RI = std * std 
std: the standard deviation within a specified window 

IMI2 Integrated 
Moisture Index 
(Iverson et al. 
1997) 

IMI = 0.15*curv + 0.35*flac + 0.5*hill  
curv:curvature 
flac: flow accumulation 
hill: hillshade 

CTI2 Compound 
Topographic 
Index 

CTI can indicate the water accumulation possibility at 
specific locations. Small value denotes upper catenary 
positions (Gessler et al. 2000). It is a function of both 
the slope and the upstream contributing area per unit 
width to the flow direction.  
CTI = ln (AS / (tan(beta))) 

 
1 These variables are further normalized to the same value range (0-100). 
2 These variables are generated using a tool box downloaded from: 

http://evansmurphy.wix.com/evansspatial#!arcgis-gradient-metrics-toolbox/crro 
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where “AS” is the area calculated as (flow 
accumulation + 1) *(pixel area m2) and beta is the 
slope in radians  
http://arcscripts.esri.com/details.asp?dbid=11863 

SRR2 Surface Relief 
Ratio 

It describes rugosity in a continuous raster surface 
within a specified window (Pike and Wilson 1971).  
SRR=( zmean - zmin) / (zmax - zmin ) 

LS Slope Length 
and Steepness 
Factor 

Index LS can reflect the complexity of the surface 
(Olaya 2009). 
LS = Power(“flowacc”* cellSize /22.1,0.4) * 
Power(Sin(“slp”*0.01745))/0.09, 1.4) * 1.4 
“flowacc” = Flow accumulation  
cellSize = Resolution of DEM in meters  
“slp”  = slope in degrees  

FLACD Flow 
Accumulation 

Accumulated weight of all cells flowing into each 
downslope cell in the output raster. The calculation is 
based on the DEM with “fill” preprocessing. 
FLAC = ∑ 𝑐!𝑤!7

!0%  
where ci is a neighboring cell that has water flows into 
the cell of interest 
wi is the weight of the neighbor cell 

FLATDC Flatness Index Sum of the absolute value of the difference between a 
cell and its eight neighbors. 

MDECD Maximum 
Downslope 
Elevation 
Change 

Maximum difference of z(x,y) between the cell and its 
neighbor cells. 
MDEC = Max(zi - z) 
where zi is the elevation of a neighbor cell 

WEID NCDOT 
Wetland 
Elevation Index 

Series of increasingly larger neighborhoods used to 
determine the relative landscape position of each cell. 
WEI = ∑ 89%

,
%*)
7

 
where dzi = z – Mean(zi) 
dzi is the difference of elevation between the cell and 
the mean elevation of its neighboring cells at certain 
window size; zi is the elevation value at the cell 
location 

WEIRE Reclassification 
of NCDOT WEI WEIR = _1, 𝑖𝑓	𝑊𝐸𝐼 > 0

0, 𝑖𝑓	𝑊𝐸𝐼 ≤ 0 

DROPD Elevation Drop The ratio of the maximum elevation change along 
flow direction 
DROP = (zi - z) / (1.5 * cell size) 
where zi is the elevation of the neighbor cell that lies 
along the flow direction 

Vegetation  
LOWI Intensity of Low The classification of vegetation point is labeled as:  
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Vegetation 
Returns 

Low Vegetation (3); Medium Vegetation (4); High 
Vegetation (5) 
High intensity values represent photosynthetically 
active vegetation, while lower intensity values are 
likely to represent wet surface condition or less 
photosynthetically active vegetation. 

MEDI Intensity of 
Medium 
Vegetation 
Returns 

HIGHI Intensity of High 
Vegetation 
Returns 

LOWP Percentage of 
Low Vegetation 
Returns 

Number of low vegetation returns divided by the total 
number of point returns (the total points counted here 
include ground, low vegetation, medium vegetation, 
high vegetation and water). 

MEDP Percentage of 
Medium 
Vegetation 
Returns 

Number of medium vegetation returns divided by the 
total number of point returns. 

HIGHP Percentage of 
High Vegetation 
Returns 

Number of high vegetation returns divided by the 
total number of point returns. 

EVI Enhanced 
Vegetation 
Index 

2.5 * ((b8-b4) / (b8 + 6* b4 - 7.5* b2 + 1)) 
Where: b2 is Band 2 – Blue; 
b4 is Band 4 – Red; 
b8 is Band 8 - NIR 

NDVI Normalized 
Difference 
Vegetation 
Index 

(b8 - b4) / (b8 + b4) 
Where:  
b4 is Band 4 – Red; 
b8 is Band 8 - NIR 

NDWI Normalized 
Difference 
Water Index 

(b3 - b8) / (b3 + b8) 
Where: 
b3 is Band 3 – Green; 
b8 is Band 8 - NIR 

MSAVI Modified Soil-
Adjusted 
Vegetation 
Index 

b8 + 0.5 - (0.5 * sqrt((2 * b8 + 1)2 - 8 * (b8 - (2 * 
b4)))) 
Where: b2 is Band 2 – Blue; 
b4 is Band 4 – Red; 
b8 is Band 8 - NIR 

MSAVI2 Modified Soil-
Adjusted 
Vegetation 
Index II 

(2 * (b8 + 1) - sqrt((2 * b8 + 1)2 - 8 * (b8 - b4))) / 2 
Where: b2 is Band 2 – Blue; 
b4 is Band 4 – Red; 
b8 is Band 8 - NIR 

Other Data 
SOIL Soil Type Categorical data, soil type based on Natural 

Resources Conservation Services (NRCS) soils 
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database files. 
TIDAL Riparian 

Information 
Binary data, 0 denotes non-riparian and 1 denotes 
riparian area, data is provided by NCDOT 

LC Land Cover 
Type 

Reclassified 2011 NLCD dataset.  
The reclassified types are: 
Water (1), Built-up (2), Barren (3), Deciduous (4), 
Evergreen (5), Mixed Forest (6), Shrubs (7), 
Herbaceous (8), Agriculture (9), Woody Wetlands 
(10), Herbaceous Wetlands (11) 

The variables mainly focus on three aspects of environmental characteristics: 

vegetation, hydrology, and terrain, corresponding to the key indicators to distinguish 

different wetland types. For example, terrain derivatives play important roles in detecting 

the possibility of water inundation; they are typically estimated based on a digital 

elevation model (DEM) to simulate hydrologic processes at a watershed scale. In this 

study, I applied LiDAR data to generate the DEM layer.  

DEM layer provides the foundation to generate terrain derivatives. Existing 

applications applied various terrain derivatives and may vary in specific algorithm. For 

example, there exist multiple versions of surface roughness to depict the variation of the 

terrain elevation at the local scale. The roughness of the surface has impacts on the 

capability of surface water storage; therefore, this metric can provide great help in 

providing information about hydrological condition and thus has occurred in wetland 

related studies. This researched adopted the calculation from: 

http://gis4geomorphology.com/roughness-topographic-position. 

We can summarize vegetation characteristics by the composition of different 

vegetation types (e.g., herbaceous, evergreen or deciduous), vegetation density, and 

vertical structure (profile percentages). One can use LiDAR intensity (amplitude) to 
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provide important information on vegetation conditions, such as differentiating 

vegetation species through the characteristics of surface reflections (Song et al. 2002). 

LiDAR return intensity can help with quantifying the amount of energy returned to the 

sensor relative to the emitted energy per laser pulse. In this study, I calculated the 

composition of different types of vegetation, as well as the vertical strata, the percentage 

of returns from different heights of plants. 

I applied multispectral satellite data to generate several metrics, to represent 

vegetation and hydric conditions. I used four Sentinel-2 bands (Blue, Green, Red, and 

Near-infrared) to produce several indicators, including the Enhanced Vegetation Index 

(EVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water 

Index (NDWI), Modified Soil-adjusted Vegetation Index (MSAVI), and MSAVI2. 

Other than terrain and vegetation, I collected additional data such as soil category 

and land cover types as other variable layers. I conducted a set of GIS operations to 

process the datasets to ensure the consistency in the spatial extent, common resolution, 

and projection. For more complex spatial algorithms, I developed more advanced GIS 

tools to assemble the functionalities that can automate the variable generation process.  

Table 4 shows the variables that will serve as the input data for the closed-loop 

modeling. To compare variables among different study regions, I normalized several 

variables to the range of 0 – 100 (Formula 11). In this way, the value represents the 

relative level compared to the local overall condition. For the vegetation metrics, the 

calculation is based on different bands obtained from Sentinel-2 data. Several examples 

of the variables are shown in Figure 5 to Figure 8. 
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𝑉!: = 100 × (<%3<-%,)
(<-./3<-%,)

																																																				(11)        

 

Figure 5. EVI based on Sentinel data for the study area 

 

Figure 6. Intensity of the high vegetation LiDAR points 
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Figure 7. Slope layer based on DEM 

 

Figure 8. NDWI layer based on Sentinel data for the study area 

3.3.2 Variable Generation for the Open-Loop Model 

For the open-loop model, I generated spatial variable layers using several input 

datasets to represent the conditional layers in the decision tree. A number of 
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environmental characteristics then collectively lead to the evidence to support specific 

wetland types.  

Table 5 summarizes the basic characteristics of these wetland types from the main 

aspects of landscape position, water, soil, and vegetation. Based on the landscape 

positions where the wetlands occur, there exist three major categories, including 

salt/brackish marsh, riparian, and non-riparian type. Riparian wetlands refer to wetland 

types typically found in one of the following situations: (1) in a geomorphic floodplain; 

(2) at a natural topographic crenulation; (3) contiguous with open water covering 20 acres 

or larger; (4) subject to tidal flow regimes, excluding salt/brackish marsh. The four non-

wetland open water types—natural waterbodies, artificial waterbodies, estuarine waters, 

and ocean—are not discussed here. 

To measure and quantify the features through GIS tools, I gathered the datasets 

that can represent the characteristics. For each wetland type, I extracted the key factors 

for distinguishing this wetland type (as listed in Table 5). In the final step, I converted all 

the data to a binary raster layer, of which the value denotes whether the cell satisfies the 

condition of the key factor. 
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Table 5. Characteristics of different wetland types and related key factors 

Wetland 
Type (code) Characteristics Key Factors and Criteria  

Salt/Brackish 
Marsh (1) 

Landscape Position: areas subject to 
regular or occasional flooding by tides, 
including wind tides; 
Ecoregion: in the tidewater region of 
the Middle Atlantic Coastal Plain 
ecoregion; 
Soil: organic and mineral soils; 
Vegetation: dominated by herbaceous 
vegetation (less than 50 percent 
coverage by woody species); 
Hydrology: with water salinities equal 
to or exceeding 0.5 parts per thousand 
during the period of average, annual low 
flow. 

soil: salt/brackish marsh 
soil; 
tidal affected area; 
water salinity: affected by 
salt/brackish water; 
vegetation (herb): 
percentage of low 
vegetation >= t1; 
ecoregion: Middle Atlantic 
Coastal Plain 

Estuarine 
Woody 

Wetland (2) 

Landscape Position: wetlands occur on 
the margins of estuaries, they are 
typically fringing tidal marshes, and 
they are subject to occasional flooding 
by tides; 
Ecoregion: in the tidewater region of 
the Middle Atlantic Coastal Plain 
ecoregion; 
Soil: organic or mineral soils; 
Vegetation: dominated by woody 
vegetation including shrubs and trees. 

soil: estuarine woody 
wetland soil; 
tidal affected area; 
riparian area; 
water salinity: affected by 
salt/brackish water; 
vegetation (woody): 
percentage of middle and 
high vegetation >= t; 
ecoregion: Middle Atlantic 
Coastal Plain 

 

Tidal 
Freshwater 
Marsh (3) 

Landscape Position: wetlands occur on 
the margins of estuaries and in lower 
reaches of streams and rivers where they 
are saturated most of the time and are 
also subject to regular or occasional 
flooding by tides, including wind tides; 
Ecoregion: in the tidewater region of 
the Middle Atlantic Coastal Plain 
ecoregion; 
Soil: organic or mineral soils; 
Vegetation: dominated by herbaceous 
vegetation; 
Hydrology: with water salinities below 
0.5 parts per thousand, but possibly 

soil: tidal freshwater 
marsh soil; 
tidal affected area; 
water salinity: affected by 
fresh water; 
riparian area; 
vegetation (herb): 
percentage of low 
vegetation >= t; 
ecoregion: Middle Atlantic 
Coastal Plain 
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exceeding this threshold as a result of 
storm events. 

Riverine 
Swamp 

Forest (4) 

Landscape Position: wetlands occur 
throughout the state, but are most 
extensive and abundant in Coastal Plain 
ecoregions; 
Soil: organic or mineral soils; 
Vegetation: dominated by woody 
vegetation; 
Hydrology: seasonal to semi-permanent 
inundation. 

soil: riverine swamp forest 
soil; 
tidal affected area; 
water salinity: affected by 
fresh water; 
vegetation (woody): 
percentage of middle and 
high vegetation >= t; 
riparian area; 
non-depression; 
hydrology: Axiom2 Soil 
Tables Hydrology Code 
E5, E6 

Seep (5) 

Landscape Position: located throughout 
the state where groundwater is 
discharged to the surface on a slope not 
in a geomorphic floodplain or a natural 
topographic crenulation; 
Soil: organic or mineral soils; 
Vegetation: variable; 
Hydrology: semi-permanently to 
permanently saturated by ground water. 

soil: seep soil; 
non-riparian area; 
slope >=1%; 
non-depression 

Hardwood 
Flat (6) 

Landscape Position: mostly found on 
poorly drained, interstream flats; 
Soil: mineral soils; 
Ecoregion: mainly in Coastal Plain 
ecoregions; 
Vegetation: commonly dominated by 
hardwood tree species including various 
oaks; 
Hydrology: seasonally saturated or 
intermittently to seasonally inundated by 
a high water table or poor drainage, but 
have a shorter hydro period than Non-
Riverine Swamp Forests. 

soil: hardwood flat soil; 
non-riparian region; 
slope <=1%; 
non-depression area; 
ecoregion: Coastal Plain; 
vegetation: deciduous in 
NLCD; 
hydrology: no evidence of 
flooding, the number of 
ground points >= t; 
Axiom Soil Tables 
Hydrology Code E1 – E5 

Non-
Riverine 
Swamp 

Forest (7) 

Landscape Position: occurs primarily 
in the embayed region on poorly 
drained, interstream flats not contiguous 
with streams, rivers, or estuaries; 
Soil: mucky mineral or organic soils; 
Ecoregion: northeastern Middle Atlantic 
Coastal Plain ecoregion; 
Vegetation: forest vegetation; 

soil: non-riverine swamp 
forest soil; 
non-riparian area; 
slope <=1%; 
non-depression area; 
ecoregion: Middle Atlantic 
Coastal Plain region; 
vegetation: deciduous in 
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Hydrology: seasonally to semi-
permanently inundated with hydrology 
driven by groundwater discharge, 
overland runoff, and/or precipitation 
rather than overbank or tidal flooding. 

NLCD; 
hydrology (evidence of 
flooding): the number of 
ground points; 
Axiom Soil Tables 
Hydrology Code E6 

Pocosin (8) 

Landscape Position: occurs on poorly 
drained, interstream flats and in basins 
of various sizes such as peat-filled 
Carolina bays; 
Soil: mineral or organic soils; special 
pocosin soil; 
Ecoregion: Coastal Plain ecoregion or 
southeastern plains; 
Vegetation: dominated by dense, waxy 
evergreen shrubs; 
Hydrology: seasonally saturated or 
inundated by a high or perched water 
table. 

soil: pocosin soil type 
only; 
non-riparian area; 
ecoregion: Middle Atlantic 
Coastal Plain or 
Southeastern Plain; 
depression area; 
vegetation: evergreen and 
shrub in NLCD; 
vegetation density: QL2 
the percentage of middle 
and low vegetation falls 
within the highest quantile 
 

Pine 
Savanna / 
Flat (9/10) 

Landscape Position: occurs on poorly 
drained, interstream flats; 
Soil: mineral soils; 
Ecoregion: Coastal Plain ecoregion or 
Southeastern Plain; 
Vegetation: dominated by long-leaf and 
pond pine, with scattered, low shrubs 
and grassy ground cover; 
Hydrology: seasonally saturated by a 
high water table or poor drainage, but 
have a shorter hydroperiod than Non-
Riverine Swamp Forest; little surface 
storage; 
Other: maintained by frequent, low-
intensity fires. 

soil: pine soil; 
non-riparian area; 
ecoregion: Middle Atlantic 
Coastal Plain or 
Southeastern Plain; 
slope <=1%; 
non-depression area; 
vegetation: evergreen in 
NLCD; 
vegetation pattern: QL2 
percentage of high 
vegetation falls within the 
highest quantile; middle 
vegetation intensity <= t 

Basin 
Wetland (11) 

Landscape Position: occurs throughout 
the state in depressions surrounded by 
uplands (usually on interstream flats or 
in localized depressions); may also 
occur on the fringe of small open waters 
(less than 20 acres in size); 
Soil: mineral soils; 
Vegetation: varies widely from forest to 
herbaceous or emergent; 
Hydrology: seasonally to semi-

soil: basin soil; 
non-riparian area; 
slope <=1%; 
depression area; 
proximity: distance to 
small open waters <= t 
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permanently inundated but may lose 
surface hydrology during later portions 
of the growing season; 
Other: seasonal waterlines are often 
apparent on the vegetation; this type is 
very heterogeneous. 

Bog (12) 

Landscape Position: occurs in 
geomorphic floodplains or natural 
topographic crenulations and is typically 
located on flat or gently sloping ground; 
Soil: organic or mucky mineral soils; 
Ecoregion: typically in the Blue Ridge 
and Northern Inner Piedmont 
ecoregions; 
Vegetation: 1) dominated by dense 
herbaceous or mixed shrub/herbaceous 
vegetation; 2) tree cover over much of 
the wetland area and dense herb cover 
limited to small openings; 
Hydrology: at least semi-permanently 
saturated, but typically not inundated; 
Other: there are specific soils that 
support bog. 

soil: bog soil; 
riparian area; 
ecoregion: Blue Ridge and 
Northern Inner Piedmont; 
vegetation: percentage of 
low and medium 
vegetation points >= t 
  

Non-Tidal 
Freshwater 
Marsh (13) 

Landscape Position: throughout the 
state in geomorphic floodplains, in 
natural topographic crenulations, or 
contiguous with open waters 20 acres or 
larger; 
Soil: organic or mineral soils; 
Vegetation: predominantly herbaceous; 
Hydrology: semi-permanent inundation 
or saturation, but are typically not 
subject to regular or occasional flooding 
by tides. 

riparian area; 
non-tidal area; 
soil: organic or mineral 
soil; 
vegetation: percentage of 
low vegetation >= t 

Floodplain 
Pool (14) 

Landscape Position: throughout the 
state in geomorphic floodplains, may 
occur in abandoned stream or river 
channels (oxbows) or in localized 
depressions near the toe of slopes; 
Soil: mineral soils; 
Vegetation: trees are commonly found 
around the edge of the pool rather than 
growing within the pool; vegetation 
within the pool can be sparse or 
variable; 

soil: floodplain pool soil; 
riparian area; 
vegetation: percentage of 
middle and high 
vegetation >= t; 
depression: localized 
depression; 
hydrology: Axiom Soil 
Tables Hydrology Code 
E6 
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Hydrology: semi-permanent inundation. 

Headwater 
Forest (15) 

Landscape Position: throughout the 
state in geomorphic floodplains of first-
order or smaller streams and in 
topographic crenulations without a 
stream; 
Soil: mineral soils; 
Vegetation: hardwood tree and shrub 
species are the predominant vegetation; 
Hydrology: relatively flat ground 
surface that provides little water storage; 
it frequently has surface flow, especially 
through ephemeral channels; 
intermittently inundated by surface 
water or seasonally saturated to semi-
permanently saturated. 

soil: headwater forest soil; 
riparian area; 
vegetation: percentage of 
middle and high 
vegetation >= t; 
non-depression; 
stream: order <=1; 
surface flow: percentage 
of ground points >= t; 
hydrology: Axiom Soil 
Tables Hydrology Code 
E1 – E4 

Bottomland 
Hardwood 
Forest (16) 

Landscape Position: throughout the 
state in geomorphic floodplains of 
second-order or larger streams; 
Soil: mineral soils; 
Vegetation: dominated by a variety of 
hardwood tree species; 
Hydrology: generally intermittently to 
seasonally inundated; has ground 
surface relief that provides good water 
storage. 

soil: bottomland hardwood 
forest; 
riparian area; 
vegetation: percentage of 
middle and high 
vegetation >= t; 
non-depression; 
stream: order >= 2; 
surface flow: percentage 
of ground points >= t; 
hydrology: Axiom Soil 
Tables Hydrology Code 
E1 - E5; 

Note: 1. t denotes a predefined threshold as a criterion for data classification; 2. Soil data 
is processed by the Axiom Company, and in the data table, hydrology code implements 
the inundation level.
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3.4 Model Evaluation Method 

There exist various selections of metrics to assess the performance of the wetland 

model by comparing the prediction results with ground truth classification. In most cases, 

we consider classification validated by fieldwork as the source of truth. For a more 

consistent reference, one can adopt the method to conduct fieldwork and divide the 

collected data into two separate datasets, one for training and the other for evaluating the 

results generated by the training model (Franklin and Moulton 1990, Lauver and Whistler 

1993). 

Researchers have developed various metrics for the evaluation process; most of 

the metrics are based on the confusion matrix, which is a table for tracking the prediction 

result of each class by quantifying the number of samples which are correctly classified 

and those that are incorrectly classified to other classes. This paper mainly used the 

evaluation metrics such as overall accuracy, precision, recall, and Kappa index.  

Overall accuracy represents the percentage of all the correctly classified samples 

over the total samples, with the value range between 0 and 1 and the higher value denotes 

that more samples are predicted correctly. It is the most straightforward metric. However, 

it cannot exclude the cases that are randomly predicted correctly due to imbalanced 

samples among different classes. Based on the confusion matrix we can also calculate the 

recall and precision for each wetland type. Additionally, another four important concepts 

can help with better illustrating the definition of recall and precision. For each wetland 

type, “true positive” means the samples were predicted as the wetland type that they 

belong to; “true negative” represents the samples which do not belong to this wetland 
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type that were correctly predicted as other wetland types; “false positive” denotes the 

samples that actually belong to other wetland types that were incorrectly predicted as this 

wetland type; and false negative corresponds to the samples that belong to this type were 

omitted and predicted as other types. Based on these concepts, precision denotes the rate 

of true positive samples over the sum of true positive and false positive samples. The 

precision is also called “user’s accuracy”, as the complementary of the commission error. 

Precision of a wetland type essentially tells how often the type presented on the map 

actually correspond to the true type on the ground. This metric refers to the reliability of 

the map (prediction data). Another metric recall, also known as the “producer’s accuracy”, 

represents the fraction of true positive samples among the sum of true positive and false 

negative samples. Recall represents as complementary to the omission error, it equals 100% 

minus omission error percentage. It describes the accuracy from the perspective of the 

mapmaker or data producer, and it tells us how often the wetland type that occurred on 

the ground can be predicted on the map as such. 

Cohen’s Kappa index evaluates the performance of the prediction model 

compared to randomly assigning prediction results to samples. It adjusts the prediction 

accuracy by considering the probability of correct prediction by chance. According to the 

confusion matrix, Kappa considers not only the diagonal agreements used in accuracy but 

also the off-diagonal instances. Formula (12) shows the calculation process (Cohen 1960, 

Cohen 1968). The observed agreement was the total number of instances that appear in 

the diagonal of the confusion matrix. For each class, multiply the proportion of 

agreement with the marginal rates of the two classifiers for predicting this class.  
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𝐾𝑎𝑝𝑝𝑎 =
𝑂𝐴 − 𝐴𝐶
𝑇 − 𝐴𝐶 																																																								(12) 

where OA is observed agreement (i.e., the total number of instances where both 

classifiers agree), T means the total number of samples, and AC denotes agreement by 

chance (agreement with a random classifier).  

The Kappa index ranges from -1 to 1, i.e., 0 means the classification is no better 

than a random classification. A negative value means the classification is worse than 

random prediction. A value close to 1 indicates that the prediction is significantly more 

accurate than random classification and the prediction matches the ground truth 

observations.   
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 CHAPTER 4: CASE STUDY 
 
 
 In this chapter, I first introduce the study area and data used in this research. In 

the second section, I illustrate the implementation of the expert system, including the 

steps for both modeling methods. In the end, I also introduce the implementation of the 

calibration process which will be further applied in the experiments.  

4.1 Information  

4.1.1 Study Area  

The study area represents a potential Kinston bypass roadway corridor in Lenoir 

and Jones counties in eastern North Carolina (Figure 9). Within the corridor, the NC 

Department of Transportation (NCDOT) conducted fieldwork in 2015 that resulted in the 

identification of wetland/upland boundaries and the identification of wetland types. In 

2017, they revisited the nearby regions and conducted further wetland delineation for 

several sites. They digitalized all of the fieldwork results in ArcGIS and labeled the 

wetland polygons with the wetland type code according to the NCWAM wetland 

classification system, developed by the WFAT for identifying the specific wetland types 

that occur in North Carolina (N.C. Wetland Functional Assessment Team 2010). 
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Figure 9. Study area of Kinston bypass roadway corridor 

4.1.2 Data Sources 

This dissertation applied several major datasets for the study area. I adopted Level 

2 (QL2) LiDAR data which were collected during winter, and provided by NCDOT 

project as LAS files. The major types of information stored in this data file format 

include the x, y, z location of each point, class label of each point, four types of pulse 

returns (first, second, third, and last) and intensity of each return type (Heidemann 2012). 

The data has two pulse points per square meter, and 0.18-meter fundamental vertical 

accuracy. Based on the LiDAR data files, one can further produce other various data 

derivatives, such as DEM layers with different resolutions. Other than LiDAR data, I 

downloaded some free Sentinel-2 satellite data to take advantage of the multi-spectral 
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bands information. I identified one Sentinel scene that contains the study area to build 

several vegetation-related metric layers, such as EVI, NDVI, and NDWI. I selected the 

scene with the capture date of February 1st, 2016 due to data quality (less cloud coverage) 

and proximity to field sample collection time (the capture date is near winter and between 

the years of the two collection dates). I also collected some other spatial data layers for 

auxiliary information, such as land cover information, soil data, and hydrological 

information (Table 6). 

Table 6. Spatial data used in the research 

Data Main Source Information 
LiDAR  NCDOT Source: NC QL2 project  

Resolution: 2 points per square meter 
Date: 2014 to 2017  

Sentinel-2 European Space Agency 
(ESA) 

Source: 
https://sentinel.esa.int/web/sentinel/senti
nel-data-access 
Resolution: 10 meters (32.81 feet) 
Date: February 1st, 2016 

Land Cover 
Data  

National Land Cover 
Dataset 

Source: https://www.mrlc.gov/ 
Resolution: 30 meters (98.43 feet) 
Date: 2011 

Soil Data Natural Resources 
Conservation Services 
(NRCS) Soils Database 
and published county soil 
surveys 

Source: 
http://websoilsurvey.sc.egov.usda.gov 
Resolution: ranging from 1:12,000 to 
1:63,360 
Publication Date: 1994 

Hydrology 
Data 

National Hydrography 
Dataset 

Source: https://nhd.usgs.gov/ 
Resolution: 1:24,000 or better 
Produced and updated: from 1950s to 
the present 
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4.1.3 Wetland Classification System 

NCWFAT developed the wetland classification system applied in this dissertation, 

with the purpose of providing a unified list of wetland types for North Carolina to 

distinguish their inherent differences in ecological functions. There are 16 wetland types 

in total (see Table 5). Figure 10 summarizes the dynamic relationships among different 

wetland types based on the type definitions in NCWAM. The wetland can transit from 

one type to another due to the long-term change of environmental conditions. The arrows 

denote the possible transitions. This figure reveals the dynamic nature of wetland systems, 

as well as the challenge in type classification. 

 

Figure 10. Transition types within the wetland system (N.C. Wetland Functional 

Assessment Team 2010) 
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4.1.4 Wetland Type Distribution 

According to the field sample data, we detected 9 wetland types in the study area. 

Table 7 lists the number of wetland patches (minimum continuous area with same 

wetland type) and the total area for each wetland type. The dominant wetland types 

include riverine swamp forest and bottomland hardwood forest. They have the highest 

area percentage. Other than these two types, pocosin and pine have a relatively high 

percentage. Seep and hardwood flat are rarely shown in this case. As for the average size 

for each wetland patch, hardwood flat has the smallest size, followed by seep. Riverine 

swamp forest has the largest average size. Pocosin, non-tidal freshwater marsh, 

bottomland hardwood forest, and pine also tend to occur in a continuous large area. 

Table 7. Wetland distribution in the study area 

Wetland 
Code Wetland Type Area 

 (square meters) 

Area 
Percentage 

(%) 

Number of 
Polygons 

4 Riverine Swamp 
Forest 415,194.456 33.778 16 

5 Seep 155.536 0.013 1 
6 Hardwood Flat 47.884 0.004 2 
8 Pocosin 108,268.920 8.808 7 
10 Pine Flat 169,055.520 13.754 16 
11 Basin Wetland 1,940.141 0.158 9 

13 Non-Tidal 
Freshwater Marsh 25,908.250 2.108 2 

15 Headwater Forest 38,728.181 3.151 23 

16 Bottomland 
Hardwood Forest 469,879.197 38.227 40 

Total  1,229,178.084 100 116 
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4.2 Implementation 

I implemented the Expert System using ArcGIS-based scientific workflow. 

Corresponding to the construction of the database and knowledge base, I developed 

modules of generating data variables and constructing models. In this section, I mainly 

introduce the design and implementation of the major modules in the expert system. The 

ArcGIS platform provides us an automation solution through scientific workflow to 

orchestrate spatial operations. Figure 11 demonstrates the atom unit of a GIS workflow, 

which includes a core function, input and output data. This encapsulation method thus 

enables the repetition of function executions and the connections among multiple 

functions through a workflow. In this component, a GIS function can represent an 

existing tool in ArcGIS, or user-developed script. In this dissertation, I developed several 

new GIS tools based on Python to construct the new workflow. These tools inherited the 

user interface style of ArcGIS and can be added to a workflow through drag-and-drop 

operations through “ModelBuilder” platform. 

 

Figure 11. The unit component of GIS workflow 

4.2.1 Variable Generation Module 

The variable generation module contains three major tools. The first tool can 

generate DEM derivatives (referring to Table 4) based on the DEM data, satellite data, 

soil data, vegetation data, and so on, with the output results of GIS raster layers. The 

second tool can then generate sampling points for the entire study area, in order to extract 
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values from the raster layers generated by the first tool. The third tool can then convert 

the attribute table of the point shapefile into a training data table in csv format, of which 

each column refers to value extracted from one data layer. 

4.2.2 Models Construction Module 

Based on the newly generated data variables, the next step is to construct models. 

For the closed-loop method, I developed tools and workflows to train machine learning 

models. For the open-loop method, I translated expert knowledge into spatial variables 

through similar workflows in ArcGIS. 

(1) The closed-loop method 

I implemented three machine learning models (GLM, RF, GBM) through an R 

package “H2O”. This package supports efficient parallel executions of machine learning 

algorithms. I developed python scripts to call functions from this R package for the 

automation of machine learning procedures, see Figure 12 as the workflow. 
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Figure 12. Module for training machine learning models 

(2) The open-loop method 

According to the probability calculation method illustrated in section 3.2.2, I 

developed a workflow to calculate the probability for each wetland type (see the toolbox 

in Figure 13). Each workflow contains the data variables that are important for this 

wetland type. For example, Figure 14 shows the variables used for seep wetland type, and 

the tool “raster calculator” specifies the formula of calculating the probability. For this 

case, it is calculated as: (1 - "%riparian%") * "%slpsteep%" + 0.01 * "%seepsoil2%". It 

means, when the wetland locates in the non-riparian region and on a side slope, it is then 

considered as seep. The calculation follows the definition of seep wetland (see the overall 

decision tree for all wetland types in Figure 4). It is noted that for each wetland type, I 



87 

 

used a soil data layer to adjust the probability calculation of the corresponding wetland 

type. 

 

Figure 13. Toolbox for calculating wetland types  

 

Figure 14. Probability calculation for seep wetland 
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4.2.3 Prediction Module 

In this module, I used the models trained in previous modules to the entire study 

area to predict wetland type distribution. Considering that the entire study area can be 

large, I applied a decomposition process to divide the whole study area into sections of, at 

most, 100 rows in the raster layer. I ran the constructed models on each section 

individually to generate classification results. In the final step, I merge all the results 

together as the result of the entire study area (see Figure 15). 
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Figure 15. Workflow to generate prediction results 

4.2.4 Model Integration 

This module integrates the results generated by the closed-loop and open-loop 

methods. In this process, I introduced GLM, RF, and GBM prediction results to affect the 

wetland probability calculation from the open-loop method.  
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This workflow includes two key parameters, “Threshold for Integration” (WT) 

and “Weight for the Closed-Loop Model” (WC). They both have value with a range of 0 

to 1. I use one wetland type “riverine swamp forest” as an example to show how the 

integration works. Formula (13) denotes the logic process of the integration. In this 

formula, one layer (“riprsf”) represents the integration of the three machine learning 

prediction results using corresponding weights—see Formula (7). Another layer (“rsf”) 

denotes the probability calculated through the open-loop method. I first compare whether 

the closed-loop integration (“rsf”) is larger than a threshold (“Threshold for Integration”). 

If yes, I consider the machine learning methods as highly consistent with each other, and 

can then be integrated into the final probability calculation a weight. Otherwise, if the 

ML models do not agree with each other, I only rely on the open-loop result.  

Con("%rsf%" >=float(%WT%),"%riprsf%" * (1 - float(%WC%))  + float(%WC%) * 

"%rsf%","%riprsf%")     (13) 

After calculating the final probability value of each wetland type for each location, 

one can then execute a spatial competition process among wetland types to determine the 

most probable type for each location. This pixel-based assignment process does not 

consider the situation of neighboring cells leading to a “salt and pepper” effect. One can 

further apply spatial rules to refine the prediction result, such as applying a wetland type 

contiguity matrix or using “focal statistics” to generate a smoother result.  
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4.3 Calibration 

Calibration represents a critical phase to adjust model parameters to ensure that 

the prediction results are satisfactory. However, calibration is a challenging task for this 

integrated expert system due to the complicated interactions among different modules, 

which contributes to the non-linear relationship between model parameters and results. 

The intensity of calibration also relies on the number of parameters and the number of 

parameter combinations, which forms the calibration space. In this section, Formula (7) 

shows the targeted parameters set of {	𝑤&, 𝑤', 𝑤>, 𝑤4 , 𝑤, , 𝑡}. Formula (9) and Formula 

(10) illustrate the constraints and relationships for the parameters. Based on the 

constraints, we can further reduce the calibration space to a subset of {𝑤4 , 𝑤', 𝑤>}. In this 

paper, I used an iterative random searching method. Figure 16 shows the calibration 

process using two parameters (v1 and v2) as an example. The first step is a general grid 

search, in which I applied a grid to regularly divide the parameter space evenly. The red 

dot represents the parameter combination that returns the best performance among all the 

sampling parameter sets (blue dots). Second, perform another search to identify the best 

parameter combination from the first round. It aims at identifying the direction that gives 

the best performance improvement. I randomly select the parameter combinations that 

locate on the radius circle of previously selected parameter set. If the performance is 

improved for any parameter set, the process will continue with the new best result as the 

centroid to draw another radius for the next search. Repeat this process until no better 

results can be identified on the circle.  
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Table 8 shows the pseudo code for the calibration. 

 

Figure 16. The calibration process for the model parameter search (an example of two-

dimensional search space) 
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Table 8. Calibration process implemented for the wetland expert system 

Algorithm:   
Input: searching grid size 𝒔𝒕, searching radius 𝒔𝒓 (usually half size of 𝒔𝒕), {(minimum value 
𝒎𝒊𝒏𝑽𝒂𝒍𝒊,𝐦𝐚𝐱𝐢𝐦𝐮𝐦	𝐯𝐚𝐥𝐮𝐞	𝒎𝒂𝒙𝑽𝒂𝒍𝒊)|	𝒊 = 𝟏, 𝟐, 𝟑} where 𝒊 is the index for 3 parameters 
list [𝒘𝒄, 𝒘𝟐, 𝒘𝟑] 
Output: optimal parameters set 𝑶 denoting optimal value for [𝒘𝒄, 𝒘𝟐, 𝒘𝟑] 
Initialization:  
SET highest accuracy of the model as 𝑨𝒎𝒐𝒅𝒆𝒍 ← 𝟎 
SET controller to stop the searching as 𝒄𝒐𝒖𝒏𝒕𝒆𝒓	 ← 𝟓 
LOOP PROCESS FOR THE FIRST ROUND AS GRID SEARCH: 

1. For 𝒗𝟏 ← 𝒎𝒊𝒏𝑽𝒂𝒍𝟏 to 𝒎𝒂𝒙𝑽𝒂𝒍𝟏 with a step 𝒔𝒕 DO 
2.        For 𝒗𝟐 ← 𝒎𝒊𝒏𝑽𝒂𝒍𝟐 to 𝒎𝒂𝒙𝑽𝒂𝒍𝟐 with a step 𝒔𝒕 DO 
3.               For 𝒗𝟑 ← 𝒎𝒊𝒏𝑽𝒂𝒍𝟑 to 𝒎𝒂𝒙𝑽𝒂𝒍𝟑 with a step 𝒔𝒕 DO 
4.                      𝑨{𝒗} ← model accuracy using {𝒗𝟏, 𝒗𝟐, 𝒗𝟑} 
5.                      IF 𝑨{𝒗}	 >	𝑨𝒎𝒐𝒅𝒆𝒍 THEN 
6.                           𝑨𝒎𝒐𝒅𝒆𝒍 ← 𝑨{𝒗}	 
7.                           𝑶 ← [𝒗𝟏, 𝒗𝟐, 𝒗𝟑] 
8.                      END IF 
9.               END FOR 
10.        END FOR 
11.  END FOR 

THEN LOOP PROCESS FOR THE SECOND ROUND: 
      12.  WHILE 𝒄𝒐𝒖𝒏𝒕𝒆𝒓 > 𝟎 DO 
      13.                FOR 𝒊	 ←	0 to 3 DO 
      14.                        𝜷𝟏 ← random number selected from 0 to 2𝝅 
      15.                        𝜷𝟐 ← random number selected from 0 to 2𝝅 
      16.                        𝒗𝟏𝒊 ← 𝒗𝟏 + 𝑺𝒓 ∗ 𝐜𝐨𝐬𝜷𝟏 ∗ 𝐬𝐢𝐧𝜷𝟐	 
      17.                        𝒗𝟐𝒊 ← 𝒗𝟐 + 𝑺𝒓 ∗ 	𝐜𝐨𝐬𝜷𝟏 ∗ 𝐜𝐨𝐬𝜷𝟐	  
      18.                        𝒗𝟑𝒊 ← 𝒗𝟑 + 𝑺𝒓 ∗ 𝐬𝐢𝐧𝜷𝟏 
      19.                        𝑨{𝒗𝒊} ← model accuracy using {𝒗𝟏𝒊, 𝒗𝟐𝒊, 𝒗𝟑𝒊} 
      20.                        IF 𝑨{𝒗𝒊} > 𝑨𝒎𝒐𝒅𝒆𝒍 DO 
      21.                             𝑨𝒎𝒐𝒅𝒆𝒍 ← 𝑨{𝒗𝒊}	 
      22.                             𝑶 ← [𝒗𝟏𝒊, 𝒗𝟐𝒊, 𝒗𝟑𝒊] 
      23.                             𝒄𝒐𝒖𝒏𝒕𝒆𝒓 ← 𝟓 // reset counter 
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      24.                        ELSE 
      25.                                 𝒄𝒐𝒖𝒏𝒕𝒆𝒓	 ← 𝒄𝒐𝒖𝒏𝒕𝒆𝒓 − 𝟏 
      26.                        END IF 
      27.                  END FOR 
      28.   END WHILE 
      29.   RETURN 𝑶 
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CHAPTER 5: EXPERIMENTS 
 
 

In this research, I designed three experiments to compare the performance of 

models in different situations. The study area in this paper refers to the Kinston bypass 

project corridor and nearby sites described in Chapter 4 in which NCDOT conducted 

wetland delineations. In the first experiment, I trained the closed-loop models using data 

samples randomly extracted from the dataset of the entire study area. I adopted a 

stratified random sampling strategy (Jensen and Lulla 1987) to maintain the same 

percentage of samples and spatial distribution for all wetland types. In this experiment, I 

used all the variables for model training and prediction. The objective of this experiment 

is to test the performance variation of the models by applying different sample sizes. In 

the second experiment, I conducted variable selection based on the performance of 

different variables in the ML training process demonstrated in Experiment I. The data for 

each treatment in Experiment II are consistent with the data from the first experiment, 

only without selected variables. The objective of this experiment is to examine whether 

the variable deduction process will affect ML model performance. I conducted 

Experiment III to test the performance of the integrated model by comparing 

classification results between the conventional ML models and the integrated models. 
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5.1. Experiment I 

 In this experiment, I conducted a stratified sampling strategy to select a subset of 

all the data samples for each wetland type as the training dataset. After the training 

process, I applied the models generated from this process to predict the wetland types for 

the entire study area. This experiment includes six treatments, with corresponding 

sampling percentages of 80%, 60%, 40%, 20%, 10%, and 5%. For RF and GBM models, 

the model parameters are set as 100 trees and the maximum depth of a tree is 5.  

5.1.1 Performance Variation 

Table 9 shows the training performance of the closed-loop models based on 

different sample datasets. GBM models always reveal the best performance by 

completely fitting the training dataset. Kappa for RF models are all above 0.9. The GLM 

model achieves higher kappa with smaller sample size comparing to the larger sample 

size.  

Table 10 and Figure 17 show the performance of the models for predicting 

wetland types for the entire study area. Similarly,  

Table 11 and Figure 18 show the results evaluated in the form of accuracy. The 

kappa and accuracy for all the ML models reveal the same pattern—they decrease as the 

sample size decreases. GBM models reveal the best performance among all the models, 

followed by RF and GLM models. Furthermore, GBM tends to reveal higher dependency 

on the sample size—its performance dropped more rapidly as the sampling size 

decreases. GLM tends to be least sensitive to the data sample size according to the 

standard deviation of its prediction performance. 
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Table 9. Training performance for the closed-loop models (kappa) 

Treatment Sample 
Percentage GLM RF GBM Number of 

Samples 
T1 80% 0.88 0.90 1.00 26,478 
T2 60% 0.88 0.90 1.00 19,860 
T3  40% 0.88 0.91 1.00 13,238 
T4  20% 0.89 0.91 1.00 6,620 
T5  10% 0.89 0.93 1.00 3,309 
T6  5% 0.91 0.93 1.00 1,655 

Table 10. Prediction performance for the study area using different sampling datasets 

(kappa) 

Treatments GLM RF GBM 

T1 (80%) 0.880 0.900 0.994 
T2 (60%) 0.882 0.896 0.990 
T3 (40%) 0.879 0.898 0.983 
T4 (20%) 0.880 0.892 0.971 
T5 (10%) 0.875 0.894 0.953 
T6 (5%) 0.876 0.882 0.933 

Mean 0.879 0.894 0.971 
Std. 0.002 0.006 0.022 

 

Table 11. Prediction performance for the study area using different sampling datasets 

(accuracy) 

Treatments GLM RF GBM 

T1 (80%) 0.915 0.929 0.996 
T2 (60%) 0.916 0.926 0.993 
T3 (40%) 0.914 0.927 0.988 
T4 (20%) 0.915 0.923 0.980 
T5 (10%) 0.912 0.925 0.966 
T6 (5%) 0.912 0.917 0.953 

Mean 0.914 0.925 0.979 
Std. 0.002 0.004 0.015 
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Figure 17. Prediction result of the study area based on the closed-loop models (kappa) 

 

 

Figure 18. Prediction result of the study area based on the closed-loop models (accuracy) 

5.1.2 Variable Importance 

During the model training process of RF and GBM, the algorithm also calculates 

the variable importance basing on the decrease of squared error over all trees. Figure 19 

to Figure 24 show the rank of variable importance for each treatment. For each treatment, 

the two models reveal very similar rank. Among all the treatments, “soil” is the most 
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important variable. Other important variables include “elvpcd,” “land cover,” soil index, 

and vegetation indexes, such as “msavi,” “msavi2,” “evi,” “nvdi,” and “ndwi”. Some 

LiDAR-based variables also have very high rank, such as “highi,” “highp,” and “lowi”. 

However, most of the elevation derivatives tend to be less important in the training 

process. Based on the variable rank, the ten most important variables are: “soil,” “elvpcd,” 

“ndwi,” “ndvi,” “evi,” “lc,” “dropd,” “msavi,” “msavi2,” and “weid”. 
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Figure 19. Variable importance rank for T1 
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Figure 20. Variable importance rank for T2 
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Figure 21. Variable importance rank for T3 
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Figure 22. Variable importance rank for T4 
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Figure 23. Variable importance rank for T5 
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Figure 24. Variable importance rank for T6 
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5.1.3 Confusion Matrix 

Table 12, Table 13, and Table 14 illustrate the confusion matrix for each ML 

model in Treatment 6. For GLM, type 10 (pine flat) has the highest recall followed by 

type 8 (pocosin); and type 8 has the highest precision followed by type 10. For the RF 

model, type 8 has the highest recall and type 11 (basin) has the highest precision. For 

GBM, type 8 has the highest recall and precision. Among all the models, type 5 (seep) 

and type 6 (hardwood flat) have the worst prediction. 

Table 12. Confusion matrix of GLM in Treatment 6 

 Classification 
Ground 
Truth 4 5 6 8 10 11 13 15 16 Total Recall 

4 9979 0 0 0 1 0 42 0 1176 11198 0.891 
5 0 0 0 0 0 0 0 0 4 4 0.000 
6 0 0 0 0 0 0 0 0 1 1 0.000 
8 0 0 0 2833 78 0 0 0 0 2911 0.973 
10 9 0 0 52 4445 2 0 29 8 4545 0.978 
11 0 0 0 15 33 2 0 3 0 53 0.038 
13 45 0 0 0 6 0 514 0 132 697 0.737 
15 6 0 0 3 98 2 0 781 151 1041 0.750 
16 927 0 0 1 2 0 31 49 11638 12648 0.920 

Total 10966 0 0 2904 4663 6 587 862 13110   

Precision 0.910 NA NA 0.976 0.953 0.333 0.876 0.906 0.888   

 

Table 13. Confusion matrix of RF in Treatment 6 

 Classification 
Ground 
Truth 4 5 6 8 10 11 13 15 16 Total Recall 

4 10183 0 0 0 0 0 21 0 994 11198 0.909 
5 0 0 0 0 0 0 0 0 4 4 0.000 
6 0 0 0 0 0 0 0 1 0 1 0.000 
8 0 0 0 2910 1 0 0 0 0 2911 1.000 
10 0 0 0 10 4511 0 0 2 22 4545 0.993 
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11 0 0 0 6 44 3 0 0 0 53 0.057 
13 71 0 0 0 0 0 377 0 249 697 0.541 
15 5 0 0 18 78 0 0 764 176 1041 0.734 
16 1012 0 0 2 13 0 19 13 11589 12648 0.916 

Total 11271 0 0 2946 4647 3 417 780 13034   

Precision 0.903 NA NA 0.988 0.971 1.000 0.904 0.979 0.889   

 

Table 14. Confusion matrix of GBM in Treatment 6 

 Classification 
Ground 
Truth 4 5 6 8 10 11 13 15 16 Total Recall 

4 10598 0 0 0 0 0 44 0 556 11198 0.946 
5 0 0 0 0 0 0 0 0 4 4 0.000 
6 0 0 0 0 0 0 0 1 0 1 0.000 
8 0 0 0 2911 0 0 0 0 0 2911 1.000 
10 0 0 0 0 4521 0 0 5 19 4545 0.995 
11 0 0 0 1 33 17 0 1 1 53 0.321 
13 92 0 0 0 0 0 585 0 20 697 0.839 
15 4 0 0 4 53 25 0 879 76 1041 0.844 
16 520 0 0 0 9 0 80 23 12016 12648 0.950 

Total 11214 0 0 2916 4616 42 709 909 12692   

Precision 0.945 NA NA 0.998 0.979 0.405 0.825 0.967 0.947   

 

5.2. Experiment II 

In this experiment, I used the same datasets from corresponding treatments in 

Experiment I but only keeping ten variables with the highest importance rank according 

to RF and GBM.  

5.2.1 Variation of Model Training Performance 

Table 15 lists the classification training results. Among the three ML models, 

GBM has the best performance, the kappa index for RF is also above 0.9. According to 

the training performance from Experiment I, kappa for GLM drops the most as the 
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sample size decreases; kappa for GBM is slightly lower for only the first two treatments. 

However, the performance of RF is slightly improved comparing to the first experiment. 

Table 15. Training performance for the closed-loop models with selected variables 

(kappa) 

Treatment GLM RF GBM Number of 
Samples 

T1 (80%) 0.87 0.91 0.99 26,478 
T2 (60%) 0.87 0.92 0.99 19,860 
T3 (40%) 0.87 0.92 1.00 13,238 
T4 (20%) 0.88 0.93 1.00 6,620 
T5 (10%) 0.88 0.94 1.00 3,309 
T6 (5%) 0.88 0.93 1.00 1,655 

 

5.2.2 Variation of Model Prediction Performance 

Table 16 and Table 17 summarize the prediction results of applying the trained 

ML models to the entire study area. The accuracy of all the models is above 90%. GBM 

has the best performance, and the prediction accuracy can reach as high as 99%. Even for 

the treatment with the lowest sampling percentage, the GBM model can predict 98% of 

data samples correctly.  

Figure 25 and Figure 26 also demonstrate the performance variation. Among all 

three models, GBM has the best performance and biggest variation. Comparing the 

results with the first experiment, GLM reveals degradation in performance while RF and 

GBM both have better performance. RF and GBM both reveal higher average accuracy 

and kappa comparing to the first experiment. Meanwhile, the variation for all three 

models are smaller in this experiment, it denotes that the models become slightly less 

sensitive to the change of sample size. 
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Table 16. Prediction performance for the study area using different sampling datasets 

with selected variables (kappa) 

Treatments GLM RF GBM 

T1 0.867 0.911 0.990 
T2 0.867 0.917 0.987 
T3 0.867 0.913 0.982 
T4 0.869 0.913 0.972 
T5 0.863 0.906 0.954 
T6 0.866 0.901 0.946 

Mean 0.867 0.910 0.972 
Std. 0.002 0.005 0.017 

 

Table 17. Prediction performance for the study area using different sampling datasets 

with selected variables (accuracy) 

Treatments GLM RF GBM 

T1 0.906 0.937 0.993 
T2 0.906 0.941 0.991 
T3 0.905 0.938 0.987 
T4 0.907 0.938 0.980 
T5 0.903 0.934 0.967 
T6 0.905 0.929 0.961 

Mean 0.905 0.936 0.980 
Std. 0.001 0.004 0.012 
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Figure 25. Prediction result of the study area based on the closed-loop models with 

selected variables (kappa) 

 

Figure 26. Prediction result of the study area based on the closed-loop models with 

selected variables (accuracy) 

5.2.3 Confusion Matrix 

Similar to the first experiment, Table 18, Table 19, and Table 20 list the confusion 

matrix for the three models applied in the last treatment. For all three models, type 8 
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(Pocosin) has the highest recall and precision; type 5 (Seep) and 6 (Hardwood Flat) have 

the worst prediction results. This result is consistent with the result of treatment 6 in 

Experiment I.  

Table 18. Confusion matrix of GLM in Treatment 6 with selected variables 

 Classification 
Ground 
Truth 4 5 6 8 10 11 13 15 16 Total Recall 

4 9913 0 0 0 0 0 93 0 1192 11198 0.885 
5 0 0 0 0 0 0 0 0 4 4 0.000 
6 0 0 0 0 0 0 0 0 1 1 0.000 
8 0 0 0 2833 77 0 0 0 1 2911 0.973 
10 0 0 0 115 4333 0 19 76 2 4545 0.953 
11 0 0 0 8 39 0 0 6 0 53 0.000 
13 30 0 0 0 0 0 550 0 117 697 0.789 
15 1 0 0 7 117 0 0 766 150 1041 0.736 
16 1020 0 0 0 3 0 15 54 11556 12648 0.914 

Total 10964 0 0 2963 4569 0 677 902 13023   

Precision 0.904 NA NA 0.956 0.948 NA 0.812 0.849 0.887   

 

Table 19. Confusion matrix of RF in Treatment 6 with selected variables 

 Classification 
Ground 
Truth 4 5 6 8 10 11 13 15 16 Total Recall 

4 10340 0 0 0 0 0 81 0 777 11198 0.923 
5 0 0 0 0 0 0 0 0 4 4 0.000 
6 0 0 0 0 1 0 0 0 0 1 0.000 
8 0 0 0 2911 0 0 0 0 0 2911 1.000 
10 0 0 0 0 4516 0 0 10 19 4545 0.994 
11 0 0 0 1 48 4 0 0 0 53 0.075 
13 9 0 0 0 0 0 602 0 86 697 0.864 
15 3 0 0 9 87 4 0 815 123 1041 0.783 
16 1024 0 0 0 0 0 18 34 11572 12648 0.915 

Total 11376 0 0 2921 4652 8 701 859 12581   
Precision 0.909 NA NA 0.997 0.971 0.500 0.859 0.949 0.920   
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Table 20. Confusion matrix of GBM in Treatment 6 with selected variables 

 Classification 
Ground 
Truth 4 5 6 8 10 11 13 15 16 Total Recall 

4 10646 0 0 0 0 0 78 0 474 11198 0.951 
5 0 0 0 0 0 0 0 0 4 4 0.000 
6 0 0 0 0 1 0 0 0 0 1 0.000 
8 0 0 0 2911 0 0 0 0 0 2911 1.000 
10 3 0 0 0 4542 0 0 0 0 4545 0.999 
11 0 0 0 1 6 32 0 14 0 53 0.604 
13 21 0 0 0 0 0 651 0 25 697 0.934 
15 5 0 0 1 41 36 0 917 41 1041 0.881 
16 394 0 0 0 0 0 101 29 12124 12648 0.959 

Total 11069 0 0 2913 4590 68 830 960 12668   

Precision 0.962 NA NA 0.999 0.990 0.471 0.784 0.955 0.957   

 

5.3. Experiment III 

The first two experiments are both based on the scenario that the samples for 

model training are extracted from the entire dataset while maintaining the same wetland 

type proportion and spatial distribution. It proves to be ideal for the models to capture the 

general characteristics of the study area and maintain stable prediction results. However, 

in real applications, it can be a challenge to implement a balanced sampling strategy. 

First, without knowing the spatial distribution of existing wetland types, it is difficult to 

conduct the survey and collect a similar amount of data samples for each wetland type. 

Second, some regions will have better accessibility than others, therefore the less easily 

accessed areas will possibly end up with less survey and data samples. Third, when the 

targeted area is large, it is time-consuming to collect spatially balanced data across the 

entire study area. 
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In this experiment, I divided the study area into two regions to simulate the 

scenario that the training data are collected from one area and the trained models are 

applied to a completely different region. These two regions generally cover the eastern 

and western portions of the sampling data along the corridor. I trained the closed-loop 

models in the two regions individually. Models constructed based on the datasets of the 

first (western) region are called R1 models, while models trained based on the second 

(eastern) region are R2 models. Each region contains around 50% of the total data 

samples.  

5.3.1 Sample Data Distribution 

Figure 27 illustrates the spatial distribution of the sample points in the study area. 

In the figure, green dots represent R1 data samples while orange dots represent R2 data 

samples. Table 21 lists the numbers of samples for different wetland types within each 

region. The entire dataset for the study area contains 33,098 data samples representing 9 

wetland types. The first region (R1) contains 17,113 sample points, covering 6 wetland 

types. The second region (R2) includes 15,985 sample points, containing 9 wetland types. 

For R1, the majority of wetland types are type 16 (bottomland hardwood forest), 

followed by type 4 (riverine swamp forest), and type 10 (pine flat), which is around 20%, 

while the other types are less than 1%. For R2, the dominant wetland types are also 

categories 4 and 16. For type 8 (pocosin), almost all the data samples fall within R2. 

Similarly, type 5 (seep), type 6 (hardwood Flat), and type 13 (non-tidal freshwater marsh) 

all fall within R2. 
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Figure 27. Two study regions for Experiment III 

Table 21. Wetland sample data distribution for Experiment III 

Wetland Code Wetland Type Number (percentage) of 
data sample in R1 

Number (percentage) of 
data sample in R2 

4 Riverine Swamp 
Forest 

5,024 6,174 
29.36% 38.62% 

5 Seep 
- 4 
- 0.03% 

6 Hardwood Flat 
- 1 
- 0.01% 

8 Pocosin 
1 2,910 

0.01% 18.20% 

10 Pine Flat 
3,317 1,228 

19.38% 7.68% 

11 Basin Wetland 
3 50 

0.02% 0.31% 

13 Non-Tidal 
Freshwater Marsh 

- 697 
- 4.36% 

15 Headwater Forest 
20 1,021 

0.12% 6.39% 

16 Bottomland 
Hardwood Forest 

8,748 3,900 
51.12% 24.40% 

Total  17,113 15,985 
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5.3.2 Performance of Model Training 

For the model training process, I used 100 trees with the max depth of 5 for both 

RF and GBM. Table 22 compares the training performance among different models. 

Overall, the training performance of R1 models is slightly better than R2 models due to 

fewer wetland types and more data samples for the majority types. For both study regions, 

GBM reveals the best performance, and it can fit the training dataset 100%. 

Table 22. Model performance in the training area (overall accuracy and kappa) 

 

5.3.3 Performance of Model Prediction 

I applied R1 and R2 ML models to predict the entire study area and compared the 

prediction results with the ground truth data, see results in Table 23. For the open-loop 

model, it does not have the training process as the closed-loop models, so the 

performance for R1 and R2 regions reveal the same. According to the result, prediction 

results based on R2 models are slightly better than R1 models (except for GLM), 

although R1 can better fit the training dataset. All the models can predict the entire study 

area with the accuracy of around 0.7. Among the R1 models, the order of models in terms 

of decreasing prediction accuracy is GLM, RF, Rule-based, and GBM. Among R2 

models, the corresponding order is GBM, RF, Rule-based and GLM.  

 

Model R1 R2 
Accuracy Kappa Accuracy Kappa 

GLM 0.998 1.00 0.874 0.83 
RF 1.000 1.00 0.895 0.86 

GBM 1.000 1.00 0.999 1.00 
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Table 23. Comparison of model performance based on different training area (overall 
accuracy and kappa) 

 

5.3.4 Performance of the Integrated Model 

In order to further compare the individual models with the integrated method 

proposed in this research, I ran the calibration process for model integration based on ML 

models trained in R1 and R2 respectively. Table 24 and Table 25 summarize a subset of 

model calibration results. These results are in the 20 runs with the highest overall 

accuracy in terms of predicting the entire study area. Figure 30 and Figure 31 illustrate 

the prediction results for all the rounds in ascending order. 

I used 0.2 as the interval in the parameter searching space, which means that in 

the first round of calibration, it will conduct the grid search by dividing the entire 

parameter space into fine grids using 0.2 as the resolution for each dimension. In terms of 

choosing the interval, the smaller value will lead to a larger number of parameter 

combinations and increase computational intensity for the first round of exploration. 

Meanwhile, it can reduce the chance for the search process to be trapped in local optima. 

It is noted that, due to the stochastic nature of the calibration algorithm, to repeat the 

calibration process will not produce the same results. Furthermore, the best result in the 

calibration does not represent the global optimal solution. 

 

Model Prediction based on R1 models Prediction based on R2 models 
Accuracy Kappa Accuracy Kappa 

GLM 0.695 0.549 0.647 0.511 
RF 0.692 0.541 0.737 0.636 

GBM 0.674 0.519 0.766 0.677 
Rule-based 0.675 0.584 0.675 0.584 
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Table 24. Calibration results for R1 (top 20 calibration results) 

 

Table 25. Calibration results for R2 (top 20 calibration results) 

Parameter Performance 
w1 w2 w3 t wc Accuracy Kappa 
1 0 0 1 0.2 0.799 0.734 

0.82 0.06 0.12 0.94 0.21 0.796 0.731 
0.82 0.06 0.12 0.88 0.21 0.796 0.731 
0.82 0.06 0.12 0.18 0.21 0.796 0.731 
0.82 0.06 0.12 0.06 0.21 0.796 0.731 
0.82 0.06 0.12 0.82 0.21 0.796 0.731 

0 0 1 1 0.2 0.795 0.731 
0.4 0 0.6 0.6 0.2 0.795 0.730 
0.4 0 0.6 0.4 0.2 0.795 0.730 
0.2 0 0.8 1 0.2 0.795 0.730 
0.2 0 0.8 0.2 0.2 0.795 0.730 
0.2 0 0.8 0.8 0.2 0.795 0.730 
0.4 0 0.6 1 0.2 0.795 0.730 
0.6 0 0.4 1 0.2 0.795 0.730 
0.6 0 0.4 0.6 0.2 0.795 0.730 
0.6 0 0.4 0.4 0.2 0.795 0.730 
0.8 0 0.2 1 0.2 0.795 0.730 
0.8 0 0.2 0.8 0.2 0.795 0.730 
0.82 0.03 0.15 0.85 0.2 0.795 0.731 
0.82 0.03 0.15 0.97 0.2 0.795 0.731 

Parameter Performance 
w1 w2 w3 t wc Accuracy Kappa 
0.4 0.6 0 0 0.6 0.775 0.689 
0 0.6 0.4 0 0.6 0.774 0.688 

0.2 0.6 0.2 0 0.6 0.772 0.686 
0 0.2 0.8 1 1 0.770 0.688 
0 0.4 0.6 1 1 0.770 0.688 
0 0.6 0.4 1 1 0.770 0.688 
0 0.8 0.2 1 1 0.770 0.688 

0.2 0.4 0.4 0.8 1 0.770 0.688 
0 0.6 0.4 0 0.8 0.766 0.677 
0 0.6 0.4 0 1 0.766 0.677 
0 0.8 0.2 0 0.6 0.766 0.677 
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*Note: 𝑤4 means the weight for the closed-loop result; lower value denotes lower level of 
impacts; t represents the threshold for integrating closed-loop models; lower t means it is 
easier for the closed-loop models to be introduced to affect the final result. 

 

Figure 28. Prediction variation based on R1 models 

 

Figure 29. Prediction variation based on R2 models 

According to the calibration results, R1 has a slightly better prediction result than 

R2—the highest accuracy for R1 is 0.799 while for R2 it is 0.775. The average accuracy 

0 0.8 0.2 0 0.8 0.766 0.677 
0 0.8 0.2 0 1 0.766 0.677 
0 1 0 0 0.6 0.766 0.677 
0 1 0 0 0.8 0.766 0.677 
0 1 0 0 1 0.766 0.677 
0 1 0 1 1 0.766 0.677 

0.2 0.6 0.2 0 0.8 0.766 0.677 
0.2 0.6 0.2 0 1 0.766 0.677 
0.2 0.8 0 0 0.6 0.766 0.677 
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for R1 among all the rounds is 0.698, and average kappa is 0.578. These two metrics are 

higher than the prediction result based on any individual models in R1. The average 

accuracy and kappa for all calibration rounds based on R2 models are 0.683 and 0.580, 

respectively, which are not as good as the best single model performance from R2. 

However, the best calibration result based on the integration model performs better than 

the best individual models trained in R2.  

According to the parameters among the 20 best prediction results, R1 integration 

models reveal high value for the integration threshold and low weight for the closed-loop 

models. This means the open-loop models have a higher contribution in the final 

integration, and it is stricter to apply the results from the closed-loop methods. For R2, 

the best results come from the parameter combinations—the weights of the closed-loop 

method are relatively high. 

5.3.5 Confusion Matrix 

To further check the prediction results for detailed wetland types, Table 26 and 

Table 27 present the confusion matrix for the two best prediction results based on the 

integrated models from R1 and R2. Using R1-trained integration models, type 8 

(pocosin), type 13 (non-tidal freshwater marsh), and type 15 (headwater forest) have the 

highest precision, while type 5 (seep) and type 13 have the highest recall. However, types 

5, 8, 13, and 15 all have very few representations in R1 training data samples, so these 

wetland types are predicted by the open-loop method. This can be explained by the high 

contribution of the open-loop method shown in the pattern of parameter combinations. 
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Table 26. Confusion matrix of the best prediction result based on R1 integration model 

 Prediction 
Ground 
Truth 0 4 5 6 8 10 11 13 14 15 16 Total Recall 

0 0 0 0 0 0 0 0 0 0 0 0 0 NA 

4 11 8452 29 0 0 0 0 0 2593 0 113 11198 0.755 

5 0 0 4 0 0 0 0 0 0 0 0 4 1.000 

6 0 0 1 0 0 0 0 0 0 0 0 1 0.000 

8 16 0 664 0 1148 1083 0 0 0 0 0 2911 0.394 

10 135 0 114 0 0 4130 146 0 0 0 20 4545 0.909 

11 0 0 4 0 0 25 24 0 0 0 0 53 0.453 

13 0 0 0 0 0 0 0 697 0 0 0 697 1.000 

14 0 0 0 0 0 0 0 0 0 0 0 0 NA 

15 0 0 0 0 0 0 0 0 89 952 0 1041 0.915 

16 16 7 252 0 0 0 2 0 1349 0 11022 12648 0.871 

Total 178 8459 1068 0 1148 5238 172 697 4031 952 11155   

Precision 0.000 0.999 0.004 NA 1.000 0.788 0.140 1.000 0.000 1.000 0.988   

 

Table 27. Confusion matrix of the best prediction result based on R2 integration model 

 Classification 

Ground Truth 4 5 6 8 10 11 13 15 16 Total Recall 
4 10845 0 0 0 0 0 18 0 335 11198 0.968 
5 0 2 0 0 0 0 0 0 2 4 0.500 
6 0 0 1 0 0 0 0 0 0 1 1.000 
8 0 0 0 2911 0 0 0 0 0 2911 1.000 
10 0 0 0 0 4545 0 0 0 0 4545 1.000 
11 0 0 0 0 4 46 0 2 1 53 0.868 
13 0 0 0 0 0 0 687 0 10 697 0.986 
15 0 0 0 0 20 0 0 1021 0 1041 0.981 
16 6549 0 0 0 0 0 5 507 5587 12648 0.442 

Total 17394 2 1 2911 4569 46 710 1530 5935   
Precision 0.623 1.000 1.000 1.000 0.995 1.000 0.968 0.667 0.941   

 

According to the confusion matrix of the R2 integration model, type 6 (hardwood 

flat), type 8 (pocosin), and type 10 (pine flat) have the highest recall, while type 5 (seep), 

type 6 (hardwood flat), type 8, and type 11 (basin) have the highest precision. However, 
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among these wetland types, except for type 8, all other wetland types are rarely 

represented by R2 training data. However, the overall accuracy and kappa for the R2 

integration model are lower than the R1 integration model. According to the confusion 

matrix, the R2 model is able to maintain high precision and recall for the majority of the 

wetland types except for type 16 (Bottomland Hardwood Forest). Besides, the R1 model 

also generated wrong prediction results as the non-wetland type and type 14 (Floodplain 

Pool), which never occurred in the training data samples. Some regions are classified as 

non-wetland because the area has conflicts among multiple wetland types—more than 

three wetland types are calculated as the same probability. 

5.3.6 Prediction Map 

I generated the prediction results based on the best integration parameters 

calibrated from the two regions. Figure 30 shows the prediction based on the best R1 

integration model; Figure 31 shows the classification result based on R2 integration 

model; Figure 32 illustrates wetland type distribution based on the open-loop method. 
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Figure 30. Prediction result based on the integrated method in R1 

 

Figure 31. Prediction result based on the integrated method in R2 
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Figure 32. Prediction result based on the open-loop method 

The wetlands identified by the open-loop method reveal the most fragmented 

pattern within the riverine area. The classification result of the R1 integration model is 

more similar to the open-loop prediction than the R2 model, because the R2 model gives 

higher weight to the closed-loop method. Referring to the R2 model classification result, 

we can observe the general pattern of the closed-loop classification result. Overall, the 

closed-loop models predict more pine and pocosin wetlands than the open-loop model. 

However, the closed-loop models tend to be constrained by the wetland types occurring 

in the samples. The open-loop model tends to predict more seep, which has very few data 

samples for the training process of the closed-loop models. Furthermore, the open-loop 

model can predict wetland types such as type 13 (non-tidal freshwater marsh) and type 14 

(floodplain pool)—also see the R1 classification result. On the other hand, the R2 
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integration model tends to predict the riverine area as type 4 (Riverine Swamp Forest) 

and type 16 (Bottomland Hardwood Forest), which has a larger percentage in the training 

data sample. 

The conflicting results within riparian areas between R1 and R2 integration 

models are likely due to difficulties in remotely classifying variations in localized 

hydrology. Therefore, the transition area adjacent to rivers create challenges for 

classification, and discrepancies among the three ML models will cause the reducing 

contribution from the closed-loop method.  

In non-riparian regions, the elliptical Carolina Bay located in the southeast portion 

of the project area shows an example of a major conflict, characterized by intensive 

silvicultural activities, including ditching, vegetation removal, and maintenance of a 

monoculture community of loblolly pine. These activities result in localized changes in 

hydrology and vegetative composition that are difficult to quantify. The open-loop 

method and R1 model tend to emphasize the details, possibly ditches and sloppy surface 

within the large patch of pocosin area and classify them as seep. 

 Figure 33 shows the probability maps produced during the construction of the 

open-loop method. It lists the examples of non-riparian wetland types in the left column 

(including basin, pine, and pocosin), and examples of riparian wetland types in the right 

column (including riverine swamp forest, bottomland hardwood forest, and non-tidal 

freshwater marsh). All the probability values are in the range of 0 to 1. Red color denotes 

a higher probability for the wetland type to occur. 
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Figure 33. Probability m
aps generated by the rule -based m

odel  
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CHAPTER 6: DISCUSSIONS 
  
6.1. Summary 

Wetland inventory mapping represents an important step for us to gain a better 

understanding of wetland distribution and to support wetland studies and management. 

Various studies have applied RS-based supervised classification methods to serve the 

objective of wetland mapping. However, it remains a challenge to build an accurate and 

robust classification model for detailed wetland types. In recent years, machine learning 

models gained popularity in wetland classification applications, due to their advantages 

of less constraints and fewer prior rules required, especially their excellent prediction 

performance. 

However, several limitations exist when merely applying the machine-learning 

methods in wetland classification. First, the classification rules and strategies generated 

by the methods do not present in an intuitive and straightforward fashion. This situation 

hinders users from understanding the rules and evaluating them—more specifically, to 

evaluate the application range for these rules and the applicability in another study area. 

Second, the objective of machine-learning-based models is to best fit the training data 

samples, which can also lead to over-fit issues wherein the noise in the training data can 

disturb and mislead the construction of these rules. The rule-based classification model, 

on the other hand, requires predefined classification rules, but it suffers from mediocre 

performance.  
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To tackle those issues, I proposed an expert system to build a new integration 

model combining two different modeling perspectives—closed-loop modeling and open-

loop modeling—which are represented by three machine learning models and a rule-

based model, respectively. The integration aims to leverage the advantages of both 

methods since they complement each other in many ways. Another contribution of this 

research is to make the classification process highly automated and flexible so that 

researchers can easily transfer the workflow to predict wetland types in any location in 

North Carolina or even a broader region with a given classification system. 

I first conducted a literature review to summarize the applications of current 

methods in wetland classification. Based on the limitation s of current studies, I 

introduced the proposed methodology and implementation. In the experiment section, I 

conducted three experiments to test the performance and limitations of conventional 

machine learning methods applying to the study case. In the end, I compared the results 

of the conventional method with the new integration method. In this final chapter, I 

summarized the findings and lessons learned in the research. 

6.2. Performance Under Different Scenarios 

Assuming the fieldwork data we collected are the source of truth for the entire 

study area, the first two experiments simulate the scenario with good sampling data. 

Through the stratified sampling process, we can maintain the same proportion of samples 

from each wetland type for the entire study area. Under this scenario, the closed-loop 

models revealed excellent performance even with greatly reduced sampling size. All the 

closed-loop models can maintain a high prediction accuracy above 90%. The first 
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experiment shows that when the samples are representative, the sample size does not 

significantly affect the performance of the closed-loop models. 

The second experiment added another variation on top of the sample size. It 

selected a subset of 10 variables based on the variable importance rank in the first 

experiment, generated by RF and GBM models. Surprisingly, the variable reduction only 

impacted the performance of GLM significantly. RF even showed better prediction 

accuracy with fewer variables. The results of this experiment illustrated the importance of 

data quality over quantity for the close-loop models. On the other hand, poor data quality, 

such as a variable with too much noise may mislead the tree building process and result 

in bad performance. 

The scenario setup for the first two experiments both represent a relatively ideal 

situation in which the training samples can represent the entire population. However, data 

samples in most real cases could not completely capture the distribution of the entire 

population in advance. Furthermore, the sample quantify representing different wetland 

types varies, which can affect the performance of the classification model. To simulate 

this scenario, I designed the third experiment to use the unbalanced training data samples 

by dividing the study area into two spatial regions. The results show that all the machine 

learning-based models experienced performance degradation. In the third experiment, I 

applied the integrated method to both regions, and it generated better prediction results 

than any individual closed-loop or open-loop models. I also explored different parameter 

combinations for the integrated model to gain insights into the prediction pattern. The 

two regions have slightly different wetland sample distributions: R1 has fewer wetland 
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types and the accuracy achieved in model training is higher, indicating that it is easier for 

the model to fit in R1 sample data than in R2. In terms of the integration model, R1 put 

higher weights on the open-loop method while the R2 integration model values the 

closed-loop method more. The overall prediction accuracy and kappa based on the R1 

integration model are higher than the R2 integration model.  

To evaluate the prediction performance for different wetland types, I used two 

metrics: recall and precision to reflect the false negative and false positive cases for the 

prediction of specific wetland types. The higher recall denotes less false negative 

prediction for this wetland type; similarly, higher precision means fewer false positive 

cases. The R2 integration model maintain high precision and recall for the majority of the 

wetland types except for type 16 (Bottomland Hardwood Forest), which is well 

represented by the data samples. This is the major reason why the overall accuracy of the 

R2 integration model is worse than R1.  

According to the experiment results, the quality of the sample data should guide 

the determination of integration weights for different methods. If the data samples are 

imbalanced among types, or spatially concentrated in a small area, the training results 

from the closed-loop models are then less reliable. Users should then consider increasing 

the weight of the open-loop method and the threshold for the closed-loop models for the 

integration. Otherwise, if the data are collected across the entire study area with a 

spatially balanced sampling strategy, users should assign relatively high weights to the 

closed-loop model. If it is already challenging to determine the wetland type for the sites 

during the fieldwork, the possibility of generating highly conflicting prediction results are 



130 

 

then expected. Under this scenario, it is suggested to lower the threshold for integrating 

different prediction models while building the integration model.  

In terms of computational cost, the ML training procedure and the model 

integration step consume the most time. The time cost of model training mainly depends 

on data sample size. In the first two experiments, the computational time decreases as the 

sample size decreases. The first treatment took approximately 5 hours to complete data 

training, while the last treatment took about 20 minutes to finish. The wetland type 

prediction procedure is also memory-intensive due to the large number of pixels for the 

high-resolution raster datasets. To solve this issue, I applied decomposition strategy on 

the raster data layer to divide the data into partitions each containing 200 rows. I then 

applied the trained models to each partition, I collected all the classification results and 

proceeded to mosaic the pieces together into one raster layer.  

6.3. Data Resolution and Scale Analysis  

In this research, I collected spatial datasets with different resolutions from 

different sources. For instance, LiDAR data is two points per square meter, the Sentinel-2 

imagery pixel is 10 meters, and land cover raster data is 30 meters. I processed all the 

spatial datasets towards a certain scale level (the same spatial resolution) for data 

representation and spatial analysis. This research is using 20 feet (about 6 meters) as the 

resolution. I down-sampled datasets with higher resolution by using average value to 

merge neighboring pixels. I also up-sampled the datasets with lower resolution by 

dividing a grid cell to multiple ones with the same pixel value.  
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In spatial modeling, scale selection or scale analysis is an important topic. In 

general, when the resolution is coarse, multiple classification objects may coexist within 

a single pixel and detailed information can be lost. In our case, we will easily omit the 

wetland patches with smaller size in the map representation. However, if the resolution is 

too high, the map may reveal a higher level of heterogeneity, which introduces a lot of 

noises to the classification models. For wetland types that occur as large-size patches, 

fine pixels may increase the level of data variation within the type and increase the 

difficulty for classification. 

Therefore, there is a trade-off between a generic pattern and detail representation. 

The selection of scale should be based on the specific study cases, such as the general 

size of the objects to be classified and the resolution of data sources being used. In 

wetland-related studies, researchers have explored the scale effect by conducting 

experiments to evaluate the change of prediction performance by varying the spatial 

resolution of input data (Powers et al. 2012). I have also conducted related research to 

explore the relationship between classification model performance and scale variation, 

described in (Deng et al. 2018). According to the experiment results in previous studies, 

for the same study area, 10 feet and 20 feet can generate the best classification prediction 

accuracy based on the LiDAR DEM derivatives. In this research, I chose 20 feet as the 

spatial resolution since most of the spatial datasets are collected under similar resolution. 

Although this research did not elaborate direct experiment for scale analysis, the 

first two experiments regarding the variation of sampling percentage can also shed light 

on the same topic. The results show that when more data samples are included, it is not 



132 

 

necessary to generate better classification results since noise and unnecessary information 

could misguide the classification model. Furthermore, to use a higher resolution for 

classification will lead to an up-sampling process for the spatial data, which will not 

bring in more information but create duplication records in the sample data. 

6.4. Application Cases for the Research 

This study proposed and implemented a framework to generate and integrate rules 

from both the expert knowledge and machine learning training process. It reveals several 

advantages according to the experiment results. First, it provides reliable classification 

results by combining the advantages of both open-loop and closed-loop methods. Second, 

the application of this framework is less constrained by the training data. It can identify 

wetland types that did not occur in the training samples. Third, it allows human 

interactions through assigning weights to different methods for realistic scenarios. 

Furthermore, it is a fully automatic workflow that can be flexibly applied to any location 

in the state of North Carolina or even broader region with a given classification system. 

One can use this system to generate a wetland type distribution map to guide 

wetland management or wetland protection activities. For instance, we can use the 

product of this system—the potential wetland type distribution map—to guide the 

development plan. Under the context of a construction project (e.g., bridge, highway, 

urban expansion), the wetland distribution map can help with evaluating the 

environmental impact of the project and minimizing the risk of damaging wetlands. 

Another useful application is to monitor wetland change, by applying the wetland 

classification model on spatial data (e.g., remote sensing data) obtained at different time. 
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The prediction results based on different temporal data can help us gain a better 

understanding of the dynamics of the wetland system. This system can also provide 

important function to support high accuracy wetland inventory mapping. The distribution 

map can guide us to collect sample data in the field work. As illustrated in the previous 

experiments, the quality of the training data samples is critical for classification models. 

With the wetland spatial distribution map, we can better plan the path for the field work 

and collect more balanced data samples for each wetland type. If the dataset itself is more 

representative and collected in a more balanced manner, the prediction results will be 

more reliable. Furthermore, based on different versions of classification maps generated 

by different methods, we can analyze the area with a higher level of wetland type 

conflicts, and specifically visit that area for data samples. 

6.5. Limitations and Future Work 

The major limitation of this research relates to data unavailability. For example, 

for the open-loop method, the procedure of translating each step in the decision-making 

process to measurable data variables is critical for good prediction results. However, this 

process may suffer from a lack of data and errors introduced by prior simplifications and 

assumptions. For example, a key step in distinguishing pocosin wetlands from pine flat 

wetlands is a determination of the presence of dense shrub species. This step can be 

visually judged by an expert in the field, but the data layer that represents “dominated by 

shrubs” may not be acquirable in a digital and remote fashion. This study applied QL2 

LiDAR point cloud data to calculate the percentage of medium-height vegetation points 

relative to the total vegetative composition of each pixel defined as a wetland area. 
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However, the classification could benefit more if accurate shrub distribution survey map 

is available.  

The system introduced a threshold system in the rule-based model to determine 

whether each pixel meets these criteria and can, therefore, be labeled as “dominated by 

shrubs” or not. This type of variable generation process introduces complexities in the 

calibration of the thresholds and parameters. To resolve these problems and improve the 

performance of rule-based models, I applied probability factors on binary variables while 

constructing the decision tree. I calculated an error rate for each data variable according 

to which wetland types are supposed to be derived from the given data layer. I then 

converted the binary (0, 1) values to segmented values based on the error rate for 

calculating overall probabilities. Basically, the higher error rate corresponds to two 

probability values that are less distant from each other to represent a higher level of 

uncertainty. In this way, I can better control the quality of the condition data layers in the 

open-loop method and recheck the data generating process if the error rate is 

unreasonably high. We can consider this process as a “training” or “calibration” step for 

the rule-based model.  

In pursuit of future improvement, I believe this expert system should be more 

dynamic. The database and model base should keep evolving by introducing more study 

cases and domain knowledge. For example, we should collect more data samples for 

minority wetland types as well as more field testing data corresponding to the highly-

conflicted regions predicted by different models. Meanwhile, we can summarize more 

domain knowledge and keep refining the rules based on current prediction and validation 
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process. For example, the open-loop method tends to classify more “seep” type. One 

reason is that the rules defined to distinguish seep are not sufficient. Domain experts can 

interact with the classification results and further investigate the false positive cases, thus 

to formulate more rules to limit areas being falsely classified as seep.  

Furthermore, we can apply some post process and spatial analyses to further 

refine the classification results. When the classification map reveals “salt and pepper 

effect,” it means individual pixels are classified into different wetland types from the 

neighboring pixels. This situation occurs frequently for small wetland sites. We can apply 

neighborhood rules and spatial constraints to fix such a situation. For example, the 

development of context rules for each wetland type in terms of the possible size, shape, 

and adjacency constraints with other wetland types limits the areas in which various 

wetlands may occur and is expected to provide positive feedback for additional modeling 

efforts. 
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