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il
ABSTRACT
VIKRAM KARWAL. Discrete cosine transform-only and discrete sine transform-only
windowed update algorithms for shifting data with hardware implementation. (Under the
direction of DR. YOGENDRA P. KAKAD and DR. BARRY G. SHERLOCK)

Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) are widely
used in image and data compression applications. To process the DCT or DST of a signal
a portion of length N is extracted by windowing. By shifting the window point by point
the entire signal can be processed. The algorithms are developed that are capable of
updating the DCT and DST independently to reflect the modified window contents 1i.e.
for calculating the DCT of the shifted sequence no DST coefficients are used and
similarly for calculating the DST of the shifted sequence no DCT coefficients are used.
These algorithms constitute an improvement over previous DCT/DST update algorithms
as it establishes independence between the DCT and the DST. The update algorithms
used to calculate the transform of the shifted sequence uses less computation as compared
to directly evaluating the modified transform via standard fast transform algorithms.
Firstly, the r-point, 1 < » < N-1, update algorithms are derived in the presence of the
rectangular window. Thereafter, one point independent windowed update in the presence
of split-triangular, Hanning, Hamming and Blackman windows are developed. The
algorithms were implemented in C language to test their correctness. Thereafter the
hardware circuits capable of computing the independent update of DCT-II for the
rectangular window of size N=8 and step size of 1 and 4 are developed. The windowed
update algorithms are derived for DCT and DST type-1 through IV, however the

hardware implementation of type-II is given as it is the most frequently used transform.
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CHAPTER 1: INTRODUCTION

1.1  Background

Transform coding is extensively used in the area of signal processing that
provides an efficient way for transmitting and storing data. The input data sequence is
divided into suitably sized blocks and thereafter reversible linear transforms are
performed. The transformed sequence has much lower degree of redundancy than in the
original signal. One of the transforms suitable for Markov-1 type signals that has
emerged as a benchmark is the Karhunen-Loéve Transform (KLT) [1, 2, 3]. Most of the
typical image data is of Markov-1 type. First-order Markov signals are signals for which
the probability of an observation at time » depends only on the observation at time n —1

1.e. they satisfies the relationshipx, = px, , + &, , where &, represents the white noise and

p 1s the inter data-element correlation coefficient [1]. It is usually used for data having

very large adjacent-element correlation. KLT is referred to as an optimal transform
because it completely decorrelates the signal in the transform domain, minimizes the
MSE in bandwidth reduction or data compression, contains the most variance (energy) in
the fewest number of transform coefficients and minimizes the total entropy of the
sequence. KLT minimizes the distortion between the original and the reconstructed data.
However, KLT is a signal dependent transform in the sense that its basis functions
depend upon the eigenvectors of the corresponding signal autocorrelation matrix. Since

for every different random signal the basis function will be different, therefore it is



sometimes inefficient or impractical to have an efficient practical implementation of the
KLT algorithm. The Discrete Cosine Transform (DCT) and the Discrete Sine Transform
(DST) perform quite closely to the ideal KLT and have emerged as the practical
alternatives to the ideal KLT [4, 5]. Therefore, in this research we choose to study the
DCT and the DST transform pair which emerged as one of the most widely used
transforms pairs in the field of signal processing. In this research we develop new fast
independent update algorithms for the DCT and DST that are capable of performing the
update of the real time shifting sequence in the presence of windows.

1.1.1  Evolution of Discrete Cosine Transform (DCT) and Discrete Sine Transform
(DST)

Discrete cosine transform (DCT) and discrete sine transform (DST), together
known as the Discrete Trigonometric Transforms (DTT’s), are the class of sinusoidal
unitary transforms [6]. DCT and DST are an invertible linear transform with discrete
cosine and sine as their basis functions. DCT is a widely used transform and was initially
introduced in 1974 [7]. The great deal of popularity of the DCT and the DST is due to the
existence of fast algorithms that allow their efficient computation. Like the Discrete
Fourier Transform (DFT), a lot of algorithmic research has been undertaken for the fast
implementation of the DCT and DST [8-14]. Many fast algorithms for the efficient
computation of DCT and DST have been developed and are found in the literature [1].
These algorithms developed can be classified mainly into two broad categories, one
which does the indirect computation of the transform using other well known orthogonal
transforms, and other set of algorithms that involve direct computation using recursive
sparse matrix factorization of the transform matrix like the radix-2, split-radix and mixed-

radix algorithms [15, 16].



The DCT algorithm is widely used for data compression because of its powerful
bandwidth reduction capability. Discrete Cosine Transforms are orthogonal, information
of a signal is preserved under transformation, and separable i.e. a multidimensional DCT
can be implemented by a series of one-dimensional transforms. The benefit of this
property is that the fast algorithms developed for the one-dimensional DCT can be
directly extended to multidimensional transforms; this is advantageous from a simulation
viewpoint as well as for hardware realization [17, 18]. DCT like the Discrete Fourier
Transform (DFT), transforms a signal or image from the spatial domain to the frequency
domain, where much of the energy lies in the lower frequencies coefficients. The main
advantage of the DCT over the DFT is that DCT involves only real multiplications [1].
The DCT does a better job of concentrating energy into lower order coefficients than the
DFT for image data. This property of the DCT, the energy compaction, resulted in
adoption of the DCT as a standard for image compression in JPEG and MPEG standards.
DCT (DST) algorithm uses cosine (sine) as the basis function thus eliminating the use of

I a8 its

complex numbers, unlike the Fourier transform, which uses complex function e
basis [4, 5].

For the real-time processing of the infinite input sequence of data, a portion of the
sequence is sampled and the transform is performed. New input data points are shifted in
as and when they are available and the oldest data points are shifted out. To calculate the
transform of the new sequence the technique of using the update algorithm [8, 9, 12, 22]
is used. Algorithms have been developed to update the DCT and DST simultaneously to

reflect the modified window contents [22, 23]. These update algorithms are

computationally less expensive than directly re-evaluating the transform via standard fast



transform algorithms. Initially analogous algorithms for the update of the Discrete
Fourier Transform (DFT) were developed in [10-12]. Areas of application where these
“update” algorithms can be really beneficial include the real-time data communication,
real-time analysis of financial market data, target detection/recognition, adaptive system
identification, filtering and real-time analysis of financial market data.

A great deal of research for the development of fast algorithms to efficiently
compute the DCT and DST has been achieved since its introduction in 1974 [1]. The
remaining part of this section lists some of the efficient ways of computing the
transforms.

DCT’s and DST’s are real-valued transforms that transforms the integer-valued
signals to the floating-point coefficients [24, 25]. The floating-point implementation in
hardware is slow, requires too much memory and also consumes more power. However
for faster realization, floating-point multipliers can be approximated by integers.

Implementation is realized in fixed-point arithmetic where each floating-point multiplier

is approximated as £m-2", where b is an integer exponent and m is an integer mantissa
[1]. Therefore the DCT’s and DST’s with integer coefficients are of great interest since
it’s easier to design and can be implemented efficiently consuming low-power. Since this
implementation consumes less power, the major applications include mobile computing
and hand-held devices that run on batteries. The resulting integer transforms accuracy is
comparable with the original real-valued transforms and preserve all their basic
mathematical properties such as linearity, orthogonality, symmetry of the basis vectors
and recursivity. The transform coding gain and transform efficiency of the integer

approximated transform are also comparable to the original transform. The integer



approximated algorithms enable efficient hardware implementation because the design
uses only binary additions and shifts [18].

A number of fast 1-D rotation-based algorithms for the computation of DCT’s and
DST’s based on the recursive sparse matrix factorizations of the corresponding DCT and
DST have been developed [17]. Fast direct 2-D DCT/DST algorithms also exist in theory
[19]. Since 2-D DCT/DST are separable, the 2-D DCT/DST computation can be realized
by sequentially using any fast 1-D DCT/DST algorithms on rows and columns of the
input data matrix. Therefore the multi-dimensional DCT/DST algorithms can be
decomposed into 1-D DCT/DST algorithms.

Most of the fast DCT/DST algorithms developed earlier were radix-2 algorithms,
however, in practice various sequence lengths other than a power of 2 may occur. To

extend this idea to include any length, new fast even/odd-length, composite-length, radix-

q (N =¢g") and mixed-radix, where N =2"¢, algorithms have been proposed [15, 16].

These algorithms developed for sequence lengths other than N =2" however generally
have higher computational complexities.

Due to the correlation property of the DCT and DST, a great deal of the energy of
the signal lies in the low-frequency coefficients. Therefore we can select only these high
information coefficients and neglect the other low energy coefficients. Such a method
where only a subset of the output coefficients is used to enhance the computational
efficiency is known as “pruning”. In other words, instead of assuming that the lengths of
input and output data sequences to be equal as in the case of standard DCT algorithms we
choose only high information coefficients. This is really useful for the data compression

applications. Yet another class of algorithms result known as pruning algorithms [26, 27].



A class of algorithms with recursive filter structures is developed in reference
[19]. In this class of recursive algorithms DCT/DST kernels are converted to regular
regressive structures based on sinusoidal recursive formulae, or recurrence formulae for
Chebyshev polynomials, or Clenshaw’s recurrence formula. There recursive structures
are specifically useful for the parallel VLSI implementation of the variable length DCT’s
and DST’s.

Fractional DCT’s (FRDCT’s) and fractional DST’s (FRDST’s) are developed in
[28, 29] and are based on eigen decomposition of the corresponding DCT and DST
matrices i.e. FRDCTs and FRDSTs are defined through the “fractional” real powers of
DCT and DST matrices. This class of algorithms led to efficient implementation of the

DCT and DST algorithms.
A classic computer does not allow to calculate N-point DCT’s or DST’s, N = 2",

in less than linear time. Fast quantum algorithms for DCT’s and DST’s [1] is a class of
algorithms capable of realizing N-point DCT’s and DST’s using a quantum computer
with much less computational complexity as compared to the classical computer. Hence,
extremely fast quantum DCT/DST algorithms can be derived and implemented on the
quantum machines.
1.2 DCT and DST Definitions

DCT’s and DST’s are a class of discrete sinusoidal unitary transforms also known
as the Discrete Trigonometric Transforms (DTT’s). The definitions of even DCT’s type-I

through type-1V are as follows [7]:

C, (k)= %PkXZN;PXf(x)cosmTﬂ (1.1)



for k=0,1,...N

2x+Dkrx

2 N-1
Cyy (k) =[P 2 S () cos==——
x=0

for k=0,1,.,N-1

= xQ2k+ D)7
Cpy (k) = \/72Pf() N

for k=0,1,..,N -1

C. (k)= \/% Nzl f (X)COS[(zx;lj[zk;ljﬂ

for k=0,1,.,N—-1

and DST type-I through type-1V are:

S, (k) = (Zf( )sin 2

for k=1,2,....N —1,

2 . x+Dkr
Sy (k)= Fﬂ;f@)smT
for k=1,...,N,
2 . x(2k+ D7
S (k) = ﬁgpr(x)smT
for k=1,2,...,N,

5. (k)= \/% Ni 7 (x)sinKbc;lj(zk;lj%}

for k=0,1,.,N-1,

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)



where, P, :\IF for j=0 or N, and 1 otherwise. C represents the DCT transform, S
2

represents the DST transform on the input signal f{x).
1.3 The Karhunen-Loéve transform

The Karhunen-Loéve Transform (KLT), also known as Hotelling Transform and
the Principal Component Transform, was first introduced by Karhunen and Loéve [1].
This section discusses the eigen-solutions of the optimal KLT and sections 1.4 and 1.5
list its relation to the DCT and DST respectively.

Let us consider the case of Markov-1 type signal x of length N with a zero mean

value i.e.

X = {xo,xl,....,xl\F1 }T (1.9)
If {CD,.}= [D,,D,,....,D,_,] is the orthogonal basis vectors, representing a set of linearly

independent vectors that span the N-dimensional vector space. Then x can be expressed

as a linear combination of these orthogonal basis vectors i.e.
x:ZXi(Di (1.10)

The coefficients of expansion X;, can be calculated using the inner product principle

X, =(x,0,)(D,,D,) for i=0,1,...,N-1 (1.11)
Thus the vector can be represented either by actual samples {x,} as in equation (1.9) or
the N numbers in equation (1.11). To achieve data compression and reduction in the
bandwidth for data transmission, signal x in equation (1.10) can be represented by only
the first D coefficients, where (D<N), if other coefficients can be neglected, then vector x
can be reconstructed by the first D coefficients. The truncated version X (i.e. the version

with the first D coefficients) can be written as:



=Y X0 (1.12)

The Mean Square Error (MSE), ¢, resulting from the truncation is given by:
e=E[(x-%)] (1.13)
We want the parameter ¢ to be as small as possible. The problem is to find the set of

basis vectors {®, } that will minimize the above error.

= E{(NZ‘iXi@i,NZ‘iXiCDJ} (1.14)

E being the expectation operator. If in addition the basis vectors are to be normalized,

then the additional condition to be satisfied is:

(D,,®,)=9, for i,k =0,1,2,...,N-1, (1.15)
Solving equation (1.13) yields:
N-1 2
&= E{ X, }
i=D
N-1 5
ie. £ :E[ |(x,(D,.>| }
i=D
N-1 N-1
Therefore, &= E{Z@iTxde)i} = ZCDI.TE[xxT]CDi (1.16)
i=D i=D

the auto-covariance matrix 4 of the signal x can be written as:
A=E[xx"] (1.17)

Substituting equation (1.17) in equation (1.16) results in:

N-1
e=) ® AD, (1.18)

i=D

The variational equation needed to find the basis vectors is:
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1

(%](e—u[@,-,@»)ﬂ (1.19)

When the variational derivative is taken, we get the following equation,

([4]- w1, )@, =0  fori=0,1,...,N-1 (1.20)
where, p. represents the Lagrange multiplier, used for the constraint, and 7, the identity
matrix of size Nx N . The resultant set of eigenvectors should diagonalize the auto-
covariance matrix i.e. [@]'[4]®]= diag[p,, 1,,..., 11, 1. The eigenvectors given by {® N

form the Karhunen-Loéve transform matrix. For the first-order Markov signal, auto-

covariance matrix is given by [1]:
[4], =" whereik =0,1,...,N-1. (1.21)

p 1s the positive adjacent correlation coefficient with a magnitude less than unity.

1 ,0 N-1
1 .. pY?
ie. [4], =| © r (1.22)
prl pN72 1

The off-diagonal entries correspond to nonzero inter-element correlation. In discrete
domain, the n™ component of the m™ eigenvector for the solution of equation (1.20) is

given by:

12
O (n)= {ﬁ} sin{a)m {n - %} +(m+1) %} (1.23)

where, u, the eigenvalues are defined by equation (1.24), and @, ’s are the real positive

roots of the transcendental equation.

1_ 2
fy =~ £ (124)
1-2pcos(w,,)+ p
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(1= p)sin(w,)

tan(Nw, ) = >
1+ p*)cos(@, )~ 2]

(1.25)

o, are the N eigensolutions.

KLT acts as a benchmark and is an optimal transform for Markov-1 type signals. KLT
acts as the benchmark and the degree to which other transforms exhibit behavior close to
KLT is a measure of their efficiency. The processing complexity and closeness to the
optimal KLT is the measure of importance of the transform.
1.4 Relation between the Karhunen-Loéve and cosine transform

The Discrete Cosine Transform (DCT) performs quiet close to the optimal KLT
and it was demonstrated theoretically by [4] that it can be derived from the optimum
Karhunen-Loéve transform in the limiting case when the adjacent data-element

correlation p tends to unity. The transform basis function for the discrete signal is given

by:
[@],, =@, (n)
2 1" N-1
=[—} sin{a)m[n—( _)}+(m+1)£} where, m,n=0,1,...,N-1. (1.26)
(N+u,) 2 2

As p tends to one, w, lies in the range 0 <@, <7 and the denominator of equation

(1.25) 1s nonzero. Therefore it implies that tan(Nw, ) =0 i.e.

1) =k—ﬂ where £=0,1,...,N-1
N

m

except @,which results in denominator of equation (1.25) to be zero. To find ®, using

small-angle substitution i.e. tana =, sina - a, cosa ->1-a’/2,as a = 0.

Equation (1.25) reduces to:



12

—(1-p*)o,

Nw, =
"+ pHll- 0, 12)-2p]

_(l_pz)wo (127)

1.e. = 5 T
(I-p) —(+p o, /2

As p tends to one, @,” =(1-p*)/N.

Substituting the above value of @, in equation (1.26) yields:

12
_ LN+—2)} sin{%l:n _ - l)} (m+ 1)%} (1.28)
1,

Analyzing equation (1.24) the eigenvalue equation for all m=0 yields:

1-p°
= 1.29
Ho 1-2pcos(w,) + p° (129

Small-angle substitutions i.e.cosa — 1 —a” /2 above equation reduces to

_ 1-p*
C1-2pll-0,’ 12)+ p

Hy

Substituting a)o2 =(1-p*)/ N as p tends to one results in,

_ 1-p°
1-2p(l-(1-p*)/2N )+ p*

Hy

_ 1-p’
1-2p+p(1-p°)/N+p’

I+ p

= (1.30)
l-p+p(1+p)/N

Equation (1.30) tends to N as p tends to one and

N-1 N-1
m=0 m=0
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Since all the diagonal elements of the auto-covariance matrix [4] for Markov-1 type
signal are equal to 1 leads to (#yp=N). The equations (1.28) can be rewritten as:

1

bl =——
[®], N

[D],, = 1/3 sin{m(n +lj£+£}
N 2)N 2
2 1\ 7
= /Wcos[m(rwajﬁ} for m#0 (1.31)

[d)]nm z\/zkm cos m(n+l)£ for m,n=0,1,...,N-1
N 2)N

(1.32)

Therefore,

where, k, = 1/ V2 if m=0 and 1 otherwise. It is obvious that equation (1.32) matches

equation (1.2) which represents the DCT-IL It can be inferred from equation (1.32) that
for stationary Markov-I type signals with adjacent correlation coefficient p approaching
1, DCT-II is equivalent to KLT independent of the value of N. In the case of perfectly
correlated signal, all the variance, i.e. energy, of the signal is in the first eigenvector,
which is the DC component. As p decreases, the variance of the signal is spread over the
other eigenvectors as well.
1.5 Relation between the Karhunen-Loéve and sine transform

Section 1.4 shows theoretically how cosine transform can be derived from the
optimum Karhunen-Loéve transform in the limiting case when the adjacent data-element

correlation tends to unity. In an alternative limiting case when the correlation tends to
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zero, the sine transform results [5]. The derivation of how sine transform can be derived

from the KLT is presented here:
From equation (1.25) for a limiting case wherein p tends to zero yields,

tan(Nw, ) = —tanw,,

ie. tan(Nw,,) = tan(z — ®,,)
=tan(r — o, + mr) (1.33)
Therefore,
m+1
®, = /2 (1.34)
N +1

As p tends to zero, u, —1 for all m, substituting the value ofw,and y, in equation

(1.23) results in:

1/2
O (n)= {L} sin{”(’"—”)x 2n-N+1+ (N+1)}}

N +1 2(N +1)
( 2 ) (Mj (135)
N+1 N+1

Analyzing equation (1.35) shows that the transform basis functions are sine,
demonstrating that sine transform can be derived as a limiting case of the optimal KLT
for the case where the adjacent element correlation coefficient p tends to zero. It is
obvious that equation (1.35) matches equation (1.6) which represents the DST-IIL.
1.6 Properties of DCT’s and DST’s

Some of the important properties of the DCT’s and DST’s [1] are:
1. The unitarity property: DCT is a unitary transform i.e. orthonormal, hence the energy

of the coefficients in the transform domain is equal to the energy of the original input
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signal. The columns of these transform matrices are eigenvectors of symmetric real
matrices.
2. The linearity property: The DCT and DST transforms are linear that is for two
sequences x(¢)and y(¢):

Dlawx(r) + py()] = aD[x(1)]+ D[ y(1)] (1.36)
where o and [} are constants.
3. The scaling in time property: The discrete transforms deal with discrete time samples
and the results of the transforms are discrete frequency samples. A scaling in time will
result in an inverse scaling in the frequency domain with no impact on the overall

transform. Based on the time-frequency uncertainty principle, if A¢ and Af are
respectively the time and frequency units then

At and Af > (1/27)Af (1.37)
Therefore, when Af is scaled by a factor a to become a A¢, the frequency unit Af must
be scaled by the inverse of a to become (1/ a)Af so that equation (1.37) remains
unchanged. The overall magnitude of the transform remains unchanged.

4. The shift in time property: Let x = {xo,xl,....,x,\,_l }T then as one new data point is

shifted in, the shifted sequence is given by x, = {xl,x2 yeeees Xy }T, where x; is a one point

shifted version of sequence x. While these two sequence vectors are completely different
for the purpose of transform analysis, it has been shown that the transforms are related to
each other [9, 22]. The shift properties of the DCT’s and DST’s are particularly useful in
applications where time constraints may not permit the immediate processing of every

incoming sample point. Earlier algorithms developed by [22, 23] are modified to achieve
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independence between DCT and DST update algorithms. These update algorithms can be
used to process the modified DCT/DST of the shifted sequence with much less
computational burden as compared to using the transform definition. Chapter 2, 3 and 4
mainly deals with developing and modifying the existing algorithms related to shift in
time properties of DTT’s.
5. The difference property: There are some applications such as differential pulse code
modulation (DPCM), where the differencing of adjacent samples in a signal is required.
Considering a sequence consisting of differences of adjacent samples in a signal
d(n)=x(n+1)—x(n) for n=0,1,...,N-1, (1.38)
Which in vector form is
d=x:-x (1.39)
Taking DCT of the above equation yields:
C[D]=C[X.]-C[X] (1.40)
The shift properties of DCT, i.e. property 4, can be applied to solve equation (1.40).
6. Convolution properties: The concept of convolution used in DFT can be extended for

the discrete cosine transform and discrete sine transform. Consider two sequences x(#n)

and y(n) for n=0,1,...,N-1. The convolution-multiplication relation for DCT-I is:

Clx(m) ®, y(n)] = Clx(m)]x Cly(n)] (1.41)
Where ® denotes the convolution operation.
1.7  Organization of the research
This chapter involves the background study and discusses the importance of
transform coding techniques for processing of digital signals. The evolution of the

sinusoidal unitary transforms, namely the DCT’s and DST’s is introduced. The
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definitions of the four even DCT’s (EDCT’s), also known as type-I through type-IV
DCT’s, and four even DST’s (EDST’s), also known as type-I through type-IV DST’s, are
listed and their properties of the DTT’s are discussed. Thereafter the development of the
various fast algorithms for the efficient implementation of the DCT’s and DST’s are
studied. The optimal KLT and its near ideal behavior for signal processing applications is
discussed and the derivation of DCT and the DST as a special constraint of KLT is listed.

In chapter 2 the DCT-only r-point rectangular windowed update algorithms
independent of the DST coefficients and correspondingly DST-only rectangular window
update algorithms independent of the DCT coefficients are derived. DCT-II and DST-II
are the transforms, as discussed earlier, closest to the optimal KLT in performance.
Although DCT/DST-II are the most often used transforms, the algorithms are developed
for DST/DCT type-I through IV. The algorithms derived here are capable of updating 7,
1<r<N-1, new input data points at a time. The data sequence is sampled with the
rectangular window of length N and DCT/DST is performed on this sampled window.
The window is then shifted along the entire signal and the transform of the entire window
is performed. Instead of using the definition to perform the transform of the shifted
sequence, ‘“update” algorithm can be used which are computationally much more
efficient [22]. The independent update algorithms developed, use the new data point
which are shifted in, the old data points shifted out, the current time unit DCT
coefficients and one older time unit DCT coefficient values to calculate the transform of
the new data sequence with shifted data. The algorithms developed can be used
recursively to calculate the update whenever the new input data points become available.

Analogous DST-only windowed update algorithms independent of the DCT coefficients
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are developed. Earlier independent algorithms developed by Chicharo and Xi [30] were
capable of finding the transform of the updated sequence but they were limited to one
new data point at a time. In chapter 2, this concept was extended to calculate the update
in the presence of windows. Also, the r-point update algorithms in the presence of
rectangular windows are derived. Thereafter algorithms in the presence of more
appropriate windows [32] such as split-triangular window, Hamming, Hanning and
Blackman windows are developed. Sherlock and Kakad [22, 23, 33] developed the
updated algorithms in the presence of rectangular, split-triangular, Hanning, Hamming
and Blackman windows. However, these algorithms required simultaneous update of the
DCT and DST coefficients i.e. whenever the transform of the updated sequence is desired
we need the new points shifted in, the old data points shifted out and the DCT and DST
coefficients of the older time sequence. In other words, the process of updating a DCT (or
DST) requires updating the corresponding DST (or DCT) as well. However, because of
this interdependency there is excessive computational burden. The algorithms developed
in Chapter 2 are an improvement over the algorithms developed earlier because it enables
an r-point independent update of the real time input sequence in presence of the
rectangular window which results in more efficiency.

This concept of windowed update can be extended to sample the input infinite
sequence with other well known windows such as split-triangular, Hamming, Hanning
and Blackman windows. Windows other than rectangular are useful because they reduce
the edge effects such as ringing introduced by the use of the rectangular window. The
rectangular window treats the N-point data sequence to have symmetries and periodicities

which usually do not occur in practical signals. The use of these windows modifies the
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sample to make it continuous at the edges, smoother, when regarded as periodically
repeated. Chapter 3 develops independent update algorithms for split-triangular window
and Chapter 4 focuses on windowed update for Hamming, Hanning and Blackman
windows.

The concept of using the split-triangular window to sample the infinite sequence
and moving the split-triangular window gradually one point at a time to move over the
entire sequence was initially developed by [22, 23], however these algorithms involved
the simultaneous update of the DCT and DST coefficients. This idea was extended in
Chapter 3 and algorithms are derived that are capable of independently updating the
windowed sequence in the presence of split-triangular window. There algorithms are
derived for DCT and DST type-I through IV. The split-triangular window is shifted one
point at a time over the entire data sequence and the updated windowed transform is
calculated. C language code is written to test the correctness of the derived algorithms
and tested for different values of input data points and varying sequence lengths.

Chapter 4 utilizes Hamming, Hanning and Blackman windows to sample the input
data sequence. The independent windowed update algorithms are developed that are
capable of updating the sequence whenever the new data points become available in the
presence of Hanning, Hamming and Blackman window. C language code is written for
the analytically derived update algorithms and the tests were carried out for different
values of input data points. As discussed earlier, the shift algorithms developed in [22,
23] are capable of updating the signals in the presence of Hanning, Hamming and
Blackman windows but require simultaneous update of DCT and DST coefficients. The

algorithms developed in Chapter 4 however, are capable of independently updating the
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DCT (or DST) using only DCT (or DST) coefficients. This is particularly useful in
applications were only the DCT coefficients or only the DST coefficients are available.

Chapter 5 focuses on the hardware implementation of the DCT-II independent
update algorithms developed in Chapter 2 for the case of rectangular window of length
N=8. Hardware implementation is carried out for one point update at a time i.e. =1 and
four point update at a time i.e. for the case, r=4. State machines are written in VHDL and
simulated on ModelSim. The hardware is capable of computing the DCT update
coefficients using the current value of DCT coefficients, one older time-step DCT
coefficients, the new data points shifted in and the old data point(s) shifted out without
using the DST coefficients. The chapter lists the simulation results for test vectors to
validate the hardware design. The state machine implements equation (2.25), the r-point
independent rectangular windowed update equation developed in Chapter 2. Initial
processing of the data, to calculate the current time sequence DCT and one older time
period DCT is carried out using the conventional mode module developed in [31].
Thereafter, the independent update algorithm developed in this research is used to
calculate the transform of the updated sequence as the new data points become available.
The test bench is used to test the implemented design through the RMS error measure
between the values obtained through the hardware design and the values calculated using
the transform definition (using matlab). The dataflow diagrams for the two architectures
implemented are also discussed.

Chapter 6 culminates the research work in terms of concluding remarks and

suggestions for future work. It also includes the performance analysis of the algorithms
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developed in Chapter 2, 3 and 4 discussing the complexity of the algorithms developed in
this research.

Appendix A provides the C language codes used to implement the algorithms for
independent windowed update for DCT/DST I through IV for rectangular, split-triangular
window, Hamming, Hanning and Blackman windows.

Appendix B includes the VHDL codes used to implement the hardware
architectures for one point update and four point update for DCT-only rectangular
windowed update. Test benches used to test the correctness of the implemented hardware
are also given.

Appendix C provides the Java functions used to convert the decimal number to

binary number and binary number to decimal number.



CHAPTER 2: DCT/DST RECTANGULAR WINDOWED INDEPENDENT
UPDATE ALGORITHMS

2.1 Evolution of DCT/DST update algorithms

Applications where the DCT/DST transform of the real-time data is to be
processed, the input data is windowed and thereafter the window is shifted point by point
to form the DCT/DST of the entire signal. Initially algorithms were developed by Rao
and Yip [9], known as shift properties of DCT/DST, to “update” the DCT and DST
transform as the new input data points become available. These “update” algorithms used
to calculate the updated DCT/DST is far more efficient than directly calculating the
DCT/DST of the shifted sequence. As these update algorithms are computationally much
less complex than directly calculating the transforms, these algorithms are used in several
different applications such as adaptive system identification and filtering, real-time
analysis of financial market data etc. These update algorithms developed by Rao and Yip
[9] are limited to one-point update at a time and can be used only for the case of
rectangular window. Also, these algorithms perform simultaneous update of DCT and
DST coefficients i.e. to form the updated DCT coefficients, the DST coefficients need to
be calculated simultaneously and vice versa. This concept was further enhanced by
Kakad and Sherlock [22, 23] to include r-point update where 1 <r < N-1 and algorithms
were developed for update in the presence of rectangular window, split-triangular
window, Hamming, Hanning and Blackman windows. Since rectangular window treats

data to be continuous at the edges it introduces ringing effects. Other windows exist in



23

theory that can be used to reduce this ringing effect [32].

The DCT and DST type-II update algorithms as developed by Kakad and Sherlock
[22] for rectangular window are given by equations (2.1) and (2.2) respectively. These
algorithms require the simultaneous update of DCT and DST coefficients.

For DCT type-II the update equation is given as follows:

rkr rkr
C.(k)=cos——C(k)+sin——S(k
L (k) N (k) N (k)

x+Dkr

T 2.1)

%i[(—l)kf(N+ r—1-x)— f(r—1-x)]cos

for k=0,1,.,N-1,
where C(k) and S(k) are the definitions of DCT and DST respectively as derived by [7]
and given in equations (2.15) and (2.16). C.(k) represents the updated DCT coefficients.

The analogous equation for updating the DST type-II is:

vk rkm
S (k)=cos——S(k)—sin—C(k
L (k) N (k) N (k)

\/7 SIED (N +r=1=-x)= f(r—1-x)]s m(z";\l])kﬂ (2.2)

for k=1,2,...,N.
where, S, (k) represents the updated DST coefficients.

Chicharo and Xi [30] enhanced this technique and developed one-point
independent update algorithms for DCT and DST. However these algorithms were only
capable of updating one point at a time and worked for non-windowed data. The results
for DCT/DST type-II one-point independent update are listed in equation (2.3) and

equation (2.4) for convenience.
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C(n+1,k):2COS%C(n,k)—C(n—l,k)
2 krx i RN L B o
+\/;Pkcosﬁ[(—l) f) =D f(n=1)= f(n—N)+ f(n-N-1)] (2.3

for k=0,1,.,N-1,

S(n+1Lk)= 2cos%rS(n,k)—S(n—l,k)

+\/%Pk sin%[[— D f(n)— (=D f(n=1)+ f(n—N)+ f(n —N—l)] (2.4)

for k=1,...,N.

where, C(n,k) and S(n,k) are the DCT and DST coefficients of the original data sequence.

In this research r-point independent update algorithms for DCT and DST type-I
through IV are developed. The DCT independent update algorithms do not require the
DST coefficients and the DST independent update algorithms do not require the DCT
coefficients. These algorithms will result in easier implementation for applications where
only the DCT or only the DST coefficients are required. Firstly, the independent update
algorithms for rectangular windows are developed (Chapter 2) and thereafter algorithms
for use with split-triangular window (Chapter 3) and Hamming and Hanning windows
(Chapter 4) are developed. C language program codes were written, see Appendix A, and
tested for different sequence length N and input data points to test the accuracy of the
derived algorithms.

Figure (2.1) shows the basic idea behind calculating the DCT or the DST update

as defined by [22, 23, 33] and figure (2.2) shows the idea behind the r-point independent

DCT update algorithms developed in this chapter.
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fold fnew
<+— Data set at time (n) [€¢— <4— Data set at time (n+1) [¢—
v
DCT/DST DCT/DST
\ 4
R Update algorithm R DCT/DST
> C, S, fnew, fold >

Figure 2.1: Simultaneous DCT/DST update algorithm

fold1 fhewl fnew2
4—| Data set at time (n-1) |<-—-| Data set at time (n) |<— 4| Data set at time (n+1) |<—
fold24 +
DCT DCT DCT
) 4 . v
>(D——1 Coids, ol ew, peT
fnew2, foldl, fold2

Figure 2.2: Independent DCT update algorithm
2.2 DCT/DST type-I rectangular update derivations
In this section r-point independent rectangular windowed update equations for
DCT and DST type-I are derived. As developed in [7] the DCT and DST of type-I are

defined as follows:

N
C(k) = iPkZPY F(x)cos KE for k=0L..,N  (2.5)
N & N
- . xkm
and S(k) = ‘/WZ f(x)smT for k=1,2,..,N-1 (2.6)
x=1

where, P = for j=0 or N, and 1 otherwise. Xi and Chicharo [30] modified the

i
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notation to include the sequence pointer n, equations (2.7) and (2.8), to keep track of

shifting sequences in time domain.

N
C(n,k) = iPkZPY F(n=N +x)cos KE 2.7)
N e N
for k =0,1,..., N
N-1
and S(n,k) = 32 F(n—N +x)sin % (2.8)
N4 N

for k=1,2,....,. N —1.
2.2.1 Derivation of the r-point equations for the DCT and DST
In this subsection we modify the derivation originally given in [22] for the r-point
update of DCT and DST to include the sequence pointer of equations (2.7) and (2.8). The
resulting formulae depend on both DCT and DST coefficients, in Section 2.2.2 we will
derive independent DCT-only and DST-only formulae.

Let C(n+r,k) for k=0,......N, represent the updated DCT coefficients including the

effect of -points of new input data. From equation (2.7):

\/7C(n+rk) PZf(n N+x+r)cos%

\/_f(n N+r)+(— 1) \/_f(n+r)

Solving term 1 we get:

N-l-r N-1
=P, z f(n—N+x+r)coskaﬂ+Pk z f(n—N+x+r)c0s)6}7677Z
x=l x=N-r

Substituting y=x-+r in the first term and i=x+7r-N in the second term we get:

=Fh Zf(n N+y)cog(y I PZf(n—i—z)cosw

y=r+l
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Therefore,

\/7C(n+rk) PZf(n N+y)cos%—]’kif(n—N+y)cosw

y=0 =0

- B f(n(=D" COS%Jch;f(nH)cos{%%ﬂ}

vkr rkx vkr rki
=P, N+ Edhiad +P, N+ Ealiaa
2 Sf(n— y)cos I COS—— v E f(n- y)sm N sin —— I

y=0 y=0

rykz

—PZf(n N+ y)oos T =RZ - RS(=N+n)

— P f(n)(-1)" cos +( 1) Bch(l”Hy)cos(y Al;)k;z

+Pk%f(n—NHH(—l)"Pk%f(nw)

Simplifying the first term we get:

N
vkr  rkm
=P » f(n—N+y)cos——cos—
"Z:; N N

N-1
vk rkm rkm
=P P f(n—N+y)cos——cos——+ P, f(n— Ncos—
D P ( ») N N S ( ) N

y=1

rkm
+ P _f(n)(=1)* COST

Therefore,

N
vk rkm rkm rkm
= P f(n—N+vy)cos——cos——+ P, f(n— Ncos—+P n)(—1)" cos——
D P f( ») N N S ( ) N S () (=1 N

»=0

rki

f(n—N) cos f(n) cos—

1
-P — )P —
k \/5 ( ) k \/_
Using the definition of the DCT and the DST as defined in equations (2.7) and (2.8) and

substituting y=r-1-x results in:



28

C(n+r,k)= cosrkT”C(n,k) +P, sinrkTﬂS(n,k)
+\/%P{(l—%jf(n N)cos dANyEn)L \/15 f(n)cosrkT”

+(%—ljf(n—N+r)+%f(n+r)(—1)k

(x+1)k7r} 2.9)

+§[(—1)kf(n+r—1—x)—f(n—N+r—1—x)]cosT .

Equation (2.9) is the r-point equation for DCT type-I but it involves DST coefficient too.

Let S(n+r,k) for k=1,.....,N-1, represent the updated DST coefficients including the

effect of -points of new input data. From equation (2.8):

\/7S(n+rk) Zf(n N+x+r)sm%

x=1

\/7S(n+r k)—Nz“f(n N+x+r)sm%+ Zf(n N+x+r)s1n%

x=1 x=N-r

Substituting y=x+r in the first term and i=x+r-N in the second term we get:

N-1

Zf(n N+y)sm(y +Zf(n+z)s1n

=r+l

(i—r+ N)kx
N

‘<

S lf(n N+y)sm¢_zr:f(n—N+y)sin¢

y=

; ri:f(n +iysin ST MR ;N)k”

rk vk rk;z
=CcoS—— n—N+ sm——sn
N Zf( ») N

y=1

Zf(n N+y)cosT

rykz r)kz

—Zf(n N+ y)sin & ZDkZ ot 1)* Zf(ner)sm(y >
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Therefore,

N
:cosrkTﬂZf(n—N+y)sinykTﬂ—s1 rk”ZPf(n N+y)cos%

y=0 y=0

rk

+%f(n—N)sinrkTﬂ+(—l) \/_f( )sm——f(n N)sm—

r)kz )k

—Zf(n N+ y)sin & ZDRZ e 1)t Zf(n+y)sm(y -

Using the definition of the DCT and the DST as defined in equations (2.7) and (2.8):

rk rkm
S(n+r,k)=cos——S(n,k)—sin—C(n, k
( ) N (n,k) N (n,k)

2 . rkx|( 1 1 k
+\/;51n7[(ﬁ—1)f(n—N)"‘Ef(”)(_l) }

Z[( D f(n+ )~ f(n—N+y)lsinY N)

Substituting y=r-1-x results in:

rkm rkm
S(n+r,k)=cos——S(n,k)—sin—C(n, k
( ) N (n,k) N (n,k)

2 . rkxi( 1 1 i
+\/;smTHE—ljf(n—N)+Ef(n)(—l)

Z[f(n N+r=1=x)=(1)* f(n+r-1-x)Jsin T T

(2.10)

Equation (2.10) is the -point update equation for DST-I.
2.2.2 Computation of r-point independent update equations for DCT and DST
Equation (2.9) provides an r-point update for the DCT but it includes both C(n,k)

and S(n,k) coefficients. Therefore it would be necessary to update both the DCT and the



30

DST even if only the DCT coefficients are required. We therefore seek an equation that
provides an update of the DCT in terms of DCT coefficients only.

Taking the two sided z-transform of equation (2.9) yields:

2'C(z,k)= A.C(z,k)+ P.B,S(z,k)

{\/%Pk(l—%}ur —(—1)"\/%3(%4 +\/%Pk[% J T+ (=D* P %z
n \/%Pkg[(_l)kzrlx _ Z—N+r—1—x] (x +]\1])k”:|F( ).

where, A, = cosrk77r , B, = sinrkT” and F(z) represents the z-transform of the input

sequence f(n).

Therefore,

(2" ~4)C(z.k) = B.B,S(z.k)

J{\/gp (1—\/_j N4 —(-1) \/7 ——A, +\/7 ( 1jz-N+’+(—1)k\/%Pk %zr
3 < _1\k or-l=x _ _—N+r-l-x (x+1)k7[
+\/;Pk;[( Dz z Jcos ~ }F()

Solving for C(z,k) yields:

RS, L[ 21 )
C(Z,k):mS(Z,k)'i'(zr_Ar)[ NB{(I \/Ej Ar
S R R PN G TN I F U
- (-1 NPk\/EAr_'_ Npk[\/i lj + (-1 NPk\/E

+\/%Pkiz:(l;[(_l)kzr1x _Z—N+r—1—x] (x +N)k7[:|F( )
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PBz" 1 2 1)y
C(z, k)= 0z )S(z,k)+ (l—z_rAr){\/;Pk(l_ﬁ)z A,

‘“)\rf“ +\F( _IJ_N””\TT

+\/%Pk§[(—l)kz+x ~ 2V 6o (“Al[)k”}F( ) @.11)

Taking z-transform of equation (2.10) yields:

z’S(z,k):ArS(z,k)—BrC(z,k)+[\/%(%—lJBrz‘N+ 2 \/I_B (—1)*

+ %g[z—N#—r—l—x _ (_l)kzr—l X] (x +]\1])k7z.j|F( )

(z" —A,.)S(Z,k):—B,C(Z,k)ﬁ-{\/%(%—l)&zN +\/7\/1_B (="

r=1
+ %XZ_(;[ZNH'IX _ (_l)er—l—x]Sin (x +]\lf)kﬂ-:|F(Z)

Solving for S(z,k):

B, 1 201 N
S(z,k):—(zr_AV)C(z,k)+(ZV_Ar)N;(\E 1}3; + \/_B( 1)*

+ \/%:Z_:;[ZNJrrlx _ (_l)k erl X] (x +]\1])k7[:|F( )

Therefore,

Bz 1 2(1 ) e [20 -
S(Z,k)——(ITrZ_r)C(Z,k)-F—(I_ArZ_r)[\/;(\/E ljB’_Z + \/_B( 1)
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Z[ Wb (L1 s (“]é)"”}n) (2.12)

Eliminating S(z,k) by substituting equation (2.12) in equation (2.11) yields:

hB =" rBz [ 21 Voo
C(Z’k)__mC(Z’k)+(l—Z_VAr)z|:\/;(\/E ljBrZ
+(_l)k\/%%3 Z[Z’N“‘ (=) z7] (”Al[)k”}f()
1 2
(I—A z’){\/i(l \/—JPAZ =D \/7—PA z
2( 1 N Lk EL
+\/;(E—lekz +(=1) \/;\/Epk

+\/%Pk:z_:;[(_l)kzlx _Z—N—I—X]C (x+]\1[)k7z-:|F( )

Gathering terms in C(z,k) onto the left hand side,

{(1 _— )2 N PkB,ZZdr }C(z,k) _

\/%(% - 1ijszN” +(=D)* \/%Pk % B’z

+ \/%Pk B, g[z—N—'—H —(=1)f 27" ]sin %
+ \/%(1 —%)PkArz‘N" - (—l)k\/%Pk %A, z”

Bl o



2 O k_-1- —N-1- (x+ Dkrz
+.,|—P D'z -2 *lcos—————
W/N k;[( ) ] ~
2 1 2 _—-N-2r k 2 1 2_-2r
+‘/— ——1|P,A4°z + (-1 ‘/—P—A z
N(\/E j k“*r ( ) N k\/i r
[2 1 . 2 1
o —=|1-—=|PAz"" —(-D)' | = —=P Az
N( \/E) ‘ Vv 2t

2 U e (x+Dkx
+.|—=P.A z NV () 2T cos
N k r;[ ( ) ] N

Multiplying throughout by z" and then taking the inverse z-transform results in:

Cn+1,k)+(A°>+PB*)C(n-2r+1,k)=24C(n—r+1,k) =

\/%[%— lekBer(n ~N-2r+1)+ (—1)k\/%Pk %Bﬁf(n —2r+1)

\/7133 Z[f(n N —x—r) = (=1)* f(n—x—r)]sin FFDEZ

—+

ﬁ

[1 jPAf(n N-r+1)—(-1) \/7 \/_Af(n r+1)

2( 1
+ F(E_ )Pf(n N+D+(-1 \/7 P f(n+1)
+ %Pkrzll( D* f(n—x)— f(n—N —x)]cos (x+ Dz

2 1 2 k 2 1 2
+"N(__lekA’ f(n—=N-=-2r+1)+(-1) ‘,NP"EA" f(n-2r+1)
+‘/£[1—LJPA f(n—N—r+1)—(—1)k‘/£LPA f(n—r+1)

N \/5 k“tr N\/E k*r

[\S)

33
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2 o AS T =N e P = (=) f(r—x— G+ Dz
+\/;PkA,;[f(n N—-x-r)—(=D* f(n—x-7r)]cos ~
Solving further yields:
C(n+rk)=24C(nk)—(4,° +P.B>)C(n—rk)

\/7133 Z[f(n Nex—D—(=D)*f(n-x— 1)]sm(x+]\1])k”

2 S D S r 1=~ SN 104 A =N =)

B (x+Dkr
A (-D)* f(n—x-1)]cos N
+\/%[%—qﬂf(n—N—rH(—l)"\/%%Pkf(n—r)
+2\/z(1—ijp A f(n—N)—(—l)k\/z\/EP A f(n)
N \/5 k4t N k4
+\/2[L—IJP,C/’(11—N+r)+(—1)k\/ZLP F(n+r) (2.13)
N2 N2 ¢
for k =0,,..., N.

Equation (2.13) is the r-point update equation for DCT-I. It can be used to update the
DCT using the DCT coefficients of the current and one previous time sequences, new
input data points and the old data points shifted out, independent of the discrete sine
coefficients. The update equation involves real time update of N point data taking r-
points at a time. The C language implementation of the equation to implement 7-point
update where 1 <r < N-1 is included in figure (A.1) of Appendix A. The code accepts the

new data points as they become available and uses equation (2.13) to calculate the
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updated DCT. The values obtained from the update algorithm are compared with the
values obtained through the conventional formula and RMS error values are calculated.
To find the r-point independent update equation for DST-I we substitute equation

(2.11) in equation (2.12):

S(z,k) = —%S(z,k) —%N? P (1—%} N2y
—(—l)k\/%l’k %Arz-z’ +\/%Pk [T—lj T (-1 \/7 \/_
3&2[(—1)’%**’ _ 2 oos ?’”}F( )
+J%g[ﬂ-” )tz sin ?’”’}F( )

Gathering terms in S(z,k) onto the left hand side,

{(1 -z "4, )2 + PkBrzz_zr }S(z, k)=
2 1 . 2 1
—u=|1-—= P ABz"" +(-1) .| =P, —=ABz"
VN( \/Ej ‘ N ‘2
2 1 . 2 1
+,|—=|1-—=|P, B z"" —(-D)" .| =P, —=B.z"
\/N( ﬁj k R el

2 = e . (x+Dkr
+ [ =PBY [z V" (=) 2z cos——
wa % r;[ (-1 ] N

+ %(% - 1)3,2“ + (—1)"\/%%3
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“N-l-x b —iexq.. (X + Dk
Z[ -(=D"z""]s sin——

2 & . Netexr . (x+Dkx
+ —A _lkzlxr_Zlersu,l—
"N VXZ:;,[( ) ] N

Multiplying throughout by z" and then taking the inverse z-transform yields:

S(n+1L,k)+(A4° +PB>)S(n—2r+1,k)—24,S(n—r+1,k) =
\/5(1—%}13 AB f(n—N-=2r+1)+(-1) \F \/_ABf(n 2r +1)

2 1 v |2 1 B
+\/;(I—EijBrf(n—N—r+1)—(—l) \/;PkEBrf(n r+1)

\/7133 Z[f(n N —x =)= (=) f(n—x—r)cos VAT

\/%(%—ljBrf(n—N—r+1)+(—1)k\/%%3rf(n—r+l)

(x + )k

_l_

Z[f(n N =x)=(=D* f(n-x)]si

\/ELI—TJABf(n N-=-2r+1)—(-1) (TAB,_f(n—2r+l)

\/;A Z[( DY fn=x—r)= f(n=N —x—r)]sin S DAZ

Therefore,

S(n+r,k)=24,8(nk)— (4> +PB>)S(n—rk)
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+\/sz3'§”(”—1_N_x)_(_l)kf(n—l—x)]cwm
N x=0 N
2 r—l1 ) k
+\/;Z[f(n+r—l—N—x)—(—1) f+r-1-x)+ A4 ()" f(n-1-x)

—A f(n—=1-N —Xx)]sin

+\/%(1 —%)AVB}_ (1=P)f(n-N-r)+ (-1)'{@%/1,3,_ (P -1)f(n—r)
+\/7( —\/IEJ(P ~DB. f(n-N)-(-1) \/7(13 1) =B,/(n) (2.14)

for k=1,...,N-1.

(x+Dkx
N

The C language implementation of equation (2.14) is included in figure (A.3) of
Appendix A.
2.3 DCT/DST type-II rectangular update derivations

As presented in reference [7] the DCT and DST of type-II are defined as follows:

2 & (2x+ Dkrx
C(k) = NkaZ:(‘; f(x)cos—zN (2.15)
for k=0,1,.,N—1,
and S(k) = \/7 kZ £(x)sin (2“1)"” (2.16)

for k=1,...,N,

1

where, P = for j=0 or N, and 1 otherwise. Equation (2.16) uses the argument

(2x+1) instead of (2x—1) in the conventional definition of DST to represent the same
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set of signal data points. Both the definitions are fully identical and result in numerically
identical transform coefficients.
Xi and Chicharo [30] modified the notation to include the sequence pointer n, to keep

track of points in the presence of shifting data,

2 “ x+Dkrx
C(n,k)=,—P n—N+x)cos————— 2.17
(n,k) N k;f( ) N (2.17)

for k=0,1,.,N—-1,

2 & . (2x+Dkx
and S(n,k)=,—P, n—N+x)sin——— 2.18
(k)= k;f( ) N (2.18)

for k=1,...,N.

2.3.1 Derivation of the r-point equations

In this subsection we modify the derivation originally given in [22] for the r-point
update of DCT and DST to include the sequence pointer of equations (2.17) and (2.18).
The resulting formulae depend on both DCT and DST coefficients, in Section 2.3.2 we
will derive independent DCT-only and DST-only formulae.

Let C(n+r,k) for k=0,1,...,N-1, represent the updated DCT coefficients including the

effect of r-points of new input data. From equation (2.17):

N-=l-r
\/gcmw,k) =P f(n—N+x+r)cos%

x=0

N-1
+ P, z f(n—N+x+r)cos%.
x=N-r

Substituting y=x-+r in the first term and i=x+7-N in the second term results in:

N S B Q(y—-r)+Dkx
\/ZC(n+r,k)—PkyZ=;f(n N + y)cos N
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QN —r+i)+Dkrx
2N '

r—l1
+Pka(n+i)cos
i=0

:ﬂNZ_if(n—N+y)cos[(2y+l)kﬂ ~ Vkﬂ}

2N N

Q2(y—-r)+Dkx
2N

r—l1
— ka(n—N+y)cos
y=0

‘P ZI: f(n+i) cos{(z(i —r)+Dkx kﬂ}

2N

N-1
= Pka(n — N+ y)cos (2y+ Dz oS rkx
= 2 N
Qy+Dkrx sin rkm
N

N-1
+PB,)_ f(n—N+y)sin

y=0

2y —-r)+Dkx
2N

r—I1
— ka(n—N+y)cos
y=0

Qy-r)+krx
2N '

r—l1
+(=D" B} f(n+ y)cos
y=0
Using the definition of the DCT and the DST as defined in equations (2.17) and (2.18):

rkm rkm
Cn+r,k)=cos—C(n,k)+sin——S(n, k
(n+r,k) N (n,k) N (n,k)

(y-r)+Dkrx

+\/%ﬂ2[(—1)kf(n+y)—f(n—N+y)]COS

2N
Substituting x=r-1-y results in:
rkmw rkm
C(n+r,k)=cos—C(n,k)+sin—S(n,k
(n+r,k) N (n,k) N (n,k)
r—1
+\/%Pk2[(—l)kf(n+r—l—x)—f(n—N+r—l—x)]cos%. (2.19)
x=0
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Let S(n+r,k) for k=1,....N, represent the updated DST coefficients including the effect

of r-points of new input data. From equation (2.18):

N-l-r
\/gS(nﬂf,k) -p f(n—N+x+r)sin%

x=0

N-1
+ P, z f(n—N+x+r)sinM,

x=N-r

Substituting y=x-+r in the first term and i=x+7-N in the second term results in:

N S B . 2(y-r)+Dkx
\/ZS(n+r,k)—ﬂyZ=;f(n N+ y)sin N

(N —-r+i)+Dkr

r—1
+ P n+i)sin
kgf( ) N

25| 222tk
Ry -r)+Dkx
2N

r—I1
— ka(n—N+y)sin
y=0

< n . | QE-r)+Dkr
+ﬂ;f(n+z)51n[ N +k7r}

N-1
= Pka(n — N+ y)sin (2y+ Dir cos rka
poary 2 N
y+Dkrx sin rkx
2N N

N-1
—Pka(n—Ner)cos
y=0

2y -r)+Dkrx
2N

r—1
—P.Y>. f(n—N +y)sin
y=0

Q(y—-r)+Dkr
2N '

+(—1)kPer_1:f(n+y)sin
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Using the definition of the DCT and the DST as defined in equations (2.17) and (2.18)

yields:

rkm rkr
S(n+r,k)=cos——S(n,k)—sin——C(n, k
( ) N (n,k) N (n,k)

+ %P@mn—N+y>—<—1)kf(n+y)]sin @y —r)+hkz

2N
Substituting x=r-1-y results in:
rkm rkmw
S(n+r,k)=cos——S(n,k)—sin——C(n, k
(n+r,k) N (n,k) N (n,k)
r=1
+\/%Pk2[f(n—N+r—l—x)—(—l)kf(n+r—l—x)]sin%. (2.20)
x=0

Equation (2.20) is the r-point equation for the DST type-II.
2.3.2 Computation of r-point independent update equations

Equation (2.19) provides an r-point update for the DCT but it includes both C(#,k)
and S(n,k) coefficients. Therefore it would be necessary to update both the DCT and the
DST even if only the DCT coefficients are required. We however need an independent
update of DCT i.e. an equation that provides an update of the DCT in terms of DCT
coefficients only.

Taking the z-transform of equation (2.19) yields:

rkmw rkmw
z'C(z,k)=cos——C(z,k)+sin——S(z,k
(z,k) N (z,k) N (z,k)
2 & e Nl 2x+Dkr
+.|—P, —Df 2 = M F(2) cos 2.21
\/ng[( ) 1F(2) N (2.21)
where, F(z) represents the z-transform of the input sequence f(n).

Taking the z-transform of equation (2.20) yields:
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rkm rkm
"S(z,k)=cos——S(z,k)—sin——C(z,k
z'8(z,k) N (z,k) N (z,k)

2 S vl e . 2x+Dkrx
+.,|—P Nertex () 27 F (2) sin————— | 2.22
kaZ:;,[z =Dz F(z) N (2.22)
Solving equation (2.21) for C(z,k) yields:
. rkr
SIHT
C(z, k)= r pr S(z,k)
z' —cos——
N
r—1
gpkz[(_l)k Zr—l—x _ Z—N+r—lfx]cos (2x + l)kﬂ-
+ N = N F(z2)
, rkm '
z" —cos——
Therefore,
. . rkm
z"sin——
C(z, k)= pr S(z,k)
-z cos——
N
r=1
\/g B S 1y 2 = 2 cos (2x2+ ;)kzz
+ =0 F(z). (2.23)

_ rkm
1-z7" cos——
N

Solving equation (2.22) for S(z,k) yields:

. rkm
sin——

S(z,k) = ——NMC(Z, k)
z' —cos——
N

P o Qx+Dkr
7P ZN+r1x_ _1 erlx sin—~ -
N k;[ =1 ] N

2
N F(z).
. rkm (@)
z" —cos——
N
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Therefore,
. rkrm
z"sin——
S(z,k)=- pr C(z,k)
1-z"cos——
r=1
\/gpk Z[Zfolfx _ (_l)k Z*l*)«t]sin (2X2+]\1[)k7l'
+ =0 F(2). (2.24)
_ rkm
1-z7" cos——

Eliminating S(z,k) by substituting equation (2.24) in equation (2.23) results in:

. . o ¥k
z ¥ sin® ——

C(z,k)=—

> C(z,k)
i rkx
1-z7" cos——

2 Ltk & v i axa . (2x+Dkr
—P z7"sin—— z (=D z T sin——
+‘/N i N XZ:(;[ (-1 ] N

5 F(z)
{ ., l’kﬂ':|
1-z7" cos——
N

[2 & P _N-I- 2x+Dkrx
—P -1 T "leos——
N k;[( )z “ ] N

F(z2).
_ rkm
1-z7" cos——

+

Gathering terms in C(z,k) onto the left hand side,
2
{1 -z’ cosrk—ﬂ} +z 7% sin’ rkx C(z, k)=
N N
2 Ltk & v Cex . 2x+Dkx
\/;sz SIHT;[Z N (=)F 2! ]F(z)smT

2 & o NI Qx+Dkr
+.|=P D)z 2 VTF(2) cos——— 2
W{N k;[( )z z 1F(2) SN
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_ 3 ’”k_” k_-l-x _ _-N-l-x (2x+Dkrx
\/; " cos Z[( D'z z 1F(2) COS—2N .

Therefore,

[1 +z77 =227 cos rkTﬂ}C(z,k) =

2 L rkm&S . v P . 2x+Dkr
—P, sin—— z" T —(=Dz7"TTF(z)sin ————
‘/N i N [ (-1 1F(z) SN

x=0

r=1
+ \/%Pk ;[(—1)" 2 VR () cos—(zx;]\lf)kﬁ

2 rk7 < k _—r-l-x 777 —N—-1-x (Zx + ]')kﬂ.
—P, cos— 1 — F(z)cos——————.
v N Z[( )z 1F(z) N

Multiplying throughout by z" and then taking the inverse z-transform yields:

C(n+r,k) = 2cosﬂ‘T”C(n,k)—C(n—r,k)

2 . Tk & NP e @x+ D
\/;P sin N xo[f(n N-x-D)—-(-1)"f(n—x 1)]s1n—2N

2585 N LN —x— Dlcos 2X T DEZ
Npkg[( D f(n+r—-x-1)— f(n+r—N—x—1)]cos N

2 rk_zr (2x+1)k7r
\/;P cos Z[( D f(n=x-1)— f(n—N—-x-1)]co —2N . (225

for k=0,1,.,N—1.
Equation (2.25) can be used to update the DCT using DCT coefficients of the current and
one previous time sequences, new input data points and the old data points shifted out,
independent of the discrete sine coefficients. The update equation involves real time

update of N point data taking r-points at a time. The C language implementation of
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equation (2.25) to implement r-point update where 1 <7 < N-1 is listed in figure (A.5) of
Appendix A.
Similarly the r-point update equation for the DST may be derived by substituting

equation (2.23) in equation (2.24).

S(z,k) =~

2 L rkn & v e Qx+kr
S Pz sin— Y [zVT = (=D z7 Jcos
Ve N XZ:(;[ (=1 ] N

F(z)

2 o Qx+kr
SPY [z — (=) 2 sin
\/;k;[ (=D"z ] N

_, rkm
1-z7" cos——
N

+

F(z).
Gathering terms in S(z,k) onto the left hand side,
2
{1 -z’ cosrk—ﬂ} +2z % sin® rkx S(z, k)=
N N
2 Ltk & vy o 2x+Dkr
— Pz sin— N (=) 27 )F(2) cos ~————
\/;kz NXZ::;[Z =Dz 1F(2) N
A e x+1kr
=P [z (=D 2 F(2) cos————
\/; k;[ =1 1F(z) N

2 _ rkr 3. v e . 2x+Dkrx
- |—P z7" cos— z N (=) 2T F(2) sin————2
‘/N b N XZ:(;[ (-D"z"IF(2) N

Therefore,
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{1 427 —227 cos %}S(z, k)=

2 I"kﬂ' —r—N—-1-x k _—-r—1- r (2X + l)kﬂ-
VN i Sin [ R JF(2)co 2N

Z[ -N-1-x ( l)k -1- X]F(Z)Sin

2 rkr 3 v s . 2x+Dkx
—\/;Pk cos— = [z77V — (=) ]F(z)smT.

x=0

2x+Dkr
2N

Multiplying throughout by z" and then taking the inverse z-transform yields:

S(n+r.k)= 2cosﬂ‘7”5(n,k)—5(n—r,k)

2 i NN o x+Dkrx
\/;P sin N [f(n—N-x-1D)—-(-1)"f(n—x 1)]cos—2N

x=0

2,5 ok . Qxt Dk

"‘\/;Pk;[f(’l""” N—-x-1)—-(-D"f(n+r—x 1)]s1n—2N

_ |2 (2x + Dkx

\/; Z[f(" N—x=D=(D f(n—x-Dlsin=—2==. (2.26)
for k=1,...,N.

The C language implementation of equation (2.26) to implement r-point update
where 1 <r < N-1 is given in figure (A.8) of Appendix A. The code accepts the new data
points as inputs, and uses equation (2.26) to calculate the independent DST update of the
shifted sequence. The values obtained from the update algorithm are compared to the
DST of the shifted sequence calculated using definition, and RMS values are calculated.
2.4 DCT/DST type-III rectangular update derivations

As presented in reference [7] the DCT and DST of type-III are defined as follows:
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28 X 2k + 1)z
S e Y L (227)
2N
for k=0,1,.,N—-1,
2 & . xk+D)rx
and Sk)=,—) P.f(x)sin——— 2.28
() =y 2Pl ) N (2.28)
for k=12,...,N,
where, P :\IF for j=0 or N, and 1 otherwise. Xi and Chicharo [30] modified the
2
notation to include the sequence pointer n, to keep track of points in the presence of
shifting data,
N-1
C(n,k) = \/7 3P, f(n—N +x)cos % (2.29)
for k=0,1,.,N—-1,
2 & . x(k+ D7
and S(n,k)y=,/—) P f(n—N +x)sin——— 2.30
()= 3y 2 PS ) v (2.30)
for k=1,2,...,N.

2.4.1 Derivation of r-point equations

In this subsection we extend the derivation originally given in [22] for the r-point
update of DCT and DST to include the sequence pointer of equations (2.29) and (2.30).
The resulting formulae depend on both DCT and DST coefficients. In Section 2.4.2
independent DCT-only and DST-only formulae are derived.

Let C(n+r,k) for k=0,1,....N-1, represent the updated DCT coefficients including the

effect of r-points of new input data. From equation (2.29):
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\/7C(n+rk) Zf(n N+x+r)cosx(212‘—;l)”

x=0
1
+—f(m—=N+r)—f(n—N+r)
V2
N-l-r N-l
= f(n—N+x+r)cosM+ z f(n—N+x+r)cosM
x=0 2N x=N-r 2N

+Lf(n—N+r)—f(n—N+r)

Np)

Substituting y=x-+r in the first term and i=x+7-N in the second term yields:

= (y—r)2k+1)z

8 o N+ )cos K (i—r+N)2k+D)r

2N

+§f(n+i)cos
+%f(n—N+r)—f(n—N+r)

y=—r)2k+1)rx
2N

:Nz_if(n—N+y)cos(y r)(2k+1)ﬂ Zf( N+y)cos(

(i-r)Qk+hr . Q2k+Dr |

2N 2 2

Simplifying above equation yields:

—rz_llf(nwLi)sin J(m=N+r)—f(n—N+r)

_ ff(n _ N+ y)cos yQRk+x cos Qk+Drzx
v N N

N-1
. yQk+O)x . Qk+Drr
+ n—N+ y)sin sin
;f ( ») N N
-r)2k+hrx
2N

—if(n—N+y)cos(y

~r)Qk+Dr . (2k+Dx

_r—l . (y
yz(;f(iﬂ—y)sm N 5
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+(%—ljf(n—N+r)

N-1
=ErZny(n—N+y)cosy(2]2€ﬂ

y=0

+Erf(n—N)—E,%f(n—N)

YES P —N+y)sinw—(—1)kﬂ %x(n)

y=0

(y—r)Qk+hrx
2N

—if(n—N+y)cos

(y—r)2k+)r
2N

— (—l)kif(n + y)sin

+(%—1]f(n—N+r)

where,

_ cos Qk+Drr n Qk+Drr

E

”

and F =si

Using the definition of the DCT-III and the DST-III as defined by equations (2.29) and
(2.30) results in:

C(n+r,k)=E C(nk)+F.S(nk)

NS L (x+ D)2k + )7z
N;f(n N +r—-1-x)cos N
ENEEAS e (X D@k+ D7

+(=1) N;f(nﬂf 1—x)sin Y

2 k 1 1 1
—\/;[(—1) E, Ef(”)_Er(l—Ejf(n—N)+(1—Ejf(n—N+r)}

2.31)
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Equation (2.31) is the r-point update equation for DCT-III but it also contains the DST
coefficients.

Similarly, let S(n+r,k)for k=1,...,N-1, represent the updated DST coefficients

including the effect of -points of new input data. From equation (2.30).

\/7S(n+rk) Zf(n N+x+r)s1n%

x=0

+(=Df \/—f(n”) D' f(n+r)

N-l-r N-1
= f(n—N+x+r)sinM+ z f(n—N+x+r)sin

x=0 x=N-r

xk+)r

F %f(nw)—(—l)"f(nﬂ)

Substituting y=x-+r in the first term and i=x+7-N in the second term results in:

NZf(n N + y)sin (y_r)z(ijf+l)7r

y=r

(i—r+N)2k+)r
2N

+Zr:f(n+i)sin

+(=Df \/—f(n+f’) (D" f(n+r)

(y—-rQRk+hrx
2N

(y—-rQk+hrx

n—N+y)sin
f( ») N

Il
MZ

—rz_llf(n—N+y)sin

<
Il
(=1

(i=r)Qk+Dx . (2k+Dx
2N 2

+Zr:f(n+i)cos +(—1)k%f(n+r)—(—l)kf(n+r)

Simplifying the above equation yields:

_ f F(n—N+y)sin yQk+x cos Qk+Drrx
= 2N 2N
vk +1)x sin QRk+Drr
2N 2N

—ff(n—Ner)cos



(y—rQk+)rx
2N

—if(n—N+y)sin

(y—-rQRk+hHrx
2N

+(=1* Zr:f(n + y)cos

+(—l)"%f(nﬂ)—(—l)"f(nw)

=Eépyf(n—sz)sm%—(—l)k&%f(n)

1

V2

N-1
—FrZny(n—N+y)cos

y=0

—Fx(n—-N)+F,

—y(2lzc]-|\; Dz x(n—N)

(y—-rQRk+)rx (y—rQk+Hrx

—if(n—N+y)sin +(—1)k§f(n+y)cos

2N 2N

N %f(nw)

Therefore,

S(n+r,k) = E,S(n, k)~ F,C(n, k) - %’Z'lf(n_Ner)sm (y—r)2(]2\;c+1)7z-

(y—rQk+Hrx
2N

+(=D* %rz::f(n + y)cos

+\/%{Fr(%—ljf(n—NH(—l)k%f(nw)—(—l)kEr%f(n)}
Substituting x=r-1-y yields:

S(n+r,k)y=E.S(n,k)—F C(nk)

(x+D)Rk+D)rx
2N

r—l1
+ EZf(n—NJrr—l—x)sin
Nx:O
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(x+DQ2k+D)x
2N

+(=DF %rzl:f(n +7r—1-x)cos

%{Fr (% - 1jf<n SN+ (D) %f(n - (-D'E, %f(n)} (2.32)

Equation (2.32) is the r-point update equation for DST-III.

2.4.2 Computation of r-point independent update equations for DCT and DST type-III
Equation (2.31) provides an r-point update for the DCT but it includes both C(#,k)

and S(n,k) coefficients. Therefore it would be necessary to update both the DCT and the

DST even if only the DCT coefficients are required. We therefore seek an equation that

provides an update of the DCT in terms of DCT coefficients only.

Taking the z-transform of equation (2.31) yields:

, 23 e (x+DQRk+Drx
2'C(z,k)=E C(z,k)+ F.S(z,k)—,|—) z V""" cos
(z,k) = E,C(z,k) + F,S(z,k) N; N
r—1
+ (_l)k Ezzr—l—x Sin (x + 1)(2k + l)ﬂ.
NS 2N

Pleve i gk

Therefore,
23w (x+DQR2k+ D)
2" —E)C(z,k)=F.S(z,k)—,|— > z V" cos
( )C(z,k) = F.S(z,k) NXZ:;‘ 2N
r—1
+ (—l)k Ezzr—l—x Sin (‘x+1)(2k + 1)72-
NS 2N

ool (5]

Solving for C(z,k) yields:



53

2
C(z,k) ZLS( k) — \/; O Nl (X+1)(2k+l)7z

G -E) @ -EN& N
( D \/7” R (x+1)(2k+1)7z'
(Z _E)xO
2

N k L_ _L -N _L —N+r
e for b

Solving further results in:

2
- r—l1
Ceeky=t7 " gay VNS v (DR D
(1-z7E,) (I-2"E )= 3,
ey \/7 < S G (X+1)(2k+l)7r

(1 z'E )v "

2
%{u ol g ] o

Taking z-transform of equation (2.32) results in:

2'S(z,k) = E,S(z,k)— F.C(z,k)

r—1 r=l
EZZ—NH‘—I—X sin (x + 1)(2k + l)ﬂ- + (_l)k EZ Zr—l—x coS (x + 1)(2k + 1)7[
N 2N N 2N

2 1 -N _ kL T 1\k L
R W{F,[E—IJZ D' 2 = E,ﬁ}

Therefore,

(z' —E)S(z,k)=—F.C(z,k)
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r—1 ) . r-1 1
EZZ_N-H_I_X sin (x + 1)(2k + l)ﬂ’- + (_l)k izzr—l—x coS (x + 1)(2k + )7[
N 2N N 2N

2 1 1 1
SRl — =1z (=D —z" = (=D'E —
" N{ r(\/i jz +&D \/EZ D V\/E}

Solving for S(z,k) results in:

S(z,k) = —LC(Z k)

(z' -E,)

2
N i E—— (x+1)(2k+1)7r (-1 )\/7“ s X DQh A DT

(Z -E.)'S (Z _E)XO 2N
2
N 1 -N k 1 r k 1
_IN_ e[ )z (<) E,——
+(zr—E,.){ ’(ﬁ j regE e ’\5}
Therefore,
Fz7
S(Z’k)__(lTrz")C(Z’k)

\/7 (—l)k \/7
Zl Nelex (x+D)Rk+1)rx N N ’Z’I:Z_]_x oS (x+D)Rk+1)rx

- ~ 2N (1-Ez") & 2N

2
\/; [F [i—lj N +(—1)ki—(—1)kE Lz-”} (2.34)

(1 Ez")| V2 V2 V2

Eliminating S(z,k) by substituting equation (2.34) in equation (2.33) yields:

FZZ—ZV
Cz,k) = —————C(z,k
(k) == 2 Gk
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Fo2 B
"IN iz‘N“‘H i X HDRE+ D7 N Z‘ s o D+ D
(1-E.z") < 2N (I-Ez7") < 2N

ez
+ ]\_] 2|:Fr( 1 k 1 r k 1 —2ri|
z™")

e 2V (=1 27— (-)E ——
\/EJ +()\/§ () r\/zz

2 (=1)* [2
-1 - r=1
]_\7 z N o (x+D)Rk+1D)rx N A N ZZ_]_x sin (x+D)Rk+D)rx
( z'E.)' D 2N (1-z"E) = 2N

2z
gl efgy g

Gathering terms in C(z,k) onto the left hand side,

{1-=7&)

5]

+ Frzzfzr }C(z, k)=

r=l r—1
S g G @R 2O D2k 4D
N 2N N 2N

1

-N-2r | kL T ARTY L —2r
+F, N{Fr(ﬁ_ljz +(-1) \/EZ (-1 E,\/EZ }

r=l r—1
28 g DD [28 Dk
NS 2N N3 2N

r-1 r-1 . N2 1
+ (_l)k izz—l—x Sin (x + 1)(2k + 1)” _ Er (_l)k zzz—l—x—r sin (x + )( k+ )72.
N x=0 2N N x=0 2N

- \/%{(—l)"F, %z“ ~E, (1 —%]ZN’ + [1 —%}N}

Therefore,
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Cn+Lk)+C(n=2r+1Lk)-2E C(n—r+1,k) =

(x+D)Rk+Drx
2N

r—1
F EZf(n—N—x—r)sin
Nx:O

(x+D)Rk+1)rx
2N

+(=D)*F, %if(n — X —7)cos

(x+D)QRk+Drx
2N

+E,\/%:Z;f(n—N—x—r)cos(XJrl)S\];Jrl)jZ

2r71
— . |— n—N —Xx)cos
N;f( )

(x+D)Rk+Drx
2N

+ (=D %rzlf(n — x)sin

(x+D)Q2k+Dr
2N

—E.(-D* %rz_lf(n—x—r)sin

—J%{(—l)kF,%f(n—r+1)—E,ﬂ(1‘%Jf(”_N_”D{l_%jf("_]v“)}

1

+F,.\/%[Fr[ﬁ—ljf(n—N—2r+1)+(—1)"%f(n—rﬂ)
—(—l)kEr%f(n—2r+l)}
+Er\/%{(—l)kFr%f(n—2r+1)—Er(l—%jf(n—N—%H)

+(1—%jf(n—N—r+l)}

Multiplying throughout by z" and then taking the inverse z-transform yields:

C(n+r,k)=2E C(n,k)—C(n—r,k)
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+\ﬁrz_l:[(‘l)kf(”’+r—l—x)+F,.f(n—N—x—l)—(—1)}‘E,f(n—1—x)]sin(’”1)(2’”1)7:
e 2N
+\/%§[(_1)kF’f(n_1_x)_f(”_N_X+V—1)+E,f(ﬂ—N—x—l)]cos(x+1)5\1;+1)7[

2 1 2 1
—\/:( ——2]f(n N - r)+2\/;( —EjErf(n—
_ P( _Lj Fn-N+r) (235)

for k=0,,.,N—-1.

\S]

Equation (2.35) is the general r-point independent update equation for DCT-III. The C
language implementation of the r-point DCT type-III update is included in figure (A.11)
of Appendix A.

To find the r-point update equation for DST-III we substitute equation (2.33) in

equation (2.34) that results in:

F22—2r
S(Z k)__(lE'—)S(Z,k)
2 2
F’\E S s D@k Dr Y Ff\rizm.n(xﬂxzkﬂ)n
(1 Ez" ’)Zxo 2N - Ez")Y < 2N
2
F\F
’ N 1 -N-2r _L ~N-r
T )2[( V'R E’(l_ﬁ} +(l \E]Z }

2
N < IZ_N x (x+1)(2k+1)7z D \/7 = " cos (x+DR2k+D)x
z'E)S (1 z'E )x 0 2N




2

N
+(1—z"E,.)[Fr(ﬁ lj ey’ f -V f }

Gathering terms in S(z,k) onto the left hand side,

{(1 -z'E, )2 +F2z }S(z, k)=

23 v +1)(2k +1 . 23 . (x+DQRk+1
\/:z s(x )éN )”—(—1) F. F;&Z sm(x )éN )
2 1 1 1
F D'F,—z% -E|1-—— |z +|1-— [z
' ﬂ( R ( \Ejz ( ﬁ]z }
2 N (x+1)(2k+1)7r Nt (x+DRk+x
2. 2N Z Y

2& (x+DQRk+ ) 2& (x+DRk+rx
+(=D* =)z cos —E (D" =)z cos
=D N; 2N D NXZ_: 2N

2 1 —N-r Zr
N{F"(\/z_ll RN \/ o \/ - }

P I S .
o W[F{E‘ljz e S }

Multiplying throughout by z" and then taking the inverse z-transform yields:

Sm+1L,k)+S(n-2r+Lk)-2E S(n—r+1k) =

2 ! v (x+DRk+Dx
N ; f(n—N—-x—-r)cos o
ke 2% (D@2 + Dz
-D"F, N ;f(n X —r)sin 2N
(x+DRk+x

2 )
— n— N —Xx)sin
N2 (=N =) N

58



-E %:Z_(I;f(n—N—x—r)sin(x+1)$\]:+l)”
k2% B (x+D)QRk+Dx
+(-1) N;f(n X)cos N

(x+ D)2k + )7
2N

—E (=" %}if(n—x—r)cos

+ %[Fr(%—qf(n—N—r+1)+(—1)k%f(nﬂ)—(—l)k%E,f(n—rﬂ)}

el N N PRI P
+Fr\/;{(—l) Frﬁf(n 2r+1) Er(l 2jf(n N -2r+1)

+(l—%}f(n—N—r+l)}
1

~E, —{F{E—ljf(n—N—2r+1)+(—1)k%f(n—r+l)

—(=DF %Erf(n —2r+ 1)}

Therefore,

S(n+r,k)=2E S(nk)-Sn-r,k)

+\/%i[(—l)kf(n+r—l—x)+Frf(n—N—x—l)—(—l)"E,,f(n—x—l)]

s XDk + D)7
2N

+\/%rzll[f(n—N—x+r—1)—(—1)kFrf(n—x—l)—Erf(n—N—x—l)]

sin (x+D)k+D)x

2N
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R U P RPN 3 )
+(=1) \/;\/Ef(n r)+(=1) \/;\Ef(nﬂ) D2 NErf(n) (2.36)

for k=1,...,N.
Equation (2.36) is the general r-point independent update equation for DST type-III. The
C language implementation of equation (2.36) to implement r-point update is listed in
figure (A.13) of Appendix A.
2.5 DCT/DST type-IV rectangular update derivations

As developed by [7] the DCT and DST of type-IV are defined as follows:

2 2x+ 1\ 2k+1\ 7
C(k)—\/;; f(x)cosK : j( : jﬂ (2.37)
for k=0,1,.,N—-1,
2 I (2x+1) 2k+1\ 7
and S(k) = NZO f(x)sm[[ > j( > jN} (2.38)

for k=0,1,.,N—1,

where, P, _ 1 for j=0 or N, and 1 otherwise. Xi and Chicharo [30] modified the

V2

notation to include the sequence pointer n, to keep track of points in the presence of

shifting data,
28 2x+1\ 2k+1 )\ 7
Cn,k)=,— — N + x)cos — 2.39
= [ w20
for k=0,1,.,N-1,
2 2x+1\ 2k +1\ 7
and S(n,k)=,— — N +x)si — 2.40
(n,k) N;f(n x)smH 5 j( 5 )N} (2.40)

for k=0,1,.,N—1.
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2.5.1 Derivation of r-point equations

In this subsection we extend the derivation originally given in [22] for the r-point
update of DCT and DST to include the sequence pointer of equations (2.39) and (2.40).
The resulting formulae depend on both DCT and DST coefficients, in Section 2.5.2 we
will derive independent DCT-only and DST-only formulae.
Let C(n+r,k) where k=0,....N-1, represent the updated DCT coefficients including the

effect of r-points of new input data. From equation (2.39):

Cn+rk)= %NZ‘if(n—N+x+r)cos[[2x2+l)[2k2+lj%}

EC(n +r,k) = N;Z:;rf(n —N+x+r)cos[(2x2+1)(2k2+lj%}

+ i f(n—N+x+r)cos{(2x+l)(2k+lj£}

x=N-r 2 2 N

Substituting y=x+7 in the first term and i=x+r-N in the second term yields:

\/gcm+r,k) = jz_jf(n —N+y)cosK2(y —2r)+1j[2k2+1j%}
+r§:f(n+i)cos{(2(i_r;N)Jrlj(z]“rl]ﬁ}

2 N
- ;VZ;f(n N+) COSKW —o+ 1)[2"; 1)%

—;Z:;f(n—N+ y)co{(z(y ;”“j(%ﬂjz}

2 )N

+ gf(n +i)cosK2(i_r ; N) +1)(2k +1J£}

2 )N



_ jz;f(n —N+y)co{(2y = —’j[zk;ljﬂ
_;Z:)f(n—Nw)COS[(z(y _zr)ﬂj(Zkzﬂjﬂ
+Z)1:f(n+i)cos{(2i_§r+l +NJ(2k2+lj%}

- ii‘; f(n—=N+y) COSK Zy; 1](%)%} COSKWJ%}

+3 N yysin | 22 211 N}“K@jﬂ

-8 - 2221 215

~ gf(” ) Sinﬂzi - zr - 1)(21(; 1jﬂ SinK 2k2+ 1]”}

Using the definition of DCT-IV and DST-IV as defined in equation (2.39) and (2.40)

results in:

C(n+r,k)=C(nk) cosm
2N

+ S(n,kysin GEDT
N

%;f(n ~N+yY) COS|:[2(y _2r) * 1)[%; 1)%_

2 e 2202 B g 21,

Substituting y=r-1-x yields:

C(n+r,k)=C(n,k)cos

rCREDT | g kysin
N

rQQk+1)rx
2N
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2 _ L —2(x+D+1Y 2k+1\ 7
N;f(n N+r—1 x)cosK 5 j( 5 jN}

_\/%if(n + r—l—x)sinK_z(x;l) i 1)(216;1)%}&{(2]{;1)”}

r(2k+ )
2N

Therefore,

C(n+r,k)=C(n,k)cos

_ %:Zl;‘f(n—N+r—1—x)cos{(zx;lj(zk;lj%}

L (=Dt %ri:f(n 1 x)sin[[zx; 1](2]‘; 1)%} (2.41)

+ S(n,k)ysin GEHDT
N

Equation (2.41) is the r-point update equation for DCT-IV.

Similarly for DST-IV, S(n+r,k) where, k=O0,...,N-1, represent the updated DST

coefficients including the effect of 7-points of new input data. From equation (2.40):

S +r.k) = %ff(n _N4x+7r) sin[(zx; 1](2]‘; ljﬂ

\/gS(n +r,k)= Nle;‘rf(n —-N+x+ r)sinsz;lJ[zk;lj%}

N-1
+ f(n—N+x+r)sin (2x+1J(2k+1j1
x=N-r 2 2 N

Substituting y=x+7 in the first term and i=x+r-N in the second term yields:

\/gs(’”hk) = NZif(n—Ner)sinﬂz(y —21’)+1}(2k2+1)%_

- N [2G=r+ N)+1Y 2k+1) 7.
+§f(n+z)s1n{( 5 ) j }
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_ gﬂn_Nw)sm[[z(y —2r)+1j(2k2+1j%}
—;Z:;f(n—Nw)sinKz(y —Zr)+1j(2k2+1)ﬂ
+2f("+i)SinK2(i_r;N)H)(zkzﬂjﬂ

_ gf(n—Nw)sinsz;l _r}(Zkzﬂj%}
—;Z;f("—N+y)Sin[[2(y_2r)HJ(%;I)%}
+§:f(n+i)sin{(2i_§r+l +N](2kz+ljﬂ

X C i (G

S0

_;sz(n_N+y)sin{(z(y—Zr)+1)(2k2+1j%:

.\ g:f(” i) COSK 2i — ir + 1)( 2k2+ 1jﬂ Sin[( 2k2+ 1)4

rQk + )7
2N

Therefore,

S(n+r,k) = S(n,k)cos

=1 _ k
- %;f(n—N+y)Sin[(2(y ;)“](2 2“)%

r@Qk+hm C(n,k)sin
2N
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+(-1" %rzf(n+y)co{(z(y_;)HJ(zk;lj%}

Substituting y=r-1-x results in:

S(n+r,k)=S8(n,k)cos

r@Ck+ Dz C(n, k)sin
2N

rQQk+1)rx
2N

S PR — SR T

+(-1" %rzl‘,f(n +r —l—x)cos[(_z(x;r D +1J(2k2+1j%}

Therefore,

S(n+r,k)=S8(n,k)cos

rQk+r C(n,k)sin
2N

rQk+N)rx
2N

+ %:Z:;f(n—N+r—1—x)sin[(2x2+1)(2k+1)£}

2 )N
L (=) %i f(n+r—1—x)cos{(Zx;lj(zk;lJﬂ (2.42)

Equation (2.42) is the r-point equation for the DST-IV but it contains DCT coefficients as
well.
2.5.2 Computation of the r-point independent update equations for DCT/DST type-1V

To derive the independent update equation for the DCT type-IV we take the z-
transform of equation (2.41) and (2.42) and eliminate DST coefficient.

Taking z-transform of equation (2.41):

z'C(z,k)=C(z,k)E, +S(z,k)F.

r—1 r—1
—\/ZZZW”‘” od [2xH1Y 2641 7 LD 322"‘” ol (2xHY 2k 41\ 7
N& 2 2 )N N& 2 2 )N
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(z" — E.)C(z,k) = S(z,k)F, - % ’Z’EZ_NH._I_X COSK 2x+ 1}( 2k + 1)1}

2 2 )N

28, 2x+1\ 2k+1\ 7
+ _1 k “= r=l-x _: el
g (2]

Solving for C(z,k):

2
Cleb)=—TrS(z k) \/; SH Nerir o {(2X+lj(2k+lj;z}

Z —
(z' —E,) 2 —E)& 2 2 )N

A

@ —E)xo 2 L 2

Therefore,

2
TSI | S S

(1-E.z7") - ~ 2 2

(2.43)

-ty L

(l E z”) =
Taking z-transform of equation (2.42) results in:

2"S(z,k) = E,S(z,k)— F.C(n,k)

r-1 r-l
+\/ZZZN““ n (2x+1j(2k+lj Y 2 288 g (2x+1j(2k+1]£
N& 2 2 N& 2 2 JN

Solving further yields:

(z" —E)S(z,k) = F.C(n,k)

28 v [(2x+1) 2k +1 SN 2x+1Y 2k +1
+\EZ SmK 5 j( 3 j } =D \EZ COSK 5 j( 3 jﬂ

Solving for S(z,k) results in:
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2
AT r=1
S =y YN S v Sm[(Zx ; 1](2/{ . ljﬂ

(z' —E) (z' —E) = 2 2
P
) (-1 I VZ_I‘,ZFH cos (2x+1](2k+1j£
(z' —E )% 2 2 )N

Therefore,
S(z k)Z—LC(nk N HZ Nelox (2X+1J(2k+1]£
’ (I-Ez") 77 (- E e 2 2 N

(-D \/7 r-l R (2x+l)(2k+1}£ (2.44)
- .

(1 Ez*’)xo 2 2

Eliminating S(z,k) by substituting equation (2.44) in equation (2.43) yields:

2

fF
F'2 -2 r r—1
C(z’k):_%c'(z,k) - P N-lex—r _- (2X+1j(2k+lj£
(l_ErZ ) (1 E x= 2 2 N

I "

(lE 2 2

3 1
- \/E:r)z Vg KZx;lj(zk;lj%}

0

e

- Ez”)vo 2 2

Gathering terms in C(z,k) onto the left hand side,

r=1
gFrzz,N,l,H sin 2x+1) 2k+1\ 7
= 2 2 JN

[(1-z"E)*+F’z%1C(z,k) =




g e 5

e
Vi e

oz (5

r—1
CD'E EZz*H in (2x+1)(2k+1}1
N = 2 2 JN

Multiplying throughout by z" and taking the inverse z-transform yields:

Cn+Lk)+C(n—=2r+Lk)-2E.C(n—r+1,k) =

\/%F,:Z_:;f(” ~N-x- r)smﬁzx; 1)(%; ljﬂ
2ol 2]

%éﬂn V=) C‘”’sz; Wk; l)ﬂ
R e ea

ke |2 p0 [ 2x+1Y 2k+1 7
~(-D*E, N;f(n x r)smH 5 j( : JN}

68



69

Therefore,

C(n+r,k)=2E C(n,k)—C(n—r,k)

+\/%§[F,f(n—N—x—1)+(—1)kf(n+r—x—l)—(—l)kE,,f(n—x—l)]

| (35255

+\/%§[E,f(n—N—x—l)+(_1)kFrf(n—x—1)—f(n—N+r—x—1)]

OSK%H)(%H)E} (2.45)
2 2 JN

for k=0,,.,N—-1.

Equation (2.45) represents the algorithm to update DCT type-1V independent of the DST
coefficients. The C language implementation of the DCT type-IV update equation is
given in figure (A.15) of Appendix A.

Similarly the r-point update equation for the DST-IV may be derived by substituting

equation (2.43) in equation (2.44).

2,2 E r—1
S = s S cof (2 2 1) 2
(1-E.z7) (1- E e 5 > N

(-1) F\/zzvilezw _ Hm”j{zkﬂjﬂ

C(-Ez7) & 2 2

3 1
st
s

2 2

Gathering terms in S(z,k) onto the left hand side,
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[(1-z"E)*+F’z7%1S(z,k) =

r=1
\/ZF,ZZN‘“ o [2x+1j(2k+1)£
N x=0 2 2 N
r—l1
_(_Dk\/ZFrZZH, o (2x+1)(2k+1)£
N x=0 2 2 N
r—1
N EZZ_N_]_X <in (2x+lj(2k+lj£
Nsz 2 2 N

r—1
—Er\/zZzN‘” G [2xH1Y 2k+ 1) 7
N& 2 2 )N

Taking inverse z-transform of the above equation results in:

S(n+Lk)+S(n-2r+Lk)-2E S(n—r+1,k) =

2 & 2x+1\2k+1\ 7
FFrg;f(n—N—x—r)cosK 5 )( 5 )F}
) %FZ fn-x—-r) sin{(zx;lj(zk;ljﬂ

2 | (2x+1\ 2k+1\ 7
+\/;;f(n—N—x)smK 5 j( 5 Jﬁ}

-E, %:Z;;f(n—N—x—r)sin{(zx;lj(zk;lj%}
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(1) %rzf("—X)COSKM;IJ(%;IJ%}

_CE, %:Z_;f(n—x—r)cos[(zx;1}(2]{;1)%}

Therefore,

S(n+r,k)=2E S(nk)—S(n—r.k)
+\/%§[Frf(n—N—x—l)+(—1)kf(n+r—1—x)—(—1)kErf(n—x—1)]

e

+\/%§[f(n—N+r—l—x)—(—l)kF,f(n—x—l)—E,f(n—N—x—l)]

Sin[(2x+1j(2k+lj£} (2.46)
2 2 N

for k=0,1,.,N-1.

Equation (2.46) represents the algorithm to update DST type-IV independent of DCT
coefficients. The C language implementation of the independent r-point update equation
(2.46) for DST-1V is given in figure (A.18) of Appendix A.
2.6 Derivation of DCT/DST independent equations in time domain

Independent update algorithms derived for DCT/DST type-I through IV in this
chapter can be derived in time domain without use of the z-transforms. This section
includes the derivation for DCT-II and DST-II in time domain. This act as an alternative
way of deriving the independent update equations for DCT’s and DST’s. The equations
developed here are identical to independent equations (2.25) and (2.26) derived earlier in

this chapter using the z-transform.
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C(n+r,k) is given by equation (2.19) i.e.:

rkm rkm
Cn+r,k)=cos—C(n, k) +sin——=S(n, k
( ) N (n,k) N (n,k)

r=1
+ gpkz[(_l)kf(n+r_l_x)—f(l’l—N+l"—l—x)]C05M_
N s 2N
Similarly calculating C(n —r,k) from equation (2.17) yields:
N < x+1kr
—C(n—-r,k)=PF, n—N+x-r)cos————
\/Z ( ) k;f ( ) -
@x+Dkr

+Pk§f(n—N+x—r)cos (2.47)

x=r

2N

Substituting i=x-7-N in the first term and y=x-r in the second term results in:

\/g(?(n_r,k)zpk 75“1 f(n+i)cos 2@E+r+N)+Dkr

y=—r—-N 2N
N-r-1
+ P, Z f(n—N+y)cos(2(y+r)+1)k7[.
poar 2N
,N,l .
) Qi+)kr (r+N)kx
=P n+1i)cos +
ki:;N S(n+i) [ N N
N-r-1
Qy+Dkr rkr
+P n— N+ y)cos +
k yZ_:; S ») { N N
~_N-1 .
) i+Dkr  (r+N)kr
=P n+i)cos CcoS
ki:_Zr_Nf( ) N N
~_N-1 .
~ . Qi+Dkr . (r+N)kr
-P n+i)sin sin
ki:;Nf< ) N I

N-l-r
! Qy+O)kr  rkx
+P E n—N + y)cos cos

2 V) 2N N

»=0
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N-=l-r
B> f(n-N+y)sin TG, ’"’]‘V”
y=0

rkr & _ (2i +Dkr
=(-1)"cos——P, n+i)cos—————
=(-D" N ,Zr;Nf( ) N

—(=1" smrkTﬂPk _z f(n+i)sin———

i=—r—-N

(2i +1)kx
2N

2y +Dkr

rkm =
+ P, cos—— n—N + y)cos
k N Zf( ) N

»=0

-P, COST Z f(n— N+y)c0s(2y2+1)kﬂ

y=N-r

N-1
- P, sinrkT”Zf(n—Nij)sin(zyg—l)k”

y=0

N-1
+ P, sinrkTﬂ z f(n—N+y)sin

y=N-r

2y +Dkr
2

Using the definition of the DCT and the DST as defined in equations (2.17) and (2.18)

yields:

rkm rkm
Cn—r,k)=cos——C(n,k)—sin——S(n, k
( ) N (n,k) N (n,k)

rkr <! i+ )kr
+(-=1)" cos——F, n+i)cos—————
(-Df N ZZNf( ) N

B rkx 2 ~ . Qi+Dkr
(-D¥s sin N P\/; z f(n+z)sm—2N

y=—r—-N

&= 2y+1

_pcosrk_ﬂ 2 =53 F(n=N+ y)cos DAL
yN—r 2

+ P, smrk—ﬂ 2 Z f(n— N+y)sm(2y2+]\1[)kﬂ

er
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Substituting i=-x-N-1 and y=-x+N-1 results in:

rkm rkr
Cn—r,k)=cos——C(n,k)—sin——S(n, k
( ) N (n,k) N (n,k)

+COS}%T”P ;;f(n—N—x—l)cos%
+sm%P Zf(n N—x—1)si n(2x2+]\1[)k7r
~CD'R Ork—” Zf(n x—1)cos DA

2N
~(D'As ﬂm Zf(n X 1)sm(2x+]\1[)k” (2.48)

Adding equations (2.19) and (2.48) results in cancellation of the DST coefficients and

yields the DST independent update equation for DCT-II.

C(n+r,k) = 2c0srkT”C(n,k)—C(n —rk)

2 l’k_ﬂ' VNN e @x+ Dk
\/;P sin N [f(n—N-x-1D)—-(-1)"f(n—x 1)]sm—2N

x=0

2 58y D= f(n—Nar—x Qx+Dkr
+\/;ﬂ§[( D f(n+r—x-1)— f(n—=N+r—x—1)]cos N

2 rk_ﬂ' x+Dkrx
\/; P, cos Z[( D f(n—x-1)— f(n—N-x-1)]c cos = (2.49)

for k=0,1,.,N—-1.
Similarly the r-point update equation for the DST may be derived in time domain

resulting in:

S(n+r.k)= 2005%77[S(n,k)—5(n—r,k)
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2, Tk G Nk e 2x+kn
+\/;Pksm N DIf(n=N-x-1)—(-D" f(n-x 1)]cos—2N

x=0

+\/;Pk;[f(n N+r—x-1)=(=Df f(n+r—x—-1)]sin N

12D cos S o N 1) — (=) £ — x — Dsin 25T DEZ
\/;PkcosNxZ_(;[f(n N—-x-1)—(=D* f(n—x—-1)]sin TVERE (2.50)

for k=1,...,N.

Analyzing equations (2.49) and (2.50) shows that they are identical to equations (2.25)

and (2.26).



CHAPTER 3: DCT/DST TRAPEZOIDAL WINDOWED INDEPENDENT UPDATE
ALGORITHMS

3.1 Introduction to independent DCT and DST update algorithms for trapezoidal window

Update algorithms in the presence of trapezoidal or split-triangular window were
initially derived by Sherlock and Kakad [22], however these algorithms involved
simultaneous update of the DCT and DST coefficients for windowed update data. In this
chapter, the algorithms initially derived in [22] are extended to perform independent
update of DCT and DST. The independent algorithms are derived for DCT and DST
type-1 through IV in the presence of split-triangular window. The windowed DCT
independent update algorithms do not require the DST coefficients and similarly the
windowed DST independent update algorithms do not require the DCT coefficients. The
infinite input sequence is windowed with the split-triangular window of figure (3.1).
Split-triangular window is preferred over the rectangular window used in chapter 2
because it reduces the edge effects that occur due to the use of rectangular window. The
independent DCT and DST split-triangular windowed update of the shifted sequence can
be calculated using the algorithms developed in this chapter without using the definition
of the transforms. The computational complexity to calculate the split-triangular
windowed update of shifted sequence is much less as compared to the computation by the
transform definition. Section 3.2 lists the explanation and simultaneous update algorithms
developed by Sherlock and Kakad [22], these algorithms are listed here for completeness

and understanding of the independent split-triangular windowed update algorithms. In
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Section 3.3 independent DCT/DST type-I trapezoidal window update algorithms are
developed and sections 3.4, 3.5 and 3.6 focuses on DCT/DST type-II, III and IV
algorithms. Appendix A includes the C language implementation of the independent
trapezoidal windowed update algorithms for DCT/DST type-I through IV. The
algorithms derived here are capable of updating one point at a time i.e. =1, however the
algorithms can be repeated if more than one point update is required.
3.2 DCT/DST split-triangular windowed simultaneous update algorithms

This section lists the simultaneous update equations for split-triangular windowed
update as derived by [22, 23]. The windowed update algorithms in this section are given
for DCT/DST type-II as it is the most often used transform. For the input signal f(x),
x=0,.., N-1, and the split-triangular window w(x) of length N with tail-length n, given by

equation (3.1), the windowed data is given by £, (x) = f(x)w(x).

Xx/ng if x=0,...,ny
w(x) = 1 if x=np+1,....,N-ny
w(N-x) if x=N-np+1,...,N-1 (3.1

When the new data point f{NV) is available, f{0) is shifted out and f{V) data point is shifted
in. The updated sequence is represented by fix+1) and the shifted windowed data is given
by:
Sostnew (¥) = f(x + Dw(x). (3.2)
which can we rewritten as:
Fostuen (¥) = £+ D[w(x) + wx +1) = w(x +1)]

= f(x+Dwx + D)+ f(x+D[w(x) — w(x +1)]
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wix)

Ma x

Figure 3.1 Split-triangular window w(x) with tail length n,

Defining m(x) = w(x) —w(x +1), see figure (3.1), above equation can be written as:
Sustnewy () = f(x+Dw(x +1) + f(x + Dm(x)
Therefore,
Sotnewy ) = L, (X + D)+ £ ey () fOr x=0,...,N-1, (3.3)
where, [0, (X) = f(x+Dm(x) and f (x+1) = f(x+Dw(x+1).

Jfmmew)(x) can be rewritten as:

Fntnemy () = fx+D[m(x +1) = m(x +1) + m(x)]

1.€.
= f(x+Dm(x+1) + £ (x + D[m(x) — m(x +1)] (3.4)
Now,
( -1/ny if x=mny-1,
-1/ny if x=N-np-1,

m(x)—-m(x+1) = {
2/ny if x=N-1,

L. O all otherxin0,..., N- 1,
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1 1 2
= _n_5x,n0—l __5X,N—n0—l +_5x,N—1’ (3.5)

0 n, n,

Substituting equation (3.5) in equation (3.4) results in:

NG BV CES) FE ) (LI .
n, n, n,
where, f (x+1)= f(x+Dm(x+1)
fm(new) (x)=f (x+1)+ ni [_ AUN )5x,n0—1 - f(N - no)éx,N—nO—l + 2f(N)5x,N71] (3.6)

0
Equations (3.3) and (3.6) represent the windowed update version of £,,(x) and £,,(x)
respectively for moving DCT/DST for trapezoidal window. In equation (3.3), f.(x+1)
represents non-windowed update of £,(x) and the second term f,mew)(x) 1S a correction
factor that converts this non-windowed update of f,,(x) into an update in the presence of
the window. Similarly in equation (3.6), f,(x+1) represents non-windowed update of
fm(x) and the second term converts this into the update in the presence of the window.

Taking DCT-II of equation (3.3) and equation (3.6) yields:

Cw(new) (x) = Cw (x + 1) + Cm(new) (x) (37)

Cm(new) (‘x) = Cm ('x + 1)

2 E 2x+ Dk
2R S A F )80~ F (N =10)5, s +27 (N6, Joos EEEDET
N "=n, 2N

Solving the above equation yields:

Corgrony (¥) = C,, (x + 1) + \/% 5_’;{_ F(ny)cos 20 —2 2]+ 1kr

— f(N —ny)cos

[2(N=ny -D+1lkr F(N)eos [2(N -1)+ 1]/m}
2N 2N
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Therefore,
2 P 2n, - Dkr
C =C (x+1)+,[——+%{- cos—> 2"
m(new) (x) m (x ) \/; ]’lo { f(nO) 2N
(2n, +Dkrx

—(=D* f(N =n,)cos +2 £ (N)(=1)* cosf—;} (3.8)

for £k=0,1,...,N-1.
Equations (3.7) and (3.8) can be used to calculate the simultaneous update of the moving
DCT for trapezoidal window. C,(x+1) is the non-windowed DCT update of f,(x)
calculated using equation (2.1) listed below for convenience, and C,,(x+1) is the non-
windowed DCT update of f,,(x) calculated using equation (2.1) listed below. Clearly, it
can be seen that while performing the windowed DCT update, both the coefficients of

DCT and DST are required.

rkr rkr
C (k)=cos——C(k)+sin——S(k
L (k) N (k) N (k)

25 = f(r—1— Qx+Dkz
+Pk\/;;[( D* f(N+r—1-x)— f(r—1-x)]cos |

for k=0,1,.,N—1.

Similarly the DST update equation may be derived and is:

Sw(new) ('x) = Sw (x + 1) + Sm(new) (x) (39)
S snewy (¥) = S, (x +1) + \/%:—’;{— f(no)sinw
+(=D* f(N - no)sin% —2f(N)-D* sin;‘—;} (3.10)

for k=1,..., N.
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Equations (3.9) and (3.10) can be used to calculate the simultaneous update of the
moving DST for trapezoidal window. S,,(x+1) is the non-windowed DST update of f,,(x)
calculated using equation (2.2) listed below for convenience, and S, (x+1) is the non-
windowed updated DST of f,,(x) calculated using equation (2.2). Clearly, it can be seen
that while performing the windowed DST update both the coefficients of DST and DCT
are required.

vk rkm
S.(k)=cos——S(k)—sin——C(k
L (k) N (k) N (k)

2 $ K . (2x+Dkx
~P =YD f(N+r=1-x)— f(r—1- AL
g Nxzo[( VSN Hr=l=0)=fr-1-x)]sn 2N
for k =1,2,..., N.

where, S, (k) represents the updated DST coefficients.
In the following sections algorithms are developed that are capable of performing
independent moving update of DCT and DST for trapezoidal window.

3.3 Independent DCT/DST type-I split-triangular windowed update algorithms for
moving data

The algorithm to calculate C,,.,and S the windowed DCT-I and DST-I

w(new)
update in the presence of trapezoidal window are derived next and in section 3.3.2 the
method to pre-process the data required to update the DCT-I and DST-I used in Section
3.3.1 is derived.

3.3.1. Computation of C,,,,,and S

w(new)
For calculating the independent DCT-I update in the presence of split-triangular

window we take DCT-I of equations (3.3) and (3.6).

Cw(new) (x) = Cw (x + 1) + Cm(new) (x) (31 1)
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Cm(new) (x) = Cm (x + 1)

2 X1 xkm
+ \/;Pk z_[_ f(n, )5):,'10—1 - f(N —n, )(Sx,N—nO—l + 2f(N)§x,N—l x COST

x=0 n()

Solving the above equation yields:

B 2P (n, - Dkr
Cm(new) (X) - Cm (x + 1) + \/; n, { f(”o ) COS —N I)"o—]
_f(N_no)Cosw”ﬂN)mM}
Therefore for ny=1:
2 P 1 =Dk
Cm(new) (X) = Cm (x + 1) + \/;Z{— f(no)ﬁcos¥
(=) SN =y yoos T DT Lo sy cosk—”} (3.12a)
N N
and for ng#£l,
B 2P (n, —=Dkx
C oy () =C, (x+1) + \/; ne { f(no)cos—N
S (=)t (N =y )cos Lot DRZ *]'vl)k” +2F(N)(=D) cos%’”} (3.12b)

for k=0,1,....N.

Equations (3.11), (3.12a) and (3.12b) can be used to calculate the independent

update of the moving DCT-I for trapezoidal window. C,(x+1) is the non-windowed
DCT-I update of f£,,(x) calculated using equation (2.13) listed below for convenience, and
Cu(x+1) is the non-windowed DCT-I update of f,(x) also calculated using equation

(2.13).
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C(n+rk)=24.C(nk)—(4,° +P.B>)C(n—rk)

\/7133 Z[f(n Nex-D—(=D*f(n-x— 1)]sm(x+]\1])k”

%i[(—l)kf(n+r—l—x)—f(n—N+r—1—x)+A,f(n—N—x—l)

B (x+Dkr
A (-D)* f(n—x-1)]cos N
+\/%[%—1Jl’kf(n—N—r)+(—1)"\/%%l’kf(n—r)
+2\/z(1—ijp A f(n—N)—(—l)k\/Z\/EP A f(n)
N \/E k4 N k4
+\/%[L2—1jpkf(n—zv+r)+(—1)k\/%%Pkf(nw)
for k =0,1,..., N.

When using the above equation to calculate the non-windowed update we need
the current value C(n,k) and the previous value C(n-1,k). In the case of C,, the current
value is Ciymwe) and the previous value 1S Cipx-rjwa-1))- However, Crys-pwi-1)) 18 not yet
available, we instead have Ciyu1jw) from the previous time-step. Therefore, we need to
derive the correction factor that calculates the correct value Ciyp-jwe-1) from Cra-rjwe)-
Similarly for C,, we need to calculate the correction factor to compute Ciyy-1yme-1)] from
Cliix-1)me)- In section 3.3.2 we derive the formula to calculate the correct values Cyurjw-
11 and Cix-nme-1))- Appendix A, figure (A.2) lists the C language implementation of DST
independent algorithm to implement the DCT-I update in the presence of split-triangular

window for moving data.
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Similarly, the analogous formulae for DST-I can be derived. Taking the DST-I of

equations (3.3) and (3.6):

Sw(new) ('x) = Sw ('x + 1) + Sm(new) (x) (3 13)
m(new) (x)=S,(x+1)
xkr
Z [ S(1g)S, 00 = F(N=n0)0, o + 2/ (N)O, 5 1]51117
x 0 0

Solving the above equation yields:

21 (n, — Dkr
S newy (X) = § (x+1)+\/; { f(n,)sin———— v

n,

. (N—-n,-lkn
—f(N—nO)smT

. (N-=Dkr
+2f(N)sm—N }

21 (n, —Dkrz
m(new) ()C) S (X + 1) + \/; { f(”l )Sln N

n,

(n, + Dkn

+(=1)* £(N —n,)sin —2f(N)(=1)* sin %”} (3.14)

for k=1,...,N-1.
Equations (3.13) and (3.14) can be used to calculate the simultaneous update of the
moving DST for trapezoidal window. S,(x+1) is the non-windowed DST-I update of
fw(x) calculated using equation (2.14) listed below for convenience, and S,(x+1) is the

non-windowed updated DST of f,,(x) also calculated using equation (2.14).
S(n+r,k)=24,8(nk)— (4> +P.B>)S(n—rk)

\/7133 Z[f(n 1= N —x) = (=1)* £(n—1- x)]cos F D%
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+\/%ri[f(n+r—1—N—x)—(—1)’ff(n+r—1—x)+A,(—1)kf(n—1—x)

_ IR . (x+Dkn
A f(n-1-N x)]sm—N

+
=Io]

(1_%}4@. (i-P )f(n—N—r)+(—1)k\/%%ArBr (P, ~1)f(n-7)

+\/%(1 —%J(Pk—l)B,,f (n—N)- (—l)k\/%(Pk —1)% B f(n)

for k=1,...,N-1.

When using the above equation to calculate the non-windowed update we need
the current value S(#n,k) and the previous value S(n-1,k). In the case of S, the current
value is Sywe) and the previous value is Syu-1jwi-1). However, Syu-pwe-1)7 18 not yet
available, we instead have Sp/x-1)w) from the previous time-step. Therefore, we need to
derive the correction factor that calculates the correct value Sy jwe-1)1 from Sps-we-
Similarly for S, we need to calculate the correction factor to compute Siss-7)me-1)) from
St-nme)- In section 3.3.2 we derive the formula to calculate the correct values Sss-1we-1)1
and Sys-me-1))- Appendix A, figure (A.4) shows the C language implementation of DCT
independent algorithm to implement the DST-I update in the presence of split-triangular
window for moving data.

3.3.2 Derivation of correction values for oldest time-step

This section derives the correction factor to calculate the correct value Ciyp-wp-1)1

from Ciyp-1)wey for DCT-I update algorithm and the correct value of Sy 1jwe-1)) from Spsa

Dweoy for the DST update algorithm.

S =Dw(x) = £ (x = D[w(x) + wlx 1) —w(x —1)]
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= f(r=Dw(x 1) = [ (x=Dw(x 1) - w(x)]
= fGx=Dw(x—1) = f(x=Dm(x=1),
Therefore,
SE=Dw(x=1) = f(x=Dw(x) + f(x=Dm(x —1). (3.15)

Similarly, calculating the correction factor to convert f{x-1)m(x) into the correct value

foe-Dym(x-1),
SG=Dm(x) = f(x=D[m(x) +m(x—1) = m(x - 1)]
= f(r=Dm(x=1) = f(x=D[m(x—1) - m(x)]
= fx=Dm(x=1) = f(x=Dm, (x~1),
Therefore,
fG=Dm(x=1) = f(x=Dm(x) + f (x=Dm,, (x~1). (3.16)
where,
[ if x = np-l,
-1/ny if x=N-ny-1,
m, (x) = m(x) = m(x+1) =
2/ng if x=N-1,
. O all other x in 0,...,N-1

Substituting the value of m,(x-1) in equation (3.13) yields:

fu—nmu—nzfu—mmm+fw—nkfﬂaw—%ﬁmn«hzap

0 n,
1.e.

Fule =1 = fr= D)+ f =03 = FV =y = D8, + 213,
(3.17)

Taking DCT-I of equation (3.17) and simplifying:
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C,0ld(k) = Ciy (. yymie1y = Clrieymen

5 N xkr
B Y Sy =180~ SN =1y =18, g +2F (D)5, Joos
N "=n, N

for k=0,1,...,N.

Therefore,

2 P nkr
=C + 4| === f (1, —1)cos=°
ranmear Ty, { Sf(n, =1 N

— f(N =y —1) costr \/Ef(—l)}

2 P n.km
C,old(k)=C, =C + .= <= f(n, —1)cos—
m ( ) [f(x-T)m(x-1)] [f(x-T)m(x)] N no { f( 0 ) N

~(=D* f(N - no—l)cos

Ny 1)} (3.18)
Taking the DCT of equation (3.15) yields:

Crrevwim = Crrmnwenn + Cranmen- (3.19)
Equation (3.18) and (3.19) together are used to calculate the previous time sequence
windowed DCT-I values together with equations (3.11), (3.12) and (2.13) can be used to
calculate DCT-I independent windowed update in presence of the split-triangular
window.
Similarly, taking the DST-I of equation (3.17) yields:
S old(k)=S =S

[f (x=Dym(x-1)] Lf (x=Dym(x)]

\/7N1 1 [ f(ny =16, .o — f(N=ny =13, 0 +\/Ef(—1)5x0]sm)€k7ﬂ-

x00

for k=1,...,N-1,
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Therefore,
[2 1 . nokm . (N—=ny)kr
=8 ety + WZ{_ S (ny =1)sin ON — (N —n, _l)smTo}
[2 1 . nokm
S,,0ld(k) = S 1y = Sire-vmen T _{_ f(ny —1)sin—
N n,
x . nokrx
+(=D" f(N—=n, =1)sin N (3.20)
Taking the DST-I of equation (3.15) yields:
S,0ld = Syt = Stremnwen T Sya-nmen- (3:21)

Equation (3.20) and (3.21) together are used to calculate the previous time sequence
windowed DST values.

3.4 Independent DCT/DST type-II split-triangular windowed update algorithms for
moving data

In section 3.4.1 algorithms to calculate C,,,,, and S, are developed for the

windowed DCT-II and DST-II update in the presence of trapezoidal window and in
section 3.4.2 the method to pre-process the data required to update the DCT-II and DST-
IT used in section 3.4.1 is presented.

3.4.1. Computation of C,,,,, and S

w(new)

For calculating the independent DCT-II update in the presence of split-triangular

window we take DCT-II of equations (3.3) and (3.6):
Cw(new) (x) = Cw (x + 1) + Cm(new) (x) (322)

Cm(new) (‘x) = Cm ('x + 1)

2 41
+\EPk 08 s = SN =1)8 oy + 21 (NS Jeo

x=0 no

(Qx+ Dk
2N



Solving the above equation yields:

Cm(new) (x) = Cm (x + 1) + \/%f—z{_ f(n())COS [2(1’10 _21]3]4' l]kﬂ'

— f(N —n,)cos [2(N —ny 1) +1]kz [2(N -1) +1]k7

+2f(N)cos

2N

Therefore,

2 P 2n, — )k
Cm(new) ()C) = Cm (x + 1) + \/;i{_ f(no ) COSO2—N

p B (2n, +Dkrx
-(-D)" f(N nO)COS—2N

for £k=0,1,...,N-1.

]

+2 f(N)(=1)* cos ;‘—]’;} (3.23)

Equations (3.22) and (3.23) can be used to calculate the independent update of the

moving DCT-II for trapezoidal window. C,,(x+1) is the non-windowed DCT-II update of

fw(x), calculated using equation (2.25) listed below for convenience, and C,,(x+1) is the

non-windowed DCT-II update of f,,(x) also calculated using equation (2.25).

Cn+rk)= 2c0srkT7ZC(n,k) —C(n—rk)

x=0

+\/%Pk sinrkT”H [f(n—N—x—1)—(—1)kf(n—x—1)]sin%
2 5 S RN N Q@x+Dkz
+\/;ka_0[( D" f(n+r—x-1)— f(n+r—N—-x-1)]cos N

—\/%Pk cos’%”:z_;[(—l)kf(n —x—1)= f(n —N—x—l)]cos%

for k=0,1,.,N—-1.

&9
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When using the above equation to calculate the non-windowed update we need
the current value C(n,k) and the previous value C(n-1,k). In the case of C,, the current
value is Ciymwe) and the previous value 1S Cipx-rjwa-1)- However, Clys-pwi-1)7 18 not yet
available, we instead have Ciyu1jw) from the previous time-step. Therefore, we need to
derive the correction factor that calculates the correct value Ciyp-jwe-1) from Cra-rjwe-
Similarly for C,, we need to calculate the correction factor to compute Ciyy-1yme-1)] from
Cliix-1)me)- In section 3.4.2 the formula to calculate the correct values Cu-rjwe-1)) and Cys-
mee-1)) are developed. Appendix A, figure (A.6) lists the C language implementation of
DST independent algorithm to implement the DCT-II update in the presence of split-
triangular window for moving data.

Similarly the analogous formulae for DST-II are obtained by taking DST-II of
equations (3.3) and (3.6):

Sw(new) ('x) = Sw ('x + 1) + Sm(new) (x) (324)

Sm(new) (‘x) = Sm (x + 1)

[2 &1 . 2x+Dknr
+. =5 Z_[_ S (n, )5x,n0—1 - f(N —n, )5x,N—n0—] + 2f(N)§x,N—1 ]smg
N x=0 no 2N

Solving the above equation yields:

S newy (X) =S, (x +1) + \/%}I;_’;{_ f(ny)sin [2(n, —21]3]4' 1km

3 e 2N =y 1) +1]k7 . [2(N-D)+1lkx
SN =ny)sin - +27(nsin 2D }
Therefore,

B 2P ] . 2ny, —Dkr
S sinewy (X) = S, (x +1) + \/; iy { f(no)s1n—2N
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(2n, + Dkr

+(=1)* £(N —n,)sin —2f(N)(=1)* sin ;‘—;} (3.25)

for k=1,...,N.

Equations (3.24) and (3.25) can be used to calculate the independent update of the
moving DST-II for trapezoidal window. §,,(x+1) is the non-windowed DST-II update of
fw(x), calculated using equation (2.26) listed below for convenience, and S,,(x+1) is the
non-windowed DST-II update of f,,(x) also calculated using equation (2.26).

S(n+r,k)= 2cos”‘7”5(n,k)—S(n—r,k)

+\/%Pk sinrkTﬂ:)[f(n—N—x—l)—(—l)kf(n—x—l)]cos%
2 o IV o (Qx+Dka
+J;ka_0[f(n+r N-x-1)-(-D)"f(n+r—-x l)]sm—2N

—\/%Pk cos%g[f(n—N—x—l)—(—l)kf(n—x—l)]sin%.
for k=1,...,N.

When using the above equation to calculate the non-windowed update we need
the current value S(n,k) and the previous value S(n-1,k). In the case of S, the current
value is Sywe) and the previous value is Syu-jwi-1). However, Syps-iwe-1)7 1s not yet
available, we instead have Sp/x-1)w) from the previous time-step. Therefore, we need to
derive the correction factor that calculates the correct value Sy jwe-1)1 from Sps-we-
Similarly for S, we need to calculate the correction factor to compute Siss-1)me-1)) from

St-nme)- In section 3.4.2, the formula to calculate the correct values Spjx-1jw-1) and Spja-

nme-1)] are developed. Appendix A, figure (A.9) includes the C language implementation
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of DCT independent algorithm to implement the DST update in the presence of split-
triangular window for moving data.
3.4.2 Derivation of correction values for oldest time-step

The correction factor to calculate the correct value Ciyp-pjwe-1)) from Crp-nywe for
DCT update algorithm, and the correct value of Spx-1we-1)) from Sppa-1we)) are derived
here for the DST-II update algorithm.
Taking DCT-II of equation (3.17) and simplifying:

C,0ld(k) = Cpp . ymey = Crpie—timny

2 &1 2x+1)krx
+\/;Pk _[_ f(nO _1)5x,n0 _f(N_nO _1)5x,N—nO + Zf(_l)é‘x,o ]COS%

x=0 no
for £k=0,1,...,N-1.

Therefore,

EW; 2n, + 1k
=C + =3 — f(n, =) cos—2L———
L eenmen £y 3 { Sf(n, =1 oy

0

[2(N —ny)+1)kx

- f(N —=n,—1)cos +2f(—1)cos§—;}

2N
[2 P (2n, + Dkrx
C,0ld (k) = C\yiymery = Crrmnmen Ni{_ Sy =1) COSO2—N
(2n, —Dkr kr
~(=D* f(N-n, —1)cos—2—""+2 f(~1)cos — 3.26
D" (N =n, 1) N S(=D AN (3.26)

Taking the DCT-II of equation (3.15) yields:

C =C +C (3.27)

[f (=D)w(x=1)] [ G=Dw)] T S -m(x-1)]
Equations (3.26) and (3.27) together can be used to calculate the older time sequence

windowed DCT-II values.



93

Similarly, taking the DST-II of equation (3.17) yields:

SmOZd(k) = S[f(xfl)m(xfl)] - S[f(xfl)m(X)]

2 &1 . 2x+Dkr
+ \/%Pk — [ f g =1)8 g = F(N =1y =15,y 0 +2 f(—l)é‘x’o]sm%

x=0 no

Therefore,

2 P . 2(ny +Dkr
=S +1/——k — f(n, —1)sin —2 "
[/ (x=Dm(x)] N n, { f( 0 ) N

[2(N —ny)+1Jkr

- f(N —n,—1)sin +2f(—1)sin§—;}

2N
2 P . 2ny +Dkr
S,0ld (k) =S4y = Stre-tmey + \/:_k{_ f(ny =1)sin—"—"——
N n,
. 2n, —Dkr . kr
—(=D* f(N —n, —1)sin—2—"" 42 f(~1)sin — 3.28
D" f(N =ny 1) N JDsinS N (3.28)
for k=1,...,N.
Taking the DST-II of equation (3.15) yields:
S,0ld = Syt = St T Stye-nme-ny- (3.29)

Equations (3.28) and (3.29) together can be used to calculate the older time sequence
windowed DST-II values.

3.5 Independent DCT/DST type-III split-triangular windowed update algorithms for
moving data

The algorithm to calculate C,,,, and S, are derived here for the windowed

DCT-III and DST-III update in the presence of trapezoidal window and in section 3.5.2
the method to pre-process the data required to update the DCT-III and DST-III used in

section 3.5.1 is presented.
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3.5.1. Computation of C,,,,,, and S

w(new)
To calculate the independent DCT-III update for trapezoidal window we take
DCT-III of equation (3.3) and equation (3.6):
Le.
Crneny ) =C (x + 1)+ C, ) (¥) (3.30)

Cm(new) (x) = Cm (x + 1)

2 A 1 x(2k +Drx
b S P [ )8 0~ SN =1)8, s + 2f<N>5x,N1]cos(¥]
Nx:O no 2N

Solving the above equation yields:

C ey () =C, (x+1) + \/% i{_ f(no)cos[ (ny — 1)2(;/‘ +D7m j

_f(]\,_no)cos((zv—n0 —1)(2k+1)7rj+2f(N)COS((N—1)(2k+1)7r}}

2N 2N
Therefore,
Crinemy () =C, (x +1) + \/%%{— f(ny) cos( (n, — 1)2(]2vk + l)ﬂj
— (=) (N =n,) sin( (m + 1)2(12\7k il D”j +2 F(N)(=D) Sm[%} (3.31)
for £k=0,1,...,N-1.

Equations (3.30) and (3.31) can be used to calculate the independent update of the
moving DCT-III for trapezoidal window. C,(x+1) is the non-windowed DCT-III update
of f,(x), calculated using equation (2.35) listed below for convenience, and C,(x+1) is

the non-windowed DCT-III update of f,,(x) also calculated using equation (2.35).
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Cn+r,k)=2E.C(n,k)—C(n—r,k)
+\/%rzl[(‘”kf(””‘l—ﬂ+Frf<n—N—x—l)—(—l)"Erﬂn—l—x)]

sin (x+D)2k+D)x
2N

+ %rzll[(—l)kF,f(n—l—x)—f(n—N—x+r—1)+Erf(n—N_x_1)]

cos (x+D)2k+Drx
jf(n—N—r)+2\/%[l—%jErf(n—N)

2N
jf(n—N+r)

. 3(1_
N

. 3(1_
N

When using the above equation to calculate the non-windowed update we need

51~

-

for k=0,1,.,N—1.

the current value C(n,k) and the previous value C(n-1,k). In the case of C,, the current
value is Ciymwe) and the previous value 1S Cipx-rjwi-1)- However, Clys-pwi-1)) 18 not yet
available, we instead have Cpyu1jw) from the previous time-step. Therefore, we need to
derive the correction factor that calculates the correct value Ciyp-jwe-1) from Cra-1jwe-
Similarly for C,, we need to calculate the correction factor to compute Ciyy-1yme-1)] from
Ciix-)me)- In section 3.5.2, the formula to calculate the correct values Cipy-pywi-1)) and
Cix-yme-1) 18 presented. Appendix A, figure (A.12) provides the C language
implementation of DST independent algorithm to implement the DCT-III update in the
presence of split-triangular window for moving data.

Similarly, to calculate the independent DST-III update for trapezoidal window we

take DST-III of equation (3.3) and equation (3.6):
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Le.
Sw(new) ('x) = Sw ('x + 1) + Sm(new) (x) (332)

Sm(new) (X) = Sm (x + 1)

\r 2P, —[ f(16)8, 0 f(N—no)éx,N_no_l+2f<N>5x’N-‘]Sm(%)

Solving the above equation yields:

2 1 .~ D2k +1
S new) (X) = S,,,(x+l)+\/;n0{ f(ny)sin ((” )2(]\7 )ﬂj

_f(N_nO)Sin((N—no—1)(2k+1)7rj+2f(N)Sin[(N—1)(2k+1)7rj}

2N 2N
Therefore,
S prony (¥) = S, (X + 1)+ \/% %{— £(n,) cos(x(zg%j
for k=0,1,...,N.

Equations (3.32) and (3.33) can be used to calculate the independent update of the
moving DST-III for trapezoidal window. S,,(x+1) is the non-windowed DST-III update of
fw(x), calculated using equation (2.36) listed below for convenience, and S,,(x+1) is the
non-windowed DST-III update of £,,(x) also calculated using equation (2.36).

S(n+r,k)=2E S(nk)-Sn-r,k)

+\/%§[(—1)"f(n+r—l—x)+Frf(n—N—x—l)—(—l)kErf(n—x—l)]

o Dk D7
2N
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+ %i[f(n—N—x+r—1)—(—l)kFrf(n—x—l)—Erf(n—N—x—l)]

sin (x+D)2k+D7x
2N

i (—1)"\/% /e (—1)"\/% 50N =N TE, f)
for k=1,...,N.

When using the above equation to calculate the non-windowed update we need the
current value S(n,k) and the previous value S(n-1,k). In the case of S,,, the current value is
Stfweo) and the previous value 1s Spf-1)we-1))- However, Spjx-1)wi-1)1 18 not yet available, we
instead have Syu-1jwr) from the previous time-step. Therefore, we need to derive the
correction factor that calculates the correct value Sy jwe-1)) from Spjx-1we). Similarly, for
Sn, we need to calculate the correction factor to compute Sif-1)me-1)7 from Sy pmegy- In
section 3.5.2 the formula to calculate the correct values Syx-rjwa-1) and Syp-pme-1)) are
developed. Appendix A, figure (A.14) lists the C language implementation of DCT
independent algorithm to implement the DST-III update in the presence of split-triangular
window for moving data.

3.5.2 Derivation of correction values for oldest time-step

In this section we derive the correction factor to calculate the correct value Cya.
Dwe-] from Cra-ppwegy for DCT-III update algorithm and the correct value of Sy jwe-1))
from Spsx-1)we) for the DST update algorithm.

Taking DCT-III of equation (3.17) and simplifying:

C,old(k)=C, _c

S =Dm(x-1)] [/ (x=Dm(x)]
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2SR L 06 O 05 208, Joo
ny

x=0

x(2k + 1)7:]
2N

for k=0,1,...,N-1.

Therefore,

2 1 n,(2k + )
=C +,[——1— f(n, —Dcos| ———
snme T S { Sf(n, —1) ( N j

—f(N—ny— l)cos[(N — )2k D”j +2 f(—l)}

2N

_ 21 n,( 2k + 1)
Cold (k) = Cfiymee-in = Crriemnmen + \/;_{_ f(ny =1) COS( 0 2N j

n,

—(=D)* f(N =n, ~1) sin(Wj +2 f(—l)} (3.34)

Taking the DCT-III of equation (3.15) yields:

C[f(xfl)W(xfl)] = C[f(xfl)W(X)] + C[f(xfl)m(xfl)]' (3'35)

Equation (3.34) and (3.35) together are used to calculate the older time sequence
windowed DCT-III values.
Similarly taking the DST-III of equation (3.17) yields:

S old(k) =S,

U =Dty =S

[f (x=Dym(x)]

250, e B (xQk+ 1)z
+ Nzn [ £ =180 = F(N =g =15 o +2£( 1)5%0]5111(—” j

x=0 "¥q
for k=0,1,...,N.

Solving the above equation:

21 (n,Qk+1)x
=S, +.|——<— f(n, —1)sin| ——"—
D) T ”o{ Sf(ny =1 ( oy J
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- f(N—n, —l)sin(

(N—n@@k+Dﬁj
2N

Therefore,

_ 21 . (n,k+ )7
S,0ld(k) = Sy (ciymien = St iemymeen \/;n_{_ /=D Sm( 0 2N j

0

(D) (N —n —T)cod MoZE+DT
=" f(N —n, l)cos( N ]} (3.36)

Taking the DST-III of equation (3.12) yields:

S,old =S, =S S (3.37)

SeDw-] = Orf-tw] T O (-Dm(x-1)°
Equations (3.36) and (3.37) together are used to calculate the previous time sequence
windowed DST values.

3.6 Independent DCT/DST type-1V split-triangular windowed update algorithms for
moving data

The algorithm to calculate C,,,,, and S,,.,, are derived in section 3.6.1 for the

windowed DCT-IV and DST-IV update in the presence of trapezoidal window and in
section 3.6.2 the method to pre-process the data required to update the DCT-IV and DST-
IV used in Section 3.6.1 is derived.

3.6.1. Computation of C

w(new

)and S

Ww(new)
To calculate the independent DCT-IV update for trapezoidal window we take

DCT-IV of equation (3.3) and equation (3.6):

1e.

Cw(new) (x) = Cw (x + 1) + Cm(new) (x) (338)
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Cm(new) (x) = Cm (x + 1)

281 B Cx+1) | 2k+D) |7
+\/;XZ_(;Z[_ S(1)0, 0 — (N —=ny)0, oy t+ 2f(N)5x,N1]COSl: 5 }{ > }N

Solving the above equation yields:

C ey X) =C, (x+1)+\/%L{_ f(no)cos[z(no ;1)+1 [2k+1}1

n, 2 |N
_f(N_no)COSF(N—n;—1)+1}{2k2+1}%+2f(N)COS:2(N—21)+1}[2k2+1}%}
Therefore,

C ey (¥) = C, (x+1) + \/% %{— f (nO)COS[ 2n02 - 1}{ 2k2+ 1}%

Y 3 | 2ny +1 1 2k+1 | 7 k| Ck+ D

D" f(N no)sm{ 5 }[ 5 }N+2f(N)( 1) sm[—4N } (3.39)
for £k=0,1,...,N-1.

Equations (3.38) and (3.39) can be used to calculate the independent update of the
moving DCT-IV for trapezoidal window. C,(x+1) is the non-windowed DCT-IV update
of f.(x), calculated using equation (2.45) listed below for convenience, and C,(x+1) is
the non-windowed DCT-IV update of f,,(x) also calculated using equation (2.45).

C(n+r,k)=2E C(n,k)—C(n—r,k)

+\/%§[F,f(n—N—x—1)+(—1)kf(n+r—x—l)—(—l)kE,,f(n—x—l)]

| (35
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+\/%§3[Erf(n—N—x—1)+(—1)"Frf(n—x—l)—f(n—N+r—x—1)]

{5

for k=0,1,.,N—-1.

When using the above equation to calculate the non-windowed update we need
the current value C(n,k) and the previous value C(n-1,k). In the case of C,, the current
value is Ciymwe) and the previous value 1S Cipx-rjwa-1)- However, Crys-pwi-1)) 18 not yet
available, we instead have Ciyx_1)w) from the previous time-step. Therefore, we need to
derive the correction factor that calculates the correct value Ciyp-jwe-1) from Crra-1jwe-
Similarly for C,, we need to calculate the correction factor to compute Cyy-1yme-1) from
Cliix-1)me))- In section 3.6.2 derives the formula to calculate the correct values Ci-1wp-1]
and Cipx-nma-1) 18 derived. Appendix A, figure (A.16) provides the C language
implementation of DST independent algorithm to implement the DCT-IV update in the
presence of split-triangular window for moving data.

Similarly, to calculate the independent DST-IV update for trapezoidal window we
take DST-IV of equation (3.3) and equation (3.6):
1e.

() =S8, (x+D+S, 0 (X) (3.40)

w(new)

Sm(new) (‘x) = Sm (x + 1)

241 x+) [ Qk+D) |7
\fro 2ol 00 s = N =) g + 2 (NS, { : }[ 5 }N

Solving the above equation yields:
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2 1 2, -D+1] 2k +1] 7
Sm(new)(x):Sm(x+1)+\/;a{—f(no)sm{ 02 17 }ﬁ

—f(N—nO)sinF(N_”O —1)+1}{2k+1}%+2f(N)Sin_2(N—l)+1}[2k+1}1}

2 2 > > |
Therefore,
Sm(new) (x) = Sm (x+1) +\/%%{_ f(n0)51n|:2no2_1:”:2k2+1}%
—_(—1\* _ 27’10+1 2k +1 K o M
D" f(N no)co{ 5 }[ : }N+2f(N)( D cos{ N }} (3.41)

for £k=0,1,...,N-1.

Equations (3.40) and (3.41) can be used to calculate the independent update of the
moving DST-IV for trapezoidal window. S,,(x+1) is the non-windowed DST-IV update
of f,,(x), calculated using equation (2.46) listed below for convenience, and S,,(x+1) is the
non-windowed DST-IV update of f,,(x) also calculated using equation (2.46).

S(n+r,k)=2E S(n,k)—S(n—-r,k)
+ %S[F,f(n—N—x—1)+(—1)kf(n+r—1—x)—(—1)kE,f(n—x—1)]
: {(2x+1)(2k+ljﬁ}
0S _
2 2 JN
"‘\/%i[f(”—N+”—1—X)—(—1)kF,,f(n—x—l)—E,f(n—N—x—l)]
7 . {(2x+1)(2k+ljn}
Sin ~
2 2 JN

for k=0,1,.,N-1.

When using the above equation to calculate the non-windowed update we need the

current value S(#,k) and the previous value S(n-1,k). In the case of S,,, the current value is
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Stfweo) and the previous value 1S Spf-1)we-1))- However, Spjx-1)wi-1)1 18 not yet available, we
instead have Syu-1jwr) from the previous time-step. Therefore, we need to derive the
correction factor that calculates the correct value Sy jwe-1)) from Spja-1we)- Similarly, for
Sn, we need to calculate the correction factor to compute Sij-1)me-1)7 from Sy pmegy- In
section 3.6.2 the formula to calculate the correct values Syx-rjwa-1) and Syp-pme-1)) are
developed. Appendix A, figure (A.19) includes the C language implementation of DCT
independent algorithm to implement the DST-IV update in the presence of split-
triangular window for moving data.
3.6.2 Derivation of correction values for oldest time-step

In this section the correction factor to calculate the correct value Ciyu-rjwp-1)) from
Cifix-ywee) for DCT-IV update algorithm and the correct value of Sps-pywn-1)) from Spss.
1wy for the DST-IV update algorithm are derived.
Taking DCT-IV of equation (3.17) and simplifying:

C, old(k)y=C =C

[f (x=Dm(x=D)] [/ (x=Dm(x)]
251 2x+1 2k+1) | 7w
\/7 [ f(no xno f(N ny = )5x,NﬂzO + 2f(_1)5x,0 ]COS|:( )}I:( )}_
X= 0 0 2 2 N
for k=0,1,...,N-1.
Therefore,

21 2n,+1 | 2k+1 |7
-C ¥ = n, —1)cos| — ~
Lf (x=Dym(x)] N n, { fn,=1) [ 2 }[ 2 }N

fN-n, _I)COS{Z(N—ZnO)+1}[2k2+1}%+2f(_1)co{2k4+1}%}
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2 1 2ny+1 || 2k+1 | &
C,old(k)=C, =C, + . |——1— f(n, —1)cos| — —
m ( ) [f(x=1)m(x-1)] [f(x-1)m(x)] N l’lo{ f( 0 ) [ 2 :||: 2 :|N

—(—1)"f(N—n0—1)51{2”0‘1}[2"”} +2/(~T)cos [%} (3.42)

2 2
Taking the DCT-IV of equation (3.15) yields:

Crremwin = Crrmnwenn + Cranmen- (3.43)
Equations (3.42) and (3.43) together are used to calculate the previous time sequence
windowed DCT-IV values.
Similarly taking the DST-IV of equation (3.17) yields:

S old(k)=S =S

[f (=D)m(x-1)] Lf (=Dm(x)]

\/7 L s, - Sy = S(N =1y =18, 0 +2 f(—l)éx,o]sin{(zx; l)}{(zk + 1)}

=[N

2

for £k=0,1,...,N-1.

Solving the above equation yields:

> 1 2n, +1 [ 2k+1] 7
_g n n, —1)sin 0 N
Lf (x=Dm(x)] \/ N n, { AU { 2 1 2 }N

—f(N—nO—l)sin[Z(N_znO)+1“2k2+1} oy l)sn{zk;l}%}

Therefore,

21 2ny +1 | 2k+1 |7
S old(k)=S,, =S .. +.|——1— f(n, —1)sin| — —
m ( ) [f(x-1)m(x-1)] [f (x=1)m(x)] N I’lo { f( 0 ) |: 2 :||: 2 :|N

(=) (N —n, —1)cos[2”°2 }[Zk”} +2f(~1)sin {(2]‘4%}} (3.44)

2

Taking the DST-IV of equation (3.15) yields:
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S,old =S, =S +8 (3.45)

SG=Dwa=D] = P =Dwol T R0 =hm(x-D)*
Equations (3.44) and (3.45) together are used to calculate the previous time sequence

windowed DST-IV values.



CHAPTER 4: MOVING DCT/DST HAMMING, HANNING AND BLACKMAN
WINDOWED INDEPENDENT UPDATE ALGORITHMS

4.1 Introduction to independent DCT and DST update algorithms for Hanning, Hamming
and Blackman windows

Update algorithms in the presence of Hanning, Hamming and Blackman windows
were initially derived by Sherlock and Kakad [22, 23], however these algorithms
involved simultaneous update of DCT and DST coefficients for windowed update data.
In this chapter, the algorithms initially derived in [22, 23] are extended to perform
independent windowed update of DCT and DST in the presence of Hanning, Hamming
and Blackman windows. Windowed update for one new data point at a time are derived
i.e. =1, however the algorithms can be repeated if more than one point update is
required. Section 4.2 lists the independent windowed update for DCT/DST type-I i.e.
when the DCT update of the windowed data is to be performed we do not require the
DST coefficients and similarly when the DST update of the windowed data is to be
performed we do not require the DCT coefficients. Initially, the simultaneous algorithms
derived by Sherlock and Kakad [22, 23] are provided for understanding and completeness
of the algorithms and thereafter the modifications for independent update are given. In
sections 4.3, 4.4 and 4.5 the derivation of independent windowed update algorithms for
DCT/DST type-II, III and IV respectively are given. Appendix A lists the C language
code used to calculate the independent windowed update algorithms for DCT/DST-II and

IV in the presence of Hanning, Hamming and Blackman windows.
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4.2 DCT/DST type-I windowed independent update algorithms in presence of Hanning,

Hamming and Blackman windows

Initially the derivation of the simultaneous windowed update developed in [22] is

listed and thereafter the modifications required for independent updating is discussed.

Simultaneous algorithms developed by [22, 23] are listed to completely understand the

suggested independent update algorithms. The general form of Hanning, Hamming and

Blackman window function for x=0,...,N-1 is defined as:

2mx 4
w(x) = a, +a, cos N2 +a, cos )

where,
a0=0.5, a1=0.5 for Hanning Window,
a0p=0.54, a,=0.46 for Hamming Window,
and a9p=0.42, a,=0.5, a,=0.08  for Blackman Window.

For a signal f{(x), the windowed signal is:
27mx 4mx
£, (x)=w(x)f(x)=1<a,+a, cos N2 +a, cos 52 f(x).

Taking the DCT-I of equation (4.3) yields;

2 & 27 xkz
C,(n,k)=a,C(n,k)+a, \/;Pk ; P.f(x) COS(T) cos— =

2 X 4mx xkrx
+a,,|—P. » P f(x)cos| — |cos——
ORI (N) N

for £=0,1,...,N-1.

Simplifying the second term in equation (4.4) yields:

2 & 2mx xkrm
a\|[—PB. ) P f(x) cos(—j coOs——
"W\N "ZO: N N

(4.1)

(4.2)

(4.3)

(4.4)
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2 ¥ 1 2o xkr 2mx  xkr
=y zxzo BI®) E{COS(T - Tj " COS(T " Tﬂ
= /__ 33 (k=2)xz e+ Dxm
= ) P Pf(x){cos( N j+ cos( N ﬂ

Using the definitions of DCT-I, i.e. equation (2.5) above equation can be re-written as:

=%P{C(n,k—2)+C(n,k+2)} 45)

E{—Z Pk+2

Solving the third terms in equation (4.4) results in:

2 & 47x xkm
a,|—P. > P_f(x) cos(—j cos——
N F Z(; N N

2 X 1 4 xkr 4o xkrx
—PB > P f(x)—|cos| ————— |+COS| —+—+
"g"f()z{ (N Nj (N Nﬂ

_ 21 (k—4)xr (k+4)xm
= \/; P ZPf(x){cos( N j+cos(—N H

Using the definitions of DCT-I, i.e. equation (2.5), above equation can be re-written as:

:%Pk[cm,kw) . C(n,k—4)}

o s (4.6)
Substituting equations (4.5) and (4.6) in equation (4.4) yields:
C,(n,k)= aOC(n,k)Jrﬂpk[C(n,k—Z) . C(n,k+2)}
2 Bf_z Pk+2
2 P, P,

for £k=0,1,...,N.
Clearly, equation (4.7) can be used to independently update the DCT-I

independent of DST coefficients. Equation (4.7) developed in [22] used the simultaneous
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DCT-I update equation, which required DST coefficients as well, whenever the updated
DCT coefficients need to be calculated. However, in our implementation we use the
DCT-I independent update equation (2.13) whenever the updated DCT coefficients need
to be calculated which is then multiplied by the window. This implementation does not
require the DST coefficients. Also to compute the updated DCT using independent
update equation (2.13) requires initial processing of data i.e. to calculate the updated
independent DCT we require current time-step DCT and one previous time-step DCT.
When we start the computation we calculate two time-steps DCT’s using the definition
and thereafter the last two time-steps DCT’s are saved to calculate the updated DCT.
Since in equations (4.7) the range of index k is out of defined range of £=0,1,...,N,
symmetry properties of DCT-I are used to convert out of range values of k£ to be within
the permissible values [22, 23]. For DCT type-I the symmetry properties are as follows:

C(n,—k) =C(n,k);C(n,2N +k)=C(n,2N —k);

C(nAN +k)=C(n,k);C(n,N —k)=C(n,N +k) (4.8)
Similarly, for deriving the formula to calculate the DST type-I independent windowed

update we take the DST-I of equation (4.3) resulting in:

N-1
S, (n,k)=a,S(n,k)+a, \/%Z f(x) COS(%DC] sinXkTﬁ
x=1

2 - 4mx xkrx
+a,.,— x)cos| — |sin—— 49
) N;f() (N] N (4.9)

for k=1,2,...,N-1.

Simplifying the second term of equation (4.9):

N-1
a, \/% ; f(x) cos[%zxj sin XkTﬁ
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=a, \/%]jz: f(x)% _sin(XkTﬂ - %zxj + sin(XkTﬂ + %zxﬂ
2 . ((k=2)xm . ((k+2)xm
\/7 Z f(x )_ 1n(—N j+ s1n(—N ﬂ

Using the definitions of DST-I, i.e. equation (2.6), the above equation can be written as:

=%[S(n, k=2)+S(n,k+2)] (4.10)

Solving the third terms in equation (4.9) results in:

28 4mx xkm
ﬁ;f(x)cos( N ]smT
—aq, \/% Nz: f(x)% _sin(XkTﬂ -%“j + sin(XkTﬂ + %‘xﬂ
=a, \/% % jjz: S (X)_sin(—(k _;)x”j + sin(—(k +]3)xrr ﬂ

Using the definitions of DST-I the above equation can be re-written as:

=“—22[S(n,k—4)+5(n,k+4)] (4.11)
Substituting equations (4.10) and (4.11) in equation (4.9) results in:
SM,(n,k)zaOS(n,k)+—[ S(n,k+2)+S(n,k—2)]+2 [ S(n,k+4)+S(n,k—4)] (4.12)

for k=1,2,...,N-1.
Clearly, equation (4.12) can be used to independently update the DST-I
independent of the DCT coefficients. Equation (4.12) developed in [22] used the
simultaneous DST-I update equation, which required DCT coefficients as well. However,

in our implementation we use the DST-I independent update equation (2.14) whenever
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the updated DST coefficients need to be calculated, which is then multiplied by the
window. This implementation does not require the DCT coefficients. Also to compute the
updated DST using independent update equation (2.14) requires initial processing of data
i.e. to calculate the updated independent DST we require current time-step DST and one
previous time-step DST. When we start the computation we calculate two time-steps
DST’s using the definition and thereafter the last two time-steps DST’s are saved to
calculate the updated DST. Examination of equations (4.12) shows that the range of
index k is out of the range of the definition, therefore symmetrical properties of DST-I
are used to convert out of range values of k to the allowed values [22, 23]. For DST type-
I the symmetry properties are as follows:

S(n,—k)=-S(n,k);S(n,N +k)=-S(n,N —k);S(n,AN + k) = S(n,k);

S(n,0)=S(n,N)=0. (4.13)

4.3 DCT/DST type-II windowed independent update algorithms in presence of
Hanning, Hamming and Blackman windows

In order to derive the algorithms capable of independently updating the windowed
signal for DCT/DST type-II, first the simultaneous windowed update algorithms derived
by Sherlock and Kakad [22, 23] are given below and thereafter these algorithms are
modified to develop algorithms capable of independently updating the windowed signal
in the presence of Hanning, Hamming and Blackman windows. These algorithms are
capable of updating one point at a time i.e. for the case »=1. If more than one point
update is desired the developed algorithms can be reused » number of times. C language
program to validate the derived independent algorithm is included in Appendix A.

Taking the DCT-II of equation (4.3) yields;
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2 & 2mx 2x+)kr
C (n,k)y=a,C(n,k)+ —P cos cos
, (n,k) = a,C(n, k) a]\/N k;f(x) (Nj N

2% 4mx Qx+Dkr
+a2\/;kaZ_;f(x)cos( N jcos N (4.14)

Simplifying the second term of equation (4.14) yields:

2 & 2mx 2x+D)kn
a /WP,(Zf(x) cos[ N jcos ( ZN)
x=0

_a % P NZ; e % [COS( 2o (2x+ l)kﬁj N COS( 2m | (2x+Dkz ﬂ

N 2N N 2N

2 1 8 o] o GO De3n) (@ m-2m)

= aléP{cos% %gf(x)cos((zx-’_lz)gi_z)ﬂj

- sin% %gf(x) sin( (2x+ lz)gij — D”J

K3 EN‘I Cx+)(k+2)x
+cosN N;f(x)cos( j

2N

Qx+ 1)k +2)7 ﬂ

.o 1238 )
+sin— | — X)sin
N NXZ::;f() ( N

Using the definitions of DCT-II and DST-II the above can be re-written as:

1C(n,k—2)_SinlS(n,k—Z)+COS£C(n,k+2)+Sin1S(n,k+2)

k=2 N I)k—Z N I)k+2 N Pk+2

a,
=—P| cos
2 {
(4.15)

Solving the third terms in equation (4.14) results in:

2 & 4mx 2x+Dkrx
a, ﬁPka(x) cos( N jcos( 2N)
x=0
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2,5 1 4 2x+ 1)k 4 2%+ Dk
=az\/;Pk;f(x)5[cos( ;x—( x2+N) ”j+cos[ ;\fo+( x2+N) ﬂﬂ
=a, \/% %Pk gf (x){cos[(zx hl 1)(];]_\/4)” * 27[) + cos( (2x+ 1)(k2 ;rv -2 ﬂ

=a2; [cos—\/72f() ((2x+12)§l\;_4)”)

—sm— Zf( )sin ((2x+12)§\l;_4)”j

+ cos%z %gf(x) cos( (2x+ 12)51\; il 4”)

o2 [T o B

Using the definitions of DCT-II and DST-II the above equation can be re-written as:

a, 27 C(n,k+4) . 27 S(n,k+4) 27 C(n,k—4) . 27 S(n,k—4)
=—=*PpP|cos———+sin———=+c0§S ——————sin———
By N B N B, N B,
(4.16)

Substituting equations (4.15), (4.16) in equation (4.14) results in:

C.(nk)=a,C(nk)+ P {Cosz Cnk+2)  Cnk=2)
2 N Pk+2 Pk—2

N sinl[s(”’k +2) S(nk —2)}}
N| P

k+2 Pkfz

+a_2Pk{COS2_7z{C(n,k+4) . C(n,k—ﬂ
2 Py Py

+sz_ﬂ{S(n,k+4)_S(n,k—4)}} @17
N ])k+4 Pk—4
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for k=0,1,...,N-1.
Equation (4.17) can be used to calculate the DCT-II windowed update algorithm but it
depends on both the DST as well as the DCT coefficients. Therefore we need a way to
represent DST coefficients in terms of DCT coefficients only. To do this we consider the

non-windowed DCT update equation (2.19) for the special case of r=1:

C(n+1,k)= cos%C(n,k)+sin%S(n,k)+\/%ﬂ cos;‘—;[(—l)k f(m)-f(n-N)]

(4.18)

Solving equation (4.18) for S(n,k) yields:

S(n, k) = lkﬂ {C(n +1,k) - cos%”C(n,k) + \/%Pk cos;“—]’;{f(n —N)= (=D f(m)}

for k=1,...,N-1. (4.19)
Equation (4.19) is undefined at k=N. Therefore we use equation (2.16), the definition of
DST type-II to find the value of DST coefficient at k=N:

1 N-1

S(n,N) = ﬁz (-1)* f(n—N +x) (4.20)

While using equation (4.17) to calculate the windowed DCT-II update, the DST
coefficients when needed, are calculated indirectly using equation (4.19) and (4.20)
utilizing DCT coefficients only. Hence equations (4.17), (4.19) and (4.20) can be used
simultaneously to calculate the DCT wupdated windowed coefficients with DCT
coefficients only. Dependence of equation (4.17) on indices (k+2), (k-2), (k+4) and (k-4)
results in indices being out of the range given in the definitions of DCT-II and DST-II.
We use the following symmetry properties of DCT-II and DST-II [22] to extend the
range of indices to all integer values of k:

C(n,k) = C(n,~k) = —-C(n,2N + k) = ~C(n,2N — k) = C(n,AN — k) = C(n,AN + k);
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C(n,N —k)=C(n,N +k);C(n,N) =0;

S(n,k)=-S(n,—k)=Sn,2N —k)=-S(n,2N +k)=-S(n,4N — k) = S(n, 4N +k);

S(n,N +k)=S(n,N—k);S(n,0)=0. (4.21)
In Appendix A, figure (A.7), the C code snippet to calculate the DCT-II independent

windowed update in the presence of Hanning, Hamming and Blackman windows is

included.
Similarly, in order to formulate the analytics to calculate the DST type-II

independent windowed update we take the DST-II of equation (4.3) resulting in:

S, (n,k) = a,S(n,k)+a,,|— T Zf(X)COS( ;xjsin (2x2+]\1/)k7r

2% 4 . 2x+Dkx
+a2\/;kaZ_0f(x)cos( N )sm N (4.22)

Simplifying the second term of equation (4.22) yields:

a \/%Pk ]:Z(jf(x) Cos( 2]7\? j sin (2x2+]\1])k7z
Qx+Dkx 2 . (Q2x+Dkr  2m
\/;PZf(x) { ( N Nj+s1n( o + Nﬂ
=a, \/% %Pk NZ__; f (x){sin( (2x+ 1)(162]_\]2)” — 2”) + Sin( (2x + 1)(/{2 J]:] )7 +27 ﬂ

:ali {COS_ Zf() ((2x+l)(k—2)7r)

2N

—sin > %gf(x) cos( (2x+ 12)5\]; — 2)7T]
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T2 . (Cx+D)(k+2)7
+cosN N;f(x)sm( J

2N

T EN‘I Cx+)(k+2)x
+sin R XZ:(; f(x) cos( ﬂ

2N
Using the definitions of DCT-II and DST-II the above equation can be written as:

:%P{cosﬂ Smk=2) . 7w Cmk=2) _ 7Snk+2) . x C(n,k+2)}

N R, N B, N P, N PR,
(4.23)

Solving the third terms in equation (4.22) results in:

2 8 4 . (2x+Dkr
a,,|—P. > f(x) cos( jsm
N "Z(; N 2N
N-1
Y R e I el
x=0

. \/% % n N f(x)[sin( (2x +1)(k —4)7 — 47r} .\ Sin( Qx+)(k+4)7+4x H

> oy 2N
. % Pk[cos %ﬂ % gf(x) Sin( (2x+ 12)55 - 4)::)

+ COS% %gf()o sin (zx : 135\1; : 4)ﬂ-j

+ sin% %Nzolf (x)cog| B 12)55 = H

Using the definitions of DCT-II and DST-II the above equation can be written as:
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a, 27 S(n,k—4) . 27n C(n,k—4) 27 S(n,k+4) . 27 C(n,k+4)
=—=P|cos———F—F—-sin———+cos——+sin——=
N P, N B, N P, N B
(4.24)

Substituting equations (4.23) and (4.24) in equation (4.22) yields:

Sw(nak):%S(",k)+%Pk{cos%{s(n’k+2) X S(n,k—zq

Pk+2 131(—2

N sinz{c(n’k +2) C(mk— 2)}}
Pk+2 IDk—Z

+a_2pk{cos2_7z[S(n,k+4) N S(n,k—4)}
2 Pk+4 E{—4

+Sin2ﬁ7r{€(n,k+4)_C(n,k—4)}, 4o

Pk+4 Pk—4
for k=1,2,...,N.

Equation (4.25) can be used to calculate the windowed DST-II update however it requires
DST as well as the DCT coefficients. Therefore we need a way to represent DCT
coefficients in terms of DST coefficients only. To do this we consider the non-windowed

DST-II update equation (2.20) for special case of r=1:

S(n+1,k) = cos%S(n,k)—sin%C(n,k)Jr\/%ﬂ sin;‘—;[f(n—zv)—(—l)k 0]
(4.26)

Solving equation (4.26) for C(n,k) yields:

C(n,k) = 17[ cos%S(n,k)—S(n+1,k)+\/%a sinf—;{f(n—zv)—(—l)k 0]

sin ——

for k=1,...,N-1. (4.27)
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As equation (4.27) does not yield a value, at k=0. We need to find an alternative way of
calculating value of C(n,k) at k=0. We use equation (2.15), the definition of DCT type-II

to find the value at £=0. i.e.,

C(n,0) = %ﬁ f(n—N+x). (4.28)

Equations (4.25), (4.27) and (4.28) can then be used to calculate the DST-II update
in the presence of Hamming, Hanning and Blackman windows without using the DCT
coefficients. While using equation (4.25) to calculate the windowed DST-II update,
whenever the DCT coefficients are needed, they are calculated indirectly using equations
(4.27) and (4.28). Dependence of equation (4.25) on indices (k+2), (k-2), (k+4) and (k-4)
results in indices being out of the range as given in the definitions of DCT-II and DST-II.
We use the symmetry properties of DCT and DST [22], given by equation (4.21), to
extend the range of indices to all integer values of k. Appendix A, figure (A.10)
implements the independent windowed update of DST coefficients for Hamming,
Hanning and Blackman windows depending on the values of ay, a; and a, as defined in
equation (4.2).

4.4 DCT/DST type-III windowed independent update algorithms in presence of
Hanning, Hamming and Blackman windows

To find the windowed update algorithm we take the DCT-III of equation (4.3) resulting

n:

N-1
C,(nk)=a,C(n,k) +a, \/%Z P f(x) cos(zzﬂcos (2k+1xz
x=0

2N

2% 4mx 2k +Dxr
+a, \/;; P f(x) cos( N jcos Y (4.29)



for £=0,1,...,N-1.

Simplifying the second term of equation (4.29) yields:

i @Z Pxf(x)cos( 2@005 @it
\/72P f(x)co s( NJCOS Qk;}\lf)x;r
\/: ipr(x)[COS(Wj + COS(WJ}

Using the definitions of DCT-III the above can be written as:

= %[C(n,k +4)+ C(n,k —4)]

Solving for the third term in equation (4.29) results in:

[E5 e
Rk +1)xr
\/72Pf(x)co( Nj N

Using the definitions of DCT-III the above equation can be written as:

=2 [Conk+8)+Cnk—8)]
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(4.30)

(4.31)

Substituting equation (4.30) and (4.31) in equation (4.29) yields the DCT-III independent

windowed update equation in the presence of Hanning, Hamming and Blackman

window.
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C (n,k) = a,C(n,k)+ %[C(n,k +4)+C(n,k —4)]+ %[C(n,k +8)+C(n,k—8)] (4.32)

Clearly, equation (4.32) developed in [22] can be used to independently update
the DCT-III independent of the DST coefficients. Equation (4.32) developed in [22] used
the simultaneous DCT-III update equation, which required DST-III coefficients as well.
However, in our implementation we use the DCT-III independent update equation (2.35)
whenever the updated DCT coefficients need to be calculated which is then multiplied by
the window. This implementation does not require the DST coefficients. Also to compute
the updated DCT-III using independent update equation (2.35) requires initial processing
of data i.e. to calculate the updated independent DCT we require current time-step DCT
and one previous time-step DCT. When we start the computation we calculate two time-
steps DCT’s using the definition and thereafter the last two time-steps DCT’s are saved to
calculate the updated DCT. Since in equations (4.32) the range of index k is out of
defined range of £k=0,1,...,N, symmetry properties of DCT-III are used to convert out of
range values of k£ to the permissible values [22, 23]. For DCT type-III the symmetric
properties are as follows:

C(n,—k)=C(n,k—-1);C(n,2N + k) = C(n,k);
C(n,N+k)=C(n,N—-1-k) (4.33)
Similarly, in order to formulate the analytics to calculate the DST type-III independent

windowed update we take the DST-III of equation (4.3) resulting in:

. k+)xrx
sin
2N

S (n,k)=a,S(n,k)+a, %gpx f(x)cos( 2;")

2 4 . Qk+1)xrx
+ —>» P coS sin 4.34
a, NZ:‘ S (%) (NJ SN (4.34)



for k=0,1,...,N-1

Simplifying the second term of equation (4.34) results in:

[2 & 2mx ) . Qk+Dxr
—>» P cos sin

x(2k + )z + 472xj . ( x(2k + )z — 47zxj
+ Sin
2N 2N

=a leN:Pf(x)_sin
N4

= al\/% %gpr(x)_sin W}m(%ﬂ

Using the definitions of DST-III the above equation can be written as:

- %[S(n,k +4)+S(n,k —4)]

Solving the third term in equation (4.34) results in:

2 ¥ 4 . k+Dxrx
a,4|— ) P f(x) cos( jsm
\N Z‘ N 2N

=a, \/%%gﬂf(x)_sin(x(zk +213\7][ hl 47“) + sin( x(2k +213\7 - 4705]}

x(2k +1+ 4)7rj N sin( x(2k+1- 4)7rj
2N 2N

=a glﬁ:P f(x)_sin(
2 N 2 = X i
Using the definitions of DST-III the above equation can be written as:
= “—22[S(n,k +8)+S(n,k—8)]

Substituting equations (4.35) and (4.36) in equation (4.34) yields:

121

(4.35)

(4.36)

S (k)= a,S(n,k)+ %[S(n,k +4)+ S(n,k —4)]+ %[S(n, k+8)+S(nk-8)]  (4.37)

for k=1,...,N-1.
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Clearly, equation (4.37) developed in [22] can be used to independently update
the DST-III independent of the DCT coefficients. Equation (4.37) initially developed in
[22] used the simultaneous DST-III update equation, which required DCT coefficients as
well. However, in our implementation we use the DST-III independent update equation
(2.36) whenever the updated DST coefficients need to be calculated which is then
multiplied by the window. This implementation does not require the DCT coefficients.
Also to compute the updated DST using independent update equation (2.36) requires
initial processing of data i.e. to calculate the updated independent DST we require current
time-step DST and one previous time-step DST. When we start the computation we
calculate two time-steps DST’s using the definition and thereafter the last two time-steps
DST’s are saved to calculate the updated DST. Examination of equations (4.37) shows
that the range of index & is out of the permissible range, therefore symmetry properties of
DST-II are used to convert out of range values of k to the permissible values [22, 23].

For DST type-III the symmetry properties are as follows:

S(n,~k) = —-S(n,k —1)
S(n,k) = —-S(n,2N —k 1) (4.38)

4.5 DCT/DST type-IV windowed independent update algorithms in presence of
Hanning, Hamming and Blackman windows

To find the independent DCT-IV windowed update equation we take DCT-IV of

equation (4.3);

s XDk + D)7
4N

C.(n.k)=a,C(n,k)+a, %NZOI (%) cos(zj\;xj

+a, %jz_;f(x) cos[ 4;\?} cos (2x+ ll(;k 7 (4.39)
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Simplifying the second term in equation (4.39) yields:

2% 2mx Qx+D)Rk+x
N ;f(x) cos( N jcos AN

Rx+DR2k+Drx
Zf(x) cos( N] AN

< lNif(x)_cos[(zx + 1)(2:; )7 + Smcj .\ COS((zx + 1)(2§; Iy — 87“)}

AN 4N

T o of Q0B s ), (k=)

N-1
21 5 £ cos Qe+ +ledr) x (QraDCk+l+dr) 7w
N 24 4N N 4N N

s oo @XADQkHL-dT 7 (@xtDQk+I-dr) 7
4N N AN

Using the definitions of DCT-IV and DST-IV the above equation can be written as:

=ﬂ{cosiC(n,k+4)+sin£S(n,k+4)+COS£C(’Z,/€—4)—SinzS(n,k—4)}
2 N N N N

= %COS%[C(I’Z,]{ + 4) + C(l’l,k - 4)]+%sm%[5(ﬂ,k + 4) - S(}’l,k _4)] (440)

Simplifying the second term of equation (4.39) yields:

\/7 > f (X)Cos( J (2x +121(§7k+1)7z

J?Zf(x)co( j (2x+ll(ifk+l)7r

21 NZI 7 (x){cos[ (2x+ 1)(2/; ;Lv D7+ 167ch . COS( (2x+ 1)(2/; z+v D7z — 167sz
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=a, %%gf(x){cos( (2x+ ”(2"4+jé+ 8)m - 8”) " cos(@x ¥ 1)(2k: ; )7+ gﬂﬂ

N-1
_a, 21 S ) COS( Q2x+1D)(2k +1+ 23)7sz0S 2z, Sin[ Qx+1D)(2k+1+ 8)7[)Sin 2z
N 24 4N N AN

((2x+1)(2k+1—8)ﬂj 2r . ((2x+1)(2k+1—8)7r) . 27w
+ COS COS———SIn SN ——
4N N 4N

Using the definitions of DCT-IV and DST-IV the above equation can be written as:

—{cosz—ﬂC(n,k +8) + sinz—ﬂS(n,k +8)+ cosz—ﬂC(n,k -8)— sinz—ﬂS(n,k —8)}
2 N N N N

a, 2z

a 2
=—2cos=—|C(n,k+8)+C(n,k —8)|+—2-sin—|S(n,k +8)— S(n, k-8 4.41
5-cos - [COnk +8)+ Cln.k=8)]+ Z-sin =[S (n, k +8) = S(n. k= 8)] (4.41)
Substituting equations (4.41) and (4.40) in equation (4.39) yields:

C, (n,k) = a,C(n,k) +%{cos%[0(n,k +4)+ C(n k- 4)]
+sinz[S(n,k+4)—S(nak_4)]}
N
a, 2z _
+7{cos v [C(n,k +8) + C(n,k - 8)]

+sin %” [S(n,k +8)— S(n k- 8)]} (4.42)

for k=0,1,.,N-1.
Equation (4.42) developed in [22] can be used to calculate the simultaneous windowed
updated coefficients of DCT-IV i.e. it depends on both the DST as well as the DCT

coefficients. Therefore we need a way to represent DST coefficients in terms of DCT
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coefficients only. To do this we consider the non-windowed DCT-IV update equation

(2.41) for the particular case of r=1:

Cn+1.k) = c0s 2V im0y 4 sin FEEDZ 0 1y
2N
2, Qk+hxr . [2 . . Qk+Dhx
\/;f(n N)cos—4N +(=1) \/;f(n)s1n—4N (4.43)
for k=0,1,...,N-1.
Solving equation (4.43) for S(n,k) yields:
B |  (Qk+Dzx
SR = — 5 im [C(n +1.k) =~ cos T Cn )
s ——
2N
+\/% f(n —N)cos%—(—l)k\/% f(n)sin%} (4.44)

for k=0,...,N-1.

While using equation (4.42) to calculate the windowed DCT-IV update, whenever the
DST coefficients are needed, they are calculated indirectly using equation (4.44). Hence
equations (4.42) and (4.44) can be used simultaneously to calculate the DCT updated
windowed coefficients using DCT coefficients only. However, the dependence of
equation (4.42) on indices (k+4), (k-4), (k+8) and (k-8) results in indices out of the range
given in the definitions of DCT-IV and DST-IV. We use the symmetry properties of
DCT-IV and DST-IV, equation (4.45), to extend the range of indices to all integers k:

C(n,—k)=C(n,k-1);C(n,k)=C(nAaAN —k —1);

C(n,k)=-C(n2N -k -1);

S(n,—k)=-S(n,4N —k -1);

S(n,k) = S(n,2N -k —1); (4.45)
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Appendix A, figure (A.17), lists the C language snippet to calculate the DCT-IV
independent windowed update in the presence of Hanning, Hamming and Blackman
windows.

Similarly, for formulating the analytics to calculate the DST type-IV independent

windowed update we take the DST-IV of equation (4.3) resulting in:

Sw(nak)=aoS(n,k)+a1\/72f(x)cos( j x+D2k+1)x

4N
N-1
EZ @) cos[ 4m]sin Cx+1D)2k+Dx (4.46)
N <3 N 4N
for £=0,...,N-1.

Simplifying the second term of equation (4.46) yields:

28 2 . x+1D)2k+ D7
a, \/;xz_éf(x) cos[ N jsm AN

Cx+D)2k+Dx
Zf(x) cos[ N) AN

21 E 7 (x)_sin( (2x + 1)(2§ ; D7+ 87ch . Sin( (2x + 1)(22 ; Dz — 8;sz

\/: Zf() in((2x+l)(2k+1+4)7[—47[)+sin((2x+1)(2k+1—4)7r+47zﬂ

4N 4N

—a, \/z 1 E £ {Sin( (2x + D)2k +1+ 4)7sz051 B COS( (2x +1)(2k +1+ 4)ﬂjsin£
N2& 4N N 4N N

N Sm( (2x + D)2k +1- 4);;)008% N COS( (2x +1)(2k +1- 4)7[} i }

AN 4N N

Using the definitions of DCT-IV and DST-IV the above equation can be written as:
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=N cosZES(n,k +4)—sin - C(n,k +4) + cos = S(n,k —4) +sin 2= C(n,k — 4)
21N N N N

- %cos%[S(n,k +4)+ S(n,k —4)]+ %sin%[C(n,k —4)—C(n,k +4)] (4.47)

Simplifying the second term of equation (4.46):

2 Qx+ D)2k + )z
\/7 > f(x)cos ( j N

\/TZf(x)co( j (2x+121(§7k+1)7z

215 f(x)_sin( (2x+ 1)(21; 1+v )7+ 167ch . Sm( (2x+ 1)(2/; ;rv )7 - 16mﬂ

AN 4N

21 NZI P (x)'sin((zx + D)2k +1+8)7 - 87;) N Sm((zx + D)2k +1-8)7 +87 H

N-1
21 S f) Sin[(zx +1)(2k +1+ g)n)cos 2z COS((zx +1)2k +1+ 8)7rjsin 2z
N 2% 4N N 4N N

. ((2x+1)(2k+1—8)7z) 27 ((2x+1)(2k+1—8)7zj . 2
+ Sin COS— + COS Sin——
4N N 4N N

Using the definitions of DCT-IV and DST-IV the above equation can be written as:

=4 cosz—S(n k+8)— 51n2—C(n k+8)+cosz—S(n k— 8)+51n2—C(n k—28)
2 N N N N

=—=cos—|S(n,k +8)+ S(n,k —8) |+ —sin—|C(n,k —8) - C(n, k + .

% cos 2 [S(n k +8) + S(nk —8)]+ sin X [C(n,k —8) — C(mk +8)] (4.48)
2 N 2 N

Substituting equations (4.47) and (4.48) in equation (4.46) results in:

S (k)= a,S(n,k)+ %{cos%[&’(m,k +4)+ S(n,k —4)]
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+sin%[C(n,k—4)—C(ﬂ,k+4)]}
+%{cos%[S(n,k +8)+ S(n,k —8)]

+ sin%z[C(n,k —8)—C(n,k + 8)]} (4.49)

for k=0,1,.,N—1.
Equation (4.49) developed in [22] calculates the windowed DST-IV update but depends
on the DST as well as the DCT coefficients. Therefore we need a way to represent DCT
coefficients in terms of DST coefficients only. To do this we consider the non-windowed

DST-IV update equation (2.42) for special case of r=1:

S(n+1,k)=cos S(n,k)—si

(21;;\] )7z Conkd)

N k+Drx
2N

+ \/% f(n— N)sm%+ (—1)k\/% f(n) cos% (4.50)

Solving equation (4.50) for C(n,k) yields:

C(n,k) =

| [cos kDT 6 k= S+ 1K)

Q2k+Dx N
sin————
2N
o2 - Py [

for k=1,...,N-1. (4.51)

Equations (4.49) and (4.51) can be used to calculate the DST-IV update in the
presence of Hamming, Hanning and Blackman windows without using the DCT
coefficients. While using equation (4.49) to calculate the windowed DST-IV update,

whenever the DCT coefficients are needed, they are calculated indirectly using equation
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(4.51). Dependence of equation (4.49) on indices (k+4), (k-4), (k+8) and (k-8) results in
indices being out of the range as given in the definitions of DCT-IV and DST-IV. We use
the symmetry properties of DCT-IV and DST-IV [22], given by equation (4.45), to
extend the range of indices to all integers k. Appendix A, figure (A.20) implements the
independent windowed update of DST-IV coefficients for Hamming, Hanning and

Blackman windows depending on the values of ay, a; and a; as defined in equation (4.2).



CHAPTER 5: HARDWARE IMPLEMENTATION OF INDEPENDENT DCT-II
RECTANGULAR WINDOWED UPDATE ALGORITHM

5.1 Introduction to hardware implementation

This chapter deals with the hardware implementation of independent DCT-II
rectangular windowed update algorithm developed in Section 2.3.2 of chapter 2. DCT-II
is chosen for the hardware implementation because it is the most often used transform
and also it is closest to the optimal KLT. Earlier hardware implementation for the
simultaneous rectangular windowed update algorithms of reference [22, 23] was reported
in reference [31]. This work is extended to implement the independent update algorithms
developed in this research. The hardware implementation is carried out for two cases. In
the first case one point update at a time i.e. 7=1 (section 5.3) in the original data sequence
is considered. In the second case, a four point update at a time i.e. ¥=4 (section 5.4) in the
original data sequence is considered. The infinite data sequence is sampled with a
rectangular window of size N=8. The hardware developed is capable of accepting this
rectangular windowed data and calculating the update as new data points become
available. Appendix B lists the VHDL implementation for these two cases. The hardware
designs and test benches to test the correctness of the implemented designs were written
and tested on ModelSim. The architecture used to implement the independent DCT-II for
one point update i.e. 7=1 is given in figure (5.4) and for four point update i.e. 7=4 is given
in figure (5.9). It can be clearly seen that the DCT update does not require the DST

coefficients. The controller designed is stimulated with the test vectors and simulations
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results for both the architectures are given in this chapter. RMS errors of the values
obtained by the implemented hardware and the analytically obtained expected values
using MATLAB, are also discussed and analyzed in this chapter for both these
architectures. Although the case of rectangular windowed update is discussed in this
chapter, however the architecture for other windows as discussed in chapter 3 and 4,
namely the split-triangular window, Hamming, Hanning and Blackman windows can be
implemented in a similar manner.
5.2 Explanation of the dataflow

Examining equation (2.25), it is clearly evident that to calculate the DST
independent DCT update of a sequence we require the DCT of the current time sequence
and one older time sequence. These values are computed using the definition of the DCT
and stored in the Look-Up Table (LUT). This is called the pre-computation phase or data
preparation phase as these values are needed to calculate the modified transform using
the update algorithm. First, the input sequence is sampled by a rectangular window, and
the sequence of length N is extracted. Then the controller computes the DCT of this
sequence using the definition of the DCT, (i.e. DCT _CONVEN module developed in
[31]) and saved in a LUT. Thereafter the sequence is shifted by adding the new points
and the DCT is again calculated using the DCT CONVEN module. Now the data
preparation phase is over and data is ready for utilizing the independent update algorithm.
Whenever the new data points are available, the state machine enters the update mode
where the equations developed in sections 5.3 and 5.4 are used to calculate the DST
independent DCT update for one point shift and four point shift respectively. Whenever

the new data points become available, the state machine remains in update mode and uses
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the last two DCT time-step coefficients to calculate the DCT of the modified sequence.
The state machine implements this by storing the last two time-step coefficients in the
LUT, and these values are read whenever the next update is to be performed. The
dataflow diagram of the architecture implemented for both the cases namely one point
update at a time and four point update at a time is given in figure (5.4) and figure (5.9)
respectively.

The architecture is designed for the input data bit width of 9. Where the MSB bit
is the sign bit weighting -1. The hardware implementation is designed to process black
and white images where the pixel values range form 0 to 255 [31], where pure black is
represented by 0 and pure white is represented by 255. First the pixel values are shifted
by subtracting 128 from each value and thereafter normalized by dividing each value by
the factor of 128. Therefore the hardware can accept values between (-128/128) i.e. -1,
through (127/128) i.e. 0.9921875. The fractional numbers are converted to binary
numbers and given as input data points to the design. Appendix C lists the Java functions
written to convert the decimal numbers to binary numbers and binary numbers back to
decimal numbers.

Based on the analysis of the equations developed in sections 5.3 and 5.4 to
implement the architectures of one point update and four point update, the following
modules are required.

5.2.1 The 16-bit subtractor (SUB 2 16)

This module performs the subtraction between 2 operands each of 16 bit width.

Upon receiving the enable command (EN_SUB) the 16 bits data at A and B get latched

and the results become available at output SUB. The schematic of this block is shown in
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figure (5.1). It acts as a 2°s complement subtractor, the module consists of XOR gates and
full adders, whenever two numbers are to be subtracted the XOR gate inverts the bits and

S AB is asserted and added to the inverted bits that yields the subtraction of two 16 bit

operands.
| SUB_ 2 16 |
A SUB_2_16
B SUB
EN_SUB 5
S_AB

Fig. 5.1: SUB 2 16 Module schematic
5.2.2 Adder Module (ADD 4 16)
This block adds the four 16 bit numbers whenever enable (EN) is asserted. The
module consists of full adders in cascaded manner. And the result of the summation goes

to the output SUM. Figure (5.2) shows the entity representing this component.

ADD 4 16
A1
A2 SUM |—
A3
A4
EN

Fig. 5.2: ADD 4 16 Module schematic
5.2.3 Adder Module (ADD_8 16)
The ADD 8 16 module adds 8 numbers of 16 bits width. When the EN signal is
asserted, the numbers get latched to the inputs Al through A8 and the result goes to the

output SUM. Figure (5.3) represents the entity ADD 8 16.
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A1 ADD_8_16

A2
A3
A4
A5
A6
A7
A8
EN

SUM /———

Fig 5.3: ADD_8 16 Module schematic
Other modules used in implementing the two architectures namely the input stage
(IP_STAGE), multiplier (MULT), Butterfly stage (BUTTER FLY) modules, Extension
module (EXT_UNIT) developed in [31] are reused in the design.
5.3 Hardware implementation for DCT-II independent one point update algorithm
Let the input data sequence be represented by f, f, ....f», and CO represents the
current time-step 0™ DCT coefficient, COM represent the previous time-step 0™ DCT
coefficient and COP represents the updated DCT coefficient. Then the equations for DCT
independent update can be calculated by substituting =1, N=8 in equation (2.25)

resulting in:

COP = CO + CO— COM + L1*(fo- i) + LIS*(fi-fo) (5.1)
CIP =L2* C1 + L2* C1 — CIM + L3*(fy . fi) + L1I6*(fi + f5 ) (5.2)
C2P = L4* C2 + L4* C2 — C2M + L5*(fy - fs) + L17*(fi - /o) (5.3)
C3P =L6* C3 +L6* C3 — C3M + L7*(fy - f) + LI8*(fi + fo) (5.4)
C4P = L8*(fy- fs) + L19*( fi - fo) — C4M (5.5)
C5P = L9* C5 + L9* C5 — CSM + L10*(fo+ fs ) + L20*( fi + /o) (5.6)
C6P =L11* C6 + L11* C6 — C6M + L12*( fo- fi ) + L21*(fi - fo) (5.7)

C7P = L13* C7 + L13* C7— CTM + L14*(fo+ fi ) + L22*(fi + fo ) (5.8)
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Constant Value Decimal Value Binary Value
L1 1/2\/5 0.3515625 001011010
L2 cos(7/8) 0.921875 011101100
L3 1/2 cos(z/16) 0.48828125 001111101
L4 cos(r/4) 0.70703125 010110101
L5 1/2 cos(/8) 0.4609375 001110110
L6 cos(37/3) 0.375 001100000
L7 1/2cos(37/16) 0.4140625 001101010
L8 1/2cos(7z/4) 0.3535 001011010
L9 cos(57/8) -0.37890625 110011111
L10 1/2 cos(57/16) 0.27734375 001000111
L11 cos(37/4) -0.70703125 101001011
L12 1/2cos(37/8) 0.1875 000110000
L13 cos(7 z/8) -0.921875 100010100
L14 1/2cos(77/16) 0.09375 000011000
L15 _1/2\/5 -0.3515625 110100110
L16 —1/2cos(7/16) -0.48828125 110000011
L17 —1/2cos(7/8) -0.4609375 110001010
L18 —1/2cos(37/16) -0.4140625 110010110
L19 —1/2cos(z/4) -0.3535 110100101
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120 —1/2cos(57/16) -0.27734375 110111001
L21 ~1/2cos(37/8) -0.1875 111010000
122 —1/2cos(77/16) -0.09375 111101000

Table 2: Binary representation of constants for /=1 point architecture

First the DCT of first eight data points fj through f; are calculated using the DCT
definition and saved in a LUT, thereafter one new data point fg is shifted in and oldest
data point fj is shifted out. The DCT of this shifted sequence is calculated using the
definition of the transform and result is saved in the LUT. Thereafter, yet another data
point fy is shifted in and the update equation for 8 DCT coefficients COP through C7P
(equations 5.1 through 5.8) derived above are used to calculate the DCT of the modified
sequence. As new data points arrive, the hardware iterates the update architecture to
calculate the transform of the shifted sequence. RMS errors are calculated between the
expected values derived from the DCT definition (matlab values), and the values
obtained by the update hardware developed. The formula used to calculate RMS error is

given in equation (5.9).

7

&= ERROR s = %\/z {EDCT (1) = Opcr (”)}2 (5.9)

n=0
Where Epcr is the expected value of the DCT coefficient and Opcr is the observed
value of the DCT from the hardware implementation.
The architecture developed here for computing the independent DCT update can
be improved for more accuracy and efficiency. The number of bits used to represent the
constant values used can be increased if the application requires more accurate results.

Since representing the decimal numbers by 9 bits in binary introduces some error, this
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can be reduced if the number or bits are increased. However increasing the bits used to
represent the decimal numbers results in space and time overhead in the hardware
architecture. Analyzing equation (5.1) shows that whenever (2*C0) needs to be calculate
we used adder to speed up the implementation instead of using a multiplier.

The architecture for the split-triangular independent windowed update can be
similarly designed. Test bench is used to verify the VHDL controller designed and is
given in Appendix B. Test vectors used to stimulate the architecture along with the
observed results are given below. Outputs at each steps are listed to understand the
implemented design.

The 8 DCT coefficients for the updated sequence are represented by COP through
C7P. The dataflow for the one-point hardware implementation is shows in figure (5.4).
Only the CIP coefficient is shown in the dataflow diagram, other coefficients can also be

represented in a similar way.
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Step by step explanation of the implemented algorithm for »=1 along with the
values obtained, values expected and RMS errors is given below:

Step 1: Computation of DCT of original data sequence (from definition)

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*

fo 111111011 -0.019 | 0000001010001011 0.156 0.160

fi 110100100 -0.359 | 0000001110000100 | 0.218 0.222

|2 010101100 0.671 1111011011010000 | -0.574 -0.572

/3 001010101 0.332 | 1111101010100010 | -0.335 -0.336 0.0014

f4 001101011 0.417 | 0000000100101101 0.070 0.074

fs 101111010 -0.523 | 0000100001010000 | 0.519 0.525

fs 001010101 0.332 1111110110111000 | -0.144 -0.142

f7 110011010 -0.398 | 0000110000111110 | 0.761 0.767

* Expected Values calculated from the DCT-II code (definition) from Chapter 2
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Fig 5.5: The simulation results: COM through C7M
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Step 2: Shifted sequence after 1 point update (DCT calculated from DCT_CONVEN)

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*
fi 110100100 -0.359 | 0000010010000101 0.281 0.284
1 010101100 0.671 | 0000001100011111 0.191 0.197
fi 001010101 0.332 | 1111111101100111 | -0.039 -0.038
f4 001101011 0.417 | 1111010110010001 | -0.652 -0.652 0.0016
fs 101111010 -0.523 | 1111100111101010 | -0.382 -0.378
fs 001010101 0.332 | 1111101011001110 | -0.328 -0.325
f7 110011010 -0.398 | 0000001100011101 0.191 0.195
fs 001010101 0.332 | 1111001011110000 | -0.816 -0.825

Fig 5.6: The simulation results: CO through C7
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Step 3: Shifted sequence after 1 point update (DCT calculated from independent update

module) i.e. coefficients COP through C7P

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*
1 010101100 0.671 | 0000010110011101 0.347 0.353
VE 001010101 0.332 | 0000100011100001 0.554 0.552
f4 001101011 0.417 | 0000011010111101 0.417 0.445
fs 101111010 -0.523 | 0000001100010011 0.191 0.185 0.0046
fs 001010101 0.332 | 1111110111110100 | -0.128 -0.129
f7 110011010 -0.398 | 1111111101010011 | -0.042 -0.044
fs 001010101 0.332 | 1111110101101000 | -0.164 -0.164
fo 111010110 -0.164 | 0000110100010111 0.816 0.839
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Fig 5.7: The simulation results from update module
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Step 4: Yet another 1 point update (DCT calculated from update module second iteration)

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*
f3 001010101 0.332 | 1111111011010110 | -0.074 -0.071
f4 001101011 0.417 | 0000011111011011 0.488 0.498
fs 101111010 -0.523 | 1111111110001111 | -0.031 0.023
fs 001010101 0.332 | 0000100001010110 | 0.519 0.518 0.0080
f7 110011010 -0.398 | 1111111000100100 | -0.117 -0.115
fs 001010101 0.332 | 0000001011000001 0.171 0.174
fo 111010110 -0.164 | 1111110001011011 | -0.230 -0.230
fio 101111000 -0.531 | 1111001111101101 | -0.757 -0.790
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Fig 5.8: The simulation results from second iteration in update module
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5.4 Hardware implementation for DCT-II independent four point update algorithm
Similar to the one point independent architecture the DCT-II independent four
point update algorithm can be calculated by substituting =4, N=8 in equation (2.25)
resulting in equations (5.10) through (5.17):
COP = CO + CO — COM + L19*( fi-fi5) + L19*( fofia) + L1I9*( f5- fi3)
HLI9*(fa- fi2) + LI*(f3- fur) + L1*(f2- fro) + LI*(fi- fo) + L1*(fo- f5)  (5.10)
CIP= — Cl+L2*(fi+fi1)+ L3*( o+ fio) + LA*(fi + /o) + LS*(fo+ f5)
+L6*(fis+f2) + LT*(fia+ f) + L8*(fis+£5) + LY*( fin + /) (5.11)
C2P = - C2 — C2 — C2M+ L20*( f; - fis) + L21*( fi- fia) + L22%( f5 - fi3)
+L23*%(fi-fi2) +L20%(fa- fir) + L21%( fo- fio) + L22%(fi-f5)
+L23*%(fo- i) (5.12)
C3P =— C3M + LI4*( fi- fi1) + L15%(f5- fio) + LI6*(fi- o) + L4*(fo - fi )
+LT*(fis+f1) + L2%(fia+ fo ) + LS*(fis+ £ ) + L3*( fia+ i) (5.13)
CAP = C4 + C4— CAM + LIT*(f- fis) + L24*(fo- fia) + L24*(fs- fi3)
+ LI7*( fi- fin) + L24*(f- fi1) + LI7T*(f5 - fio) + LIT*(fi - o)
+ L24%( fo- f3) (5.14)
C5P = — C5M + LA*(f- fi1 ) + L2*(fo- fio) + LIS*(fi - o)+ L3*(fo- /i )
FL8*( fis+f5) + L5*(fia+fo ) + L16*(fis+ £ ) + LIS*(fia+ /3 ) (5.15)
C6P = - C6— C6 — COM + L21*( f3 - fis) + L23*(fi - fis) + L20*( f2 - fi3)
+L22%( fi- fi2) + L21*(fa- fi1 ) + L23*( fo- fio) + L20*( fi - fo)
+L22%(fo- /&) (5.16)
C7P = — CTM + LIS*(fi- fi1) + LA*(fo- fio) + L14*(fi - fo) + L2*(fo- f&)

TLO*(fistf7) T L3*(fiat fo) + LIS*(fis+f5) + L5*(fiz+ fa) (5.17)
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Constant Value Decimal Value Binary Value
L1 1/2\/5 0.3515625 001011010
L2 1/2sin(7/16) 0.09375 000011000
L3 1/2sin(37/16) 0.27734375 001000111
L4 1/2sin(57/16) 0.4140625 001101010
L5 1/2sin(7 z/16) 0.48828125 001111101
L6 —1/2cos(/16) -0.48828125 110000011
L7 —1/2cos(37/16) -0.4140625 110010110
L8 —1/2cos(57/16) -0.27734375 110111001
L9 —1/2cos(7 7/16) -0.09375 111101000
L10 1/2 cos(7/8) 0.4609375 001110110
L11 1/2cos(37/8) 0.1875 000110000
L12 1/2cos(57/8) -0.19140625 111001111
L13 1/2cos(7 /8) -0.46484375 110001001
L14 1/2sin(37/2)sin(37/16) -0.28125 110111000
L15 1/2sin(37/2)sin(97 /16) -0.4921875 110000010
L16 1/2sin(37/2)sin(157/16) -0.09765625 111100111
L17 1/2cos(37/4) -0.35546875 110100101
L18 —1/2cos(357/16) -0.41796875 110010101
L19 —1/2\/5 -0.3515625 110100110
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120 —1/2cos(7/8) -0.4609375 110001010
L21 —~1/2cos(37/8) -0.1875 111010000
L22 —1/2cos(57/8) 0.19140625 000110001
123 —1/2cos(77/8) 0.46484375 001110111
124 —1/2cos(37/4) 0.35546875 001011011

Table 3: Binary representation of constants for 7=4 point update architecture

The 8 DCT coefficients for the updated sequence are represented by COP through
C7P. The dataflow for the four-point hardware implementation is shows in figure (5.9).
Only the COP coefficient is shown in the dataflow diagram, other coefficients can also be
represented in a similar way.

The RMS error values are calculated between the values obtained through the
implemented hardware and the expected values obtained using MATLAB. Step 1 consists
on latching the initial 8 data points to the architecture and the DCT values are calculated
using definition and saved in the LUT. Thereafter the four new data points are shifted in
and the DCT calculated using the definition. As four new input data points arrive the
controller enters the update mode of operation and using the equations (5.10) to (5.17)
and previous DCT values saved in the LUT are used to calculate the updated DCT.
Whenever four new data points become available the controller iterates in the update
mode of operation and the DCT of the shifted sequence is calculated. The test bench used
to stimulate the controller designed to implement the four point update architecture is
given in Appendix B. The step-by-step implementation of the controller along with the

test vectors and outputs are given in tables below.
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Step by step explanation of the implemented algorithm for =4 along with the
actual values obtained, values expected and RMS errors is given below:

Step 1: Computation of DCT of original data sequence (from definition)

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*

Jo 101010010 -0.679 | 0000011101010100 | 0.457 0.455

fi 111010110 -0.164 | 1111100100001010 | -0.435 -0.434

|2 011010011 0.824 1111010101011001 | -0.666 -0.666

3 010101011 0.667 1111100000110100 | -0.488 -0.488 | 0.00172

f4 101100011 -0.613 | 1111000001110001 | -0.972 -0.977

fs 011101001 0.910 | 0000101010010101 0.660 0.671

fs 001110101 0.457 | 0000100000101001 0.509 0.503

f7 111100011 -0.113 | 1111011101001010 | -0.544 -0.546

* Expected values calculated using matlab.
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Fig 5.10: ModelSim simulation for Step 1 four point update



Step 2: Data after 4 pt. shift (DCT calculated from DCT_CONVEN module)
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DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*
f4 101100011 -0.613 | 1111110100000000 | -0.187 -0.186
fs 011101001 0.910 | 0000100111101110 | 0.619 0.622
fs 001110101 0.457 | 1111110001100101 | -0.226 -0.226
f7 111100011 -0.113 | 1111010000010100 | -0.746 -0.747 | 0.00073
fs 111111011 -0.019 | 1111100010101011 | -0.458 -0.456
fo 110001100 -0.453 | 1111001110000101 | -0.781 -0.781
fio 101111000 -0.531 | 1111101101001011 | -0.294 -0.296
fi1 111010110 -0.164 | 1111111110100001 | -0.023 -0.019
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Fig 5.11: Simulation results for Step 2 four point update
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Step 3: Shifted sequence after 4 point update (DCT calculated from independent update

module) i.e. coefficients COP through C7P

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value | Values*
fs 111111011 -0.019 | 1111110011001010 | -0.201 -0.191
fo 110001100 -0.453 | 1111010011000101 | -0.703 -0.701
f10 101111000 -0.531 | 0000011100000111 0.437 0.441
f11 111010110 -0.164 | 0000000101001000 | 0.080 0.088 | 0.002375
f12 111111011 -0.019 | 0000010001101010 | 0.275 0.283
f13 110100100 -0.359 | 0000011000101000 | 0.384 0.376
f14 010101100 0.671 1111100100111011 | -0.423 -0.416
fis 001010101 0.332 | 0000010001110101 0.277 0.277
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Fig 5.12: The simulation results from update module
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Step 4: Yet another 4 pt. shift (from independent update module second iteration)

DATA Decimal DCT Decimal | Expected | RMS
SEQUENCE | Value Value Values*

f12 111111011 -0.019 | 0000001001000010 | 0.140 0.160

f13 110100100 -0.359 | 0000001110001110 | 0.220 0.222

f14 010101100 0.671 1111011011000100 | -0.578 -0.572

fis 001010101 0.332 1111101010001100 | -0.343 -0.336 | 0.00400

fi6 001101011 0.417 | 0000000011100010 0.054 0.074

fi7 101111010 -0.523 | 0000100001000100 0.515 0.525

f1s 001010101 0.332 1111110111010000 | -0.136 -0.142

f19 110011010 -0.398 | 0000110001001010 0.765 0.767
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Fig 5.13: The simulation results from update module second iteration
Whenever the DCT computation completes using the update mode of operation

the “done update” flag is asserted.




CHAPTER 6: CONCLUSION AND FUTURE WORK

In this research new fast efficient algorithms are developed that are capable of
independently updating the windowed DCT and the DST for a real time input data
sequence. The sequence is constantly updated by shifting in the new data points and
removing the old data points. Independent algorithms are developed for DCT/DST type-I
through IV of which DCT-II and DST-II are the most widely used transforms in the field
of signal processing. Update algorithms significantly reduce the computational
complexity by calculating the transform of the shifted sequence indirectly rather than
using standard fast transform algorithms. It is particularly useful in real time processing
of the incoming data as it is computationally more efficient to calculate the DCT of the
new shifted sequence using the update algorithm than directly calculating the transform
of the new shifted sequence. Update algorithms are widely used in applications such as
real-time analysis of financial market data and data compression.

Firstly, the r-point independent windowed update algorithms in the presence of
rectangular window are derived for DCT and DST type-I through IV. These independent
algorithms derived to use only the DCT (DST) coefficients to calculate the updated DCT
(DST) coefficients, without using the DST (DCT) coefficients. The commonly used
rectangular window to sample the input data sequence results in undesired edge effects
such as ringing. These ringing effects can be reduced by applying a more appropriate

window such as split-triangular i.e. trapezoidal window or Hamming, Hanning and
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Blackman windows. Therefore, the algorithms are presented for independent windowed
updates for DCT (DST) coefficients using any of these more desirable windows like
split-triangular, Hanning, Hamming and Blackman windows. The algorithms developed
in this research are an extension of the previously developed update algorithms as they do
not require the simultaneous update of both the DCT coefficients and the DST
coefficients. Also, these algorithms constitute an easier implementation as compared with
the previous algorithms as we do not require to retain both the DCT coefficients and DST
coefficients. The DCT independent update algorithms developed in this research utilize
the DCT coefficients of the current time sequence and one previous time sequence, new
input data points and the old data points to calculate the transform of the modified
sequence independent of the corresponding discrete sine coefficients. These algorithms
are particularly useful for the applications where only the DCT coefficients or only the
DST coefficients are available. The independent update algorithms developed in this
research are capable of updating » new data points at a time for the case of rectangular
windowed update and one-point for the case of split triangular, Hamming, Hanning and
Blackman windows. However if more than one point update is required these algorithms
can be repeated r times to calculate the r-point update. All algorithms developed are of
computational order N, whereas calculating the transform via fast DCT/DST algorithms
is of order N log, N.

Software implementations are presented to verify the analytically derived
algorithms. C language functions for the windowed update in the presence of rectangular,
trapezoidal, Hamming, Hanning and Blackman windows for DCT and DST type-I

through IV are included in Appendix A. These C language implementation is interactive
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and prompts the user to specify the values of sequence length N, and the new data points.
Utilizing these new data points, the transform coefficients of the shifted sequence are
computed using both the update algorithm and using the definitions. RMS error between
these values is computed using the update algorithm and the fast transform definition to
validate the update algorithm.

State machines for the hardware implementation are written in VHDL for the
independent DCT-II windowed update in the presence of rectangular window. DCT-II
was chosen for the implementation because it is the most commonly used transform.
Hardware implementation for other types of DCT and DST can be easily written in a
similar way. Hardware implementation was carried out and tested for the case of one
point update at a time i.e. =1, and four point update at a time i.e. /=4. Both the state
machines were fully implemented and simulated on ModelSim for testing the hardware
design implementation. The VHDL controller presented can be divided into two main
parts. The first part prepares data for update transform where the DCT coefficients of the
current and one previous time sequences are calculated using the definitions, and the
second part codes the independent update algorithm which uses the previously obtained
values to find the modified DCT of the updated sequence. The VHDL controller written
to implement the one-point and four-point independent update algorithms along with the
test benches used are included in Appendix B. Fixed point arithmetic is used to represent
the data points as it results in easier hardware implementation. Although the window size
selected for implementation was N=8, a larger window size can be easily implemented
using the similar architecture. The constants used in the update equations were

implemented in 9 bit format and stored in LUT’s. Thereafter, the performance evaluation
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in terms of RMS errors between the DCT-II update coefficients obtained using the
implemented hardware and the expected values from the transform definition (using
matlab) is carried out.

Suggestions for future work include deriving the independent update algorithm
i.e. the DCT-only algorithms for ODCT (Odd DCT’s) and DST-only independent
algorithms for ODST (Odd DST’s) type-I through IV. These odd DCT’s and odd DST’s
are also sometimes referred to as type-V to VIII DCT’s and DST’s. The update
algorithms for ODCT’s and ODST’s for rectangular window can be derived initially and
thereafter the idea can be extended to calculate the update in the presence of more
appropriate windows like trapezoidal, Hamming, Hanning and Blackman windows. Also
the performance evaluation for other available windows such as Bartlett window,
Bartlett-Hann, Kaiser, Tukey, Flat top window etc. can be studied. The performance
evaluation for each of the windowed update algorithm can be analyzed and the
complexity can be compared to see the effectiveness of each window.

To extend the work further the hardware implementation for the case of
independent update for DCT and DST in the presence of split-triangular window,
Hamming, Hanning and Blackman windowed can be implemented. These can be
implemented with some minor modifications to the rectangular windowed hardware
implementation for DCT-II developed in this research work. Hardware implementation
can be carried out for different lengths of windows and the performance of each of them
can be compared to find the optimal length of the window sequence that should be used
for the practical applications. The efficiency of the design in terms of the area

requirements and power consumption can be further enhanced by using more efficient
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multipliers. Also, the bit lengths to represent the coefficients can be increased for more
accurate results, for which we have to reach a compromise between efficiency on one

hand and space and speed requirements on the other.
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This appendix lists the C language functions used to test the DCT/DST I-IV

windowed update algorithms derived in Chapter 2, 3 and 4. The implementation of the

update algorithms in the presence of rectangular, split-triangular, Hamming, Hanning and

Blackman windows are given below. The simultaneous windowed update C function

originally given in [22, 33] are modified to implement the independent windowed update

algorithms derived in this research.

/* Program to calculate r-point update for any given signal length N and using

independent updating of DCT type-I coefficients in the presence of the rectangular

window */

void update transform I (double C[], double Cold[],

int N, double

fnew[], double fold[],
/* CIl] input DCT of the previous time unit sequence
Cl] output Updated DCT calculated using DCT values of
older sequences
N input the input data sequence length
r input the number of new points to shift in
fnewl] input the previous data point shifted in
foldl[] input most resent data point shifted out */
{

double k;

int u, mltu;

double theta;

double costheta;

double sintheta;

double root2bN;

double pl, p2, pP3;

double t, coeff;

int m, x;

double root2, terml, sine,cosine,angle;

double Csave;

root2bN=sqrt (2.0/N) ;
root2=sqgrt (2.0);

mltu=

_l;

for (u=0;u<=N;u++) {
theta = r*u*M PI/N;



costheta
sintheta =
mltu= -mltu;
pl=0.0;

for (m=0;

p2=0.0;

m<=(r-1);
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cos (theta);
sin (theta) ;

p3=0.0;

m++) {

angle=((m+1l) *u*M PI) /N;
sine=sin (angle);
cosine=cos (angle);

pl +=
p2 +=

r3

(fold[r-m-1] - mltu*fnew[r-m-1])*sine*sintheta;
((mltu*fnew([2*r-m-1]) - fold[2*r-m-1]
+
(

costheta*fold[r-m-11])
costheta*mltu*fnew[r-m-1])) *cosine;

(((1.0/root2)-1.0)*fold[0])

+ (mltu* (1.0/root2) *fnew([0])
+(2.0%(1.0-(1.0/root2)) *costheta*fold[r])
- (mltu*root2*costheta*fnew(r])
+(((1.0/root2)- 1.0)*fold[2*r])

+ (mltu*(1.0/root2) *fnew([2*r]));

(

terml= root2bN* (pl + p2 + p3);

1f ( (u%N)==0)
Csave=C[u];

{ terml

/= root2; } // multiply terml by k

t=(sintheta*sintheta);

if ((usN)==0)
coeff=

Clul=((2.0*costheta*C[u]) -

Cold[u]=Csave;

{ t=t/root2; }
(costheta*costheta+t) ;

(coeff*Cold[u]) + terml);

Fig. A.1 C function to calculate r-point rectangular windowed update for DCT-I

/* Program to calculate DCT type-I windowed update in the presence of split-triangular

window */

void update windowed I (double Cwl[],

Variables used:

Cw[] O0..N-1
Cm[] 0..N-1
N
n0

fwnew[] O..

double Cwold[], double Cm[], double
Cmold[], int N, int n0O, double fwnew[], double
fwold[], double fmnew[], double fmold[], double
fn0, double fNmnO, double fN, double fml, double

fnOml, double fNmnOpl, int r){

Input - DCT1 of old windowed data
Output- DCT1 of new windowed data
Input - DCT1 of old data times m
Output- DCT1 of new data times m

signal and window length
tail length of split-triangular window
new data shifted in times old window



161

fwold[] O0..r-1 oldest data shifted out times old window
fmnew([] 0..r-1 new data shifted in times old m
fmold[] O0..r-1 r old data points times old m
fml the number foldl[O0];
fnOml the number f[n0-1]
fNmnOml the number f[N-n0O-1]
fno the number f[n0]
£NmnO the number f[N-n0]
N the number f[N] (= fnew[0])
r number of new data points coming in
Cmold[0..N-1] Input: DCT of data times m from previous
timestep
Output:A copy of Cm as input
Cwold[0..N-1] Input: DCT of windowed data from previous time
step
Output: A copy of Cw as input
*/

int mltu;

double root2bNbnO, theta;

double Cmcorrection, Cold correction;
int u,pk;

double *rec;

rec = (double *)calloc (N+1,sizeof (double));
if (rec==NULL) {
printf ("Unable to allocate array\n");

exit (1) ;
}
if(r!=1) {
printf ("Update windowed I works for r=1, not r=%d\n", r);
exit (1) ;
}
root2bNbn0 = ((sqgrt(2.0/N))/ ((double)n0));

N= (double)N;

mltu=1l;

for (u=0; u<=N; u++) {
theta= (u*M PI)/N;
if (n0==1) {
pk=1.0/sqrt (2.0);
}

else pk=1;

Cold correction = root2bNbnO* (- (fnOml*cos (n0*theta))
- (pk*fNmnO*mltu*cos ((n0-1) *theta))
+(2.0*%fml*(1.0/sqrt(2.0))));

if ((u==0) || (u==N)) {Cold correction /= sqrt(2.0);}

Cmold[u] += Cold correction;

// Adds correction factor to Cmold to get DCT of f(x-1)m(x-1)
Cwold[u] += Cmold[u];
mltu = -mltu;

}

IDCT1 (Cmold, rec, N);
pntarray ("Before update transform a ¢ f(x-1)m(x-1) Cmold is =", rec,
N+1) ;
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update transform I(Cw, Cwold, N, fwnew, fwold, r);

// Unwindowed update
update transform I(Cm, Cmold, N, fmnew, fmold, r) ;

// Unwindowed update

mltu=1;
for (u=0; u<=N; u++) {
theta=(u*M_PT) /N;

if (n0==1){ pk=1.0/sqrt(2.0);}

else pk=1l;

Cmcorrection = root2bNbnO* ( -pk*fnO*cos((n0-1) *theta)
-fNmnOpl*mltu*cos (nO*theta)
+2.0*fN*mltu* (1.0/sqgrt(2.0)) );

if ((u==0) || (u==N))Cmcorrection /= sqrt(2.0);

Cm[u] += Cmcorrection;

Cwlu] += Cm([u];

mltu = -mltu;

IDCT1 (Cm, rec, N);

pntarray("Signal C(X+1) X M(X) is =", rec, N+1);

Fig. A.2 C function implementing DCT-I split-triangular windowed update

/* Program to calculate r-point update for any given signal length N and using
independent updating of DST type-1 coefficients in the presence of the rectangular

window */

void update transform I (double S[], double Sold[], double sigl],
int N, double fnewl[], double fnew2[],
double foldl[], double fold2[], int r)

/* ST[] input DST of the previous time unit sequence

ST] output Updated DST calculated using DST values of
older sequences

sigl] input the input data points
N input the input data sequence length
r input the number of new points to shift in
fnewl[] input the previous data point shifted in
fnew2 [] input the newest data point shifted in
foldl[] input most resent data point shifted out
fold2[] input the older data point shifted out */

{

double k;

int u, mltu;
double theta;
double costheta;



double sintheta;
double root2bN;
double pl, p2, p3, p4;
double t, coeff;
int m, x;
double root2,terml, sine,cosine,angle;
double Ssave;
root2bN=sqgrt (2.0/N)
root2=sqrt(2.0);
mltu= -1;
for (u=0;u<=N;u++) {
theta = r*u*M PI/N;
costheta = cos(theta);
sintheta = sin(theta);
mltu= -mltu;
pl=0.0; p2=0.0; p3=0.0; p4=0.0;
for (m=0; m<=(r-1); m++) {
angle=((m+1l) *u*M PI) /N;

terml=
1f ((usN)==0)

sine=sin (angle);
cosine=cos (angle);

- mltu*fnewl
- (mltu*fnew?2

+=
+=

foldl[r-1-m]
fold2[r-m-1]
costheta*mltu*fnewl [r—-1-m]
costheta*foldl[r-1-m])) *sine;

(1.0/root2) -

pl [
p2 [

r-
r-
) =

p3 (

( (1.0/root2))

mltu* (1.0/root2)

p4 (
( mltu (1.0/root2)
( (1.0/root2)) *
+ mltu* (1.0/root2) *
(pl+p3);

{ terml /= root2; }

terml= root2bN* (terml + p2 + p4);

Ss

t=(sintheta*sintheta);

if ((usN)==0) { t=t/root2; }

coeff= (costheta*costheta+t);
S[ul=((2.0*costheta*S[u]) - (coeff*Sold[u
Sold[u]=Ssave;

ave=S[u];
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m]) *cosine*sintheta;
11)+

(

(

(

(

(( 1.0)*foldl1[0]) *costheta*sintheta +
((mltu* (1.0/root2)*fnewl[0]) *costheta*sintheta) +

(1 *sintheta*fold2[0])

- *sintheta*fnew2[0]));

((1 (1.0/root2))*foldl[0]) *costheta*sintheta -

( *fnewl[0]) *costheta*sintheta) -

(1 sintheta*fold2[0])

( sintheta*fnew2[0]));

// multiply terml by k

1) + terml);

Fig. A.3 C function to calculate r-point rectangular windowed update for DST-I
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/* Program to calculate DST type-I windowed update in the presence of split-triangular
window */

void update windowed I (double Sw[], double Swold[], double Sm[],
double Smold[], int N, int n0O, double fwnewl([],
double fwnew2[], double fwoldl[],
double fwold2([], double fmnewl[],
double fmnew2[], double fmoldl[],
double fmold2[], double fn0O, double fNmnO,
double fN, double fml, double fnOml, double
fNmnOml, double fw[], double fm[], int r){

— — —

/*
Variables used:
Sw ] 0..N-1 Input - DST1 of old windowed data
Output- DST1 of new windowed data
Sm[] O0..N-1 Input - DST1 of old data times m
Output- DST1 of new data times m
N signal and window length
n0 tail length of split-triangular window
fwnewl([] O0..r-1 last but one data to be shifted in times old
window
fwnew2[] 0..r-1 new data shifted in times old window
fwoldl[] O0..r-1 oldest data shifted out times old window
fwold2[] 0..r-1 last old data shifted out times old window
fmnewl([] O0..r-1 last but one data to be shifted in times old m
fmnew2[] 0..r-1 new data shifted in times old m
fmoldl[] 0..r-1 oldest data shifted times old m
fmold2[] O0..r-1 r old data points times old m
fml the number foldl[0]
fnOml the number f[n0-1]
fNmnOml the number f[N-n0O-1]
fno the number f[n0]
fNmnO the number f[N-n0]
N the number f[N] (= fnew[0])
r number of new data points coming in
Smold[0..N-1] Input - DST of data times m from previous
timestep
Output - A copy of Sm as input
Swold[0..N-1] Input - DST of windowed data from previous
timestep
Output - A copy of Sw as input

*/

int mltu;
double *rec;
double twoN, root2bNbn0O, theta;
double Smcorrection, Sold correction;
int u;
rec = (double *)calloc (N+1l,sizeof (double));
if (rec==NULL) {
printf ("Unable to allocate array\n");
exit (1) ;
}
if(r!=1){
printf ("Update windowed I works for r=1, not



r=%d\n",r);
exit (1) ;
}
root2bNbn0 = ((sqgrt(2.0/ (double)N))/ ((double)n0));
mltu=1;
for (u=0; u<=N; u++)
{
theta= ((u*M PI)/ (double)N);
Sold correction = root2bNbnO* (-fnOml*sin (n0*theta)
+fNmnOml*mltu*sin (n0O*theta)) ;
// Correction factor to get f(x-1)m(x-1) from f(x-1)m/(
// Correction factor to get f(x-1)w(x-1) from f(x-1)w

Smold[u] += Sold correction;
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X)

(x

)

// Adds correction factor to Smold2 to get DST of f(x-1)m(x-1)

Swold[u] += Smold[u];
mltu = -mltu;

}

update transform I (Sw,Swold, fw,N, fwnewl, fwnew2, fwoldl, fwold2,r);
// Unwindowed update

update transform I (Sm,Smold, fm,N, fmnewl, fmnew2, fmoldl, fmold2, r);
// Unwindowed update

mltu=1;
for (u=0; u<=N; u++) {
theta = ((u*M_PI)/ (double)N);
Smcorrection = root2bNbnO* (-fn0*sin ((n0-1) *theta)

+fNmnO*mltu*sin ( (n0+1) *theta)
-2.0*fN*mltu*sin (theta));
Sm[u] += Smcorrection;
Swl[u] += Sm[u];
mltu = -mltu;

Fig. A.4 C function implementing DCT-I split-triangular windowed update

/* Program to calculate 7-point rectangular windowed update for any given signal length

N and using independent updating of DCT-II coefficients */

void update transform(double C[], double Cold[], int N, double fnewl[],
double fnew2[], double foldl[], double fold2[],

int r)
/* Cl] input DCT of the previous time unit sequence
Cl] output Updated DCT calculated using DCT values of
older sequences
N input the input data sequence length
r input the number of new points to shift in

fnewl[] input the previous data point shifted in
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fnew?2[] input the newest data point shifted in

fo
fo

double
int u;
int ml
double
double
double
double
double
double
int m;
int x;
double
double

1d11[] input most resent data point shifted out
1d21[] input the older data point shifted out */

k;

tu;
theta;
costheta;
sintheta;
root2bN;
pl, p2, p3;
tl, t2;

root2, terml, sine, cosine, angle;
Csave;

root2bN=sqrt (2.0/N) ;

root2=
mltu=

for (u=

sqrt (2.0);
_l;
0;u<=N-1;u++) {

theta = r*u*M PI/N;

costheta

si
ml

pl
t2

cos (theta) ;
ntheta = sin(theta);
tu= -mltu;

=0.0; p2=0.0; pP3=0.0; t1=0.0;
=0.0;

for (m=0; m<=(r-1); m++) {

}

angle= (m+m+1)*u*M PI/ (N+N) ;
sine=sin (angle) ;
cosine=cos (angle) ;

tl = mltu*fnewl[r-1-m] - foldl[r-1-m];
t2 = mltu*fnew2[r-1-m] - fold2[r-1-m];
pl -= (tl) *sine;

P2 += (t2)*cosine;

p3 += (tl)*cosine;

terml= root2bN* (sintheta*pl + p2 - costheta*p3);
if ((usN)==0) terml /= root2; // multiply terml by k
Csave=Clul;

Cl

u]=2.0*costheta*C[u] - Cold[u] + terml;

Cold[u]=Csave;

}

void update_ signal (double sig[], int N, double fnewl[], double vnewl[],

{

int x;

double fnew2[], double foldl[], double fold2[], int r)

for (x=0;x<=(r-1) ; x++)

{

foldl[x]=fold2[x];



}

for (x=0;x<=(r-1) ; x++)

{

}

fold2[x]=sig[x];

for (x=0;x<=(r-1) ; x++)

{

}

fnewl [x]=fnew2 [x];

for (x=0;x<=(r-1) ;x++)

{

}

fnew2 [x]=vnew[x];

for (x=r; x<=N-1; x++)

{

}

sigl[x-r] = sigl[x];

for (x=0; x<=r-1; x++)

{

}

sig[N-r+x]=vnew[x];

void dctrect ()

{

int N, r;

int 1i;
double
double
double
double
double
double
double
double
double
int x;
double

printf (
printf ("Enter signal length N:");

*sig;
*C;
*Cold;
*rec;
*fnewl;
*fnew2;
*foldl;
*fold2;
*vnew;

rmsC;

"\n") :

scanf ("%d", &N) ;
printf ("\n");

sig =

(double *)calloc (N, sizeof (double));

if (sig==NULL)

for (x=

{

printf ("Unable to allocate array\n");

exit (1) ;

} //initialise signal

0;x<=N-1;x++)
{
sig[x] = x+1;

}

sig[2]1=42.0;
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printf ("\n");
for (x=0;x<=N-1;x++)
{
printf ("Original Signal sig : %d: $1f\n",x,sig[x]);
}
printf ("\n");

printf ("Enter r, the number of new data points to shift in (0 to
sd):",N-1);

scanf ("%d", &r) ;

printf ("\n");

C = (double *)calloc (N+1,sizeof (double));
if (C==NULL)
{
printf ("Unable to allocate array\n");
exit (1) ;
}

Cold = (double *)calloc (N+1,sizeof (double));
if (Cold==NULL)
{
printf ("Unable to allocate array\n");
exit (1) ;
}

rec = (double *)calloc(N,sizeof (double));
if (rec==NULL)
{
printf ("Unable to allocate array\n");
exit (1) ;

fnewl = (double *)calloc(r, sizeof (double));
if (fnewl==NULL)
{
printf ("Unable to allocate array \n");
exit (1) ;
}

fnew?2 = (double *)calloc(r, sizeof (double));
if (fnew2==NULL)
{
printf ("Unable to allocate array \n");
exit (1) ;
}
foldl = (double *)calloc(r, sizeof (double));
if (foldl==NULL)
{
printf ("Unable to allocate array \n");
exit (1) ;
}
fold2 = (double *)calloc(r, sizeof (double));
if (fold2==NULL)
{
printf ("Unable to allocate array \n");
exit (1) ;
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}

vnew = (double *)calloc(r, sizeof (double));
if (vnew==NULL)
{
printf ("Unable to allocate array \n");
exit (1) ;
}

for (x=0; x<=r-1;x++)
{
printf ("Enter the %d th new point ",x);
scanf ("$1f", &vnew[x]) ;
}
printf ("\n");
for (x=0;x<=r-1;x++)
{
printf ("\n");
printf ("vnew signal: vnew[%d]= $1f",x,vnew[x]);
}
printf ("\n");

printf ("Initializing State Begin to calculate Cold and C:\n");
printf (" \n") ;

DCT2 (sig,Cold,N) ;
pntarray ("DCT using definition Cold is=", Cold, N);
update signal(sig, N, fnewl, vnew, fnew2, foldl, fold2, r);
for (x=0;x<=N-1;x++)
{ printf ("\nAfter %d point update sig is %d: %1f",r,
x,sig[x]);
}
printf ("\n") ;
DCT2 (sig,C,N) ;
printf ("\n");
pntarray ("DCT using definition C is=", C, N);
printf ("Initializing complete\n");
printf (" \n") ;

while (1==1)
{

for (x=0; x<=r-1; x++)
{
printf ("Enter the %d th new point ", x);
scanf ("%$1f", &vnew[x]) ;
}
printf ("\n");
for (x=0;x<=r-1;x++)

{
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printf ("\n");
printf ("vnew signal: vnew[%d]= %1f",x,vnew[x]);
}
printf ("\n")

update signal (sig,N, fnewl, vnew, fnew2,foldl, fold2,r);
update transform(C, Cold, N, fnewl, fnew2, foldl, fold2, r);

for (x=0;x<=N-1;x++)
{
printf ("After %d point update sig is %d:
$1f\n",r,x,sig[x]);
}
printf ("\n");

pntarray ("DCT using update transform is",C,N);
IDCT2 (C, rec,N);

printf ("Signal recovered from update transform DCT coefficients
is");

printf ("\n");

rmsC=0.0;

for (x=0;x<=N-1;x++)
{
printf ("%d: $1f\n",x,rec[x]);
rmsC += (sig[x]-rec([x])*(sig[x]-rec[x]);

}

rmsC=sqrt (rmsC) ;
printf ("\n");
printf ("RMS error on reconstruction from DCT =%1f\n", rmsC) ;

printf ("Enter %d new points to shift in\n",r);
printf ("\n")

free (fnewl
free
free
free (fold2

(
(
(
(
free(vnew);
(
(
(
(

) 7

fnew?) ;

foldl);
)

’

free(siqg);
free (Cold);
free (C);

free(rec);

Fig. A.5 C program to calculate r-point rectangular windowed update for DCT-II
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/* Program to calculate DCT type-II windowed update in the presence of split-triangular

window */

void update windowed II (double Cw[], double Cwold[], double Cm[],
double Cmold[],int N, int n0O, double fwnewl[],
double fwnew2[], double fwoldl[],
double fwold2[], double fmnewl[], double
fmnew2[], double fmoldl[], double fmold2[],
double fn0, double fNmnO, double fN, double
fml, double fnOml, double fNmnOml,int r) {

/* Split-triangular windowed update for DCT-II
Window length N with tail-length nO.

Variables used:

Cw ] 0..N-1 Input - DCT2 of old windowed data
Output- DCT2 of new windowed data
Cm[] 0..N-1 Input - DCT2 of old data times m
Output- DCT2 of new data times m
N signal and window length
n0 tail length of split-triangular window
fwnewl[] O0..r-1 last but one data to be shifted in times old
window
fwnew2[] 0..r-1 new data shifted in times old window
fwoldl[] O0..r-1 oldest data shifted out times old window
fwold2[] O0..r-1 last old data shifted out times old window
fmnewl[] O0..r-1 last but one data to be shifted in times old m
fmnew2[] 0..r-1 new data shifted in times old m
fmoldl[] O..r-1 oldest data shifted times old m
fmold2[] O0..r-1 r old data points times old m
fml the number foldl[0];
fnOml the number f[n0-1]
fNmnOml the number f[N-n0O-1]
fno the number f£[n0]
fNmnO the number f[N-nO]
fN the number f[N] (= fnew[0])
r number of new data points coming in
Cmold[0..N-1] Input: DCT of data times m from previous
timestep
Output:A copy of Cm as input
Cwoldl[0..N-1] Input: DCT of windowed data from previous time
step
Output: A copy of Cw as input
*/

int mltu;

double twoN, root2bNbn0O, theta;
double Cmcorrection, Cold correction;
int u;

if(r!=1){
printf ("Update windowed II works for r=1,
r=%d\n", r);



}

}

exit (1) ;

root2bNbn0 = sqrt(2.0/ (double)N)/ (double)n0;
twoN= (double)N+N;

mltu=1;
for (u=0; u<=N-1; u++) {

theta= u*M PI/twoN;
Cold correction = root2bNbnO*( -fnOml*cos((n0+n0O+1)*theta)
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—fNmnOml*mltu*cos ( (n0+n0-1) *theta)

+2.0*fml*cos (theta)) ;

if (u==0) Cold correction /= sqrt(2.0);

Cmold[u] += Cold correction; // Adds correction factor to Cmold

to get DCT of f(x-1)m(x-1)
Cwold[u] 4= Cmold[u];

mltu = -mltu;

pntarray ("fwnewl in V = ", fwnewl,r);
pntarray ("fwnew2 = ", fwnew2,r);
pntarray ("fwoldl = ", fwoldl, r);
pntarray ("fwold2 in V = ", fwold2,r);

update transform II(Cw, Cwold, N, fwnewl, fwnew2, fwoldl, fwold2z,

// Unwindowed update

update transform II(Cm, Cmold, N, fmnewl, fmnew2, fmoldl, fmold2,

// Unwindowed update

pntarray ("Cw after update transform is =", Cw, N);
pntarray ("Cm after update transform is =", Cm, N);
mltu=1;

for (u=0; u<=N-1; u++) {

theta=u*M PI/twoN;
Cmcorrection = root2bNbnO* ( -fnO0*cos ((n0+n0-1) *theta)
—fNmnO*mltu*cos ( (n0+n0+1) *theta)
+2.0*fN*mltu*cos (theta) );

if ((u==0) || (u==N))Cmcorrection /= sqrt(2.0);
Cm[u] += Cmcorrection;

Cw[u] += Cm[u];

mltu = -mltu;

void apply windows( int N, int r, double w[], double m[],

double f[], double fw[], double fm[],
double fnewl[], double fnew2[],
double foldl[], double fold2[],
double fwnewl[], double fwnew2 |
double fwoldl[], double fwold2][
double fmnewl[], double fmnew?2 [
double fmoldl[], double fmold2[

1y
1y
1y
1A

/* Variables used:

r);

r);



N length of the signal (input)
r number of new data points (input)
w[0..N=-1] the window function (input)
m[0..N-1] the m-function (input)
f[0..N-1] the input signal (input)
fw[0..N-1] the windowed signal (output)
fm[0..N-1] the m-ed signal (output)
fnewl[0..r-1] last but one data to be shifted in (input)
fnew2[0..r-1] new data shifting in (input)
foldl[0..r-1] oldest data shifting out, two time domains
earlier (input)
fold2[0..r-1] last old data shifting out (input)
fwnewl[] 0..r-1 last but one data to be shifted in times old
window (output)
fwnew2[] O0..r-1 new data shifted in times old window (output)
fwoldl[] O..r-1 oldest data shifted out times old window
(output)
fwold2[] 0..r-1 last old data shifted out times old window
(output)
fmnewl[] O0..r-1 last but one data to be shifted in times old m
(output)
fmnew2[] O0..r-1 new data shifted in times old m (output)
fmoldl[] O0..r-1 oldest data shifted times old m (output)
fmold2[] O0..r-1 r old data points times old m (output)
*/
int x;
for (x=0; x<=N-1; x++) {
fwix]l= fx]*w[x];
fm{x]= f[x]*m[x];

for (x=0;x<=r-1;x++) {
fwoldl[x] = w[N-1]*foldl[x];

fwold2[x] = w[x]*fold2[x];
fmoldl [x] = m[N-1]*foldl([x];
fmold2([x] = m[x]*fold2[x];
fwnewl [x] = w[N-1]*fnewl[X];
fwnew2 [x] = w[x]*fnew2[x];
fmnewl [x] = m[N-1]*fnewl [x];
fmnew2 [x] = m[x]*fnew2[x];

Fig. A.6 C program to calculate split-triangular windowed update for DCT-II

/* Program to calculate DST coefficients indirectly for Hamming, Hanning and

Blackman windows */

for (m=0; m<=N;m++) {
1if((m%2) == 0) { So0ldl[N]=Soldl[N]+ sig[m]; }
else { So0ldl [N]=Soldl[N]- sig[m]; }
}
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Soldl[N]=1.0/sqgrt (N)*Soldl[N];

mltu=-1;
for (u=1;u<=N-1;u++) {
if ((usN)==0) { k = 1.0/sgrt(2.0); }
else { k=1.0; }
theta = (u*M PI)/N;
costheta = cos(theta);
sintheta = sin(theta);

costhetaby2=cos (theta/2.0) ;

Soldl [u]=Cupdate[u] - (costheta*Coldl[u])+
k*costhetaby2/root Nv2* (fold2[0]- mltu*fnew2[0]);

Soldl[u]=Soldl[u]/sintheta;

mltu=-mltu;

Fig. A.7 C code snippet to calculate independent windowed update for DCT-II in
presence of Hanning, Hamming and Blackman windows

/* Program to calculate 7-point rectangular windowed update for any given signal length

N for DST-II */

void update transform(double S[], double Sold[], int N, double
fnewl[], double fnew2[], double foldl[], double
fold2[], int r)

/* S[] input DST of the previous time unit sequence
ST] output Updated DST calculated using DST values of
older sequences
N input the input data sequence length
r input the number of new points to shift in
fnewl[] input the previous data point shifted in
fnew2 [] input the newest data point shifted in
foldl([] input most resent data point shifted out
fold2[] input the older data point shifted out */
{
double k;
int u;

int mltu;

double theta;

double costheta;

double sintheta;

double root2bN;

double pl, p2, p3, tl, t2;

int m;

int x;

double root2,terml, sine,cosine,angle;
double Ssave;
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root2bN=sqgrt (2.0/N) ;
root2=sqrt (2.0) ;
mltu= -1;
for (u=0; u<=N; u++) {
theta = r*u*M PI/N;
costheta = cos(theta);
sintheta = sin(theta);
mltu= -mltu;
pl=0.0; p2=0.0; ©p3=0.0; t1=0.0; t2=0.0;

for (m=0; m<=(r-1); m++) {
angle= (m+m+1l)*u*M PI/ (N+N);
sine=sin (angle) ;
cosine=cos (angle);

tl= (foldl[r-1-m] - mltu*fnewl[r-1-m]);
t2= (fold2[r-1-m] - mltu*fnew2[r-1-m]);
pl += (tl) *cosine;

P2 += (t2)*sine;

p3 += (tl) *sine;

}

terml= root2bN* (sintheta*pl + p2 - costheta*p3);

if ((usN)==0) terml /= root2; // multiply terml by k
Ssave=S[u];
S(ul=2.0*costheta*S[u] - Sold[u] + terml;

Sold[u]=Ssave;

Fig. A.8 C program to calculate r-point rectangular windowed update for DST-II

/* Program to calculate DST type-II windowed update in the presence of split-triangular

window */

void update windowed II (double Sw[], double Swold[], double Sm[],
double Smold[], int N, int nO,
double fwnewl[], double fwnew2[], double
fwoldl[], double fwold2[], double fmnewl[],
double fmnew2[], double fmoldl[], double
fmold2[], double fn0, double fNmnO, double f£N,
double fml, double fnOml, double fNmnOml,

int r){

Variables used:

Sw[] O0..N-1 Input - DST2 of old windowed data
Output- DST2 of new windowed data

Sm[ ] 0..N-1 Input - DST2 of old data times m
Output- DST2 of new data times m

N signal and window length

n0 tail length of the window used

fwnewl([] O0..r-1 last but one data to be shifted in times old
window

fwnew2[] 0..r-1 new data shifted in times old window

fwoldl[] 0..r-1 oldest data shifted out times old window
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fwold2[] O0..r-1 last old data shifted out times old window
fmnewl[] O0..r-1 last but one data to be shifted in times old m
fmnew2[] 0..r-1 new data shifted in times old m
fmoldl[] O0..r-1 oldest data shifted times old m
fmold2[] O0..r-1 r old data points times old m
fml the number foldl[O0]
fnOml the number f[n0-1]
fNmnOml the number f[N-n0O-1]
fn0 the number f[n0]
fNmnO the number f[N-nO]
N the number f[N] (= fnew[0])
r number of new data points coming in
Smold([0..N-1] Input - DST of data times m from previous
timestep
Output - A copy of Sm as input
Swold[0..N-1] Input - DST of windowed data from previous
timestep
Output - A copy of Sw as input
*/
int mltu;

double twoN, root2bNbn0O, theta;
double Smcorrection, Sold correction;
int u;

if(r!=1) {
printf ("Update windowed II works for r=1, not
r=%d\n", r);
exit (1) ;

root2bNbn0 = sqrt(2.0/ (double)N) / (double)nO;
twoN= (double)N+N;

mltu=1;
for (u=1; u<=N+1l; u++)
{

theta= u*M PI/twoN;

Sold correction = root2bNbn0* (-fnOml*sin ((n0+n0+1) *theta)
—fNmnOml*mltu*sin ((n0+n0-1) *theta)
+2.0*fml*sin (theta));

// Correction factor to get f(x-1)m(x-1) from f(x-1)m(x)
// Correction factor to get f(x-1)w(x-1) from f(x-1)w(x)

if (u==0||u==N){ Sold correction /= sqrt(2.0); }

Smold[u] += Sold correction;

// Adds correction factor to Smold2 to get DST of f(x-1)m(x-1)
Swold[u] += Smold[u];
mltu = -mltu;

}

update transform(Sw, Swold, N, fwnewl, fwnew2, fwoldl, fwold2, r);
// Unwindowed update

update transform(Sm, Smold, N, fmnewl, fmnew2, fmoldl, fmold2, r) ;
// Unwindowed update
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mltu=1;
for (u=1l; u<=N; u++) { // later, N

theta = u*M PI/twoN;

Smcorrection = root2bNbnO* ( -fn0*sin ((n0+n0-1) *theta)
—fNmnO*mltu*sin ( (n0+n0+1) *theta)
+2.0*fN*mltu*sin (theta) ) ;

if (u==0] |u==N){ Smcorrection /= sqgrt(2.0); }

Sm[u] += Smcorrection;
Swl[u] += Sm[u];
mltu = -mltu;

Fig. A.9 C function to calculate split-triangular windowed update for DST-II

/* Code snippet to calculate DCT-II coefficients indirectly from DST-II coefficients for

Hanning, Hamming and Blackman windows */

for (m=0;m<=N-1;m++) {
Coldl[0]=Coldl[0]+sig[m];
}
Coldl1[0]=1.0/sgrt (N)*Coldl[0];

for (u=1;u<=N-1;u++) {

if((usN)==0) { k = 1.0/sqrt(2.0); }

else { k=1.0; }

theta = (u*M PI)/N;

costheta = cos(theta);

sintheta = sin(theta);

sinthetaby2=sin (theta/2.0) ;

mltu=pow(-1,u);

Coldl[ul=(costheta*Soldl[ul]) -
Supdate[ul+(((1/root Nv2)*k*sinthetaby2)* (fold2[0]-
mltu*fnew2[0]));

Coldl[u]=Coldl[u]l*((1.0)/sintheta);

Fig. A.10 C code snippet to calculate independent windowed update for DST-II in

presence of Hanning, Hamming and Blackman windows

/* Program to calculate 7-point rectangular windowed update for any given signal length

N for DCT-III */

void update transform(double C[], double Cold[], int N, double fnewl[],
double fold[], int r)
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Cl input DCT of the previous time unit sequence
CIl] output Updated DCT calculated using DCT values of
older sequences
N input the input data sequence length
r input the number of new points to shift in
fnew(] input the newest data point shifted in
foldl[] input the older data point shifted out */
double k;
int u;
int mltu;
double root2bN;
double pl, p2, p3;
int m;
int x;
double root2,terml, sine,cosine,angle,angle?,Fr,Er;
double Csave;
root2bN=sqrt (2.0/N) ;
root2=sqrt (2.0) ;
mltu= -1;
for (u=0;u<=N-1;u++) {
mltu= -mltu;
pl=0.0; p2=0.0; p3=0.0;
angle2=r* (utu+l) *M PI/ (N+N) ;
Fr=sin (angle?2) ;
Er=cos (angle2);
for(m=0; m<=(r-1); m++) {
angle=(m+1) * (u+tu+l) *M PI/ (N+N);
sine=sin (angle) ;
cosine=cos (angle);
pl += (mltu*fnew[2*r-1-m] + Fr*fold[r-m-1]
- mltu*Er*fnew[r-m-1]) *sine;
p2 += (mltu*Fr*fnew[r-m-1] - fold[2*r-m-1]
+ Er*fold[r-m-1]) *cosine; }
p3 = (1.0-(1.0/root2))* (fold[0]
- (2.0*Er*fold[r]) + fold[2*r]);
terml= root2bN* (pl + p2 - p3);
Csave=C[ul];
Clul]=((2.0*Er*C[u]) - Cold[u] + terml);
Cold[u]=Csave;
Fig. A.11 C function to calculate r-point rectangular windowed update for DCT-III
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/* Program to calculate DCT type-III windowed update in the presence of split-triangular

window */

void update windowed III (double Cw[], double Cwold[], double Cm[],
double Cmold[], double f[], int N, int noO,
double fwnew([], double fwold[], double

*/

fmnew[], double fmold[], double fn0O, double
fNmnO, double fN, double fml, double fnOml,
double fNmnOml, double fw[], double fm[],

int r) {
Variables used:

Cwl] 0..N-1 Input — DCT3 of old windowed data
Output- DCT3 of new windowed data

Cm[] O0..N-1 Input - DCT3 of old data times m
Output- DCT3 of new data times m

N signal and window length

n0 tail length of split-triangular window

fwnew([] 0..r-1 last but one data to be shifted in times old
window

fwold[] O0..r-1 oldest data shifted out times old window

frmnew[] 0..r-1 new data shifted in times old m

fmold[] O0..r-1 r old data points times old m

fml the number foldl[O0];

fnOml the number f[n0-1]

fNmnOm1l the number f[N-n0O-1]

fno the number f[n0]

fNmnO the number f[N-n0]

N the number f[N] (= fnew[0])

r number of new data points coming in

Cmold[0..N-1] Input: DCT of data times m from previous
timestep
Output:A copy of Cm as input

Cwold[0..N-1] Input: DCT of windowed data from previous time
step

Output: A copy of Cw as input

int mltu;

double twoN, root2bNbnO, theta, pk;
double Cmcorrection, Cold correction;
int u, x;

double *rec;

rec = (double *)calloc (N+1,sizeof (double));
if (rec==NULL) {
printf ("Unable to allocate array\n");
exit (1) ;
}
r=1;
root2bNbn0 = sqrt(2.0/ (double)N)/ (double)n0;
twoN= (double)N+N;

IDCT3 (Cmold, rec, N);
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pntarray("signal f(x-1)m(x) is =", rec, N);
mltu=1;
for (u=0; u<=N-1; u++) {
theta= ((utu+l)*M PI)/twoN;
Cold correction = root2bNbnO* ( - (fnOml*cos (nO*theta))
- (fNmnOml*mltu*sin (nO*theta))
+((1.0/sgrt(2.0))*(2.0*fml)) );

Cmold[u] += Cold correction;

// Adds correction factor to Cmold to get DCT of f(x-1)m(x-1)
Cwold[u] 4= Cmold[u];
mltu = -mltu;

update transform(Cw, Cwold, N, fwnew, fwold, r);

// Unwindowed update

update transform(Cm, Cmold, N, fmnew, fmold, r) ;

// Unwindowed update

mltu=1;

for (u=0; u<=N-1; u++) {
theta= ((utu+l)*M PI)/twoN;
if (nO0==1) {

pk=1.0/sgrt (2.0);}

else pk =1;

Cmcorrection = root2bNbnO* ( - (pk*fnO*cos ((n0-1.0) *theta))
- (fNmnO*mltu*sin ( (n0+1.0) *theta))
+(2.0*fN*mltu*sin (theta)) );

Cm[u] += Cmcorrection;

Cwlu] += Cm[u];

mltu = -mltu;

Fig. A.12 C function to calculate split-triangular windowed update for DCT-III

/* Program to calculate 7-point rectangular windowed update for any given signal length

N for DST-III */

void update transform(double S[], double Sold[], int N, double fnew[],

/*

double fold[], int r)

ST[] input DST of the previous time unit sequence

ST1] output Updated DST calculated using DST values of
older sequences

N input the input data sequence length

r input the number of new points to shift in

fnew[] input the previous data point shifted in

fold[] input most resent data point shifted out */
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double k;

int u;

int mltu;

double root2bN;

double pl, p2, p3;

int m;

int x;

double root2,term,sine,cosine,angle,angle?2,Fr,Er;
double Ssave;

root2bN=sqgrt (2.0/N) ;
root2=sqrt(2.0);
mltu= -1;
for (u=0;u<=N;u++) {
mltu= -mltu;
pl=0.0; p2=0.0; p3=0.0;

angle2=r* ((utu+l)*M PI)/ (N+N);
Fr=sin (angle?2);
Er=cos (angle2);

for(m=0; m<=(r-1); m++) {
angle=((m+1) * (utu+l) *M _PI)/ (N+N) ;
sine=sin (angle) ;
cosine=cos (angle);

pl += ((mltu*fnew[2*r-m-1]) + (Fr*fold[r-1-m])-
(mltu*Er*fnew[r-m-1])) *cosine;

p2 += (fold[2*r-m-1] - (mltu*Fr*fnew[r-m-1])-
(Exr*fold[r-1-m])) *sine; }

p3 = ((mltu*(1.0/root2)*fnew[0])+ (mltu*(1.0/root2)*fnew[2*r])
- (mltu*root2*Er*fnew(r]));

term= root2bN* (pl+p2+p3);

Ssave=S[u];

S[ul]=((2.0*Er*S[u]) - Sold[u] + term);
Sold[u]=Ssave;

Fig. A.13 C function to calculate 7-point rectangular windowed update for DST-III

/* Program to calculate DST type-III windowed update in the presence of split-triangular

window */

void update windowed III (double Sw[], double Swold[], double Sm[],
double Smold[], int N, int nO,
double fwnew([], double fwold[],
double fmnew[], double fmold[], double £fnoO,
double fNmnO, double fN, double fml, double
fnOml, double fNmnOpl, int r){
Variables used:
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Sw ] 0..N-1 Input - DST3 of old windowed data
Output- DST3 of new windowed data
Sm[] O0..N-1 Input - DST3 of old data times m
Output- DST3 of new data times m
N signal and window length
no0 tail length of split-triangular window
fwnew[] O0..r-1 new data shifted in times old window
fwold[] O0..r-1 last old data shifted out times old window
fmnew([] 0..r-1 new data shifted in times old m
fmold[] O0..r-1 r old data points times old m
fml the number foldl[0]
fnOml the number f[n0-1]
fNmnOm1l the number f[N-n0O-1]
fn0 the number f[n0]
fNmnO the number f[N-nO]
fN the number f[N] (= fnew[0])
r number of new data points coming in
Smold[0..N-1] Input - DST of data times m from previous
timestep
Output - A copy of Sm as input
Swold[0..N-1] Input - DST of windowed data from previous
timestep
Output - A copy of Sw as input
*/

int mltu;

double twoN, root2bNbnO, theta;

double Smcorrection, Sold correction;
int u,pk,x;

double *rec;

rec = (double *)calloc (N+1l,sizeof (double));
if (rec==NULL) {
printf ("Unable to allocate array\n");
exit (1) ;
}
if(r!'=1){
printf ("Update windowed II only works for r=1, you gave
r=%d\n", r);
exit (1) ;
}
root2bNbn0 = sqgrt (2.0/ (double)N) / (double)nO;
twoN= (double)N+N;

mltu=1;
for (u=0; u<=N; u++)
{
theta= ((utu+l)*M PI)/twoN;
if (nO0==1) {
pk=1.0/sgrt (2.0);
}
else pk=1;
Sold correction = root2bNbnO* (- (fnOml*sin (nO*theta))
- (pk*fNmnO*mltu*cos ((n0-1) *theta)));

// Correction factor to get f(x-1)m(x-1) from f(x-1)m(x)
// Correction factor to get f(x-1)w(x-1) from f(x-1)w(x)



Smold[u]
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+= Sold correction;

// Adds correction factor to Smold2 to get DST of f(x-1)m(x-1)

Swold[u] += Smold[ul];
mltu = -mltu;

}

IDST3 (Smold, rec,N) ;
update transform(Sw,

update transform(Sm,

Swold, N,

Smold, N,

fwnew, fwold, r);

// Unwindowed update
fmnew, fmold, r) ;

// Unwindowed update

mltu=1l;

for (u=0; u<=N; u++){ // later, N
theta= ((utu+l)*M PI)/twoN;
if (n0==1){ pk=1.0/sqgrt(2.0); }
else pk=1;

Smcorrection = root2bNbnO* (-pk*fn0*sin((n0-1) *theta)
-fNmnOpl*mltu*cos (n0O*theta)
+2.0*fN*mltu* (1.0/sqgrt(2.0)));

Sm[u] += Smcorrection;

Swl[u] += Sm[u];

mltu = -mltu;

Fig. A.14 C function to calculate split-triangular windowed update for DST-III

/* Program to calculate »-point rectangular windowed update for any given signal length

N for DCT type IV */

void update transform(double C[],
double fnew2[],

int r)
/* o input
Cl] output
N input
r input
fnewl[] input
fnew2 [] input
foldl[] input
fold2[] input
{
double k;
int u;

int mltu;
double root2bN;
double pl;
double p2;

double Cold[],
double foldl[],

int N, double fnewl([],
double fold2[],

DCT of the previous time unit sequence
Updated DCT calculated using DCT values of
older sequences

the input data sequence length

the number of new points to shift in

the previous data point shifted in

the newest data point shifted in

most resent data point shifted out

the older data point shifted out */
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int m;

int x;

double root2,terml, sine,cosine,angle,angle?2,Fr,Er;
double Csave;

root2bN=sqgrt (2.0/N) ;

mltu= -1;
for (u=0; u<=N; u++) {
mltu= -mltu;

pl=0.0; p2=0.0;
angle2=r* (utu+l) *M PI/ (N+N);
Fr=sin (angle?2) ;
Er=cos (angle?2);

for (m=0; m<=(r-1); m++) {
angle= (m+m+1)* (utu+l)*M PI/ (4*N);
sine=sin (angle) ;
cosine=cos (angle);

pl += (Fr*foldl[r-1-m] + mltu*fnew2[r-1-m]
- mltu*Er*fnewl [r-1-m]) *sine;
p2 += (Er*foldl[r-1-m] + mltu*Fr*fnewl[r-1-m]
- fold2[r-1-m]) *cosine;
}
terml= root2bN* (pl + p2);
Csave=C[u];
Clul=2.0*Er*C[u] - Cold[u] + terml;
Cold[u]=Csave;

Fig. A.15 C function to calculate r-point rectangular windowed update for DCT-IV

/* Function to calculate DCT type-IV windowed update in the presence of split-triangular

window */

void update windowed IV (double Cw[], double Cwold[], double Cm[],
double Cmold[],int N, int nO,
double fwnewl[], double fwnew2[], double
fwoldl[], double fwold2[], double fmnewl[],
double fmnew2[], double fmoldl[],
double fmold2[], double fn0O, double fNmnO,
double fN, double fml, double fnOml,
double fNmnOml, int r) {

/* Split-triangulr DCT-IV of length N signal.
Window length N with tail length noO.
algorithm works for r=1.

Variables used:
Cw[] 0..N-1 Input - DCT-IV of old windowed data
Output- DCT-IV of new windowed data
Cm[] O0..N-1 Input - DCT-IV of old data times m
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Output- DCT-IV of new data times m

N signal and window length
n0 tail length of split-triangular window
fwnewl([] O0..r-1 last but one data to be shifted in times old
window
fwnew2[] 0..r-1 new data shifted in times old window
fwoldl[] O..r-1 oldest data shifted out times old window
fwold2[] 0..r-1 last old data shifted out times old window
fmnewl([] 0..r-1 last but one data to be shifted in times old m
fmnew2[] O0..r-1 new data shifted in times old m
fmoldl[] O..r-1 oldest data shifted times old m
fmold2[] O0..r-1 r old data points times old m
fml the number foldl[0];
fnOml the number f[n0-1]
fNmnOml the number f£[N-nO-1]
fn0 the number f[n0]
£fNmnO the number f[N-n0]
fN the number f[N] (= fnew([0])
r number of new data points coming in
Cmold[0..N-1] Input: DCT of data times m from previous
timestep
Output:A copy of Cm as input
Cwold[0..N-1] Input: DCT of windowed data from previous time
step
Output: A copy of Cw as input
*/
int mltu;

double twoN, root2bNbnO, theta;
double Cmcorrection, Cold correction;

int u;

if(r!=1){

printf ("Update windowed IV works for r=1, not r=%d\n",r);
exit (1) ;

}

root2bNbn0O = (sqrt(2.0/ (double)N) / (double)nO) ;

twoN = (double)N+N;

mltu=1;

for (u=0; u<=N-1; u++) {
theta= ((utu+l)*M PI)/twoN;

Cold correction = root2bNbnO*
(-fnOml*cos (( (n0+n0+1)/2.0) *theta))
—(mltu*fNmnOml*sin ( ( (n0+n0-1)/2.0) *theta))
+(2.0*fml*cos (theta/2.0)));

Cmold[u] += Cold correction;
// Adds correction factor to Cmold to get DCT of f(x-1)m(x-1)
Cwold[u] += Cmold[u];
mltu = -mltu;
}
update transform(Cw, Cwold, N, fwnewl, fwnew2, fwoldl, fwold2, r);
// Unwindowed update
update transform(Cm, Cmold, N, fmnewl, fmnew2, fmoldl, fmold2, r) ;
// Unwindowed update

mltu=1;
for (u=0; u<=N-1; u++) {
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theta= ((utu+l)*M PI)/twoN;

Cmcorrection = root2bNbnO* (- (fn0*cos (( (n0+n0-1)/2.0) *theta))
—(mltu*fNmnO*sin (( (n0+n0+1) /2.0) *theta))
+(2.0*fN*mltu*sin (theta/2.0)));

Cm[u] += Cmcorrection;

Cwlu] += Cm[u];

mltu = -mltu;

Fig. A.16 C function to calculate split-triangular windowed update for DST-IV

/* Code snippet to calculate DST-IV coefficients indirectly from DCT coefficients for

Hanning, Hamming and Blackman windows */

for (u=0;u<=N-1;u++) {

theta = ((ututl)*M PI)/ (4*N);
costheta = cos(theta);
sintheta = sin(theta);

cos2theta = cos (2*theta);

sin2theta = sin(2*theta);

mltu=pow (-1,u);

S[u]=C[u]-(cos2theta*Cold[u])+ ((costheta*fold2[0]-
sintheta*mltu*fnew2[0])/root Nv2);

S[ul=S[ul/sin2theta;

Fig. A.17 C code snippet to calculate independent windowed update for DCT-IV
in presence of Hanning, Hamming and Blackman windows

/* Program to calculate 7-point rectangular windowed update for any given signal length

N for DST type IV */

void update transform(double S[], double Sold[], int N, double
fnewl[], double fnew2[], double foldl[], double
fold2[], int r)

/* S[] input DST of the previous time unit sequence
ST1] output Updated DST calculated using DST values of
older sequences
N input the input data sequence length
r input the number of new points to shift in
fnewl[] input the previous data point shifted in
fnew2[] input the newest data point shifted in
foldl([] input most resent data point shifted out
fold2[] input the older data point shifted out */



double k;

int u;

int mltu;

double root2bN;

double pl;

double p2;

int m; int x;

double root2,terml, sine,cosine,angle,angle2,
double Ssave;

root2bN=sqgrt (2.0/N) ;

mltu= -1;

for (u=0;u<=N;u++) {
mltu= -mltu;
pl=0.0; p2=0.0;
angle2=r* (utu+l) *M PI/ (N+N);
Fr=sin (angle?2) ;
Er=cos (angle2);

for (m=0; m<=(r-1); m++)
angle= (mtm+1)* (utu+l
sine=sin (angle) ;
cosine=cos (angle) ;

{
) *M_PI/ (4*N);

pl += (Fr*foldl[r-1-m] + mltu*fnew2[r-1-
- mltu*Er*fnewl [r-1-

p2 += (fold2[r-1-m] - mltu*Fr*fnewl[r-1-
] *

- Er*foldl[r-1-m
}
terml= root2bN* (pl + p2);
Ssave=S[u];
S[u]=2.0*Er*S[u]
Sold[u]=Ssave;

- Sold[u] + terml;

Fr,

187

Er;

—-m]
-m]) *cosine;
m]

ine;

Fig. A.18 C function to calculate r-point rectangular windowed update for DST-IV

/* Function to calculate DST type-IV windowed update in the presence of split-triangular

window */

void update windowed IV (double Swl[],
double Smold[],
double fwnewl([],
fwoldl([],
double fmnew2[],
fmold2[], double fnoO,
double fml,

int N,

Variables used:
Sw[] 0..N-1

double Swold[],
int noO,
double fwnew2[],
double fwold2[],
double fmoldl[],
double fNmnO,
double fnOml,

double Sm[],

int r,

double
double fmnewl[],
double
double f£N,
double fNmnOml) {

Input - DST type-IV of old windowed data

Output- DST type-IV of new windowed data

Sm[ ] 0..N-1

Input - DST type-IV of old data times m
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Output- DST type-IV of new data times m

N signal and window length

n0 tail length of split-triangular window

fwnewl([] O0..r-1 last but one data to be shifted in times old
window

fwnew2[] O0..r-1 new data shifted in times old window

fwoldl[] O..r-1 oldest data shifted out times old window

fwold2[] 0..r-1 last old data shifted out times old window

fmnewl([] 0..r-1 last but one data to be shifted in times old m

fmnew2[] O0..r-1 new data shifted in times old m

fmoldl[] O0..r-1 oldest data shifted times old m

fmold2[] O0..r-1 r old data points times old m

fml the number foldl[O0]

fnOml the number f[n0-1]

fNmnOml the number f£[N-nO-1]

fn0 the number f[n0]

£fNmnO the number f[N-n0]

fN the number f[N] (= fnew([0])

r number of new data points coming in

Smold[0..N-1] Input - DST of data times m from previous
timestep
Output - A copy of Sm as input

Swold[0..N-1] Input - DST of windowed data from previous
timestep

Output - A copy of Sw as input

int mltu;

double twoN, root2bNbnO, theta;

double Smcorrection, Sold correction;
int u;

if(r!=1){
printf ("Update windowed IV only works for r=1, you gave
r=%d\n",r);

exit (1) ;
root2bNbn0O = (sqrt(2.0/ (double)N) / (double)n0) ;
twoN= (double)N+N;
mltu=1;
for (u=0; u<=N-1; u++) {
theta = ((utu+l)*M PI)/twoN;
Sold correction = root2bNbnO* (

- (fnOml*sin (((n0+n0+1)/2.0) *theta))
- (fNmnOml*mltu*cos (( (n0+n0-1)/2.0) *theta))
+(2.0*fml*sin (theta/2.0)) );

// Correction factor to get f(x-1)m(x-1) from f(x-1)m(x)
// Correction factor to get f(x-1)w(x-1) from f(x-1)w(x)

Smold[u] += Sold correction;
// Adds correction factor to Smold2 to get DST of f(x-1)m(x-1)
Swold[u] += Smold[u];
mltu = -mltu;
}
update transform(Sw, Swold, N, fwnewl, fwnew2, fwoldl, fwold2, r);
// Unwindowed update
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update transform(Sm, Smold, N, fmnewl, fmnew2, fmoldl, fmold2, r) ;
// Unwindowed update

mltu=1;
for (u=0; u<=N-1; u++){ // later, N
theta = ((utu+l)*M PI)/twoN;

Smcorrection = root2bNbnO* (- (fn0*sin (( (n0+n0-1)/2.0) *theta))
- (fNmnO*mltu*cos ( ( (n0+n0+1) /2.0) *theta))
+(2.0*fN*mltu*cos (theta/2.0)) );
Sm[u] += Smcorrection;
Swl[u] += Sm[u];
mltu = -mltu;

Fig. A.19 C function to calculate split-triangular windowed update for DST-IV

/* Code snippet to calculate DCT-IV coefficients indirectly from DST coefficients for

Hanning, Hamming and Blackman windows */

for (u=0;u<=N-1;u++) {

theta = ((ututl)*M PI)/ (4*N);
costheta = cos(theta);
sintheta = sin(theta);
cos2theta = cos (2*theta);

sin2theta = sin(2*theta);

mltu=pow (-1,u);

C[u]=(cos2theta*Sold[u])- S[u] + ((sintheta*fold2[0]+
costheta*mltu*fnew2[0]) /root Nv2);

Clul=C[ul/sin2theta;

Fig. A.20 C code snippet to calculate independent windowed update for DST-IV
in presence of Hanning, Hamming and Blackman windows
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APPENDIX B: VHDL CODE FOR HARDWARE IMPLEMENTATION OF
INDEPENDENT DCT-II ALGORITHM

-- Entity: DCT_RECTAN R1 UPDATE for independent updating of DCT type-II

-- One-point update controller for DCT-II rectangular update algorithm
-- developed in Chapter 2. The components DCT DST CONVEN, BUTTER FLY,
-- IP STAGE, MULT, EXT UNIT used in this controller are given in [31].
-— The simultaneous update hardware implementation initially given in
-- [31] is extended to implement the independent update algorithm.

library ieee;

use leee.std logic 1164.all;

use ileee.std logic arith.all;
use leee.std logic signed.all;
use leee.std logic unsigned.all;
use leee.math real.all;

use leee.numeric std.all;

entity DCT_RECTAN R1 UPDATE is

port (£0, f1, f2, £3, f4, £5, f6, £f7: in std logic vector (8 downto
0) :=(others=>'0");

clk, rst, conven, update: in std logic;

co, c1, cz2, Cc3, C4, C5, C6, C7: buffer std logic vector (15 downto
0) :=(others=>'0");

DONE DCTCONVEN: out std logic:="'1l'";

DONE UPDATE: out std logic:='1l");

end DCTiRECTANiRliUPDATE;

architecture DCT RECTAN R1 UPDATE arch of DCT RECTAN R1 UPDATE is

component DCT DST CONVEN

port (x07 s, x16 S, x25 S, x34 S, x07 D, x16 D, x25 D, x34 D: in

std logic vector (9 downto 0) :=(others=>'0");

clk, rst, conv: in std logic;

X0 _COS, X1 COS, X2 COS, X3 COS, X4 COS, X5 COS, X6 COS, X7 COS: out

std logic vector (15 downto 0):=(others=>'0");
X1 SIN, X2 SIN, X3 SIN, X4 SIN, X5 SIN, X6 SIN, X7 SIN, X8 SIN: out
std logic vector (15 downto 0):=(others=>'0");

DONE CONVEN: out std logic:='1l");
end component;

component BUTTER FLY

port (x0, x1, x2, x3, x4, x5, x6, x7: in std logic_vector (8 downto 0);
EN: in std logic;

X00UT, X10UT, X20UT, X30UT, X40UT, X50UT, X60UT, X70UT: out

std logic vector (9 downto 0) :=(others=>'0"));

end component;

component IP STAGE

port (x0, x1, x2, x3, x4, x5, x6, x7: in std logic vector (8 downto 0);
Data L, Update L, Data S: in std logic;

X00UT, X10UT, X20UT, X30UT, X40UT, X50UT, X60UT, X70UT: buffer

std logic vector (8 downto 0) :=(others=>'0"));

end component;
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component MULT

port (A: in std logic vector (8 downto 0);

B: in std logic vector (15 downto O0);

ST, clk, rst: in std logic;

PROD: out std logic vector (15 downto 0):=(others=>'0");
DONE: out std logic:="1");

end component;

component EXT UNIT

port(A: in std logic_vector (9 downto 0);

EXT: in std logic;

A EXT: out std logic vector (15 downto 0):=(others=>'0"));
end component;

component ADD 2 16

port (Al, A2: in std logic vector (15 downto 0);

EN: in std logic;

SUM: out std logic vector (l7 downto 0) :=(others=>'0"));
end component;

component ADD 4 16

port (Al, A2, A3, A4: in std logic vector (15 downto 0);
EN: in std logic;

SUM: out std logic vector (17 downto 0):=(others=>'0"'));
end component;

component ADD 5 16

port (Al, A2, A3, A4, A5: in std logic vector (15 downto 0);
EN: in std logic;

SUM: out std logic vector(l7 downto 0):=(others=>'0"'));
end component;

component SUB 2 16
port (A, B: in std logic vector (15 downto 0);

S AB: in std logic:="'1l";

EN: in std logic;

SUB: out std logic vector (16 downto 0) :=(others=>'0"));
end component;

type STATE is (sO, sl1, s2, s3, s4, sb5, s6, s7, s8, s9, sl10, sll1l, sl2,
sl3, sl14, sl15, slo, sl17, sl18, s19, s20, s21, s22, s23, s24, s25, s26,
s27, s28, s29, s30, s31, s32, s33, s34, s35, s36, s37, s38, s39, s40,
s41l, s42, s43, s44, s45, s4d6, s47, s48, s49, s50, s51, s52, s53, sb54,
s55, s56 );

signal PS, NS: STATE;
signal trig: std logic:='0"';

signal rst DCT DST CONVEN: std logic:='l"';
signal conv_DCT DST CONVEN: std logic:='0';
signal DONE DCT DST CONVEN: std logic:='0';

signal Data LAT: std logic:='0";
signal Update LAT: std logic:='0"';
signal Data SHIFT: std logic:='0"';



192

signal EN BUTTER FLY: std logic:='0";
signal MULT ST: std logic:='0"';
signal MULT rst: std logic:='0";
signal EN ADD: std logic:='0";

signal EXT: std logic:='0";

signal EN SUB: std logic:='0";

signal EN SUB P: std logic:='0";

signal f08 S EXT: std logic_vector (15 downto
signal f19 S EXT: std logic vector (15 downto 0):

o
Il

(others=>'0");
(others=>'0");

signal f08 D EXT: std logic vector (15 downto 0):=(others=>'0");
signal f19 D EXT: std logic_vector (15 downto 0):=(others=>'0");

signal F08 S BUF: std logic vector (15 downto 0):=(others=>'0");
signal F19 S BUF: std logic vector (15 downto 0):=(others=>'0");

signal FO08 D BUF: std logic vector (15 downto 0):
signal F19 D BUF: std logic vector (15 downto 0):

(others=>'0");
(others=>'0");

signal F CO 1, F CO _2: std logic:='0";

signal F Cl1 1, F Cl 2, F Cl 3: std logic:='0"';
signal F C2 1, F C2 2, F C2 3: std logic:='0"';
signal F C3 1, F C3 2, F C3 3: std logic:='0";

signal F C4 1, F C4 2: std logic:='0";

signal F C5 1, F C5 2, F C5 3: std logic:='0"';

signal F C6 1, F C6 2, F C6 3: std logic:='0"';

signal F C7 1, F C7 2, F C7 3: std logic:='0"';

signal F CO: std logic:='0";
signal F Cl: std logic:='0"';
signal F C2: std logic:='0";
signal F C3: std logic:='0";
signal F C4: std logic:='0";
signal F _C5: std logic:='0"';
signal F C6: std logic:='0";
signal F C7: std logic:='0";

signal F C: std logic:='0";

signal IP BF 0: std logic vector (8 downto 0):=(others=>'0");
signal IP BF 1: std logic vector (8 downto 0):=(others=>'0");
signal IP BF 2: std logic vector (8 downto 0) :=(others=>'0");
signal IP BF 3: std logic vector (8 downto 0):=(others=>'0");
signal IP BF 4: std logic vector (8 downto 0):=(others=>'0");
signal IP BF 5: std logic vector (8 downto 0):=(others=>'0");
signal IP BF 6: std logic vector (8 downto 0):=(others=>'0");
signal IP BF 7: std logic vector (8 downto 0):=(others=>'0");
signal BF CONVEN 0: std logic_vector (9 downto 0) :=(others=>'0");

signal BF CONVEN 1: std logic_vector (9 downto 0) :=(others=>'0");
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BF CONVEN 2: std logic vector(9 downto 0) :=(others=>'0");

BF CONVEN 3: std logic vector(9 downto 0):=(others=>'0");

BF CONVEN 4: std logic vector (9 downto 0) :=(others=>'0");

BF CONVEN 5: std logic vector (9 downto 0) :=(others=>'0");

BF CONVEN 6: std logic vector(9 downto 0):=(others=>'0");

BF CONVEN 7: std logic vector(9 downto 0) :=(others=>'0");

COM: std logic vector (15 downto 0):=(others=>'0");

CIM: std logic vector (15 downto 0):=(others=>'0");

C2M: std logic vector (15 downto 0):=(others=>'0");

C3M: std logic vector (15 downto 0):=(others=>'0");

C4M: std logic vector (15 downto 0) :=(others=>'0");

C5M: std logic vector (15 downto 0):=(others=>'0");

C6M: std logic vector (15 downto 0):=(others=>'0");

C7M: std logic vector (15 downto 0):=(others=>'0");

CO0_L: std logic vector (15 downto 0) :=(others=>'0");

Cl L: std logic vector (15 downto 0):=(others=>'0");

C2 L: std logic vector (15 downto 0) :=(others=>'0");

C3 L: std logic vector (15 downto 0) :=(others=>'0");

C4 L: std logic vector (15 downto 0) :=(others=>'0");

C5 L: std logic vector (15 downto 0) :=(others=>'0");

C6 _L: std logic vector (15 downto 0):=(others=>'0");

C7 L: std logic _vector (15 downto 0):=(others=>'0");

CO0_LX: std logic vector (17 downto 0):=(others=>'0");

Cl LX: std logic vector (17 downto 0):=(others=>'0");

C2 LX: std logic vector (17 downto 0):=(others=>'0");

C3 _LX: std logic vector (17 downto 0):=(others=>'0");

C4 LX: std logic vector (17 downto 0):=(others=>'0");

C5 LX: std logic vector(l7 downto 0):=(others=>'0");

C6 _LX: std logic vector (17 downto 0):=(others=>'0");

C7 LX: std logic vector (17 downto 0):=(others=>'0");

FO INT: std logic vector downto 0) :=(others=>'0");

F1 INT: std logic vector downto 0) :=(others=>'0");

F2 INT: std logic vector downto 0) :=(others=>'0");

F3 INT: std logic_vector downto 0) :=(others=>'0");

F4 INT: std logic_vector downto 0) :=(others=>'0");

F5 INT: std logic vector downto 0) :=(others=>'0");

F6 INT: std logic vector downto 0) :=(others=>'0");

F7 INT: std logic vector downto 0) :=(others=>'0");

CO0 1, CO_2: std logic vector (15 downto 0) :=(others=>'0");

Cl 1, Cl1 2, Cl 3: std logic vector(l5 downto 0):=(others=>'0");
c2 1, C2 2, C2 3: std logic_vector (15 downto 0):=(others=>'0");
C3 1, C3 2, C3_3: std logic vector (15 downto 0):=(others=>'0");
C4 1, C4 2: std logic vector (15 downto 0) :=(others=>'0");

C5 1, C5 2, C5 3: std logic vector (15 downto 0) :=(others=>'0");
C6 1, C6_2, C6 _3: std logic vector (15 downto 0):=(others=>'0");
c7 .1, C7_2, C7_3: std logic vector (15 downto 0):=(others=>'0");
Ll: std logic vector (8 downto 0):="001011010";--(0.3515625)

L2: std logic vector(8 downto 0):="011101100";--(0.921875)

L3: std logic_vector (8 downto 0):="010000011";--(0.48828125)
L4: std logic_vector (8 downto 0):="010110101";--(0.70703125)
L5: std logic_vector (8 downto 0):="010001010";--(0.4609375)



signal L6: std logic_vector (8 downto
signal L7: std logic_vector (8 downto
signal L8: std logic vector (8 downto
signal L9: std logic vector (8 downto
signal L10: std logic vector (8 downto
signal L11l: std logic vector (8 downto
signal L12: std logic vector (8 downto
signal L13: std logic vector (8 downto
signal L14: std logic vector (8 downto
signal L15: std logic vector (8 downto
signal L16: std logic vector (8 downto
signal L17: std logic vector (8 downto
signal L18: std logic vector (8 downto
signal L19: std logic vector (8 downto
signal L20: std logic vector (8 downto
signal L21: std logic vector (8 downto
signal L22: std logic vector (8 downto
begin

L1<="001011010";
L2<="011101100";
L3<="010000011";
L4<="010110101";
L5<="010001010";
L6<="001100000";
L7<="001101010";
L8<="001011010";
L9<="110011111";
L10<="001000111"; -
L11<="101001011"; -

IAAAAAAAAA

.3515625)
.921875)
.48828125)
.70703125)
.4609375)
.375)
.4140625)
.3535)
0.37890625)
0.27734375)
0.70703125)

O O O OO oo o

(

- (-
L12<="000110000";--(0.1875)
L13<="100010100";--(-0.921875)
L14<="000011000";--(0.09375)
L15<="110100110";--(-0.3515625)
L16<="110000011";--(-0.48828125)
L17<="110001010";--(-0.4609375)
L18<="110010110";--(-0.4140625)
L19<="110100101";--(-0.3535)
L20<="110111001";--(-0.27734375)
L21<="111010000";--(-0.1875)
1L22<="111101000";--(-0.09375)

F CO<=F _CO0_1 and F_CO_2;

F Cl<=F Cl1 1 and F Cl1 2 and F Cl1 3;
F C2<=F C2 1 and F C2 2 and F _C2 3;
F C3<=F C3 1 and F C3 2 and F _C3 3;
F CA<=F C4 1 and F _C4 2;

F C5<=F C5 1 and F C5 2 and F C5 3;
F C6<=F C6 1 and F C6 2 and F C6_3;
F C7<=F C7 1 and F C7 2 and F C7 3;

F C<=F CO and F_Cl and F _C2

F C7;

0
0
0
0

) :
) :
)
)
0
0
0
0
0
0
0
0
0
0
0
0
0

) :
) :
) :
) :
) :
) :
) :
) :
) :
) :
) :
) :
) :

="001100000"; -
="001101010"; -
="001011010"; -
="110011111";~-

="001000111";
="101001011"; -
="000110000";
="100010100"; -
="000011000";
="110100110"; -
="110000011";
="110001010";
="110010110";
="110100101";
="110111001";
="111010000";
="111101000";
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0.375)
0.4140625)
0.3535)
0.37890625)
0.27734375)
0.70703125)
1875)
0.921875)
.08375)
0.3515625)
0.48828125)
0.4609375)
0.4140625)
0
0
0
0

=
=
=
- (=

0.

.3535)
.277734375)
.1875)

(
- (=
=
- (=
- (0
- (=
- (=
- (=
- (=
- (=
- (=
- (=
-(-0.09375)

and F C3 and F C4 and F C5 and F _C6 and



process (clk, rst)

begin

if(rst='1")then

PS<=s0;

elsif (rising edge (clk))then
PS<=NS;

trig<=not (trig):;

end if;

end process;

process (PS, trig, conven, update, DONE DCT DST CONVEN,
begin
case PS is

-- prepartion stage I

when s0=> -- previous time-unit DCT calculation
rst DCT DST CONVEN<='1l';
conv_DCT DST CONVEN<='0Q"';
MULT rst<='l";

MULT ST<='0";

EN ADD<='0";

EN BUTTER FLY<='0';

Data LAT<='0"';

Update LAT<='0"';

Data SHIFT<='0";
EXT<='0";
DONE_DCTCONVEN<='Q";

DONE _UPDATE<='0"';

if (conven='1")then
NS<=sl;

elsif (update="'1")then
NS<=s33;

else

NS<=s0;

end if;

when sl=>

Data LAT<='l"';
DONE_DCTCONVEN<='O';

rst DCT DST CONVEN<='0"';
NS<=s2;

when s2=>
NS<=s3;

when s3=>

Data LAT<='0";

EN BUTTER FLY<='l"';
NS<=s4;

when s4=>
NS<=s5;

when s5=>
EN BUTTER FLY<='0"';

F C)
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NS<=s6;

when s6=>
conv_DCT DST CONVEN<='1l";
NS<=s7;

when s7=>
NS<=s8;

when s8=>
conv_DCT DST CONVEN<='Q';

if (DONE_DCT DST CONVEN='1l"')then
NS<=s9;

else

NS<=s8;

end if;

when s9=>

COM<=CO0_L;
ClM<=Cl L;
C2M<=C2 L;
C3M<=C3 L;
C4M<=C4_L;
C5M<=C5_L;
CeM<=C6_L;
C7M<=C7_L;

DONE DCTCONVEN<='1l";
NS<=s10;

-— prepartion stage II

when s10=> -— current time-unit DCT calculation

rst DCT DST CONVEN<='1l';
conv_DCT DST CONVEN<='Q"';
NS<=sl1l;

when sll=>

Update LAT<='1l"';
DONE_DCTCONVEN<='O';

rst DCT DST CONVEN<='0';
NS<=s12;

when sl2=>
NS<=s13;

when s13=>
Update LAT<='0"';
NS<=s14;

when sl4=>
NS<=s15;

when s15=>
EN BUTTER FLY<='1l"';
NS<=s16;

when sl6=>
NS<=s17;
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when sl17=>
EN BUTTER FLY<='0"';
NS<=s518;

when s18=>
NS<=s19;

when s19=>
EXT<="'1";
NS<=s520;

when s20=>
NS<=s21;

when s21=>

EXT<='0";

F08 S BUF<=f08 S EXT;
F08 D BUF<=f08 D EXT;
NS<=s22;

when s22=>
NS<=s23;

when s23=>
Data SHIFT<='l';
NS<=s24;

when s24=>
NS<=s25;

when s25=>
Data SHIFT<='0';
NS<=s526;

when s26=>
EN BUTTER FLY<='1l';
NS<=s27;

when s27=>
NS<=s28;

when s28=>
EN BUTTER FLY<='0';
NS<=s529;

when s29=>
conv_DCT DST CONVEN<='1l";
NS<=s30;

when s30=>
NS<=s31;

when s31=>
conv_DCT DST CONVEN<='Q';

if (DONE_DCT DST CONVEN='1"')then
NS<=s32;

else
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NS<=s31;
end if;

when s32=>
C0<=C0_L;
Cl<=Cl L;
C2<=C2_L;
C3<=C3_L;
C4<=C4 L;
C5<=C5_L;
Ce<=C6_L;
C7<=C7_L;
DONE_DCTCONVEN<='1';
NS<=s0;

-= Independent update mode

when s33=>
Update LAT<='1l";
DONE_UPDATE<='O';
MULT rst<='0";
NS<=s34;

when s34=>
NS<=s35;

when s35=>
Update LAT<='0"';
NS<=s36;

when s36=>
EN BUTTER FLY<='1l';
NS<=s37;

when s37=>

EN BUTTER FLY<='0";
EXT<='1";

NS<=s38;

when s38=>

EXT<="'0";

F19 S BUF<=f08 S EXT;
F19 D BUF<=f08 D EXT;
NS<=s39;

when s39=>
NS<=s40;

when s40=>
MULT ST<='1l';
NS<=s41;

when s41=>
NS<=s42;

when s42=>
MULT ST<='0"';



if(F_C='1l")then
NS<=s43;

else

NS<=s42;

end if;

when s43=>
EN ADD<='1l"';
NS<=s44;

when s44=>
NS<=s45;

when s45=>
EN ADD<='0";
NS<=s546;

when s46=>
NS<=s47;

when s47=>
EN SUB<='1l';
NS<=s48;

when s48=>
NS<=s49;

when s49=>
EN SUB<='0";
NS<=s50;

when s50=>
NS<=s51;

when s51=>
Data SHIFT<='l';
NS<=s52;

when s52=>
NS<=s53;

when s53=>
Data SHIFT<='0';
NS<=s54;

when s54=>

£f08 S BUF<=F19_ S BUF;
£f08 D BUF<=F19 D BUF;

COM<=CO0;
ClM<=C1;
C2M<=C2;
C3M<=C3;
C4M<=C4;
C5M<=C5;
CeM<=C6;
CTM<=C7;
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NS<=s55;

when s55=>
NS<=s56;

when s56=>

C0<=C0_LX (15 downto 0);
Cl<=Cl LX (15 downto 0);
C2<=C2_ LX (15 downto 0);
C3<=C3_LX (15 downto 0);
C4<=C4 LX (15 downto 0);
C5<=C5_ LX (15 downto 0);
C6<=C6_LX (15 downto 0);
C7<=C7_LX (15 downto 0);

DONE_UPDATE<='1';
NS<=s0;

end case;
end process;

UO: IP STAGE

port map (x0=>f0, x1=>fl, x2=>f2, x3=>f3, x4=>f4, x5=>f5, x6=>f6,
xT=>f7,

Data L=>Data LAT, Update L=>Update LAT, Data S=>Data SHIFT,
X00UT=>IP BF 0, X1OUT=>IP BF 1, X20UT=>IP BF 2, X30UT=>IP BF 3,
X40UT=>IP BF 4, X50UT=>IP BF 5, X60UT=>IP BF 6, X70UT=>IP BF 7);

Ul: BUTTER FLY

port map (x0=>IP BF 0, x1=>IP BF 1, x2=>IP BF 2,
x3=>IP BF 3,x4=>IP BF 4, x5=>IP BF 5, x6=>IP BF 6, x7=>IP BF 7,
EN=>EN BUTTER FLY, X0OUT=>BF CONVEN 0, X1OUT=>BF CONVEN 1,
X20UT=>BF CONVEN 2, X30UT=>BF CONVEN 3, X40UT=>BF CONVEN 4,
X50UT=>BF CONVEN 5, X60UT=>BF CONVEN 6, X70UT=>BF CONVEN 7);

U2: DCT DST CONVEN

port map (x07_S=>BF CONVEN 0, x16 S=>BF CONVEN 1, x25 S=>BF CONVEN 2,

x34 S=>BF CONVEN_ 3, x07 D=>BF CONVEN 4, x16 D=>BF CONVEN 5,
x25 D=>BF CONVEN 6, x34 D=>BF CONVEN 7,
clk=>clk, rst=>rst DCT DST CONVEN, conv=>conv_DCT DST CONVEN,

X0 COS=>C0 L, X1 COS=>Cl L, X2 COS=>C2 L, X3 COS=>C3 L, X4 COS=>C4 L,

X5 C0S=>C5 L, X6 COS=>C6 L, X7 _COS=>C7 L,
DONE_CONVEN=>DONE_DCT DST_ CONVEN) ;

U3: EXT UNIT
port map (A=>BF CONVEN 0, EXT=>EXT, A EXT=>f08 S EXT);

U4: EXT_UNIT
port map (A=>BF CONVEN 4, EXT=>EXT, A EXT=>f08 D EXT);

U5: MULT

port map (A=>L1, B=>f08 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C0O_1, DONE=>F CO 1);

U6: MULT
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port map (A=>L15, B=>fl19 D BUF, ST=>MULT_ ST, clk=>clk,
rst=>MULT rst, PROD=>C0_ 2, DONE=>F CO 2);

U7: ADD 4 16
port map (Al=>C0, A2=>C0, A3=>C0O 1, A4=>C0 2, EN=>EN ADD, SUM=>F0 INT);

U8: SUB 2 16
port map (A=>FO0 INT (15 downto 0), B=>COM, S AB=>'l', EN=>EN SUB,
SUB=>C0_LX (16 downto 0));

U9: MULT
port map (A=>L2, B=>Cl, ST=>MULT ST, clk=>clk, rst=>MULT rst,PROD=>Cl 1,
DONE=>F Cl 1);

Ul0: MULT
port map (A=>L3, B=>f08 S BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst,PROD=>Cl 2, DONE=>F Cl 2);

Ull: MULT
port map (A=>L1l6, B=>fl1S9 S BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst,PROD=>Cl 3, DONE=>F Cl 3);

Ul2: ADD 4 16
port map (Al=>Cl 1, A2=>C1l 1, A3=>Cl 2, A4=>Cl 3, EN=>EN ADD,
SUM=>F1 INT);

Ul3: SUB 2 16
port map (A=>F1 INT (15 downto 0), B=>C1M, S AB=>'l', EN=>EN SUB,
SUB=>C1 LX (16 downto 0));

Ul4: MULT
port map (A=>L4, B=>C2, ST=>MULT ST, clk=>clk, rst=>MULT rst,PROD=>C2 1,
DONE=>F C2 1) ;

Ul5: MULT
port map (A=>L5, B=>f08 D BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst,PROD=>C2 2, DONE=>F C2 2);

Ul6: MULT
port map (A=>L17, B=>fl19 D BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C2 3, DONE=>F C2 3);

Ul7: ADD 4 16
port map (Al=>C2 1, A2=>C2 1, A3=>C2 2, A4=>C2 3, EN=>EN ADD,
SUM=>F2 INT);

U18: SUB 2 16

port map (A=>F2 INT (15 downto 0), B=>C2M, S AB=>'l', EN=>EN_SUB,
SUB=>C2 LX (16 downto 0));
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port map (A=>L6, B=>C3, ST=>MULT ST, clk=>clk, rst=>MULT rst,PROD=>C3 1,

DONE=>F C3_1);

U20: MULT
port map (A=>L7, B=>f08 S BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C3 2, DONE=>F C3 2);

U21: MULT
port map (A=>L18, B=>fl19 S BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C3 3, DONE=>F C3 3);

U22: ADD 4 16
port map (Al=>C3 1, A2=>C3 1, A3=>C3 2, A4=>C3 3, EN=>EN ADD,
SUM=>F3_INT);

U23: SUB 2 16
port map (A=>F3 INT (15 downto 0), B=>C3M, S AB=>'l', EN=>EN SUB,
SUB=>C3 LX (16 downto 0));

U24: MULT
port map (A=>L8, B=>f08 D BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst,PROD=>C4 1, DONE=>F C4 1);

U25: MULT
port map (A=>L19, B=>fl1S9 D BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C4 2, DONE=>F C4 2);

U26: ADD 2 16
port map (Al=>C4 1, A2=>C4 2, EN=>EN ADD, SUM=>F4 INT);

U27: SUB_2_ 16

port map (A=>F4 INT (15 downto 0), B=>C4M, S AB=>'l', EN=>EN_SUB,
SUB=>C4 LX (16 downto 0));

U28: MULT

port map (A=>L9, B=>C5, ST=>MULT ST, clk=>clk, rst=>MULT rst, PROD=>C5 1,

DONE=>F C5 1) ;

U29: MULT
port map (A=>L10, B=>f08 S BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C5 2, DONE=>F C5 2);

U30: MULT
port map (A=>L20, B=>fl19 S BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C5 3, DONE=>F C5 3);

U31: ADD 4 16
port map (Al=>C5 1, A2=>C5 1, A3=>C5 2, A4=>C5 3, EN=>EN ADD,
SUM=>F5 INT);

U32: SUB 2 16
port map (A=>F5 INT (15 downto 0), B=>C5M, S AB=>'l', EN=>EN SUB,
SUB=>C5 LX (16 downto 0));
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U33: MULT
port map (A=>L11, B=>C6, ST=>MULT ST, clk=>clk,
rst=>MULT rst,PROD=>C6 1, DONE=>F C6 1);

U34: MULT
port map (A=>L12, B=>f08 D BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C6 2, DONE=>F C6 2);

U35: MULT
port map (A=>L21, B=>fl19 D BUF, ST=>MULT ST, clk=>clk,
rst=>MULT rst, PROD=>C6 3, DONE=>F C6 3);

U36: ADD 4 16
port map (Al=>C6 1, A2=>C6 1, A3=>C6_ 2, A4=>C6_ 3, EN=>EN ADD,
SUM=>F6_INT);

U37: SUB 2 16
port map (A=>F6_INT (15 downto 0), B=>C6M, S AB=>'l', EN=>EN SUB,
SUB=>C6 LX (16 downto 0));

U38: MULT
port map (A=>L13, B=>C7, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7 1, DONE=>F C7 1);

U39: MULT
port map (A=>L14, B=>f08 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7 2, DONE=>F C7 2);

U40: MULT
port map (A=>L22, B=>fl1l9 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7 3, DONE=>F C7 3);

U41: ADD 4 16
port map (A1=>C7_1, A2=>C7_1, A3=>C7 2, A4=>C7_3, EN=>EN _ADD,
SUM=>F7_INT);

U42: SUB 2 16
port map (A=>F7 INT (15 downto 0), B=>C7M, S AB=>'1l', EN=>EN SUB,
SUB=>C7 LX (16 downto 0));

end DCT RECTAN R1 UPDATE arch;

-- The testbench for independent DCT-II one-point update circuit

library ieee;

use leee.std logic 1164.all;

use ieee.std logic arith.all;
use leee.std logic signed.all;
use leee.std logic unsigned.all;
use leee.math real.all;



204

use leee.numeric std.all;
entity DCT RECTAN R1 UPDATE test is
end DCT _RECTAN Rl UPDATE test;

architecture DCT RECTAN R1 UPDATE test arch of
DCT RECTAN R1 UPDATE test is

component DCT RECTAN R1 UPDATE

port (£0, f1, f2, £3, f4, £f5, f6, f7: in std logic vector (8 downto
0) :=(others=>'0");

clk, rst, conven, update: in std logic;

co, c1, c2, C3, Cc4, C5, C6, C7: buffer std logic vector (15 downto
0) :=(others=>'0");

DONE DCTCONVEN: out std logic:='0";

DONE UPDATE: out std logic:='0");

end component;

signal f0in: std logic_vector (8 downto 0) (others=>'0");
signal flin: std logic_vector (8 downto 0):=(others=>'0");
signal f2in: std logic vector (8 downto 0) :=(others=>'0");
signal f3in: std logic vector (8 downto 0) :=(others=>'0");
signal f4in: std logic vector (8 downto 0) :=(others=>'0");
signal f5in: std logic_vector (8 downto 0):=(others=>'0");
signal f6in: std logic_vector (8 downto 0):=(others=>'0");
signal f7in: std logic vector (8 downto 0) :=(others=>'0");
signal CO: std logic vector (15 downto 0):=(others=>'0");
signal Cl: std logic_vector (15 downto 0) :=(others=>'0");
signal C2: std logic_vector (15 downto 0) :=(others=>'0");
signal C3: std logic vector (15 downto 0):=(others=>'0");
signal C4: std logic vector (15 downto 0):=(others=>'0");
signal C5: std logic_ vector (15 downto 0) :=(others=>'0");
signal C6: std logic_vector (15 downto 0) :=(others=>'0");
signal C7: std logic_vector (15 downto 0) :=(others=>'0");

signal CLK: std logic:='0";

signal RST: std logic:='0";

signal CONVEN: std logic:='0";

signal UPDATE: std logic:='0";

signal DONE DCTCONVEN: std logic:='0"';
signal DONE UPDATE: std logic:='0";

begin

CLK<=not (CLK) after 50 ns;
RST<="'1"', '0' after 300 ns;

process
begin

CONVEN<='0";
UPDATE<='0";

wait on RST until (RST'event and RST='0");

f0in<="111111011";
f1in<="110100100";
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£f2in<="010101100";
£3in<="001010101";
f4in<="001101011";
£f5in<="101111010";
f6in<="001010101";
£f7in<="110011010";

wait for 100 ns;

CONVEN<="1";

wait for 200 ns;

CONVEN<="'0";

wait on DONE DCTCONVEN until (DONE_DCTCONVEN:'I');
£f7in<="001010101";--£8

wait on DONE_DCTCONVEN until (DONE_DCTCONVEN:'l');
£f7in<="111010110";--£f9

wait for 100 ns;

UPDATE<="1";

wait for 200 ns;

UPDATE<='0";

wait on DONE_UPDATE until (DONE_UPDATE:'l');
£f7in<="101111000";--f10

wait for 100 ns;

UPDATE<="'1";

wait for 200 ns;

UPDATE<="'0";

end process;

U: DCT_RECTAN_RI_UPDATE

port map (£0=>f0in, f1=>flin, f2=>f2in, £3=>f3in, f4=>f4in,
f5=>f5in, f6=>f6in, f7=>f7in,

clk=>CLK, rst=>RST, conven=>CONVEN, update=>UPDATE,
c0=>C0, Cl=>Cl, C2=>C2, C3=>C3,

c4=>C4, C5=>C5, C6=>Ce6, C7=>C7,
DONE_DCTCONVEN:>DONE_DCTCONVEN,
DONE_UPDATE:>DONE_UPDATE);

end DCT RECTAN Rl UPDATE test arch;

-- Entity: DCT_RECTAN R4 UPDATE for independent four point update of
DCT type II
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-- Four-point update controller for DCT-II rectangular update algorithm
-- developed in Chapter 2. The components DCT DST CONVEN, BUTTER FLY,
-- IP STAGE, MULT, EXT UNIT used in this controller are given in [31].

library ieee;

use leee.std logic 1164.all;

use leee.std logic arith.all;
use leee.std logic signed.all;
use leee.std logic unsigned.all;
use leee.math real.all;

use leee.numeric std.all;

entity DCT_RECTAN R4 UPDATE is

port (£f0, f1, f2, £3, f4, £f5, f6, f7: in std logic vector (8 downto
0) :=(others=>'0");

clk, rst, conven, update: in std logic;

co, ci1, cz2, Cc3, C4, C5, C6, C7: buffer std logic vector (15 downto
0) :=(others=>'0");

DONE DCTCONVEN: out std logic:='l'";

DONE UPDATE: out std logic:='1l");

end DCT RECTAN R4 UPDATE;

architecture DCT RECTAN R4 UPDATE arch of DCT RECTAN R4 UPDATE is

component DCT DST CONVEN

port (x07_ s, x16 S, x25 S, x34 S, x07 D, x16 D, x25 D, x34 D: in

std logic vector (9 downto 0) :=(others=>'0");

clk, rst, conv: in std logic;

X0 _COSs, X1 COS, X2 COS, X3 COS, X4 COS, X5 COS, X6 COS, X7 _COS: out

std logic vector (15 downto 0):=(others=>'0");
X1 SIN, X2 SIN, X3 SIN, X4 SIN, X5 SIN, X6 SIN, X7 SIN, X8 SIN: out
std logic vector (15 downto 0):=(others=>'0");

DONE CONVEN: out std logic:='1l");
end component;

component BUTTER FLY

port (x0, x1, x2, x3, x4, x5, x6, x7: in std logic vector (8 downto 0);
EN: in std logic;

X00UT, X1OUT, X20UT, X30UT, X40UT, X50UT, X60UT, X70UT: out

std logic vector (9 downto 0) :=(others=>'0"));

end component;

component IP STAGE R4

port (x0, x1, x2, x3, x4, x5, x6, x7: in std logic_vector (8 downto 0);
Data L, Update L, Data S: in std logic;

X00UT, X10UT, X20UT, X30UT, X40UT, X50UT, X60UT, X70UT: buffer

std logic vector (8

downto 0) :=(others=>'0"));

end component;

component MULT

port (A: in std logic_vector (8 downto 0);
B: in std logic_vector (15 downto 0);

ST, clk, rst: in std logic;
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PROD: out std logic vector (15 downto 0):=(others=>'0");
DONE: out std logic:="'1");
end component;

component EXT UNIT

port(A: in std logic_vector (9 downto 0);

EXT: in std logic;

A EXT: out std logic vector (15 downto 0):=(others=>'0"));
end component;

component ADD 3 16

port (Al, A2, A3: in std logic vector (15 downto 0);

EN: in std logic;

SUM: out std logic vector (l7 downto 0) :=(others=>'0"));
end component;

component ADD 8 16

port (Al, A2, A3, A4, A5, A6, A7, A8: in std logic_vector (15 downto 0);
EN: in std logic;

SUM: out std logic vector (17 downto 0):=(others=>'0"'));

end component;

component SUB 2 16

port (A, B: in std logic vector (15 downto 0);

S AB: in std logic:="'l"';

EN: in std logic;

SUB: out std logic vector (16 downto 0):=(others=>'0"'));
end component;

type STATE is (sO, sl1, s2, s3, s4, s5, s6, s7, s8, s9, sl10, sll1l, sl2,
sl3, sl14, sl15, slo6, sl17, sl18, s19, s20, s21, s22, s23, s24, s25, s26,
s27, s28, s29, s30, s31, s32, s33, s34, s35, s36, s37, s38, s39, s40,
s41, s42, s43, s44, s45, sd6, s47, s48, s49, s50, s51, s52, sb53, s54,
s55, s56, s57, s58);

signal PS, NS: STATE;

signal trig: std logic:='0"';

signal rst DCT DST CONVEN: std logic:='l"';
signal conv_DCT DST CONVEN: std logic:='0';
signal DONE DCT DST CONVEN: std logic:='0';
signal Data LAT: std logic:='0";

signal Update LAT: std logic:='0"';

signal Data SHIFT: std logic:='0"';

signal EN BUTTER FLY: std logic:='0";
signal MULT ST: std logic:='0";

signal MULT rst: std logic:='0";

signal EN _ADDl: std logic:='0";

signal EN ADD2: std logic:='0"';

signal EXT: std logic:='0";

signal EN SUB: std logic:='0";

signal f08 S EXT: std logic_vector (15 downto 0):=(others=>'0");
signal f19 S EXT: std logic vector (15 downto 0):=(others=>'0");
signal £210 S EXT: std logic vector (15 downto 0) :=(others=>'0");
signal £311 S EXT: std logic_vector (15 downto 0) :=(others=>'0");

signal f08 D EXT: std logic vector (15 downto 0):=(others=>'0");



signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal

F CO_8:

signal

F Cl 8:

signal

F C2 8:

signal

F C3 8:

signal

F C4 8:

signal

F C5 8:

signal

F Co6 8:

signal

F C7 8:

signal
signal
signal
signal
signal
signal
signal
signal
signal

signal

£f19 D EXT: std logic_vector (15 downto 0) :=(others=>'0");
£210 D EXT: std logic vector (15 downto 0):=(others=>'0"
£311 D EXT: std logic vector (15 downto 0):=(others=>'0"
f08 S BUF: std logic_vector (15 downto 0) :=(others=>'0")
£19 S BUF: std logic_vector (15 downto 0) :=(others=>'0")
£210_ S BUF: std logic vector (15 downto 0):=(others=>'0"
£311 S BUF: std logic vector (15 downto 0):=(others=>'0"
f412 S BUF: std logic vector (15 downto 0):=(others=>'0"
£f513 S BUF: std logic vector (15 downto 0):=(others=>'0"
f614 S BUF: std logic vector (15 downto 0):=(others=>'0"
£715 S BUF: std logic vector (15 downto 0):=(others=>'0"
f08 D BUF: std logic_vector (15 downto 0) :=(others=>'0");
£f19 D BUF: std logic_vector (15 downto 0) :=(others=>'0")
£210 D BUF: std logic vector (15 downto 0):=(others=>'0"
£311 D BUF: std logic vector (15 downto 0) :=(others=>'0"
£f412 D BUF: std logic vector (15 downto 0):=(others=>'0"
£513 D BUF: std logic _vector (15 downto 0):=(others=>'0"
f614 D BUF: std logic vector (15 downto 0):=(others=>'0"
£715 D BUF: std logic vector (15 downto 0) :=(others=>'0"
FcCco1l, ¥ CO 2, FCO 3, FCO 4 F COS5, FCO 6, F CO 7,
std logic:='0";

FCi11, vCl1 2, FC1L 3, FCl1 4, FC15, FCl &6, FC1T7,
std logic:='0";

FC21, FC22, FC23, FC24 FC25, FC26, FC21,
std logic:='0";

FC31, FC3 2, FC33 FC34, FC35 FC36, FC317,
std logic:='0";

FC41l, FC42, FC43, FC44, FC45 FC46, FC4T,
std logic:='0";

FC51, v C52, FC53, FC54, FC55, FC56, FC517,
std logic:='0";

F C6 1, FC62, FC63, FC64, FC65 FC66, FC67,
std logic:='0";

FCc71, v C7 2, FC7 3, ¥ C7 4, F C75, ¥ C7 6, F C7 17,
std logic:='0";

F CO0: std logic:='0"

F Cl: std logic:='0"

F C2: std logic:='0"

F C3: std logic:='0";

F C4: std logic:='0"

F C5: std logic:='0"

F C6: std logic:='0"

F C7: std logic:='0"';

F C: std logic:="'0";

IP BF O0:

std logic vector (8 downto 0):=

(others=>'0");
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signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal

IP BF 1: std logic_vector (8 downto 0) (others=>'0");
IP BF 2: std logic_vector (8 downto 0):=(others=>'0")
IP BF 3: std logic vector (8 downto 0):=(others=>'0")
IP BF 4: std logic vector (8 downto 0):=(others=>'0")
IP BF 5: std logic_vector (8 downto 0):=(others=>'0")
IP BF 6: std logic vector (8 downto 0):=(others=>'0");
IP BF 7: std logic_vector (8 downto 0) :=(others=>'0");
BF CONVEN 0: std logic vector (9 downto 0):=(others=>'0
BF CONVEN 1: std logic vector (9 downto 0) :=(others=>'0
BF CONVEN 2: std logic vector (9 downto 0) :=(others=>'0
BF CONVEN 3: std logic vector (9 downto 0) :=(others=>'0
BF CONVEN 4: std logic vector (9 downto 0) :=(others=>'0
BF CONVEN 5: std logic vector (9 downto 0) :=(others=>'0
BF CONVEN 6: std logic vector (9 downto 0):=(others=>'0
BF CONVEN 7: std logic vector (9 downto 0) :=(others=>'0
COM: std logic vector (15 downto 0):=(others=>'0");
CIM: std logic vector (15 downto 0) :=(others=>'0");
C2M: std logic vector (15 downto 0) :=(others=>'0");
C3M: std logic vector (15 downto 0) :=(others=>'0");
C4M: std logic vector (15 downto 0):=(others=>'0");
C5M: std logic vector (15 downto 0):=(others=>'0");
CéM: std logic vector (15 downto 0) :=(others=>'0");
C7M: std logic vector (15 downto 0) :=(others=>'0");
CO0_L: std logic vector (15 downto 0):=(others=>'0");

Cl L: std logic vector (15 downto 0):=(others=>'0");

C2 L: std logic vector (15 downto 0) :=(others=>'0");

C3 L: std logic vector (15 downto 0) :=(others=>'0");

C4 L: std logic vector (15 downto 0):=(others=>'0");

C5 L: std logic vector (15 downto 0):=(others=>'0");

C6 L: std logic vector (15 downto 0):=(others=>'0");

C7 L: std logic vector (15 downto 0):=(others=>'0");

CO0 LX: std logic vector (17 downto 0):=(others=>'0");
Cl LX: std logic vector (17 downto 0):=(others=>'0");
C2_LX: std logic vector (17 downto 0):=(others=>'0");
C3 LX: std logic vector (17 downto 0):=(others=>'0");
C4 LX: std logic vector (17 downto 0):=(others=>'0");
C5 LX: std logic vector (17 downto 0):=(others=>'0");
C6 LX: std logic vector (17 downto 0):=(others=>'0");
C7 LX: std logic vector (17 downto 0):=(others=>'0");
CO0_LXS: std logic_vector (17 downto 0):=(others=>'0");
Cl LXS: std logic_vector (17 downto 0) :=(others=>'0")
C2 LXS: std logic vector(l7 downto 0) :=(others=>'0")
C3 LXS: std logic vector(l7 downto 0) :=(others=>'0")
C4 LXS: std logic_vector (17 downto 0) :=(others=>'0")
C5 LXS: std logic_vector (17 downto 0) :=(others=>'0")
C6_LXS: std logic_vector (17 downto 0) :=(others=>'0")
C7 LXS: std logic vector(l7 downto 0) :=(others=>'0");
CO0_LXSS: std logic vector (17 downto 0):=(others=>'0");
Cl LXSS: std logic vector (17 downto 0):=(others=>'0");
C2_LXSS: std logic vector (17 downto 0):=(others=>'0");
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signal C3_LXSS: std logic vector (17

signal C4 LXSS: std logic vector (17

signal C5 LXSS: std logic vector (17

signal C6 LXSS: std logic vector (17

signal C7_ LXSS: std logic vector (17

signal C0O_1, CO_2, CO_3, CO_4, CO_5,
std logic vector(lS

downto 0) :=(others=>'0");

signal C1 1, C1 2, C1 3, Cl1 4, Cl 5,
std logic vector (15

downto 0) :=(others=>'0");

signal C2 1, C2 2, C2 3, C2 4, C2_ 5,
std logic vector (15

downto 0) :=(others=>'0");

signal C3_1, C3 2, C3 3, C3 4, C3 5,
std logic_vector (15

downto 0) :=(others=>'0");

signal C4 1, C4 2, C4 3, C4 4, C4 5,
std logic vector (15

downto 0) :=(others=>'0");

signal C5 1, C5 2, C5 3, C5 4, C5 5,
std logic vector (15

downto 0) :=(others=>'0");

signal C6 1, C6 2, C6 3, C6 4, C6 5,
std logic vector (15

downto 0) :=(others=>'0");

signal C7_1, C7 2, C7 3, C7 4, C7 5,
std logic vector (15

downto 0) :=(others=>'0");

signal Ll1: std logic_vector (8 downto
signal L2: std logic vector (8 downto
signal L3: std logic_ vector (8 downto
signal L4: std logic_vector (8 downto
signal L5: std logic_vector (8 downto
signal L6: std logic vector (8 downto
signal L7: std logic_vector (8 downto
signal L8: std logic_vector (8 downto
signal L9: std logic_vector (8 downto
signal L10: std logic vector (8 downt
signal L11l: std logic vector (8 downt
signal L12: std logic vector (8 downt
signal L13: std logic vector (8 downt
signal L14: std logic vector (8 downt
signal L15: std logic vector (8 downt
signal L16: std logic vector (8 downt
signal L17: std logic vector (8 downt
signal L18: std logic vector (8 downt
signal L19: std logic vector (8 downt

downto 0) :=(others=
downto 0) :=(others=
downto 0) :=(others=
downto 0) :=(others=
downto 0) :=(others=
co_6, CO_ 7, CO_8:
cl 6, C1 7, CL 8:
c2 6, C2_7, C2_8:
c3 6, C3_ 7, C3_8:
C4 6, C4 7, C4 _8:
c5 6, C5 7, C5 8:
C6 6, C6 7, Co6_8:
c7 6, C7.7, C7_8:
0):="001011010"; -
0) :="000011000";--
0):="001000111"; -
0):="001101010"; -
0):="001111101";-
0):="110000011"; -
0):="110010110";--
0):="110111001";--
0):="111101000";--
o 0):="001110110";
o 0):="000110000"; -
o 0):="111001111";-
o 0):="110001001";
o 0):="110111000";
o 0):="110000010"; -
o 0):="111100111";
o 0):="110100101";
o 0):="110010101";
o 0):="110100110";

0.
0.
0.
0.
0.

=
(
=
=
=
- (=
(=
(=
(

IOOOOOO

OOOOOOOO

(
=
=
- (=
- (=
- (=
- (=
- (=
- (=
= (=

3515625)
921875)
27734375)
4140625)
48828125)
.48828125)
.4140625)
.27734375)
.09375)
.4609375)
.1875)
.19140625)
.46484375)
.28125)
.4921875)
.09765625)
.35546875)
.41796875)
.3515625)
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signal L20: std logic_ vector
signal L21: std logic_vector

signal L23: std logic vector

(8
(8
signal L22: std logic vector (8
(8
(8

signal L24: std logic vector

begin
L1<="001011010";--
L2<="000011000"; -~
L3<="001000111"; -~
L4<="001101010"; -~
L5<="001111101";--
L6<="110000011"; -~
L7<="110010110";--
L8<="110111001"; -~
L9<="111101000"; -
L10<="001110110";
L11<="000110000";
L12<="111001111";
L13<="110001001";
L14<="110111000";
L15<="110000010"; -
L16<="111100111";
L17<="110100101";
L18<="110010101";
L19<="110100110";
L20<="110001010";
L21<="111010000"; -
L22<="000110001";
L23<="001110111";
L24<="001011011";

F CO<=F CO0 1 and F _CO_2 and

F CO0_7 and F_CO_8;
F Cl<=F Cl1 1 and F Cl1 2 and F Cl 3 and

F Cl 7 and F C1 8;

(0.3515625)
(0.921875)
(0.27734375)
(0.4140625)
(0.48828125)
(-0.48828125)
(-0.4140625)
(-0.27734375)
-(-0.09375)
-(0.4609375)
0.1875)

.28125)
.4921875)

.3515625)
.4609375)
.1875)

0.19140625)
0.46484375)
0.35546875)

OOOOOOOOOO

(
=
=
- (=
- (=
- (=
- (=
- (=
- (=
- (=
- (=
= (=
=
=
=

downto
downto
downto
downto
downto

.19140625)
.46484375)

.09765625)
.35546875)
.41796875)

F CO_3 and

F Cco<= F C2 1 “and F C2 2 and F C2 3 and

F C2 7 and F C2 8;

F_C3< F C31 and F C3 2 and F _C3 3 and
F C3 7 and F _C3_8;
F C4<=F C4 1 and F C4 2 and F C4 3 and
F C4 7 and F _C4_8;
F C5<=F C5 1 and F C5 2 and F C5 3 and
F C5 7 and F _C5 8;
F C6<=F C6_1 and F C6_2 and F _C6_ 3 and
F C6_7 and F _C6_8;
F C7<=F C7 1 and F C7 2 and F _C7_3 and
F C7 7 and F _C7 8;

F C<= F CO and F Cl and F C2 and F C3 and F C4 and F _C5 and F _C6 and

F:C7;

process (clk, rst)
begin

if(rst='1") then
PS<=s0;

elsif (rising edge (clk))then

O O O oo

F CO 4
F Cl 4
F C2 4
F C3 4
F C4 4
F C5 4
F C6 4

F C7 4

and

and

and

and

and

and

and

and

:="110001010"; --
:="111010000"; --
:="000110001";--
:="001110111";--
:="001011011"; --

F CO_5
F Cl 5
F C2 5
F C3 5
F C4 5
F C5 5
F C6 5

F C7. 5

(
(
(
(
(

-0.4609375)

-0.1875)

0.19140625)
0.46484375)
0.35546875)

and

and

and

and

and

and

and

and

F CO 6
F Cl 6
F C2 6
F C3 6
F C4 6
F C5 6
F C6 6

F C7 6
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PS<=NS;
trig<=not (trig);
end if;

end process;

process (PS, trig, conven, update, DONE DCT DST CONVEN,

begin
case PS is

-- data-preparation stage I

when s0=>

rst DCT DST CONVEN<='1"';
conv_DCT DST CONVEN<='0Q"';
MULT rst<='l";

MULT ST<='0";

EN ADD1<='0"';

EN ADD2<='0"';

EN BUTTER FLY<='0';
Data LAT<='0";

Update LAT<='0"';

Data SHIFT<='0";
EXT<="'0";
DONE_DCTCONVEN<:'O';
DONEiUPDATE<='O';

if (conven='1")then
NS<=sl;

elsif (update="'1")then
NS<=s33;

else

NS<=s0;

end if;

when sl=>

Data LAT<='l';
DONE_DCTCONVEN<='O';

rst DCT DST CONVEN<='0';
NS<=s2;

when s2=>
NS<=s3;

when s3=>

Data LAT<='0';

EN BUTTER FLY<='l"';
NS<=s4;

when s4=>
NS<=s5;

when s5=>
EN BUTTER FLY<='0';
NS<=s6;

when s6=>
conv_DCT DST CONVEN<='1l";
NS<=s7;

F C)
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when s7=>
NS<=s8;

when s8=>
conv_DCT DST CONVEN<='Q';

if (DONE_DCT DST CONVEN='1l"')then
NS<=s9;

else

NS<=s8;

end if;

when s9=> -- previous time unit DCT coefficients
COM<=CO_L;
CIM<=Cl L;
C2M<=C2 L;
C3M<=C3_L;

C4M<=C4 _L;
C5M<=C5 L;
CeM<=C6_L;
CTM<=C7_L;

DONE DCTCONVEN<='1";
NS<=s10;

when s10=>

rst DCT DST_CONVEN<='1l"';
conv_DCT DST CONVEN<='0Q';
NS<=sll;

-- data-preparation stage II
-— current time unit DCT coefficient calculation

when sll=>

Update LAT<='1l"';
DONE_DCTCONVEN<='O';

rst DCT DST CONVEN<='0';
NS<=s12;

when sl2=>
NS<=s13;

when s13=>
Update LAT<='0"';
NS<=s14;

when sl14=>
NS<=s15;

when s15=>
EN BUTTER FLY<='l"';
NS<=s16;

when sl6=>
NS<=s17;

when sl17=>



EN BUTTER FLY<='0';
NS<=s18;

when s18=>
NS<=s19;

when s19=>
EXT<="1";
NS<=s20;

when s20=>
NS<=s21;

when s21=>

EXT<='0";

F08 S BUF<=f08 S EXT;
F19 S BUF<=f19 S EXT;
F210 S BUF<=£210 S EXT;
F311 S BUF<=£311 S EXT;
F08 D BUF<=f08 D EXT;
F19 D BUF<=f19 D EXT;
F210 D BUF<=f210 D EXT;
F311 D BUF<=f311 D EXT;
NS<=s22;

when s22=>
NS<=s523;

when s23=>
Data SHIFT<='l';
NS<=s24;

when s24=>
NS<=s25;

when s25=>
Data SHIFT<='0';
NS<=s526;

when s26=>
EN BUTTER FLY<='1l';
NS<=s27;

when s27=>
NS<=s28;

when s28=>
EN BUTTER FLY<='0';
NS<=s29;

when s29=>
conv_DCT DST CONVEN<='1l";
NS<=s30;

when s30=>
NS<=s31;
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when s31=>
conv_DCT DST CONVEN<='0Q';

if (DONE _DCT_DST CONVEN='1"')then
NS<=s32;

else

NS<=s31;

end if;

when s32=>
C0<=C0_L;
Cl<=Cl L;
C2<=C2_L;
C3<=C3_L;
C4<=C4 L;
C5<=C5_L;
Ce<=C6_L;
C7<=C7_L;
DONE_DCTCONVEN<:'1';
NS<=s0;

-—- Update mode of operation

when s33=>

Update LAT<='1l";
DONEiDCTCONVEN<='O';
MULT rst<='0";
NS<=s34;

when s34=>
NS<=s35;

when s35=>

Update LAT<='0"';

EN BUTTER FLY<='1l"';
NS<=s536;

when s36=>
NS<=s37;

when s37=>

EN BUTTER FLY<='0";
EXT<='1";

NS<=s38;

when s38=>

EXT<="'0";

F412 S BUF<=£f08 S EXT;

F513 S BUF<=f19 S EXT;

F614 S BUF<=f210 S EXT;
F715 S BUF<=£311 S EXT;
F412 D BUF<=£f08 D EXT;

F513 D BUF<=f19 D EXT;

F614 D BUF<=f210 D EXT;
F715 D BUF<=f311 D EXT;
NS<=s39;

when s39=>
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NS<=s40;

when s40=>
MULT ST<='1l"';
NS<=s41;

when s41=>
NS<=s42;

when s42=>

MULT ST<='0";
if(F _C='1l")then
NS<=s43;

else

NS<=s42;

end if;

when s43=>
EN ADDl1<='l';
NS<=s44;

when s44=>
NS<=s45;

when s45=>
EN ADD1<='0"';
NS<=s46;

when s46=>
EN ADD2<='1l";
NS<=s47;

when s47=>
NS<=s48;

when s48=>
EN _ADD2<='0"';
NS<=s549;

when s49=>
NS<=s50;

when s50=>
EN SUB<='1l"';
NS<=s51;

when s51=>
EN SUB<='0"';
NS<=s52;

when s52=>
NS<=s53;

when s53=>
Data SHIFT<='l';
NS<=s54;
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when s54=>
NS<=s55;

when s55=>
Data SHIFT<='0";
NS<=s56;

when s56=>

F08 S BUF<=F412 S BUF;
F19 S BUF<=F513 S BUF;
F210 S BUF<=F614 S BUF;
F311 S BUF<=F715 S BUF;
F08 D BUF<=F412 D BUF;
F19 D BUF<=F513 D BUF;
F210 D BUF<=F614 D BUF;
F311 D BUF<=F715 D BUF;

COM<=CO0;
ClM<=C1;
C2M<=C2;
C3M<=C3;
C4M<=C4;
C5hM<=C5;
CoM<=C6;
CTM<=C7;
NS<=s57;

when s57=>
NS<=s58;

when s58=>

C0<=CO0_LX (15 downto 0);
Cl1<=Cl LX (15 downto 0);
C2<=C2 LX (15 downto 0);
C3<=C3_LX (15 downto 0);
C4<=C4 LX (15 downto 0);
C5<=C5 LX (15 downto 0);
C6<=C6 LX (15 downto 0);
C7<=C7_LX (15 downto 0);

DONE_UPDATE<='1';
NS<=s0;

end case;
end process;

UO: IP_STAGE R4

port map (x0=>f0, x1=>fl, x2=>f2, x3=>f3, x4=>f4, x5=>f5, x6=>f6,
x7=>f7,

Data L=>Data LAT, Update L=>Update LAT, Data S=>Data SHIFT,
X0OUT=>IP BF 0, X1OUT=>IP BF 1, X20UT=>IP BF 2, X30UT=>IP BF 3,
X40UT=>IP BF 4, X50UT=>IP BF 5, X60UT=>IP BF 6, X70UT=>IP BF 7);

Ul: BUTTER FLY

port map (x0=>IP BF 0, x1=>IP BF 1, x2=>IP BF 2, x3=>IP BF 3,
x4=>IP BF 4, x5=>IP BF 5, x6=>IP BF 6, x7=>IP BF 7,

EN=>EN BUTTER FLY,

X0OUT=>BF CONVEN 0, X1OUT=>BF CONVEN 1, X20UT=>BF CONVEN 2,
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X30UT=>BF CONVEN_3,
X40UT=>BF _CONVEN 4, X50UT=>BF CONVEN 5, X60UT=>BF CONVEN 6,
X70UT=>BF_CONVEN 7) ;

U2: DCT_DST_ CONVEN

port map (x07 S=>BF CONVEN 0, x16 S=>BF CONVEN 1, x25 S=>BF CONVEN 2,
x34 S=>BF CONVEN_ 3, x07 D=>BF CONVEN 4, x16 D=>BF CONVEN 5,

x25 D=>BF CONVEN 6, x34 D=>BF CONVEN 7,

clk=>clk, rst=>rst DCT DST CONVEN, conv=>conv_DCT DST CONVEN,

X0 COs=>C0_ L, X1 COS=>Cl L, X2 COsS=>C2 L, X3 COSs=>C3 L, X4 COS=>C4 L,
X5 COS=>C5 L, X6 COS=>C6 L, X7 COsS=>C7 L,

DONE CONVEN=>DONE DCT_ DST CONVEN) ;

U3: EXT UNIT
port map (A=>BF CONVEN 0, EXT=>EXT,A EXT=>f08 S EXT);

U4: EXT UNIT
port map (A=>BF CONVEN 1, EXT=>EXT,A EXT=>f19 S EXT);

U5: EXT_UNIT
port map (A=>BF CONVEN 2, EXT=>EXT,A EXT=>f210 S EXT);

U6: EXT UNIT
port map (A=>BF CONVEN 3, EXT=>EXT,A EXT=>f311 S EXT);

U7: EXT_UNIT
port map (A=>BF CONVEN 4, EXT=>EXT,A EXT=>f08 D EXT);

U8: EXT UNIT
port map (A=>BF CONVEN 5, EXT=>EXT,A EXT=>f19 D EXT);

U9: EXT UNIT
port map (A=>BF_CONVEN_ 6, EXT=>EXT,A EXT=>f210 D EXT);

Ul0: EXT UNIT

port map (A=>BF CONVEN 7, EXT=>EXT,A EXT=>f311 D EXT);

Ull: MULT

port map (A=>L19, B=>f715 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C0_1, DONE=>F CO 1);

Ul2: MULT
port map (A=>L19, B=>f6l4 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C0_2, DONE=>F CO0 2);

Ul3: MULT
port map (A=>L19, B:>f513_D_BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>CO_3, DONE=>F CO_3);

Ul4: MULT
port map (A=>L19, B=>f412 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>CO_4, DONE=>F CO 4);

Ul5: MULT
port map (A=>L1, B=>f311 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C0_5, DONE=>F CO 5);
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Ul6: MULT
port map (A=>L1, B=>f210 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C0 6, DONE=>F CO 6);

Ul7: MULT
port map (A=>L1, B=>f19 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C0_7, DONE=>F CO 7);

Ul8: MULT
port map (A=>L1, B=>f08 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C0_8, DONE=>F CO 8);

Ul9: ADD 8 16
port map (Al1=>C0 1, A2=>CO0_2, A3=>CO_3, A4=>CO_4, A5=>C0_5, A6=>C0_6,
A7=>C0_7, A8=>C0O_8, EN=>EN ADDl, SUM=>C0 LXSS);

U20: ADD 3 16
port map (Al=>C0, A2=>C0_LXSS (15 downto 0), A3=>C0, EN=>EN ADD2Z,
SUM=>C0_LXS) ;

U21: SUB 2 16

port map (A=>CO_LXS (15 downto 0), B=>COM, S AB=>'l', EN=>EN SUB,
SUB=>C0_LX (16 downto 0));

U22: MULT

port map (A=>L2, B=>f311 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 1, DONE=>F Cl 1);

U23: MULT
port map (A=>L3, B=>f210 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 2, DONE=>F Cl 2);

U24: MULT
port map (A=>L4, B=>f19 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 3, DONE=>F Cl 3);

U25: MULT
port map (A=>L5, B=>f08 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 4, DONE=>F Cl 4);

U26: MULT
port map (A=>L6, B=>f715 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 5, DONE=>F Cl 5);

U27: MULT
port map (A=>L7, B=>f6l4 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 6, DONE=>F Cl 6);

U28: MULT
port map (A=>L8, B=>f513 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 7, DONE=>F Cl 7);

U29: MULT
port map (A=>L9, B=>f412 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C1 8, DONE=>F Cl 8);

U30: ADD 8 16
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port map (Al=>Cl 1, A2=>Cl 2, A3=>Cl 3, A4=>Cl 4, A5=>C1l 5, A6=>Cl 6,
A7=>C1 7, A8=>Cl 8, EN=>EN ADDl, SUM=>Cl LXSS);

U31: SUB 2 16

port map (A=>Cl LXSS(15 downto 0), B=>CIlM, S AB=>'l', EN=>EN SUB,
SUB=>C1 LX (16 downto 0));

U32: MULT

port map (A=>L20, B=>f715 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C2 1, DONE=>F C2 1);

U33: MULT
port map (A=>L21, B=>f614 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C2 2, DONE=>F C2 2);

U34: MULT
port map (A=>L22, B=>f513 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C2 3, DONE=>F C2 3);

U35: MULT
port map (A=>L23, B=>f412 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C2 4, DONE=>F C2 4);

U36: MULT
port map (A=>L20, B=>f311 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C2 5, DONE=>F C2 5);

U37: MULT
port map (A=>L21, B=>f210 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C2_ 6, DONE=>F C2 6);

U38: MULT
port map (A=>L22, B=>fl19 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C2_ 7, DONE=>F C2 7);

U39: MULT
port map (A=>L23, B=>f08 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C2_8, DONE=>F C2 8);

U40: ADD 8 16
port map (Al=>C2 1, A2=>C2 2, A3=>C2 3, A4=>C2 4, A5=>C2 5, A6=>C2 6,
A7=>C2_7, A8=>C2 8, EN=>EN ADD1, SUM=>C2 LXSS);

U41l: ADD 3 16
port map (Al=>C2, A2=>C2, A3=>C2M, EN=>EN ADD2, SUM=>C2 LXS);

U42: SUB 2 16

port map (A=>C2 LXSS (15 downto 0), B=>C2 LXS(15 downto 0), S AB=>'1l",
EN=>EN SUB, SUB=>C2 LX (16 downto 0));

U43: MULT

port map (A=>L14, B=>f311 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C3 1, DONE=>F C3 1);

Ud44: MULT
port map (A=>L15, B=>f210 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C3 2, DONE=>F C3 2);



U45:

MULT

port map (A=>L16, B=>fl19 S BUF, ST=>MULT ST,

PROD=>C3 3,

Ud6:

port map (A=>L4, B=>f08 S BUF, ST=>MULT ST, clk=>clk,
PROD=>C3 4,

Uudi:

MULT

MULT

DONE=>F C3 3);

DONE=>F C3 4);

port map (A=>L7, B=>f715 S BUF, ST=>MULT ST,

PROD=>C3 5,

U4s8:

MULT

DONE=>F_C3_5);

port map (A=>L2, B=>f6l14 S BUF, ST=>MULT ST,

PROD=>C3 6,

U49:

MULT

DONE=>F_C3_6);

port map (A=>L5, B=>f513 S BUF, ST=>MULT ST,

PROD=>C3 7,

U50:

MULT

DONE=>F C3 7);

port map (A=>L3, B=>f412 S BUF, ST=>MULT ST,

PROD=>C3_8,

DONE=>F C3 8);

U51: ADD 8 16
port map (Al=>C3 1, A2=>C3 2, A3=>C3 3, A4=>C3 4, A5=>C3 5, A6=>C3 6,

A7=>C3_7, A8=>C3 8, EN=>EN ADDI,

Ub52:

SUB 2

16

clk=>clk,

clk=>clk,

clk=>clk,

clk=>clk,

clk=>clk,

SUM=>C3_LXSS) ;

rst=>MULT rst,

rst=>MULT rst,

rst=>MULT rst,

rst=>MULT rst,

rst=>MULT rst,

rst=>MULT rst,

port map (A=>C3 LXSS (15 downto 0), B=>C3M, S AB=>'l', EN=>EN SUB,
SUB=>C3 LX (16 downto 0));

U53: MULT

port map (A=>L17, B=>f715 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 1, DONE=>F C4 1);

U54: MULT

port map (A=>L24, B=>f6l4 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 2, DONE=>F C4 2);

U55: MULT

port map (A=>L24, B=>f513 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 3, DONE=>F C4 3);

U56: MULT

port map (A=>L17, B=>f412 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 4, DONE=>F C4 4);

U57: MULT

port map (A=>L24, B=>f311 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 5, DONE=>F C4 5);

U58: MULT

port map (A=>L17, B=>f210 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C4 6,

DONE=>F C4_6) ;
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U59: MULT
port map (A=>L17, B=>fl9 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 7, DONE=>F C4 7);

U60: MULT
port map (A=>L24, B=>f08 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C4 8, DONE=>F C4 8);

U61: ADD 8 16
port map (A1=>C4 1, A2=>C4 2, A3=>C4 3, A4=>C4 4, A5=>C4_5, A6=>C4_6,
A7=>C4 7, A8=>C4 8, EN=>EN ADDl, SUM=>C4 LXSS);

U62: ADD 3 16
port map (Al=>C4, A2=>C4, A3=>C4 LXSS(15 downto 0), EN=>EN ADDZ,
SUM=>C4 LXS) ;

U63: SUB 2 16

port map (A=>C4 LXS (15 downto 0), B=>C4M, S AB=>'l', EN=>EN SUB,
SUB=>C4 LX (16 downto 0));

U64: MULT

port map (A=>L4, B=>f311 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C5 1, DONE=>F C5 1);

U65: MULT
port map (A=>L2, B=>f210 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C5 2, DONE=>F C5 2);

U66: MULT
port map (A=>L15, B=>f1S9 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C5 3, DONE=>F C5 3);

U67: MULT
port map (A=>L3, B=>f08 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C5 4, DONE=>F C5 4);

Uu68: MULT
port map (A=>L8, B=>f715 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C5 5, DONE=>F C5 5);

U69: MULT
port map (A=>L5, B=>f6l14 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C5 6, DONE=>F C5 6);

U70: MULT
port map (A=>L16, B=>f513 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C5_ 7, DONE=>F C5 7);

U71: MULT
port map (A=>L18, B=>f412 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C5 8, DONE=>F C5 8);

U72: ADD 8 16

port map (Al=>C5 1, A2=>C5 2, A3=>C5 3, A4=>C5 4, A5=>C5 5, A6=>C5 6,
A7=>C5 7, A8=>C5 8, EN=>EN ADDl, SUM=>C5 LXSS);

U73: SUB_2 16
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port map (A=>C5 LXSS (15 downto 0), B=>C5M, S AB=>'l', EN=>EN SUB,

SUB=>C5 LX (16 downto 0));

U74: MULT

port map (A=>L21, B=>f715 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 1, DONE=>F C6 1);

U75: MULT

port map (A=>L23, B=>f614 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 2, DONE=>F C6 2);

U76: MULT

port map (A=>L20, B=>f513 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 3, DONE=>F C6 3);

U77: MULT

port map (A=>L22, B=>f412 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 4, DONE=>F C6 4);

U78: MULT

port map (A=>L21, B=>f311 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 5, DONE=>F C6 5);

U79: MULT

port map (A=>L23, B=>f210 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 6, DONE=>F C6 6);

Ug80: MULT

port map (A=>L20, B=>fl9 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6 7, DONE=>F C6 7);

U81l: MULT

port map (A=>L22, B=>f08 D BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C6_ 8, DONE=>F C6 8);

U82: ADD 8 16

port map (Al=>C6 1, A2=>C6 2, A3=>C6_ 3, A4=>C6_ 4, A5=>C6_ 5, A6=>C6_ 6,

A7=>C6 7, A8=>C6 8, EN=>EN ADD1, SUM=>C6 LXSS);

U83: ADD 3 16
port map (Al=>C6, A2=>C6, A3=>C6M, EN=>EN ADD2, SUM=>C6 LXS);

U84: SUB 2 16

port map (A=>C6_ LXSS (15 downto 0), B=>C6 LXS (15 downto 0), S AB=>'l",

EN=>EN SUB, SUB=>C6_LX (16 downto 0));

U85: MULT

port map (A=>L15, B=>f311 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C7_1, DONE=>F C7 1);

U86: MULT

port map (A=>L4, B=>f210 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C7_2, DONE=>F C7 2);

U87: MULT

port map (A=>L14, B=>fl9 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C7_3, DONE=>F C7 3);
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U88: MULT
port map (A=>L2, B=>f08 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7 4, DONE=>F C7 4);

U89: MULT
port map (A=>L9, B=>f715 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7 5, DONE=>F C7 5);

U90: MULT
port map (A=>L3, B=>f6l14 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7_ 6, DONE=>F C7 6);

U91: MULT
port map (A=>L18, B=>f513 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,

PROD=>C7_7, DONE=>F C7_7);

U92: MULT
port map (A=>L5, B=>f412 S BUF, ST=>MULT ST, clk=>clk, rst=>MULT rst,
PROD=>C7 8, DONE=>F C7 8);

U93: ADD 8 16
port map (Al=>C7 1, A2=>C7 2, A3=>C7 3, A4=>C7 4, A5=>C7_5, A6=>C7_6,
A7=>C7_7, A8=>C7_ 8, EN=>EN ADD1, SUM=>C7_ LXSS);

U 94: SUB 2 16
port map (A=>C7 LXSS (15 downto 0), B=>C7M, S AB=>'l', EN=>EN SUB,
SUB=>C7 LX (16 downto 0));

end DCT RECTAN R4 UPDATE arch;
--The testbench for the four-point independent update circuit

library ieee;

use leee.std logic 1164.all;

use leee.std logic arith.all;
use leee.std logic signed.all;
use leee.std logic unsigned.all;
use leee.math real.all;

use leee.numeric std.all;

entity DCT RECTAN R4 UPDATE test is
end DCT RECTAN R4 UPDATE test;

architecture DCT_ RECTAN R4 UPDATE test arch of
DCT RECTAN R4 UPDATE test is

component DCT RECTAN R4 UPDATE

port (£0, f1, f£f2, £3, f4, £5, f6, f£7: in std logic vector (8 downto
0) :=(others=>'0");

clk, rst, conven, update: in std logic;

co, c1, C2, C3, C4, C5, C6, C7: buffer

std logic vector (15 downto 0):=(others=>'0");

DONE DCTCONVEN: out std logic:='0";

DONE UPDATE:out std logic:='0");

end component;



signal f0in: std logic_vector (8 downto 0):
signal flin: std logic_vector (8 downto 0)
signal f2in: std logic vector (8 downto 0)
signal f3in: std logic vector (8 downto 0)
signal f4in: std logic_vector (8 downto 0)
signal f£5in: std logic_vector (8 downto 0)
signal f6in: std logic_vector (8 downto 0)
signal f7in: std logic vector (8 downto 0)
signal CO: std logic_vector (15 downto 0):=
signal Cl: std logic_ vector (15 downto 0):=
signal C2: std logic_vector (15 downto 0):=
signal C3: std logic_vector (15 downto 0):=
signal C4: std logic_vector (15 downto 0):=
signal C5: std logic_vector (15 downto 0):=
signal C6: std logic vector (15 downto 0):=
signal C7: std logic vector (15 downto 0):=
signal CLK: std logic:='0";

signal RST: std logic:='0";

signal CONVEN: std logic:='0"';

signal UPDATE: std logic:='0"';

signal DONE DCTCONVEN: std logic:='0"';
signal DONE UPDATE: std logic:='0";

begin

CLK<=not (CLK)

RST<="1

process
begin

|l |l
4

after 50 ns;
0' after 300 ns;

CONVEN<='0";
UPDATE<='0";

wait on RST until

(RST'event and RST='0");

f0in<="101010010";--£0
f1lin<="111010110";--f1
f2in<="011010011";--£2
£f3in<="010101011";--£3
f4in<="101100011";--f4
£f5in<="011101001";--£5
£6in<="001110101";--f6
£f7in<="111100011";--£7

wait for 100 ns;
CONVEN<="1";
wait for 200 ns;
CONVEN<='0";

wait on DONE_ DCTCONVEN
f4in<="111111011";--£8
£5in<="110001100";--£9
£f6in<="101111000";--£10
£f7in<="111010110";--f11

wait on DONE DCTCONVEN

until (DONE_DCTCONVEN='1");

until (DONE DCTCONVEN='1");
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f4in<="111111011";--£12
£5in<="110100100";--£13
£6in<="010101100";--£f14
£7in<="001010101";--£15

wait for 100 ns;
UPDATE<="'1";
wait for 200 ns;
UPDATE<='0";

wait on DONE UPDATE until (DONE UPDATE='1l");

f4in<="001101011";--f16
f5in<="101111010";--£17
f6in<="001010101";--£f18
£7in<="110011010";--£f19

wait for 100 ns;
UPDATE<="'1";
wait for 200 ns;
UPDATE<='0";

end process;

U0: DCT_ RECTAN R4 UPDATE

port map (£f0=>f0in, fl=>flin, f2=>f2in, f£3=>f3in, f4=>f4in,
f6=>f6in, f7=>f7in,

clk=>CLK, rst=>RST, conven=>CONVEN, update=>UPDATE,
c0=>C0, Cl=>Cl, C2=>C2, C3=>C3,

Cc4=>C4, C5=>C5, Ce6=>Ce6, C7=>C7,

DONE DCTCONVEN=>DONE DCTCONVEN,

DONE UPDATE=>DONE_UPDATE) ;

end DCT RECTAN R4 UPDATE test arch;

£5=>f5in,
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APPENDIX C: JAVA CODE TO CONVERT DECIMAL NUMBER TO BINARY AND
VICE VERSA

/* The following code converts the Decimal number to Binary number */

public class DecimalToBinary {
public static void main(String args([]) {

Double inputVariable = -0.5;
//Value of str:100000000

int maxValue = 9;

System.out.println("Value of inputVariable: " +
inputVariable) ;

String str = null;

if (inputVariable>0)
{

str = "0";
}
else
{
str = "1";
inputVariable = 1.0 + inputVariable;
}
Double dbl = inputVariable;

for (int 1

{

0; i < maxValue; i++)
dbl = dbl * 2;

if (Double.parseDouble(dbl.toString()) ==1)
{
str = str + "1";
break;
}
else if (Double.parseDouble(dbl.toString()) > 1)
{
dbl = dbl -1;
str = str + "1";

str = str + "0";

int difference = maxValue-str.length();
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for (int 1 = 0; 1 < difference; i++) {
str = str + "0";
}

System.out.println ("Value of str:" + str);

/* The following code converts the Binary number to Decimal number */

public class BinaryToDecimal {
public static void main (String[] args) {

String inputVariable = "111001110";
//Value of str:100000000

System.out.println("Value of inputVariable: " +
inputVariable) ;

char[] character = inputVariable.toCharArray()
double dbl = 0.0;

boolean flag = false;

for (int i = 0; i < character.length; i++) {
)

if (i==0
{
if (character[0] == '0")
{
flag = false;
}
else
{
flag = true;
}
continue;
}
else
{
dbl = dbl +
Integer.parselInt(String.valueOf (character[i])) *Math.pow(2,-1);
}
}
if(flag)
{
dbl = dbl - 1.0; }

System.out.println("Value of dbl: " + dbl);
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