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ABSTRACT

DHAWAL JOSHI. Unsupervised Learning for Critical Event Detection using
Historical PMU Data. (Under the direction of DR. MACIEJ NORAS)

A recent increment in power load and the fast reconciliation of sustainable power

sources into the power grid requires an improvement in situational awareness. Fur-

thermore, with this increase in power load, the aging grid infrastructure is under

stress more than ever causing more event and fault occurrences on the grid. To avoid

major faults and blackouts, better monitoring and optimal use of these assets has

become necessary. With the advent of phasor measurement unit(PMU) technology,

high resolution measurements of the power system has been made possible. How-

ever, the vast amount of data generated by PMUs brings the challenge of effectively

leveraging the useful information.

This work presents unsupervised learning methods to detect critical events taking

place on the grid using historical PMU measurements. The most prominent feature of

this method is that it does not require prior knowledge of disturbance samples or grid

topology information as opposed to the methods present in the existing literature.

Different categories of events are proposed based on visual characteristics of the data

and event detection using existing unsupervised anomaly detection methods have been

studied. Further, a meta heuristic method particle swarm optimization is explored in

order to improve the performance of one of the detector.
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CHAPTER 1: INTRODUCTION

"Situational Awareness" is the way toward understanding the components in a

complex framework, observing how they carry on with changes to the framework (for

example after some time), and anticipating their status as these progressions happen

[2]. A recent increment in power load and the fast reconciliation of sustainable power

sources into the power grid requires an improvement in situational awareness [3].

Furthermore, with this increase in power load, the aging grid infrastructure is under

stress more than ever causing more event and fault occurrences on the grid.

With the advent of phasor measurement unit (PMU) technology, high resolution

measurements of the power system has been made possible resulting in better ob-

servability of an electric grid. Unlike the conventional supervisory control and data

acquisition (SCADA) system, whose measurement rates are significantly lower (about

1 measurement per second), PMU uses global positioning system (GPS) to time-tag

the measurements which are recorded at a rate of 30 to 60 observations per second.

The PMU measure voltage and current and with these measurements calculate pa-

rameters such as frequency and phase angle. Figure 1.1 shows the typical PMU data

collection topology. Usually, multiple PMUs are installed at different substation loca-

tions in order to establish a Wide Area Monitoring System (WAMS). The data from

these PMUs is sent to the Phasor Data Concentrator (PDC) according to the IEEE

C37.118 communication standard where it is aggregated and combined with respect

to the time-stamps. Finally, PDC data is sent to the network control center through

Inter-Control Center Communications Protocol (ICCP) according to DIN EN 60870-6

where it is analyzed.
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Figure 1.1: PMU Data Collection Topology [4]

Due to increase in renewable energy penetration, two way power flow and for better

monitoring of the distribution system, the PMU installations are not only taking place

at transmission level but also at distribution level. As of 2018 more than 1500 PMUs

are installed in the United States - Table 1.1.

Table 1.1: Number of PMUs installed in the US as of 2018 [1]

Region Number of Installations

North - East 420

Mid - West 400

South 150

Texas 120

WECC 500
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Identification of system trends and behaviour such as voltage phase angle and

frequency responses to factors such as variation in load, renewable energy penetration

or faults on the grid is made possible by these high resolution measurements. However,

due to such high number of observations and ever-increasing installations, the amount

of data that needs to be handled is increasing exponentially [5]. Advancements in

high-speed analytical capabilities in field of data science and machine learning opens

an opportunity to efficiently leverage this data and help system operators make better-

informed decisions. Nonetheless, comprehension of power system conduct as seen

through PMU data is necessary.

As the measurements from the grid reveal the state of the system, this data is kept

confidential and is hard to find for research. Also, the event record files which are

maintained by utilities and system operators keep record of only few events which are

not enough to train the supervised machine learning in order to achieve accurate event

detection. Furthermore, the process of event detection can be accelerated by avoiding

power flow calculations. The objective of this research is not only to understand the

power system behaviour by detecting events occurring on the grid utilizing PMU

data but to perform this in a purely unsupervised and data-driven manner. Various

existing unsupervised learning methods for anomaly detection to extract events from

the power system measurements are explored in this work. The event categories have

been proposed based on the visual characteristics and the ability of various methods

to detect these events is studied.

The scope of this work is restricted solely to event detection from the proposed

categories in section 5.2. Although the exact time and the nature of event would

be captured, cause and location of event will not be studied in this work as the

grid topology information is not available. Methodology is strictly based on offline

historical data as opposed to real - time data stream. Being an unsupervised method,

the number of outliers that needs to be detected must be predefined. Chapter 2 will
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present the available and recent literature on event detection from PMU data. In

addition to that, various advanced big data and machine learning techniques used

previously to analyze power system data will be discussed. Chapter 3 puts forth the

thesis statement. Chapter 5 presents the research methodology for feature extraction

5.5.2.1, feature selection 5.5.2.2, detectors 5.5 and event categories 5.2 while chapter

4, will present the data description of the PMU data in use. Chapter 6 consists of

experimental setup and results. Finally, in chapter 7 discussion regarding the learned

insights and conclusion will be presented.



CHAPTER 2: REVIEW OF PREVIOUS RESEARCH

The task of handling the vast amount of data generated by PMUs and the develop-

ment of new techniques to analyze this data has gathered interest of many researchers.

A considerable amount of work has been done to monitor power systems by utilizing

the information extracted from PMUs. Present literature that analyzes PMU data

can be categorized into following four major clusters: -

• Dimensionality reduction

• Recovery of lost data

• Event detection

• Control and automation

The literature review in this chapter focuses mainly on event detection from syn-

chrophasor data. However, in order to shed a light on different methods employed on

PMU data, a few other studies are analyzed from the clusters mentioned above along

with event detection. Research studies considered in this chapter are categorized by

the methods and their use case. Usually the metrics used to test the validity of these

event detection methods are as follows: -

• Comparison of results with actual event records

• Comparison of results using power flow calculations
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2.1 Statistical Methods for Event Detection

One of the early work on event detection using synchrophasor data can be seen in

[6]. PMU data along with North American Electric Reliability Corporation’s System

Data Exchange (NERC SDX) data was used to detect single line outages. NERC SDX

data was used to obtain grid topology information. An algorithm was developed to

detect event occurrence using edge detection method. Edge-detection operators are

based upon second-order derivatives of the intensity. This is used to capture the rate

of change in the intensity gradient. The method was tested on a 37 bus simulated

data [7] and Tennessee Valley Authority (TVA) 500-KV line outage PMU data. Satis-

factory performance of the algorithm was reported even with limited PMU coverage,

presence of noise and oscillatory behavior in measurements. However, system topol-

ogy information was required in this method which is not always readily available.

An approach to detect high impedance faults using PMU data was proposed in [8].

This approach used probabilistic function on data converted to Guassian distribution

where a null (sample in use = 60Hz) and alternative (sample in use 6= 60Hz) hy-

pothesis was tested to determine the divergence of the system from 60 Hz average to

another less probable value. The method was tested on a simulated high impedance

fault and effectiveness of the detecting the fault was put forth. Han et al.[9] proposed

a novel real-time event detection technique based on random matrix theory (RMT)

and Kalman filtering. PMU data conditioning has been done using dynamic Kalman

filter. Theoretical basis for event detection was provided by RMT and mean spectral

radius (MSR) has been employed as an event detector. The method was tested on

IEEE 118 bus simulated data [7] and better performance of the algorithm with both

normal and noisy data over the original method [10] was claimed. However, robust-

ness of the method proposed could not be tested due to the lack of testing on real

world data.
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2.2 Energy Function Based Detection

Brahma et al.[11] reviewed a data-driven model and a physics-based model for

real-time identification of dynamic events using PMU data. Challenges and advan-

tages of these models were put forth on basis of data availability, data attributes and

processing options. These models were tested on PMU data from New Mexico State

University (NMSU) and it was concluded that shapelet method surpasses methods

that use domain transformations as far as speed, accuracy and robustness against

noise is concerned. Also, a new concept of monitoring change in the individual com-

ponent of energy functions of the physics-based approach was explored. Negi et al.[12]

proposed computation of spectral kurtosis on sum of intrinsic mode functions for event

detection where the algorithm compared the maximum energy and root mean square

of the energy content of present analysis segment with previous segment from the

PMU data. Applied statistical indices flagged specific data, resulting in timely detec-

tion of events. Furthermore, due to the distinct nature of transient signals in different

regions, the event classification was possible. Characterization algorithm represented

signal characterization in terms of short-term energy and group delay. The algorithm

was tested on North American SynchroPhasor Initiative (NASPI) PMU data and

successful event detection and discrimination was claimed. Another use of energy

function can be seen in [13] where a wavelet-based detection algorithm by using a

normalized wavelet energy function that monitors the energy detail coefficient within

the moving window to classify and detect events is proposed. Wavelet-based detection

parameter was designed for robust detection given the non-stationary characteristics

of events. The method was tested on real PMU data from Korean Electric Power

Corporation (KEPC) and robust detection and zonal information of power system

events was claimed.
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2.3 Frequency Analysis for Islanding Detection

Frequency component of the data has been used actively to detect events. Lin

et al.[14] proposed the frequency difference and the change of angle methods to de-

tect islanding of bulk power system using frequency data recorder (FDR) data. These

methods were tested on nine real cases including islanding, generation trip, load shed-

ding and oscillations cases. Based on these cases, sensitivity analysis was performed

to get the intensive interval which facilitates reasonable threshold of detecting island-

ing. Successful detection of islanding was claimed without false triggering for other

events. However, detection could not be triggered when low power flow was trans-

ferred through lines between islands. Another application of islanding protection

method can be seen in [15] where a method of loss-of-mains detection by reconsider-

ing loss-of-mains protection as a synch-check relay is proposed. This method has a

zero-detection zone and avoids nuisance tripping as opposed to the conventional meth-

ods. Thresholds to detect islanding were set based on experiments carried out under

both normal operating conditions and during transient events. Accurate response of

the detector to a system-wide transient was claimed.

2.4 Principal Component Analysis for Event Detection and Data Reduction

Ge et al.[16] used Principal Component Analysis (PCA) to measure the trend of

data and detect abnormal data resulting from sudden changes for event detection and

a second order difference method with hierarchical framework for event notification

using PMU data. Further, event-oriented auto-adjustable sliding window method was

used for data reduction. These methods were tested on Illinois Institute of Technology

(IIT) campus micro-grid PMU data and effective event detection and data reduction

was claimed. Having said that, this method uses extensive power flow calculations

for which domain knowledge comes into play. Another implementation of PCA can

be seen in [17] where a PCA-based method for event detection using PMU data is
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proposed. In addition to detection, the method was able to identify location, mag-

nitude and type of fault. Further, similarity of bus dynamic information could also

be identified. The method was tested on 42-bus Illinois and 1511-generator system

models and although effectiveness of the method was asserted, computational com-

plexity increased with increase in data analyzed. Hence, a partitional PCA (PPCA)

method was proposed alongside the method above. Case studies were implemented

to demonstrate the efficacy of PPCA method. Rafferty et al.[18] proposed moving

window PCA method to set threshold for event detection in order to adapt to time

varying behavior of power system. Further, a method to automatically differentiate

high and low frequency events for islanded and non-islanded scenarios was developed.

Combining these two methods real time event detection and classification was vali-

dated using the real and simulated case studies. Although the efficacy of model to

detect and classify events was claimed, inability to dis-aggregate multiple loss of load

and generation events was put forth.

2.5 Automated Detection and Control

The use case of PMU data has been extended to supervisory protection and auto-

mated event diagnosis as seen in [19] where the features are extracted from the time

frequency representation of PMU data with strongest disturbance signal and multi

class Extreme Machine Learning (EML) classifier were used to classify events. Ap-

plication of Decision trees (DT) using PMU data for response based control and to

enhance relay performance has also been explored [20, 21]. Another application of DTs

can be seen in [22] where an algorithm based on decision trees and random forest to

identify generator event occurrences in an electric grid using PMU data is presented.

A screening classifier was developed using Rate of Change of Frequency (ROCOF)

from the data and a secondary classifier was developed for feature identification and

extraction. Additionally, a fault map depicting the progression of event occurrence

has been created for better troubleshooting of generator events. The algorithm was
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tested on BPA PMU data and detection was claimed to be in real time. Having said

that, increase in false positives and negatives were reported with the increase in size

of the feature vector. Although, DTs are suitable for control applications, they also

can be used in order to detect events from PMU data as done in [23]. However, false

detection of events by DTs are reported. Also, being a supervised learning method,

training is involved which is generally computationally heavy.

2.6 Advanced Big Data and Machine Learning Methods

New technologies were recently introduced to PMU information storage and pro-

cessing with the advent of big data analytics such as Hadoop along with MapRedcue

[24] and data cloud [25]. Khan et al.[26] proposed parallel detrended fluctuation anal-

ysis (PDFA) approach for fast event detection on huge PMU data. This approach

was implemented in MapReduce model and tested on laboratory based online setup

and WAMS installed on the Great Britain transmission system for offline data min-

ing and speedup of computation compared to detrended fluctuation analysis (DFA)

was claimed. This speedup in computation was analyzed with Amdahl’s law and

revision was proposed to enhance the capability of analyzing the performance gain in

computation in cluster computing environments. For the purpose of collecting pat-

terns or signatures of events, a variety of machine learning techniques were applied

to analyze PMU data. One of the method is Neural networks. Use of neural net-

works for anomaly detection can be traced back to 1996 where Dasgupta and Forrest

[27] proposed negative selection mechanism for anomaly detection which operates on

similar lines of neural networks. Malhotra et al.[28] presented stacked Long Short

Term Memory (LSTM) network approach for anomaly detection in time series data.

Use of LSTM eliminates vanishing gradient problem experienced by Recurrent Neural

Networks (RNN). Non-anomalous data was used for training the network which acts

as a predictor for the time steps. Prospects of anomalous behavior was assessed by

modelling resulting prediction errors as a multivariate Gaussian distribution. The
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method was tested on four different PMU data sets and efficacy of the approach was

claimed. In [29] rather than inferring outage form sensor data, AC model was used to

simulate sensor responses and train neural networks. Although the above mentioned

techniques are effective, training the classifier is computationally heavy and addressed

in this work. Ren et al.[30] presented a dynamical machine learning method to learn

nonlinear and non-stationary PMU measurements and predict system behavior in real

time using state space model and Kalman filter. A second order polynomial dynamic

regression model was applied on PMU data for a given time frame and the system

behavior was predicted for the following time window. The method was tested on

PMU data from WECC region and good accuracy and effective real time anomaly de-

tection was claimed. Although rigorous threshold setup brought down the confidence

in the confirmed event per unit, it was claimed to be adequate when considering all

the units together.

2.7 Unsupervised Detection Methods

To overcome the computational exhaustive nature and requirement of disturbance

samples to train the classifier, unsupervised learning methods are proposed. One of

the early works on unsupervised learning using PMU data can be observed in [31] used

for comprehensive clustering of disturbance events recorded by PMUs where clustering

approaches such as hierarchical, partitioning, density-based, grid-based were analyzed

and agglomerative hierarchical clustering approach was selected. This unsupervised

learning technique was tested on disturbance files and good performance of algorithm

to identify clusters from very few know class labels was claimed. Further, the algo-

rithm was able to classify the same event into multiple clusters depending the sever-

ity. Although the method was not used to detect events, application of unsupervised

learning using PMU data gave way to a new opportunity to analyze events. Another

clustering method was proposed in [32] for characterizing smart grid events where an

empirical study on application of unsupervised clustering on carefully selected fea-
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tures from PMU data was proposed. Features were developed based on observations

from voltage magnitude in the data. Different cases such as time series clustering,

instantaneous clustering and cluster-specific classification were studied. Klinginsmith

et al.[32] claimed better performance of clustering on instantaneous data points com-

pared to time series clustering based on results from the case studies performed on

PMU data from Bonneville Power Administration (BPA). Further, identification of

unknown events without substantial training data was also claimed. Tang and Yang

[33] proposed a novel three step framework for dynamic event monitoring. Every com-

ponent was formulated individually in the energy function using PMU data. Stacked

Auto Encoders (SAE), an unsupervised learning technique, was used to learn features

from each component. Further, shared representation between modalities was learned

in the feature fusion stage. Finally, a simple neural network was trained to detect and

classify events. The method was tested on IEEE 39 bus system and effectiveness of

dynamic event detection and classification was claimed. However, insufficient training

and deterioration of online application can be caused due to increased deployment

of renewable generation sources. Further, physical calculations were involved which

calls for grid topology information. Zhou et al.[34] proposed an unsupervised ensem-

ble learning method for fast event detection from PMU data. Two algorithms were

developed for training the ensemble model and inferring the anomaly scores over PMU

data streams. Anomalies were flagged and further analysis was performed to differ-

entiate events and bad data. The method was tested on simulated and real-world

data and efficient detection compared to standalone methods was claimed. Another

method proposed by Liang et al.[35] eliminates the requirement of grid topology and

physical model information where a rule-based data-driven analytics method for wide

area fault detection using PMU data is proposed. Three common fault types (single

line to ground, line to line and three phase faults) could be detected with fault lo-

cation using two approaches, “ABC ” method and “symmetrical component method”.
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Fault threshold values were created based on theoretical and synchrophasor data for

each fault type. The method was tested on BPA PMU data and good detection and

location accuracy for most faults was claimed. However, prior fault information was

needed for effectiveness of the method.



CHAPTER 3: THESIS STATEMENT

It is evident from Chapter 2 that the methods varying from energy function analysis

to advanced big data and machine learning based analysis are not only capable of

successfully detecting events but also can detect its location, identify the type event

and even send a corrective control action if the event is detected. Having said that,

there is an extensive use of grid topology information for power flow calculations and

previous fault record files to train the classifiers by many of these methods.

There is a need to avoid power flow calculations as these calculations require the

knowledge of topology of the power systems which is not always readily available.

Although supervised learning methods can scan for events once the classifiers are

trained using labelled data, training these classifiers itself is computationally heavy

and time consuming along with the fact that labels for the data are rarely avail-

able. Furthermore, methods such as classification-based and clustering-based have

two major drawbacks: -

• Not optimized to detect anomalies resulting in many false alarm

• Constrained to low dimensional data (low number of features present in the

data)

Unavailability of grid topology information and labeled data to train the model

point towards the need for a method that does not require power flow calculations,

unsupervised and the one that can provide effective detection even with low to mod-

erate computational power. The goal of this study is to develop a PMU data analysis

approach using the unsupervised learning methods for the purpose of electric grid

event detection.



CHAPTER 4: DATA DESCRIPTION

The data used in this thesis was obtained from [36]. Since the PMU data reveal the

state of the power system and power system being a critical infrastructure, the data

is kept confidential by utilities and the independent system operators that install

them. To overcome this, University of Texas at Austin(UT-Austin) introduced an

independent synchrophasor network to facilitate researchers at UT-Austin with real

time data and its comprehensive analysis [37].

Figure 4.1: Location of PMU stations considered in this study
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The data consists of five PMU stations placed within different zones of Electric Re-

liability Council of Texas(ERCOT) as seen in figure 4.1. However, only three stations

are considered in this study due to the fact that two of the PMU stations represent

same location of which one PMU measuring the customer level voltage and another

PMU measuring the transmission level voltage and the frequency measurement for

one of the station being inconsistent when compared to frequency measurements for

rest of the stations. Following stations are considered in this study: -

• UT Austin

• UT-McDonald

• UT-Pan America

The McDonald station is placed among various wind farms that are operated as PQ

buses. PQ buses provide power at specific real and reactive power; generally wind

farms are operated at unity power factor [37].

A data sets, representing an hour for January 03, 2012 has been used for event

detection in this study. The data is recorded in time series for an hour with a reso-

lution of 30 measurements per second. For each station, following measurements are

available: -

• Voltage magnitude (V)

• Voltage phase angle (Degrees)

• Frequency (Hz)

Figure 4.2 shows the time series representation for above mentioned measurements.

Current and power information is not available for any of the stations.



17

03 0
1:00

03 0
1:10

03 0
1:20

03 0
1:30

03 0
1:40

03 0
1:50

03 0
2:00

Timestamp

78700

78750

78800

78850

78900

78950

Vo
lta

ge
 M

ag
nit

ud
e [

v]

Austin_V1LPM_Magnitude

(a) Voltage magnitude(V)

03 0
1:00

03 0
1:10

03 0
1:20

03 0
1:30

03 0
1:40

03 0
1:50

03 0
2:00

Timestamp

−150

−100

−50

0

50

100

150

Vo
lta

ge
 Ph

as
or
 A
ng

le 
[d
eg

re
es

]

Austin_V1LPM_Angle

(b) Voltage phase angle(Degrees)

03 0
1:00

03 0
1:10

03 0
1:20

03 0
1:30

03 0
1:40

03 0
1:50

03 0
2:00

Timestamp

59.94

59.96

59.98

60.00

60.02

60.04

Fr
eq

ue
nc

y [
Hz

]

Austin Frequency

(c) Frequency(Hz)

Figure 4.2: Time series representation of measurements for station UT - Austin



CHAPTER 5: METHODOLOGY

This chapter introduces theoretical background on the research methodology. The

introduction is not comprehensive and is only relative to building the models for event

detection. Prior to the background on the methods, concept of relative phase angle

difference and the proposed event categories are put forth.

5.1 Relative Phase Angle Difference

Due to the non stationary characteristics of voltage angle, relative phase angle

difference(RPAD) between two station angle is used for detecting events in voltage

angle data. In presence of large number PMU installations on the power system, a

common reference phase angle is used for analyzing phase angle data. This reference

angle can be calculated using centre of gravity concept [38]. However, RPAD is used

in this study as there are small number of PMUs installed in the texas synchrophasor

network. RPAD can only be used when two PMUs are located at the opposite end of

the buses [37].

For the sake of convenience and to avoid any complexities, RPAD for different

stations is calculated with respect to UT Austin phase angle. A first-order angle

difference is used to obtain RPAD. The difference between consecutive voltage angles

for other two PMU station with respect UT Austin station is used to obtain a new

RPAD time-series - equation 5.1.

V angRPAD = V angi+1 − V angii = 1, 2, . . . 108000 (5.1)
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5.2 Event Categorization

The events are categorized into three sets; impulse, transients and step change/rise

or drop. Since classification is not the aim of this research, the events are catego-

rized based on familiar visual characteristics rather than application of any specific

classification method. The event categories are proposed in table 5.1.

Table 5.1: Event Categories

Voltage Magnitude Voltage RPAD Frequency

Impulse Impulse Impulse

Transient Transient Transient

Step Change Step Change Rise or Drop

in Frequency

5.2.1 Impulse Events

Impulse event are characterised by high rate of change in a very short duration

of time. The impulses in voltage magnitude and RPAD might be caused due to self

clearing faults or due to temporary imbalance in load and generation locally [37].

Impulses in frequency are quite rare and may appear due to temporary imbalance in

local load and generation. Due to the fact the RPAD can not be used to detect local

events as two stations are involved, power frequency is used to detect local events at

different stations.

5.2.2 Transient Events

Large events energize a single or numerous modes inside a power system these can

be estimated as transients in PMU voltage information. The transients can also be

seen in frequency that are generally caused by load and generation mismatch, loss

of generation or loss of load. In case of voltage phase angles, the transients indicate

oscillation between a large generator or group of generators near the PMU location.
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5.2.3 Step Change/Rise of Drop in Frequency Events

Step change in RPAD is characterized by sudden change in a value to a higher or

lower value. Larger level shifts are a result of significant changes in power flow such

as a generator unit trip[37]. In this study it is assumed that larger shifts are observed

when the generator unit trips and smaller level shifts are observed for transmission

line trips as the exact cause is not known. In order to keep the system stable and

to ensure a good power quality, the power system frequency is operated with strict

thresholds (± 5 %). Hence, the Step change usually do not occur in frequency. In

case frequency, sudden drops or rise in frequency are detected instead of level shifts.

These types of frequency events are different to impulse events due to the fact that

these events can be observed throughout the system whereas, impulse events occur

locally.

Various existing unsupervised anomaly detection methods and tools are used for

the task of event detection. The methodology is divided in two approaches as depicted

in figure 5.1: -

• Category based method

• Generalized outlier detection method

Figure 5.1: Formulation of Methodology
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5.3 Hardware and Software Modules

5.3.1 Hardware Modules

This study is performed using hardware from Lambda Labs with following config-

uration: -

• CPU: 12 Core Intel i7 processor

• RAM: 64 GB

5.3.2 Software Modules

Task of event detection is performed using open source unsupervised learning mod-

ules and tool kits. The code was developed using Python 3.6.9 language.

banpei : banpei [39] is a python library with two modules; SST for change point

detection and hotelling’s theory for outlier detection. The SST module for change

point detection is used for detecting transients in the data.

Arundo ADTK : Arundo’s anomaly detection toolkit(ADTK) is a python package

for unsupervised time series anomaly detection [40]. Various components from ADTK

can be combined together to build a model to detect anomalies in different scenarios.

sklearn : Isolation forest for unsupervised anomaly detection module from sklearn

[41] has been used in this study. sklearn is a python library which provides simple

and effective tools for predictive analysis.

tsfresh : tsfresh [42] is a python package that automatically calculate and provide

a large number of time series characteristics or features. The package also provides

methods to evaluate the importance of features for regression or classification tasks.

PySwarms : PySwarms [43] is a high-level declarative interface for implementing

particle swarm optimization(PSO).
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5.4 Category Based Methods

5.4.1 Change Point Detection using Singular Spectrum Transformation

Singular spectral transformation (SST) is a nonlinear transformation of an orig-

inal time series to a new time series that depicts an analogous anomaly metric of

the original time series. Anomaly detectors are usually categorized into outlier and

change-point detectors. Outliers are local points which are abruptly observed in a

series of normal points. On the contrary, change-points depicts changes on a wider

scale in terms of characteristics of data points. Hence, SST can be used to effectively

detect start and end of transients in the PMU data in this study. This metric is

characterized as the distance between two sub-spaces, which is spanned over the left

singular vectors. Left singular vectors are acquired by means of the singular value

decomposition (SVD) on a Hankel matrix created from strings of the original time

series.

5.4.1.1 Pattern Extraction

Singular spectral analysis (SSA) is a preliminary method that is intended to achieve

decomposition of a time series into a sum of interpretable factors. Factors such

as trend, periodicity and noise can interpreted as representative patterns. SVD is

performed on a Hankel matrix that is generated from original time series in order to

perform pattern extraction. Let Z be the time series that is transformed to multi-

dimensional series H.

Z = {z1, z2, . . . , zK , . . . , zN} (5.2)

H = [H1, H2, . . . , Hk] (5.3)

where,
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Hi = (zi, . . . , zi+L−1)
T (1 ≤ i ≤ K)

Hi → L-lagged vectors

H → L-trajectory matrix (L × K Hankel matrix - equation 5.4)

K → Window length

L → Embedding dimension

H =



z1 z2 · · · zK

z2 z3 · · · zK+1

...
...

...
...

zL zL+1 · · · zN


(5.4)

In the next step, SVD of the Hankel matrix is performed where it is converted to

sum of rank-one bi-orthogonal matrices. Squared singular values (λ1, λ2, · · · , λl) are

assigned to HHT and the SVD of H is calculated - equation 5.5.

H = λUVT (5.5)

where,

λ → Diagonal matrix with diagonal elements as squared singular values

U → Left singular matrix

V → Right singular matrix

5.4.1.2 Change-Point Score

The change-point score gives a relative anomaly metric of time series at time t

[44]. Left singular vectors is used to calculate this score. H matrix is divided into

reference interval (X ref) and test interval(X test). The change point score (S) is given

by equation 5.6. S is a non-dimensional parameter that varies from 0 to 1.

S ≡ 1− cos Θ
(
X ref,X test) (5.6)
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Where,

X ref = span{U ref
n }

X test = span{U test
m }

Calculation of change point score represents nonlinear transformation of original

time series (Z) to a new time series (Zc).

Z → Zc(w, L, g,m, n) (5.7)

Where,

w → Length of consecutive sub-sequence of original time series

L → number of singular vectors

g → right singular matrix time point

m → length of test subspace

n → length of reference subspace

Figure 5.2: Summary of parameters used in SST [45]
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5.4.1.3 Krylov Subspace Learning

Although SST is robust and flexible against heterogeneities as it does not make use

of any specific generative models, the computational cost of SVD employed by SST is

too high to be repeated over complete time series [46] specifically when applied over

vast amount of data such as the PMU data used in this work. Ide and Tsuda [46]

presented a method where w can be calculated without performing SVD using Krylov

approximation resulting in process speed up. Following algorithm provides with the

working of Krylov subsampling based SST.

Krylov Subspace Algorithm: Change Point Score(k, C )
Inputs: k - a positive integer(< w), C - HHT

j - current path length (initialized to zero for first iteration)
Output: Change point score S
1. Compute µ at each t
2. Initialize r = µ, β0 = 1, q0 = 0, z = 0
3. for z = k
4. qz + 1 = rz/βz
5. z ← z + 1
6. αz = qTz Cqz

7. rz = Cqz - αz qz - βz − 1 qz − 1

8. βz = ||rz||
9. end for
10. define Change point score (S)
11. S ' 1−

∑r
i=1 x

(i)2

12. return S

An open source python library banpei [39] is used which has two modules; SST for

change point detection and hotelling’s theory for outlier detection. The SST module

for change point detection is used for detecting transients in the data. The parameters

for SST module in banpei are listed in table 5.2.
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Table 5.2: Parameters for banpei

Parameter Description

w Window size

m Number of basis vectors

k Number of columns for

trajectory and test matrix

L Lag time

is_lancos Krylov subspace change point

score

5.4.2 Arundo ADTK

PersistAD and LevelShiftAD from ADTK [47] is used in this work to detect im-

pulses and level shifts respectively.

Two adjacent sliding time windows are implemented in PersistAD and LevelShif-

tAD and the difference between the mean or median qualities of these windows is

continuously monitored. As shown in equation 5.8 A new time series with these dif-

ferences over time is created and the detection is performed. At whatever point the

measurements in left and right windows are significantly different, it shows a sudden

change around this time point. The length of the window depends on the problem at

hand. In PersistAD, the left window is longer than the right window so that the rep-

resentative information of the near past is captured. Whereas, in LevelShiftAD, both

windows are sufficiently long in order to detect stable status. Finally, an interquartile

range is calculated given the absolute difference of the two windows and anomalies

are defined based on given normal bound. The parameters for PersistAD are listed

in table 5.3 and the parameters for LevelShiftAD are listed in table 5.4.

aggregate = mean(left window)−mean(right window) (5.8)
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IQR = first quartile− third quartile (5.9)

Where,

IQR → Interquartile range

Table 5.3: Parameters for PersistAD

Parameter Description Default Value

window Number of time points in each

time window

1

c Factor used to determine the

bound of normal range based

on historical interquartile

range

3

side If "both", to detect

anomalous positive and

negative changes;

If "positive", to only detect

anomalous positive changes;

If "negative", to only detect

anomalous negative changes

both

min periods Minimum number of

observations in each window

required to have a value for

that window

none

agg Aggregation operation of the

time window, either "mean"

or "median"

median
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Table 5.4: Parameters for LevelShiftAD

Parameter Description Default Value

window Number of time points in each

time window

10

c Factor used to determine the

bound of normal range based

on historical interquartile

range

6

side If "both", to detect

anomalous positive and

negative changes;

If "positive", to only detect

anomalous positive changes;

If "negative", to only detect

anomalous negative changes

both

min periods Minimum number of

observations in each window

required to have a value for

that window

none
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5.5 Generalized Outlier Detection Method

5.5.1 Isolation Forest

Attributes of anomalies are disparate from those of normal instances and they

appear in relatively fewer instances compared to the normal data points. Isolation

forest is an unsupervised anomaly detection method that uses these distinct properties

of anomalies to isolate them from normal group. This method can not be used to

detect any specific type of events but the detected events can be categorized after

the detection. Ensemble of binary tree structures called isolation trees (iTree) are

constructed to isolate the instances for a given data set. While the normal points are

more likely to be isolated at the deeper end of the iTree, anomalies are isolated closer

to the root due to their susceptibility to isolation.

Randomly generated binary trees recursively partition the data points (explained

in training algorithm 2 below) and produce noticeable shorter path for anomalies as

seen in figure 5.3 due to the following two reasons: -

• In anomalous region, lower number of anomalies result in smaller number of

partitions and hence, tree structures result in shorter paths

• Data points with unique attributes are bound to be isolated from the get-go in

the partitioning process

Therefore, when shorter paths for instances are created by the forest of random trees,

there is a high probability of those instances being anomalous.
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Figure 5.3: Partitioning of Normal vs. Abnormal Instances [48]

Normal instances (Xi) in general require more number of partitions as compared

to the number of partitions required by abnormal instances (Xo) - Figure 5.3. As tree

structures represent recurrent partitioning, partitions needed to isolate an instance

corresponds to the traversal of path length from root node to a terminating node [49].

In contrast to basic density and distance based anomaly detection techniques where

only scattered anomalies can be detected, isolation forest is also capable of detecting

anomalies surrounded by normal instances [49]. This makes isolation forest suitable

to be used in this study as there is a possibility of an event taking place around or

near normal operating region.

Detection is performed in two stages; isolation trees are constructed using sub-

samples of the given training set in training stage and test instances are passed

through isolation tress to get an anomaly score for every instance in evaluation stage.

Working of these stages is explained in algorithms below.
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Training Algorithm 1: iForest(Z, t, φ)
Inputs: Z - input data, t - number of trees, φ - sub-sampling size
Output: a set of t
1. Initialize: forest
2. for i = 1 to t
3. sample (Z, φ) → Z’
4. forest ∪ iTree (Z’) → forest
5. end for
6. return: forest
Training Algorithm 2: iTree(Z’)
Inputs: Z’ - input data
Output: an iTree
1. if Z’ isn’t divisible
2. then return exNode {|Z’ | → Size}
3. else
4. let A be attributes list in Z’
5. randomly select an attribute a ∈ A
6. randomly select a split point p between the max and min values

of attribute a in Z’
7. filter(Z’, a < p) → Z’
8. filter(Z’, a ≥ p) → Z’
9. return inNode {iTree(Zl) → Left},
10. {iTree(Zr) → Right},
11. {a → SplitAtt},
12. {p → SplitValue}
13. end if

Subsampling size φ control the training data size and is generally set to 28 or 256.

Number of trees t control the ensemble size and the default value is set to 100 [49].
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Evaluation Algorithm: PathLengths(z, T, hlim, j )
Inputs: z - an instance, T - an iTree, hlim - height limit,
j - current path length (initialized to zero for first iteration)
Output: path length of z
1. if T is an external node or j ≥ hlim
2. then return j + k(T.size) {k(.) defined in equation 5.12}
3. end if
4. T.splittAtt → c
5. if za < T.splitValue
6. then return PathLengths(z, T.left, hlim, j + 1 )
7. else {za ≥ T.splitValue}
8. then return PathLengths(z, T.right, hlim, j + 1 )
9. end if

In evaluation algorithm, a single path length h(z) is acquired by calculating the

number of edges j from root node to external node. j and adjustment k(Size) is

returned when the predetermined height hlim is reached by the traversal. Anomaly

score is calculated once h(z) is available from each tree of the ensemble. Average of

h(z) is given by equation 5.10 [50].

k(φ) =


2H(φ− 1)− 2(φ− 1)/φ forφ > 2

1 for φ = 2

0 otherwise

(5.10)

where, H(i) is a harmonic number that can be estimated by ln(i) + 0.5772156649.

The anomaly score s of an instance z is given by equation 5.11.

s(z, φ) = 2
−
E(h(z))

k(φ) (5.11)

where, E(h(z )) is average of h(z ) from collection of iTrees. Values of anomaly score

is provided by following three conditions [49].

• when E(h(z )) → 0, s → 1;
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• when E(h(z )) → φ - 1, s → 0; and

• when E(h(z )) → k(φ), s → 0.5.

This anomaly score would be calculated for each value from the PMU data set in

this study and following would be inferred from anomaly score s : -

i. If s is close to 1, instance is an anomaly

ii. If s is smaller than 0.5, instance can be safely regarded as normal

iii. If all instances return s ≈ 0.5, there isn’t definite presence of anomalies in the

given sample

Isolation forest module from sklearn [41] an open source python library is used to

detect the events. Anomaly score in this module is different to the one mentioned

above - table 5.5. Parameters of this module are listed in table 5.6.

Table 5.5: Anomaly Score

Instance Type Anomaly Score

Normal Instance 1

Anomaly -1
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Table 5.6: Parameters for Isolation Forest

Parameter Description Default Value

n_estimators Number of base estimators in

the ensemble

10

max_samples Number of samples to draw

from X to train each base

estimator

auto

contamination Amount of contamination of

the data set, i.e. the

proportion of outliers in the

data set. Used when fitting to

define the threshold on the

scores of the samples

If ’auto’, the threshold is

determined as in the original

paper

If float, the contamination

should be in the range [0, 0.5]

auto

5.5.2 Feature Extraction and Feature Optimization

As the isolation forest is a generalized outlier detection method, features that give

a more extensive characteristics of the measurement in the data needs to be extracted

and used as an input to the isolation forest algorithm in order to effectively detect

events. Following sections explains the methodology to extract and optimize these

extracted features.
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5.5.2.1 Feature Extraction

A python library tsfresh [42] is used to extract the features from time series PMU

data. tsfresh provides automated time series feature extraction and and feature se-

lection. However, only extraction would be performed using tsfresh as selection is

designed for supervised learning [51]. Input and output objects and scikit-learn com-

patible transformer classes are provided and deployed where transformers are used to

translate the data for a field into a format that can be displayed in a specific form.w It

also implements the application programming interfaces of Python machine learning

and data analysis frameworks such as numpy [52], pandas [53], scipy [54], keras and

tensorflow [55].

The feature extraction module consists of various feature calculators and the logic

to implement them effectively in time series analysis. A setting dictionary controls

the number and parameters of all the extracted features. The extracted features can

be distributed in five major categories.

• Statistical features (mean, variance, standard deviation, kurtosis)

• Energy based features (absolute energy)

• Logic based features (absolute sum of changes, count above)

• Value based features (max, min, range count)

• Wavelet transform based feature (continuous wavelet transform)

• Frequency transform based feature (fast fourier transform)

5.5.2.2 Feature Optimization

As features extracted from tsfresh act as an input to isolation forest, its performance

can be improved by optimizing these extracted features. However, more than 400

features are extracted by tsfresh depending on the data set in use and classifying them
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in terms of their importance is a challenging and time consuming process. Hence, to

observe the effect of change in detection accuracy by optimizing these features, a meta

heuristic optimization method particle swarm optimization (PSO) is explored in this

study.

PSO is a stochastic optimization method based on swarm, proposed originally by

Kennedy and Eberhart [56]. PSO algorithm is a sort of searching procedure dependent

on the swarm of features, in which every individual feature is known as a particle

characterized as a potential solution of the optimized problem in D-dimensional search

space and it can retain the optimal position of the swarm and that of its own, just as

the velocity. At every stage, the particle’s data is consolidated together to modify and

adjust the speed of each dimension, which is utilized to register the new position of

the particle. Particles change their states continually in the multi-dimensional search

space until they arrive at a optimal state, or until the given number of iterations are

reached. The one of a kind association among various dimensions of the problem

space are presented by means of the objective functions.

Each particle in the swarm is composed of d-dimensional vectors, where d is the

dimensionality of search space [57]. The vectors are as follows: -

• Current position xnd

• Previous best position p_bestnd

• Velocity vnd

Change in velocity and position of the particles is governed by equation 5.12 and

equation 5.13 respectively [58].

vnd(i+ 1) = wvnd(i) + c1 rand1 (pnd − xnd) + c2 rand2 (pgd − xnd) (5.12)

Where,

n → particle
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i → iteration

vnd(i+ 1) → new velocity for nth particle

w → inertia weight

c1 & c2 → acceleration constant

pnd → best individual position

pgd → best position of all particles

xnd(i+ 1) = xnd(i) + vnd(i+ 1) (5.13)

Where,

xnd(i+ 1) → best position after update

The working of PSO is explained in the following algorithm.



38

Particle Swarm Optimization
Inputs:
Output:
1. for each particle n
2. for each dimension d
3. Initialize position xnd randomly
4. Initialize velocity vnd randomly
5. end for
6. end for
7. Iteration i = 1
8. do
9. for each particle n
10. Calculate fitness value
11. if fitness value better than p_bestnd in past
12. Set present fitness value as the p_bestnd
13. end if
14. end for
15. g_bestd = particle having the best fitness value
16. for each particle n
17. for each dimension d
18. Change velocity and position of the particle according

to equations 5.12 and 5.13
19. end for
20. end for
21. i = i + 1
22. while minimum error criteria or maximum iterations are not reached
23. end while



CHAPTER 6: EXPERIMENTS AND RESULTS

The task of event detection in this study is performed individually on each available

parameter; voltage magnitude, voltage phase angle and frequency according to event

categories listed in table 5.1. This chapter is outlined on the basis of type of event to

be detected; impulse, transient and step change. Various detectors from section 5.5

are implemented to detect the events. Finally, all the detected events are aligned with

respect to time to study the characteristics of different parameters in power system

that are measured by PMU in case of an event and whether they match with the

event record file.

It is important to note here that the event record file is not used to train the

models as done in some of the methods discussed in chapter 2, but to use it as

a validation measure as the physical power flow calculations are not performed to

verify the occurrence of an event.

6.1 Preprocessing

Prior to the application of detectors, the PMU data needs to preprocessed in order

to achieve effective analysis of the parameters evaluated and to avoid false positives.

6.1.1 Data Filtration

Voltage magnitude recorded by the PMUs is usually adulterated with noise and

unwanted information due to the fact that the voltage signal is transmitted through

a series of cables, equipment and parallel loads. Furthermore, the frequency range of

inter-area and intra-area oscillations is below 2 Hz [59]. In order to effectively detect

these oscillation events and to remove the unwanted information from the data, data

needs to be filtered for high frequency content. A low pass butterworth filter is used
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for this purpose. Butterworth filter provides a flat response in the output signal at

the expense of a relatively wide transition region from pass-band to stop-band, with

average transient characteristics. The magnitude squared butterworth function of

order n is given in equation 6.1 and the transfer function is given in equation 6.2.

|Ha(jω)|2 =
1

1 + (ω/ωc)
2n (6.1)

Where,

ωc → cutoff frequency

Ha(s) = (−1)n
n−1∏
K=0

sk
s− sk

(6.2)

Figure 6.1: Magnitude Squared Characteristic of the Normalized Butterworth Low-
pass Filter [60]

Module butter from python library scipy is used to filter out frequency content

greater the 2 Hz. Parameters for this filter are listed in table 6.1.
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Table 6.1: Parameters for Butterworth Filter

Parameter Value

Order 2

Sampling rate 30 Hz

Cutoff frequency 2 Hz

6.1.2 Angle Unwrap

The voltage phase angle recorded in the data increases or decreases depending on

the speed of rotation as the rotation is not constant and not at normal frequency (60

Hz) [61]. The voltage phase angle jumps from 180 to -180 degrees when rotating at

greater than normal speed as shown in figure 6.2a. In order to analyse the voltage

phase angle, it is necessary to unwrap it - figure 6.2b. The unwrap process is explained

in the following algorithm.

Phase Angle Unwrap
Inputs: A - Voltage phasor angle of a station
Output: Unwrapped Angle
1. angdiff = A(2:end) - A(1:end-1)
2. posjump = find(angdiff < -300)
3. negjump = find(angdiff > 300)
4. if isempty(posjump)
5. for qt = 1 : length(posjump)
6. x = [A(1 : posjump(qt)); A(posjump(qt) + 1 : end) + 360]
7. A = x
8. end for
9. end if
10. if isempty(negjump)
11. for qt = 1 : length(negjump)
12. x = [A(1 : negjump(qt)); A(posjump(qt) + 1 : end) - 360]
13. A = x
14. end for
15. end if
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Figure 6.2: Voltage Phasor Angle Unwrap Process

6.2 Detection using SST

An open source python library banpei 5.4.1.3 has been used to detect transient

events using SST in all the available measurements by PMU. The parameters selected

for banpei are listed in table 6.2. The detection procedure is explained in appendix

A.
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Table 6.2: Selected Parameters for banpei

Parameter Selected Value

w 600

m Default 2

k 300

L 150

is_lancos True

Various combinations of the parameters were tested and the best performing pa-

rameters were selected. The number of columns in trajectory matrix and test matrix

k and the lag time L are calculated using equation 6.3 and 6.4 respectively. Parameter

is_lancos is set to true for performing SST in Krylov subspace 5.4.1.3 resulting in

faster calculation of change point score.

k =
w
2

(6.3)

Where,

w → window size

L =
k
2

(6.4)

Where,

k → number of columns in trajectory matrix and test matrix

Prior to application of banpei the voltage magnitude and voltage angle needs to

be preprocessed as per section 6.1. In case of frequency, no preprocessing is required.

Once, the preprocessed data is obtained banpei can be directly implemented on the

parameters in the data.

Figure 6.3 and figure 6.5 give the resulting plots for one of the station’s voltage

magnitude and frequency respectively. Figure 6.3a shows the voltage magnitude



44

change point score for entire hour. Whereas, figure 6.3b shows the normalized plot

from minute 5 to minute 11 for the voltage magnitude and the respective change

point score. In figure 6.4, the resulting plot for RPAD between two station is shown.

Figure 6.4a presents the RPAD change point score for entire hour. Whereas, figure

6.4b presents the normalized plot from minute 43 to minute 45 for the RPAD and

the respective change point score. Figure 6.5 shows the frequency change point score

for an entire hour. Detected events from direct implementation of banpei on data,

extracted features and from optimised set of features are listed in Table 6.3.
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Table 6.3: Detected Events using SST

Parameter Station
Number of

Events Detected
Type of Event Timestamp

Duration

(seconds)

Voltage Magnitude

UT Austin 7 Transient

1:06:53

1:21:00

1:34:45

1:44:09

1:45:44

1:52:05

1:53:31

1:59:41

103

57

100

87

48

35

83

14

McDonald 0 - - -

UT PanAm 0 - - -

RPAD
UT Austin & UT PanAm 1 Transient 1:44:36 29

UT Austin & McDonald 0 - - -

Frequency

UT Austin 0 - - -

McDonald 0 - -

UT PanAm 0 - - -
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The transients represent temporary imbalance of load and generation. Seven tran-

sient events were captured by banpei for UT Ausitn’s voltage magnitude and one

transient event was captured for UT Austin and UT PanAm RPAD. Table 6.3 gives

the timestamp and the duration of detected events. It can be inferred that by using

SST, transient events can be captured effectively without any false detection. It has

been found that with larger window size, the computation time increases. However,

better results are produced as the data converted to the new time series is of much

higher resolution due to the formation of larger hankel’s matrix (5.4.1). Therefore, a

good balance of accuracy and the computational power utilization needs to be found

according to the problem at hand.

6.3 Detection Using PersistAD

Prior to application of PersistAD, the data needs to be preprocessed as per section

6.1. In case of frequency, no preprocessing is required. Once, the preprocessed data is

obtained PersistAD can be directly implemented on the parameters in the data. The

parameters selected for PersistAD are listed in table 6.4. The detection procedure is

explained in appendix B.

Table 6.4: Parameters for PersistAD

Parameter Selected Value

window Default: 1

c 15

side Default: both

min periods Default: None

agg Default: median

The window parameter has been set to one as the main goal of this detector is to

detect impulse events in the PMU data. This allows detection of impulses with a very

short time period. c is the normal bound defined with respect to the interquantile
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range of the time series on which the detector is applied. side is set to both to detect

impulses in both; positive and negative direction. Median is used as the aggregation

method for the double rolling aggregate window.

The detector is applied on each of the parameter and the results are listed in table

6.5. Figure 6.6, figure 6.7 and figure 6.8 shows the detected anomalies in voltage

magnitude, RPAD and frequency for one of the stations.
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Figure 6.8: Impulse Events in McDonald Frequency

The number of events, timestamp and the respective duration of the events are

given in table 6.5. The number of impulses occurring on voltage magnitude has ob-

served to be larger. Although the exact cause is unknown, transients might be the

result of constant switching of loads which is reflected in the voltage magnitude. In

contrast to the voltage magnitude, the RPAD has relatively low number of impulses.

The speed of rotation of phasor angle varies according to the various operating condi-

tions. Hence, the phasor angle are less susceptible to impulses and more susceptible

to step changes. The frequency for station Mcdonald has eight impulse events and
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the other two stations have no impulses present.

Table 6.5: Detected Events using PersistAD

Parameter Station
Number of

Events Detected
Type of Event Timestamp

Duration

(seconds)

Voltage Magnitude

UT Austin 5 Impulse

1:04:30

1:14:46

1:24:13

1:48:46

1:56:46

1

1

1

1

1

McDonald 12 Impulse

1:07:08

1:19:31

1:20:42

1:26:31

1:27:41

1:28:44

1:30:04

1:30:26

1:38:45

1:44:57

1:53:46

1:56:05

1

1

1

1

1

1

1

1

2

1

1

1

UT PanAm 13 Impulse

1:02:53

1:09:08

1:18:41

1:21:31

1:28:14

1:33:49

1:35:19

1:40:59

1:44:16

1:44:39

1:46:12

1:58:30

1:59:40

1

2

1

2

1

2

1

1

1

2

2

3

1

RPAD
UT Austin & UT PanAm 1 Impulse 1:18:43 1

UT Austin & McDonald 3 Impluse

1:38:45

1:48:43

1:53:49

1

1

1

Frequency

UT Austin 0 - - -

McDonald 8 Impulse

1:10:28

1:10:56

1:25:41

1:27:07

1:38:45

1:45:37

1:48:55

1:53:50

1

1

1

1

1

1

1

1

UT PanAm 0 - - -
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6.4 Detection Using LevelShiftAD

LevelShiftAD detector from an open source library ADTK 5.4.2 has been used to

detect step changes in voltage magnitude and RPAD data. Sudden rise/drop events

in frequency data has also been explored using this detector. The parameters used

are listed in table 6.6. The detection procedure is explained in appendix B.

Table 6.6: Selected Parameters for LevelShiftAD

Parameter Default Value

window 300

c 8

side both

min periods Default: none

The window parameter is set to 300. Unlike PersistAD the window for LevelShif-

tAD must be long enough to detect the step changes. c is the normal bound defined

with respect to the interquantile range of the time series on which the detector is ap-

plied. side is set to both to detect impulses in both; positive and negative direction.

LevelShiftAD is applied on each parameter of the data after the preprocessing

on voltage magnitude and phasor angle is performed. Figure 6.9, figure 6.10 shows

the detected step changes in UT PanAm voltage magnitude and RPAD between

UT PanAm and UT Austin, whereas Figure 6.11 presents the sudden rise/drop in

frequency for UT Austin. The results are listed in table 6.7.
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Table 6.7: Detected Events using LevelShiftAD

Parameter Station
Number of

Events Detected
Type of Event Timestamp

Duration

(seconds)

Voltage Magnitude

UT Austin 0 - - -

McDonald 0 - - -

UT PanAm 1 Step Change 1:28:10 6

RPAD
UT Austin & UT PanAm 1 Step Change 1:44:34 1

UT Austin & McDonald 0 - - -

Frequency

UT Austin 6 Sudden Rise/Drop

1:07:15

1:20:57

1:27:38

1:43:39

1:52:22

1:53:03

5

1

2

1

5

3

McDonald 6 Sudden Rise/Drop

1:07:15

1:20:57

1:27:38

1:43:39

1:52:22

1:53:03

5

1

2

1

5

3

UT PanAm 6 Sudden Rise/Drop

1:07:15

1:20:57

1:27:38

1:43:39

1:52:22

1:53:03

5

1

2

1

5

3

The table 6.7 gives the number of step changes detected, their timestamp and the

duration. A step change was detected in UT PanAm voltage magnitude. However,

this was the only event detected by LevelShiftAD in voltage magnitude data. One

step change was detected in UT Austin and UT PanAm RPAD data. In case of

frequency, LevelshiftAD detected six sudden rise/drops at the same timestamps for

all the stations. Hence, it can be inferred that the entire system was affected by these

events.
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6.5 Detection Using Isolation Forest

Isolation forest has been used to detect events in the PMU data. This detector is

not designed to detect a specific type of event. Rather, it detects anomalies based

on the the susceptibility of an outlier to be isolated. Hence, the detected events

from isolation forest would be categorized based on the visual characteristics. The

detection procedure is explained in appendix C.

Prior to application of detector on angle data, angle needs to be unwrapped as per

section 6.1.2. The RPAD 5.1 of two stations with respect to UT Austin has been

derived after the unwrap process and the resulting time series is used for detection.

In case of voltage magnitude, the data needs to filtered to remove high frequency

noise in order to achieve robust detection. The parameters selected for the isolation

forest algorithm are listed in table 6.8.

Table 6.8: Selected Parameters for Isolation Forest

Parameter Selected Value

n_estimators Auto: 100

max_samples Default: auto

contamination 0.001111

It was observed that due to the length of the data, high computational memory

was utilized by this detector. In order to reduce the computational memory usage, a

sliding window has been implemented. The length of the sliding window was set to

30 data points in one window. This length was set in such a way that each window

represents one second so that if an anomaly is detected in any of the window, it can

be conveniently mapped to the respective timestamp.

The parameter n_estimators and max_samples were set to default. The only pa-

rameter that has been varied in this study is contamination. As isolation forest is an

unsupervised anomaly detection algorithm, the proportion of outliers in the data set
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(number of outliers to be detected) must be predefined. Since, the model was imple-

mented on each window the contamination is the proportion of anomalous windows

to the total number of windows. Equation 6.5 gives formulation of contamination pa-

rameter c. The contamination parameter changes with type of measurement; voltage

magnitude, RPAD and frequency and has to obtained on with a well educated guess

depending upon the number of anomalies to be detected.

c =
number of anomalous windows

total number of windows
(6.5)

Various features have been extracted from each window using tsfresh 5.5.2.1. These

features have been used as an input to the isolation forest algorithm. The resulting

plot has been displayed in figure 6.12 with contamination set to auto.
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Figure 6.12: iForest Implementation on UT PanAm Voltage Magnitude cāuto

Based on visual analysis of the figure 6.12, it can be inferred that with contam-

ination set to auto, the algorithm classifies the normal data points as anomalies.

With such high resolution and varying data it is difficult for the algorithm to isolate

anomalies with contamination set to auto. The basis of algorithm states that the

anomalies occur rarely and hence, the contamination parameter needs to be set ap-

propriately. Figure 6.13 shows the resulting plot for UT PanAm & UT Austin RPAD
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with contamination set to 0.001.
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Figure 6.13: iForest Implementation on UT PanAm & UT Austin RPAD c0̄.001

In order to improve the performance of isolation forest algorithm, the extracted

features from tsfresh can be optimized. PSO 5.5.2.2 has been implemented for this

purpose. The parameters selected for PSO are listed in table 6.9. Various parameters

were tested and the best performing parameters were selected. The optimization

procedure is explained in appendix D.

Table 6.9: Selected Parameters for Particle Swarm Optimization

Parameter Selected Value

n_particles 30

dimensions Number of features extracted

by tsfresh

n_processes 30

iterations 200

PSO needs error as an input. PSO optimises the position of features in such a way

that this error is reduced. The error is formulated in equation 6.6.
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error =
actual anomalies− predicted anomalies

actual anomalies
(6.6)

It is necessary to have labeled data to get the actual anomalies. With error record

file having just one event recorded and no other information, events detected with

PersistAD and LevelShiftAD could be considered as actual anomalies. It is important

to note here that the labeled data is not used to train the isolation forest model but

to get a feature set that improves the detection. Figure 6.14a and figure 6.14b shows

the detected events with non optimized and post optimized feature set respectively.

The detected impulse events from PersistAD for UT Austin voltage magnitude are

used as actual events.
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(a) iForest on UT Austin Voltage Magnitude before Optimization
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(b) iForest on UT Austin Voltage Magnitude after Optimization

Figure 6.14: PSO for Isolation Forest

Table 6.10 gives the error calculated using equation 6.6 and number of features for

UT Austin voltage magnitude for non optimized and optimized model. Figure 6.15

shows the reduction in error with respect to the number of particle swarm iterations.

Table 6.10: PSO for iForest

Isolation Forest Number of Features Error (%)

Non Optimized Feature 349 0.5

Optimized Features 178 0



63

0 25 50 75 100 125 150 175 200

Iterations

0.0

0.1

0.2

0.3

0.4

0.5

Cos
t

Cost History
Cost

Figure 6.15: Reduction in Error with respect to the Number of Iterations

Table 6.11 shows the events detected by isolation forest. Since the actual anomalies

from PersistAD and LevelShiftAD must be mapped manually, the optimization for all

the parameters is not performed in this study. However, if the data is readily labeled

the PSO can be be implemented for better performance as shown in table 6.10.

Table 6.11 shows number of events detected, the type of events, timestamp and

the duration of the event for each parameter. It was found that some of the detected

events were similar to those detected by PersistAD and LevelShiftAD. However, not

all the detected events match. Isolation forest can detect both step changes as well

as impulses in the PMU data. Having said that, it was learned that detected events

were overly sensitive to contamination parameter. Although isolation forest is an un-

supervised algorithm, for an optimum performance and to have better contamination

value, data labels are required.



64

Table 6.11: Detected Events using Isolation Forest

Parameter Station
Number of

Events Detected
Type of Event Timestamp

Duration

(seconds)

Voltage Magnitude

UT Austin 4 Impulse

1:04:29

1:23:00

1:24:13

1:54:19

2

1

1

1

McDonald 11 Impulse

1:00:18

1:08:48

1:19:31

1:20:42

1:26:31

1:28:44

1:30:26

1:36:14

1:44:57

1:45:13

1:53:49

1:55:41

1

1

1

1

3

1

1

1

1

1

1

1

UT PanAm 9
Impulse/

Step Change

1:09:09

1:21:31

1:28:44

1:33:49

1:34:20

1:44:40

1:46:12

1:58:31

1:59:40

2

1

1

2

1

1

2

2

1

RPAD
UT Austin & UT PanAm 2

Impulse/

Step Change

1:18:43

1:44:39

1

4

UT Austin & McDonald 3 Impulse

1:00:18

1:06:39

1:38:45

1

1

1

Frequency

UT Austin 5 Sudden Rise/Drop

1:05:52

1:07:20

1:07:42

1:15:03

1:47:32

1

2

1

1

1

McDonald 4 Sudden Rise/Drop

1:07:20

1:07:25

1:07:41

1:27:36

2

1

2

1

UT PanAm 6 Sudden Rise/Drop

1:07:22

1:07:42

1:28:23

1:44:40

1:47:32

1:50:06

1

1

1

1

1

1
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6.6 Comparison of Detected Events with Event Record File

The event record file is made available by author of the PMU data used in this study

[36]. This file is a log of detected events from the detection application developed by

UT Austin to monitor the Texas synchrophasor network [36]. Table 6.12 gives the

event information in the record file.

Table 6.12: Events in Record File

Index Measured Parameter Number of Events Type of Event Timestamp

1 Voltage RPAD 1 Step Change 01:44

2 Frequency 0 - -

It can be observed from table 6.12 that a step change is recorded for UT Austin

and UT PanAm at 01:44. However, this was the only event detected in an entire

hour by the application. Furthermore, only two measurements; RPAD and frequency

were examined. This study however all three measurements available in the data are

considered. Table 6.13 shows the detected events in this study for this time stamp.

Table 6.13: Detected Events at 01:44 by Various Detector

Detector Parameter Station Type of Event Timestamp Duration (seconds)

SST banpei
Voltage Magnitude UT Austin Transient 01:44:09 87

RPAD UT Austin & UT PanAM Transient 01:44:36 29

PersistAD
Voltage Magnitude UT Pan Am Implse 1:44:16 1

UT PanAm Impulse 1:44:39 2

LevelShiftAD RPAD UT Austin & UT PanAm Step Change 1:44:34 1

Isolation Forest

Voltage Magnitude UT PanAm Impulse 1:44:40 1

RPAD UT Austin & UT PanAm Step Change 1:44:39 4

Frequency UT PanAM Rise/Drop 1:44:40 1

From table 6.13 it can be inferred that the methods used in this study were able to

detect event in various parameters at the same timestamp as in the record file. The

validity of all the other detected events could not be tested due to lack of informa-

tion. However, based on visual analysis, the anomalous changes in the data are well

captured by the detectors.



CHAPTER 7: CONCLUSIONS

With the advent of grid modernization, significant amount of grid data is generated.

Sensors with high resolution measurement capabilities are replacing traditional relays

and measuring systems. One such sensor is PMU which generates precise high rate

measurement of the grid parameters. PMUs play a significant role in the observability

of the electric grid. However, with high rate measurements, analyzing this data

is seen to be a great challenge. Existing methods on data analysis and anomaly

detection were explored in this study to detect event occurrences on the power grid.

Furthermore, due to the lack of grid topology information and requirement of previous

history of events to train the models, unsupervised learning techniques such as SST

and isolation forest were used to detect the events. Unsupervised anomaly detection

tool such as Arundo’s ADTK was used to explore its performance on PMU data.

Historical PMU data from Texas synchrophasor network has been used to detect

events. Categories based on visual characteristics have been proposed in section 5.2.

The detection methods were selected based on their capability to detect the events

from the proposed categories.

An open source pyhton library banpei was used to perform SST on time series to

detect the transients. The change point score was calculated in Krylov subspace for

each of the parameter. Calculating the change point score in krylov subspace signif-

icantly improves the computation time compared to the original SST method [46].

Timestamps with significantly high change point scores were marked as events. It was

observed that transients were detected effectively with large window size. However,

with increase in window size the computation time increases.

PersistAD and LevelShiftAD from Arundo’s ADTK were used to detect impulse
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and step change events in the data. Both the detectors use a double rolling aggregate

sliding window to detect the anomalous changes. Due to continuous switching of

the load impulse events are more visible in voltage magnitude rather their phasor

angle and power frequency [62]. Similarly the speed of rotation of phasors changes

significantly during an event resulting in step change. The impulse events detected

by PersistAD and step change events detected by LevelShiftAD portrayed similar

characteristics. Six sudden rise/drop events were detected in frequency measurement

for all stations. The events occurred at exact same timestamps indicating a system

wide event.

Based on visual analysis, SST for transients, PersistAD for impulses and Lev-

elShiftAD for step changes as well as sudden drops or rise in frequency provided

100% detection accuracy.

Further, use of a generalized anomaly detection method, isolation forest was ex-

plored on PMU data. In contrast to the above mentioned methods, isolation forest

was not used to detect any specific type of anomalies as isolation forest detects anoma-

lies based on their susceptibility to be isolated. The anomalies detected by isolation

forest were categorized on their visual characteristics after detection. It was observed

that this algorithm required high computational memory due to the large length of

the data. Hence, a sliding window was implemented to conveniently manage the data.

Features from each window were extracted using tsfresh and the isolation forest was

implemented on each window. Although isolation forest did not require labelled data

to detect events, it was observed that labels were required in order to set an optimum

contamination factor. Isolation forest was unable to detect transients in the data.

However, impulses and step change were effectively detected. Further, to optimize

the the features extracted by tsfresh, a population based metaheuristc method; PSO

was implemented. PSO selects a position of features such that the error in predicted

anomalies is reduced. However, for calculation of the error, the data must be labelled.
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As not labels were not available, detected anomalies from PersistAD were used an ac-

tual anomalies. It was learned that PSO have the capability to significantly improve

the detection accuracy for isolation forest.

Finally, the results obtained from the detectors were compared to the event detec-

tion methods used by UT Austin. It was observed that in contrast to the only event

detected in UT Austin’s record file, two of the proposed method were able to detect

the same event as well as several other events. Additionally, the events in voltage

magnitude were detected which is not considered in UT Austin’s methods.

7.1 Future Work

In contrast to this study where the events are validated based on visual analysis,

the proposed methodology can be tested on data with actual event information to

examine the accuracy on quantitative grounds. In presence of labelled data, improve-

ment in detection accuracy for isolation forest using PSO can be studied in much more

detail. Possibility of an ensemble algorithm with automated parameter selection and

event categorization built on the present methodology can be analysed. With contin-

uous improvements in machine learning and deep learning methods, more optimized

and advanced unsupervised machine learning and deep learning algorithms can be

explored in the future. Further, application of methods used in this study can be

tested on various other time series data sets. Isolation forest with particle swarm

optimization can be tested on labeled data to study the improvement in detection.
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APPENDIX A: Transient Event Detection using SST

SST for Transient Detection: banpei
Inputs: w - window size
Output: Anomaly A
1. begin preprocessing data as per section 6.1
2. get w
3. calculate change point score (s) using banpei - section 5.4.1
4. return new time series with change point score ts
5. calculate ts mean
6. calculate ts standard deviation
7. A = timestamps ∈ ts > 3(standard deviation)*mean

Figure A.1: Transient Event Detection
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APPENDIX B: Impulse and Step Change Detection using Arundo ADTK

Arundo ADTK for Impulse and Step Change Detection:
PersistAD, LevelShiftAD
Inputs: w - window size, c - normal bound
Output: Anomaly A
1. begin preprocessing data as per section 6.1
2. convert data to datetime index
3. get w
4. get c
5. select aggregation method → mean, median
6. calculate interquartile range IQR as per equation 5.9
7. A → bound > (Q1-c*IQR and Q3+c*IQR)

Figure B.1: Impulse Event Detection

Figure B.2: Step Change Event Detection
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APPENDIX C: Generalized Anomaly Detection using Isolation Forest

Generalized Anomaly Detection using Isolation Forest
Inputs: l - length of window, o - number of overlaps

c - contamination factor
Output: predicted events pred
1. begin preprocessing data as per section 6.1
% Distribute Data in Equal Window Lengths
2. get l
3. get o
4. shift = l - o
5. calculate number of new rows (n) in l
6. n = round((length(data) - l/shift)+1
7. create a list; data_list
8. for
9. initialize i where, i → 1 to n+1
10. datanew create new data set ∈ data_list with given l
11. append datanew to data_list
12. end
% Extract Features
13. Extract features using tsfresh form data_list 5.5.2.1
% Event Detection
14. get c
15. detect anomalies pred using isolation forest 5.5.1 with features as input

Figure C.1: Event Detection using Isolation Forest
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APPENDIX D: Feature Optimization for Isolation Forest using PSO

Feature Optimization for Isolation Forest using PSO
Inputs: AActual - actual event timestamps, pred - events predicted

using isolation forest, n - number of particles, i - number of iterations
Output: optimized feature position foptimized

1. follow event detection procedure as in appendix C
2. def error
3. find common indices for AActual and pred
4. get length of common indices lcommon

5. get length of actual event timestamp lactual
6. error = (lactual - lcommon)/lactual
7. end
8. return error
9. initialize n
10. initialize i
11. perform optimization as per 5.5.2.2
12. return foptimized

13. repeat step 15 from appendix C with foptimized as input

Figure D.1: Feature Optimization for Isolation Forest using PSO
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