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ABSTRACT

VRUSHANK DEEPAK BALUTKAR. Effective Thermal Conductivity of Porous
Materials using Maxwell’s Methodology and Image-Based Finite Element Approach.

(Under the direction of DR. HARISH P. CHERUKURI)

The steady-state thermal response of solid materials is controlled by their thermal

conductivity. For porous materials, the local thermal conductivity is difficult to use in

the characterization of the overall thermal response and therefore, often, the concept

of effective thermal conductivity that depends on the porosity is used. In this work,

two methods for computing the effective thermal conductivity of porous materials

are studied. The first approach uses an image-based approach where a stack of 2-

dimensional images are used to build a three-dimensional structure with porosities.

The effective thermal conductivity of this structure is then calculated using the finite

element software ABAQUS. The second approach, known as Maxwell’s method, is

used on a medium consisting of spherical pores arranged in various configurations such

as simple-cubic, body-centered cubic and face-centered cubic arrays. Results from the

numerical simulations and the applicability of the two approaches to structures with

complex porous structure are discussed. The effect of porosity on the effective thermal

conductivity is also discussed.
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CHAPTER 1: INTRODUCTION

The Fourier’ law of heat conduction relates heat flow and temperature field gradient

through the relationship

q′′(r̂, t) = −k∇T (r̂, t), (1.1)

where q′′(r̂, t) is the heat flux vector, ∇T is temperature gradient, r̂ is the position

vector, t is time and k is thermal conductivity. For a given temperature gradient,

the flow of heat is directly proportional to thermal conductivity of a material [2].

From the Fourier law, the units for k are easily deduced as W/(m.K). Furthermore,

k can also be defined as the amount of heat flowing through a material per unit

time through unit area as a result of unit temperature gradient. If the solid medium

through which heat energy is conducted has inhomogeneities or pores, the heat trans-

fer is affected and the heat energy changes. In this case, the concept of effective

thermal conductivity is used in designing and selection of materials for different engi-

neering applications. For example, porous ceramics have a wide range of applications

in sensors, ceramic filters, bio-materials, catalyst carrier, porous electrodes, thermal

barrier coatings and so on [3]. Thermal Barrier Coatings (TBC) are used to pro-

tect and insulate hot-section metal components in diesel engines and advanced gas

turbines where temperature reduction up to 200◦C can be obtained, which in turn im-

proves and enhances the metal component [4]. Effective thermal dissipation is used in

several energy systems and electronic systems such as LED, Li-ion battery, solar cells

and micro electric packaging. These applications have composites porous materials

and thus it is important to evaluate their effective thermal conductivity. Of the sev-

eral methods available to calculate effective thermal conductivity, two are considered
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in this study. One is an image-based finite element analysis (FEA) of multi-phase

materials. Second, Maxwell’s methodology applied to thermal analysis for periodic

spherical pores and spherical and cubical effective medium. The image based FEA

can be used to calculate effective thermal conductivity for any porous material with

random or periodic pore structures. In this method, a cross sectional image of said

porous material is captured and several such images are combined to create a three

dimensional model. Object Oriented Finite (OOF) elements software application is

used for studying the microstructure of porous materials and its response to ther-

mal properties [5]. The other method for estimating effective properties of materials,

derived by Maxwell (1873), aided in approximating electrical conductivity of a par-

ticle cluster by looking at the effect of the cluster on the far-field when the system

is subjected to a uniform electric field. This method has been extended to thermal

conduction problems with pores of different sizes and structure [6].

1.1 Thesis Objective

The objective of this thesis is to study the effective thermal conductivity of porous

materials using two methods as discussed above. In the image-based finite element

analysis, a three dimensional model of a micro-structure with random distribution

of pores is considered. In the Maxwell’s methodology for thermal problems, a ma-

trix embedded with spherical pores along with spherical and cubical effective media

are considered. Effective thermal conductivity is assigned to the spherical and cubi-

cal effective media, where the temperature distributions are plotted and compared.

The effects of porosity, pore distribution and pore geometry on the effective thermal

conductivity are studied as well.

1.2 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 discusses different numerical methods used to calculate effective thermal
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conductivity. The porosity of different composites affect their effective thermal con-

ductivity and thus is an important factor. We use a representative volume element

for digital image-based FEA and apply Maxwell’s methodology using FEA.

Chapter 3 studies Image-based FEA used for microstructures with pores of various

spatial arrangement and sizes, detailed explanation of which have been provided.

Random porous microstructure images are stacked and a three dimensional model is

generated. OOF3D is used to mesh and assign material properties to the different

phases and it is then imported into ABAQUS for thermal analysis.

Chapter 4 explores the application of FEA in calculating effective thermal conduc-

tivity using Maxwell’s methodology. Three types of structures are used to arrange

pores in a cubical array. Both spherical and cubical inhomogeneities are used as ef-

fective media. Thermal boundary conditions are applied across the top and bottom

surface of the matrix encompassing both pores and the effective medium.

Chapter 5 discusses the effect of porosity on effective thermal conductivity. Three

different pore structures and arrangements are presented.

Chapter 6 includes results of FEA using both image-based process and Maxwell’s

methodology. Linear regression plots between porosity and effective thermal conduc-

tivity are also shown in this chapter.

In Chapter 7, conclusions are derived from the results obtained by comparing all

the structures and both effective medium. Future work is also presented.



CHAPTER 2: LITERATURE REVIEW

Thermal conductivity is an important parameter for heat conduction; the heat flux

is directly dependent on the former through Fourier’s law. Thermal conductivity

varies with materials and their state. For example, solids have higher thermal con-

ductivity than most liquids and gases. There is variation of thermal conductivity due

to change in temperature and it can also have directional dependence as in anisotropic

materials [2]. For inhomogeneous materials and composite materials, it can vary from

point to point.

Composite materials with multiple phases or different material properties for dif-

ferent phases are modeled as homogeneous materials having effective properties [7].

Thus we can define effective thermal conductivity as the average thermal conductivity

of a composite material with different phases or pores, which can be determined by

using steady-state thermal analysis.

The concept of Representative Volume Element (RVE) is usually used to numer-

ically determine properties of composite materials. For this, the pore distribution

should be isolated and correct boundary conditions are to be applied on the RVE so

as to obtain results similar to real structure. RVE is a unit cell that can be isolated

from a composite material as the material as a whole consists of random distribution

of pores across the cross-section. Hence, for simplicity, the models assume an RVE

which is isolated having the same material constants [7]. In this paper, the average

stress and strain quantities are defined to confirm the equivalence between the original

heterogeneous material and its analogous homogeneous material. In another paper,

square RVE and cylindrical RVE are studied and the effective mechanical properties

of carbon nano tube (CNT) are calculated using FEM [8].
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To calculate effective thermal conductivity we consider a cross-section of a material

with pores. The top and bottom surfaces are prescribed with fixed temperature

conditions T1 and T2. The side surfaces are considered as insulated (Q = 0), where Q

is the heat flux. Thus through Fourier’s law we can determine the effective thermal

conductivity as

keff =
QL

W∆T
(2.1)

where, keff is effective thermal conductivity, L is the height and W width of the the

model, Q is the steady state heat flux and ∆T is the temperature difference between

bottom and top boundaries [9].

The effective thermal conductivity of porous materials is influenced by the size and

structure of pores [3]. The effects of pores and interfaces are studied by Z.Wang et

al. for plasma sprayed zirconia coatings. The paper studies two different approaches

to observe the effect of pores on the operative properties of the material. In one

approach, Small-Angle Neutron Scattering (SANS) studies are conducted to quan-

tify the micro-structure of zirconia coatings. In this method, an artificial rebuilding

of the porous material is carried out. The other approach uses microstructural im-

ages obtained from Scanning Electron Microscope (SEM). A model is constructed by

thresholding these images by using OOF3D. The effective thermal conductivity is cal-

culated using similar methods as described above. There are two important factors to

be considered while modelling the porous materials. First, the model should be large

so that it contains enough features of the microstructure so as to obtain a represen-

tative thermal or mechanical response. Second, all the details of the microstructure

should be involved so that it is similar to the real microstructure [9].

Modelling RVE for the microstructure of a composite material with different shapes

and sizes of pores is very difficult. The geometric information about the composite

material or microstructure can be obtained through a set of cross-sectional images.

Image processing and digitizing the pixel and voxel is done to create a FE model.
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Digital Imaged Based FE modelling can be used to automatically generate the FE

model accompanied with homogenisation method for predicting thermal and mechan-

ical behaviors of the microstructure.

The process of digital imaging of microstructure involves capturing the image and

sampling it into numerical form. Then a unit cell is selected from the microstructural

image followed by observing the pixel distribution, and a gray scale image is con-

structed using thresholding operation. A threshold value is decided below which the

value of the pixel becomes 1 and above which it becomes 0. Resolution of the image

is adjusted accordingly to obtain perfect boundaries between the phases. Several im-

ages, after going through the similar process are stacked to create a FE model. After

the model is generated, it is used for finite element analysis [10] [11].

In this research, Object Oriented Finite Elements in three dimension (OOF3D) is

used for the digital image based finite element analysis. It provides all the procedures

described above and can also be used for meshing the geometric model and solving

Partial Derivative Equations (PDE) using finite element models. The software has a

Graphic User Interface (GUI) for visualising the microstructure in 3D. It uses several

options including snap nodes, smoothing boundaries, rationalizing shapes and refining

all elements [5]. The design of the OOF code is explained and formulated by Patzak

and Bittnar in their paper [12]. Chawla et al. [13] have used this technique for thermo-

mechanical simulation, whereas Takano et al. [14] have used similar techniques for

utilizing homogenization method.

Similar methods are used in many applications like Al open-cell foam where the

specimen is ground and polished in order to capture its cross section [15]. Three

dimensional RVEs are generated by Sharma et al. [16] in their paper for densely

packed Al/SiC composites for modelling thermal expansion.

Celik et al. [17] study the effects of residual stresses in plasma sprayed MgO-ZrO2

coatings for internal combustion diesel engine. The percentage of porosity influences
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the level of thermal stresses in the coatings which are subjected to thermal shock. In

this study both thermal and structural FEM were used to investigate the effects. A

two dimensional model was created with fine mesh.

Thermal conductivity can also be calculated by considering the theory of scattering

phonons by point defects and hopping of oxygen vacancies. The thermal conductivity

of Yttria-Stabilized Zirconia (YSZ) ceramic is measured using this theory [4]. Increase

of effective thermal conductivity due to radiation at high temperature is also consid-

ered in aforementioned theory. The models were generated using the SEM images

of the cross-section of YSZ and the pores were measured using ContextVision image

analysis software. Maxwell’s theory was applied in this study as well.

In their paper, Anish K. John et al. [18] use a numerical method to determine the

effective thermal conductivity of heat exchanger surfaces. The heat exchanger has

a perforated plate matrix through which conduction occurs. The effective thermal

properties of the perforated heat exchanger plates are obtained using ANSYS soft-

ware. In this paper, the porosity and perforation factor effects are studied, which

is the ratio between the perimeter of perforation to the plate thickness. The tem-

perature is determined using steady state thermal analysis, neglecting the radiation

effects. The perforated plate is modeled in a rectangular structure, and conduction

and convection conditions are applied. Material properties of copper, like density,

thermal conductivity and heat capacity are used. Constant heat flux is applied on

two opposite boundaries of the rectangular structure and the other boundaries are

considered adiabatic.

Various insulating media are also considered as multi-phase materials. They contain

numerous voids which affect the thermal conductivity of the medium. A 3D printer

can be used to generate samples with pores of different shapes and sizes to investigate

their thermal properties. In their paper, Chung et al. [19] use a series of samples

with different anisotropic void distributions generated using 3D printing . In that



8

the sample is created in any CAD software and converted into the required data

description for the 3D printer. The sample quality is also confirmed using X-ray to

check the anisotropic voids. A hot disk device sensor is used to determine the thermal

properties of the samples and the effects of the void on them; FE simulations are also

conducted on the samples for the study. The void alignment and distribution strongly

affects the material response.

Maxwell’s far-field methodology for predicting effective electrical conductivity, was

adapted into an analogous process to derive effective thermal conductivity. The

methodology is analogous to thermal problems and hence can be used to determine

effective thermal conductivity. In the paper [6], it is shown that the methodology is

not restricted to low volume fractions, which was originally suggested by Maxwell.

The methodology can also be used to determine effective elastic properties [20] [21].

In this methodology, two cases are considered. The first case consists of a cluster

of N types of particles embedded and bonded in an infinite matrix. The radius of

those particles is ai, i = 1, 2, .., N . The superscript i is used to denote the particles

with different properties. These particles are enclosed in a sphere of radius b. Volume

fraction is considered for this derivation. The volume fraction of a composite can be

defined as the ratio of volume of different materials present in the composite over

the volume of the whole composite. Volume fraction of the particles in the matrix is

given as:

V i
p = nia

3
i /b such that Vm +

N∑
i=1

V i
p = 1. (2.2)

In the second case an isolated sphere is embedded in an infinite matrix. At large

distance, the cluster can be considered as a single point at the center. Thus at large

distances from the cluster and the effective medium the temperature distributions

should be identical [6]. After equating the perturbance and solving we get the effective
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thermal conductivity as:

keff = VpKp + VmKm −
(Kp −Km)2VpVm

VpKm + VmKp + 2Km

. (2.3)

For evaluating the effective thermal conductivity of isotropic materials, a numerical

technique based on Maxwell’s methodology is presented by Olesya Koroteeva et al.

[22] in their paper.

Figure 2.1: Cluster of spherical particles embedded in infinite matrix [1]

Figure 2.2: Spherical effective medium embedded in infinite matrix [1]
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The pores considered in the material are of periodic or random arrangement. The

technique uses clusters of spherical particles and a spherical effective medium in an

infinite matrix. The temperature at distant points from the cluster and the spherical

effective medium is the same. Thus the effective thermal conductivity is defined by

the thermal properties of the effective medium [22]. Effective thermal conductivity

is also calculated using equivalent homogeneity method by accounting the interac-

tions between the spherical particles in the cluster. This approach is the extension of

Maxwell’s methodology and predicts the effective thermal conductivity for low vol-

ume fractions [1]. Another modification to this method can be employed by using

cubic equivalent inhomogeneity or cubic effective medium instead of spherical effective

medium. The results for cubical inhomogeneity converge to the benchmark solutions

[23]. Maxwell’s methodology can also be combined with boundary element method to

obtain the effective properties of composite materials with non-spherical pores [24].



CHAPTER 3: IMAGE-BASED FINITE ELEMENT ANALYSIS

Composite materials with multiple phases have various implementations. The ther-

mal analysis of the composites is essential for many engineering applications. The

material properties change due to inhomogeneities present in the microstructures of

the composite materials. Hence, effective thermal conductivity is an important pa-

rameter used for the selection of materials for different practices.

For accurate prediction of the material properties both destructive and non-destructive

methods can be used. The non-destructive methods have advantages over the destruc-

tive ones due to their feasibility and economic benefits. Both elastic and thermal

properties can be assessed with these methods. One of these include the use of micro-

computed tomography (micro-CT) to capture images of microstructure in order to

generate a computational model [25]

Digital image-based approach can also be used for calculating material properties

and generating material models. The composite materials have periodic or random

distribution of the multiple phases. Spatial and orientation information is necessary

to generate accurate models of the material in consideration. Representative Vol-

ume Element (RVE) is used to determine these properties and model generation.

An RVE is assumed for the corresponding pore distribution to model different load

distributions or boundary conditions [7].

It is difficult to assert a structure-property relationship in composites with random

pore distributions. Thus model generation is a cumbersome task. Image-based model

generation is an easy way to establish the relationship and conduct finite element

analysis on the microstructural designs. Object oriented finite element technique is

used to incorporate the microstructure for simulating the same. A three dimensional
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model is generated by OOF3D software application by NIST. This is done by stacking

multiple cross-sectional images of the microstructure to obtain the spatial distribution

of pores.

A typical image-based FEA process involves multiple steps. The cross-section of the

composite materials to be investigated is polished for smoother surface, important for

capturing the microstructure. Polishing takes a very long time. The material surface

is buffed and an image is captured; some more sections of the material with specific

thicknesses is removed by polishing and is observed again. To obtain accuracy and

continuity in the construction of a three-dimensional model, it is necessary that the

specimen be captured at the same location [15]. The images can be photographed by

using different sensors. These are usually optical devices such as Scanning Electron

Microscope (SEM), Charged Coupled Device (CCD) camera, Stereoscopic microscope,

and micro-CT scanners [10][14][15].

Image processing is carried out for the distinction of different phases in microstruc-

ture. The image goes through segmentation and smoothing. In this process, the

image is converted into gray scale and the aim is to separate phases having different

physical properties. Many image related changes are introduced in this process to

smoothen the boundaries between the phases so as to obtain the accurate voxels re-

quired for meshing. The image resolution is adjusted so as to get the difference. The

voxel element size is equal to the resolution of the image. A high resolution image

increases the accuracy, but also increases number of voxel elements which requires

higher computational power.

Material properties are assigned to different phases after smoothing out the inter-

faces. The gray scale image helps in identifying all the phases present in the composite

material. This process has a demerit where the accuracy of the numerical results are

bad at the phase interface [14]. These processes are carried out for multiple images

of the composite material. These images are then stacked for a three dimensional
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model. Thus we get a three dimensional microstructure of a composite material.

3.1 Example of microstructural simulation using OOF3D

OOF3D software application is used to apply the OOF technique to a random image

as shown in the figure. OOF3D generates finite element mesh from two dimensional

Figure 3.1: Sample cross-sectional image of a microstructure

images or micro graphs. Mesh generation involves numerically feeding the straight

lines, curves or planes. For microstructures, cubic element can be defined for every

voxel. But this method has two demerits, one is that it create several elements to

adequately describe the homogeneous regions and second, the interface between the

phases are jagged which may result in stress concentrations [5].

OOF3D solves all these problems by using image-based adaptive meshing technique.

This software application has several modules which aid in image processing, mesh

generation and analytical solving. Digital images are arrays of voxels. These voxels

are assigned material properties. The images are uploaded in the software and are

stacked automatically to create a three dimensional microstructure.

The microstructure is then modified for resolution in order to obtain the specific

number of voxel element to decide the computational requirements. The micro graphs
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shows several pores randomly scattered. The boundary between the pores and the

material is blurry. Using the image manipulation tools these pores are discerned from

the material. It is first converted into gray scale and contrast image is obtained where

two different phases can be easily identified.

The identified voxels are then categorised and a specific color is chosen to select

voxels within the color range. Two voxel groups are established by this process, one

for the material and one for pores. Material properties like thermal conductivity

are assigned to the voxel groups. These properties are stored for every voxel of

each phase. The next step involves creating a skeleton. A skeleton is the geometric

representation of the finite element mesh to establish all the nodes and element edges.

A skeleton is created so that it can be adapted to material boundaries. OOF3D

only creates tetrahedral skeleton elements. The skeleton is made as homogeneous as

possible by using skeleton modification tools. The largest fraction of an element’s

volume which belongs to a single voxel is called homogeneity. The skeleton is refined

so that the homogeneity index approaches 1. To avoid jagged voxel boundaries we

use different methods like Snap nodes, Anneal, Smooth. Snap nodes moves nodes

to the intersection between materials. Anneal is used to randomly move nodes to

beneficial points. Smooth option is used to move nodes to the average positions

of the adjacent nodes. In OOF3D two terms are defined for modification of the

Figure 3.2: OOF3D Energy for meshing

mesh. The homogeneity energy is used to measure the match between the voxel and

mesh and the shape energy is used to determine the quality of element shapes. The
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anneal option treats the nodes as physical particles with energy and thus moves them

accordingly. A good mesh can be defined when the weighted average of both energies

when summed over elements is low. Homogeneity can be given as:

H =
maxi vi
V

(3.1)

where, vi is the volume within the element that belongs to the material i and V is

the total volume of the element. Rationalize option is used to identify badly shaped

elements which are then modified to increase homogeneity index. The next steps

involve creating skeleton boundaries and finally meshing the microstructure. The

skeleton is shown below.

Figure 3.3: Skeleton in OOF3D
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Figure 3.4: FEA model imported from OOF3D

The script is loaded in Abaqus to generate the three dimensional microstructure

model. The material properties are not imported and thus have to be assigned in the

solver again. FEA was done by applying temperature boundary conditions at the top

and bottom surfaces of the microstructure while the other surfaces are insulated.



CHAPTER 4: FINITE ELEMENT ANALYSIS USING MAXWELL’S

METHODOLOGY

Maxwell developed his far field methodology to estimate the effective electrical con-

ductivity of isotropic composites. This methodology is analogous to thermal proper-

ties and thus is also used in estimating effective thermal conductivity of multi phase

composites. Maxwell developed this methodology of estimating electrical conductiv-

ity of a cluster of particles embedded in an infinite matrix. The effect of the clusters

was considered on the far-field when a uniform electrical field is applied on the whole

system. The particle interactions were neglected by adjusting their sizes and distri-

bution in the cluster. These results were only valid for particles with small volume

fractions

Maxwell’s methodology, which focuses on far-field, can also be applied for predic-

tion of different properties of composite materials. McCartney et al. [6] [26] have

shown that this methodology can be used to predict thermal expansion, shear modu-

lus and bulk modulus of multi-phase isotropic composites with homogeneous spherical

particles. It is extended to accommodate multi-phase spherical particles with differ-

ent properties and radii. This technique is reliable to estimate closed form effective

properties without the restriction of low volume fractions of the particles.

There are numerous studies conducted to calculate effective thermal conductivity

[27]. But most of the studies ignore higher order interactions between the pores and

accuracy of the predictions. The periodic problems have accurate analytical and com-

putational techniques [28] [29] [30]. RVE is employed in these methods. There are

also numerous techniques available for random arrangement of pores [31].



18

4.1 Computational technique based on Maxwell’s methodology

Olesya Koroteeva et al. [22] have provided an extension of Maxwell’s methodology

to predict effective thermal conductivity of a porous material in their paper. A semi

analytical solution of a problem, where a cluster of non-overlapping spherical particles

is embedded into an infinite matrix to which a thermal gradient is applied at infinity,

is used. The solutions helps in evaluation of temperatures at points away from the

cluster in the matrix.

In a similar problem, an equivalent sphere embedded in the infinite matrix and it

has the same thermal properties as that of the composite material. The temperatures

are identical at the same finite distance from the equivalent sphere as well as the

cluster of non-overlapping spherical particles. Gordeliy el al. [32] provide the semi

analytical solution used in the analysis. The steady state heat conduction problem is

used here. The temperatures are evaluated at the points distributed on two spheres

which are a finite distance away from the cluster and the equivalent sphere. Solid

spherical harmonics are adopted to represent the series of temperatures given in the

appendix of the paper [1]. For particles of different shapes other than spherical,

conventional boundary element method is to be used to solve the problem of infinite

space embedded with the cluster of such particles [24]. This computational technique

based on Maxwell’s methodology can also be applied to elastic multi-phase materials

[20] [21].

4.1.1 Cluster of spherical particles in infinite matrix

A finite element model is constructed for the problem with N non-overlapping

spherical particles arranged periodically in simple cubic array (SC), body-centered

cubic array (BCC) and face centered cubic array (FCC). These spherical pores are

constructed in a unit cell. The unit cell with the periodic pore arrangement is em-

bedded in a matrix with unit thermal conductivity km. The spherical particles have
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Figure 4.1: Cubical Structures [1]

thermal conductivity ks which is zero. The radius of the spherical particles are cal-

culated according to the volume fraction or porosity of the composite material by

f = N
Vs
V
. (4.1)

Here, N is the number of spherical particles, f is the volume fraction of the composite

material, Vs = 4
3
πr3 where r is radius of spherical particle and V is the volume of the

unit cube in which the particles are arranged in periodic arrays.

Two cases of each periodic array are constructed for the analysis. The number of

spherical particles in the arrays N is varied. The first case has only one array while

the second case has eight repetitive arrays arranged. The SC array has 8 spheres and

27 spheres. BCC array has 9 spheres and 35 spheres and FCC array has 14 spheres

and 63 spheres.

The volume fraction of single SC array can be given as f = 4
3
πr3. The volume

fraction for BCC is given by 8
3
πr3 and its critical volume fraction is given fc =

√
3
8
π ≈

0.6801748. While the volume fraction of FCC array is given as f = 16
3
πr3 and its

critical volume fraction is fc =
√
2
6
π ≈ 0.7404805.

4.1.2 Single conducting sphere in infinite matrix

A spherical particle with thermal properties of the composite material is embedded

in the cubic matrix for steady state finite element analysis. The effective sphere has

thermal conductivity ks. Continuity conditions of flux and temperature are imposed
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Figure 4.2: Equivalent Spherical inhomogeneity

at the interface of particles and matrix which are:

Ts = Tm (4.2)

and

ks
Ts
r

= km
Tm
r
. (4.3)

Here, Tm is temperature in the matrix and Ts is temperature in the sphere. The

radius of the effective sphere is calculated from

f =
N∑
i=1

R3
i /R

3
eff (4.4)

where Reff is the radius of effective sphere, R is the radius of spherical pores in the

cluster and N is the number of pores [22]. The thermal conductivity of the equivalent

spherical particle is the effective thermal conductivity keff . The effective thermal

conductivity for different porosities is calculated in [22]. They are summarized in

4.1-4.3 for cubic, BCC, and FCC arrays respectively.
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Table 4.1: Effective thermal conductivity for simple cubic array [22]

Porosity keff for 8 sph keff for 27 sph

0.1 0.857 0.857

0.2 0.727 0.726

0.3 0.606 0.605

0.4 0.493 0.490

0.5 0.382 0.376

0.5205 0.359 0.351

Table 4.2: Effective thermal conductivity for Body-centered cubic array [22]

Porosity keff for 8 sph keff for 27 sph

0.1 0.857 0.857

0.2 0.727 0.727

0.3 0.607 0.607

0.4 0.496 0.495

0.5 0.392 0.389

0.6 0.293 0.287

0.6661 0.229 0.219
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Table 4.3: Effective thermal conductivity for Face-centered cubic array [22]

Porosity keff for 8 sph keff for 27 sph

0.1 0.857 0.857

0.2 0.727 0.727

0.3 0.607 0.607

0.4 0.496 0.496

0.5 0.392 0.391

0.6 0.293 0.291

0.7 0.196 0.190

0.7184 0.178 0.171

4.1.3 Single conducting cube in infinite matrix

X

Y

Z

Figure 4.3: Equivalent cubic inhomogeneity

Maxwell’s concept has been studied extensively in recent years. Many numerical

algorithms are developed in order to obtain accurate solutions for the effective prop-

erties of the composite materials. The spherical inhomogeneity considered is found
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too restrictive. The use of more general shapes like cube or ellipsoid is suggested by

many authors as stated in [23] which was based on the availability of a closed form

solution of these shapes. The expression for relating properties of a circular inho-

mogeneity and a regular shaped inhomogeneity are provided in [23] and [33] . The

authors show that if the equivalent homogeneity to be considered have the form of a

cube with the same volume as the cluster, the prediction of the effective conductivity

of the material converges to the accurate solutions.

A cubic equivalent inhomogeneity is considered in the finite element model. The

volume of the cube is equal to the volume of the spherical homogeneity and the volume

of the cluster. The inhomgeneity is applied with the same thermal properties as of

the spherical inhomogeneity and subsequent results are obtained.

4.1.4 Boundary conditions

The effective thermal conductivity given in the tables are applied to the equivalent

inhomogeneity to perform steady state finite element analysis. According to Fourier’s

law, heat flux is given as q = −k∇T . The temperature distribution in both the cases

is governed by Laplace’s equation ∇T = 0. We can write the equation as

qx = −k∂T
∂x

. (4.5)

The temperature normalization or scaling is carried out by setting q0L
T0

= k0, we get

q0q̄x = −k0T0
L

(
k̄
∂T̄

∂x̄

)
. (4.6)

With x̄ = x
L

, T̄ = T
T0
, and q̄x = qx

q0
, the above equation can be written in non-

dimensional form as

q̄x = −k̄ ∂T̄
∂x̄

. (4.7)
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This is the simplification of the temperature gradient to be applied to the cubic ma-

trix. Temperatures 2 and 1 are applied to the top and bottom surfaces respectively,

of the matrix cube encompassing the unit cell consisting of the cluster and the equiv-

alent effective sphere. Other sides of the matrix are considered insulated. The models

are meshed and finite element analyses are performed.

X

Y

Z

Figure 4.4: Simple cubic array for 8 spherical pores in ABAQUS
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Y

Z

Figure 4.5: Simple cubic array for 27 spherical pores in ABAQUS
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Figure 4.6: Body-centered cubic array for 9 spherical pores in ABAQUS (front view)

X

Y

Z

Figure 4.7: Body-centered cubic array for 35 spherical pores in ABAQUS (front view)
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Figure 4.8: Face-centered cubic array for 14 spherical pores in ABAQUS (front view)
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Figure 4.9: Face-centered cubic array for 63 spherical pores in ABAQUS (front view)



CHAPTER 5: EFFECT OF POROSITY ON EFFECTIVE THERMAL

CONDUCTIVITY

Effective thermal conductivity changes with change in the porosity of the mate-

rial. The size and structure of pores also have an impact on the effective thermal

conductivity. The relation between the effective thermal conductivity and porosity is

established by using three different cases.

5.1 Case 1

In the first case, the pores are through-holes with same diameter. The number of

pores is increased from one to eight. Each pore contributes to a porosity of 5% in a

unit cube as shown in figure 5.1. Thus, in this case, the porosity varies from 5% to

40%. In figure 5.2, a cube with 40% porosity is shown.

X

Y

Z

Figure 5.1: Cubic model with single pore with 0.05 porosity

Multiple models of different porosity varying from 0.05 to 0.4 as shown in table 5.1
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Figure 5.2: Cubic model having 8 pores with 0.4 porosity

are simulated.

Table 5.1: Different cubic models for Case 1

Number of pores Porosity

1 0.05

2 0.1

3 0.15

4 0.2

5 0.25

6 0.3

7 0.35

8 0.4

5.2 Case 2

In case 2, several porosities are considered just as in case 1. However, for each

porosity, multiple pores with different diameters are assumed to be present as shown
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in figure 5.3. For porosity of 10%, five cylindrical pores with different dimensions are

generated in the model. Three porosities are considered for this case, which are then

are divided to obtain five different radii for the pores as shown in the tables 5.2 ,5.3

and 5.4. The pores are again through holes in the cube.

X

Y

Z

Figure 5.3: Cubic model having different pore geometry with 0.2 porosity

Table 5.2: Different radii of pores for porosity 0.1

Porosity Radius(m)

0.0125 0.0631

0.015 0.0691

0.0175 0.0746

0.025 0.0892

0.03 0.0977
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Figure 5.4: Cubic model having different pore geometry with 0.3 porosity

Table 5.3: Different radii of pores for porosity 0.2

Porosity Radius(m)

0.015 0.00691

0.02 0.0798

0.035 0.1056

0.05 0.1262

0.08 0.1596

Table 5.4: Different radii of pores for porosity 0.3

Porosity Radius(m)

0.025 0.0892

0.035 0.1056

0.06 0.1392

0.08 0.1596

0.1 0.1794
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5.3 Case 3

Third case has spherical pores embedded in the cubic structure as shown in figure

5.5. These pores contribute to 2.5% porosity each. The pores are arranged randomly

in the cube. Similar to the first case, the number of pores are increased to increase

the porosity. The pores are arranged randomly in the cube. Models with with two,

four and six pores are generated with porosity 0.5, 0.1 and 0.15 respectively.

X

Y

Z

Figure 5.5: Wire frame view of cubic model embedded with four spherical pores

5.4 Boundary conditions

In all the cases, the thermal conductivity of the model is 1W/m−K. The top and

bottom surface of the cube are applied temperature boundary condition of 200 C and

100 C respectively. The other sides of the cube are taken to be insulated. The same

material properties and boundary conditions are used in all three cases. Steady-state

thermal analysis is carried out to obtain average heat flux values on the top surface

of the cube.



CHAPTER 6: RESULTS

6.1 Imaged-based FEA results

Steady state thermal analysis is carried out on the model generated by OOF3D.

The top and bottom boundaries are prescribed temperatures of 200◦C and 100◦C,

respectively. The other four faces of the model are considered adiabatic. Figure 6.1

and 6.2 shows the heat flux distribution and the nodal temperatures changes due to

the pores.

(Avg: 75%)

HFL, Magnitude

+0.000e+00
+2.379e+01
+4.759e+01
+7.138e+01
+9.517e+01
+1.190e+02
+1.428e+02
+1.666e+02
+1.903e+02
+2.141e+02
+2.379e+02
+2.617e+02
+2.855e+02

Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: HFL, Magnitude
Deformed Var: not set   Deformation Scale Factor: not set

X

Y

Z

Figure 6.1: Heat flux magnitude in the cubic model with single pore with 0.05 porosity.

The effective thermal conductivity can be calculated by using the average heat flux



33

on the top surface of the model [3] given by

keff =

∑
q/W

∆T/L
. (6.1)

Here, q is the vertical heat flux on the top surface. We get keff as 92.01615 W/m◦C.

This is just an analytical value for a trial micro-structure for which ceramic thermal

conductivity was considered as 120 W/m◦C. The effective thermal conductivity is

lower than the thermal conductivity of a solid material due to the effects of pores.

NT11

+0.000e+00
+1.667e+01
+3.333e+01
+5.000e+01
+6.667e+01
+8.333e+01
+1.000e+02
+1.167e+02
+1.333e+02
+1.500e+02
+1.667e+02
+1.833e+02
+2.000e+02

Step: Step−1
Increment      1: Step Time =    1.000
Primary Var: NT11
Deformed Var: not set   Deformation Scale Factor: not set

X

Y

Z

Figure 6.2: Nodal Temperature for the model
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6.2 Results for Maxwell’s methodology

Maxwell’s methodology states that the temperature at far-field is equal for both the

cluster and the equivalent inhomogeneity. Steady state thermal analysis is carried out

on all three types of arrays and their corresponding equivalent spherical and cubical

inhomogeneity. Temperature profile is obtained for all the cases with the pathway

going from the center of the cube to its top surface. The porosity is increased for

each case and the keff property is applied to the equivalent inhomogeneity using the

values from Tables 4.1 to 4.3. Temperature profiles are compared for all the cases in

the plots for the given porosity in the sections further for different arrangement of

pores in the cluster.

6.2.1 Simple Cubic arrangement of pores

Heat flux and nodal temperatures are calculated by steady state thermal analysis

of the matrix containing the cluster and equivalent inhomogeneity. 50 data points

were used to plot the temperature from the center of the matrix to the top surface.

The plots from Fig. 6.3 to 6.14 show the comparison of temperature distribution for

simple cubic array of particles and the spherical and cubical inhomogeneity. The keff

values for different porosity and number of spherical particles are shown in Table 4.1.

The temperatures are similar for porosity lower than 0.3. There is a deviation for

clusters with porosity greater than 0.3 and all the temperature plots converge after

a specific distance from the array and the equivalent inhomgeneity. The drop in the

temperature in the plots denotes the presence of pores in the pathway.
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Figure 6.3: Plot of SC cluster with porosity 0.1 for 8 pores vs spherical effective
medium vs cubic effective medium

Figure 6.5: Plot of SC cluster with porosity 0.3 for 8 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.4: Plot of SC cluster with porosity 0.2 for 8 pores vs spherical effective
medium vs cubic effective medium

Figure 6.7: Plot of SC cluster with porosity 0.5 for 8 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.6: Plot of SC cluster with porosity 0.4 for 8 pores vs spherical effective
medium vs cubic effective medium

Figure 6.8: Plot of SC cluster with porosity 0.5205 for 8 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.9: Plot of SC cluster with porosity 0.1 for 27 pores vs spherical effective
medium vs cubic effective medium

Figure 6.10: Plot of SC cluster with porosity 0.2 for 27 pores vs spherical effective
medium vs cubic effective medium



39

Figure 6.11: Plot of SC cluster with porosity 0.3 for 27 pores vs spherical effective
medium vs cubic effective medium

Figure 6.12: Plot of SC cluster with porosity 0.4 for 27 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.13: Plot of SC cluster with porosity 0.5 for 27 pores vs spherical effective
medium vs cubic effective medium

Figure 6.14: Plot of SC cluster with porosity 0.5205 for 27 pores vs spherical effective
medium vs cubic effective medium
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6.2.2 Body Centered Cubic arrangement of pores

Similar to the SC arrangement, the pores are arranged in BCC and the heat flux

and nodal temperatures are calculated. The keff values for different porosity and

number of spherical particles are shown in Table 4.2. The plots from Fig. 6.15 to

6.28 shows the comparison of the temperature distribution between body-centered

cubic array of pores and the spherical and cubical inhomogeneity by increasing the

porosity. The plots are presented for both 9 and 35 number of pores in the cubic

structure. The temperature profile deviates from the center of the cube for all three

cases and converges at the far field. The deviation increases with increase in porosity.

The sudden drop in the temperature profile denotes the presence of pores in the

pathway.

Figure 6.15: Plot of BCC cluster with porosity 0.1 for 9 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.16: Plot of BCC cluster with porosity 0.2 for 9 pores vs spherical effective
medium vs cubic effective medium

Figure 6.17: Plot of BCC cluster with porosity 0.3 for 9 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.18: Plot of BCC cluster with porosity 0.4 for 9 pores vs spherical effective
medium vs cubic effective medium

Figure 6.19: Plot of BCC cluster with porosity 0.5 for 9 pores vs spherical effective
medium vs cubic effective medium



44

Figure 6.20: Plot of BCC cluster with porosity 0.6 for 9 pores vs spherical effective
medium vs cubic effective medium

Figure 6.21: Plot of BCC cluster with porosity 0.6661 for 9 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.22: Plot of BCC cluster with porosity 0.1 for 35 pores vs spherical effective
medium vs cubic effective medium

Figure 6.23: Plot of BCC cluster with porosity 0.2 for 35 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.24: Plot of BCC cluster with porosity 0.3 for 35 pores vs spherical effective
medium vs cubic effective medium

Figure 6.25: Plot of BCC cluster with porosity 0.4 for 35 pores vs spherical effective
medium vs cubic effective medium



47

Figure 6.26: Plot of BCC cluster with porosity 0.5 for 35 pores vs spherical effective
medium vs cubic effective medium

Figure 6.27: Plot of BCC cluster with porosity 0.6 for 35 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.28: Plot of BCC cluster with porosity 0.6661 for 35 pores vs spherical effective
medium vs cubic effective medium
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6.2.3 Face Centered Cubic arrangement of pores

The steady state thermal analysis results for heat flux and temperature for pores

arranged in face-centered cubic structure is presented below from Fig. 6.29 to 6.44.

The keff values for different porosity and number of spherical particles are shown in

Table 4.3. Similar to the above two cases, the temperature deviation is seen in the

profile which increases with increase in porosity. The plots show the comparison of

the three cases wherein the number of pores are 14 and 63 with varying porosity for

both the cases. The plots show similar drop of temperature at the presence of pores

in the pathways. This drop indicates the adiabatic boundary condition in the pores

as no radiation is considered.

Figure 6.29: Plot of FCC cluster with porosity 0.1 for 14 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.30: Plot of FCC cluster with porosity 0.2 for 14 pores vs spherical effective
medium vs cubic effective medium

Figure 6.31: Plot of FCC cluster with porosity 0.3 for 14 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.32: Plot of FCC cluster with porosity 0.4 for 14 pores vs spherical effective
medium vs cubic effective medium

Figure 6.33: Plot of FCC cluster with porosity 0.5 for 14 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.34: Plot of FCC cluster with porosity 0.6 for 14 pores vs spherical effective
medium vs cubic effective medium

Figure 6.35: Plot of FCC cluster with porosity 0.7 for 14 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.36: Plot of FCC cluster with porosity 0.7184 for 14 pores vs spherical effective
medium vs cubic effective medium

Figure 6.37: Plot of FCC cluster with porosity 0.1 for 63 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.38: Plot of FCC cluster with porosity 0.2 for 63 pores vs spherical effective
medium vs cubic effective medium

Figure 6.39: Plot of FCC cluster with porosity 0.3 for 63 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.40: Plot of FCC cluster with porosity 0.4 for 63 pores vs spherical effective
medium vs cubic effective medium

Figure 6.41: Plot of FCC cluster with porosity 0.5 for 63 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.42: Plot of FCC cluster with porosity 0.6 for 63 pores vs spherical effective
medium vs cubic effective medium

Figure 6.43: Plot of FCC cluster with porosity 0.7 for 63 pores vs spherical effective
medium vs cubic effective medium
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Figure 6.44: Plot of FCC cluster with porosity 0.7184 for 63 pores vs spherical effective
medium vs cubic effective medium
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6.3 Results on the effect of porosity on effective thermal conductivity

Effective thermal conductivity is calculated by using the equation

keff =

∑
q

∆T
, (6.2)

where q is the average vertical heat flux at the top surface and ∆T is the temperature

difference between top and bottom surface. The following tables shows the values of

effective thermal conductivity for all three cases.

Table 6.1: Effective thermal conductivity for Case 1

Porosity keff (W/mK)

0 1

0.05 0.9077

0.1 0.7997

0.15 0.7501

0.2 0.6773

0.25 0.6083

0.3 0.466

0.35 0.4971

0.4 0.4292

Table 6.2: Effective thermal conductivity for Case 2

Porosity keff (W/mK)

0 1

0.1 0.8249

0.2 0.6694

0.3 0.5173
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Table 6.3: Effective thermal conductivity for Case 3

Porosity keff (W/mK)

0 1

0.05 0.9263

0.1 0.8589

0.15 0.7971
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Figure 6.45: Linear fit for case 1
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Figure 6.46: Linear fit for case 2

Figure 6.47: Linear fit for case 3
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Figure 6.48: Comparison of three cases

The calculated effective thermal conductivities for all the three cases are plotted

in Figs. 6.45-6.47. The plots clearly show a linear downward trend with increasing

porosity. The results are plotted together in Fig. 6.48. As the figure shows, the

effective thermal conductivities for cases 1 and 2 are approximately the same (the

slight dip is very likely due to numerical issues) indicating that the effective thermal

conductivity is a weak function of pore sizes for through-wall pores. On the other

hand, the difference between case 1 and case 3 are more significant indicating that the

effective thermal conductivity depends strongly on whether the pores are through-

holes or part-through holes. This is a critical observation and points to the need for

further studies on the dependence of effective thermal conductivity on the features of

porous including size, shape, location, and orientation of the pores.



CHAPTER 7: CONCLUSIONS

In this study, effective thermal conductivity is defined. A two-phase composite

material is considered with one phase representing the pores in the material. OOF3D

was used to generate a FE model of a random micro-structure. OOF3D model was

successfully imported into Abaqus to analyze and calculate effective thermal conduc-

tivity using steady-state heat-conduction.

Maxwell’s modified methodology is also discussed in this study which accounts for

interactions between the spherical particles. FEA models of the different cases are

constructed with a cluster of spherical particles, equivalent spherical inhomgeneity

and equivalent cubic inhomogeneity. Periodic arrangement of spherical particles in

SC, BCC and FCC arrays are used for steady state FE analyses. Different porosities

are considered in this study and the temperature for each case is plotted and compared

for all the cases. At sufficiently large distances from the embedded structure, the effect

of the inhomogeneities diminishes.

The voids in the isotropic material affects the effective thermal conductivity due

to difference in material properties of the voids. Three cases are considered in this

study to determine the relationship between the porosity and the effective thermal

conductivity. Various cubic models are simulated with different size and geometry of

pores. Steady-state heat-conduction analysis is carried out to find the average vertical

heat flux to calculate effective thermal conductivity.

Linear regression models are plotted for all the cases. In each case, a linear drop is

observed in the effective thermal conductivity. The first case has random arrangement

of cylindrical pores through cubic model, the second one has cylindrical pores with

different radii and the third has spherical pores embedded in the cubic model. The
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comparison of all three cases shows that the effective thermal conductivity is lower

for cylindrical pores than for the embedded spherical ones.

These approaches can be extended to transient heat conduction problems. However,

a major hurdle is that the object oriented finite element analysis of scanned images is

computationally intensive with the meshing and refining procedure taking significant

amount of time. The method can be extended to non-porous composite materials with

different phases. Maxwell’s methodology can also be applied to random arrangements

of spherical particles and non-spherical particles. Apart from that, it can also be useful

in estimating other properties of materials based on small samples. Radiation effects

can be considered to further refine the effective thermal conductivity estimates in

porous materials.
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