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ABSTRACT

CHOON HOW GAN. Surface plasmon effects in nano-optics: super-resolved optical
readout and coherence conversion. (Under the direction of Dr. GREG J. GBUR.)

Surface plasmon effects in nano-optical systems are investigated through rigorous

numerical simulations and analytical modeling. Several strategies to achieve superreso-

lution in plasmon-assisted optical readout systems are proposed, and simulations reveal

that resolution up to λ/5.6 (λ ≡ wavelength of light) is achievable. These promising

results can increase dramatically the storage capacity permitted with current optical

data storage technologies. It is also shown that surface plasmons can be employed

to modulate the spatial coherence of light that emanates from subwavelength aper-

tures. Starting from a simple Young’s double-slit geometry, feasibility of a practical

plasmon-assisted coherence converting device is demonstrated as progress is made to

investigate multiple aperture arrays. Finally, the surface plasmon effects are exploited

in multi-layered metallic structures to both impede the field decay in a single metal

slab and provide for extraordinary optical transmission. The results presented here

suggest a number of ways in which surface plasmons can play important roles for the

development of the nano-optical technologies.
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Chapter 1: Surface plasmon effects in nano-optics

“Why don’t lightning cast a shadow, Jim?”

“Well, I reckon it do, but I don’t know.”

“Well, it don’t. I know. The sun does, and a candle does,
but the lightning don’t. Tom Sawyer says it don’t, and it’s so.”

“Sho, child, I reckon you’s mistaken ’bout dat.
Gimme de gun—I’s gwyne to see.”

So he stood up the gun in the door, and held it,
and when it lightened the gun didn’t cast any shadow. Jim says:

“Well, dat’s mighty cur’us—dat’s oncommon cur’us. Now dey
say a ghos’ don’t cas’ no shadder. Why is dat, you reckon?
Of course de reason is dat ghosts is made out’n lightnin’,
or else de lightnin’ is made out’n ghosts—but I don’t know
which it is. I wisht I knowed which it is, Huck.”

—Mark Twain, Adventures of Huckleberry Finn

For centuries, the study of light has generated numerous interesting controver-

sies, and scientific discoveries that at times contradict intuition. As new technolo-

gies emerge, even things that were once thought to be possible only in science fic-

tion have been successfully demonstrated with experiments. These include among

many others, the teleportation of information carried by light photons (Zeilinger 2000,

Gisin and Thew 2007), the complete “stopping” of the propagation of light (Phillips

et al. 2002, Chiao and Milonni 2002, Ginsberg et al. 2007), and the development of

invisibility “cloaking” devices (Cai et al. 2007, Atwater 2007, Pendry et al. 2006). With

these breakthroughs, it seems that light can be manipulated to do nearly whatever we

want it to, if only we can figure out how. The possibilities with optics are continu-
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ally stretched to the limits as we advance, and one has to be constantly prepared for

surprises that almost always raise objections at first sight1.

Research on surface plasmon effects in nano-optics has also revealed several astound-

ing phenomena when surface plasmons couple with light. Counter-intuition associated

with some of these effects has also fueled debates among scientists as they seek to un-

derstand and unfold the physics responsible for the observed phenomena. One such

surprise was the experimental observation of enhanced optical transmission with a sub-

wavelength hole array in a metal plate (Ebbesen et al. 1998). In that experiment, optical

transmission much higher than predicted by standard diffraction theory (Bethe 1944)

for subwavelength holes was observed. In fact, the fraction of the light transmitted was

found to be greater than the fraction of surface area occupied by the holes on the array,

implying that even the light impinging on the metal between the holes contributed to

the enhanced transmission.

To explain the unexpected enhancement in transmission, diverse views ranging from

mediation by surface plasmons (Ebbesen et al. 1998, Mart́ın-Moreno et al. 2001,

Popov et al. 2002, Barnes et al. 2003, Schouten et al. 2005, Liu and Lalanne 2008),

resonating Fabry-Perot cavities (Collin et al. 2001, Takakura 2001, Yang and Sambles

2002), waveguiding in subwavelength apertures (Lalanne et al. 2000, Gordon and Brolo

2005, Shin et al. 2005), and diffraction of evanescent waves (Lezec and Thio 2004,

Gay et al. 2006) have been proposed. While diffraction is undoubtedly central to the

process of transmission, studies have confirmed that the role of surface plamsons is

critical for enhanced transmission in metallic structures (Ghaemi et al. 1998, Grupp

1See for instance, Suprises in Theoretical Physics by R. Peierls (Peierls 1979).
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et al. 2000, Barnes et al. 2004, Lalanne and Hugonin 2006).

It was also found that enhanced transmission can occur even in the absence of holes

or slits, i.e. surface corrugations or structured films alone would suffice (Bonod et al.

2003, Darmanyan and Zayats 2003, Giannattasio et al. 2004, Bai et al. 2005). Besides,

the size and shape of the subwavelength holes in the arrays can also strongly influence

the optical transmission (van der Molen et al. 2004, Koerkamp et al. 2004, Kim and

Moyer 2006). More recently, researchers have found evidence that suggests that the

coupling of surface plasmons between very closely-spaced metallic arrays of subwave-

length hole and slit arrays can also contribute to enhanced optical transmission (Ye and

Zhang 2005, Chan et al. 2006, Cheng et al. 2007, Marcet et al. 2008).

Another surprising discovery related to surface plasmon effects was the strong beam-

ing of light emerging from a single subwavelength aperture surrounded by periodic cor-

rugations on a metallic plate (Lezec et al. 2002, Degiron and Ebbesen 2004). In this

instance, light emerges as a very narrow beam from the aperture, as opposed to the

usual diffraction effects one would expect as the size of the aperture decreases. The

strong beaming effect was explained by the presence of electromagnetic surface reso-

nances arising from the coupling between surface plasmons propagating in the aperture

and along the surface corrugations (Mart́ın-Moreno et al. 2003).

To add to the list of surprises associated with surface plasmon effects, it has also been

demonstrated that the quantum entanglement between pairs of photons contributing to

the plasmon-assisted transmission observed by Ebbesen et al. (1988), can be preserved

in the process. In essence, the metallic hole array converts incident photons into surface

plasmons, which in turn tunnel through the holes before reradiating as light photons.
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It was established experimentally that the entanglement of the photons is preserved in

the process of coupling between plasmons and photons (Altewischer et al. 2002). This

has opened up possibilities to employ nanostructured arrays in quantum information

and computing systems.

With the current trend towards nanotechnology, research and development involv-

ing surface plasmons has continually received tremendous attention. Traditionally, sur-

face plasmon resonances have been applied to Surface Enhanced Raman Spectroscopy

(SERS) (Nie and Emory 1997, Xu et al. 1999, Cao et al. 2002) for the purpose of bio-

sensing. The resonating effects of plasmons in metal nanoparticles have also made them

useful as contrast agents in optical coherence tomography (OCT), and has led to the

development of nanoshell cancer therapy (Lal et al. 2007, Loo et al. 2004).

Capable of coupling with light and producing enhanced field effects, surface plas-

mons have found wide use in other applications such as scanning near-field optical

microscopy (SNOM) (Bouhelier et al. 2003, Bouhelier 2006, Hall et al. 2007), nano-

lithography (Martin 2003, Luo and Ishihara 2004), and near-field optical readout sys-

tems (Shi et al. 2002, Tominaga and Tsai 2003, Gbur et al. 2005). A plasmonic version

of the LASER, the SPASER (Surface Plasmon Amplifcation by Stimulated Emission of

Radiation), which can potentially act as a source of localized high-intensity fields, was

proposed recently as a quantum-nanoplasmonic device (Bergman and Stockma 2003).

Two-dimensional optical elements and waveguides, as well as nanowires for guiding

both light and plasmonic fields, have been investigated and developed by several re-

search groups (Ditlbacher et al. 2002, Krenn et al. 2002, Takahara and Kobayashi

2004, Maier and Atwater 2005, Karalis et al. 2005, Pile et al. 2005). The list is far
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from exhaustive.

Amid such diverse applications, our goal in this thesis is to investigate how sur-

face plasmons can be employed in nano-optical systems to overcome diffraction limits,

to alter coherence properties of the light they couple with, and to boost the optical

transmission with multi-layer structures. We proceed by reviewing in the next chap-

ter the Maxwell equations in macroscopic media, and how the surface plasmon mode

emerges at a metal-dielectric interface. The basic properties of surface plasmons and

the conditions in which they exist will also be discussed.

In Chapter 3, the Green tensor formalism, which we have used to devise the rigorous

simulations to obtain numerical solutions of the Maxwell equations, is covered in detail.

In Chapter 4, we discuss strategies for employing surface plasmons in optical readout

systems to overcome the diffraction limit and achieve superresolution.

We demonstrate a new role for surface plasmons in nano-optics in Chapter 5: Start-

ing from a simple Young’s interferometer setup and working towards realizing a practical

device using a hole-array, we show how surface plasmons confined to the near-field can

modulate the spatial coherence of light radiated to the far-field. Such a device can be

very useful in nano-optical systems since the spatial coherence of a light source deter-

mines numerous properties of the field it produces, such as its directionality (Wolf 1978),

spectrum (Wolf 1986), and polarization (James 1994).

In Chapter 6, we propose a multi-layered geometry that can potentially impede

the decay of the optical field intensity as it would usually experienced in propagating

through a single slab of metal. Our numerical results suggest that in impeding the field

decay, extraordinary optical transmission is achieved. Finally in Chapter 7, we offer
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concluding remarks on these findings.



Chapter 2: Review of the Maxwell equations

and surface plasmons

To begin, it is instructive to devote a section to introduce the Maxwell equations in

macroscopic media, which are the governing equations of the behavior of electromag-

netic waves in the presence of matter. In this thesis, we will focus on investigation of

the behavior of surface plasmons in nano-optical systems through theoretical modeling

and numerical simulations of the Maxwell equations, though it is recognized that ex-

perimental proofs undeniably provide for a more complete picture. The methodology

adopted for the rigorous numerical simulations is elucidated in the next chapter. Nu-

merical analysis inevitably contains assumptions and approximations, which we will set

forth in the following section.

We then review in some detail the basic properties of surface plasmons. Surface

plasmons are collective oscillations of electrons at a metal-dielectric interface, and can

be excited by photons or electrons under conditions that satisfy the law of conservation

of momentum. First predicted by Ritchie (1957), their existence were later confirmed

experimentally through reflection of high-energy electrons (Powell and Swan 1959), and

through optical radiation generated by surface plasmons (Teng and Stern 1967). In the

latter experiment by Teng and Stern, the surface plasmons were excited by electrons

impinging on metal gratings.
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2.1 Maxwell Equations in Macroscopic Media

The fundamental set of equations governing electromagnetic phenomena are the Maxwell

equations. Expressed in theoretically convenient Gaussian units, the Maxwell equations

in free space take on the form

∇× E+
1

c

∂B

∂t
= 0 (2.1a)

∇ ·B = 0 (2.1b)

∇×B−
1

c

∂E

∂t
=
4π

c
J (2.1c)

∇ · E = 4πρ (2.1d)

where E and B are the electric and magnetic fields, respectively, and c is the speed of

light in vacuum.

Taking the divergence of Eq. (2.1c), and substituting Eq. (2.1d) into the resulting

expression, one arrives at the continuity equation

∂ρ

∂t
+∇ · J = 0 , (2.2)

which relates the divergence of the current density J to the time rate of decrease of the

charge density ρ.

When the sources ρ and J are completely specified, the set of Maxwell equations

in (2.1) can be used to solve for the E and B fields everywhere in space. However, for

macroscopic aggregates of matter, the solution of the equations is almost impossible

due to the prohibitively large number of sources that contribute to the currents and

charge densities. In such circumstances, it is useful to employ macroscopic quantities
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whereby the fields and sources are spatially averaged1. We may decompose the sources

in the matter according to (Melia 2001, Sec 1.2)

ρ = ρf + ρb (2.3a)

J = Jf + Jb (2.3b)

where the subscripts f and b are used to indicate that these quantities are associated

with the “free” and “bound” charges, respectively. The free charges produce the E and

B fields. The bound charges create electric dipoles that give rise to a macroscopically

averaged polarization field P (average dipole moment per unit volume). Magnetic

dipoles2 on the other hand, induce a macroscopically averaged magnetization field M

(average magnetic dipole moment per unit volume). The fields E, B, P, and M are

related through

D = E+ 4πP (2.4a)

H = B− 4πM , (2.4b)

where D is the dielectric displacement vector, and H is the portion of the magnetic field

produced by the sources. Furthermore, we know from electrostatics and magnetostatics

that (Griffiths 1981, Sec 7.3)

ρb = −∇ ·P , (2.5a)

Jb = ∇×M . (2.5b)

1Averaging over time is not necessary. See for instance, Section 6.1 of Brau (2004)

or Section 6.6 of Jackson 1975.

2Magnetic monopoles have yet been found despite an extended search by physicists.
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In addition to the currents Jf and Jb, the polarization P gives rise to a polarization

current Jp in the time varying case, consistent with the continuity equation (2.2)

∇ · Jp = −
∂ρb

∂t

=
∂

∂t
(∇ ·P)

= ∇·
∂P

∂t
, (2.6)

from which it is straightforward to see that time variation in M produces no such

redistribution of the charges.

In terms of the free charges ρf and current Jf , Maxwell equations in macroscopic

media are

∇× E+
1

c

∂B

∂t
= 0 , (2.7a)

∇ ·B = 0 , (2.7b)

∇×H−
1

c

∂D

∂t
=
4π

c
Jf , (2.7c)

∇ ·D = 4πρf . (2.7d)

The four Maxwell equations can be divided into two pairs of equations, a homoge-

neous pair containing E and B, and an inhomogeneous pair containing D and H

(Born and Wolf 1999, Sec. 1.1). The inhomogeneous pair contains charges and cur-

rents, thereby implying the influence of matter. As such, one can attribute D and H

to the influence of matter.

For an isotropic, linear medium, the electric polarization P can be described as

P = χeE , (2.8)
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where χe is a dimensionless parameter that characterizes (macroscopically) the ability

of the material to become polarized, which is also known as the electrical susceptibility

of the medium. Similarly, the magnetization M can be described as

M = χmH . (2.9)

In this case, χm is known as the magnetic susceptibility, and it is the magnetic coun-

terpart of χe. Using Eq. (2.4), one may express the dielectric displacement vector D

and magnetic field B as

D = (1 + 4πχe)E

= ǫE , (2.10a)

B = (1 + 4πχm)H

= µH , (2.10b)

where ǫ and µ are the effective electric permittivity and magnetic permeability of the

macroscopic medium.

In nature, materials at optical frequencies are typically non-magnetic so thatM = 0,

and H = B. If the medium is conducting and obeys Ohm’s law, the electric current

density Jf can be described as

Jf = σE, (2.11)

where σ is again a macroscopic quantity defining the specific conductivity of the medium

with units of inverse time (Gaussian units).3 For media exhibiting anisotropy, these

material parameters χe, χm and σ are, in general, tensors of rank 2.

3In the S. I. unit system, σ has units of siemens per meter (S/m).
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For the electromagnetic simulations in this thesis, we will restrict ourselves to non-

magnetic, isotropic, and electrically-neutral media whose light-matter interaction can

be studied with the set of Maxwell equations in macroscopic media set forth in Eq.

(2.7). By electrically-neutral, we refer to either lossless dielectrics where no free charges

are present, or good conductors in which any initial free charge density has been redis-

tributed at equilibrium along the surface.4

Making the substitutions B = H (since µ = 1), D = ǫE, Jf = σE, and ρf = 0 into

the inhomogeneous set (Eqs. (2.7c) and (2.7d) ), we find that

∇×B =
4πσ

c
E+

ǫ

c

∂E

∂t
, (2.12a)

∇ · ( ǫE ) = ǫ∇ · E+ E · ∇ǫ

= 0 . (2.12b)

Let us assume that E is a time-harmonic, monochromatic wave of the form

E = E(r)eiωt

= Ere
iωt , (2.13)

with ω its angular frequency.

Taking the curl of Eq. (2.7a) and eliminating B using Eq. (2.12a), and assuming

that inhomogeneities in the media are negligible (∇ǫ ∼ 0) except at material boundaries,

4It can be shown that the free charge density ρ0 in the interior of a good

conductor decays exponentially as ρc = ρ0e
− t

τ0 , with the time constant τ0 =

ǫ
4πσ

(Born and Wolf 1999, Sec. 14.1). This kind of relaxation phenomenon is also

known as a Debye-type relaxation phenomenon, and is frequently encountered in phys-

ical processes (Kubo et al. 1998, Sec 3.3).
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we obtain the following homogeneous Helmholtz equation for Er:

5

∇2Er + k2Er = 0 , (2.14)

with

k2 = k2
0ǫc , (2.15)

where

k0 =
ω

c
, (2.16)

is the wavevector in free space, and

ǫc = ǫ− i
4πσ

ω
, (2.17)

is the complex permittivity of the medium that takes into account the effects of the

electrical susceptibility (χe) and conductivity (σ). Similarly, taking the curl of Eq.

(2.7c) and eliminating E yields for the space dependent part of the magnetic field Br:

∇2Br + k2Br = 0 . (2.18)

Thus we see that the electric and magnetic fields propagate as waves in the macroscopic

medium with a wavevector k, which may or may not be complex depending on the

dielectric constant ǫr of the medium defined as

ǫr =
ǫc
ǫ0
, (2.19)

with ǫ0 = 1 the permittivity of free space.

5Here we have used the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A.
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In arriving at the pair of wave equations (2.14) and (2.18) for the electric and

magnetic fields, it is taken6 that ǫr 6= 0 so that the wavevector k assumes a finite value.

More importantly, we have shown that the effects of the free and bound charges in

a macroscopic medium can be taken into account by the use of a complex dielectric

constant of the form

ǫr = ǫ′r − iǫ′′r (2.20)

in the Maxwell equations.

To ensure validity in using the macroscopic Maxwell equations, we need to consider

the shortest length scale over which the averaging procedure produces results within ac-

ceptable limits. Specifically, the shortest length scale should be much larger compared

with the lattice constant, which is the spacing between the atoms in the material. Lat-

tice constants of different materials are usually of the of the order of several angstroms,

therefore we impose a minimum length scale of 100Å for the structures in our simula-

tions. Furthermore, it is well-known that x-ray diffraction exposes the atomic structure

of matter while light-matter interactions in the visible spectrum can be described by

Maxwell equations with a continuous dielectric constant (Jackson 1975, Sec. 6.7). As

such, we will only simulate light waves whose free space wavelength is greater than 400

nm in our study.

To summarize, the results of our study will be based primarily on numerical solutions

of the Maxwell equations in macroscopic media. The assumptions we make are:

6The special case ǫr = 0 corresponds to the bulk plasmon frequency in metals, where

the free charges all oscillate back and forth to achieve equilibrium (Fox 2004, Sec. 7.5).
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a) The media we consider are linear, non-magnetic (µ = 1), isotropic, and electrically

neutral (ρf = 0).

b) The electric and magnetic fields are time-harmonic with time dependence eiωt.

c) The complex dielectric constant ǫr describes the effects of the current sources Jf and

Jp introduced by the medium. (Note that Jb = 0 due to our assumption µ = 1.)

d) The length scale of structures in our simulations are at least 100Å .

e) The free space wavelength of light is at least 400 nm.

The assumptions listed and the relations presented here will serve as the point of

departure in the ensuing theoretical analysis of surface plasmons and their influence in

subwavelength optical systems.

2.2 Surface Plasmons

In this section, we describe the basic properties of surface plasmons. The characteristics

of the surface plasmons will be demonstrated as we mathematically derive expressions

for surface plasmons on a planar interface separating two media. Let us consider elec-

tromagnetic waves at a planar boundary z = 0 that separates two semi-infinite isotropic

media ǫ1 and ǫ2, as illustrated in Fig. 2.1. In a two-dimensional geometry, the electro-

magnetic waves can be fully described as a superposition of TE (transverse electric,

Ex = Hy = Ez = 0) and TM (transverse magnetic, Hx = Ey = Hz = 0) compo-

nents. The TE and TM components are also sometimes referred to as s-polarized and

p-polarized waves, respectively. Surface plasmons, as their name implies, are confined
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Figure 2.1: Geometry for illustrating the surface plasmons as surface wave confined to
the interface between a dielectric (ǫ1) and a metal (ǫ2) .

to the boundary at z = 0. This confinement is characterized by the exponential decay

of the fields with increasing distance away from the boundary.

We define the wave vectors describing these fields as k1 = (kx, 0, kz1) and k2 =

(kx, 0, kz2) in medium 1 and 2, respectively. Across the boundary, phase matching

requires that the transverse component of the wave vector kx to be continuous. The

exponential decay of the fields along ±z are described by the longitudinal wave vector

component given by

kzi =















√

k2
i − k2

x if k2
i ≥ k2

x

−i
√

(k2
x − k2

i ) if k2
i < k2

x

(2.21)
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where ki is the wavenumber in each medium, and the subscript i = 1, 2 is used to

denote quantities in medium 1 and 2 respectively. In this case both kz1 and kz2 must

be imaginary to ensure the exponential decay of the fields. Omitting from now on the

explicit dependence on ω, the electric and magnetic fields in the two media are

ETE =















Ey1 ŷ e−i(kxx− kz1z) z < 0

Ey2 ŷ e−i(kxx + kz2z) z > 0

(2.22)

and

HTE =















[Hx1 x̂+Hz1 ẑ] e−i(kxx− kz1z) z < 0

[Hx2 x̂+Hz2 ẑ] e−i(kxx + kz2z) z > 0

(2.23)

for the TE case, and

ETM =















[Ex1 x̂+ Ez1 ẑ] e−i(kxx− kz1z) z < 0

[Ex2 x̂+ Ez2 ẑ] e−i(kxx + kz2z) z > 0

(2.24)

and

HTM =















Hy1 ŷ e−i(kxx− kz1z) z < 0

Hy2 ŷ e−i(kxx + kz2z) z > 0

(2.25)

for the TM case, with x̂, ŷ, and ẑ the respective unit vectors.

The continuity of the tangential components of the electric and magnetic fields across

boundaries, when applied to Ex, Ey, Bx and By in Eqs. (2.22) - (2.25) at z = 0 give us

Ex1 = Ex2 = Ex , (2.26)

Ey1 = Ey2 = Ey , (2.27)

Hx1 = Hx2 = Hx , (2.28)

and

Hy1 = Hy2 = Hy . (2.29)
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For the TE case, we express Hx1 and Hx2 in terms of Ey using Eq. (2.7a), and then

using Eq. (2.28), we find that

kz1 + kz2 = 0 . (2.30)

For the TM case, we express Ex1 and Ex2 in terms of Hy using Eq. (2.7c) (with Jf = 0),

and then using Eq. (2.26), we find that

ǫ2kz1 + ǫ1kz2 = 0 . (2.31)

On substituiting Eq. (2.21) into Eq. (2.30), we obtain

√

k2
x − k2

1 +
√

k2
x − k2

2 = 0 , (2.32)

which cannot be satisfied for k1 6= k2 (noting that k
2
i < k2

x in order to have imaginary

kz1 and kz2) and is hence not a physical solution. Directing our attention now to Eq.

(2.31) for the TM case, we find that

kx =

√

ǫ1ǫ2
ǫ1 + ǫ2

k0 . (2.33)

This relation given by Eq. (2.33) represents the dispersion of the surface plasmon mode

at a planar metal-dielectric interface (Raether 1988), with kx being the wavenumber of

the surface plasmon. Substituting for Eq. (2.33) in Eq. (2.21), we find that

k2
zi =

ǫ2i
ǫ1 + ǫ2

k2
0 . (2.34)

For a wave propagating along the interface, we require that kx given by Eq. (2.33)

is real-valued. This is possible if the product and sum of ǫ1 and ǫ2 are either both

positive or both negative. However, to satisfy the condition that its amplitude decays

exponentially away from the boundary, it is seen from Eq. (2.34) that the sum of ǫ1
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and ǫ2 has to be negative. Therefore, the product ǫ1ǫ2 is necessarily negative, which

means that ǫ1 and ǫ2 must differ in sign. Furthermore, the absolute value of the negative

permittivity must exceed that of the positive permittivity.

To illustrate with further detail the solution provided by Eq. (2.33), we assign for

convenience and without loss of generality, the relative permittivity of the dielectric

medium ǫ1 = 1. The dielectric constant of the metal (medium 2) is

ǫ2 = ǫ′2 − iǫ′′2, (2.35)

with ǫ′2 < −1. At visible and higher frequencies, the conductivity of metals is usually

predominantly imaginary, so that |ǫ′2| >> |ǫ
′′
2| and ǫ2 ∼ ǫ′2. When |ǫ2| > ǫ1(= 1), we see

that Eq. (2.33) yields a real kx (imaginary component of kx negligible since |ǫ
′
2| >> |ǫ

′′
2|),

and thus a wave that propagates along the interface between the two media is obtained.

Furthermore, according to Eq. (2.34), both kz1 and kz2 are imaginary in this case,

consistent with the exponentially decaying nature of the fields from the interface. In

this sense, the surface plasmon represents a true surface mode. 7

It can be seen from the above derivation that the surface plasmons have electric field

components both parallel (Ex) and perpendicular (Ez) to its direction of propagation

(cf. Eq.(2.24)). The surface plasmons therefore exhibit a longitudinal wave nature, in

contrast to transverse electromagnetic waves that radiate from an oscillating electric

dipole. With the exception of the boundary at z = 0, the fields in each of the regions

in Fig. 2.1 satisfy the divergence equation

∇ · E = 0 . (2.36)

7The surface plasmon mode is sometimes referred to as the Fano mode.
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Using the divergence condition in Eq. (2.36), it is found that the electric field compo-

nents are related through

Ez =



















kx

kz1

Ex z < 0

−
kx

kz2

Ex z > 0

. (2.37)

Assming again ǫ1 = 1, we obtain from Eq. (2.37), for small kx or when |ǫ
′
2| >> |ǫ

′′
2|, |ǫ1|,

that

Ez =



















i
√

|ǫ′2|Ex z < 0

−i
1

√

|ǫ′2|
Ex z > 0

. (2.38)

In this case, the field extends much more into the dielectric (ǫ1) than the metal (ǫ2). It

will be clear that surface plasmons that possess low wave vectors are typically excited

with light photons when we discuss their dispersion characteristics in the next section.

On the other hand, for large kx, we find that the magnitude ofEx andEz are comparable,

i.e.,

Ez =















iEx z < 0

−iEx z > 0

. (2.39)

Surface plasmons with such large wave vectors are typically excited with electrons.

Along a smooth surface, ohmic losses in the metal will cause the intensity of propa-

gating surface plasmons to decrease exponentially as e−2k′′x , where kx = k′x− ik
′′
x. These

ohmic losses dissipate as heat in the metal, and can be taken into account with the

imaginary part of the dielectric function of the metal (ǫ′′2), as discussed in the previous

section. The length Lsp at which the intensity decreases to 1/e is then given by

Lsp = (2k′′x)
−1 . (2.40)
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As an example, Lsp for a semi-infinite silver-air interface at a wavelength of 500 nm is

typically around 20µm.

Let us also briefly consider the behavior of surface plasmons propagating on the

surfaces of a metal film of thickness d that is surrounded by a dielectric medium such

as free-space. If the metal is thick enough, the characteristics of the surface plasmon

modes on the two surfaces approach that of the semi-infinite metal-dielectric interface

and are identical. As discussed, the surface plasmon modes decay evanescently both

into the metal and the free space. If the metal film is sufficiently thick, the evanescent

waves extending into the metal do not overlap, and the surface plasmon modes do not

couple.

As the film thickness d decreases, the evanescent waves extending into the metal

starts to overlap, and the metal film acts effectively as a waveguide. Upon interaction,

the degenerate surface plasmon mode on each surface couples and splits into a symmetric

mode and an anti-symmetric one. The anti-symmetric mode is defined here as having a

zero in its transverse electric field distribution in the metal film, and for a given plasmon

wave vector, is associated with a higher frequency ω (Raether 1988). By solving for

the real and imaginary parts of the propagation constants of these modes, it is found

that the antisymmetric mode has an imaginary part that decreases sharply towards

zero as the film thickness d → 0. For such thin film structures, the surface plasmons

can potentially travel for long ranges up to dozens of microns on the surfaces without

appreciable attenuation (Fukui et al. 1979, Sarid 1981, Berini et al. 2007). These long

propagation lengths can be desirable properties for practical applications.

We have shown that surface plasmons are indeed solutions to the Maxwell equations,
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and have derived their dispersion relation (Eq. (2.33)) at a planar dielectric-metal

interface.8 The surface plasmons are TM-polarized modes that can propagate along

such an interface, and they possess a longitudinal wave nature. They can travel for

long ranges on the surfaces of thin metallic films where the surface plamson modes on

each surface are allowed to couple.

Since their wave vector kx is greater than the wave vector of the light k0, there is

a momentum gap between the two, and therefore, surface plasmons do not radiate on

their own. In the next section, we will discuss how surface plasmons can be excited and

coupled with light photons when we examine their dispersion relation in detail. Finally,

we note that, along the interface separating a right-handed and a left-handed material

(ǫ, µ < 0), TE-polarized surface plasmons are legitimate solutions of Maxwell equations,

in the same way the TM counterparts exist according to Eq. (2.33) (Ruppin 2000).

2.3 Dispersion Relation for the Surface Plasmons

The dispersion relation of the surface plasmons at a planar dielectric-metal interface is

as derived in Eq. (2.33)

ksp =

√

ǫ1ǫ2
ǫ1 + ǫ2

k0, (2.41)

where ksp, a complex quantity in general, is used to denote the wavenumber of the

surface plasmons. As in the previous section, we will assume that ǫ1 = 1 whenever

8It is worthwhile noting that, depending on ǫ1 and ǫ2, different surface modes may

be obtained on the boundary. Interested readers are referred to Sec. 1, Chap. 7 of

Boardman (1982) or Yang et al. (1991), for instance.
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it is convenient to do so for the sake of discussion. Apparently, the surface plas-

mon vector ksp → ∞ as ǫ2 → −ǫ1. The frequency at which ǫ2 = −ǫ1 is the sur-

face plasmon frequency, ωsp. This means that a propagating longitudinal wave at

ωsp is sustained at the dielectric-metal interface when the total dielectric function

vanishes (Peyghambarian et al. 1993, Sec. 3.6), i.e., ǫ1 + ǫ2 = 0. Physically, this

situation arises because the electric field E cancels the effects of the polarization P

(D = ǫE = E+ 4πP), and the electrons then just oscillate backward and forward with

respect to the fixed lattice of positive ions (Fox 2004, Sec. 7.5).

Let us estimate the surface plasmon frequency ωsp using the Drude model for os-

cillations due to free electrons in metals (Reitz et al. 1980). According to the Drude

model,

ǫ2(ω) = 1−
ω2

p

ω2 − iωγ
(2.42)

where the plasma frequency ωp is defined as

ωp =
4πNe2

m0

(2.43)

with

γ = damping rate of the respective oscillations,

N = number of charges per unit volume,

e = electronic charge = 4.803× 10−10 statcoulombs,

m0 = electron rest mass = 9.109× 10−28 g.
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For the case where |ǫ′2| >> |ǫ

′′
2|, the Drude model in Eq. (2.42) reduces to

ǫ2(ω) = 1−
ω2

p

ω2
. (2.44)

Using Eq. (2.44), we find that the frequency at which ǫ2 = −ǫ1 occurs at

ωsp =
ωp

√
ǫ1 + 1

. (2.45)

When the lossless dielectric ǫ2 is free-space, the surface plasmon frequency is then

ωsp =
ωp
√
2
. (2.46)

The dispersion relation in Eq. (2.41) holds only for a specific value of the dielectric

constant ǫ2(ω) at a specific frequency. It will be useful to find an alternative expression

that is a continuous function of ω. To do this, we express the dispersion relation in

Eq. (2.41) as

ω2 = (cksp)
2(
1

ǫ1
+

1

ǫ2
) . (2.47)

Substituting for ǫ2 in Eq. (2.47) through the use of Eq. (2.44), we find, after some

algebra that,

ω2 =
ǫ1ω

2
p + c2k2

sp + ǫ1c
2k2

sp −
√

(ǫ1ω2
p + c2k2

sp + ǫ1c2k2
sp)

2 − 4ǫ1c2k2
spω

2
p

2ǫ1
(2.48)

which reduces to, for the case ǫ1 = 1,

ω2 =
ω2

p

2
+ c2k2

sp −

√

ω4
p

4
+ c4k4

sp. (2.49)

It is worthwhile noting that the negative root, instead of the positive one for the last

term in the numerator of Eq. (2.48), is chosen to arrive at Eq. (2.49) for the dispersion

of the surface plasmons. It is straightforward to show that ω in Eq. (2.49) approaches
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ωsp =

ωp√
2
in the asymptotic limit ksp →∞ as in Eq. (2.46), thus verifying our choice of

the negative root. The positive root, on the other hand, leads to the asymptotic limit

ω →
√
2cksp, as is the case for the propagating Brewster mode (Boardman 1982, Chap.

1, Sec. 3.2).

Let us define normalized frequency

Ω =
ω

ωp

, (2.50)

and normalized wave vector

q =
k

kp

, (2.51)

where kp =
ωp

c
. With these nomalized quantities Ω and q, Eq. (2.49) can be simplified

to (Ferrell 1958)

Ω2 = [1 +
1

2q2
+ (1 +

1

4q2
)

1
2 ]−

1
2 . (2.52)

The dispersion relation of Eq. (2.52) is plotted in Fig. 2.2. It shows that the dispersion

curve for the surface plasmons lies to the right of the light line (ω = cksp → Ω = q), and

that the two lines do not intersect except at the origin. The wave vector of the surface

plasmons is always greater than that of light at a given frequency, and this illustrates

why the surface plasmons are non-radiative by themselves - since the wave vector is

related to momentum, surface plasmons have higher momentum than light (ksp > k0 or

λsp < λ0) at a given frequency ω. On a smooth surface, surface plasmons and light do

not couple as this momentum gap cannot be bridged.

It is of course possible to couple light with surface plasmons if the additional mo-

mentum is provided to the photons. There are several ways in which surface plasmons

can be excited with light photons (Zayats and Smolyaninov 2003):
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Figure 2.2: Dispersion relation of surface plasmons.

a) The metal surface can be illuminated through attenuated total reflection (ATR)

by placing it close to a dielectric prism (ǫm) with light incident at an angle θ. In

the prism, the wave vector of the light is increased, given by km =
√
ǫmk0. When

the in-plane wave vector km sin θ matches that of the surface plasmon (ksp), surface

plasmons are excited by the light that evanescently tunnels to the metal surface.

The most commonly employed geometries are the Kretschmann geometry and the

Otto geometry (Raether 1988) .

b) Diffraction gratings on a metal plate can be used to excite surface plasmons when

illuminated with light. In this case, the surface plasmon modes whose wave vectors
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coincide with that of the diffracted orders will be excited.

c) Topological defects (such as protrusions, holes, slits, or surface roughness) on the

surface of a metal plate can serve to locally excite surface plasmons when they

diffract light incident on them (Hecht et al. 1996).

d) In place of the dielectric prism in (a), a probing tip can be brought very close to

a metal surface to locally excite plasmons on a metal surface. The development of

this technique is due in large to applications related to scanning naer-field optical

microscopy (SNOM).

These methods of exciting surface plasmons with light photons are illustrated in Fig. 2.3.

The reverse process of surface plasmons coupling into light and consequently radiating

as photons can occur as well, as long as the momentum is conserved.

If we note that within the framework of the effective mass approximation the energy

E of an electron is inversely proportional to its effective mass me (E = ~ω = ~
2k2

2 me
), and

that me is in turn a measure of the curvature of the electron’s dispersion (Tang 2005,

Sec. 10.6), it perhaps explains why electrons were employed to excite surface plasmons

in the earlier experiments (Powell and Swan 1959, Teng and Stern 1967). When we

consider that the surface plasmon frequency ωsp lies typically in the range of ∼ 25 −

120 eV (clearly beyond the visible spectrum) (Fox 2004, Sec. 7.3.1), it becomes apparent

that while electrons are useful for studying the properties of surface plasmons at large

ksp values (ksp > kp), light photons (∼ 1 − 3 eV) are more suitable for analysis and

experiments at the other extreme (ksp < kp).

We have discussed in detail some of the fundamental properties of surface plas-
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(a) (b)

(c) (d)

Figure 2.3: Illustrating different methods of exciting surface plasmons with light:
(a)attenuated total reflection (ATR) with the Otto geometry, (b)diffraction
grating, (c)surface protrusion, (d)probing tip.

mons, and how their interaction with light can occur. To summarize, the important

characteristics of the surface plasmons are:

a) They are TM-polarized.

b) For a planar interface separating two semi-infinite isotropic media ǫ1 and ǫ2, it is

required that both the sum and product of ǫ1 and ǫ2 be negative for surface plasmons

to propagate along the interface.

c) The surface plasmons possess a longitudinal wave nature, in contrast to transverse

electromagnetic waves that radiate from an oscillating electric dipole.

d) They are non-radiative on their own, but can couple with light photons and electrons

if the momentum gap is bridged.
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e) In the visible spectrum, they can typically travel for long ranges up to dozens of

microns along metallic thin films without appreciable attenuation.

f) Their wavelength λsp is always less than the wavelength λ0 of light at a given

frequency ω. The smaller wavelength means they can be more readily ‘squeezed’

through subwavelength apertures, which is advantageous in nano-optical systems.

g) They can give rise to field enhancements at surfaces where they are excited.

In particular, their ability to travel long range, their smaller wavelength, and their

potential to produce field enhancement effects make them attractive for various nano-

optical applications. We are in a better position now to investigate how surface plasmons

can be employed in the regime of nano-optics, and will present results of our theoretical

research of potential applications in the following chapters.



Chapter 3: The Green Tensor Formalism

We have performed rigorous simulations of the Maxwell equations to investigate the

behavior of subwavelength optical systems, keeping in mind the assumptions set out

at the end of Section 2.1. The structures that we will be mostly concerned with are

systems of thin films that are perforated with subwavelength apertures or corrugated on

the surfaces. To simulate the Maxwell equations in such geometries, we have adopted

a planar multi-layered geometry, in which the electromagnetic Green tensor can be

calculated analytically, up to within a Fourier Transform. The Green tensor G(r, r′)

describes the field at position r due to the three orthogonal dipoles radiating at r′, and

takes into account the effects of multiple reflections and refractions that occur at the

different interfaces. Closely following the formalism by (Visser et al. 1999), details of

the derivation of the dyadic Green functions are given in this chapter. Those readers

interested primarily in physical results can read Section 3.1 and skip forward to Chapter

4.

Since in the monochromatic case, the magnetic field can be calculated by taking the

curl of the electric field, only the Green tensor for the electric field needs to be derived.

With the appropriate dyadic Green functions determined, a domain integral equation

approach is then used to determine the electromagnetic fields.

The Green tensor method has been widely studied (Tai 1971, Sphicopoulos et al.
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1985, Chew 1995, Paulus et al. 2000) and used (Kolk et al. 1990, Bastiaansen et al.

1992, Urbach and Lepelaars 1994, Visser et al. 1999, Schouten et al. 2005) for the

simulations of electromagnetic fields. This method is attractive for our study as the

dyadic Green functions account for the complex interactions of a vector field in multiple

scattering problems in a compact manner.

As opposed to methods such as the FDTD (finite difference time domain) and FEM

(finite element method), the Green tensor in principle provides exact solutions to the

Maxwell equations, and is discretized only in converting the domain integral equation

to a matrix equation for obtaining numerical values of the fields. Furthermore, the

application of Sommerfeld’s radiation condition at infinity avoids the need to implement

complicated matching boundary conditions at the boundaries of the region of interest1.

There are some limitations associated with the Green tensor method, despite of the

advantages it can offer. The geometries we have simulated are restricted to planar lay-

ered systems, which may not necessarily be the most suitable in practical situations.

As matrix inversion is involved in the solutions, the computational time and memory

required increase rapidly as the number of discretization points are increased. Further-

more, the algorithm to invert the matrices can become numerically unstable as the size

1The Sommerfeld’s radiation condition ensures that the field must be outgoing at

infinity. For illustration purpose, let us consider the radiation condition for a scalar

field ψ, which is given by lim
r→∞

r

(

∂ψ

∂r
+ ikψ

)

= 0, where k = ω/c. By substituting

outgoing and incoming waves proportional to e∓ikr into the condition, it will be seen

that only the outgoing field satisfies the condition. For more details, see Sec. 2.5 of

Ishimaru (1991).
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of the matrices are increased.

A final word on units before we proceed. Though we have employed Gaussian units

in the previous chapter in view of the physical intuition it offers to theorists, we will

adhere to the S.I. unit from now on for convenience in the implementation of the Green

tensor as machine-executable code. For this reason, we give here Maxwell equations in

macroscopic media in S.I. units

∇× E+
∂B

∂t
= 0 , (3.1a)

∇ ·B = 0 , (3.1b)

∇×H−
∂D

∂t
= Jf , (3.1c)

∇ ·D = ρf . (3.1d)

3.1 Configuration of Multi-layered Geometry

We adopt a two-dimensional multi-layer geometry that consists of n arbitrary layers

along the z direction (see Fig. 3.1). Each layer is characterized by its permittivity

ǫB(z). In each layer, we allow for an arbitrary number of ‘deviant’ regions whose

permittivity ǫD(x, z) differ from ǫB(z). We will refer to these deviant regions by Dm,

where m = 1, 2, 3, ...,m0, where m0 is the number of deviant regions. In the absence of

free charges, time harmonic monochromatic waves of frequency ω given by the form in

Eq. (2.13) satisfy the set of Maxwell equations

∇× Ê+ iωµ0Ĥ = 0 , (3.2a)

∇× Ĥ− iωǫ(x, z)Ê = 0 , (3.2b)
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Figure 3.1: Total configuration for Green tensor formalism with multi-layered geometry.

where µ0 is the permeability in free space. Formally, the total fields Ê and Ĥ in Eq. (3.2)

can be expressed as the sum of the incident field and scattered field as

Ê = Êinc + Êsca , (3.3a)

Ĥ = Ĥinc + Ĥsca . (3.3b)

We define the incident field to be the part of the field that is present in the layered

medium without the deviant regions. The incident field then satisfies the following set

of Maxwell equations

∇× Êinc + iωµ0Ĥ
inc = 0 , (3.4a)

∇× Ĥinc − iωǫB(z)Êinc = 0 . (3.4b)
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We shall refer the multi-layered medium without the deviant regions as the ‘back-

ground’ configuration (see Fig. 3.2). Expressing Eq. (3.2) in terms of the background

z

x

E�
B฀

E
N

B฀

E�
B฀

E�
B 

E
N-1

B฀

Figure 3.2: Background multi-layer configuration.

configuration, we have

∇× Ê+ iωµ0Ĥ = 0 , (3.5a)

∇× Ĥ− iωǫB(z)Ê = Ĵcon , (3.5b)

where

Ĵcon =















iω
[

ǫD(x, z)− ǫB(z)
]

Ê, r ∈ Dm,

0, otherwise.

(3.6)

Subtracting Eq. (3.4) from Eq. (3.5), we obtain for the scattered field

∇× Êsca + iωµ0Ĥ
sca = 0 , (3.7a)

∇× Ĥsca − iωǫB(z)Êsca = Ĵcon , (3.7b)
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which shows that the scattered field is the part of the field due to the ‘electric contrast

source’ Ĵcon. This contrast source Ĵcon vanishes everywhere outside the deviant regions

Dm.

Next, we define the so-called Green states ÊG and ĤG that satisfy

∇× ÊG + iωµ0Ĥ
G = 0 , (3.8a)

∇× ĤG − iωǫB(z)ÊG = a δ(x− x′) δ(z − z′) , (3.8b)

with a as a unit vector. These Green states describe the scattered electric and magnetic

fields generated by a current line source of infinite length in y and directed along a.

The electric and magnetic Green tensor, ĜE
ij and Ĝ

H
ij , may then be defined through the

Green states as

ÊG
i = ĜE

ijaj , (3.9a)

ĤG
i = ĜH

ijaj . (3.9b)

By superposition of the Green states, the scattered electric and magnetic fields are

found to be

Êsca
i (x, z) =

m0
∑

m=1

∫ ∫

Dm

ĜE
ij (x, z; x

′, z′)Ĵ con
j (x′, z′) dx′ dz′ , (3.10a)

Ĥsca
i (x, z) =

m0
∑

m=1

∫ ∫

Dm

ĜH
ij (x, z;x

′, z′)Ĵ con
j (x′, z′) dx′ dz′ . (3.10b)

Using Eq. (3.6), the total electric and magnetic fields can then be expressed as

Êi(x, z) = Êinc
i + iω

m0
∑

m=1

∫ ∫

Dm

∆ǫ (x′, z′) ĜE
ij (x, z; x

′, z′)Êj (x
′, z′) dx′ dz′ , (3.11a)

Ĥi(x, z) = Ĥ inc
i + iω

m0
∑

m=1

∫ ∫

Dm

∆ǫ (x′, z′) ĜH
ij (x, z;x

′, z′)Êj (x
′, z′) dx′ dz′ . (3.11b)
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where ∆ǫ (x′, z′) = ǫD(x′, z′) − ǫB(z′), with (x′, z′) ∈ Dm . These are the so-called

domain integral equations. It is to be noted that the Green tensors ÊG and ĤG pertain

to the relatively simple background configuration that does not contain Dm. Eq. (3.11)

shows that the electric field Ê and magnetic field Ĥ at any point in the multi-layer

medium can be calculated once the fields in the deviant regions are known. By dis-

cretizing the field in the deviant regions in Eq. (3.11), we obtain a matrix equation

which may be inverted to determine the fields. The field everywhere else may then be

determined by substituting the fields in the deviant regions back into Eq. (3.11). Since

the magnetic field can be calculated by taking the curl of the electric field, only the

Green tensor for the electric field will be derived.

Before tackling the challenging task of determining the dyadic Green functions,

we can see from Eq. (3.4) that the incident field satisfies the Maxwell equations for

the background configuration (Dm not included). We show how one can analytically

‘construct’ the incident field for a plane wave in the next section.

3.2 The Incident Field

For an incident plane wave, the incident field in the multi-layer background configuration

can be calculated analytically using a recursive procedure by matching the boundary

conditions for the tangential components of Ê and Ĥ. Suppose we have an incident

plane wave with wave vector (kx, 0, kz1) incoming from the bottom of the multi-layer

configuration. With the exception of the top layer, the transmission and reflection

across the boundaries will result in upward and downward waves ‘bouncing’ between

the layers. Let there be N arbitrary layers, with the N th layer being the semi-infinite
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layer on the top. We denote the amplitude of the upward and downward waves in the

nth layer as upol
n and dpol

n respectively, with the superscript pol = E for the TE-polarized

component (electric field transverse to the x − z plane), and pol = H for the TM-

polarized component (magnetic field transverse to the x − z plane). In the first layer

(n = 1), we take uE,H
1 = 1. In the N th layer, boundary conditions dictate that dE,H

N = 0.

The tangential components in each layer may then be expressed as

Êy =































[

e−i kz1 (z−z1) + dE
1 e

i kz1 (z−z1)
]

e−i kxx z < z1

[

uE
n e

−i kzn (z−zn−1) + dE
n e

i kzn (z−zn)
]

e−i kxx zn−1 < z < zn

[

uE
N e

−i kzN (z−zN−1)
]

e−i kxx z > zN−1

(3.12)

Ĥx = −
1

ωµ0































[

e−i kz1 (z−z1) − dE
1 e

i kz1 (z−z1)
]

kz1e
−i kxx z < z1

[

uE
n e

−i kzn (z−zn−1) − dE
n e

i kzn (z−zn)
]

kzne
−i kxx zn−1 < z < zn

[

uE
N e

−i kzN (z−zN−1)
]

kzNe
−i kxx z > zN−1

(3.13)

for the TE case, and

Êx =































[

e−i kz1 (z−z1) + dH
1 e

i kz1 (z−z1)
]

e−i kxx z < z1

[

uH
n e

−i kzn (z−zn−1) + dH
n e

i kzn (z−zn)
]

e−i kxx zn−1 < z < zn

[

uH
N e

−i kzN (z−zN−1)
]

e−i kxx z > zN−1

(3.14)

Ĥy =
1

ωµ0































[

e−i kz1 (z−z1) − dH
1 e

i kz1 (z−z1)
]

k1e
−i kxx z < z1

[

uH
n e

−i kzn (z−zn−1) − dH
n e

i kzn (z−zn)
]

kne
−i kxx zn−1 < z < zn

[

uH
N e

−i kzN (z−zN−1)
]

kNe
−i kxx z > zN−1

(3.15)

for the TM case. For each of the layers between the first and last layers, let us define

ζn = e−i kzn (zn−zn−1) , where (n = 2, 3, 4, ..., N − 1). (3.16)
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For the first layer at the bottom of the multi-layer medium, we define for convenience

ζ1 = 1. (3.17)

With the definitions (3.16) and (3.17), matching the boundary conditions at the N − 1

boundaries z = z1, z2, z3..., zN−1 yield the following equations

Êy : u
E
n ζn + dE

n = uE
n+1 + dE

n+1ζn+1 , (3.18a)

Ĥx : kzn(u
E
n ζn − dE

n ) = kzn+1(u
E
n+1 − dE

n+1ζn+1) , (3.18b)

Êx :
kzn

kn

(uM
n ζn + dH

n ) =
kzn+1

kn+1

(uH
n+1 + dH

n+1ζn+1) , (3.18c)

Ĥy : kn (u
H
n ζn − dH

n ) = kn+1 (u
H
n+1 − dH

n+1ζn+1) . (3.18d)

To calculate the amplitudes uE,H
n and dE,H

n , we define generalized transmission and

reflection coefficients tE,H
n and rE,H

n through the expressions

uE,H
n+1 = tE,H

n ζnu
E,H
n , (3.19a)

dE,H
n = rE,H

n ζnu
E,H
n . (3.19b)

By using the relations in Eq. (3.19), and substituting into Eq. (3.18), we obtain for the

TE case, the downward recursive relations

tEn =
kzn(1− rE

n )

kzn+1(1− rE
n+1ζ

2
n+1)

, (3.20a)

rE
n =

kzn(1 + rE
n+1ζ

2
n+1)− kzn+1(1− rE

n+1ζ
2
n+1)

kzn(1 + rE
n+1ζ

2
n+1) + kzn+1(1− rE

n+1ζ
2
n+1)

, (3.20b)

which is initialized by defining rE
N = 0. Similarly for the TM case, we find

tHn =
kn(1− rH

n )

kn+1(1− rH
n+1ζ

2
n+1)

, (3.21a)

rH
n =

kzn+1ǫ
B
n (1 + rH

n+1ζ
2
n+1)− kzn

ǫBn+1(1− rH
n+1ζ

2
n+1)

kzn+1ǫ
B
n (1 + rH

n+1ζ
2
n+1) + kzn

ǫBn+1(1− rH
n+1ζ

2
n+1)

, (3.21b)
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which is initialized by defining rH

N = 0.

Having determined the amplitude of a single plane wave in the multi-layer medium,

it is straightforward to perform the same calculations for a collection of incident plane

waves propagating in different directions. In our simulations, we will employ either

a plane wave or a Gaussian beam as the incident field. The field distribution of an

incident Gaussian beam can be readily synthesized through an angular spectrum of

plane waves2.

3.3 Green Tensor in Homogeneous Medium

In this section, we derive the electric Green tensor for a homogeneous medium with

constant permittivity ǫB. To begin, we note that the background configuration is in-

variant in the x direction, and we may therefore employ the spatial Fourier transform

of the electric Green tensor

G̃(kx, z, z
′) =

∫ ∞

−∞
Ĝ(x, x′, z, z′)ei kx(x−x′) dx , (3.22)

with the corresponding inverse transform

Ĝ(x, x′, z, z′) =
1

2π

∫ ∞

−∞
G̃(kx, z, z

′)e−i kx(x−x′) dkx , (3.23)

where we have dropped the superscript E for notational convenience. Another simplifi-

cation applicable to our derivation is that the Maxwell equations can be split into two

independent sets, namely the TE and TM polarizations, for our two-dimensional prob-

lem (Born and Wolf 1999, Sec. 11.4). In the Fourier domain, the Maxwell equations of

2For a detailed formulation of the angular spectrum pertaining to our two-dimensional

geometry, the reader is referred to Appendix A.
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Eq. (3.8) for a line source current directed along âp (p = x, y, z) read

−∂zẼ
G,p
y + iωµ0H̃

G,p
x = 0 , (3.24a)

∂zẼ
G,p
x + ikxẼ

G,p
z + iωµ0H̃

G,p
y = 0 , (3.24b)

−ikxẼ
G,p
y + iωµ0H̃

G,p
z = 0 , (3.24c)

∂zH̃
G,p
y + iωǫBẼG,p

x = −δpxδ(z − z′) , (3.24d)

−∂zH̃
G,p
x − ikxH̃

G,p
z + iωǫBẼG,p

y = −δpyδ(z − z′) , (3.24e)

ikxH̃
G,p
y + iωǫBẼG,p

z = −δpzδ(z − z′) , (3.24f)

where δij denotes the Kronecker delta, and where the substitution ∂x = −ikx has been

used. Eliminating ẼG,p
x , ẼG,p

y , H̃G,p
x , and H̃G,p

y in Eq. (3.24), we obtain for z 6= z′

(∂2
z + k2

z)
{

ẼG,p
z , H̃G,p

z

}

= 0 . (3.25)

The solutions of these two equations are exponential functions that must vanish for

z −→ ±∞. We may now write the field as

{

ẼG,p , H̃G,p
}

=















{

Ẽ , H̃
}

(kx,−kz) · f
+
p e

−i kz (z−z′) , z > z′

{

Ẽ , H̃
}

(kx,+kz) · f
−
p e

i kz (z−z′) , z < z′
(3.26)

where f+
p = [f+

p,H , f
+
p,E]

T and f−p = [f−p,H , f
−
p,E]

T are the amplitudes of the solutions of

Eq. (3.25), corresponding to waves traveling in the positive and negative z direction,

respectively. The superscript T denotes matrix transpose. The 3×2 coefficient matrices

Ẽ and H̃ express the other field components in terms of ẼG,p
z and H̃G,p

z are given by

Ẽ (kx, kz) =

















kz

kx

0

0
ωµ0

kx

1 0

















, (3.27)
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H̃ (kx, kz) =

















0
kz

kx

−
ωǫB

kx

0

0 1

















. (3.28)

The fields ẼG,p and H̃G,p can be calculated with Eq. (3.26) once the four components

of f+
p and f−p are determined. This can be done by matching the tangential components

of the fields at the source level z = z′. To this end, we integrate Eqs. (3.24a), (3.24b),

(3.24d), and (3.24e) over an infinitesimally small interval around z = z′, and eliminate

ẼG,p
z and H̃G,p

z using Eqs. (3.24c) and (3.24f) to find

























ẼG,p
x

ẼG,p
y

H̃G,p
x

H̃G,p
y

























(z ↓ z′) −

























ẼG,p
x

ẼG,p
y

H̃G,p
x

H̃G,p
y

























(z ↑ z′) =

























kx

ωǫB
δpz

0

δpy

−δpx

























(3.29)

Substituting for the field components in Eq. (3.29) using Eq. (3.26), we obtain the

following results for f±p :

f+
x = −f−x =









kx

2ωǫB

0









, (3.30)

f+
y = f−y =









0

−
kx

2kz









, (3.31)

f+
z = f−z =









−
k2

x

2ωǫBkz

0









. (3.32)

In addition, there is a contribution of a singular part
i

ωǫB
δ(z − z′) to ẼG,z

z , derived by

similarly integrating Eq. (3.24f) over an infinitesimally small interval around z = z′.
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For each choice of the direction p of the line current source, the solution for the electric

field ẼG,p is identically the pth column of the electric green tensor, as given in Eq. (3.9a).

The electric Green tensor G̃ can therefore be written as a sum of a singular part G̃(sin)

and a part due to the field vectors associated with the source current G̃(source) :

G̃(kx, z, z
′) = G̃(sin) δ(z − z′) + G̃(source)e−i kz | z−z′ | , (3.33)

with

G̃(sin) =
i

ωǫB

















0 0 0

0 0 0

0 0 1

















, (3.34)

and

G̃(source) = −
1

2ωǫB

















kz 0 −Skx

0
k2

kz

0

−Skx 0
k2

x

kz

















, (3.35)

where

S = sign (z − z′) . (3.36)

The magnetic green tensor H̃(kx, z, z
′), related to the curl of the electric green tensor is

H̃(kx, z, z
′) = H̃(source)e−i kz | z−z′ | , (3.37)

with

H̃(source) = −
1

2

















0 −S 0

S 0 −
kx

kz

0
kx

kz

0

















. (3.38)
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3.4 Green Tensor in Multi-layered Medium

We now derive the Green tensor for the multi-layered background configuration. Assume

that a line source current is located at z = z′ within one of the layers B(s). The source

layer B(s) contains two source-free regions B(s+) and B(s−), situated above and below the

line source at z = z′, respectively. In all the other source-free layers (x, z) ∈ B(n), n 6= s,

the electric and magnetic fields are associated with amplitude vectors fn,+
p and fn,−

p , as

in the case of the homogeneous medium (cf. Eq. (3.26)). These field amplitude vectors,

superscripted with an additional label n, are however now, layer-dependent. It turns

out that these field vectors can be determined recursively for the multi-layered medium,

as we will now show. For layers above the source layer, we will employ a downward

recursion scheme starting at B(N) and ending at B(s+). For layers below the source

layer, we will employ a upward recursion scheme starting at B(1) and ending at B(s−).

The electric and magnetic fields in the source-free layers B(n)(n 6= s) can be ex-

pressed as a sum of upward and downward traveling waves through the layer-dependent

amplitude vectors as

{

ẼG,p , H̃G,p
}

=
{

Ẽ , H̃
}

(kx,−kzn) · f
n,+
p e−i kzn (z−zn,ref )

+
{

Ẽ , H̃
}

(kx,+kzn) · f
n,−
p ei kzn (z−zn,ref ) .

(3.39)

For a layer B(n) above the the source level z = z′, the reference level zn,ref is taken

as the lower interface of the layer, i.e., zn,ref = zn−1. For a layer B(n) below the the

source level, the reference level zn,ref is taken as the upper interface of the layer, i.e.,

zn,ref = zn. As in the previous section, the fields in all the other layers B
(n)(n 6= s) can
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be calculated with Eq. (3.39) once all the field vectors fn,+

p and fn,−
p are determined.

Since the line source does not generate fields incoming from infinity, we write

fN,−
p = f1,+

p = 0 . (3.40)

In a similar fashion as for the homogeneous medium, the amplitude vectors can be

determined by matching the tangential field components at the material boundaries.

To do this we define matrices ẼT and H̃T which are the upper 2× 2 sub-matrices of Ẽ

and H̃, respectively. The continuity condition at the interface between the layers B(n)

and B(n+1) can then be written as

Qn+1(zn)









fn+1,+
p

fn+1,−
p









= Qn(zn)









fn,+
p

fn,−
p









, (3.41)

where the 4× 4 matrix Qn is given by

Qn(z) =









ẼT (kx,−kzn)

σ
ẼT (kx, kzn) σ

H̃T (kx,−kzn)

σ
H̃T (kx, kzn) σ









, (3.42)

with σ = ei kzn (z−zn,ref ). We now define the transmission and reflection coefficients td,n
pol ,

rd,n
pol , t

u,n
pol , r

u,n
pol , where pol = E (TE), H (TM), and the superscripts d and u denote

downward recursion and upward recursion respectively. For B(n) above the source level,

define

fN,+
p,pol = td,n

polf
n,+
p,pol , (3.43a)

fn,−
p,pol = rd,n

pol f
n,+
p,pol , (3.43b)

and for B(n) below the source level, define

f 1,−
p,pol = tu,n

pol f
n,−
p,pol , (3.44a)

fn,+
p,pol = ru,n

pol f
n,−
p,pol . (3.44b)
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In the downward recursion scheme, the reflection and transmission coefficients of layer

B(n) are expressed recursively in those of B(n+1) by using the continuity condition in

Eq. (3.41). The results are

rd,n
E = −

γ2
d

[

kz(n+1)
(−1 + rd,n+1

E ) + kzn(1 + rd,n+1
E )

]

[

kz(n+1)
(−1 + rd,n+1

E )− kzn(1 + rd,n+1
E )

] , (3.45a)

td,n
E =

2 γd kzn t
d,n+1
E

[

kz(n+1)
(−1 + rd,n+1

E )− kzn(1 + rd,n+1
E )

] , (3.45b)

rd,n
H = −

γ2
d

[

ǫn kz(n+1)
(−1 + rd,n+1

H ) + ǫn+1 kzn(1 + rd,n+1
H )

]

[

ǫn kz(n+1)
(−1 + rd,n+1

H )− ǫ(n+1) kzn(1 + rd,n+1
H )

] , (3.45c)

td,n
H =

2 γd ǫn kzn t
d,n+1
H

[

ǫn kz(n+1)
(−1 + rd,n+1

H )− ǫ(n+1) kzn(1 + rd,n+1
H )

] , (3.45d)

with γd = e−i kzn (zn−z(n−1)). Similarly for the upward recursion scheme, the reflection

and transmission coefficients of layer B(n+1) are expressed recursively in those of B(n),

and the results are

ru,n+1
E = −

γ2
u

[

kzn
(1− ru,n

E )− kz(n+1)
(1 + ru,n

E )
]

[

kzn
(1− ru,n

E ) + kz(n+1)
(1 + ru,n

E )
] , (3.46a)

td,n+1
E =

2 γu kz(n+1)
tu,n
E

[

kzn
(1− ru,n

E ) + kz(n+1)
(1 + ru,n

E )
] , (3.46b)

rd,n+1
H = −

γ2
u

[

ǫn+1 kzn
(1− ru,n

H )− ǫn kz(n+1)
(1 + ru,n

H )
]

[

ǫn+1 kzn
(1− ru,n

H ) + ǫn kz(n+1)
(1 + ru,n

H )
] , (3.46c)

td,n+1
H =

2 γu ǫn+1 kz(n+1)
tu,n
H

[

ǫn+1 kzn
(1− ru,n

H ) + ǫn kz(n+1)
(1 + ru,n

H )
] , (3.46d)

with γu = e
−i kz(n+1)

(z(n+1)−zn)
. Consistent with the boundary conditions at infinity, the
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downward recursion is initialized with the conditions

rd,N
pol = 0 , (3.47a)

td,N
pol = 1 , (3.47b)

and the upward recursion with

ru,1
pol = 0 , (3.48a)

tu,1
pol = 1 . (3.48b)

The next task is to initiate the recursion schemes in Eqs. (3.43) and (3.44) to enable us

B (s+)

B (s-)

f
p

pri, s+, +

f
p

pri, s-, - f
p

sec, s, +

f
p

sec, s, -

z = z’

z = z
s

z = z
(s - 1)

Figure 3.3: The primary and secondary amplitude vectors .

to calculate the field amplitude vectors in all the layers. To do this, we first determine

fN,+
p,pol and f

1,−
p,pol by using the field amplitude vectors in the regions B

(s+) and B(s−). For

this purpose, we define, in addition to the primary field vectors that radiates from the
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line source, a pair of upward and downward traveling secondary field vectors between

z = zs and z = z(s−1) (Fig. 3.3.). The primary field takes into account the contribution

from the line source, and the secondary field takes into account contribution from

multiple reflections and refractions at the various material boundaries. The primary

field vectors are given by Eqs. (3.30) - (3.32) as for the homogeneous case. In line with

the notation for the amplitude vectors in Eq. (3.39), we have the following relations

between the primary and secondary fields

f s+,+
p = fpri,s+,+

p + f sec,s,+
p , (3.49a)

f s+,−
p = f sec,s,−

p , (3.49b)

f s−,+
p = f sec,s,+

p , (3.49c)

f s−,−
p = fpri,s−,−

p + f sec,s,−
p . (3.49d)

From Eqs. (3.43) and (3.44), we find

f s+,−
p,pol = rd,s+

pol f
s+,+
p,pol , (3.50a)

f s−,+
p,pol = ru,s−

pol f s−,−
p,pol . (3.50b)

Substituting Eq. (3.50) into Eq. (3.49), we can solve for f s+,+
p,pol and f

s−,−
p,pol in terms of the

known primary field vectors. The results are

f s+,+
p,pol =

fpri,s+,+
p,pol + ru,s−

pol fpri,s−,−
p,pol

1− rd,s+
pol r

u,s−
pol

, (3.51a)

f s−,−
p,pol =

fpri,s−,−
p,pol + rd,s+

pol f
pri,s+,+
p,pol

1− rd,s+
pol r

u,s−
pol

. (3.51b)
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Back-substituting into Eq. (3.50), we find

f s+,−
p,pol =

1

Mpol

[

rd⋆
pol f

pri,s+,+
p,pol e−i 2kzn (zc−z′) + Lpol f

pri,s−,−
p,pol

]

, (3.52a)

f s−,+
p,pol =

1

Mpol

[

Lpol f
pri,s+,+
p,pol + ru⋆

pol f
pri,s−,−
p,pol e−i 2kzn (z′−zc)

]

, (3.52b)

where we have made use of the following substitutions

rd,s+
pol = rd⋆

pol e
−i 2kzn (zc−z′) , (3.53a)

ru,s−
pol = ru⋆

pol e
−i 2kzn (z′−zc) , (3.53b)

rd⋆
pol = rd,s+

pol (z
′ = zc) , (3.53c)

ru⋆
pol = ru,s−

pol (z′ = zc) , (3.53d)

zc =
(

zs + z(s−1)

)

/2 , (3.53e)

Lpol = rd⋆
pol r

u⋆
pol , (3.53f)

Mpol = 1− Lpol . (3.53g)

With Eq. (3.51), the field vectors fN,+
p,pol and f

1,−
p,pol can be determined, and all the field

vectors in the other layers B(n), n 6= s, follow from the recursion relations in Eqs. (3.43)

and (3.44).

In the source layer B(s), the electric Green tensor is given by the sum of the contri-

butions of a singular part G̃(sin), a source part G̃(source), and a part G̃(field (sec)) due to

the secondary field vectors that takes into account multiple reflections and refractions

across the various material boundaries

G̃(kx, z, z
′) = G̃(sin) δ(z − z′) + G̃(source)e−i kzs| z−z′ | + G̃(field (sec)) . (3.54)

The contributions G̃(sin) and G̃(source) are as given in Eqs. (3.34) and (3.35) for the case

of the homogeneous media. The contribution G̃(field (sec)) in the source layer can be
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further broken down into two parts G̃(field (sec,+)) and G̃(field (sec,−))

G̃(field (sec)) = G̃(field (sec,+)) e−i kzs( z−z′ ) + G̃(field (sec,−)) ei kzs( z−z′ ) , (3.55)

where

G̃(field (sec,+)) =

















−
kzs

kx

0

0
ωµ0

kx

1 0

















×

1

Mpol

{

Fpri,s+,+ Lpol + Fpri,s−,− ru⋆
pol e

−i 2kzs( z′−zc )
}

, (3.56)

G̃(field (sec,−)) =

















kzs

kx

0

0
ωµ0

kx

1 0

















×

1

Mpol

{

Fpri,s+,+ rd⋆
pol e

−i 2kzs( zc−z′ ) + Fpri,s−,− Lpol

}

, (3.57)

with the 2× 3 matrices

Fpri,s+,+ =
[

f+
x , f

+
y , f

+
z

]

, (3.58a)

Fpri,s−,− =
[

f−x , f
−
y , f

−
z

]

. (3.58b)

Replacing the 3×2 matrices Ẽ(kx,−kzs) and Ẽ(kx, kzs) with H̃(kx,−kzs) and H̃(kx, kzs)

in Eqs. (3.56) and (3.57) respectively, the tensors H̃(field (sec,+)) and H̃(field (sec,−)) for

the magnetic field are determined. For all other layers B(n), n 6= s,, the electric and

magnetic fields can be found by substituting the appropriate parameters for each layer

in Eq. (3.39).
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We have now determined, up to within a Fourier transform, the electric Green

tensors Ĝ in the multi-layered medium. In order to determine the electric fields, the

domain integral equation in Eq. (3.11a) is to be solved numerically, a process we describe

in the following section.

3.5 Numerical Treatment of the Domain Integral Equations

To obtain a numerically stable solution of the domain integral equation in Eq. (3.11a),

we define an approximate solution of the form

Ěi(x, z) =

K0
∑

K=1

αiK βK(x, z) , (3.59)

where αiK are expansion coefficients to be determined, and βK are suitable basis func-

tions.

It is to be noted that Ěi(x, z) is in principle exact as the number of basis functions

K0 −→ ∞. In practical implementation, the solution Ěi(x, z) is always an approxima-

tion since K0 must be finite. Following the method of weighted residuals3, we define

the residual Ri as

Ri(x, z) = Ěi(x, z)− Êinc
i (x, z)

− iω

m0
∑

m=1

∫ ∫

Dm

∆ǫ (x′, z′) ĜE
ij (x, z;x

′, z′)Ěj (x
′, z′) dx′ dz′

6= 0 , (3.60)

where it is required that the weighted integral of Ri to vanish in the domain Ω such

3For detailed discussions on this method, see for instance, Section 9.2 of Grandin

(1986) or Section 2.4.3 of Reddy (1993).
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that

∫

Ω

WL(x, z)Ri(x, z) dx dz = 0 (L = 1, 2, 3, ...,K0) , (3.61)

with WL as the appropriate weight functions. The integral in Eq. (3.60) is evaluated

over the deviant regions Dm only. We employ the collocation method (Reddy 1993,

Sec. 2.4.3) in choosing the weight functions WL’s, resulting in a set of Dirac delta

functions for the weight functions, viz

WL = δ(x− xL) δ(z − zL) . (3.62)

Using this set of weighting functions in Eq. (3.61) is equivalent to setting the residual

Ri at each of the Lth points to be zero, i.e.,

Ri (xL, zL) = 0 . (3.63)

Substituting Eq. (3.59) into Eq. (3.60), and making use of Eq. (3.63), we obtain 3K0

linear equations for the 3K0 coefficients αx1, ..., αxK0 , αy1, ..., αyK0 , and αz1, ..., αzK0 ,

z
∑

j=x

K0
∑

K=1

[ βK (xL, zL) δij − iω AijLK ]αjK = Êinc
i (xL, zL) , (3.64)

where

AijLK =

∫ ∫

Dm

∆ǫ (x′, z′) ĜE
ij (xL, zL;x

′, z′)βK (x
′, z′) dx′ dz′ (3.65)

Taking the basis functions βK’s as piecewise constant functions, i.e.,

βK (x, z) =















1 if (x, z) ∈ Dm

0 otherwise

, (3.66)

Eq. (3.65) reduces to

AijLK =

∫ ∫

Dm

∆ǫ (x′, z′) ĜE
ij (xL, zL;x

′, z′) dx′ dz′ . (3.67)
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In our configuration, we will take that ∆ǫ (x′, z′) is constant within each deviant region,

so that

AijLK = ∆ǫ (x′, z′)

∫ ∫

Dm

ĜE
ij (xL, zL;x

′, z′) dx′ dz′

= ∆ǫ (x′, z′)CijLK . (3.68)

Using the Fourier relationship established in Eq. (3.23), one obtains for CijLK

CijLK =
1

2π

∫ ∫

Dm

[
∫ ∞

−∞
G̃(kx, zL, z

′)e−i kx(xL−x′) dkx

]

dx′ dz′ . (3.69)

According to Fubini’s theorem, we may change the order of integration to obtain

CijLK =
1

2π

∫ ∞

−∞

[
∫

G̃(kx, zL, z
′) dz′

] [
∫

e−i kx(xL−x′) dx′
]

dkx

=
1

2π

∫ ∞

−∞

[
∫

G̃(kx, zL, z
′) dz′

]

∆x sinc
kx∆x

2
e−i kx(xL−x′) dkx , (3.70)

where ∆x is the length of each discretization element along the x direction in each

contrast source region Dm. For a contrast region Dm located in one of the layers n = s,

we can make use of Eq. (3.34, 3.35, 3.39, 3.54, 3.55), to rewrite Eq. (3.70) for n = s

CijLK =
1

2π

∫ ∞

−∞

{
∫

[

G̃(sin) δ(zL − z′) + G̃(source) (kx) e
−i kzs| zL−z′ |

+ G̃(field (sec,+)) (kx) e
−i kzs( zL−z′ ) + G̃(field (sec,−)) (kx) e

i kzs( zL−z′ )

]

dz′

×∆x sinc
kx∆x

2
e−i kx(xL−x′)

}

dkx ,

(3.71)
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and for n 6= s,

CijLK =
1

2π

∫ ∞

−∞

{
∫

[

G̃(field (sec,n,+)) (kx) e
−i kzn( zL−zn,ref )

+ G̃(field (sec,n,−)) (kx) e
i kzn( zL−zn,ref )

]

dz′

×∆x sinc
kx∆x

2
e−i kx(xL−x′)

}

dkx ,

(3.72)

where

G̃(field (sec,n,+)) (kx) = Ẽ (kx,−kzn) · f
n,+
p , (3.73a)

G̃(field (sec,n,−)) (kx) = Ẽ (kx,+kzn) · f
n,−
p . (3.73b)

Here we have shown explicitly the dependence of the Green tensor
(

G(source), G̃(field (sec,+)),

G̃(field (sec,−)), G̃(field (sec,n,+)), and G̃(field (sec,n,−))
)

on kx. Note that G̃
(sin) does not de-

pend on kx. Integrating the first two terms in square brackets in Eq. (3.71) with respect

to z′, we find
∫

G̃(sin) δ(zL − z′) dz′ = δLKG̃
(sin) , (3.74)

and

∫

G̃(source) (kx) e
−i kzs| zL−z′ | dz =

−1

2ωǫB

















Iskzs 0 −Iakx

0 Is
k2

s

kzs

0

−Iakx 0 Is
k2

x

kzs

















, (3.75)

where

Is =















2

kzs

sin
kzs∆z

2
e−i kzs | zL−z′ | | zL − z′ | >

∆z

2
2

ikzs

[

1− cos kzs(zL − z′)e−i kzs
∆z
2

]

| zL − z′ | <
∆z

2

, (3.76)
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Ia =































2

kzs

sin
kzs∆z

2
e−i kzs | zL−z′ | zL − z′ >

∆z

2

−
2

kzs

sin
kzs∆z

2
e−i kzs | zL−z′ | zL − z′ < −

∆z

2
2

kzs

sin kzs(zL − z′)e−i kzs
∆z
2 | zL − z′ | <

∆z

2

, (3.77)

and ∆z is the length of each discretization element along the z direction in each contrast

source region Dm. The rest of the terms in the square brackets of Eqs. (3.71) and (3.72),

G̃(field (sec,+)), G̃(field (sec,−)), G̃(field (sec,n,+)), and G̃(field (sec,n,−)), contribute to upward

and downward propagating waves according to Eqs. (3.56), (3.57), and (3.73). The

dependence on z′ of each upward and downward propagating wave due to these terms

is e−i kzs z′ and e+i kzs z′ respectively. Therefore, each of these terms are associated with

either the factor ∆z sinc
kzs∆z

2
e−i kzsz′ or ∆z sinc

kzs∆z

2
ei kzsz′ .

The coefficients CijLK are then determined numerically by use of the Fast Fourier

Transform (Press et al. 2005, Sec. 12). In doing so, two problems need to be addressed.

First, the constant term in Is that has no exponent converges slowly; Is,xx does not

tend to zero and both Is,yy and Is,zz tends to infinity as kx −→∞. For these terms, we

calculate the transform analytically using the residue theorem. The second problem is

that of pole singularities in the system for values of kx for which Mpol vanishes. These

poles correspond physically to guided modes in the layers as well as the surface plasmon

mode (TM case) along the boundaries of the layers. In the case of surface plasmons, the

pole lies close to the real kx-axis. To avoid the pole at kx, we may deform the contour

of integration in the vicinity of the poles to a semi-circular path with radius r as shown

in Fig. 3.4

Once the coefficients CijLK are determined, we may solve for the coefficients αjK
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in Eq. (3.64) through matrix inversion, and hence the field in the deviant regions Dm

(cf. Eq. (3.59)). For TE polarization, there is only an Êy field, and a K0 × K0 matrix

has to be inverted. For the TM polarization, there is both an Êx and an Êz field, and

a 2K0 × 2K0 matrix has to be inverted. The matrix may be inverted using a method

such as Gaussian elimination with partial or maximum pivoting (Press et al. 2005, Sec.

2.1). The field anywhere else can then be determined by substituting the fields solved

through the inversion back into Eq. (3.11), the domain integral equation.

r

r

Im[k
x
]

Re[k
x
]

Figure 3.4: Contour deformation with semi-circles of radius r to avoid pole singularities
marked at ‘x’.



Chapter 4: Super-resolved optical readout

The ever-growing demand by industries and consumers alike for high capacity digital

storage media has stimulated much research interest in near field optical data readout,

an approach that offers the capability for operation beyond the diffraction limit. Ac-

cording to Lord Rayleigh1, the limit of resolution of a diffraction-limited imaging system

is (Born and Wolf 1999, Sec 7.6.3, Hecht 1998, Sec 10.2.6)

∆lmin = 0.61λ0/NA (4.1)

where λ0 is the free space wavelength, and NA is the numerical aperture of the scanning

objective. It is immediately clear that one can improve the resolution by using a shorter

wavelength or by increasing the NA. From the CD (compact disc) to Blu-ray disc, the

application of these strategies to improve the resolution is clear, as can be seen from

the data in Table 4.1.

The fact that shorter wavelengths of radiation such as ultraviolet and X-rays are

ionizing radiation that could change or damage materials they illuminate suggests that

the blue laser is about the shortest wavelength practical for an optical data stor-

age system. In the regime of near field optics, imaging with a subwavelength aper-

1In Rayleigh’s own words: “this rule is convenient on account of its simplicity; and

it is sufficiently accurate in view of the necessary uncertainty as to what is meant by

resolution” (Strutt JW 1879).
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Table 4.1: Physical system parameters for the various optical storage media. Data from

van de Nes et al. (2006).

Medium λ (nm) NA Min. spot size (nm) Capacity(GB/layer)

CD 785 0.45 2110 0.65

DVD 650 0.60 1320 4.7

Blu-ray 405 0.85 580 23

ture (Ash and Nicholls 1972, Pohl et al. 1984), sampling with near field scanning opti-

cal microscopy (Betzig et al. 1991, Betzig and Trautman 1992), increasing theNA with

solid immersion lens (Terris et al. 1994, Suzuki et al. 1998, Török and Kao 2003), and

employing localized plasmon effects in so-called super-RENS structures (Tominaga and

Tsai 2003, Her et al. 2003), are methods that have been used to overcome the diffrac-

tion limit. In fact, resolution limit close to ∼ λ/9 for near field magneto-optic readout

has been demonstrated by Betzig et al. (1992).

The major problem however, is that the amount of light throughput available to per-

form the readout operation is severely limited by the subwavelength apertures, making

the system very susceptible to noise signals. Here we propose strategies to perform

super-resolved optical readout with surface plasmons, which could serve as potential

alternatives to retrieving the information from the recorded medium. As demonstrated

by experiments conducted in several studies (Ebbesen et al. 1998, Thio et al. 2001,

Lezec et al. 2002), surface plasmons can couple with light to produce enhanced op-

tical transmission and localized field effects in subwavelength apertures. In contrast
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to the super-RENS technique, we manipulate the plasmon effects by means of suit-

ably placed ‘plasmon pits’ in the optical readout system. Depending on their loca-

tions and geometries, these plasmon pits can serve both to enhance or hinder the per-

formance of the readout system (Garćıa-Vidal et al. 2003, Mart́ın-Moreno et al. 2003,

Gbur et al. 2005).

4.1 Plasmon-assisted Optical Readout System Configurations

a
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(inc)

t
2

t
3

reflected field reflected field

data layer

metal plate

plasmon pit plasmon pit

a

U        (
(inc)

t
2

t
3

t
4  ’

transmitted field

data layer

plasmon pits plasmon pits

metal plate

(a)

(b)

Figure 4.1: Illustrating the geometries of the configurations investigated for plasmon-
assisted optical readout.

In this section, we present results on our investigations of suitable strategies for
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plasmon-assisted optical readout based on: (a) a reflection readout configuration; and

(b) a transmission readout configuration. The geometries of the two configurations are

shown in Fig. 4.1. A metal plate (taken to be silver) of thickness t2 = 100 nm that con-

tains a single subwavelength slit of width a is illuminated with a quasi-monochromatic

incident field of wavelength λ = 500 nm. The refractive index of silver is taken to be

nag = 0.05− i 2.87, following the data of Johnson and Christy (1972).

Plasmon pits whose size and position depend on the strategy considered may be

located either on the light (illuminated) or dark side of the silver plate. The separation

between each plasmon pit and the subwavelength slit is given by γ on the dark side,

and by γ′ on the light side. These plasmon pits play several roles in the optical readout

system. First, together with the subwavelength slit, they help to bridge the momentum

gap between the surface plasmons and the incident field by scattering part of the incident

field into a plasmonic channel, as discussed earlier in Section 2.3. Second, surface

plasmons that propagate along the surface can be reflected by the edges of the plasmon

pits, resulting in increased confinement of the surface plasmons to the region around

the slit. Third, the plasmon pits can serve as surface corrugations to enhance optical

transmission in the system (Garćıa-Vidal et al. 2003). In the reflection configuration,

the plasmon pits on the light side of the plate degrade the readout contrast and are

therefore excluded (Gbur et al. 2005).

Both the width and height of the plasmon pits in the 100 nm thick silver plate are

taken to be 50 nm and 40 nm in the reflection and transmission configuration respec-

tively. As discussed, the plasmon pits can be present on both the dark side and light

side in the transmission configuration. By making them smaller, it is ensured that the
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two pairs of pits (whose positions are to be determined) do not coincide to form two ad-

ditional slits in the silver plate. Furthermore, simulations (results to be shown shortly)

with only the metal plate and plasmon pits on the illuminated side reveals that more

optical power is transmistted with pit size 40× 40 nm2 than with pit size 50× 50 nm2.

This finding also demonstrates that the effects of the surface plasmons do not scale

linearly with the dimensions of the subwavelength features.

The width a of the subwavelength slit in the silver plate is taken to be 25 nm, except

for a particular case in the reflection readout configuration where a slightly different

approach to that shown Fig. 4.1a is explored. In that case, only one plasmon pit is

present, and the plasmon pit, instead of the slit, acts as the probe for the data structure.

The slit width a in that case is taken to be 10 nm to minimize effects in the system due

to its presence, as we will see in the next section.

The data layer, taken to be either silver or silicon, is separated from the metal

plate by an air gap of t3 = 30 nm, similar to that in commercially available hard disk

drives (Mamun and Ge 2005, van de Nes et al. 2006). The refractive index of silicon is

taken to be nsi = 4.30− i 0.07, following the data of Palik (1985).

In the reflection readout configuration, as we are interested in the reflected field,

we take the thickness of the data layer t4 to be infinite for convenience.2 For the

transmission readout configuration, it was found through a series of numerical sim-

ulations that a thickness of 30 nm for the data layer t4 is optimal. The choice of

a 30 nm thin data layer helps reduce the effects of absorption, and allows for pos-

2This assumption is reasonable in the visible spectrum where the noble metals, such

as silver and gold, are highly reflective.
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sible plasmon-assisted field enhancement effects when the data layer is also metal-

lic (Bonod et al. 2003, Giannattasio et al. 2004). Data films thinner than 30 nm could

be very challenging for nano-fabrication, especially when including the data structures

at the surfaces. The choice for the size of the data pits is slightly different for the

different strategies.

To compare the readout performance of each of the strategies discussed below, we

define here a contrast parameter η and the resolution criterion. The contrast parameter

η quantifies the difference in the signal power P (reflected or transmitted intensity)

between the presence and absence of a data structure, i.e.

η =
P(data)

P(no data)

. (4.2)

The signal power P(data) could be a noninverting (η > 1) or inverting (0 < η < 1) signal.

For resolution, we have adopted a criterion more stringent than the Rayleigh crite-

rion (Born and Wolf 1999, Sec. 7.6.3). Two data pits are considered just resolved when

the signal power returns to P(no data) (η −→ 1) between two data structures, and this

makes our resolution estimates conservative ones. It is to be noted that in our strate-

gies, the binary data may be encoded with the data pits, or only with the edges of the

data pits.3

To demonstrate that the effects in our proposed strategies are due to plasmons

rather than other possibilities such as waveguide modes or diffracted evanescent waves,

3Detection of the edges is useful when binary data is encoded on the edges of

the data pit, similar to the method in which conventional compact discs are en-

coded (Pohlmann 1992).
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we performed simulations in which we replace the silver plate with a silicon plate and

compared the readout performance. For the reflection and transmission readout con-

figuration, we simulated a typical geometry with γ = 90 nm and γ′ = 225 nm (applies

only to transmission configuration), and the results are shown in Fig. 4.2. Here we

compare results of using a silicon plate instead of a silver plate. The data layer is either

silver or silicon. The size of the data pit is taken to be 50 nm wide and 25 nm deep

in Fig. 4.2a, and 40 nm wide and 15 nm deep in Fig. 4.2b. All other parameters are

given as above.
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Figure 4.2: Typical readout performance for the (a) reflection and (b) transmission
configurations, with γ = 90 nm and γ′ = 225 nm. The size of the data
pit is taken to be 50 nm wide and 25 nm deep in (a), and 40 nm wide and
15 nm deep in (b). The dashed line indicates the location of the data pit.

In Fig. 4.2a, we see that the reflected field intensity η differs significantly for a silver

plate - silver data layer and silicon plate - silicon data layer geometry, and the latter
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geometry does not support any surface plasmons. Oscillatory behavior in η for the

silicon-silicon geometry also suggests that waveguide modes could be responsible for

the effects for this case. Moreover, if waveguide modes were responsible for the effects

in the proposed readout system, one would expect dramatic differences between a silver

plate - silver data layer and a silver plate - silicon data layer geometry, since the effective

index of the waveguide mode would be very different (Taylor and Yariv 1974, Prade

et. al 1991, Berini 2000). However, the simulation results show that the main difference

in the response in these two cases is the magnitude of η. In Fig. 4.2b, it is observed

that the transmitted field intensity is almost constant in the case of the silicon plate

- silicon data layer geometry. In addition, the significant enhancement in transmission

for the silver plate - silver data layer geometry can be related to the presence of surface

plasmons in the system. With these observations, we conclude that surface plasmons

are responsible for the effects in the optical readout systems proposed in Fig. 4.1.

It is to be noted that the quantities P(data) and P(no data) used in Eq. (4.2) for evaluat-

ing η, are reflected and transmitted field intensities for the reflection and transmission

readout configurations, respectively. Also, the incident field, i.e., the field illuminat-

ing the system, while taken to be a normally incident plane wave for the reflection

configuration, is taken to be a normally incident Gaussian beam for the transmission

configuration. As opposed to a Gaussian beam that carries a finite amount of optical

power, a plane wave has infinite energy. By calculating the absolute transmission for

the transmission configuration, one can better gauge the response of the performance

of the system. Nevertheless, given that a plane wave is a good approximation to a

Gaussian beam at least in the paraxial region, one does not expect drastic differences
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for a qualitative analysis of the reflection readout system.

Having demonstrated the importance of the presence of surface plasmons in the

proposed systems in Fig. 4.1 with typical readout results in Fig. 4.2, and with η and

the resolution criterion specified, we proceed to evaluate the performance of the various

strategies to achieve superresolved optical readout in the following sections.

4.1.1 Strategies for Reflection Readout

For the reflection readout configuration, our preliminary study on the readout perfor-

mance as the size and position of the plasmon pits are varied led us to propose three

distinct strategies that might be used to perform optical readout, each with its own

system configuration:

1. A configuration designed to roughly map the shape of the data structures on the

disc.

2. A configuration designed to respond only to the edges of the data structure. This

configuration would be used if the binary data is encoded only at the edges of a

data pit.

3. A configuration in which a plasmon pit is itself used as the near-field probe, and

the slit acts only as a source/receiver of plasmons.

The three configurations are shown in Fig. 4.3. For all three configurations, the size

of each plasmon pit is taken to be 50 nm wide and 50 nm deep. Configuration 1 and

configuration 2 differ only in the separation between the plasmon pits and the center of
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a

a

a

(a) Configuration 1 - pit detection

(b) Configuration 2 - edge detection

(c) Configuration 3 - plasmon pit as probe

Figure 4.3: Illustration of the three configurations in the reflection readout system, and
the relevant system parameters. Configurations 1 (a) and 2 (b) differ only
in the position of the plasmon pits, while configuration 3 (c) has a different
slit width and only a single plasmon pit.

the subwavelength slit, γ. From results of our simulations, it turns out that the system

response can be quite different when γ is varied, which will be discussed shortly. For

these two configurations, the width of the subwavelength slit a is taken to be 25 nm,

and the size of each data pit is taken to be 50 nm wide and 25 nm deep.

In configuration 3, only one plasmon pit is present, itself acting as the near field

probe. The size of the data pit is taken to be 50 nm wide and 50 nm deep, different

from that in configurations 1 and 2. The size of the data pit is made identical to that

of the plasmon pit to enhance the resonance effects when the plasmon pit and data

pit coincide. It appears that the aligned pits act together to form a cavity, causing
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Figure 4.4: Illustrating the increased system oscillations and reduced readout contrast
when the slit width is increased from 10 nm to 15 nm for configuration 3.
The value of γ is taken to be 120 nm in this case.

the field within to resonate strongly. The slit acts merely as a plasmon source and

collector in this case. The slit width a is kept as thin as seems practical, and is taken

to be 10 nm. For larger values of a, interactions between the data structure and slit

can increase system oscillations as shown in Fig. 4.4, similar to the standing wave like

behavior observed in Fig. 4.2a.

The illuminating field is taken to be a normally incident plane wave for these three

configurations. For an incident plane wave, the definition of the transmission T consists

of two parts: the first is the integral of the normal component of the time-averaged

Poynting vector S over the slit, and the second is the difference of the normal com-

ponents of the time-averaged Poynting vector and that of the Poynting vector in the
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absence of the slits, Sinc, integrated over the dark side of the plate. The result is

normalized by the normal component of S(0). This may be written as

T =

∫

slit
Sz dx+

∫

plate
(Sz − Sinc

z ) dx
∫

slit
S

(0)
z dx

. (4.3)

The subtraction in the second integral of the numerator corrects for the small part of the

incident field which may tunnel directly through the plate itself. A transmission greater

than unity roughly indicates more light is passing through the slit than is geometrically

incident upon it. On the other hand, a transmission less than zero indicates that the

light passing through a plate with a slit is less than that through a plate without a slit.

To help illustrate the roles of the plasmon pits, we show in Fig. 4.5 the effects on η in

the absence of the plasmon pits, and when only the plasmon pits on the illuminated side

are present in the reflection configuration. With no plasmon pits, the readout contrast

η oscillates at a roughly constant amplitude, and is not suitable for performing readout

operations. As plasmon pits on the illuminated side can help enhance the optical power

reaching the data structure by coupling and reflecting more plasmons back into the

slit (see Fig. 4.6), it was intially thought that adding these to the metal plate would

improve the readout contrast. However, the results illustrated in Fig. 4.5 shows that not

only did the readout contrast not improve, but it was worsened in the presence of the

plasmon pits on the illuminated side. The value of γ′ is taken to be 200 nm, where the

transmission T through the plate is seen in Fig. 4.6 to be ∼ 3.5 times higher than that

in the absence of any plasmon pits. This inferior performance with only plasmon pits

on the illuminated side arises from the fact that even though more light is transmitted

to the data structure, the reflected throughput is still relatively weak compared to the
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Figure 4.5: Readout performance for the reflection configuration in the absence of the
plasmon pits (solid line), and when only the plasmon pits on the illuminated
side are present (dotted line). For the latter case, γ′ is taken to be 200 nm.
The data layer is silver, and the size of the data pit is taken to be 50 nm
wide and 25 nm deep. The dashed line indicates the location of the data
pit.

backscattering by the plasmon pits themselves (Gbur et al. 2005). While they are of

no use in this case for the reflection configuration, these pits on the illuminated side can

be beneficial to the system performance for the transmission configuration presented in

the next section.

It is fairly obvious by now that to design a readout system that uses surface plasmons

optimally, one must consider the variation of a daunting number of parameters: the

material of the metal plate, the material of the data layer, the slit width a, the size of the



69

0 400 800 1200

0

2

4

T

G’฀(nm)

G’

Figure 4.6: Transmission T as a function of γ′ with a normally incident plane wave.
The dashed line indicates the transmission through the plate in the absence
of any plasmon pits.

data structure, and the size and location of the plasmon pits. We focus on optimizing a

limited number of system properties that most directly relate to the effectiveness of the

selected readout geometries. In particular, the position of the plasmon pits (γ) affects

the field distribution in the system and hence the readout performance measured in our

case by η and the resolution.

In configuration 1, γ is kept relatively small to suppress oscillations due to propa-

gating plasmon modes and waveguide modes between the plate and data layer. Plac-

ing the plasmon pits near to the slit confines the electromagnetic fields to the im-
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Figure 4.7: The electric field intensity distribution in the readout system when the data
pit is in the vicinity of the readout slit, showing the intense field around the
edges.

mediate vicinity of the slit, reducing oscillatory system response such as in Fig. 4.5.

In configuration 2, the separation γ is extended from that in configuration 1 to al-

low standing-wave plasmon resonances to develop between the slit and the plasmon

pits; because surface plasmons fields are strongest near the edges of the data struc-

ture (Schröter et al. 1997, Xie et al. 2004), evidently enhancing the plasmon resonances

enhances the response of the system to the edges of the data structure. This can also be

seen from the field distribution in the data pit when it is in the vicinity of the readout

slit in Fig. 4.7, where is has been taken that γ = 120 nm.
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For both configurations 1 and 2, we have performed numerical simulations of the

transmission T through the silver plate as a function of γ without the data layer to find

values of γ for which T is optimal. In addition, the readout constrast η is simulated as a

function of γ to see how the system response varies with γ. In particular, we seek values

of γ that will minimize reflection artifacts and provide accetpable readout contrast η at

the same time. The findings from these simulations are discussed now.

0 200 400 600 800 1000 1200

G฀(nm)

0.5

1.5

-0.5

2.5

Configurations 1 & 2

Configuration 3

T

Figure 4.8: Normalized transmission through the metal plate for the different readout
configurations. The red curve indicates the transmission for configurations
1 and 2, while the green curve indicates the transmission for configuration 3.
The dashed line (1 and 2) and dashed-dot line (3) indicate the transmission
in the absence of the plasmon pits.

As can be seen from Fig. 4.8, the transmission T is roughly a periodic function of

γ, suggesting the standing wave behavior of the surface plasmons propagating between
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the slit and the pits4. To prevent a similar standing wave from appearing between

the slit and the data structure, the plasmon pits should be kept as close to the slit

as possible. The transmission for configurations 1 and 2 has a local maximum in the

range 120 nm < γ < 240 nm, which suggests that the plasmon pits should be taken to

lie within this range for a strong resonant response. In configuration 3, the choice of

γ is again to suppress the oscillations between the slit and the data structure due to

the plamson and waveguide modes in the system. From Fig 4.8, it is seen that, unlike

for configurations 1 and 2, the transmission in this case did not vary substantially as a

function of γ. In what follows, the qualitative behavior of the readout system is studied

by examining the response of the system to data structures for various values of γ.

The gradual transition from the well-behaved readout reflectivity for configuration

1 to the growth of the oscillations for configuration 2 can be seen from Fig. 4.9, where

plots of the system response are given for values of γ between 60 nm to 160 nm.

For small γ(60−100 nm), the reflected power exhibits dips when the data structures

are detected by the readout slit, as expected since the presence of the data pits reduces

the amount of backscattering to the readout slit as compared to the case when the pits

are not present. An optimal contrast ratio of about 60% is achieved with γ = 80 nm.

For larger γ(110−140 nm), the reflected power exhibits strong resonances when the

edges of the pits are detected by the readout slit. From Fig. 4.9, an optimal contrast

ratio of about 700% is achieved when the edges are detected for γ = 120 nm. As the

plasmon effects are most intense at the edges where the field tends to accumulate, the

field resonates strongly when the edges of the data pits coincide with the readout slit.

4See, for instance, Schouten et al. (2005).
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Standing plasmon waves suppressed in configuration 1 however, can be clearly observed

in this case. Beyond γ = 160 nm, either the resonances are too weak to provide useful

data detection or additional spurious resonances appear due to plasmon reflections from

the data structure.

For configuration 3, we observe again in Fig. 4.10 the growth of oscillations in the

regions around the slit, plasmon pit, and data pits as the separation γ is increased from

60−240 nm. The plots suggest that the optimal γ in this case is 120 nm, with a contrast

ratio of about 280%. A resonance in the response of the system can be seen whenever
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Figure 4.9: Readout η for various values of γ for a single data pit in configurations 1
and 2. The dashed line indicates the location of the data pit.
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Figure 4.10: Readout η for various values of γ for a single data pit in configuration 3.
The dashed line indicates the location of the data pit.

the data structure passes the location of the probing plasmon pit. We have plotted

the electric field intensity distribution in the system to illustrate this resonant effect in

Fig. 4.11. However, significant oscillations appear for values of γ beyond 180 nm.

Next, we look at the resolution of the three configurations by examining their ability

to resolve a pair of spatially separated data pits. For configuration 1, γ is taken to be

80 nm. For configurations 2 and 3, γ is taken to be 120 nm. The simulation results in

Fig. 4.12 show two data structures just resolved according to our resolution critierion.

It is to be noted that the parameter δ used for the horizontal axis in Fig. 4.12 is defined

as the distance between the center of the two data pits and the subwavelength slit, i.e.,

the slit coincides with each of the data pits at

δ = ±∆ , (4.4)
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Figure 4.11: The electric field distribution in the readout system as the data pit ap-
proaches the probing plasmon pit.

where

∆ =
data pit separation

2
. (4.5)

It can be seen that two data pits separated by 120 nm, 240 nm, and 120 nm, could be

resolved by each configuration, respectively. The performance for each of the configu-

rations are summarized in Table 4.2.

Comparison of the results for the three configurations reveal that each is associated

with its own advantages and disadvantages. The highest contrast ratio of any system is

found in configuration 2, with an excellent η of 700%. This system exhibits significant

oscillations of the reflected power when the data structure is away from the vicinity of
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Figure 4.12: Demonstrating the resolution of two data pits for the three configurations.

the slit, as can be seen in Fig. 4.9. But on account of the high contrast ratio, these

oscillations are not necessarily a problem. However, its resolution is the worst of the

three systems at 220 nm, as can be seen from Fig. 4.12. This is attributed also to the

fact that there are two edges associated with a single data pit, and hence four detections

instead of two are required to resolve two data pits.

Configuration 3 offers a better resolution, at 120 nm, and also has an excellent η

of 280%. Furthermore, as can be seen in Fig. 4.10, values of γ between 80 − 180 nm
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result in a significant η far above the oscillations of the reflected power. Nevertheless,

this system uses a very small slit size of 10 nm, and therefore offers the lowest overall

reflected power of any systems, which will make it more susceptible to system noise.

Table 4.2: Summary of results for reflection readout.

Configuration γ (nm) Number of η(%) Resolution
plasmon pits (in terms of λ)

1 80 2 60 λ/4.2

2 120 2 700 λ/2.3

3 120 1 280 λ/4.2

On the other hand, configuration 1 exhibits minimal oscillations in the reflected

power (see Fig. 4.9) while giving the same resolution of 120 nm. By keeping the plasmon

pits close to the slit to suppress unwanted oscillations, this system exhibits the best

stability among the three. It offers the lowest η of 60% however.

In terms of fabrication, all these systems require rather precise specification of the

slit width, and the size and position of the plasmon pits. As any realistic fabrication

will involve some imperfections, it is of interest to examine how sensitive the readout is

to variation in parameters. We found that a tolerance of ±10 nm is acceptable for the

value of γ in configurations 1 and 2. Configuration 3, with a slit width of only 10 nm,

requires any deviation from its specified slit width to be less than 5 nm.

As noted, each of the systems described here has its own advantages and limitations.

The choice of an optimal system will depend on what characteristics the designer finds

most important (readout contrast, resolution, stability, signal strength). The systems
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we have investigated so far rely on the reflected power for readout, as in conventional

optical data systems. To exploit directly the plasmon-enhanced transmission effects,

we next consider strategies based on a transmission readout configuration.

4.1.2 Strategies for Transmission Readout

We now extend the investigation in the previous section to study near field optical

readout by detection of the transmitted field intensity. The aim is to achieve superres-

olution through the modulation of the surface plasmon-enhanced transmission. There

are several reasons a transmission readout system could offer more benefits than one

based upon reflection.

First, this clearly allows for the surface plasmon-enhanced transmission to be ex-

ploited directly. Second, the amount of useful signal in the reflection configuration

is relatively limited as backscattering in the vicinity of the subwavelength slit con-

tributes significantly to the overall reflected field. Third, plasmon pits on the illuminated

side of the metal plate, which degrade the readout contrast in the reflection readout

configuration (Gbur et al. 2005), can now be incorporated to enhance the transmis-

sion (Garćıa-Vidal et al. 2003), directly increasing the strength of the signal. There-

fore, in addition to the plamson pits on the dark side separated by 2γ, we have also

included plasmon pits (separated by 2γ′) on the illuminating side. Finally, the detection

geometry for the transmission configuration (see Fig. 4.1) may be more straightforward

to implement in practice.

Instead of using an incident plane wave as for the reflection readout case, we take a

Gaussian beam as the incident field for this case. Since the optical power carried by a
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Gaussian beam is finite and can be computed through its associated Poynting vector,

we can calculate the absolute transmission to better quantify the system response. The

transmitted power T is normalized to the incident field such that

T =

∫ +∞
−∞ Sz1dx

Y0

∫ +∞
−∞ |E(inc)(x, z)|2dx

, (4.6)

where,

Y0 =

√

ǫ0
µ0

, (4.7)

with Sz1 the normal component of the time-average Poynting vector emerging from the

data layer, and E(inc)(x, z) the electric field amplitude of the incident Gaussian beam.

For simulation purpose, the beamwidth of the Gaussian beam at full width at half

maximum is taken to be 530 nm (λ = 500 nm).

The integral in the numerator of Eq. (4.6) implies that it is possible to capture the

total transmitted power. This can be experimentally problematic if there is a lot of

power scattered at highly oblique angles. To address this issue, we have studied also

the far-field radiation patterns for the geometries considered. Our simulations revealed

that the scattered power lies predominantly in the forward direction. This agrees with

the observation of a well-localized field emerging from the data layer, as we shall see in

the simulation results shortly.

It is also known through Fourier analysis that the field emerging from an aperture

of a very narrow extent diverges very quickly and produces a far-field radiation pattern

that varies marginally as a function of the viewing angle. One can understand this effect

from the position-momentum uncertainty relation. By localizing photons to the position

of the subwavelength aperture, their momentum, and hence their wave vectors (p = ~k)
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are likely to take on a larger range of values. As such, there is a high probability for

the photons to be spread evenly over a wide range of angles at the detection plane.

Moreover, the subwavelength extent of the localized field at the slit in this case closely

resembles a point source. Therefore, we have reason to believe that the system can

capture the bulk of the transmitted optical power.

The thickness of the silver data layer is taken to be 30 nm, and the size of each data

pit is taken to be 40 nm wide by 15 nm deep. As explained earlier, the choice of such

a thin metallic layer reduces the effects of absorption, and allows for possible plasmon-

assisted field enhancement effects. We further speculate that it would be possible also

to achieve similar field enhancement effects with a dielectric data layer (such as silicon)

instead, but with metallic strips in place of the air pits. In the discussion that follows,

we will consider the data structure to be either a silver layer with air pits, or a silicon

layer embedded with strips of silver as the data pits, referring to them as ‘silver data

layer’ and ‘silicon data layer’ respectively. Similar to the previous section, we will be

concerned with the location of the plasmon pits.

For the plasmon pits on the light side, the choice of γ’ is such as to obtain enhanced

optical transmission through the slit. As discussed previously, the size of the plasmon

pits are taken to be 40×40 nm2 in the transmission readout configuration, different from

the choice of 50×50 nm2 in the reflection readout. Numerical simulations with only the

subwavelength slit and light side plasmon pits in the silver plate (without the dark side

plasmon pits and data layer) show that maximum transmission occurs at γ′ ∼ 225 nm.

Results for plasmon pits of 40 × 40 nm2 and 50 × 50 nm2 are shown in Fig. 4.13. It

is seen that the 40 × 40 nm2 plasmon pits can give slightly more transmission than
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Figure 4.13: Transmission T as a function of γ′ with a normally incident Gaussian beam
for plasmon pit size of 40 × 40 nm2 (solid line) and 50 × 50 nm2 (dotted
line). The dashed line indicates the transmission through the slit in the
plate in the absence of any plasmon pits.

the 50 × 50 nm2 plasmon pits. This demonstrates that surface plasmon effects do not

scale linearly with the size of the structures, and that rigorous numeric simulations

are necessary to study these effects. Also, the value of γ′ found here for the incident

Gaussian beam is similar to that found for a incident plane wave (as for the reflection

readout configuration). In that case, γ′ was taken to be ∼ 200 nm (Fig. 4.6). This

shows that our simulations with an incident plane wave or with a incident Gaussian

beam do produce results that are similar qualitatively.

The choice of γ is determined through numerical simulations of the contrast ratio η
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for various values of γ with a single data pit. From our findings in the previous section,

we expect the dark side plasmon pits to aid both in confining the enhanced field effects

to the vicinity around the data structure, and in suppressing undesirable oscillations of

the transmission. Fig. 4.14 shows that for both the silver and silicon data layer, the

optimal value of γ is ∼ 75 nm. It is worth noting that the analysis here yields very

similar results to configuration 1 investigated for reflection readout, where the optimal

value of γ was found to be ∼ 80 nm.

A closer examination of Fig. 4.14 reveals that for the silicon data layer, the trans-

mission dips significantly when the edges of the data pit coincide with the center of

the slit. This can arise from increased backscattering at the discontinuity along the

silver/silicon/air boundaries. Such a backscattering mechanism, typically undesirable

in many applications, offers the possibility to detect the edges of the data pits through

the associated transmission dips, i.e., the presence of an edge is indicated with a trans-

mission minima. However, on account of our definition of the contrast ratio η, the

maximum achievable η for edge detection in this case is limited to unity; the transmis-

sion peaks play no role in edge detection, unlike in pit detection. We like to point out

that the strategy to detect the edges differ from that in configuration 2 in the previ-

ous section, where plasmon resonances at the edges had been exploited and η of 700%

was achieved. The reason we do not employ the same strategy here for edge detection

is because the size of the data pit in the transmission configuration is 40 × 15 nm2,

smaller than the 50 × 25 nm2 used in the reflection readout case. With our stringent

requirement for resolution described in Sec 4.1, discriminating the plasmon resonances

at each of the edges could be significantly more challenging. This is due to the fact that
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Figure 4.14: Readout η for one data pit: (a) with γ′ = 225 nm, and (b) without light
side plasmon pits. Solid lines are for silver data layer and dotted lines are
for silicon data layer. The black dashed line indicates the position of the
data pit.

P(data) must approach P(no data) in a gradual manner, thus potentially restricting η to

only values close to unity.

It is to be noted that the contrast ratio η, as defined in Eq. (4.2), has been normalized

to the transmission in the absence of the data structure (P(no data)), and does not provide
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adequate information on the actual amount of transmission through the system. As

such, we have also analyzed the distribution of the electric field intensity in the system

(see Fig. 4.15). It can be observed that the field intensity through the silver data layer

is more intense than that through the silicon data layer, even though silicon is more

transparent than silver at λ = 500 nm . With γ = 75 nm and no plasmons pits on

the light side, P(no data) through the silver and silicon data layers is 0.31%, and 0.22%

respectively. When the light side plasmon pits are present (γ′ = 225 nm), P(no data)

increases to 1.33% and 1.06%. These simulations are repeated with the silver plate

replaced with a silicon plate, and P(no data) was found to increase from 3.32% to 3.79%

(silicon data layer), and from 5.59% to 6.53% (silver data layer). The higher value

of P(no data) in the case of the 100 nm silicon plate is expected due to the decrease in

absorption, but clearly the transmission increases minutely in the presence of the light

side plasmon pits. These results again suggest the presence of surface plasmon-enhanced

field effects through the silver sections. While the silicon data layer provides a lower

readout contrast, the plots in Fig. 4.15 also show that the silver strip embedded within

is more effective in confining the surface-plasmon enhanced transmission in the near

field, and has the potential to provide higher resolution.

Based on the above discussion, the following strategies for readout were investigated:

1. Data pit detection with silver data layer.

2. Data pit detection with silicon data layer.

3. Edge detection with silicon data layer.

For all three cases, the readout performance with and without the light side plasmon
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Figure 4.15: Field intensity distribution with and without light side plasmon pits,
γ = 75 nm and γ′ = 225 nm. Plots on the left column and right column
for silver and silicon data layer, respectively.

pits are compared to assess the overall improvement when the transmission is enhanced.

The simulation results are shown in Fig. 4.16. It is to be noted that the parameter δ

used for the horizontal axis in Fig. 4.16 is defined as the distance between the center

of the two data pits and the subwavelength slit, as with the Eqs. (4.4) and (4.5). For

each configuration [(1), (2), and (3)], resolution up to 110 nm(λ/4.5), 90 nm(λ/5.6),

and 180 nm(λ/2.8) was obtained, with readout contrast of around 600%, 200%, and

60% respectively. These results are summarized in Table 4.3.

As in the previous section for reflection readout, we find that each strategy is as-

sociated with its advantages and limitations. The silicon data layer provides better

resolution for data pit detection, an effect we attribute to the more effective localiza-
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dashed lines indicate the respective positions of the data pits.

Table 4.3: Summary of results for transmission readout. For all three configurations,
γ = 75 nm, and γ′ = 225 nm.

Configuration Pno data(%) η(%) Resolution Remarks
(in terms of λ)

1 1.33 600 λ/4.5 η > 1

2 1.06 200 λ/5.6 η > 1

3 1.06 60 λ/2.8 0 < η < 1

tion of the field enhancement effects. This better localization is achieved at the expense

of the enhanced transmission P(data) however, leading to the lower readout contrast.
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Edge detection doubles the features to be detected, and it is therefore not unreasonable

for the resolution to be inferior.

4.2 Summary and Future Work

In summary, we have demonstrated numerically that with careful selection of system

parameters, surface plasmon-enhanced transmission can be manipulated to achieve su-

perresolution in near field optical readout. It is to be noted that the results here could

be extended to a three-dimensional geometry in which the subwavelength-width slit is

replaced by a subwavelength-radius hole. Such a configuration is the natural choice

for a full experimental realization of a readout system, but is extremely difficult to

simulate numerically and computationally intensive. Our results give a qualitative idea

of what kind of behaviors to expect in such a system. Our simulations suggest that

it is possible to optimize the application of these effects for near field optical read-

out. In the strategies simulated, superresolution of data structures up to ∼ λ/5 is

achievable. It is hoped that the investigation of these strategies would lead to the effec-

tive employment of surface plasmon-enhanced transmission effects for optical readout

and other near field applications. We end this chapter by estimating how much im-

provement in the data storage capacity a plasmon-assisted superresolved optical read-

out system can offer. For a 120 mm disc with a typical useful storage area (As) of

92.7 cm2 (van de Nes et al. 2006), a rough estimate of the storage capacity C in bytes

is

C =
1

8

As

∆l2min

, (4.8)
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which yields C = 180 Gb assuming ∆lmin = λ/5, and λ = 400 nm as for the current Blu-

Ray technology. This is nearly 8 times more than its current storage capacity of 23 GB

per layer. This estimate is conservative in view of the progress in the achievable precision

and system tolerancing of modern digital systems. Thus, there is much potential for

superresolved optical readout systems to increase data storage capacity tremendously.



Chapter 5: Plasmon-assisted optical coherence modulation

The state of coherence of a light field is an important property that affects its

interference-causing capability in both classical and quantum optical systems (Man-

del and Wolf 1995). In classical systems, variable coherence-optics applications in-

clude examples such as speckle reduction (Dainty 1975), optical coherence tomogra-

phy (Huang et al. 1991), and beam propagation through turbulence (Wu 1990, Gbur

and Wolf 2002, Ricklin and Davidson 2002, Korotkova et. al 2004a). In the realm

of quantum optics, an understanding of coherence is essential to the entanglement of

quantum states1. The effect of entanglement allows for teleportation of the quantum

states, which offers potential for the development of applications such as quantum cryp-

tography (Ekert 1991, Gisin and Thew 2007) and quantum computing (Spiller 1996,

Zeilinger 2000).

Here we focus on the coherence of classical optical fields. There are two concepts

used to characterize the coherence of classical optical fields - temporal and spatial

coherence (Wolf 2007). For an optical source, the temporal coherence portrays the

effects of its finite bandwidth, and the spatial coherence describes the effects arising

from its finite spatial extent. Optical sources or fields are never strictly monochromatic

1It is interesting to note that there is a mathematical duality between partial coher-

ence and partial entanglement (Saleh et al. 2005).
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in practice, i.e., they always have a finite effective bandwidth ∆ω. If ∆ω is very narrow,

they are described as being quasi-monocromatic. A measure of the temporal coherence

is the coherence length

∆lc =
(λ)2

∆λ
, (5.1)

where λ is the mean wavelength and ∆λ the effective wavelength range.

While an optical field is never strictly monochromatic, it may be completely spa-

tially coherent not only at a single frequency but for all frequency components in its

spectrum (Wolf 2003). A planar source of finite extent illuminating an aperture plane

A at a distance R away from it has a coherence area of ∆Ac on the plane A given

by (Wolf 2007, Sec 1.3)

∆Ac =
(λ)2

∆Ω
, (5.2)

with the solid angle

∆Ω =
S

R2
, (5.3)

where S is the area of the source. If a pair of pinholes on plane A are situated within

an area ∆Ac, the pinholes will produce visible fringes on an image plane B sufficiently

far from A, as in the Young’s interference experiment.

With the coherence length ∆lc and coherence area ∆Ac defined in Eq. (5.1) and

Eq. (5.2) respectively, one can further introduce the concept of the coherence volume

∆Vc given as (Mandel and Wolf 1995, Sec 4.2.3)

∆Vc = ∆lc∆Ac

=
1

∆Ω

(

λ

∆λ

)

(λ)3 . (5.4)
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The coherence volume represents the region of space throughout which photons in the

field are indistinguishable from each other. It also has a counterpart, known as the

so-called cell of phase space2 in quantum mechanics.

Here, we will be concerned with modulating the spatial coherence properties of

light. The spatial coherence of an optical source is a fundamental characteristic that

determines numerous properties of the field it produces, such as its spectrum and direc-

tionality (Wolf 1986, Wolf 1978). It is a measure of the “statistical similarity” between

any two points within the field’s domain (Wolf 2007). Fields that are fully coherent can

interfere to form interference fringes with maximum fringe visibility or contrast, while

fully incoherent fields only add in intensity. Also, both the spectrum and the polariza-

tion of the field that is generated by a partially coherent source may change on propa-

gation (Wolf and James 1996, James 1994, Korotkova et al. 2004b, Salem et al. 2004),

and these changes are dependent on the degree of coherence. Therefore any new method

to influence the state of coherence is of fundamental importance.

Techniques of variable-coherence optics that have been proposed include diffusion

by rotating ground-glass plates (Martienssen and Spiller 1964, Gonsiorowski and Dainty

1983), acousto-optic modulation (Ohtsuka 1986, Turunen et al. 1990), liquid crystal

light modulation (Scudieri et al. 1974, Carter and Bertolotti 1978), and Bragg diffrac-

tion by holographic gratings (Vahimaa and Turunen 1997). Most of these techniques

allow for either the reduction of the spatial coherence with mechanically rotating dif-

fusers (potentially slow), or increasing it by improving the directionality of a diffracted

2For details on the notion of phase space, see for instance, Agarwal and Wolf (1970)

or Sec. 3.7 in Marcuse (1982).
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beam.

As an alternative, we propose here to modulate the spatial coherence of light with

surface plasmons. In a recent work, surface plasmons were found to be responsible for

enhancing and suppressing the optical transmission in a Young’s interference exper-

iment (Schouten et al. 2005). Since the coherence properties of fields are intimately

related to their ability to interfere, we were thus prompted to investigate if surface

plasmons propagating between the slits in Young’s interference experiment can also

modulate the spatial coherence of light (Gan et al. 2007). Our simulations demon-

strate that surface plasmons propagating between the slits can indeed both enhance or

suppress the spatial coherence properties of light emanating from the apertures. Further

investigations with a three-slit interferometer (Gan and Gbur 2008) and a symmetric

three-hole interferometer in an equilateral geometry reveal similar results. This chapter

is primarily devoted to the presentation and discussion of these results.

It is worth noting that the ability of surface plasmons to enhance the spatial co-

herence has been demonstrated experimentally in a Young’s interferometer where each

slit was separately illuminated by an independent optical source (Kuzmin et al. 2007).

In that experiment, it was also found that far-field interference fringes are observable

even when only a single slit is illuminated. Both observations can be understood by

considering that surface plasmons generated at one slit can propagate to the other slit,

where they can couple back into light. This light from the other slit is in turn radiated

to the far-field, where it interferes with light directly transmitted from the illuminated

slit to form fringe patterns (see illustration in Fig. 5.1).

Modulation of the spatial coherence with surface plamsons may find potential ap-
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Figure 5.1: Illustrating how illuminating just one of the apertures in a Young’s interfer-
ence experiment can still result in interference fringes in the far field with
surface plasmons.

plications in producing coherent light from spontaneous emission as a result of resonant

coupling between semicondcutor qunatum wells and surface plasmons (Gontijo et al.

1999), and in plamsonic interferometry devices such as all-optical modulators made

with quantum dots (Pacifici et al. 2007).

5.1 Spatial Coherence Conversion with Surface Plasmons in Interferometers

In this section, we demonstrate through theoretical analysis and numerical simulations

that surface plasmons propagating between subwavelength apertures on a metal plate

can modulate the spatial coherence of light emanating from the apertures. We begin by

investigating the Young’s interference experiment, and show that the degree of coherence
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of the light emanating from the two slits can be greater or lesser than that of the

illuminating field, depending on the slit separation.

It is not clear, however, if the results for Young’s double-slit configuration extend

readily to an array of holes or slits. Because the field scattered from each hole or slit

can interact with that scattered from another in the near-field, the interaction between

light and surface plasmons cannot be described accurately through a straightforward

superposition of the response from each individual aperture. Thus, it is not immediately

obvious how the inclusion of additional apertures affects the coherence and radiation

properties. Furthermore, unlike the double-slit case where one can examine the coher-

ence properties of light from just two apertures, for an array one would have to study

the coherence properties of light as a global effect resulting from contributions from

each aperture in the array.

Working towards a coherence converting device with an array of subwavelength aper-

tures, we have therefore analyzed a three-slit interferometer in which similar modulation

effects was observed. The simulations indicate that the additional center ‘barrier’ slit

can serve not just to decrease the effects of the plasmons propagating from one slit

to the other, but also to preserve, and even enhance these effects. Further extending

our analysis to a symmetric three-hole interferometer arranged in an equilateral geom-

etry where the plasmonic contributions at each hole are identical, we simulated how

the fringe contrast of the far-field pattern changes as the distance between the holes is

varied.
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Figure 5.2: Illustrating the geometry for the Young’s interferometer.

5.1.1 Young’s Interferometer

We consider the Young’s interferometer shown in Fig. 5.2. The wavelength and the

beamwidth of the incident beam are taken to be 600 nm and 750 nm respectively. The

slit separation d is taken to be at least 1000 nm, to avoid joint illumination of the slits

with a single beam. The metal plate of thickness t = 200 nm is assumed to be silver,

whose refractive index at 600 nm is taken to be nm = 0.21 − i3.27, after Johnson and

Christy (Johnson and Christy 1972).

The fields U1 and U2 represent the x component of the electric field, which is the

dominant radiating field component. It is assumed that the spectral densities of the

fields incident at each of the slits are identical, i.e., |U
(inc)
1 (ω)|2 = |U

(inc)
2 (ω)|2 = |U0(ω)|

2,
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ω being the angular frequency of light. The spectral degree of coherence between the

incident fields and the fields emerging at the two slits are denoted as µ
(inc)
12 (ω) = µ0(ω),

and µ12(ω), respectively. The spectral degree of coherence between the two fields U1(ω)

and U2(ω) is defined as

µ12(ω) =
W12(ω)

√

S1(ω)S2(ω)
, (5.5)

where

W12(ω) = 〈U1(ω)
∗U2(ω)〉 , (5.6)

is the cross spectral density, and Si(ω) = Wii(ω) is the spectral intensity of the field.

The asterisk denotes complex conjugation, and the brackets indicate averaging over

an ensemble of space-frequency realizations (Wolf 2007, Sec 4.1). The modulus of the

spectral degree of coherence is confined to the values

0 ≤ |µ12(ω)| ≤ 1 , (5.7)

with zero indicating complete incoherence, and unity indicating complete coherence.

Based on the Green tensor formalism described in Chap. 3, we have performed

rigorous numerical simulations for the interferometers in Fig. 5.2. Due to invariance

in the y-direction, only TM-polarized light (H perpendicular to the x − z plane) will

excite surface plasmons, and the simulations in this section are restricted to this case.

For brevity, the explicit dependence on ω will be dropped from now on.

As we have assumed that |U
(inc)
1 |2 = |U

(inc)
2 |2, the fringe contrast or visibility V in

the far-field is also equal to |µ12|. The fringe contrast V is defined as

V =
Imax − Imin

Imax + Imin

, (5.8)
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Figure 5.3: Simulation results of |µ12| and V , with spectral degree of coherence of the
incident field µ0 = 0.5. The analytic result is based on the model described
in Eq. (5.9), with the light-plasmon coupling constant β = 0.33 eiπ. The
black, dotted, horizontal line indicates the value of |µ0|.

where Imin and Imax are the minimum and maximum intensity of the fringes. As an

example to illustrate the modulation of the coherence, simulations for |µ12| and V with

partially coherent light (µ0 = 0.5) illuminating the two slits are shown in Fig. 5.3.

The slit width w is taken to be 200 nm. From Fig. 5.3, it is observed that the spatial

coherence can indeed be either enhanced or suppressed with respect to the degree of

coherence of the incident field. To better understand the modulation, we have derived

an analytic expression for µ12 using the following model for the fields at each of the two
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Figure 5.4: Illustrating the plasmonic contributions to the field radiated at each of the
slits considered in the model of Eq. (5.9).

slits

U1 = αU
(inc)
1 + αβU

(inc)
2 e−ikspd, (5.9a)

U2 = αU
(inc)
2 + αβU

(inc)
1 e−ikspd, (5.9b)

where ksp = k′sp − ik′′sp, is the wavenumber associated with the surface plasmons. The

model assumes that a fraction α of the incident field is directly transmitted through the

slits, and a fraction αβ is converted into surface plasmons which travel to the other slit

where they re-radiate as a propagating field, as illustrated in Fig. 5.4. The parameters

α and β are complex quantities in general.
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On substituting from Eq. (5.9) into Eq. (5.6), we find

W (r1, r2) = |α|2S(inc)
{

µ
(inc)
0 + |β|2µ

(inc)∗

0 exp(−2k′′spd)

+2Re [β exp(−ikspd)]
}

, (5.10)

where

S(inc) = S
(inc)
1 = S

(inc)
2 , (5.11)

and we have have made use of the fact that µ
(inc)
12 = µ

(inc)∗
21 . Here Re denotes the real

part. It is to be noted that Eq. (5.10) has the form of an interference law in the frequency

domain. But whereas the classical spectral interference law (Mandel and Wolf 1995,

Sec. 4.3.2) pertains to the spectral density at a single point, Eq. (5.10) pertains to

the cross-spectral density of the fields radiated by two slits. It suggests that surface

plasmons propagating from one slit to the other can modulate the state of spatial coher-

ence. In other words, the cross-spectral density function of the fields emanating from

the two slits can be increased or decreased, according to whether at each slit there is

constructive or destructive interference between the directly transmitted field and the

field which is due to plasmon generation at the the other slit.

Substituting the fields given by Eq. (5.9) into Eq. (5.5) to solve for µ12, it is found

that

µ12 =
µ0 + |β|

2µ∗0 exp(−2k
′′
spd) + 2Re [β exp(−ikspd)]

1 + |β|2 exp(−2k′′spd) + 2Re [βµ0 exp(−ikspd)]
. (5.12)

This formula demonstrates that the spectral degree of coherence of the field that is ra-

diated by the apertures is not equal to the spectral degree of coherence of the incident

field. Because of the presence of the oscillating terms in this equation, the modulus
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of the former can either be larger or smaller than that of the latter. In other words,

varying the distance that separates the two slits will modulate the degree of coherence

between the fields emanating from the slits. That this effect is solely due to the action

of surface plasmons is easily verified by setting β, their relative contribution strength,

equal to zero. In that case formula (5.12) reduces to µ12 = µ0, i.e., the spectral degree

of coherence of the radiated field is then equal to that of the incident field, the expected

result from the classical Young’s interferometer. While it is recognized that contri-

butions from so-called ”creeping waves” can produce similar behaviors as the surface

plasmons in very closely spaced apertures, their effects are expected to be negligible at

the frequencies and slit spacings considered here (Lalanne and Hugonin 2006).

It is helpful also to consider the effect of the plasmons on the state of coherence in

the limiting cases |µ0| = 1 and µ0 = 0. For |µ0| = 1, the numerator and denominator

of Eq. (5.12) are equal and we find that µ12 = |µ0|. In other words, if the incident

field illuminating the slits is fully coherent, the plasmons will not modify the state of

coherence. For µ0 = 0, i.e. an incident incoherent field, Eq. (5.12) reduces to

µ12 =
2Re [β exp(−ikspd)]

1 + |β|2 exp(−2k′′spd)
. (5.13)

It is to be noted that this formula suggests that not only can the spatial coherence of the

output field be greater than that of the input field, it may also switch signs, resulting

in the field at the two slits being anti-correlated. Setting the plasmon decay constant

k′′sp to zero for the moment, the maximum value of |µ12| is approximately given by

|µ
(max)
12 | =

2|β|

1 + |β|2
< 1. (5.14)

The spatial coherence of the output field increases with increasing value of |β| in this
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case. Also, |µ12| never exceeds unity, as required by the range of values allowed for the

spectral degree of coherence as given in Eq. (5.7).

Furthermore, by plotting µ12 with |β| = 0.33 and arg(β) = 180◦ in formula (5.12)

against the numerical results in Fig. 5.3, we find excellent agreement between the two

methods, reinforcing the evidence of the coherence converting ability of the surface

plasmons. It is to be noted that the parameter β describing the light-plasmon coupling

strength, is used to fit the analytic expression in the formula (5.12) to the rigorous

numeric simulations.

To see how the coupling constant β changes with the slit width, we performed the

simulations for slit widths w = 100 nm and w = 50 nm. The results are shown in

Fig. 5.5. When the slit width is 100 nm, the phase shift arg(β) = 205◦, and |β| ∼ 0.33.

When the slit width w = 50 nm, the phase shift arg(β) = 225◦, and |β| ∼ 0.21. From

the plots, the maximum value of |µ12| is approximately 0.60 and 0.40, respectively,

in agreement with the prediction of Eq. (5.14). These results also suggest that the

argument of β varies non-trivially with the width of the slits (cf. (Lalanne et al. 2006)).

Before proceeding, we offer an explanation of the coherence converting ability of the

surface plasmons by drawing an analogy with the van Cittert-Zernike theorem when it

is applied to the special case of a fully incoherent source (Goodman 2000, Sec. 5.6).

In this special case, the spectral degree of coherence in the far-field is proportional to

the Fourier transform of the intensity distribution across the source, and it becomes

straightforward to see that the fields produced by an incoherent source can become

partially coherent simply through the process of propagation.

Suppose there is a pair of fully incoherent point sources Q1 and Q2, i.e., µ0 = 0.
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Figure 5.5: The absolute value of the spectral degree of coherence |µ12| as a function of
µ0, for slit widths: (a) w = 100 nm, (b) w = 50 nm. For the sake of clarity,
only numeric results are shown.

According to the van Cittert-Zernike theorem, the field at two observation points P1

and P2 in the far zone, being a superposition of the fields from Q1 and Q2, are in general

partially correlated. This fact can be appreciated by denoting the wave trains from Q1

to the points P1 and P2 be A1 and A2 respectively, and that from Q2 to the points P1
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Figure 5.6: An analogy with the van Cittert-Zernike theorem to illustrate the coherence
converting ability of the surface plasmons. The situation (a) consists of a
pair of fully incoherent point sources Q1 and Q2, while the situation (b)
consists of a pair of slits in a metal plate illuminated with a fully incoherent
field. In the latter situation, surface plasmons excited at each of the slits
can propagate along the metal surface.

and P2 be B1 and B2 respectively (Wolf 1978). Since Q1 and Q2 are incoherent, the

waves they emit will be uncorrelated, i.e.,

〈AiBj〉 = 0 (i, j = 1, 2) . (5.15)

If the points P1 and P2 are sufficiently far from Q1 and Q2, then

A1 ≈ A2 , (5.16a)

B1 ≈ B2 . (5.16b)

Therfore, the fields at P1 and P2 will be correlated with each other upon superposition

of the waves, even though their contributions are uncorrelated individually, according
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to Eq. (5.16). Clearly, the change in coherence is a result of superposition in the process

of propagation. This situation is illustrated in Fig. 5.6a.

Next let us illuminate a pair of slits Q1 and Q2 with fully incoherent light. Suppose

the light is allowed to couple with surface plasmons, which can propagate between the

slits, as in the case of Fig. 5.6b. The coherence of the fields emanating from the slits

is then dependent on the distance between Q1 and Q2, as we have demonstrated in the

above analysis. The field at the two points P1 and P2 are still partially correlated in

general, however the change in coherence is now due to the surface plasmons propagating

between the slits instead of the propagation of the radiating fields themselves. Thus, one

may think of the surface plasmons as performing an ‘in-plane’ van Cittert-Zernike effect.

This analogy demonstrating the coherence converting ability of the surface plasmons is

illustrated in Fig. 5.6.

5.1.2 Three-slit Interferometer

It is not clear if the results for the two slits in the previous section apply as well to an

array - in the near field region, the optical and plasmonic fields scattered from each of

the slits can interact with that scattered from another. As such, their interactions in an

array of slits cannot be described accurately through a straightforward superposition of

the response from each individual slit. As an intermediate approach to this problem,

we have analyzed a three-slit interferometer (Fig. 5.7) to investigate the effects on the

modulation of the coherence when an additional slit A is placed between the original

pair.

In this case, the spectral degree of coherence between any two fields Ui and Uj, with
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Figure 5.7: Illustrating the geometry for the three-slit interferometer.

i, j = 1, 2, A is

µij =
Wij

√

Si Sj

, (5.17)

where

Wij = 〈U
∗
i Uj〉 , (5.18)

is the cross spectral density, and Si = Wii is the spectral intensity of the field. As

before, the spectral degree of coherence between the incident fields at any of the two

slits are denoted as µ
(inc)
ij = µ0.

We show the simulation results of µ12 and µ1A for various values of µ0 as a function

of the slits’ separation for slit width w = 200 nm in Fig. 5.8. It is observed that, similar

to what was found in the two-slit case, the degree of coherence µ12 and µ1A can be either

enhanced or suppressed with respect to the degree of coherence of the incident field µ0.
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Figure 5.8: Simulation results for µ12 (left column) and µ1A (right column) for w = 200
nm, with different values of spectral degree of coherence of the incident field
µ0. Top row: µ0 = -0.5 (solid line), and -0.2 (dashed line). Bottom row: µ0

= 0 (solid line), and 0.9 (dashed line). Dotted horizontal lines indicate the
respective values of |µ0|.

Furthermore, the results suggest that µ12 and µ1A may be periodically modulated as a

function of the slits’ separation. Since µ2A = µ1A by symmetry, simulation results for

µ2A will not be shown.

To better relate the effects of the surface plasmons to the numerical results, we

extend the model used to calculate the fields for the two-slit case (cf. Eq. (5.9)) to

include slit A in the center. At each of the slits, a fraction α of the incident field

will be directly transmitted. Part of the incident field will be converted into surface

plasmons, which can travel to another slit, whereby the following two situations may

take place: (1) part of the plasmonic field couples back to light and reappears as a

freely propagating field; and/or (2) part of the plasmonic field is scattered, after which
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Figure 5.9: Illustrating the plasmonic contributions to the field radiated at each of the
slits considered in the model of Eq. (5.19). The red, green and blue colored
arrows represent the contributions to the fields U1, U2 and UA respectively.

it continues propagating to the next slit where it couples back to light and reappears as

a freely propagating field. These interactions are indicated with the arrows in Fig. 5.9,

with the solid, dashed and dotted arrows representing the contributions to the fields

U1, U2 and UA respectively.

Let us also define, in addition to the light-plasmon coupling constant β, parameters

η and Γ, which describe the forward and backward scattering of the plasmonic field by

the slits respectively. Similar to α and β, η and Γ are complex quantities in general.

While α and β are related to three-dimensional propagating fields, η and Γ describes

the transmission and reflection of the plasmonic field propagating along the surface of

the metal plate. In terms of these parameters and the incident fields, the field at each
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of the three slits is

U1 = αU
(inc)
1 + αβηU

(inc)
2 e−ikspd + αβU

(inc)
A e−ikspd/2, (5.19a)

U2 = αβηU
(inc)
1 e−ikspd + αU

(inc)
2 + αβU

(inc)
A e−ikspd/2, (5.19b)

UA = αβU
(inc)
1 e−ikspd/2 + αβU

(inc)
2 e−ikspd/2 + αU

(inc)
A [1 + 2βΓe−ikspd]. (5.19c)

The field U1 at slit 1 in Eq. (5.19a), for instance, consists of three parts: (i) a directly

transmitted part (α); (ii) a part that couples to the plasmons at slit 2 (β), ‘jumps’

over the center slit A (η), and coupled to the output (α); (iii) a part that couples to

the plasmons at slit A (β), and coupled to the output (α). It is to be noted that the

contribution from surface plasmons that travel from slit 1(2) to slit A, and then are

reflected back to slit 1(2) can be expressed as a direct contribution from U
(inc)
1 (U

(inc)
2 ),

and may be taken into account by the parameter α in our model.

As expressed in Eq. (5.19), each of the fields Ui or Uj in Eq. (5.18) is a function of

the incident fields at the three slits. Using a 3× 3 matrix M to describe the degree of

coherence between the incident fields, we can write Eq. (5.18) in matrix form such that

Wij = U (i)†MU (j), (5.20)

with

U (i) =

















Ui1

Ui2

UiA

















, (5.21)

where the superscripted † indicates adjoint. The components of the vector U (i), namely

Ui1, Ui2, UiA denotes respectively the contribution from the incident fields U
(inc)
1 , U

(inc)
2
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Figure 5.10: Simulation results for µ12 (left column) and µ1A (right column) for w =
100 nm, with spectral degree of coherence of the incident field µ0 = 0.5.
Solid line represents analytic results, and diamond markers (♦) represent
numeric results.

and U
(inc)
A to the field Ui as expressed in Eq. (5.19). The matrix M takes on the form

M =

















1 µ
(inc)
12 µ

(inc)
1A

µ
(inc)
21 1 µ

(inc)
2A

µ
(inc)
A1 µ

(inc)
A2 1

















=

















1 µ0 µ0

µ∗0 1 µ0

µ∗0 µ∗0 1

















(5.22)

where we have made use of the fact that µ
(inc)
ij = µ

(inc)∗
ji . Using Eq. (5.5), the degree

of coherence between any two of the three slits may then be calculated. Fig. 5.10

illustrates the agreement between the two sets of results, using the case w = 100 nm,

and µ0 = 0.5 as an example. Therefore, the model we have developed could be used to

analyze the modulation of the degree of coherence as a result of the surface plasmons
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propagating between the slits. It should be emphasized that the parameters β, η, and Γ

remain fixed for a given plate index nm, plate thickness t, and slit width w, independent

of the slits’ separation or the choice of the two slits for which the degree of coherence

is to be calculated.

Table 5.1: Choice of values for the parameters β, η, and Γ for different slit widths
(expressed in nm).

slit width (w) |β| arg(β) |η| arg(η) |Γ| arg(Γ)

200 0.33 180◦ 0.82 0.0◦ 0.57 230◦

100 0.33 190◦ 0.80 0.0◦ 0.60 240◦

50 0.24 190◦ 0.78 0.0◦ 0.60 240◦

The analytic results are fitted to the numerical ones for slit width w = 200, 100

and 50 nm. The appropriate choice of the values for β, η, and Γ are shown in Ta-

ble 5.1. It is worthwhile noting that the values for |β|, which describes the strength

of the light-plasmon coupling, are comparable to those used in the case of the Young’s

interferometer. In that case, β was found to be 0.33 for slit widths 200 nm and 100 nm,

and 0.21 for slit width 50 nm. The values of η and Γ did not vary appreciably as

the slit width is decreased from 200 nm to 50 nm. This provides support that η and

Γ may be regarded as transmission and reflection coefficients, which should depend

largely on the refractive index nm of the metal at each metal/air boundary (assuming

the the slits are far away enough from each other) rather than on the slit width. It is

also found that the choice of a purely real, positive η provides a good fit for both µ12



111

1500 2000 2500

slit separation = d (nm)

�฀slits

�฀slits

0

0.2

0.4

0.6

0.8

1.0

\M��\

-1.0

-0.8

-0.6

-0.4

-0.2

0

M �

Figure 5.11: Comparison of the modulation of the degree of coherence µ12 in the pres-
ence and absence of the additional slit A, with degree of coherence of the
incident field µ0 = −0.5 (dotted line). The slit width w is taken to be
200 nm.

and µ1A, which can exhibit quite different behaviors as seen in Figs. 2 and 3. Such a

real, positive η resembles the forward scattering efficiency in electromagnetic scattering

problems (Bohren and Huffman 1983, Sec. 3.4). Thus we could think of η as describing

how strongly the slit scatters the plasmonic field in the forward direction.

Finally, we compare the modulation of µ12 in the absence and presence of the addi-

tional center slit. The results are shown in Fig. 5.11. It can be seen that for a given µ0,

the range of µ12 can be larger or smaller in the case of the three-slit geometry. Intu-

itively, one might expect the additional slit to serve as a barrier for the surface plasmon

interactions between the end slits, thus acting to suppress the modulation of µ12, which

is indeed the case depicted by the results for slit separation d between ∼ 2000−2500 nm
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in Fig. 5.11, where it is taken that µ0 = −0.5. However, the plots also show that for

d between ∼ 1500 − 2000 nm, the modulation of the degree of coherence is greater in

the three-slit geometry than the two-slit geometry. Thus, the additional ‘barrier’ slit

can serve not just to decrease the effects of surface plasmons propagating from one slit

to the other, but also to preserve, and even enhance these effects. From these observa-

tions, it can be inferred that the additional center slit can either enhance or suppress

the modulation of the coherence properties of the fields emanating from the two end

slits. This is promising for the development of coherence converting devices with hole

arrays in metal plates.

5.1.3 Symmetric Three-hole Interferometer in an Equilateral Geometry

We have demonstrated the coherence converting ability of surface plasmons coupled

by subwavelength apertures on a metallic plate. However, we have been restricted to

examining the spatial coherence between any two points of the field, i.e., µij. For an

array of apertures, we would have to study the coherence properties of light as a global

effect resulting from contributions from each aperture in the array. To address this issue,

we will now consider a symmetric three-hole interferometer in an equilateral geometry

as shown in Fig. 5.12. The holes, which are subwavelength in size, are illuminated with

plane waves of wavelength 600 nm, and the metal plate is taken to be gold, as before.

Due to the symmetry in the system, we will investigate the relationship between the

holes’ separation and a ‘global’ degree of coherence of the fields at the three holes. It is

shown that this ‘global’ spatial coherence directly influences the fringe contrast of the

radiation pattern.
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Instead of exact three-dimensional simulations that are complex and time consum-

ing, we will again attempt to study the problem using simple analytical modeling meth-

ods, justified by success of the analytical models in the earlier sections. Let us assume

that the spectral densities of the fields incident at each of the slits are identical and is

taken to be U0. A part of the incident field is directly transmitted (α), while a part

couples to surface plasmons and contributes to a plasmonic field, which is multiply

scattered by the three holes. To take into account the multiple scattering effects, we

employ the Foldy-Lax equations (Foldy 1945) to calculate the field at each hole

UF (ρn) = αU0(ρn) + US(ρn) , (5.23)

where ρn =
√

X2
n + Y 2

n describes the position of the nth hole (n = 1, 2, 3) in the

aperture plane, UF (ρn) is the total plasmonic field at each hole, and US(ρn) is the

contribution due to the multiple scattering of the plasmonic field. At the nth hole, the

scattered field US(ρn) may be expressed as

US(ρn) = χ

3
∑

m=1,m6=n

G(ρn,ρm)UF (ρm) (5.24)

where χ describes the scattering strength of each hole, and

G(ρn,ρm) =
i

4
H

(1)
0 (ksp |ρn − ρm|) (5.25)

with H being the Hankel function (Arfken 1970, Sec. 16.6). Here we have used the two-

dimensional Green function for the propagation of the plasmonic field on the surface of

the array, since its amplitude decays exponentially into either of the neighboring media.

A few words on the simple multiple scattering model based on Eqs.(5.23 – 5.25)

before we proceed. Similar scalar, multiple scattering approach has been used by others



114

P

Q
1

Q
2

Q
3

R
1

R
2

R
3

d

x

y

z

z
0

Figure 5.12: The geometry for the three-pinhole interferometer.

to investigate the multiple scattering behavior of surface plasmons by periodic arrays

of surface nanoparticles at a metal-dielectric interface. It is worthwhile to note that the

models have been reported to have attained some success in reproducing experimental

results (Bozhevolnyi and Coello 1998, Bozhevolnyi and Volkov 2001, Søndergaard and

Bozhevolnyi 2003). While it is recognized that such a scalar model will not fully describe

the effects of the surface plasmons (Visser 2006), its simplicity offers much computing

convenience, and can potentially provide insights to a problem of complicated nature

like this. Furthermore, results from Sections 5.1.1 and 5.1.2 suggest that such simplified

models would work well in providing a qualitative analysis of the problem. In those

sections, analytic models that consider only the dominant field component produce

results in agreement with rigorous numerical simulations.

Substituting Eqs. (5.24) and (5.25) into Eq. (5.23), the field UF (ρn) at each of
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the holes can be determined. For a symmetric structure like this with three pinholes,

UF (ρn) in Eq. (5.23) can be calculated by analytically inverting a 3 × 3 matrix. The

spectral degree of coherence µij between any two of the three holes may then be found

using Eq. (5.5). Due to the symmetry, it is convenient to define µF and γ such that

µF = µ12 = µ23 , (5.26)

and

γ = χG(rn, rm) . (5.27)

In terms of γ, the spectral degree of coherence µF for this case of the symmetric three-

hole interferometer is

µF =
µ0|1− γ|2 + (1 + 3µ0)|γ|

2 + 2(1 + µ0)Re[(1− γ)∗γ]

|1− γ|2 + 2(1 + µ0)|γ|2 + 4µ0Re[(1− γ)∗γ]
. (5.28)

Similar to Eq. (5.12), we find that µF is in general not equal to µ0, as can be seen

from the plots in Fig. 5.13. Here it is assumed that the illuminating field is fully

incoherent (µ0 = 0), and arg(χ), which results in a translational shift of µF , is taken

to be zero. It can be seen that the amount of modulation of the coherence increases

with |χ|, the scattering strength of each hole. It is to be noted that the scattering

coefficient χ applies to the two-dimensional plasmonic field UF and can be greater

than unity (Jones 1986, Bohren and Huffman 1983), unlike β, which applies to the

radiating field and whose magnitude is restricted to values less than unity to satisfy

energy conservation laws. Clearly, the appropriate value of |χ| determines the precise

amount of modulation offered by the array, and this will be investigated as part of

future work. In the present case, we will focus on demonstrating the feasibility of a

coherence converting device with a suitable array of subwavelength apertures.
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µ0 = 0 and arg(χ) = 0.

For this case of the symmetric three-hole interferometer, unlike the three-slit inter-

ferometer, each hole separation d is associated with a ‘global’ value of µF . Since highly

coherent fields can interfere to form interference fringes with a high fringe contrast, we

will calculate the radiation pattern from the three-hole interferometer to see if there is

any qualitative agreement between the value of µF and the fringe contrast of the radi-

ation pattern. For the case µF = 0, one would expect to see no fringes in the radiation

pattern, i.e., V = 0 in Eq. (5.8).

Due to the evanescent nature of the surface plasmons, it is reasonable to assume

that only the field at each of the holes contributes to the radiation pattern, which we
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Figure 5.14: Radiation pattern at z0 = 2 m with µ0 = 0 and χ = 8.0, for hole separation
d of (a) 2660 nm, (b) 2720 nm, and (c) 2780 nm. The intensity scale for
the three plots is shown in (d). For the three cases, the degree of coherence
µF = 0.02, 0.36, and 0.60, and the fringe contrasts are 0.03, 0.46, and 0.67,
respectively.

may readily evaluate with the Fresnel diffraction integral (Goodman 2005, Sec. 4.2)

U (∞)(x, y; z0) =
k0 exp [i k0 z0]

i 2π z0

×

∫ ∫

U(X, Y ) exp

[

i
k0

2z0

{(x−X)2 + (y − Y )2}

]

dX dY . (5.29)

where U (∞)(x, y; z0) denotes the field on a plane z = z0 in the far zone, and it has

been taken that the source plane is located at z = 0. With µ0 = 0 and χ = 8.0, the

radiation patterns for d = 2660 nm, 2720 nm, and 2780 nm are calculated and shown

in Fig. 5.14. The values of µF from Fig. 5.13 at these values of d are 0.02, 0.36, and

0.60, respectively. The distance between the metallic plate and the observation plane

is taken to be z0 = 2 m. It is found from Fig. 5.14 that the fringe contrast for the
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three cases are 0.03, 0.46, and 0.67, given in ascending order of µF . Thus the fringe

contrast increases with µF , and the dependence of the spatial coherence on the distance

d between the pinholes is verified.

5.2 Summary and Future Work

We have shown using analytic and numerical modeling that, depending on the separa-

tion between subwavelength apertures on a metal plate, surface plasmons propagating

between them can increase or decrease the spectral degree of coherence of the emanated

fields. Simulations of the three slit-interferometer show that the surface plasmons can

either increase or decrease the degree of modulation of the coherence in the presence of

additonal apertures. These results suggest that one may develop coherence converting

devices with suitable arrays of subwavelength apertures in metal plates. Such coherence

converting devices may be very useful in optical systems since the coherence properties

of a field strongly affect its propagation characteristics.

Presently, we are using the Foldy-Lax equations presented in the previous section to

study the feasibility of a practical coherence converting device by means of a suitable

array of subwavelength holes in a metal plate. For a practical choice of the field illumi-

nating the apertures, we adopt a Schell-model to describe the coherence properties of

the incident field. The cross spectral density function between two points ρ1 and ρ2 of

a planar, secondary Schell-model source takes on the form (Wolf 2007, Sec 5.3)

W0(ρ1,ρ2) =
√

S0(ρ1)
√

S0(ρ2)µ0(ρ2 − ρ1)

=
√

S0(ρ1)
√

S0(ρ2) exp[−|ρ2 − ρ1|
2/2δ2] , (5.30)
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where δ is a measure of the effective correlation length. Schell-model sources are rep-

resentative of many real physical sources, and are characterized by the property that

their degree of spatial coherence at any two source points ρ1 and ρ2, depends only on

the difference ρ2−ρ1. We hope to assess the performance of such a device by studying

the degree of coherence of the fields and the fringe contrast they produce.



Chapter 6: Extraordinary optical transmission in systems

of multi-layered metallic thin films

Extraordinary optical transmission (hereafter referred to as EOT) through corru-

gated thin metal films and subwavelength-aperture arrays in metal plates has evoked

great interest since its first experimental demonstration by Ebbesen et al. (1998) .

Although there are still continuing discussions on the physical mechanism in play, the

critical role of surface plamsons in EOT has been confirmed through several stud-

ies (Ghaemi et al. 1998, Grupp et al. 2000, Barnes et al. 2004, Schouten et al. 2005,

Lalanne and Hugonin 2006, Visser 2006).

More recently, EOT with plasmonic arrays arranged in cascade have been investi-

gated (Ye and Zhang 2005, Bai et al. 2005, Chan et al. 2006, Cheng et al. 2007). It

was found that the optical transmission through the cascaded layers either exceeded

or was comparable to the transmission through a single layer. While most of these

recent investiagations focused on two cascaded layers, here we will consider up to four

cascaded layers. Proposed applications of such cascaded structures include the im-

provement of surface enhanced Raman scattering, light confinement and guidance at

the nanoscale, SNOM capabilities, and control of the phase delay of the transmitted

light (Bakker et al. 2004, Marcet et al. 2008).

In this chapter, we show through rigorous numerical simulations that corrugated

metallic films arranged in cascade can potentially impede the exponential decay of elec-
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tromagnetic fields in metals, and EOT may be achieved, depending on the thickness of

the structure. The simulations are again based on the Green tensor formalism described

in Chapter 3.

6.1 EOT with Corrugated Metallic Films in Cascade
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Figure 6.1: Geometry for the multi-layer structure with two layers for (a) plasmon
pits on both sides of the metal plates, and (b) plasmon pits only on the
illuminated side of the metal plates. More layers of identical metal plates
may be cascaded.

The geometry we consider is motivated by our earlier investigations on the plasmon-
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assisted super-resolved optical readout effects in Chapter 4. It was found there that the

performance of the readout system could be improved or degraded with suitably placed

‘plasmon pits’ on a metal plate, taken to be silver in that case. Besides enhancement

of the coupling between surface plasmons and light, these plasmon pits serve to ei-

ther increase the transmission and/or confine the electromagnetic fields between them,

depending on whether they are on the illuminated or dark side of the metal plate.

Here we consider placing the two pairs of plasmon pits ‘back to back’ on the two

sides of the metal plate. Two or more of these metal plates can then be cascaded to form

a multi-layer structure, as shown in Fig. 6.1a. The metal plates have thickness t, and

are separated by an air gap g. The plasmon pits are laterally separated by a distance

of 2γ. More layers of identical metal plates may be cascaded with the same gap g. As

it has been suggested that the grooves on the dark side only contribute weakly to the

plasmon-assisted enhanced transmission (Garćıa-Vidal et al. 2003, Barnes et al. 2003,

Degiron and Ebbesen 2004), we will also investigate structures with plasmon pits only

on the illuminated side of the metal plates, as shown in Fig. 6.1b. These structures,

which are simpler than those in Fig. 6.1a, can be more easily fabricated with precison,

making them more favorable in experiments.

Similar to the case of the transmission readout system discussed in Chapter 4, the

optical transmission T is normalized to the incident field such that

T =

∫ +∞
−∞ Szdx

Y0

∫ +∞
−∞ |E(inc)(x, z)|2dx

, (6.1)

where Sz is the normal component of the time-average Poynting vector emerging from

the data layer, Y0 =
√

ǫ0
µ0
, and E(inc)(x, z) is the electric field amplitude of the incident
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Gaussian beam.

For the ensuing discussion, we will take the metal plates to be silver, which typically

exhibits low absorption losses in the visible spectrum. It is taken that the illuminating

wavelength (λ) is 500 nm, around the middle of the visible spectrum. The beamwidth

of the incident Gaussian beam at full width at half maximum is taken to be 530 nm.

The refractive index of silver at λ = 500 nm is taken to be nag = 0.05− i 2.87, following

the data of Johnson and Christy (1972).

0
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G

Figure 6.2: Optical transmission T as a function of γ for a single layer of the structures
depicted in Fig. 6.1a (green line) and Fig. 6.1b (blue line).

The gap g is kept small in this case so that surface plasmons propagating on surfaces

separated by the air gaps can couple resonantly with each other (Ye and Zhang 2005,

Mart́ın-Moreno et al. 2001). We take g to be 20 nm and 10 nm for the multi-layer

structure in Fig. 6.1a and Fig. 6.1b, respectively. The thickness t of the silver plate is
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taken to be 100 nm and 50 nm for the structure in Fig. 6.1a and Fig. 6.1b, respectively.

The thickness of the silver plates are chosen to be thin both to decrease absorption

losses and to enhance resonant plasmon coupling (Bonod et al. 2003).

It is to be noted that both the separation g and the thickness t for the multi-layer

structure in Fig. 6.1b have been taken to be half of that in Fig. 6.1a. As we will see,

such a choice would allow us to compare the transmission between structures that have

an equal volume of metal but has different number of layers for the two geometries in

Fig. 6.1. The value of γ is taken to be 80 nm, as simulations with a single layer of

the structures illustrated in Fig. 6.1 show optimal optical transmission for values of γ

between 70 and 90 nm for both structures (see Fig. 6.2).

To demonstrate the ability of the multi-layered structure in Fig. 6.1a to impede the

exponential decay of the field in a single silver plate, we compare the field distribution

for the two cases. Typical results are shown in Fig. 6.3, where it has been taken that

γ = 80 nm. For consistency, the volume of silver is kept equal in both the multi-layered

structure and the single slab.

It is clear from Fig. 6.3 that while the field in the single slab decays very quickly as

it penetrates through the material (skin depth at λ = 500 nm is ∼ 15 nm), the field

decay in the multi-layered structure is relatively insignificant, even in the layer furthest

from the incident field. This is true even when the number of layers is increased to

four. Moreover, the transmission for the multi-layer structure is much greater than

that through the single silver slab, with T = 0.185 and T = 0.096 for two and four

layers respectively. The corresponding values of transmission for the single silver slab

are T = 0.012 and T = 0.001 respectively. This suggests that EOT is achievable with
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Figure 6.3: Field distribution plots depicting the impedance to exponential decay of the
fields with a multi-layered structure as opposed to a single metal plate with
equivalent thickness. The volume of silver is kept equal in both systems.
EOT for multi-layered structures is clearly observable from the values of
the associated optical transmission T .

the proposed multi-layered structures.

To show that these effects are due to surface plasmons, and not waveguide modes

or other possible evanescent modes, we repeated the simulations with tungsten with

TM-polarized light, and with silver with TE-polarized light. The refractive index of

tungsten at λ = 500 nm is taken to be nw = 3.38 − i 2.68, following the data of Palik

(1985). At this wavelength, tungsten therefore does not support surface plasmons (since

ǫ′w > 0, ǫw = n2
w = ǫ′w− iǫ

′′
w). TE-polarized light do not support surface plasmons either,
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Figure 6.4: Field distribution plots for (a) tungsten multi-layered structure with TM-
polarized light, and (b) silver multi-layered structure with TE-polarized
light.

as has been explained in Chapter 2. For a subwavelength slit of width a, the cutoff

wavelength for the TE dominant waveguide mode is λc = 2a (Rao 2004, Sec 8.2). Since

our plasmon pits are only 40 nm wide, waveguide modes are not supported as well for the

TE case1. Thererfore for the TE case, one would expect very low optical transmission.

Typical results are shown in Fig. 6.4. Clearly, none of the field distribution plots

for the multi-layered structures in Fig. 6.4 bear any resemblance to those in Fig. 6.3.

Furthermore, the optical transmission T is extremely low, orders of magnitude lower

than for the case where surface plasmons are supported.

Though the multi-layered structures proposed in Fig. 6.1a could significantly impede

exponential decay of fields in a single metallic slab, it is conceivable that these structures

1For the TM case, the TM0 mode is a special case of the TEM (transverse electro-

magentic) mode, having no cutoff. See for instance, Sec 9.2 of Cheng (1994).



127
present challenges for precise nano-fabrication. In this respect, we investigated simpler

structures with only the plasmon pits on the illuminated side of the metal plate as

depicted in Fig. 6.1b. Similar impeding of the field decay is still observed, although the

effects are less prominent, and the EOT less significant, as seen from Fig. 6.5.

To compare the effectiveness in impeding the field decay and the EOT between

the two structures proposed in Fig. 6.1, we may look at (a) a two-layered structure in

Fig. 6.1a with a four-layered structure in Fig. 6.1b, and (b) a single-layered struture

in Fig. 6.1a with a two-layered structure in Fig. 6.1b. It can be seen that, on account

that g and t for the structure of Fig. 6.1b are half that of Fig. 6.1a, the volume of silver

in both cases (a) and (b) is equivalent. For both the cases (a) and (b), the results for

the field distribution and optical transmission for the two-layered structure are given

-300  3000

x (nm)

T = 0.029 T = 0.012

-300  3000

x (nm)

-300  3000

x (nm)

-300  3000

x (nm)

0

150

z 
(n

m
)

0

100

250

z 
(n

m
)

0

100

250

z 
(n

m
)

0

150

z 
(n

m
)

T = 0.089 T = 0.035

 18  34 26

Intensity (arb. units)

Figure 6.5: Field distribution plots depicting the impedance to exponential decay of
the fields with multi-layered structures of Fig. 6.1b, as compared to a single
metal plate with equivalent thickness. The volume of silver is kept equal in
both systems.
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in the top row of Fig. 6.3 and Fig. 6.5, respectively. As such, we show only the results

for the four-layered structure in Fig. 6.1b, and that of the single-layered struture in

Fig. 6.1a in Fig. 6.6. The results suggest that the structure with plasmon pits back to

back on both sides of the silver plate are more effective in impeding the exponential

decay and consequently produces higher EOT. A possible explanation for the better

performance with the structure of Fig. 6.1a is that coupling losses between separate
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Figure 6.6: Field distribution plots for (a) a four-layered structure in Fig. 6.1b, and
(b) a single-layered structure in Fig. 6.1a. These results are compared with
those in the top row of Fig. 6.3 and Fig. 6.5, respectively.
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Figure 6.7: Field distribution plots depicting the impedance to exponential decay of the
fields with multi-layered structures of Fig. 6.1b when each layer is allowed
to be slightly misaligned. For the four layers, starting from the bottom
layer, the plasmon pits are separated by γ = 84, 90, 85, 78 nm in (a), and
γ = 77, 82, 88, 80 nm in (b).

layers can accumulate as the number of layers is increased.

Since the alignment of these multi-structured layers can be a daunting task in actual

experiments, we have investigated how sensitive these effects are when there is some

misalignment between each layer. The results are shown in Fig. 6.7. It is seen that the

effects on the field decay are not dramatically different, and neither does the transmis-

sion T vary significantly from the perfectly aligned case (T = 8.0 × 10−3). Therefore,

slight misalignments in the multi-layered structure does not cause drastic changes in

the system response.
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It is also interesting to see how the optical transmission varies for the multi-layered

structure as compared to a slab of metal of equivalent volume. Our simulation for four

layers of the multi-layered structure in Fig. 6.6a yields a transmission T = 8.0× 10−3,

slightly lesser compared to the transmission T = 0.012 for the 200 nm thick slab (see

Fig. 6.3), suggesting that impeding the field decay does not always produce a better

EOT. This is not unreasonable to expect since the transmission through a subwavelength

slit is very much dependent on both its thickness and width (Schouten et al. 2004). In

addition, we also like to see how different the optical transmission is for structures that

can and cannot excite surface plasmons.

The optical transmission T for up to five layers or a single slab of equivalent volume

for the cases: (i) silver∗(m,s), TM, (ii) tungsten∗(m,s), TM, (iii) silver†(m,s), TM, and (iv)

silver†(m,s), TE, are tabulated in Table 6.1. The superscripted symbols ∗ and † are used

to refer to the structure with back to back plasmon pits on each layer (Fig. 6.1a), and

the structure with plasmon pits on only the illuminated side of each layer (Fig. 6.1b),

respectively. The multi-layer structure and the equivalent single slab are represented

by the superscripts m and s respectively. It is to be noted that the values for the

transmission T in Table 6.1 are based on approximate numerical solutions, and are

sufficient for our qualitative analysis in lieu of experimental data.

For the structures that support surface plasmons (silver, TM), it can be seen from

Table 6.1 that the transmission for the multi-layered structure can be up to several

times higher than that in the single silver slab. On the contrary, for structures that

do not support surface plasmons (tungsten, TM, and silver, TE), it is seen that the

transmission for the multi-layered structure can be lower or comparable to the case of
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Table 6.1: Optical transmission T for the multi-layered structures (up to five layers)

and equivalent single slabs. The number in [ ] to the right of the numeric
value of T refers to the number of layers, where applicable. The transmission
T is evaluated at zT ( nm), where zT is the total thickness of the structure.
For compact presentation, e−n is used as short form for ×10−n.

zT = 100 zT = 220 zT = 340 zT = 460 zT = 580

silver∗(m), TM 0.233 [1] 0.185 [2] 0.134 [3] 0.096 [4] 0.066 [5]

tungsten∗(m), TM 0.011 [1] 7.3e−5 [2] 5.2e−7 [3] 3.6e−9 [4] 2.4e−11 [5]

zT = 100 zT = 200 zT = 300 zT = 400 zT = 500

silver∗(s), TM 0.035 0.012 1.8e−3 6.3e−4 9.0e−5

tungsten∗(s), TM 0.012 9.7e−4 1.6e−4 2.0e−5 2.5e−6

zT = 50 zT = 110 zT = 170 zT = 230 zT = 290

silver†(m), TM 0.185 [1] 0.089 [2] 0.029 [3] 8.0e−3 [4] 2.0e−3 [5]

silver†(m), TE 0.064 [1] 2.1e−3 [2] 7.1e−5 [3] 2.5e−6 [4] 9.0e−8 [5]

zT = 50 zT = 100 zT = 150 zT = 200 zT = 250

silver†(s), TM 0.185 0.035 0.012 0.012 0.021

silver†(s), TE 0.064 2.5e−3 1.1e−4 5.3e−6 2.6e−7

the single slab. In addition, the structures that support surface plasmons are capable of

optical transmission much higher than the structures that do not. These observations

help support our claim that surface plasmons are responsible for the observed impeding

field decay and EOT effects.

To further illustrate the differences in the transmission, the results for each of the
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Figure 6.8: Plots of the transmission T as a function of z, for the data in Table 6.1.
The data for silver∗(m,s), TM, and tungsten∗(m,s), TM, are plotted in (a),
and that for silver†(m,s), TM, and silver†(m,s), TE, are plotted in (b).

structures in Table 6.1 are plotted in Fig. 6.8 . It is seen that when compared to the

single slab, the silver∗(m), TM structure is superior to the silver†(m), TM structure in

terms of the acheivable EOT. This could be attributed to the much thicker slab for the

silver∗(s) structure, which is twice as stick as the silver†(s) structure. As the slab gets

thicker, the effects of the skin depth predominates over the effects of the thickness of
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Figure 6.9: Field distribution plots depicting increased impedance to exponential de-
cay of the fields and EOT with multi-layered structures of Fig. 6.1a and
Fig. 6.1b, with three plasmon pits instead of two in each layer.

the slab on the optical transmission. This behavior is also observable from the field

distribution plots in Fig. 6.3 and Fig. 6.5.

Finally, we have performed another series of simulations with more plasmon pits

to further confirm our claim that surface plasmons are responsible for these effects of

EOT. Each of the plasmon pits can serve to enhance the light-plasmon coupling, and to

confine the fields through the reflection of the plasmons at the edges. By having three
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plasmon pits on each silver layer, we repeated the simulations, expecting the surface

plasmon effects to be enahnced. Typical results are shown in Fig. 6.9. Comparing the

results to those in Fig. 6.3 and Fig. 6.7, we see that there is a significant increase in the

achievable EOT, and the suppression of the field decay is also improved. For the three-

pit structures in Fig. 6.9, the optical transmission T is about twice as much as their

corresponding two-pit structures. These results provide evidence that the enhanced

coupling between light and surface plasmons is critical to achieve the effects for the

multi-layered structures discussed in this section.

6.2 Summary and Future Work

Extrordinary optical transmission (EOT) with a multi-layered structure of corrugated

metal plates was demonstrated. It was found that the multi-layered structure can

impede the exponential decay of the field that would otherwise take place in a single

silver plate. For consistency in our comparisons, the volume of air space due to the

plasmon pits are kept equal in both the multi-layered structure and the single slab of

silver.

From our simulations, these field effects related to the observed EOT can occur even

with four metal slabs in cascade. Simulations with more plasmon pits and geometries

that do not support surface palsmons also demonstrate the role of surface plasmons

in the EOT and impeded decay of the fields. It is hoped that with advances and

improvements to the processes for nano-fabrication of such multi-layered structures,

cascaded corrugated metal films will find a host of interesting applications in future

nano-optical technologies.



Chapter 7: Conclusions

I respect faith, but doubt is what gets you an education.

— Wilson Mizner

In this thesis, potential applications of surface plasmons to enhance or modulate

optical field effects in subwavelength nano-optical systems have been demonstrated. The

results presented are based on rigorous simulations of the Maxwell equations, which are

useful in providing quantitative analyses for the systems we investigated.

Strategies to achieve super-resolution in near field optical readout systems were

proposed, both for reflection and transmission readout configurations. To confirm that

effects are due to surface plasmons, prominent local resonances observed in structures

supporting surface plasmons were no longer observable in cases where surface plasmons

are not excited. The size and position of plasmon pits on both the illuminated and

dark side of the metal plates affect dramatically the response of the readout systems.

Our simulations also reveal that the surface plasmon effects, which tend to be most

intense at the edges of a structure, can be employed to detect the edges of the data

structure. Each system has its associated pros and cons, and the choice of an optimal

system will depend on what characteristics the system designer finds most important

(readout contrast, resolution, stability). Resolution up to almost λ/6 was achieved in

our simulations, which is a conservative estimate due to our stringent requirement for

the resolution. Such plasmon-assisted readout systems have the potential to further
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increase the data storage capacity offered by the current Blu-ray technology.

A new role for surface plamsons in nano-optics was also demonstrated: Theoretical

modeling, verified by numerical simulations, was used to illustrate how surface plas-

mons in a Young’s interference experiment can modulate the spatial coherence of light.

Extending our investigations to a three-slit interferometer, it was found that the ‘bar-

rier’ slit can suppress the degree of modulation as one would expect, but can also serve

to increase the degree of modulation between the pair of end slits. These findings are

promising to the development of a practical coherence converting device using a metallic

hole array. Working towards such a device, the fringe contrast and spatial coherence

of fields emerging from a symmetric three-hole interferometer was studied. Due to the

simplicity of the geometry, analytical calculations for the spatial coherence as a func-

tion of the holes’ separation d were readily derivable. It was found that the simulated

fringe contrast varied accordingly with the calculated spatial coherence as a function of

d. Work on larger arrays of holes illuminated by Schell-model fields is in progress. It is

worthwhile to note that the enhancement of the spatial coherence by surface plasmons

in a double-slit configuration has been experimentally demonstrated by collaborators

in The Netherlands.

With multi-layered systems of metallic thin films, extraordinary optical transmission

(EOT) accompanied with enhanced field effects were observed. In comparing the multi-

layered systems to their equivalent structures in a single slab (no air gaps in between the

layers), it was found that the decay of the field intensity can be significantly impeded or

suppressed, leading in some cases to EOT. Total absence of these enhanced field effects

in simulations with TE (transverse electric) polarized light and in materials that do not
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excite surface plasmons supports our claim that these effects are plasmon-mediated. The

striking suppression of the field decay over distances much longer than the skin depth,

coupled with the achievable EOT in these multi-layered structures offers potential for

application in near field optical systems where enhanced field effects are desired.

Like many others, the ideas investigated occurred to me in various ways; some out

of pure imagination, some inspired by others, some as a result of unintended mistakes in

running the simulations, and some over doubts that metal can ever effectively transmit

light over distances much greater than the skin depth. It is hoped that these investiga-

tions have served to put more light to the sometimes questionable influence of surface

plasmons in light/matter interactions. These results will hopefully lead to ideas that

will unfold more exotic plasmon-assisted optical phenomena.
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APPENDIX A: ANGULAR SPECTRUM REPRESENTATION FOR

VECTOR GAUSSIAN BEAMS IN SOURCE-FREE REGIONS

We consider here the construction of a vectorial Gaussian beam through an angular

spectrum of plane waves. It is assumed that the beam is monochromatic and that it

propagates in a medium void of free charges. Such a wave must satisfy the vector wave

equation derived in Sec 2.1 (see Eq. (2.14))

∇2Er + k2Er = 0 , (A-1)

with k = nk0, where k0 = ω/c is the wave vector in free space, and n is the refractive

index at frequency ω. As the magnetic field can be determined by taking the curl of

the electric field in the monochromatic case, it is sufficient to consider the electric field.

In the case of a two-dimensional geometry, a further simplification can be made

since the TM (transverse magnetic) and TE (transverse electric) polarizations satisfy

independent sets of the Maxwell equations. Let us take our geometry to be uniform

along the y-axis, such that ky = 0. In terms of the angular spectrum representation, the

electric field components can be expressed as (Carter 1972, Agrawal and Pattanayak

1978, Chen et al. 2002)

Ex(x, z) =

∫ ∞

−∞
ax (kx)e

−i(kxx+kzz) dkx, , (A-2a)

Ez(x, z) = −
∫ ∞

−∞

kx
kz
ax (kx)e

−i(kxx+kzz) dkx , (A-2b)
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for the TM polarization, and

Ey(x, z) =

∫ ∞

−∞
ay (kx)e

−i(kxx+kzz) dkx , (A-3)

for TE polarization, with

kz =


√
k2 − k2

x if k2 ≥ k2
x

−i
√

(k2
x − k2) if k2 < k2

x

. (A-4)

The complex factors ax (kx) and ay (kx) are weighting factors that are to be determined.

Eqs. (A-2) and (A-3) show that, for a two-dimensional geometry, each field component

may be represented as a sum of suitably weighted plane waves propagating in different

directions given by kx and kz (Stamnes 1986, Goodman 2005). For the waves to be

propagating, kx and kz must also satisfy the relation

k2
x + k2

z 6 k2 . (A-5)

Let us assume that at the boundary z = 0, the beam has an initial Gaussian profile

Ex(x, 0) = e−(x2/2σ2
x) , (A-6)

for the TM case, and

Ey(x, 0) = e−(x2/2σ2
y) , (A-7)

for the TE case, where σx and σy are measures of the beamwidth. Further taking the
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inverse Fourier transform of Eqs. (A-2a) and (A-3), we solve for the factors ax (kx) and

ay (kx) as

ax, y(kx) =
1√
2π σ

e−(k2
x/2σ

2), (A-8)

where depending on the polarization,

σ =


1/σx for TM

1/σy for TE

. (A-9)

Substituting Eq. (A-8) back into Eqs. (A-2) and (A-3), and noting the condition (A-

5) for the limits of integration, one obtains the following expressions for the angular

spectrum of each of the field components:

Ex, y(x, z) =
1√
2π σ

∫
k2

x+k2
z6 k2

e−(k2
x/2σ

2) e−i(kxx+kzz) dkx , (A-10)

and

Ez(x, z) = − 1√
2π σ

∫
k2

x+k2
z6 k2

kx
kz
e−(k2

x/2σ
2) e−i(kxx+kzz) dkx . (A-11)
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