
UNIFYING ESTIMATION OF VARYING-COEFFICIENT MODELS

by

Weitong Yin

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2019

Approved by:

Dr. Jiancheng Jiang

Dr. Qingning Zhou

Dr. Weihua Zhou

Dr. Weidong Tian



ii

c©2019
Weitong Yin

ALL RIGHTS RESERVED



iii

ABSTRACT

WEITONG YIN. Unifying Estimation of Varying-coefficient Models. (Under the
direction of DR. JIANCHENG JIANG)

Varying-coefficient models are widely used to analyze the relationship between a re-

sponse and a group of covariates. Existing research shows different convergence rates

for the estimators of coefficient for the stationary part and the nonstationary part. It

brings difficulties in statistical inference for the coefficient functions since an appropri-

ate sampling distribution has to be carefully chosen. In this dissertation we propose

a unifying two-step estimation procedure for varying-coefficients models, which fa-

cilitates the unifying inference for coefficients. In step one, a local smoother (LS) is

adopted to give estimates of coefficients for the stationary part. In step two, we pro-

pose a weighted local score equation(WLSE) method for estimating the nonstationary

part coefficients. The proposed two-step procedure will provide a unifying estimation

procedure for the varying-coefficients models. The asymptotic joint distribution of the

proposed estimators is established, which provides a Wald type of confidence regions

for the coefficient functions. However, this confidence region does not work well when

the conditional variance of the error changes. To solve this problem, we propose an

empirical likelihood inference tool for the coefficient functions. Simulations demon-

strate good finite sample performance of our estimators and coverage probability of

proposed empirical likelihood confidence regions. A real example illustrates the value

of our methodology.

KEY WORDS: Two-Step Estimation, Local Smoother(LS), Weighted Local Score

Equation(WLSE), Asymptotic Normality, Empirical Likelihood
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Varying coefficient regression models provide a very useful tool for analyzing the

relationship between a response and predictors. They have similar structure and

interpretability to the traditional linear regression model. Because of the infinite di-

mensionality of the corresponding parameter spaces, they are more flexible (Park and

Mammen, 2015). For these advantages, they have been embraced by many applied

researchers in statistics, economics and finance. In varying coefficient models, the co-

efficients are set to be functions of some other predictors. Varying coefficient models

inherit the interpretability of the classical linear models while being nonparametric.

They originated from real application. See Hastie and Tibshirani(1993), Fan and

Zhang (2008) for details. Cai and Li (2009) studied the varying-coefficient models

for time series data, which allows for stationary and nonstationary covariates. This

model is specified as

yt = x>t−1 β(zt) + θ(zt) + vt, xt = (xt,1, . . . , xt,k)
>,

which is equivalent to

yt = W>
t−1 γ(zt) + vt, (1.1)

where Wt−1 = (x>t−1, 1)> and γ(zt) = (β(zt)
>, θ(zt))

>. The covariates xt,i’s are I(0),

I(1) and NI(1) variables, zt is stationary and vt is a white noise independent of xt

and zt at all leads and lags. Model (1.1) includes the well-known varying coefficient

models widely studied in the literature. See, for example, Jiang and Mack (2001),

Fan and Yao (2003), Cai, Li and Park (2009), and Xiao (2009a). Since model (1.1)
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allows the coefficient vector γ(zt) to depend on zt, the “Curse of Dimensionality” will

be avoided for low dimensional smoothing in zt and the modeling bias in linear models

will be reduced significantly.

In the recent years, there have been growing interests and activities in the study and

application of varying coefficient models. Examples include Fan and Zhang (1999),

Cai, Fan and Li (2000), Park and Hahn (1999), Robinson (1989, 1991), Cai (2007),

Chen and Hong (2007), Fan and Zhang (2008), Huang, Wu and Zhou (2002), Fan,

Yao and Cai (2003), Fan, Zhang (2000), Hastie and Tibshirani (1993) and Cai and

Li (2009). In particular, model (1.1) with stationary xt−1 and zt has been consid-

ered by Chen and Tsay (1993), Hastie and Tibshirani (1993) and Cai, Fan and Li

(2000). Model (1.1) with stationary vt, stationary xt−1 and zt = t has been tackled

by Robinson (1989, 1991), Cai (2007) and Chen and Hong (2007). Park and Hahn

(1999) and Chang and Martinez- Chombo (2003) studied model (1.1) with stationary

vt, nonstationary xt−1 and zt = t, and Cai and Wang (2008) considered model (1.1)

with nearly integrated xt−1.

Cai and Li (2009) studied model (1.1) and shows different convergence rates for

the estimation of coefficients for the stationary part and the nonstationary part.

The difference in the limiting distributions of γ(z) across different persistency level

makes inference difficult since an appropriate sampling distribution has to be carefully

chosen. In addition, when xt−1 is I(1) or NI(1), the limiting distribution usually

depends on nuisance local parameters that cannot be consistently estimated, which

makes the statistical inference even harder. For this reason, it motivates us to propose

a unifying inference procedures that are robust to different levels of persistency.

To solve the difficulty above and to work with multiple predictors simultaneously,

in this dissertation, we propose a two-step unifying inference tool for the proposed

model and derive the asymptotic distributions of the estimators in both "stationary"

and "nonstationary" cases. This approach leads to a unifying limiting distribution
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of the proposed estimators with the predictors being stationary, I(0), I(1), NI(1)

or slightly explosive. The asymptotic joint distribution of the proposed estimators

provides a Wald type of confidence regions for the coefficient functions. However,

this confidence region does not work well when the conditional variance of the error

changes. To solve this problem, we propose an empirical likelihood inference tool for

the coefficient functions. Simulations demonstrate good finite sample performance

of our estimators and accurate coverage probability of proposed empirical likelihood

confidence region.

1.2 Outline of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, the unifying two-

step estimation procedure is proposed for the varying-coefficients models where an

algorithm for grouping stationary and nonstationary variables is introduced. In Chap-

ter 3, we investigate the asymptotic properties of proposed estimators. In Chapter 4,

the empirical likelihood region is proposed for the parameter functions. In Chapter

5, we conduct simulations to evaluate the accuracy of our estimation. In Chapter 6,

a real example is used to illustrate the performance of our proposed estimation pro-

cedure. Concluding remarks are presented in Chapter 7. Proofs of the main results

are given in the Appendix.



CHAPTER 2: A UNIFYING TWO-STEP ESTIMATION PROCEDURE

Before proposing our estimation procedure, we classify the covariates into the "sta-

tionary" and nonstationary" groups. Specifically, let

I = {i : max1≤t≤nn
−1/2log(n)|Wt−1,i| < C∗, i = 1, . . . , k + 1},

and Ic = {1, 2, . . . , k + 1} \ I. The variables with indexes in I are classified into the

stationary group, and those with indexes in Ic in the nonstationary group. If Wt−1,i

is stationary, it belongs to I with probability going to one, since

P (max1≤t−1≤nn
−1/2log(n)|Wt−1,i| < C∗) −→ 1,

as n→∞. If Wt−1,i is I(1) or NI(1), then with probability going to one, it belongs

to Ic.

LetWt−1,I andWt−1,Ic be the subvectors ofWt−1 with indices in I and Ic, respectively.

Then model (1.1) can be rewritten as

yt = W T
t−1,IγI(zt) +W T

t−1,IcγIc(zt) + vt, (2.1)

where γI and γIc are coefficients of Wt−1,I and Wt−1,Ic respectively.

Without loss of generality, we write model (1.1) as

yt = W T
t−1,1γ1(zt) +W T

t−1,2γ2(zt) + vt, (2.2)
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where Wt−1,1 consists of all stationary or I(0) variables and Wt−1,2 are formed by all

NI(1) and I(1) variables. With a proper choice of C∗, model (2.1) will be equivalent to

model (2.2) with probability going to one, since P (max1≤t−1≤nn
−1/2log(n)|Wt−1,i| <

C∗) −→ 1 as n→∞.

2.1 Step one - Local Smoother (LS)

For model (2.1), Cai and Li (2009) proposed a two-step estimation procedure. I

employ its step one as the step one in our unifying two-step estimation procedure.

Step one - Local Smoother (LS)

We estimate γ(z) by the local smoother. By condition (A.1), we assume γ(z) is twice

continuously differentiable in z for all z ∈ R. For any given z, we can do a local lin-

ear approximation γ(z)+γ(1)(z)(zt−z) to approximate γ(zt), where γ(q) = dqγ(z)/dzq.

By minimizing the following loss function,

(θ̂0, θ̂1)
T = argminθ0,θ1

n∑
t=1

[yt −W T
t−1θ0 − (zt − z)W T

t−1θ1]
2Kh1(zt − z), (2.3)

where Kh1(u) = h−1K(u/h1). By condition (A.2), K(.) is a kernel function which

is a symmetric and continous density function, supported by[−1, 1], with h1 being

a bandwidth used to control the amount of data in smoothing. Here we choose the

rule-of-thumb bandwidth, h1 = c1n
−1/5, where c1 is a constant. θ̂0 = γ̂(z) estimates

γ(z), and θ̂1 = γ̂(1)(z) estimates γ(1)(z).
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Then, (γ̂(z), γ̂(1)(z))T can be expressed as

(γ̂(z), γ̂(1)(z))T =
[ n∑
t=1

( Wt−1

(zt − z)Wt−1

)⊗2
Kh1(zt − z)

]−1

×
[ n∑
t=1

( Wt−1

(zt − z)Wt−1

)
ytKh1(zt − z)

]
,

(2.4)

where A⊗2 = AAT for a vector or matrix A, ⊗ is the Kronecker product.

As discussed in section 2.3 of Cai and Li(2009), the difference in the limiting distri-

butions of γ̂(z) across different persistency level makes the inference for γ(z) difficult.

For this reason, an appropriate limiting distribution has to be chosen to use. This

motivates us to propose a unifying two-step estimation procedure.

2.2 Step two - Weighted Local Score Equation(WLSE) Method

For model (2.1), we have step-one estimation of γ(z) under local smoother. Let γ̂I

and γ̂Ic be the subvectors of γ̂(z) with indices in I and Ic respectively. To establish

a unifying inference framework, a step-two estimation procedure is proposed based

on Weighted Local Score Equation(WLSE) method. That is, we replace γI(zt)

by γ̂I(zt) in model (2.1)to obtain the partial residual y∗t :

y∗t = yt −W T
t−1,I γ̂I(zt) = W T

t−1,IcγIc(zt) + v∗t , (2.5)

where zt is stationary, vt is a white noise independent of Wt−1,1, Wt−1,2 at all leads

and lags, v∗t = vt −W T
t−1,I [γ̂I(zt)− γI(zt)].

In the Step 2, we regress the partial residual y∗t onWt−1,Ic . SinceWt−1,Ic is a group

of “nonstationary” variables, direct least square estimation will lead to a mixing-

normal distribution with the convergence rate being n. To get a joint asymptotic

distribution, we propose a Weighted Local Score Equation(WLSE) method to esti-

mate γIc(z).
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Step-two - Weighted Local Score Equation(WLSE) Method:

n∑
t=1

Q∗t [y
∗
t −W T

t−1,Ic{ξ + η(zt − z)}]Kh2(zt − z) = 0, (2.6)

where Q∗t = (1, zt − z)> ⊗ (Ω∗tWt−1,Ic) with the Ω∗t = diag{wt,1, . . . , ωt,d2}, wt,i =

(1 + ||Wt−1,Ic ||2)−1/2

The resulting estimation of (γIc(z), γ
(1)
Ic (z)) admits the closed form:

(γ̂Ic(z), γ̂
(1)
Ic (z))T = A−1n Bn, (2.7)

whereAn =
∑n

t=1{(1, zt−z)>(1, zt−z)}⊗(Ω∗tW
⊗2
t−1,Ic)Kh2(zt−z) andBn =

∑n
t=1Q

∗
ty
∗
tKh2(zt−

z).We choose rule-of-thumb bandwidth, h2 = 1.06Sn−1/3, where S is the sample stan-

dard deviation of zt.

2.3 Algorithm for C∗ Selection

We have introduced the following index I to regroup the variables.


i ∈ I if max1≤t≤nn

−1/2log(n)|Wt−1,i| < C∗

i /∈ I if max1≤t≤nn
−1/2log(n)|Wt−1,i| ≥ C∗

where C∗ is a positive tuning parameter chosen to maximize the efficiency of our

proposed estimator, γ̂(z). Since the proposed algorithm involves the positive tuning

parameter C∗, different values of C∗ may lead to different index I, which naturally

causes different estimations. While adopting larger C∗, more covariates will be re-

grouped as “stationary”, on the other side of the coin, more nonstionary covariates

will be missed as well. Conversely, with smaller C∗, more stationary covariates will

be missed. So there is an obvious trade-off between them. For a better performance
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of our proposed estimator, a proper C∗ has to be carefully chosen.

In any model building process, it has always been a challenging task to choose a

tuning parameter. Optimal tuning parameters are “difficult to calibrate in practice”

(Lederer and Müller, 2015) and are “not practically feasible” (Fan and Tang, 2013).

Since specific techniques have their opponents and proponents, the task becomes even

more difficult. We use cross-validation to choose the tuning parameter, C∗. Cross-

validation is a commonly used technique to evaluate predictive models by dividing the

sample data into a validation set and a training set to check model performance (Efron

and Tibshirani, 1995). Tibshirani calls cross-validation “A simple, intuitive way to

estimate prediction error”. By comparing prediction errors across different splittings,

we will be able to evaluate the overall model performance on a given data set. Grid

search builds a model for every possible combination of parameters specified, then

evaluates each model. Here, we combine the K-fold cross-validation and grid search

technique to find an “optimal” C∗.
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Algorithm: K-fold Cross-validation and Grid Search for C∗ Selection

1 Set K = 10, Split the data into K folds; {E1, E2, . . . , EK} ← 0

2 Set m = 20, Grid = {c1, c2, . . . , cm}; {CV1, CV2, . . . , CVm} ← 0

3 for i = 1 : m do

4 for k = 1 : K do

5 Fit the model with C∗ = ci to the other K − 1 part, giving γ̂−k(zt) ;

6 Compute its error in estimating the kth part:

Ek ←
∑

t∈kthpart{yt −W
T
t−1γ̂

−k(zt)}2;

7 end

8 CVi ← 1
K

∑K
k=1Ek

9 end

10 Find minimum CVi and corresponding ci

11 C∗opt ← ci

Remark

{c1, c2, . . . , cm} are the empirical grid points. Let {st,j} be a group of known stationary

processes for j = 1, 2, ..., N . N is the number of stationary processes included in the

group. We choose c1 = 0 and cm = min{C∗j |max1≤t≤nn−1/2log(n)|st,j| < C∗j } as the

empirical values. Then ci = (i− 1) cm
m−1 for i = 1, 2, ...m. A larger m provides higher

accuracy of our classifier but slower search speed. A smaller m leads to faster search

speed but lower accuracy.



CHAPTER 3: ASYMPTOTIC NORMALITIES OF ESTIMATORS

As mentioned before, with index vector I, we regroup “stationary” parts of Wt−1

as 1 and “nonstationary” parts as 0. Although, the proposed SM may make some

mistake by chance. However, as n→∞, we have

P (I = 1, . . . , d1)→ 1,

P (Ic = d1 + 1, . . . , d1 + d2)→ 1,

where d1 and d2 are number of variables in γ1(z) and γ2(z) respectively. Hence, as

n→∞, we also have

P
(
γ1(zt) = γI(zt)

)
→ 1,

P
(
γ2(zt) = γIc(zt)

)
→ 1,

3.1 Asymptotic Normality of γ̂1(z)

Let γ̂1(z) be the estimation of γ1(z) given by local smoother. To establish the

asymptotic property of γ̂1(z), we define Mk(z) = E[W⊗k
t−1,1|zt = z] for k = 1, 2;

µi =
∫∞
−∞ u

iK(u)du; νi =
∫∞
−∞ v

iK2(v)dv and Σγ1(z) = σ2
ε ν0(K)M2(z)−1/fz(z), which

is non-stochastic and is exactly the same as that in Cai et al. (2000).

Theorem 3.1 (Theorem 2.1. of Cai and Li, 2009)

Under regularity conditions, (A1)-(A.8) in the Appendix 8, with probability going to

one, the asymptotic distribution of γ̂1(z)

√
nh1[γ̂1(z)− γ1(z)− 1

2
h21µ2(K)γ

(2)
1 (z)]

D−→ N(0,Σγ1(z)),

where h1 is the bandwidth used at this step for estimating γ̂1(z)



12

To obtain the optimal bandwidth h1 for γ̂1(z), we looked into the integrated asymp-

totic mean squared error (IAMSE) for γ̂1(z). It’s easy to derive the IAMSE for γ̂1(z),

which is the same as (2.11) from Cai and Li (2009).

IAMSE(γ̂1(z)) =

∫
[
h4

4
µ2
2(K)||γ(2)1 (z)||2 +

tr(Σγ1,0(z))

nh
]q(z)dz, (3.1)

By minimizing the IAMSE, with respect to h, optimal h1 is obtained as

h1,opt =
(∫

tr(Σγ1,0(z))q(z)dz
)
×
([
µ2
2(K)||γ(2)1 (z)||2q(z)dz

]−1/5
n−1/5

)
, (3.2)

For a simple representation, we may rewrite it into h1,opt = c1n
−1/5. Given h1 = h1,opt,

the IAMSE(γ̂1(z)) = O(n−4/5). However, h1,opt can not make estimation for γ2(z)

optimal in terms of Mean Squared Error and convergence rate. This motivates me

to propose a second step estimation and corresponding asymptotic properties. Also,

the h1 = h1,opt is adopted in the simulation and real example parts.

3.2 Asymptotic Normality of γ̂2(z)

To derive the asymptotic property of γ̂2(z), we need to prepare some ingredients,

which plays an important role in establishing the theoretical results. Let xt be an

I(1) processes, it can be expressed as xt = xt−1 + ηt = x0 +
∑t

s=1 ηs( t ≥ 1 ), where

{ηs} is an I(0) process with mean zero and variance Υη.

Hence, we have

x[nr]√
n
≡ xt√

n
=

x0√
n

+

∑t
s=1 ηs√
n

=
x0√
n

+

∑[nr]
s=1 ηs√
n

, (3.3)

[nr] denotes the integer part of nr and r = t/n.
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For iid ηs and ρ-mixing ηs, as n→∞

x[nr]√
n

D−→ Yη(r) , (3.4)

where Yη(r) is a m-dimensional Brownian motion on [0, 1] with covariance matrix

Υη. "
D−→" represents convergence in distribution. m is the dimension of xt, Billings-

ley(1999). As demonstrated in Leamma A.1 from Hong and Jiang(2017), the weak

convergence can be strengthened to a strong one, which will be employed to derive

our the theoretic results below.

Theorem 3.2 Under regularity conditions, (A1)-(A.8) in the Appendix 8, with prob-

ability going to one, the asymptotic distribution of γ̂2(z)

a−1/2n bn

(
γ̂2(z)− γ2(z)− h22

2
µ2(K)γ

(2)
2 (z)

)
D−→ N(0, σ2

vId2),

where h2 is the bandwidth used at this step for estimating γ̂2(z);

d2 =
∑k+1

i=1 1{i∈IC};

Snj =
∑n

t=1 Ω∗tW
⊗2
t−1,2Kh2(zt − z)( zt−z

h2
)j for j = 0, 1, 2;

an =
∑n

t=1

(
Kh2(zt − z){Sn2 − ( zt−z

h
)Sn1}Ω∗tWt−1,2

)⊗2
;

bn =
∑n

t=1Kh2(zt − z){Sn2 − ( zt−z
h2

)Sn1}Ω∗tW⊗2
t−1,2 = Sn0Sn2 − Sn1Sn1;

Detailed proof of the following Theorem 3.2 is also provided in Appendix 8.

Remark

By Theorem 3.2, γ̂2(z) is an estimator for γ2(z) with Bn(z) = b−1n

(∑n
t=1Kh2(zt −

z){Sn2−( zt−z
h2

)Sn1}Ω∗tW⊗2
t−1,2[γ̂2(zt)−γ2(z)]

)
and Vn(z) = a

−1/2
n

{∑n
t=1Kh2(zt−z){Sn2−

( zt−z
h2

)Sn1}Ω∗tWt−1,2v
∗
t

}
. With the limiting distribution of γ̂2(z), we will be able to

construct its theoretical confidence interval.
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3.3 Asymptotic Normality of γ̂(z)

As results from Theorems 3.1 and 3.2, we have the following Bahadur representa-

tions of proposed estimators, γ̂1(z) and γ̂2(z)



√
nh1(γ̂1(z)− γ1(z)− 1

2
h21µ2(K)γ

(2)
1 (z))

=
√
nh1M

−1
2 (z)

n∑
t=1

n−1Wt−1,1vtKh1(zt − z){1 + op(1)}

a
−1/2
n bn

(
γ̂2(z)− γ2(z)− 1

2
h22µ2(K)γ

(2)
2 (z)

)
= a

−1/2
n cnv

∗∗{1 + op(1)}
(3.5)

where M2(z) = E[W⊗2
t−1,1|zt = z], Ω∗∗t = Kh2(zt − z){Sn2 − ( zt−z

h2
)Sn1}Ω∗t , cn =(

Ω∗∗1 W1,2,Ω
∗∗
2 W2,2, . . . ,Ω

∗∗
n Wn,2

)
and v∗∗ = (v∗1, v

∗
2, . . . , v

∗
n)T .

Define our final estimator as

γ̂(z) =
(
γ̂T1 (z), γ̂T2 (z)

)T
.

Theorem 3.3 Under regularity conditions, (A1)-(A.8) in the Appendix 8, the asymp-

totic distribution of γ(z)

 √nh1 0

0 a
−1/2
n bn

[γ̂(z)− γ(z)− 1

2

 h21µ2(K)(γ
(2)
1 (z))T

h22µ2(K)(γ
(2)
2 (z))T

] D−→MN(Σγ(z)),

where γ(z) =
(
γT1 (z), γT2 (z)

)T and Σγ(z) is the covariance matrix given by

Σγ(z) =

 ν0(K)M2(z)−1/fz(z) Σ1,2

Σ2,1 Id2

σ2
v ,

where Σ1,2 = ΣT
2,1 = limn→∞

∑n
t=1

√
h1/nM

−1
2 (z)Wt−1,I(In − S)T cTn (a

−1/2
n )T ; S =(

si,j

)
and si,j = 1

n
W T
i−1,IM

−1
2 (z)Wj−1,IKh1(zj − z). Detailed proof of the following

Theorem 3.3 is also provided in Appendix 9. To check the performance of our proposed
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estimators, I will test it on both simulated data and real data. Those will be covered

in the next chapters.



CHAPTER 4: TESTING PREDICTABILITY

As we mentioned before, it’s an important task to provide a unifying estimation

and an inference tool for the varying-coefficients models. In the following part, an

empirical likelihood method is introduced to construct a condfidence region for γ(z)

or test H0 : γ(z) = γ. In parametric statistics, the parameters determine the distri-

bution; nonparametric statistics, we estimate the CDF directly using the empirical

CDF, which is also the nonparametric maximum likelihood estimator of F . Empir-

ical likelihood, introduced by Owen(1988, 1990), is a nonparametric approach for

constructing confidence region. It has several nice properties over the confidence

region based directly on the asymptotic normal distribution of the estimator. In

particular, the coverage error of the empirical likelihood confidence region is proved

to be of the same order through the support of the regression function. "This is a

significant improvement over the confidence region based directly on the asymptotic

normal distribution of the local smoother, which have a larger order of coverage error

near the boundary " (See Chen and Qin (2000)). In addition, some other appealing

features of this method also include that it does not require explicit estimation of

the stationary density of zt and the conditional variance of the error vt given zt (See

Jiang and Hong(2018), Owen (1990) and Chan, Li and Peng(2012)).

The profile likelihood method has been proven to be a powerful tool for constructing

empirical likelihood regions, especially for varying-coefficient models (Fan and Huang,

2005). Let’s assume that an initial estimation of γ2(z) is given before we run the

step-one estimation. Firstly, we regress yt − W T
t−1,2γ̂2(zt) on Wt−1,1. Then regress

yt −W T
t−1,1γ̂1(zt) on Wt−1,2. For the oracle property of local smoother, this method

will output the same estimation as γ̂(z) from the step 1 in our proposed procedure
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(Fan and Gijbels (1996)). Although this assumption will not make any difference

in terms of estimation, it facilitates us to propose the following empirical likelihood

approach.

For the local smoother in step-one, given γ2(z) andWt−1,2, the corresponding profile

local score equations are

n∑
t=1

Qt[yt −W>
t−1,2γ2(z)−W T

t−1,1{ξ1 + η1(zt − z)}]Kh1(zt − z) = 0, (4.1)

where Qt = (1, zt − z)T ⊗Wt−1,1, with A ⊗ B denoting the Kronecker product of A

and B. In (4.1), by eliminating η1 and solving for ξ1, we get the estimation equation:

n∑
t=1

Kh1(zt − z){Tn2 − (zt − z)Tn1}Wt−1,1{yt −W>
t−1,1γ1(z)−W>

t−1,2γ2(z)} = 0. (4.2)

Given γ1(z) and Wt−1,1, the profile weighted local score equations (WLSE) are

n∑
t=1

Q∗t [yt −W>
t−1,1γ1(z)−W T

t−1,2{ξ2 + η2(zt − z)}]Kh2(zt − z) = 0, (4.3)

where Q∗t = (1, zt − z)T ⊗ (Ω∗tWt−1,2). In (4.2) by eliminating η2 and solving for ξ2,

we get the estimation equation:

n∑
t=1

Kh2(zt−z){Sn2−(zt−z)Sn1}Ω∗tWt−1,2{yt−W>
t−1,1γ1(z)−W>

t−1,2γ2(z)} = 0. (4.4)



18

By combining (4.2), (4.4), the estimation equations are obtained


Z1t(γ(z)) = 0

Z2t(γ(z)) = 0

where h1, h2 are the corresponding bandwidths in our estimation procedure;

Snj =
∑n

t=1 Ω∗tW
⊗2
t−1,2Kh2(zt − z)(zt − z)j;

Tnj =
∑n

t=1W
⊗2
t−1,1Kh1(zt − z)(zt − z)j;

Z1t(γ(z)) = Kh1(zt − z){Tn2 − (zt − z)Tn1}Wt−1,1{yt −W>
t−1,1γ1(z)−W>

t−1,2γ2(z)};

Z2t(γ(z)) = Kh2(zt − z){Sn2 − (zt − z)Sn1}Ω∗tWt−1,2{yt −W>
t−1,1γ1(z)−W>

t−1,2γ2(z)}.

Therefore, we define the empirical likelihood ratio(See Chen and Keilegom,2009):

Ln(γ(z)) = sup
{ n∏
t=1

(npt) : pt ≥ 0,
n∑
t=1

pt = 1,
n∑
t=1

ptZt(γ(z)) = 0
}
,

where Zt(γ(z)) =
(
Z1t(γ(z)), Z2t(γ(z))

)
.

By using Lagrange multiplier technique, we obtain pt = n−1{1 + λ>Zt(γ(z)}−1.

Hence, the log empirical likelihood ratio is

`n(γ(z)) = −2 logL(γ(z)) = 2
n∑
t=1

log{1 + λ>Zt(γ(z))}, (4.5)

where λ = λ(ξ) satisfies
∑n

t=1 Zt(γ(z))/{1 + λ>Zt(γ(z))} = 0. It’s not expensive to

evaluate the log empirical likelihood ratio that the objective function in terms of

computational cost, since `n(γ(z)) is concave in λ. Our next theorem demonstrates

that the Wilks result holds for the above empirical likelihood ratio.

Theorem 4.1 Under regularity conditions, (A1)-(A.8) in the Appendix A and E|vt|3 <
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∞, The `n(γ(z)) converges in distribution to χ2(k+1), a chi-squared distribution with

degrees of freedom k + 1, as n→∞.

By Theorem 4.1, we can construct a 100(1 − α)% confidence region for γ(z) as

`n(γ(z)) = {γ(z) : `n(γ(z)) ≤ χ2
k+1,α}.

Detailed proof of the Theorem 4.1 is provided in Appendix 10.



CHAPTER 5: SIMULATIONS

To investigate performance of the proposed Two-step estimation procedure, 1000

simulations were conducted based on the following model.

yt = x>t−1 β(zt) + θ(zt) + vt, xt = (xt,1, . . . , xt,k)
>,

xt,i = ρixt−1,i + ut,i, ut,i ∼ N(0, 1),

which is equivalent to

yt = W>
t−1 γ(zt) + vt, (5.1)

Wt,i = ρiWt−1,i + ut,i, ut,i ∼ N(0, 1),

where Wt−1 = (x>t−1, 1)> and γ(zt) = (β(zt)
>, θ(zt))

>, which is a vector of smooth

functions of zt. The model is tested on the following two different settings.

Example 5.1

We set γ(z) = [γ1(z), γ2(z), γ3(z), γ4(z)]T = [z/2, z, sin(z), cos(z)]T ,Wt,1 = 0.8Wt−1,1+

ut,1,Wt,2 = 0.5Wt−1,2+ut,2,Wt,3 = Wt−1,3+ut,3,Wt,4 = Wt−1,4+ut,4, zt = 0.5zt−1+ut,

vt ∼ N(0, 1), ut,1, ut,2, ut,3, ut,4, ut are ∼ N(0, 1). n = 300 with 1000 replications.

Our simulation involves the choices of kernel function K(.) and bandwiths h1 and

h2, which needs to be specified in step-one and step-two estimations. One can use

any data-driven method to select h1 and h2 optimally. For simplicity, Gaussian kernel

and rule-of-thumb bandwidths h1 = cn−1/5(c > 0), h2 = 1.06Sn−1/3 are adopted here.

where S is the sample standard deviation of zt and c is a tuning parameter which can

be chosen by cross-validation.
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A sample of size n = 300 is drawn for both Example 4.1. In Figure 5.1, Red solid

lines show true curve for the intended varying-coefficients. Dark blue dash dot lines

are the pointwise median among the 1000 simulations. Light blue dash dot lines show

the the pointwise 2.5% and 97.5% percentiles among 1000 simulations.
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Figure 5.1: Example 4.1: Estimated Varying-coefficients γ(z) with z ∈ [−2, 2].

Example 5.2

We set γ(z) = [γ1(z), γ2(z), γ3(z), γ4(z)]T = [5, z2, sin(z)/2, cos(z)/2]T ,Wt,1 = 0.8Wt−1,1+

ut,1,Wt,2 = 0.5Wt−1,2+ut,2,Wt,3 = Wt−1,3+ut,3,Wt,4 = Wt−1,4+ut,4, zt = 0.5zt−1+ut,

vt ∼ t(3), ut,1, ut,2, ut,3, ut,4, ut are ∼ N(0, 1). n = 300 with 1000 replications.

Our simulation involves the choices of kernel function K(.) and bandwiths h1 and

h2, which needs to be specified in step-one and step-two estimations. One can use

any data-driven method to select h1 and h2 optimally. For simplicity, Gaussian kernel
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and rule-of-thumb bandwidths h1 = cn−1/5(c > 0), h2 = 1.06Sn−1/3 are adopted here.

where S is the sample standard deviation of zt and c is a tuning parameter which can

be chosen by cross-validation.

A sample of size n = 300 is drawn Example 4.2. In Figure 5.2, Red solid lines

show true curve for the intended varying-coefficients. Dark blue dash dot lines are

the pointwise median among the 1000 simulations. Light blue dash dot lines show

the the point-wise 2.5% and 97.5% percentiles among 1000 simulations.
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Figure 5.2: Example 4.2:Estimated Varying-coefficients γ(z) with z ∈ [−2, 2].

We noticed that the proposed unifying two-step method gives very precise esti-

mation. The median nearly coincide with the true curve. And the 95% confidence

interval covers the true curve when z values vary. To check the performance of esti-

mators in a more practical setting, we would like to test it on a real example in the

Chapter 5.
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Example 5.3

To investigate the performance of our proposed empirical likelihood method, we run

1000 simulations for the following model

yt = W>
t−1 γ(zt) + vt,

Wt−1 = (x>t−1, 1)> and γ(zt) = (β(zt)
>, θ(zt))

>, which is a vector of smooth functions

of zt. The data generating process is identical to Example 5.1 in the simulation

section with sample size n = 300. We set γ(z) = [γ1(z), γ2(z), γ3(z), γ4(z)]T =

[z/2, z, sin(z), cos(z)]T , Wt,1 = 0.8Wt−1,1 + ut,1, Wt,2 = 0.5Wt−1,2 + ut,2, Wt,3 =

Wt−1,3 + ut,3, Wt,4 = Wt−1,4 + ut,4, zt = 0.5zt−1 + ut, vt ∼ N(0, 1), ut,1, ut,2, ut,3,

ut,4, ut are ∼ N(0, 1). n = 300 with 1000 replications.

We set h1 = 1.02n−1/5a, h2 = 1.06Sn−1/3 or h1 = 1.02n−1/5, h2 = 1.06Sn−1/3a,

where S is the sample standard deviation of zt. The performance of our proposed

estimator is directly influenced by the bias, which is controlled by the choice of band-

widths h1 and h2. To investigate into this, we chose three levels of bandwidth a,

where a = 1, 1
2
and 1

4
.

Tables 5.1 present summarized simulated results of the three bandwidth levels

at z = 1, with average, bias of γ̂(1) and the coverage probability of the 95% EL-

based confidence regions among the 1000 simulations. Note that true value γ(1) =

(1/2, 1, sin(1), cos(1))T = (0.5, 1, 0.8414, 0.5403)T .
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Table 5.1: Simulation Results for γ(1)

h1 = 1.02n−1/5a, h2 = 1.06Sn−1/3 h1 = 1.02n−1/5, h2 = 1.06Sn−1/3a

ave (0.4916, 0.9926, 0.8288, 0.5291) (0.4916, 0.9926, 0.8288, 0.5291)

a = 1 bias (-0.0084, -0.0074, -0.0126, -0.0112) (-0.0084, -0.0074, -0.0126, -0.0112)

sd (0.1462, 0.2004 0.0657, 0.0467) (0.1462, 0.2004, 0.0667, 0.0467)

cp 94.5% 94.5%

ave (0.4897, 0.9826, 0.8282, 0.5282) (0.4916, 0.9926, 0.7711, 0.4917)

a=1/2 bias (-0.0103, -0.0174, -0.0132, -0.0121) (-0.0084, -0.0074, -0.0703, -0.0486)

sd (0.1343, 0.1909, 0.0661, 0.0471) (0.1462, 0.2004, 0.0518, 0.0351)

cp 91.4% 70.8%

ave (0.4863, 0.9777, 0.8276, 0.5277) (0.4916, 0.9926, 0.7073, 0.4575)

a=1/4 bias (-0.0137, -0.0223, -0.0138, -0.0126) (-0.0084, -0.0074, -0.1341, -0.0828)

sd (0.1412, 0.2059, 0.0662, 0.0474) (0.1462, 0.2004, 0.0617, 0.0412)

cp 87.4% 39.7%

Tables 5.2 present summarized simulated results of the three bandwidth levels at

z = −1, with average, bias of γ̂(−1) and the coverage probability of the 95% EL-

based confidence regions among the 1000 simulations. Note that true value γ(−1) =

(−1/2,−1, sin(−1), cos(−1))T = (−0.5,−1,−0.8415, 0.5403)T .
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Table 5.2: Simulation Results for γ(−1)

h1 = 1.02n−1/5a, h2 = 1.06Sn−1/3 h1 = 1.02n−1/5, h2 = 1.06Sn−1/3a

ave (-0.4971, -0.9797, -0.8206, 0.5242) (-0.4971, -0.9797, -0.8206, 0.5242)

a = 1 bias (0.0029, 0.0203, 0.0208, -0.0161) (0.0029, 0.0203, 0.0208, -0.0161)

sd (0.1409, 0.2260, 0.0727, 0.0486) (0.1409, 0.2260, 0.0727, 0.0486)

cp 94.3% 94.3%

ave (-0.4874, -0.9714, -0.8189, 0.5229) (-0.4971, -0.9796, -0.7598, 0.4867 )

a=1/2 bias (0.0126, 0.0286, 0.0225, -0.0174) (0.0029, 0.0204, 0.0816, -0.0536)

sd (0.1273, 0.1959, 0.0722, 0.0474) (0.1409, 0.2260, 0.0536, 0.0354)

cp 90.9% 72.1%

ave (-0.4865, -0.9682, -0.8184, 0.5221) (-0.4971, -0.9796, -0.7001, 0.4561)

a=1/4 bias (0.0135, 0.0318, 0.0230, -0.0182) (0.0029, 0.0204, 0.1413, -0.0842)

sd (0.1378, 0.2055, 0.0726, 0.0475) (0.1409, 0.2260, 0.0642, 0.0421)

cp 88.5% 51.2%

We observe that as the bandwidth increases the coverage probability decreases. We

also observe a positive relationship between coverage probability and the bias. Our

rule of thumb bandwidths h1 = 1.02n−1/5, h2 = 1.06Sn−1/3 perform the best in terms

of coverage probability and bias. This reflects that the performance of our proposed

empirical likelihood method relies on a proper choice of bandwidths.



CHAPTER 6: REAL EXAMPLE

To check performance of the proposed estimators in a practical setting, we consider

a real example here. We download the 5-year daily treasury yield rate, the 6-month

daily treasury yield rate, the stock price of Morgan Stanley and the price of S&P 500

from Yahoo Finance. All data are from Nov. 12th, 2012 to Nov. 12th, 2016 with 1004

data points. We consider a sample with size n = 700 for estimation, then forecast

1-day forward for next 304 trading days. We build our model based on Capital Asset

Pricing Model (CAPM):

yt =W>
t−1 γ(zt) + vt

=γ1(zt)W1,t−1 + γ2(zt)W2,t−1 + γ3(zt)W3,t−1 + γ4(zt)W4,t−1 + vt,

(6.1)

where yt is the S&P 500 index. We choose logarithmic difference of the 5-year daily

treasury yield rate and logarithmic difference the 6-month daily treasury yield rate

as W1,t−1, W2,t−1 respectively. These two predictors can be treated as I(0) processes.

Then we choose the S&P 500 index lagged by 1-day as W4,t−1 and the stock price for

Morgan Stanley as W3,t−1, which are I(1) processes. Let zt = log(R1,t) − log(R2,t)

be the spread in the logged interest rates. R1,t is the 10 year daily treasury yield

rate. R2,t is the 2 year daily treasury yield rate. As mentioned in Tsay (1998), the

magnitude of zt may reflect the status of the United States economy, so it is reasonable

to use zt as a threshold variable. To check if zt is stationary, we conduct the following

ADF test. Table 6.1 reports the testing results, which indicates the stationarity of zt.
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Table 6.1: Augmented Dickey Fuller (ADF) Test

ADF Test P-Value

Yield Spread -12.212 <0.01

We always split the sample into two parts, training sample and test sample. The

first part with sample size n = 700 is for estimation. Then we use the built model

for the 1-step ahead forecast. Then we compare the estimated S&P 500 index with

historical data. We repeat the process for the next 300 trading days, from Aug 23rd,

2015 to Nov 7th, 2016.

Figure 6.1 shows the relationship between historical data of S&P 500 index and

the forecast based on our proposed unifying two-step estimation procedure. The red

line shows the true curve for S&P 500 index, and black solid dots are the estimated

the values. Results indicated that the proposed unifying estimation models the re-

lationship between S&P 500 index and predictors very well. The new procedure is

promising and may be applied to many different models.
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CHAPTER 7: DISCUSSION

In this dissertation, we have proposed a unifying two-step estimation procedure for

varying-coefficients models, which facilitates the unifying inference for coefficients.

The proposed two-step procedure provides a unifying estimation procedure for the

varying-coefficients models. The asymptotic joint distribution of the proposed esti-

mators has been established, which provides a Wald type of confidence regions for the

coefficient functions. However, this confidence region does not work well when the

conditional variance of the error changes. To solve this problem, we have proposed

an empirical likelihood inference tool for the coefficient functions.

In our future research, it’s interesting to investigate the following topics related to

this dissertation. Firstly, it’s very important to discuss about the optimal bandwidths

selection theoretically and empirically. Secondly, it’s an interesting extension to gen-

eralize the asymptotic analysis of this dissertation to the case when zt is nonstaionary.

Last but not the least, for Wt−1,2, nonstationary part of Wt−1, one can extend it from

I(1) process to I(2), I(3) or even I(p) process.
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APPENDIX 8: PROOF OF THEOREMS IN SECTIONS 3.1, 3.2

Notation and Conditions:

For convenience, some notations from Hong and Jiang (2017) and Li and Cai(2009)

adopted here. Let Un,i(r) = n−1/2x[nr],i, where r = t/n and [x] denotes the integer

part of x. Under some regularity conditions on ut,i in Philips(1988), it will lead to

Un,i(r)
D−→ Uγi(r) (8.1)

as n → ∞ and Uγi(r) =
∫ r
0
exp[(r − s)γi]dW (i)

u (s), which is a diffusion process and

W
(i)
u (s) is a Brownian motion. V ar[W (i)

u (s)] = V ar(u1,i) + 2
∑∞

s=2E[u1,ius,i].

The following notation and regularity conditions are needed for our asymptotic

results. We make the following assumptions.

Assumptions:

A1. γ(z) is twice continuously differentiable in z for all z ∈ R.

A2. The kernel function K(.) is a symmetric and continuous density function, sup-

ported by [−1, 1]. And let µi =
∫ 1

−1 u
iK(u)du and νi =

∫ 1

−1 u
iK2(u)du

A3. The bandwith h satisfies h→ 0 and nh→∞.

A4. vt has a finite foutth moment, E(vt|xt, zt) = 0 and E(v2t |xt, zt) = σ2
v is a positive

constant.

A5. Time series zt is stationary and has continuous stationarity density f(z) with

bounded support supp(f).

A6. If xt,i is stationary or an AR(1) process with |ρi| < 1, then the condition ex-

pectation αi(z) = E(xt,i|zt = z) has continous second order derivative and the condi-

tional variance σi(z) = V ar(xt,i|zt = z) is continuous on z ∈ supp(f). Furthermore,

E|xt,i|4 <∞

A7. If xt,i is an AR(1) process, then E(u0,i) = 0, E|ut,i|k1+k2 < ∞ for some

k1 > 2 and k2 > 0 and {ut,i}∞t=0 is α-mixing with mixing coefficients αi(s) satis-
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fying
∑∞

s=1{αi(s)}1−2/k1 .

A8. If xt,i is not an AR(1) process, we assume it’s an ρ-mixing process with mix-

ing coefficients ρ∗i (s) satisfying
∑

l ρ
∗
i (l) < ∞ or is an α-mixing process with mixing

coefficients local smootherα∗i (s) satisfying
∑

l l
pα∗i (l)

q < ∞, for some 0 < q < 1 and

p > q.

Conditions(A1.)-(A.4) are standard in local smoothing, and conditions and used

in Cai and Li(2009), conditions (A5.)-(A7.) are used in Shaoxin(2018), condition

(A8.) is a general condition used for a stationary process and also used in Jiang and

Mack(2001).

Lemma A.1 (Theorem 3.3 of Hansen(1992)) Suppose Un
D−→ U in DMkm[0, 1]

and U(.) is a.s. continous. For a random sequence ej and a sequence of nondecreasing

σ-field F ej to which ej is adapted, assume that supjE|E(ej|F ej−m)| → 0 as m → ∞.

Then

sup0≤s≤1|n−1
[ns]∑
j=1

Unjej|
p→ 0

Lemma A.2 ( Lemma A.3 of Cai(2009)) Let wt = h1/2Kh(zt−z)εt(h
−1(zt−z))j,

and U∗nt = n−1/2Wt−1,Ic . Let Ft = σ(U∗ni, wi : i ≤ t) to be the smallest σ - field

containing the past history of (U∗nt, wt) for all n and i ≤ t. For any 0 ≤ r ≤ 1, define

Ln(r) ≡ n−1
∑[nr]

i=1 ηiξi − n−1U[nr]ξ[nr]+1, where ξi =
∑∞

k=1Ei(wi+k) and ηt is from

Wt−1,Ic =
∑t

s=1 ηs. Then, we have

sup0≤r≤1|Ln(r)| = op(1)

.

Proof of Theorem 3.1 Firstly, we define Dn = diag{Id1 ,
√
nId2}, where d1, d2 are
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the dimensions of Wt−1,Ic and Wt−1,I . Given Dn, we define An = diag{1, h} ⊗ Dn.

By rewrite the estimators in step-one, we obtain the following expression.

An
( γ̂(z)

γ̂(1)(z)

)T
=An

[ n∑
t=1

( Wt−1

(zt − z)Wt−1

)⊗2
Kh(zt − z)

]−1

×
[ n∑
t=1

( Wt−1

(zt − z)Wt−1

)
ytKh(zt − z)

]

=Gn(z)−1n−1
[ n∑
t=1

Kh(zt − z)
]

× yt
( 1

h−1(zt − z)

)
⊗ (D−1n Wt−1)

(8.2)

where

Gn(z) =n−1
n∑
t=1

Kh(zt − z)
( 1

h−1(zt − z)

)⊗2
⊗ (D−1n Wt−1)

⊗2

=

 Gn,0(z) Gn,1(z)

Gn,2(z) Gn,3(z)


(8.3)

with j = 0, 1, 2, 3, 4

Gn,j(z) = n−1
n∑
t=1

Kh(zt − z)
(
h−1(zt − z)

)j
⊗ (D−1n Wt−1)

⊗2

In order to analyze Gn,j(z), we express it as below,

Gn,j(z) =

 Gn,j,0(z) Gn,j,1(z)

Gn,j,1(z) Gn,j,2(z)


where

Gn,j,0(z) =
1

n

n∑
t=1

(
h−1(zt − z)

)j
Wt−1,IW

T
t−1,IKh(zt − z)
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Gn,j,1(z) =
1

n

n∑
t=1

(
h−1(zt − z)

)j
Wt−1,IW

T
t−1,Icn

−1/2Kh(zt − z)

Gn,j,2(z) =
1

n

n∑
t=1

(
h−1(zt − z)

)j
(n−1/2Wt−1,Ic)

⊗2Kh(zt − z)

And

G∗n,j,1(z) =
1

n

n∑
t=1

(
h−1(zt − z)

)j
Wt−1,IKh(zt − z)

G∗n,j,2(z) =
1

n

n∑
t=1

(
h−1(zt − z)

)j
W⊗2
t−1,IKh(zt − z)

By Taylor’s expansion argument, we have

E[G∗n,j,1(z)] = E[(h−1(zt − z))jWt−1,IKh(zt − z)] = fz(z)M1(z)µj(K) + o(1) (8.4)

E[G∗n,j,2(z)] = E[(h−1(zt − z))jW⊗2
t−1,IKh(zt − z)] = fz(z)M2(z)µj(K) + o(1) (8.5)

We can easily show the following properties ( See Theorem 1 of Cai, 2000 )

V ar[G∗n,j,1(z)] = V ar[G∗n,j,2(z)] = O((nh)−1) = o(1) (8.6)

Therefore, by summarizing properties above

G∗n,j,l(z) = fz(z)Ml(z)µj(K) + op(1), for l = 1, 2 (8.7)

Hence,

Gn,j,0(z) = fz(z)M2(z)µj(K) + op(1) (8.8)

Then, we define et = Kh(zt−z)(h−1(zt−z))jWt−1,I−E[Kh(zt−z)(h−1(zt−z))jWt−1,I ].

It’s easy to obtain the following property,

sups≥0V ar
( s+m∑
t=s+1

et

)
= O(m/h), (8.9)
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for any m ≥ 1.

Recall that U∗nt = n−1/2Wt−1,Ic and U∗n(r) = U∗n,[nr] for any r ∈ [0, 1]. For any

arbitrary small δ, 0 ≤ δ ≤ 1. Set N = [1/δ], tk = [kn/N ],t∗k = tk+1 − 1, and

t∗∗k = min{t∗k, n}. So that,

∣∣∣ 1
n

[ns]∑
j=1

U∗njet

∣∣∣ =
∣∣∣ 1
n

N−1∑
k=0

t∗∗k∑
t=tk

U∗njet

∣∣∣
≤
∣∣∣ 1
n

N−1∑
k=0

U∗ntk

t∗∗k∑
t=tk

et

∣∣∣+
∣∣∣ 1
n

N−1∑
k=0

t∗∗k∑
t=tk

[U∗nj − U∗ntk ]et

∣∣∣
≤ 1

n

N−1∑
k=0

|U∗ntk |
∣∣∣ t∗∗k∑
t=tk

et

∣∣∣+
1

n

N−1∑
k=0

t∗∗k∑
t=tk

[U∗nj − U∗ntk ]|et|

≤sup0≤s≤1|U∗n(s)| 1
n

N−1∑
k=0

∣∣∣ t∗∗k∑
t=tk

et

∣∣∣+ sup|r−s|≤δ|U∗n(r)− U∗n(s)| 1
n

n∑
t=1

|et|

(8.10)

It’s easy to verify that sup0≤s≤1|U∗n(s)| = Op(1) and
∑n

t=1 |et|/n = op(1), which is

same proof as ... And

E
[ 1

n

N−1∑
k=0

∣∣∣ t∗∗k∑
t=tk

et

∣∣∣] ≤N
n
sup0≤k≤N−1E

∣∣∣ t∗∗k∑
t=tk

et

∣∣∣
≤supt≤nE

∣∣∣ 1

δn

t+δn∑
i=t

ei

∣∣∣ ≤ C(δnh)−1/2 → 0

(8.11)

As n→ 0

1

n

n∑
j=1

U∗njet = op(1) + sup|r−s|≤δ|U∗n(r)− U∗n(s)|Op(1) (8.12)

And as δ → 0.

sup|r−s|≤δ|U∗n(r)− U∗n(s)| D→ sup|r−s|≤δ|Yη,2(r)− Yη,2(s)|
P→ 0 (8.13)
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Hence,
1

n

n∑
j=1

U∗njet = op(1) (8.14)

Note that,

n−1/2U[nr]
D→ Yη,2(r)

1

n

n∑
j=1

E(n−1/2U[nr])
D→
∫ 1

0

E(Yη,2(s))ds (8.15)

where E(.) is a Borel measurable and totally Lebesgue integrable function. So that,

for l = 1, 2, as n→∞

1

n

n∑
j=1

(n−1/2Wt−1,Ic)
⊗l D→

∫ 1

0

(Yη,2(s))⊗lds ≡ Y(l)
η,2 (8.16)

By (8.8), (8.16), and Lemma 2, we have,

Gn,j,1(z) = fz(z)M1(z)µj(K)Y(1)
η,2 + op(1) (8.17)

Similarly

Gn,j,2(z) = fz(z)µj(K)Y(2)
η,2 + op(1) (8.18)

By plugging (8.8), (8.17) and (8.20) into Gn,j(z),

Gn,j(z) = fz(z)µj(K)G(z) + op(1) (8.19)

Given Gaussian Kernel, µ0(K) = 1, µ1(K) = 0, we get

Gn(z) = fz(z)

 1 0

0 µ2(K)

⊗G(z) + op(1) (8.20)

Define

Kn(z)−1 = f−1z (z)G−1(z) + op(1)
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Bn(z) =
1

n

n∑
t=1

Kh(zt − z)A−1n Wt−1,IW
T
t−1,I × (γ(zt)− γ(z)− (zt − z)γ(1)(z)),

Given defintion above, we have

Dn[γ̂(z)− γ(z)] ≡ Kn(z)−1Bn(z) +Kn(z)−1n−1
n∑
t=1

Kh(zt − z)A−1n Wt−1,I (8.21)

So that,

Bn(z) =

 Xn,0(z) + Xn,1(z)

Xn,2(z) + Xn,3(z)

 (8.22)

where,

Xn,0(z) =
1

n

n∑
t=1

Kh(zt − z)W⊗2
t−1,I × (γ1(zt)− γ1(z)− (zt − z)γ

(1)
1 (z))

Xn,1(z) =
1

n

n∑
t=1

Kh(zt − z)Wt−1,I(Wt−1,Icn
−1/2)T × (γ2(zt)− γ2(z)− (zt − z)γ

(1)
2 (z))

Xn,2(z) =
1

n

n∑
t=1

Kh(zt − z)Wt−1,IcW
T
t−1,I × (γ1(zt)− γ1(z)− (zt − z)γ

(1)
1 (z))

Xn,3(z) =
1

n

n∑
t=1

Kh(zt − z)(Wt−1,In
−1/2)⊗2n1/2 × (γ2(zt)− γ2(z)− (zt − z)γ

(1)
1 (z))

By Taylor expansion, it’s straightforward to show following properties,

Xn,0(z) = h2fz(z)M2(z)
[µ2(K)

2
γ
(2)
1 (z)

]
{1 + op(1)}

Xn,1(z) = h2fz(z)M1(z)Y(1)
η,2

T
[µ2(K)

2
γ
(2)
2 (z)

]
{1 + op(1)}

Xn,2(z) = h2fz(z)M1(z)Y(1)
η,2n

1/2
[µ2(K)

2
γ
(2)
1 (z)

]
{1 + op(1)}

Xn,3(z) = h2fz(z)Y(2)
η,2n

1/2
[µ2(K)

2
γ
(2)
2 (z)

]
{1 + op(1)}
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We can rewrite Bn(z) by plugging expressions above into (8.22)

Bn(z) = h2fz(z)G(z)Dn

[µ2(K)

2
γ(2)(z)

]
{1 + op(1)} (8.23)

By plugging into (8.23) into (8.21), we have,

√
nhDn[γ̂(z)− γ(z)− h2Bγ(z) + op(h

2)] = Kn(z)−1Tn(z) (8.24)

where,

Tn(z) =

 Tn,1(z)

Tn,2(z)


with

Tn,1(z) =

√
h

n

n∑
t=1

Kh(zt − z)εtWt−1,I

and

Tn,2(z) =

√
h

n

n∑
t=1

Kh(zt − z)εt(Wt−1,Icn
−1/2)

.

To establish asymptotic normality, we need to analyze Tn,1(z) and Tn,2(z). See

Theorem 2 of Cai et al.(2000),

Tn,1(z)
D−→ N(0, σ2

ε ν0(K)fz(z)M2(z)) =
√
ν0(K)fz(z)Yε(1) (8.25)

Tn,2(z)
D−→
√
ν0(K)fz(z)

∫ 1

0

Yη,2(r)dYε,1(r) (8.26)

Hence, combining (8.25) and (8.26) leads to

Tn(z)
D−→
√
ν0(K)fz(z)

 Yε(1)∫ 1

0
Yη,2(r)dYε,1(r)

 (8.27)
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Since conditional variance of

 Yε(1)∫ 1

0
Yη,2(r)dYε,1(r)

 is

σ2
ε

 M2(z) M1(z)(Y(1)
η,2)T

Y(1)
η,2(M1(z))T Y(2)

η,2

 = σ2
εG(z)

√
nhDn[γ̂(z)− γ(z)− h2Bγ(z) + op(h

2)]
D→ fz(z)−1/2ν

1/2
0 G−1z

 Yε(1)∫ 1

0
Yη,2(r)dYε,1(r)


(8.28)

Proof of Theorem 3.2 Let Snj =
∑n

t=1 Ω∗tW
⊗2
t−1,IcKh(zt − z)( zt−z

h2
)j for j = 0, 1, 2.

Given Snj, we define an =
∑n

t=1

(
Kh(zt − z){Sn2 − ( zt−z

h
)Sn1}Ω∗tWt−1,Ic

)⊗2
, bn =∑n

t=1Kh(zt − z){Sn2 − ( zt−z
h2

)Sn1}Ω∗tW⊗2
t−1,Ic = Sn0Sn2 − Sn1Sn1,

Bn(z) = b−1n

( n∑
t=1

Kh(zt − z){Sn2 − (
zt − z
h2

)Sn1}Ω∗tW⊗2
t−1,Ic [γ2(zt)− γ2(z)]

)

.

By the defintion of γ̂2(z) below,

(γ̂2(z), γ̂2
(1)(z))T = A−1n Bn (8.29)

where

An =
n∑
t=1

{(1, zt − z)>(1, zt − z)} ⊗ (Ω∗tW
⊗2
t−1,Ic)Kh(zt − z)

and

Bn =
n∑
t=1

Q∗ty
∗
tKh(zt − z).

,

Q∗t = (1, zt − z)> ⊗ (Ω∗tWt−1,Ic)
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with

Ω∗t = diag{wt,1, . . . , ωt,d2}

, wt,i = (1 + ||Wt−1,Ic ||2)−1/2. We have,

γ̂2(z)− γ2(z) = Bn(z) + b−1n a1/2n Vn(z) (8.30)

where Vn(z) = a
−1/2
n

{∑n
t=1Kh(zt − z){Sn2 − ( zt−z

h2
)Sn1}Ω∗tWt−1,Icv

∗
t

}

Under some regularity conditions, we have following multivariate cases property. See

Theorem 14.1 and 19.2 of Billingsley(1999) for iid ηs and ρ-mixing ηs. [nr] denotes

the integer part of nr and r = t/n, as n→∞

U[nr]√
n

D−→ Yη(r) (8.31)

where Yη(r) is a m-dimensional Brownian motion on [0, 1] with covariance matrix Υη.

" D−→" represents convergence in distribution. m is the dimension of Wt−1,Ic

To establish asymptotic normality, it’s necessary to analyze Snj, Bn(z) as wells as Vn.

Assume that Ω∗tWt−1,Ic
D→ B(r)
||B(r)|| as n→∞ and zt is stationary. By combing (8.17),

Lemma A.1. and (8.4),

Snj =
n∑
t=1

Ω∗tW
⊗2
t−1,IcKh(zt − z)(

zt − z
h2

)j

=n1/2

n∑
t=1

(Ω∗tWt−1,Ic)(n
−1/2Wt−1,Ic)Kh(zt − z)(

zt − z
h2

)j

=E[Kh(zt − z)(
zt − z
h2

)j(Ω∗tWt−1,Ic)]
1

n

n∑
j=1

U∗nj +
1

n

n∑
j=1

U∗njet

=fz(z)M0(z)µj(K)Y(1)
η,2 + op(1)

(8.32)
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where Y(l)
η,2 =

∫ 1

0
Y⊗lη,2(r)dr,

B(r) =

∫ 1

0

{U∗γ (r)− U∗γ (s)}ds

and U∗γ (r) = {U∗γ1(r), U
∗
γ2

(r), . . . , U∗γd(r)}

By using (8.32)and Taylor’s expansion argument, we can rewrite Biasn(z) into fol-

lowing expressions,

Bn(z) = b−1n

( n∑
t=1

Kh(zt − z){Sn2 − (
zt − z
h2

)Sn1}Ω∗tW⊗2
t−1,Ic [γ2(zt)− γ2(z)]

)
= (Sn0Sn2 − Sn1Sn1)−1

×
{ n∑

t=1

Kh(zt − z){Sn2 − (
zt − z
h2

)Sn1}Ω∗tW⊗2
t−1,Ic [γ2(zt)− γ2(z)]

}
= (Sn0Sn2 − Sn1Sn1)−1(Sn1Sn2 − Sn1Sn2)γ(1)(z)h2

+ (Sn0Sn2 − Sn1Sn1)−1(Sn2Sn2 − Sn1Sn3)γ(2)(z)
h22
2

+Op(h
3
2)

= (Sn0Sn2 − Sn1Sn1)−1(Sn2Sn2 − Sn1Sn3)γ(2)(z)
h22
2

+Op(h
3
2)

=
µ2
2(K)− µ1(K)µ3(K)

µ2(K)µ0(K)− µ2
1(K)

γ(2)(z)
h22
2

+Op(h
3
2)

= µ2
2(K)γ(2)(z)

h22
2

+Op(h
3
2)

(8.33)

Note that

Vn = a−1/2n

{ n∑
t=1

Kh(zt − z){Sn2 − (
zt − z
h2

)Sn1}Ω∗tWt−1,Icv
∗
t

}
= a−1/2n

(
Ω∗∗1 U1,Ω

∗∗
2 U2, . . . ,Ω

∗∗
n Un

)
(v∗1, v

∗
2, . . . , v

∗
n)T

= a−1/2n cnv
∗∗

(8.34)

where Ω∗∗t = Kh(zt − z){Sn2 − ( zt−z
h2

)Sn1}Ω∗t , cn =
(

Ω∗∗1 U1,Ω
∗∗
2 U2, . . . ,Ω

∗∗
n Un

)
and

v∗∗ = (v∗1, v
∗
2, . . . , v

∗
n)T .
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It’s easy to establish that

E(v∗∗v∗∗T |F) = σ2
vIn{1 + o(1)} (8.35)

See (B.11) and (B.21) of Fan and Jiang(2005).

Therefore, it is easy to show that

E(Vn|F) = 0 (8.36)

and

E(V⊗2n |F) = σ2
va
−1/2
n

n∑
t=1

(
Kh(zt − z){Sn2 − (

zt − z
h2

)Sn1}Ω∗tWt−1,Ic
)⊗2

a−1/2n {1 + o(1)}

= σ2
vIk + o(1)

(8.37)

Since Vn = a
−1/2
n cnv

∗∗ ≡ pTnv
∗∗ ≡

∑n
t=1 pni

v∗∗i , where pn = (pn1 , pn2 , . . . , pnn)t. By

martingale limit theorem(MLT) (Hall and Heyde, 1980), it’s easy to show that for

any k × 1 vector R,

RTVn
D→ N(0, σ2

vRTR) (8.38)

By the Wald device,

Vn
D→ N(0, σ2

vIk)

By applying the Slutsky theorem,

Vn(z) = a−1/2n bn

(
γ̂2(z)− γ2(z)− Bn(z)

)
→ N(0, σ2

vIk) (8.39)

By combining (8.39) and (8.33), we finished proof of Theorem 3.2
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APPENDIX 9: PROOF OF THEOREM IN SECTION 3.3

Proof of Theorem 3.3 By Theorem 3.1, 3.2, we have following Bahadur represen-

tations of proposed estimators,

√
nh1[γ̂I(z)− γI(z)− 1

2
h21µ2(K)γ

(2)
I (z)]

=
√
nh1M

−1
2 (z)

n∑
t=1

n−1Wt−1,IvtKh1(zt − z) + op(1)
(9.1)

and

a−1/2n bn

(
γ̂2(z)− γ2(z)− 1

2
h22µ2(K)γ

(2)
2 (z)

)
= a−1/2n cnv

∗∗1 + op(1) (9.2)

where M2(z) = E[W⊗2
t−1,I |zt = z], Ω∗∗t = Kh2(zt − z){Sn2 − ( zt−z

h2
)Sn1}Ω∗t , cn =(

Ω∗∗1 W1,Ic ,Ω
∗∗
2 W2,Ic , . . . ,Ω

∗∗
n Wn,Ic

)
and v∗∗ = (v∗1, v

∗
2, . . . , v

∗
n)T . an = 1

n

∑n
t=1

(
Kh2(zt−

z){Sn2−( zt−z
h

)Sn1}Ω∗tWt−1,Ic
)⊗2

; bn =
∑n

t=1Kh2(zt−z){Sn2−( zt−z
h2

)Sn1}Ω∗tW⊗2
t−1,Ic =

Sn0Sn2 − Sn1Sn1;

Firstly, we define ψn =
√
nh1M

−1
2 (z)

∑n
t=1 n

−1Wt−1,IKh1(zt − z)vt; Vn = a
−1/2
n cnv

∗∗.

Given v∗t = vt −W T
t−1,1[γ̂1(zt)− γ1(zt)], we can rewrite ψn and

mathcalVn into following forms.

ψn =
√
nh1M

−1
2 (z)

1

n
{W1,IKh1(z1 − z), . . . ,Wn,IKh1(zn − z)}v (9.3)

Vn = a−1/2n cn(In − S)v (9.4)

where v = (v1, . . . , vn)T and S =
(
si,j

)
, si,j = 1

n
W T
i−1,IM

−1
2 (z)Wj−1,IKh1(zj − z).

Cov(ψn,Vn) = E[ψnVTn ]− E[ψn]E[VTn ]

Since E[ψn1] = 0 and E[ψn2] = 0, by (A.9), (A.11), (A.12) of (Cai and Li, 2009) and
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Lemma(A.1), Lemma(A.2) we have

Cov(ψn,Vn) =E[ψnVTn ]

=E[
√
nh1M

−1
2 (z)

1

n
{W1,IKh1(z1 − z), . . . ,Wn,IKh1(zn − z)}

(In − S)T cTn (a−1/2n )T ]σ2
v

=E[
√
nh1M

−1
2 (z)

1

n
{W1,IKh1(z1 − z), . . . ,Wn,IKh1(zn − z)}

cTn (a−1/2n )T ]σ2
v

− E[
√
nh1M

−1
2 (z)

1

n
{W1,IKh1(z1 − z), . . . ,Wn,IKh1(zn − z)}ST

cTn (a−1/2n )T ]σ2
v

=limn→∞

n∑
t=1

√
h1/nM

−1
2 (z)Wt−1,I(In − S)T cTn (a−1/2n )Tσ2

v = Σ1,2σ
2
v

(9.5)

By combining (9.5), Theorem 3.1 and Theorem 3.2, we have

 √nh1 0

0 a
−1/2
n bn

[γ̂∗(z)− γ∗(z)− 1

2

 h21µ2(K)(γ
(2)
1 (z))T

h22µ2(K)(γ
(2)
2 (z))T

] D−→MN(Σγ(z))

where γ∗(z) =
(
γT1 (z), γT2 (z)

)T and Σγ∗(z) is the covariance matrix given by

Σγ∗(z) =

 ν0(K)M2(z)−1/fz(z) Σ1,2

Σ2,1 Id2

σ2
v

We finished proof of Theorem 3.3.
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APPENDIX 10: PROOF OF THEOREM IN SECTION 4.1

Lemma C.1. Without loss of generality, assume that Wt−1,I = (XT
t,1, X

T
t,2)

T , where

Xt,2 is a d×1 vector ofNI(1) or I(1) processes andXt,1 is a (k−d)×1 vector of station-

ary or I(0) processes. Let α(z) = E(Xt,2|zt = z), U∗γ (r) = {U∗γ1(r), U
∗
γ2

(r), . . . , U∗γd(r)},

B(r) =
∫ 1

0
(U∗γ (r)−U∗γ (s))ds, and B∗(r) ≡ B(r)/||B(r)||. Assume some regularity con-

ditions and E|v3t | <∞. Then we have following results with probability goes to one.

(i) Vn ≡ 1
n

∑n
t=1 Z

⊗2
t (γ(z))

p→ V , where V = diag(V1, V2), V1 = σ2
vE(Xt,1 − α(zt))

⊗2

and V2 = σ2
v

∫ 1

0
B∗(r)⊗2dr.

(ii)Z∗n = max1≤t≤n||Zt(γ(z)|| = op((nh)1/2).

(iii)if nh5 = O(1), then ||Z̄|| = ||(nh)−1
∑n

t=1 Zt(γ(z))|| = Op((nh)−1/2), where

||Z̄|| = (nh)−1
∑n

t=1 Zt(γ(z))

(iv)(nh)−1
∑n

t=1 ||Zt(γ(z))||3 = op((nh)1/2)

Proof. of Lemma C.1 For i = 1, . . . , d, xt,i is NI(1) or I(1). For t−1
n
≤ r ≤ t

n
define

Un,i(r) = Uni,t = n−1/2xt−1,i. Then

n∑
s=1

φs(z)xs−1,i =n1/2{
n∑
s=1

ωt(z)}−1
n∑
s=1

Kh(zs − z){Sn,2(z)− h−1(zs − z)Sn,1(z)}Uni,s

={
n∑
s=1

{n−1ωt(z)}−1Sn,2Fn,0(z)− Sn,1(z)Fn,.1(z)

(10.1)

where for j = 0, 1, Fn,j(z) = n−1
∑n

s=1K
(j)
h (zs− z)Uni,s, with K

(j)
h (zs− z) = h−j(zs−

z)Kh(zs − z). Using the same argument Fn,j in equation (A.11) of Cai, Li and Park

(2009), we have Fn,j(z) = f(z)µjW
(i)
µ + op(1), where W (i)

µ =
∫ 1

0
Uγi(r)dr.

By definition of Zt(γ(z)) and (1.1), we have

Zt(γ(z)) =
(
Z1t(γ(z)), Z2t(γ(z))

)
(10.2)
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Z1t(γ(z)) =Kh1(zt − z){Tn2 − (zt − z)Tn1}Wt−1,I{yt −W>
t−1,Iγ1(z)−W>

t−1,Icγ2(z)}

= Kh1(zt − z){Tn2 − (zt − z)Tn1}Wt−1,Ivt

(10.3)

and

Z2t(γ(z)) =Kh2(zt − z){Sn2 − (zt − z)Sn1}Ω∗tWt−1,Ic{yt −W>
t−1,Iγ1(z)−W>

t−1,Icγ2(z)

=Kh2(zt − z){Sn2 − (zt − z)Sn1}Ω∗tWt−1,Icvt

(10.4)

Then
Z⊗2t (γ(z)) =

(
Z1t(γ(z)), Z2t(γ(z))

)⊗2
=
(
φ1tvt, φ1tvt

)⊗2
=

 φ⊗21t v
2
t φ1tφ2tv

2
t

φ2tφ1tv
2
t φ⊗22t v

2
t


(10.5)

where φ1t =
(
Kh1(zt − z){Tn2 − (zt − z)Tn1}Wt−1,I ; φ2t = Kh2(zt − z){Sn2 − (zt −

z)Sn1}Ω∗tWt−1,Ic .

By using the similar arguments (8.10), (A.15) and (A.20) in (Hong and Jiang,

2018), we obtain the following results.

Vn ≡
1

n

n∑
t=1

Z⊗2t (γ(z))

=
1

n

n∑
t=1

 φ⊗21t v
2
t φ1tφ2tv

2
t

φ2tφ1tv
2
t φ⊗22t v

2
t

 p→ V,

(10.6)

where V = diag(V1, V2), where V1 = σ2
vE(Xt,1 − α(zt))

⊗2 and V2 = σ2
v

∫ 1

0
B∗(r)⊗2dr

We complete the proof for Lemma C.1 (i) .

(ii) Note that Zt(γ(z)) =
(
Z1t(γ(z)), Z2t(γ(z))

)
; φ1t =

(
Kh1(zt − z){Tn2 − (zt −
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z)Tn1}Wt−1,I ; φ2t = Kh2(zt − z){Sn2 − (zt − z)Sn1}Ω∗tWt−1,Ic . it suffices to show that

ηn,j ≡ (nhj)
−1/2max1≤t≤n||φjt|| = op(1)

and

η∗n,j ≡ (nhj)
−1/2max1≤t≤n||φjtvt|| = op(1)

For j = 1, since limn→∞P (Ωt = Id2) = 1 using the (A.10) in (Hong and Jiang, 2017),

we obtain the following

ηn,1 ≤ (nh1)
−1/2max1≤t≤n||φ1t|| = op(1)

and

η∗n,1 ≤ (nh1)
−1/2max1≤t≤n||φ1tvt|| = op(1)

For j = 2 with probability tending to one, that ηn,2 ≤ (nh2)
−1/2max1≤t≤n = o(1)

and η∗n,2 ≤ (nh2)
−1/2max1≤t≤n|vt| = op(1). We proved Z∗n = max1≤t≤n||Zt(γ(z)|| =

op((nh)1/2). h = min{h1, h2}.

iii) By definition, we have

(nh)1/2Z̄ = (nh)−1/2
n∑
t=1

Zt(γ(z))

= (nh)−1/2
n∑
t=1

(
Z1t(γ(z)), Z2t(γ(z))

)
= (nh)−1/2

n∑
t=1

(
φ1tvt, φ2tvt

)
≡Mn

Note that E(Mn) = 0 and V ar(Mn) = σ2
vE{

(
φ1tvt, φ2tvt

)⊗2
} = O(1) Then Mn =

Op(1). Hence (nh)1/2Z̄ = Op(1), Z̄ = Op((nh)−1/2)
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iv) Since ||φ2t|| ≤
√
d1 and φ1t = Xt with probability tending to one and E|v3t < ∞

we have (nh)−1
∑n

t=1 ||Zt(γ(z))||3 = op((nh)1/2).

Proof of Theorem 4.1. Note that pt = 1
n

1
1+λ>Zt(γI(z))

, where λ satisfies that

g(λ) ≡ n−1
n∑
t=1

Zt(γ(z))

1 + λ>Zt(γ(z))
= 0

It follows that,

g(λ) = n−1
n∑
t=1

Zt(γ(z))[1− λ>Zt(γ(z))

1 + λ>Zt(γ(z))
]

= n−1
n∑
t=1

Zt(γ(z))− n−1
n∑
t=1

Z⊗2t (γ(z))

1 + λ>Zt(γ(z))
λ

= Z̄ − Ṽnλ

= 0

Hence,

Z̄ = Ṽnλ (10.7)

Since every pt > 0, we have 1 + λ>Zt(γ(z)) > 0 and therefore,

λ>Vnλ = λ>n−1
n∑
t=1

Z⊗2t (γ(z))

1 + λ>Zt(γI(z))
[1 + λ>Zt(γ(z))]λ

≤ λ>n−1
n∑
t=1

Z⊗2t (γ(z))

1 + λ>Zt(γ(z))
{1 + ||λ||max1≤t≤n||Zt(γ(z))||}λ

= λ>Ṽnλ(1 + ||λ||Z∗n)

(10.8)

Where Vn = n−1
∑n

t=1 Z
⊗2
t (γ(z)) and Z∗n = max1≤t≤n||Zt(γI(z)||.

Let λ = ρη and η ∈ RK , ||η|| = 1.

Then ||η|| = ρ. Given(10.7) and (10.8), we can obtain the following results,

0 ≤ ρηTVnη ≤ ρηT Ṽnη(1 + ρZ∗n) = ηT Z̄(1 + ρZ∗n)
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By Lemma C.1(i), we have follows,

ηT Z̄ ≥ ρ

1 + ρZ∗n
ηTVnη

=
ρ

1 + ρZ∗n
(ηTV η + op(1))

Therefore,

ρ[min eig(V ) + op(1)− η′Z̄Z∗n] ≤ η
′
Z̄ (10.9)

By Lemma C.1(ii), Z∗n = op((nh)1/2) and ||Z̄|| = Op((nh)−1/2).We have follows with

probability goes to one,

||λ|| = ρ = Op((nh)−1/2)

and

max1≤t≤n|λZt(γI(z))| ≤ ||λ||Z∗n = Op((nh)−1/2) · op((nh)−1/2) = op(1)

Given results above, we can rewrite g(λ) as follows,

g(λ) = n−1
n∑
t=1

Zt(γ(z))[1− λ>Zt(γ(z)) +
λ>Z⊗2t (γ(z))λ

1 + λ>Zt(γ(z))
]

= Z̄ − Vnλ+ n−1
n∑
t=1

λ>Z⊗2t (γ(z))λZt(γ(z))

1 + λ>Zt(γ(z))

= 0

(10.10)

By Lemma C.1 and (10.9), the last term in (10.10) is bounded by,

||λ||2n−1
n∑
t=1

||Zt(γ(z)||3

1− ||λ||Z∗n
= Op((nh)−1){1 + op(1)}n−1

n∑
t=1

||Zt(γ(z)||3

= Op((nh)−1){1 + op(1)}op((nh)1/2)

= op((nh)−1/2)
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Hence, by (10.10), we have follows,

λ = V −1n Z̄ + op((nh)−1/2) (10.11)

Since that max1≤t≤n|λZt(γ(z))| = op(1). By Taylor’s expansion, we obtain the fol-

lows,

log{1 + λ>Zt(γ(z))} = λ>Zt(γ(z))− 1

2
{λ>Zt(γ(z))}2 + φt (10.12)

where for some finite M > 0,

P{|φt| ≤M |λ>Zt(γ(z))|3, 1 ≤ t ≤ n} → 1, as n→∞

It follows from (10.12) that

`n(γ(z)) = 2
n∑
t=1

log{1 + λ>Zt(γ(z)}

= 2
n∑
t=1

λ>Zt(γ(z))−
n∑
t=1

λ>Z⊗2t (γ(z))λ+ 2
n∑
t=1

φt

By combining results above, we have

|
n∑
t=1

φt| ≤M ||λ||3
n∑
t=1

||Zt(γ(z))||3

= Op((nh)−3/2) · op((nh)3/2)

= op(1)

(10.13)

Hence,

`n(γ(z)) = 2
n∑
t=1

λ>Zt(γ(z))−
n∑
t=1

λ>Z⊗2t (γ(z))λ+ op(1) (10.14)

Then by (10.10) and (10.11),

`n(γ(z)) = nZ̄>V −1n Z̄ + op(1). (10.15)
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Applying the CLT, the following result is obtained,

n1/2V −1/2n Z̄ = V −1/2n n−1/2
n∑
t=1

Zt(γ(z))

→ N(0, Ik+1)

(10.16)

where Ik+1 is the (k + 1)× (k + 1) identity matrix. Therefore, `n(γ(z))
p→ χ2

k+1.


