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ABSTRACT 
 
 

JOYSON STANY MENEZES. Semi-analytical model for thin-plate dynamics. 
(Under the direction of DR. TONY L. SCHMITZ) 

 
 

Productivity when milling thin, monolithic components is often limited by 

regenerative chatter. The vibrations are partially controlled by the use of stability lobe 

diagrams, which enable the selection of spindle speed/axial depth combinations to avoid 

chatter. However, this requires knowledge of both the tool and structure dynamics. 

The objective of this numerical study is to model the dynamics of thin-walled 

structures. A complete finite element analysis is carried out using ABAQUS/Standard. An 

analytical model is developed for the natural frequency and minimum lateral stiffness of 

thin plates with clamped-clamped-clamped-free boundary conditions. The stiffness is 

determined using the first (most flexible) transverse bending mode. The dynamic 

characteristics of the plate were predicted using finite element analysis and the accuracy 

was experimentally validated. Based on these studies, the predicted and measured natural 

frequency, stiffness values, and mode shapes showed good agreement. Using the numerical 

finite element modeling capability, the natural frequency and minimum stiffness for the 

first (most flexible) mode was evaluated over a range of lengths, thickness, and heights. 

The trends were combined into a look up table that can be used to identify the natural 

frequency and minimum rib stiffness for any selected geometry. Using the interpolated 

natural frequency and stiffness values, the workpiece dynamics can be defined and, using 

milling stability methods, stable machining parameters may be identified.
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CHAPTER 1:  INTRODUCTION 
 
 

1.1 Thin-wall Machining 

In the aerospace industry, high-speed milling of flexible components is a common 

manufacturing process. Features with wall thickness equal to sheet metal or even thinner 

are machined to produce monolithic components that mimic sheet metal build-ups. 

However, it is difficult to maintain dimensional accuracy and surface finish due to the 

relative displacement (vibration) between the thin wall and tool. Chatter is a common 

obstacle because the thin workpiece is flexible. Pioneering research by Smith and Tlusty 

[1-4] established processes which provide minimized cost, vibration, and chatter for 

successful thin-wall milling. They developed new NC programming routines to avoid 

cornering problems and optimal metal removal rate through permissible tool paths. Smith 

recognized that the two elements: optimal spindle speed, which corresponds most stable 

zone in the stability lobe diagram, and the limit of stability are related to tool length and 

workpiece flexibility and strongly affect the metal removal rate in high-speed milling [3, 

4]. This, in turn, enabled selection of the tool length to match the stable zone to the highest 

spindle speed for highest metal removal rates. However, additional challenges arise when 

producing tall thin ribs. As the ribs are machined, many passes would be stable and produce 

acceptable surfaces. Then, during a particular pass, chatter would develop, damaging the 

previously machined surface. 
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According to Smith, as the machining progresses, the wall becomes more flexible. 

This is because, as the stable machining progresses, a certain rib height is reached where 

the part flexibility is low enough that the chatter-free depth of cut is exceeded. In order to 

eliminate the contact between the tool and the rib, relieving the tool (reducing the diameter) 

above the nominal cutting zone seemed a clever solution is shown in Figure 1.1. This 

principle of tool relief prevents the tool and rib contact during the forced vibrations of the 

rib. 

 

Figure 1.1: Machining of a thin-wall workpiece with conventional tool (left) and relieved 

tool (right) [4]. 

1.2 Literature Review 

Thin-walled workpieces deform during cutting because of their low stiffness [5]. 

There has been a significant number of experimental, numerical, and analytical studies to 

make machining insensitive to the thickness. The following paragraphs summarize the 

relevant research and findings. 

Tlusty [6] and Tobias [7] studied machining vibrations; others continued their work 

[8-22]. Tlusty [8] applied the orthogonal model to milling process by assuming the teeth 
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of the tool had equal pitch, were simultaneously in cut, and that the motion was rectilinear 

with constant depth of cut. The Nyquist criterion was used by Minis and Yanushevsky [9, 

10] to identify the stability limit. Lee et al. [11, 12] used the mean value method to replace 

the time-varying directional coefficients by a constant. Altintas and Budak [13] proposed 

an analytical approach in which the average value in the Fourier series expansion of the 

time-varying coefficient was adopted. This analytical approach has been used to predict 

stable cutting conditions in milling [14-17]. Budak and Altintas [18, 19] showed that the 

results obtained by including the harmonic terms are very close to the single frequency 

solution. Campa et al. [20] applied the mono-frequency solution when considering the 

milling of thin walls and thin floors. They introduced the averaging of the cutting 

coefficients and the axial immersion angle along the cutting edge. 

In the special case of thin-wall milling, a single stability lobe diagram cannot be 

applied directly because the dynamics change with the tool position and material removed. 

Thevenot et al. [21] studied the influence of material removal on dynamic behavior of the 

part by modeling it with constant dynamic properties and rigid body motion. The stability 

lobe change during machining was included as a third dimension on the stability lobe [22, 

23]. This method was also extended by taking into account machine and tool flexibility 

[14]. Milling of workpieces with low rigidity, like thin walls requires that the static and 

dynamic effects and their evolution during machining be considered [24]. 

1.3 Research Objective and Scope 

The objective of this study is to enable precision machining of thin features in hard-

to-machine materials at high efficiency and low cost. A number of different alternative test 

geometries were evaluated for their performance in order to achieve this objective. Finite 



4 
 

element analysis was used to estimate structural stiffness for each test geometry and to 

evaluate the ability of each to support the anticipated machining forces. Figures 1.2 and 1.3 

show first and second mode stiffness for different boundary conditions applied to an 

aluminum rib with a span length of 75 mm, a height of 20 mm, and a thickness of 3 mm 

thick. The stiffness was calculated as the ratio of applied force and the structure’s 

displacement. The applied force was moved along the free edge of the wall to find the 

stiffness for each test geometry. For each of the test geometries from 1-10, symmetric 

geometry resulted in nodes. Qualitatively, for test geometry 7, the stiffness at these nodes 

is higher than the stiffness at the stiffeners. This study focuses on ribs that can be 

represented by clamped-clamped-clamped-free (CCCF) boundary condition. This 

boundary condition mimics thin ribs with lateral supports, or stiffeners, along their length. 

However, the cantilever boundary condition is also considered. 

An analytical model is developed for the minimum lateral stiffness of thin ribs with 

CCCF boundary conditions. To identify the analytical model, the dynamic characteristics 

of the ribs are predicted using finite element analysis (ABAQUS/Standard 6.13) and 

multiple results from a broad range of rib dimensions are curve fit. The finite element (FE) 

accuracy is experimentally validated. The thin plate analysis is divided into two cases:  

 Case I: cantilever boundary condition 

 Case II: CCCF boundary condition 

1.3.1 Case I: Thin-wall with Cantilever Boundary Condition 

Altintas et al. [25] presented a dynamic model for peripheral milling of a flexible 

cantilever plate and rigid end mill by neglecting the time varying structural properties and 

the changes in the immersion boundaries. Budak and Altintas [26] considered the 
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peripheral milling of a flexible cantilever plate with slender end mills that incorporated the 

mechanistic force model and FE methods.  

1.3.2 Case II: Thin-wall with CCCF Boundary Condition 

Kline et al. [27] considered milling of a clamped-clamped-clamped-free (CCCF) 

plate with a flexible end mill. They used the FE method to model the plate and beam theory 

end mill. In order to enable precision machining of thin components, sacrificial structure 

preforms can be used to support the part during machining as described by Smith et al.[28].  

 

Figure 1.2: Predicted first mode stiffness for different boundary conditions. 
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Figure 1.3: Predicted second mode stiffness for different boundary conditions. 



 

CHAPTER 2:  FINITE ELEMENT MODELING 
 

2.1 Background 

Numerical analysis is often selected to model complex structures, where analytical 

techniques may require excessive simplifications. The finite element method (FEM) is the 

most widely used numerical technique for structural analyses. In FEM, the continuum, or 

domain, is divided into a finite number of regions, called finite elements, which neither 

overlap nor have a gap between each other. The behavior of each element is controlled by 

the number of key points on each element called nodes. These nodes enable a problem with 

an infinite number of degree of freedom to be converted to one with a finite number using 

the differential equations of motion at each node. The motion of a dynamic structure or 

system may be represented by a set of simultaneous differential (coupled) equations using 

FEM. These coupled equations of motion are solved by transforming them into a set of 

independent (uncoupled) equations by means of a modal matrix (composed of the system 

eigenvectors). This procedure is called numerical modal analysis [29]. Modal analysis is a 

process for determining the system’s modal parameters, including natural frequencies 

(eigenvalues) and mode shapes (eigenvectors). Finite element analysis offers an effective 

predictive capability for modelling the thin-walled structures considered in this study.

2.2 ABAQUS/Standard Overview 

ABAQUS/Standard is an analysis tool that provides solutions for structural, thermal, 

modal, and shape optimization studies. It reduces the need for multiple prototypes and 
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product testing by effectively verifying the product performance and reliability from the 

concept phase through the various product design and development stages.  

The software includes preprocessing, simulation, and postprocessing, which are three 

distinct stages linked together as shown in Figure 2.1. 

 

Figure 2.1: ABAQUS analysis stages. 

2.2.1 Preprocessing 

This is a part modelling stage where a model is created using ABAQUS/CAE 

(Computer Aided Engineering) or imported from a computer aided drawing (CAD) 

software such as Solidworks. The complete model definition includes material properties, 

boundary conditions, and forces. The basic information regarding the model, from the 

geometry to the applied loads, is stored in an input (.inp) file. 
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2.2.2 Simulation 

In the simulation stage, ABAQUS/Standard or ABAQUS/Explicit solves the 

numerical problem defined in the model. 

2.2.3 Postprocessing 

After successfully completing the simulation stage, ABAQUS generates an output 

database file (.odb). This file contains the simulated results, such as the deformed shapes, 

colored contour plots, and animations, which can be viewed using the ABAQUS/CAE 

Visualization module. 

2.2.4 Analysis Procedure 

In ABAQUS/Standard, modal analysis is referred to as dynamic analysis, where the 

response of linear systems are calculated based on the mode shapes and natural frequencies. 

The procedure for dynamic analysis is summarized in the following sections. 

2.2.4.1 Natural frequency extraction 

Eigenvalue extraction is used to calculate the natural frequencies and the 

corresponding mode shapes of a system using the Lanczos eigensolver. The eigenvalue 

problem for natural frequencies of an undamped finite element model is given by Eq. (2.1),  

 (− 𝜔𝜔2𝑀𝑀𝑀𝑀𝑀𝑀 +  𝐾𝐾𝑀𝑀𝑀𝑀) ∅𝑀𝑀  = 0, (2.1) 

where 𝑀𝑀𝑀𝑀𝑀𝑀 is the symmetric and positive definite mass matrix; 𝐾𝐾𝑀𝑀𝑀𝑀 is the stiffness matrix; 

∅𝑀𝑀 is the eigenvector; and 𝑀𝑀 and 𝑁𝑁 are the degrees of freedom [30]. 

The following steps are completed in the natural frequency extraction: 

When ABAQUS/CAE begins, the Start Session dialog appears which is shown in Figure 

2.2.  
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Figure 2.2: The Start Session dialog box. 

 

Figure 2.3: Components of the main window. 
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For modal analysis, select Create Model Database – With Standard/Explicit Model. This 

enables a new ABAQUS/Standard or ABAQUS/Explicit analysis to be started. The main 

window along with its components, as shown in Figure 2.3, will appear. For detailed 

information, refer to ABAQUS/CAE User’s guide “Components of main window” section 

2.2.1 [30].  

Step-I: Creating a part 

By default, ABAQUS/CAE starts the main window in the Part module. The part 

module provides a set of tools that allows the user to add and modify the features that 

define a part. Before making any modification in the ABAQUS/CAE, select File menu and 

Set Work Directory and then choose a specific directory to save the CAD and result files. 

Create a part using the  tool in the Part module toolbox. In the Create Part dialog box, 

see Figure 2.4, type a name for the part in the Name text box. 

 

Figure 2.4: The Create Part dialog box. 
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• For Modeling Space, select 3D, which creates a three-dimensional (3D) part   

• For Type, select Deformable, which creates a part that can deform under load 

• Base Feature 

o For Shape, select Solid 

o For Type, select Extrusion 

• For Approximate size, type 0.1. This is used to calculate the size of the 

Sketcher sheet and the grid spacing. The approximate size should be equal to 

or greater than the largest dimension of the part. See Figure 2.5. 

ABAQUS/CAE does not use specific units, but the units must be consistent throughout the 

model. In this research, the length unit is meters. 

Using the data provided in Figure 2.6, the top right section is used to create a 3D model of 

a thin-walled structure with a cantilever boundary condition. 

 

Figure 2.5: The Sketcher grid with a grid size of 0.1. 
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Figure 2.6: Two-dimensional (2D) detailed drawing of an aluminum Al-6061 thin-walled 
structure with cantilever boundary condition. 

To draw the 2D sketch for the base, select   Create Construction: Oblique line through 

two points tool to create horizontal and vertical center lines on the Sketcher grid as shown 

in the Figure 2.7. Sketch in the X-Y plane and press the scroll button on the mouse to exit 

the selected command. The horizontal and vertical constraints on the center line are 

denoted by H and V.  Then select  Create Lines: Rectangle (4 points) tool to create the 

base as shown in Figure 2.8. When sketching the base, make the base symmetric in the 

vertical and horizontal axis by selecting   Add Constraint tool from the Sketch tool 

and select Symmetry. This defines the symmetry constraint for the part from the Constraints 

dialog box. To make the base sketch symmetric about the vertical axis, select the vertical 
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center line as the axis of symmetry and select the line to left of the vertical center line as 

the first entity for symmetry constraint and right as the second entity for symmetry 

constraint.  To constrain the base with respect to the center lines, select Fixed from the 

Constraints dialog box and select both the center line using shift key and press Done as 

shown in Figure 2.9. To assign the dimensions, select  Add Dimension tool and select 

the horizontal and vertical edges to be 0.0153 and 0.0173 as shown in Figure 2.10.   

To sketch the thin-wall feature sketch, select  Create Lines: Rectangle (4 points) 

tool and create a rectangle as shown in Figure 2.11. Constrain the sketch using the 

Symmetry, Fixed, and Coincident constraints to make sure the base of the thin-wall feature 

sketch coincide with the base feature sketch using Add Constraint in the Sketcher Tool. 

Dimension the sketch with horizontal and vertical edges to be 0.02 and 0.0015 as shown in 

Figure 2.12. Figure 2.13 shows self-intersecting lines in the sketch which can be removed 

using  Auto-Trim tool and then the Horizontal constraint to constrain the top part of the 

base feature sketch because the trim operation un-constrains the feature. The fully 

constrained base and thin-wall feature sketch is shown in Figure 2.14. 
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Figure 2.7: Sketching the horizontal and vertical center line on the Sketcher grid. 

 

Figure 2.8: Sketching the base feature. 
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Figure 2.9: Sketching the constraints. 

 

Figure 2.10: Base feature sketch with all dimensions and constraints. 



17 
 

 

Figure 2.11: Sketching the thin-wall feature. 

 

Figure 2.12: Base and thin-wall feature sketch with all dimensions and constraints 
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Figure 2.13: The self-intersection zone between the base and thin-wall feature sketch. 

 

Figure 2.14: Fully constrained sketch for the base and thin-wall feature. 

After defining a fully constrained base thin-wall feature sketch press Done to switch 

back from the Sketching grid to modeling and enter 0.01, the desired length, in the Depth 

text box, which is available in the Edit Base Extrusion dialog box. Press OK to generate a 
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3D solid CAD model for a thin-wall structure with cantilever boundary condition as shown 

in Figure 2.15.  

 

Figure 2.15: Extruded solid 3D CAD model for a thin-wall structure with cantilever 
boundary condition. 

Step-II: Assign material properties 

The 3D CAD model for a thin-wall structure now needs the material properties to be 

assigned. This is performed in the Property module. Select i in 

the Module drop down box. In the Toolbox area select the  Create Material tool which 

will display the Edit Material dialog box as shown in Figure 2.16 and enter the following 

information. 

• Name: Aluminum-6061 

• select General         Density; Mass Density: 2700 
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• select Mechanical    Elasticity          Elastic;  

o Young’s Modulus: 68.9e9 

o Poisson’s Ratio: 0.33 

 

Figure 2.16: Edit Material dialog box. 

A cross-section should be defined for a part and this cross-section is assigned to each 

instance of the part. To assign a section select  Create Section in the Create Section 

dialog box and type the following information. 

• Name:  Thin_wall_structure 

• Category: Solid 

• Type: Homogeneous 

A solid with homogeneous properties is assigned to the thin-wall 3D CAD model, which 

makes it similar to a monolithic thin-wall structure.  

The Edit Section dialog box, which displays Name as Thin_wall_structure; Type as Solid, 

Homogenous, requires the user to assign a material to this section, Thin_wall_structure. In 

the Material drop down box, select Aluminum-6061 . The 
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section now has its material properties defined, but it is not yet assigned to the CAD model. 

In order to do so, select  Assign Section and select anywhere on the surface of the CAD 

model and click Done. An Edit Section Assignment dialog box will display the data 

displayed in Figure 2.17, which indicates that the Picked region will be assigned with a 

section named Thin_wall_structure of solid, homogenous Aluminum-6061 material 

properties; see Figure 2.18. 

 

Figure 2.17: The Edit Section Assignment dialog box indicates that a section named 
Thin_wall_structure made of Aluminum-6061 will be assigned to the CAD model. 

 

Figure 2.18: Al-6061 material properties assigned to thin-wall 3D CAD model. 
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Step-III: Assign global coordinate system 

When a part is created in the Part Module, it is positioned relative to its local 

coordinate system. The instances of the part are created and these instances are positioned 

relative to global coordinate system, thus creating an assembly. To create a part or model 

instance, select Assembly from the Module drop down box and 

select Create Instance. Select the following in the Create Instance dialog box: 

• Create instances from: Select the part 

• Instance Type:  Independent 

and press OK. Dependent type instance enables each part to be meshed first, rather than 

the entire assembly, and will not allow any part modification, in the Assembly Module. In 

contrast, the Independent instance type allows instance meshing (that is, the user can either 

mesh each part or the assembly) and allows part modification in the Assembly Module. 

Step-IV: Create mesh 

After successfully assigning global coordinates, the thin-wall model with cantilever 

boundary condition is meshed using the Mesh Module. Select Mesh from the Module drop 

down box . By default, ABAQUS/CAE assigns the mesh seeds 

and controls the mesh density on the part edge. Select  Seed Edges to preview the 

default mesh seeds on the part edges as shown in Figure 2.19. To preview the mesh quality 

with respect to the default mesh seed select  Mesh Part Instance and press Yes to apply 

the mesh. The top-down mesh quality with respect to the default mesh seeds is not uniform 

as shown in Figure 2.20. This is due to the shape of the CAD model. To apply a uniform 
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mesh for the part instance, divide the part into simple regions, i.e., divide the thin-wall 

feature from the base feature, which is achieved using the Partition operation in the Part 

Module. Using the Partition operation on the part will not have any effect on the final result 

because the nodes of these divided features will be connected making it a monolithic 

feature. Select Part in the Module drop down box to switch to Part Module and select Tools 

from the Menu bar and Partition. Create Partition will appear on the screen; select Cell 

for Type and Define cutting plane for Method. In the prompt area it is required to specify 

the plane (that is, define the cutting plane); select 3 Point. Note that the points should not 

be collinear. Select the three points at the intersection of the thin-wall and base feature and 

select Create Partition in the Prompt area. The edges of the top part of the base are now 

divided into three parts in the X-Y plane, select Edges in the Tool bar 

  and move the pointer on the top edges of the base feature 

to identify these three edges. There will be a change in the mesh density between the top 

and bottom edges in the X-Y plane of the base feature, so the base feature will be 

partitioned. Select the base feature for the cells to partition and specify the plane as Point 

& Normal. Select the point at the intersection in the X-Y plane and a line passing through 

the point in the same plane. Now the base is divided into two parts. Similarly, select the 

opposite cell/region and partition it using Point & Normal partition and this should now 

divide the base into three parts. To learn more about Partition operation refer to 

ABAQUS/CAE file [30]. To verify that the thin-wall and base feature are now a separate 

cell or region select  Cells in the Tool bar. By dragging the 

pointer on the part, it will indicate that the features are divided.  
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Figure 2.19: The thin-wall with cantilever boundary condition with default mesh seed in 
mesh module. 

 

Figure 2.20: Poor mesh quality of the with respect to the default mesh seeds with 420 
elements. 
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Now switch to Mesh Module and, because the part instance type is Independent, select 

 Assembly for Object. Select  Mesh Part Instance to assign the mesh 

on the part which is shown in Figure 2.21. The mesh assigned to the part is linear 

hexahedral elements of type C3D8R (eight-node linear brick with reduced integration and 

hourglass control). Approximately, 91908 elements and 101024 nodes are found to be 

enough after convergence of the natural frequency and stiffness (mesh refinement studies 

are presented in Figure 2.22) to model the thin-wall structure with cantilever boundary 

condition. 

 

Figure 2.21: Uniform mesh quality throughout the part with 672 nodes and 380 elements. 
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Figure 2.22: Effect of mesh refinement on natural frequency (left) and minimum stiffness 
(right). 

Step-V: Boundary condition  

For the experiments, the base of the thin-wall monolithic structure with cantilever 

boundary condition was fixed to a rigid table using cyanoacrylate. The ABAQUS/CAE 

model approximately applies the same boundary condition. To set the boundary condition, 

select the analysis type (Natural Frequency Extraction). Select 

Step from the Module drop down box then  Create Step so that a Create Step dialog 

box appears on screen and then enter the following data: 

• Name: Natural Frequency Extraction 

• Procedure type: Linear perturbation 

• select Frequency 

in the Edit Step dialog box and select Lanczos Eigensolver (default) and Value in the 

Number of eigenvalues requested and enter 3 (determines the natural frequency for the first 

three modes). After selecting the analysis type, ABAQUS/CAE allows the user to select 

the boundary condition for the analysis. Now switch to Load module 
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  and select Create Boundary Condition. In the Create 

Boundary Condition dialog box, enter the following data. 

• Name: Fixed 

• Step: Natural Frequency Extraction 

• Procedure: Frequency 

• Category: Mechanical 

• Types for Selected Step: Symmetry/Antisymmetry/Encastre (constraint on all 

displacements and rotations) 

Press Continue and it will prompt the user to Select the regions for boundary condition. 

Select the bottom face of the base (see Figure 2.23) and press Done. Select ENCASTRE in 

the Edit Boundary Condition dialog box. 

 

Figure 2.23: FEM encastre boundary condition: the bottom face is constrained from all 
displacements and rotations. 
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Step-VI: Run the analysis 

To run the natural frequency extraction analysis, switch to  Job 

module, select Create Job, and enter the desired name for the Job in the Name text 

box. Press Continue, which will open an Edit Job dialog box, and in the Description tab 

enter the description of the analysis (optional). 

Step-VII: Results 

Once the simulation is completed, a message will displayed in the Message area box. 

The results for the Natural Frequency Extraction analysis can be viewed by selecting the 

Job menu and Results. It will indicate the name of the job and the Viewport window as 

shown in Figure 2.24 will appear. 

 

Figure 2.24: Viewport window displaying the undeformed shape of the thin-wall structure 
with cantilever boundary condition. 

The mode shapes can be viewed by selecting  Plot Contours on Deformed Shape and 

changing the deformation scale by selecting the Options menu and Common, checking 
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Uniform, and entering 0.0001. By selecting Step/Frame from the Result in the menu bar, 

the Step/Frame dialog box will be displayed as shown in Figure 2.25. 

 

Figure 2.25: Step/Frame dialog box displaying the mode and its corresponding frequency 
for thin-walled structure with cantilever boundary condition. 

Figures 2.26 to 2.28 shows the predicted mode shapes and corresponding natural 

frequencies for the cantilever boundary condition. 
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Figure 2.26: Predicted first mode shape,𝜓𝜓1, with a natural frequency of 5605.2 Hz for the 
cantilever boundary condition. 

 

Figure 2.27: Predicted second mode shape,𝜓𝜓2, with a natural frequency of 6115 Hz for 
the cantilever boundary condition. 
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Figure 2.28: Predicted third mode shape, 𝜓𝜓3, with a natural frequency of 7668.5 Hz for the 
cantilever boundary condition. 

Repeat the Steps I to VII to model the thin-walled structure with clamped-clamped-

clamped-free (CCCF) boundary condition as shown in Figure 2.29. Here, 138306 nodes 

and 126456 elements were used to predict the mode shapes and corresponding natural 

frequencies; see Figures. 2.30 and 2.31.  
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Figure 2.29: Two-dimensional (2D) detailed drawing of an aluminum Al-6061 thin-walled 
structure with clamped-clamped-clamped-free (CCCF) boundary conditions. 
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Figure 2.30: Predicted first mode shape, 𝜓𝜓1, with a natural frequency of 5821.9 Hz for the 
CCCF boundary condition. 

 

Figure 2.31: Predicted second mode shape, 𝜓𝜓2, with a natural frequency of 7598.1 Hz for 
the CCCF boundary condition. 
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2.2.4.2 Mode-based steady-state dynamic analysis 

After extracting the natural frequencies and mode shapes, the mode-based steady-

state dynamic analysis was used to calculate the steady-state dynamic linearized response 

of each system, i.e., the frequency response function (FRF) for harmonic excitation. As the 

name suggests, this step calculates the response based on the system’s eigenvalues and 

eigenvectors and, therefore, requires that a natural frequency extraction procedure be 

performed prior to the steady-state dynamic analysis. The mode-based steady-state 

dynamic step is defined by specifying the frequency ranges of interest with a linear spacing 

and a bias parameter of 1. Also, the damping coefficient, i.e., the viscous damping ratio, is 

defined for a specified mode number and a concentrated nodal force is applied to the 

displacement degree of freedom at the location of most interest in the structure’s response. 

These loads vary sinusoidally with time over a user-specified range of frequencies [30]. 

The steps to predict the mode-based steady-state analysis (FRF) of the system are provided 

in the following sections. 

Step-VIII: Boundary condition and load 

The model force is applied as a sinusoidal load in ABAQUS/CAE. To apply the load 

a new analysis, or step, is created. Switch to Step from the 

Module drop down box and then  Create Step so that a Create Step dialog box appears 

on screen. Input the following data.  

• Name: Predicted FRF 

• Procedure type: Linear perturbation, Steady-state dynamics, Modal 

Press Continue and in the Edit Step dialog box select Linear Scale and Use 

eigenfrequencies to subdivide each frequency range. For the Lower and Upper Frequency, 
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enter the range such that the FRF can capture the lower (left side) and higher (right side) 

frequency of the desired range. For instance, if the first mode natural frequency is 500 Hz 

select lower range as 400 Hz and higher range as 600 Hz. For better resolution, use Number 

of Points as Upper Frequency – Lower Frequency with Bias factor of 1. Note that a larger 

number of points increases the simulation time and memory size. In the Damping tab, select 

Direct modal - Use direct damping data and enter the damping ratios for the corresponding 

modes (modal damping ratio).  Apply the sinusoidal load at the desired location of the thin-

wall feature. In Figures 2.26 to 2.28, 2.30, and 2.31, it is seen that the most flexible part of 

the thin-wall feature is the free edge. Therefore, the force is applied at this flexible free 

edge of the thin-wall structure. ABAQUS/CAE requires that the location used to apply the 

load and predict the FRF should be a point on the CAD model, but there are only four 

vertices/points available at the ends of the span length. To create the desired points, use the 

Partition and Datum operation to create vertices on the free edge. Switch to Part module 

and select Datum from the Tools menu and select Offset from points. Then select a point to 

create an offset and enter the desired (X, Y, Z) coordinate, e.g., (0.0, 0.0, -0.01). This 

creates the datum point in the negative Z direction with an offset value of 0.01 m. Note that 

the units should be constant throughout analysis. After creating the desired Datum points, 

use Partition from the Tools menu and select Cell Type and Method as Define cutting 

plane. Then select all cells, click Point & Normal, and select the created datum point for 

the point and the free edge for the line in the Y-Z plane. Select Create Partition. Then, to 

assign names to these datum points for convenience when assigning the load, select Sets, 

Geometry from the Tools menu and enter the desired name and select the created datum 

points. To apply the load, select Create Load and enter the following data. 
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• Name: F1 (Desired name for load) 

• Step: Predicted FRF 

• Procedure: Steady-state-dynamic, Modal 

• Category: Mechanical 

• Types for Selected Step: Concentrated force 

Press Continue. Select Sets and select the desired set name corresponding to the location 

of the force. In the Edit Load dialog box, select Uniform Distribution and enter 1+i0 (Force 

of 1N) in the CF1 text box. CF1, CF2, and CF3 are to be considered as (X, Y, and Z) axis 

and load of 1N applied at the desired location as it eliminates the need to normalize the 

FRF to the actual force level.  Note that to determine the FRF, apply one load per 

simulation, but the sets created will help to determine the FRF at all these created sets. 

 Step-XI: Results 

Once the simulation is completed, a message will be displayed in the Message area 

box. The results for the Mode-based steady-state analysis can be viewed by selecting the 

Job menu and Results. The Viewport window should appear on the screen. Navigate to 

Options in Result menu bar and select Real (default) or Imaginary Complex Form tab. 

ABAQUS/CAE displays the real or imaginary parts of the FRF and so the user has to 

navigate to the settings to switch between the real and imaginary part of the FRF. After the 

selection of the desired form of the FRF, go to the Tools menu bar and select XY data and 

then Create. The Create XY Data dialog box will appear; select ODB field output and press 

Continue. An XY Data from ODB Field Output dialog box will appear and, since the current 

analysis has two active steps, Natural Frequency Extraction step and Mode-based- steady-

state dynamic step, the Natural Frequency Extraction step needs to be closed. Select Active 
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Steps/Frames on the top right of the XY Data from ODB Field Output dialog box and 

uncheck the step name that indicates Time : Modal and press OK to return to the XY Data 

from ODB Field Output dialog box. To plot the predicted FRF of the point/s created using 

the Datum and Partition in Step-VIII, select Unique Nodal in the Position drop down box 

and then check U1 (U1, U2, and U3 are the X, Y and Z coordinates) in the U: Spatial 

displacement. After selecting the direction of displacement in the Variable tab navigate to 

Elements/Nodes and selecting Node sets in the Selection Method, pick the desired node 

displayed in the following format: “Part name”-1.”Location name”. Also, select Highlight 

items in viewport to get a preview of the selected node of the model on the viewport and 

select Plot and Dismiss the XY Data from ODB Field Output dialog box. The viewport 

should now display the real or imaginary part of the FRF for the selected node location. 

The font and font size can be changed by selecting XY Options in the Options menu bar 

and select Axis and change the Font in the Axes tab. The same applies for the plot legend. 

The chart legend, bottom right of the plot, displays the Complex form type and node 

number corresponding to the selected location.  

To save the result, navigate to XY Data in the Result tree, which contains the data 

points and name similar to the chart legend of the current plot. Rename it to the desired file 

name and then go to Report in the menu bar and select XY. In the Report XY Data dialog 

box, select the file. In the Setup tab and in the File Name text box, type the file name then 

select the directory to save the file. In the Output Format section, select Separate table for 

each XY data. This will create a separate column in the file for the x-y data and exit by 

pressing OK and save the file. 



 

CHAPTER 3:  EXPERIMENTAL VALIDATION 
 
 

The dynamic characteristics of structure(s) are conventionally described using the 

complex-valued FRF, which defines the vibration output to force input ratio in the 

frequency domain. It represents the steady-state solution to the system differential equation 

of motion [31-33]. The dynamic response of the plate may be measured by modal testing. 

In this approach, an instrumented hammer is used to apply a known force, F(t), to the 

structure and a transducer is used to measure the resulting response, X(t). The FRF of the 

structure may be estimated from [32], 

 
H(ω)=

X(ω)
F(ω) , 

(3.1) 

where X(ω) and F(ω) are the discrete Fourier transforms (DFT) of the response and force 

signals, respectively.  

3.1 Experimental Setup 

A commercial software package, MetalMax©, was used to measure the plate FRFs. 

The input force was applied using a miniature modal hammer (PCB 084A17) with a steel 

tip (PCB 086E80 SN 33416) and the vibration response was measured using a laser 

Doppler vibrometer (Polytec OFV – 534 laser head with OFV-5000 controller). The OFV-

5000 controller provides an output voltage proportional to the change in the velocity of the 

target. 

In order to obtain FRFs that accurately reflect the predicted workpiece dynamics, it 

is important to very closely match the workpiece’s boundary conditions to the finite 
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element analysis. Therefore, the workpiece was fixed to a heavy steel table using 

cyanoacrylate. This approximated a fixed boundary condition. The laser vibrometer was 

set at a stand-off distance of approximately 295 mm, which is consistent with the 

manufacturer-specified value [34] and the structure was impacted with the hammer at 

multiple locations. This setup provided controllable and repeatable dynamics. Figures 3.1 

and 3.2 shows the experimental setup for measuring the plate dynamics. 

 

Figure 3.1: Schematic representation of cantilever rib FRF measurement setup using an 
impact hammer and laser vibrometer. 
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Figure 3.2: Schematic representation of CCCF rib FRF measurement setup using an impact 
hammer and laser vibrometer. 

In modal testing, two signals are measured: the impulsive force and the vibration 

response. Any lack of synchronization in the time domain acquisition of these two signals 

results in a frequency-dependent phase error in the FRF. Given the time delay between the 

laser vibrometer and the hammer signals, a phase correction algorithm [31] was used to 

remove the corresponding phase error from the measured FRFs. Notice the changes with 

and without the phase correction in Figure 3.3. Also, MetalMax© uses a rectangular 

impulse window for force and an exponential window for the response. Because the 

damping is low for the parts tested in this study, the sampling time was increased to 30s. 

This enabled the full vibration response to be recorded without adding artificial damping 

through the exponential window. The phase error and windowing time are critical when 

measuring the dynamic response of a system because the complex FRF characterizes both 

the magnitude and phase of the structure’s response to the force input.  
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Figure 3.3: Comparison of the corrected and uncorrected FRF for a CCCF rib. 

3.2 Comparison of Experimental and Measured Results 

3.2.1 Mode Shapes 

In order to measure mode shapes for cantilever and CCCF boundary conditions, the 

laser vibrometer target spot was located at an offset of 5mm from the top right corner of 

the plate and the structure was impacted with the hammer at multiple locations. Figures 3.4 

to 3.8 show measured mode shapes for cantilever and CCCF boundary condition.  
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Table 3.1: Geometric dimensions for cantilever and CCCF thin-wall structure (all 
dimensions in mm). 

                    Case  

Geometry 
1 2 

Length 101 99.93 

Thickness 3.04 2.79 

Height 20.1 20.16 

Material Al6061 Al6061 

 

 

 

Figure 3.4: Measured first mode shape, 𝜓𝜓1, with a natural frequency of 5757.9 Hz for the 
cantilever boundary condition. 
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Figure 3.5: Measured second mode shape, 𝜓𝜓2, with a natural frequency of 6319.4 Hz for 
the cantilever boundary condition. 

 

Figure 3.6: Measured third mode shape, 𝜓𝜓3, with a natural frequency of 7939.1 Hz for the 
cantilever boundary condition. 
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Figure 3.7: Measured first mode shape, 𝜓𝜓1, with a natural frequency of 5994.4 Hz for the 
CCCF boundary condition. 

 

Figure 3.8: Measured second mode shape, 𝜓𝜓2, with a natural frequency of 7795.7 Hz for 
the CCCF boundary condition. 

3.2.2 Frequency Response Function 

Figure 3.9 shows the FRF of the free-edge of the CCCF plate. The measured and 

predicted first mode FRF was found to match within 10%. 
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Figure 3.9: Comparison of the predicted and measured direct FRF for CCCF boundary 
condition at an offset of 45 mm from the center of the free edge. 
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3.2.3 Stiffness 

Figures 3.10 and 3.11 show the stiffness at the free edge for cantilever and CCCF 

plates which was obtained using direct FRFs. The measured and predicted stiffness was 

found to match within 17%.  

 

Figure 3.10: Comparison of the predicted and measured first mode stiffness at the free edge 
for the plate with CCCF boundary condition. 
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Figure 3.11: Comparison of the predicted and measured first mode stiffness at the free edge 
for the plate with cantilever boundary condition. 

3.3 Test Geometries 

Further analyses were conducted on other plate geometries with CCCF boundary 

conditions; see Figure 3.12 and Table 3.2. The minimum stiffness and its corresponding 

natural frequency (first mode) for these geometries are summarized in Table 3.3. Note that 

the original cantilever plate is case 1 and the original CCCF plate is case 2. 

 

Figure 3.12: Dimensions for additional CCCF test geometries. 
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Table 3.2: Geometry and material for additional test geometries (all dimensions in mm). 

                    Case  

Geometry 

3 4 5 6 7 

a 25 25 37.72 25 25 

b 14.0 13.7 24.76 88.94 26.44 

c 36.91 47.86 53.75 50.80 50.80 

R 11.43 11.43 10 11.43 11.43 

L 150 150 150 101.52 226.52 

t 2.01 2.01 2.95 2.0 2.0 

h 30 40 30 25.4 25.4 

Material Al6061 Al6061 Ti6Al4V Al7075 Al7075 

 

 

 

 

 

 

 

 



49 
 

Table 3.3: Comparison of the predicted and measured first mode modal parameters at the 
center of the free edge for all test geometries. 

                                                                     

                     Case    

Modal  

Parameters 

1 2 3 4 5 6 7 

Measured natural 
frequency, 𝑓𝑓𝑛𝑛𝑚𝑚(Hz) 5757.9 5994.4 2238.5 1468.7 3123.5 3424.1 2669.5 

Predicted natural 
frequency, 𝑓𝑓𝑛𝑛𝑝𝑝 (Hz) 5605.7 5822.1 2173.4 1415.2 3100.3 3630.7 2634.2 

(𝑓𝑓𝑛𝑛𝑚𝑚 −  𝑓𝑓𝑛𝑛𝑝𝑝) 𝑓𝑓𝑛𝑛𝑚𝑚⁄  
x 100 % 

2.7 2.9 2.9 3.6 0.7 -6.0 1.3 

Measured modal 
stiffness, km (N/m)  

(x 106) 
7.258 3.721 0.5311 0.302 2.6382 0.715 0.998 

Predicted modal 
stiffness, kp (N/m) (x 

106) 
6.700 3.406 0.55 0.29 2.5 0.7 0.997 

(𝑘𝑘𝑚𝑚 −  𝑘𝑘𝑝𝑝) 𝑘𝑘𝑚𝑚⁄  
x 100 % 

6.8 8.5 -3.8 3.8 3.5 -4.5 0.1 



 

CHAPTER 4:  RESULTS AND DISCUSSION 
 
 
The dynamic characteristics of the plate were predicted using finite element analysis 

and its accuracy was experimentally validated using impact tests. The tolerance intervals 

for all the test geometries were established to evaluate the repeatability of the experimental 

method for determining the dynamic characteristics. Quantitative effects of the mesh 

refinement and changes in length and fillet radius were evaluated using the predicted 

frequency response function described in Chapter 3. Using the numerical finite element 

modeling capability, the natural frequency and minimum stiffness for the first (most 

flexible) mode was evaluated over a range of lengths, thickness, and heights.  

4.1 Repeatability 

Repeat impact testing was performed on each test geometry in order to observe the 

variability in the dynamic parameters. A series of three impact tests were performed by 

gluing the workpiece to the steel table. The surfaces of the workpiece and the steel table 

were cleaned using acetone in order to ensure a proper surface contact between the two 

surfaces. Table 4.2 displays the ± one standard deviation (68%), SD, in the first mode 

measured modal parameters for different test geometries recorded in Table 4.1. 

 

 



51 
 

Table 4.1: Geometric dimensions for additional test geometries (all dimensions in mm). 

                    Case  

Geometry 
1 2 3 4 5 6 7 

Length 101 99.93 150 150 150 101.52 226.52 

Thickness 3.04 2.79 2.01 2.01 2.95 2.0 2.0 

Height 20.1 20.16 30 40 30 25.4 25.4 

 

4.2 Mesh Density 

In finite element analysis (FEA), the accuracy of the results and required computing 

time are determined in large part by the finite element size (mesh density). Finer mesh 

(small element size) models lead to highly accurate results, but require increased 

computing time. On the other hand, a FE model with coarser mesh may yield less accurate 

results even though the computing time is reduced. Due to its importance in generating the 

desired parameter lookup table, a mesh density study is presented. The goal is to select 

appropriate elements size so that the created models provide accurate FEA results (see 

Chapter 2 - Figure 2.22). In Chapter 3, in order to validate the experimental results, the 

mesh density along the thickness was made finer in comparison to the length and height of 

the FEA model. Therefore, this meshing strategy is used throughout the study and to 

generate the lookup table. 
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Table 4.2: First mode measured modal parameters for different test geometries carried out 
by series of three repeatability measurements. 

Case 1  
Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 

fn1 (Hz) 5777.7 5764.8 5774.7 5772.4 6.8 
k1 (N/m) x106 10.115 12.658 13.831 12.201 0.189 

ξ1 (%) 0.086 0.099 0.093 0.093 0.007 
Case 2  

Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 
fn1 (Hz) 6011.9 6005.1 6004.3 6007.1 4.2 

k1 (N/m) x106 4.191 4.125 4.043 4.119 0.074 
ξ1 (%) 0.177 0.216 0.216 0.203 0.022 

Case 3 
Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 

fn1 (Hz) 2251.4 2246.9 2243.8 2247.4 3.8 
k1 (N/m) x106 1.157 1.093 0.971 1.074 0.094 

ξ1 (%) 0.135 0.136 0.153 0.140 0.010 
Case 4 

Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 
fn1 (Hz) 1467.1 1466.4 1467.9 1467.1 0.8 

k1 (N/m) x106 0.479 0.488 0.539 0.502 0.032 
ξ1 (%) 0.234 0.234 0.208 0.225 0.015 

Case 5 
Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 

fn1 (Hz) 3113.6 3124.2 3105.2 3114.3 9.6 
k1 (N/m) x106 4.772 4.855 4.605 4.744 0.127 

ξ1 (%) 0.184 0.171 0.197 0.184 0.013 
Case 6 

Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 
fn1 (Hz) 3424.1 3423.3 3427.1 3424.8 2.0 

k1 (N/m) x106 1.148 0.967 1.137 1.084 0.101 
ξ1 (%) 0.167 0.234 0.178 0.193 0.036 

Case 7 
Modal Parameters Trial 1 Trial 2 Trial 3 Mean SD 

fn1 (Hz) 2669.5 2670.3 2669.5 2669.7 0.4 
k1 (N/m) x106 4.515 4.479 4.759 4.584 0.153 

ξ1 (%) 0.157 0.143 0.143 0.147 0.008 
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4.3 Comparison with Analytical Natural Frequency 

Leissa [35, 36] provided an analytical expression for natural frequencies of 

rectangular plates with various boundary conditions, see equation 4.1: 

 𝑓𝑓𝑖𝑖𝑖𝑖 =  
𝜆𝜆𝑖𝑖𝑖𝑖2

2𝜋𝜋𝑎𝑎2
 �

𝐸𝐸ℎ3

12𝛾𝛾(1 −  𝜈𝜈2)�
1 2⁄

 ; 𝑖𝑖 = 1, 2, 3 … ; 𝑗𝑗 = 1, 2, 3 … (4.1) 

where a is the length, b is the width, and h is the thickness of the plate. Also, i is the number 

of half-waves in the mode shape along the horizontal axis, j is the number of half-waves in 

the mode shape along vertical axis, γ is the mass per unit area of the plate (ρh for a plate of 

a material with density ρ), λij is the dimensionless frequency parameter of rectangular plates 

as a function of the boundary conditions applied at the edges of the plate (see Table 4.3), 

the aspect ratio (a/b) of the plate, and, in some cases, Poisson’s ratio (ν). It has been found 

that λij is independent of Poisson’s ratio unless one or two edges of the rectangular plate 

are free. The dimensionless frequency parameter, λ11, in Table 4.3 is a function of a 

Poisson’s ratio of 0.3. However, the Poisson’s ratio used for the finite element analysis is 

0.33 for aluminum and 0.342 for titanium test geometries. 
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Table 4.3: Dimensionless frequency parameters of rectangular plate for analytical 
frequency. 

𝜆𝜆112  

Aspect ratio (a/b) 

First mode sequence 

CCCF Plate Cantilever Plate 

0.4 22.58 3.511 

2/3 23.02 3.502 

1.0 24.02 3.492 

1.5 26.73 3.477 

2.5 37.66 3.456 

The first natural frequency for a CCCF plate with an aspect ratio greater than 2.5 (see Table 

4.3) was evaluated using a computer program. The dimensionless frequency parameter was 

calculated using a curve fit to the parameters in Table 4.3: 

 𝑓𝑓(𝑥𝑥) = (𝑝𝑝𝑥𝑥)2 − 𝑞𝑞𝑥𝑥 + 𝑟𝑟 (4.2) 

where p, q , and r are the coefficients with 95% confidence bounds. The coefficients for 

Equation 4.2 are shown in Table 4.4 and the curve fitting plot is shown in Figures 4.1 and  

4.2. A comparison between the FEA, measured, and analytical first mode natural 

frequencies is provided in Table 4.5. 
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Table 4.4: Coefficients for curve fitting. 

Coefficients Cantilever plate CCCF plate 

p 0.06602 1.827 

q 0.03894 2.551 

r 3.526 23.15 

 

Figure 4.1: The resulting plot displays the aspect ratio (red circle) and curve fitting (blue 
line) for the cantilever plate. 
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Figure 4.2: The resulting plot displays the aspect ratio (red circle) and curve fitting (blue 
line) for the CCCF plate. 

Table 4.5: Comparison of the analytical, predicted and measured first mode natural 
frequency for all test geometries. 

                                  

                   Case 

Modal  

Parameters 

1 2 3 4 5 6 7 

Measured natural 
frequency, 
𝑓𝑓𝑛𝑛𝑚𝑚(Hz) 

5757.9 5994.4 2238.5 1468.7 3123.5 3424.1 2669.5 

Analytical natural 
frequency, 𝑓𝑓𝑛𝑛𝑎𝑎(Hz) 6488 6921.8 2050.9 1322.7 3049 3161.9 2547.8 

Predicted natural 
frequency, 𝑓𝑓𝑛𝑛𝑝𝑝 
(Hz) 

5605.7 5822.1 2173.4 1415.2 3100.3 3630.7 2634.2 

(𝑓𝑓𝑛𝑛𝑚𝑚 −  𝑓𝑓𝑛𝑛𝑎𝑎) 𝑓𝑓𝑛𝑛𝑚𝑚⁄  
x 100 % 

-12.7 -15.5 8.4 9.9 2.4 7.7 4.6 

(𝑓𝑓𝑛𝑛𝑚𝑚 −  𝑓𝑓𝑛𝑛𝑝𝑝) 𝑓𝑓𝑛𝑛𝑚𝑚⁄   
x 100 

2.7 2.9 2.9 3.6 0.7 -6.0 1.32 

0 0.5 1 1.5 2 2.522
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f(x) = (p*x)2 - q*x + r -- R2 = 0.9998
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4.4 Grid and Interpolation for Natural Frequency and Stiffness 

Finally, using FEA, the minimum stiffness and corresponding natural frequency (for 

the first mode) were evaluated for changes in length ranging from 150 mm to 1450 mm, 

thickness from 1.5 mm to 15.5 mm, and height from 12 mm to 152 mm. These trends were 

combined into a lookup table that can be used to identify the natural frequency and 

minimum rib stiffness for any selected geometry; see Figures 4.3 to 4.6. A computer 

program was used to develop the lookup table by interpolation. The program returns 

interpolated values of stiffness and natural frequency as a function of three input geometry 

variables (height, thickness, and length) for titanium workpieces using spline interpolation. 

Using the interpolated natural frequency and stiffness values, the workpiece dynamics can 

be defined and, using milling stability methods, stable machining parameters may be 

identified. The MATLAB code is given in APPENDIX A. 

 

Figure 4.3: The plot displays the natural frequency values for a 72 mm tall CCCF plate. 
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Figure 4.4: The plot displays the natural frequency values for a 7.5 mm thick and 72 mm 
tall CCCF plate. 

 

Figure 4.5: The plot displays the minimum stiffness values for a 72 mm high CCCF plate. 
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Figure 4.6: The plot displays the stiffness values for a 7.5 mm thick and 72 mm tall CCCF 
plate. 

Table 4.6: Comparison of the modal parameters for CCCF plate with respect to increase 
in span length. 

                                  Case             

Modal  

Parameters 

6 7 

Measured natural frequency, 𝑓𝑓𝑛𝑛𝑚𝑚(Hz) 3424.1 2669.5 
Predicted natural frequency, 𝑓𝑓𝑛𝑛𝑝𝑝 (Hz) 3630.7 2634.2 
(𝑓𝑓𝑛𝑛𝑚𝑚 −  𝑓𝑓𝑛𝑛𝑝𝑝) 𝑓𝑓𝑛𝑛𝑚𝑚⁄  x 100 %  -6.0 1.3 
Measured minimum stiffness, km (N/m) x 106 0.715 0.998 
Predicted modal stiffness, kp (N/m) (x 106) 0.747 0.997 
(𝑘𝑘𝑚𝑚 −  𝑘𝑘𝑝𝑝) 𝑘𝑘𝑚𝑚⁄  x 100 % -4.5 0.1 
Measured modal mass, mm (kg) 0.0015 0.0035 
Predicted modal mass, mp (kg) 0.0014 0.0036 
(𝑚𝑚𝑚𝑚 −  𝑚𝑚𝑝𝑝) 𝑚𝑚𝑚𝑚⁄  x 100 % 6.7 -2.9 
Damping coefficient , c (N-s/m) 0.111 0.170 
(𝑐𝑐𝑚𝑚 −  𝑐𝑐𝑝𝑝) 𝑐𝑐𝑚𝑚⁄  x 100 % 1.8 -0.6 
Damping ratio, ξ (%) 0.170 0.143 
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Based on, Figure 4.6 it was observed that an increase in the span length (with other 

parameters fixed) results in an increase in the stiffness of the CCCF plate. This observation 

was verified by conducting an impact test on the case 6 and 7 test geometries and is reported 

in Table 4.6. The longer span rib (7) has a higher stiffness than the shorter span rib (6).



 

CHAPTER 5:  SUMMARY AND CONCLUSION 
 
 
In this work, a semi-analytical model for thin-plate dynamics was developed that 

considers first mode natural frequency and its corresponding minimum stiffness. The 

analysis were carried out using ABAQUS/EXPLICIT. The motivation behind this study 

was to enable high precision machining of thin features in hard-to-machine materials at 

high efficiency and low cost. A brief introduction to thin-wall machining and a literature 

survey was presented first. This was followed by the current techniques used for thin-wall 

machining. The analyses were carried out as two cases. First, the thin-wall with cantilever 

boundary condition was considered to understand its response to anticipated cutting forces. 

Second, the thin-wall with clamped-clamped-clamped-free boundary condition was 

modeled by using stiffeners.  

A comparison of predicted and measured natural frequencies, stiffness values, and 

mode shapes showed good agreement for thin-walled structures with cantilever and 

clamped-clamped-clamped-free boundary conditions. In both cases, the first mode was 

taken to be the most flexible mode and, therefore, the focus was on studying the flexible 

first mode corresponding natural frequency and stiffness as various geometric parameters 

were varied. Further analyses were conducted on other plate geometries with clamped-

clamped-clamped-free boundary conditions.

Repeat impact tests were performed in order to observe the variability in the dynamic 

parameters. A series of three test were performed by gluing the test geometries to the steel 
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table and the ± one standard deviation (68%) was calculated. Results indicated acceptable 

repeatability in the dynamic parameters using the experimental approach. Furthermore, it 

was determined that the mesh resolution, especially along the thickness, is critical to 

predicting dynamic parameters. 

An analytical natural frequency expression [36] was used to compare the predicted 

and measured natural frequency. The analytical natural frequency was found to be 

comparable with predicted (finite element analysis) and measured natural frequencies. The 

error deviated by up to -15.5% between analytical and measured natural frequencies and -

6.0% between analytical and predicted natural frequencies. 

Finally, using the numerical finite element modeling capability, the natural frequency 

and minimum stiffness for the first (most flexible) mode was evaluated over a range of 

lengths, thicknesses, and heights. These trends were combined into a lookup table that can 

be used to identify the natural frequency and minimum rib stiffness for the selected 

geometry. Using the interpolated natural frequency and stiffness values, the workpiece 

dynamics can be defined and, using milling stability methods, stable machining parameters 

may be identified.
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APPENDIX A: GRID AND INTERPOLATION FOR NATURAL FREQUENCY AND 
STIFFNESS MATLAB CODE 

 
 

%{ 
Grid and interpolation for natural frequency and stiffness 
 
Created by Joyson Menezes and Kadir Kiran 
 
This code inputs 10 by 14 by 15 matrix each of natural frequency and 
minimum stiffness data which is predicted using ABAQUS/Standard 6.13 
and performs interpolation of a function of three geometry variables  
(height, thickness, and length) at specific query points using 
spline interpolation. 
%} 
  
%Clear screen, variables, and figures. 
clc 
close all 
clear all 
  
%% INPUT GEOMETRIC DATA 
  
%Enter the span length for the thin-plate 
prompt_length = 'Please enter a span length for the thin-plate ranging from 150.0 to 1450.0 
mm: \n '; 
L = input(prompt_length);%if the entered length is outside the given limit an error message 
will be displayed 
while L <150.00 || L >1450.00 
    clear all 
    error('All values for length are outside the limit')%Error message 
end 
Length = L; 
  
%Enter the thickness for the thin-plate in mm 
prompt_thk = 'Please enter a thickness for the thin-plate ranging from 1.50 to 15.5 mm: \n'; 
thk = input(prompt_thk); 
while thk <1.50 || thk >15.0 %if the entered thickness is outside the given limit an error 
message will be displayed 
    clear all 
    error('All values for thickness are outside the limit')%Error message 
end 
Thickness = thk; 
  
%Enter the height for the thin-plate in mm 
prompt_ht = 'Please select a height for the thin-plate ranging from 12 to 152 mm: \n '; 
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Ht = input(prompt_ht); 
while Ht <12.00 || Ht >152.00%if the entered height is outside the given limit an error 
message will be displayed 
    clear all 
    error('All values for height are outide the limit')%Error message 
end 
Height = Ht; 
  
%Returns interpolated natural frequency and min. stiffness 
[Nf,MS] = interpolation_function(Length,Thickness,Height); 
 
function [NF,MS] = interpolation_function(Len,thk,Ht) 
% function to interpolate the natural frequency and min. stiffness using 
% spline method 
  
% load the 3D array of nat. freq. for height 
load('nat_freq_height.mat'); 
  
% load the 3D array of min. stiffness for height 
load('min_stiff_height.mat'); 
  
% Array holding the length, height and thickness 
ht=[12:10:152]; %height(mm) 
l=150:100:1450; %length(mm) 
t=[1.5:1:5.5 7.5:2:15.5]; %thickness(mm) 
  
% 3D array holding the natural frequency and minimum stiffness 
th_nf=zeros(length(ht),length(l),length(t)); 
th_ms=zeros(length(ht),length(l),length(t)); 
for i=1:length(t) 
    for j=1:length(l) 
        for k=1:length(ht) 
            th_nf(k,j,i)=h_nf(i,j,k);%3D array for natural frequency 
            th_ms(k,j,i)=h_ms(i,j,k);%3D array for minimum stiffness 
        end 
    end 
end 
  
% Building mesh grid 
h_i=[12:1:152]; 
l_i=[150:5:1450]; 
t_i=[1.5:1:5.5 7.5:2:15.5]; 
  
[L,H,T]=meshgrid(l_i,h_i,t_i); 
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% Interpolation function 
  
% natural frequency 
n_f=@(L,H,T)interp3(l,ht,t,th_nf,L,H,T,'spline'); 
  
% Minimum stiffness 
m_s=@(L,H,T)interp3(l,ht,t,th_ms,L,H,T,'spline'); 
  
NF = n_f(Len,Ht,thk);%Interpolated natural frequency 
MS = m_s(Len,Ht,thk);%Interpolated min. stiffness 
end 
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