
COMPARISON BETWEEN DEEP LEARNING AND STATISTICAL LEARNING
APPROACHES FOR ANOMALY DETECTION APPLICATIONS IN A

MICROGRID

by

Chaitanya Bhure

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2020

Approved by:

Dr. Madhav Manjrekar

Dr. Fareena Saqib

Dr. Chen Chen

ii

c©2020
Chaitanya Bhure

ALL RIGHTS RESERVED

iii

ABSTRACT

CHAITANYA BHURE. Comparison between deep learning and statistical learning
approaches for anomaly detection applications in a microgrid. (Under the direction

of DR. MADHAV MANJREKAR)

A microgrid is a localized group of electricity sources and loads that normally op-

erates connected to and synchronous with traditional wide area synchronous grid

(macrogrid), but can also disconnect to island mode and then function autonomously

as physical or economic conditions dictate. In this way, a microgrid can effectively

integrate various sources of distributed generation (DG), especially Renewable En-

ergy Sources (RES) and can supply emergency power, changing between island and

connected modes. With the various devices connected on the microgrid, there is a lot

of useful data which can be used to analyze their individual behaviours as well as for

understanding how they operate with each other. Data Analytics has made tremen-

dous progress in this decade and is only going to grow. It is natural that the utilities

industry will want to make use of this technology of Machine Learning available at

their disposal. This thesis investigates the novel approach of Deep Learning over tra-

ditional or statistical data analysis by comparing their performance in the analyzing

the behaviour of the microgrid. Deep Learning architectures like Recurrent Neural

Networks (RNN), Long Short Term Memory Networks (LSTM) have been proved to

be effective in understanding time series data or temporal sequences in previous re-

search in comparison to statistical algorithms like Auto Regressive Integrated Moving

Average (ARIMA) or Vector Auto Regression (VAR). A new deep learning architec-

ture of a ConvolutionalLSTM (Convolutional Long Short Term Memory Networks)

is developed and tested. Finally the results are compared based on time required

to train the models to their best performance and their accuracy in detecting the

anomalies in the microgrid.

iv

DEDICATION

I would like to dedicate this thesis to my parents who have raised me to the person I

am today. Thank you for all the unconditional love, guidance and support you have

given me and instilling in me the confidence that I am capable to doing anything I

put my mind to. I could not have imagined accomplishing what I have without you

by my side. Thank you for everything.

v

ACKNOWLEDGEMENTS

There are several people I would like to thank for their support and contributions

to the project. First I would like to thank my advisor Dr. Madhav Manjrekar and

my supervisor at Open Energy Solutions Inc. Mr. Dave Mulder for giving me the

opportunity to be involved in this cutting edge research. I feel lucky to have had the

chance to work with Dr. Manjrekar who is at the forefront of research in the cyber

vulnerability in electrical infrastructure. He enjoys teaching as well as research and I

have learnt a lot from working with him as a Research Assistant. Dave Mulder is a very

supportive supervisor who is flexible and understanding of the balance between work

and studies which is important for a student. He has provided a lot of useful feedback

and I hope the results of this research effort are promising for the incorporation of

Machine Learning Analytics at Open Energy Solutions Inc. I would also like to thank

Dr. Fareena Saqib and Dr. Chen Chen for being part of my graduate committee.

Dr. Chen is an incredible instructor and has, what seems to be an infinite amount of

knowledge in the Deep Learning domain. He has always provided valuable feedback

on the results of this research and interesting ideas to tackle problems that came along

the way. Although I have not had the pleasure of taking a course with Dr. Saqib,

she has background in the research regarding machine intelligence and IoT security

which this research effort deals with on a broader scope. She has been very helpful

with insights on the deep learning models used in this thesis.

vi

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1. Microgrids: Components and Working 3

1.2. Motivation of Study 8

1.3. Literature Review 9

1.4. Organization of thesis 12

CHAPTER 2: OVERVIEW OF THE DATASET 14

2.1. Data Cleansing 16

2.1.1. Removal of Null values or NaN’s 16

2.1.2. 3 point segregation 17

2.1.3. Resampling 17

2.2. Data Preprocessing 18

2.2.1. Splitting between training and testing set 18

2.2.2. Skew values of the data 19

2.2.3. Normalizing the data 20

CHAPTER 3: ANOMALY DETECTION IN TIME SERIES 22

3.1. Anomaly detection in time series using supervised learning 28

3.2. Unsupervised anomaly detection 29

CHAPTER 4: VECTOR AUTO REGRESSION 31

4.1. The algorithm 31

vii

4.2. Anomaly Detection 39

CHAPTER 5: LSTM AUTOENCODER 44

5.1. The algorithm 44

5.2. Anomaly detection 50

CHAPTER 6: CONVOLUTIONAL LSTM 56

6.1. The algorithm 56

6.2. Anomaly detection 58

CHAPTER 7: CONCLUSIONS AND FUTURE SCOPE 65

REFERENCES 69

viii

LIST OF FIGURES

FIGURE 1.1: Microgrid Demonstration Projects 2

FIGURE 1.2: Major Cost Components of the microgrid 3

FIGURE 1.3: Microgrid Schema 4

FIGURE 1.4: Solar Settlement at Freiburg, Germany 6

FIGURE 1.5: Intelligent Sensing, Control and Analysis 9

FIGURE 2.1: Snapshot of Raw Data 16

FIGURE 2.2: Columns in Raw Data 16

FIGURE 2.3: NaN Removal Code snippet 17

FIGURE 2.4: 3 point segregation 17

FIGURE 2.5: Resampling data code snippet 18

FIGURE 2.6: Splitting data code snippet 19

FIGURE 2.7: Training Data 19

FIGURE 2.8: Skew values for training data 19

FIGURE 2.9: Modified skew values after manipulation 20

FIGURE 2.10: Min-Max Scalar implementation 21

FIGURE 3.1: Point outlier detection 23

FIGURE 3.2: Meaning of outliers in time series data 23

FIGURE 3.3: Outlier detection techniques 24

FIGURE 3.4: Univariate and multivariate time series 25

FIGURE 3.5: Univariate and multivariate time series with subsequence
outliers

27

FIGURE 3.6: Entire time series as outlier 28

ix

FIGURE 3.7: Flagging anomalies before they occur 29

FIGURE 4.1: ADF Test Code Snippet 35

FIGURE 4.2: Time series X Granger-causes time series Y 36

FIGURE 4.3: Granger Causality Test Code Snippet 39

FIGURE 4.4: Augmented Dickey Fuller test results 40

FIGURE 4.5: Order selection in VAR 41

FIGURE 4.6: Loss distribution in VAR 42

FIGURE 4.7: Anomaly detection in test data using VAR 43

FIGURE 5.1: LSTM basic cell unit 45

FIGURE 5.2: Gated Recurrent unit 47

FIGURE 5.3: LSTM Autoencoder model 50

FIGURE 5.4: Training data from 3 different devices 51

FIGURE 5.5: Training data from 3 different devices scaled between 0 to
1

51

FIGURE 5.6: LSTM Autoencoder model 53

FIGURE 5.7: LSTM Autoencoder loss distribution plot 54

FIGURE 5.8: LSTM Autoencoder anomaly detection 55

FIGURE 6.1: LSTM Cell 56

FIGURE 6.2: Convolution of image with one filter 57

FIGURE 6.3: ConvLSTM Cell 58

FIGURE 6.4: Convolutional LSTM neural network 61

FIGURE 6.5: Convolutional LSTM Loss Distribution plot 62

FIGURE 6.6: Convolutional LSTM anomaly detection 63

x

FIGURE 7.1: Proposed framework for real time anomaly detection 67

xi

LIST OF ABBREVIATIONS

ADF Augmented Dickey Fuller.

AIC Akaike information criterion.

ANN Artificial Neural Network.

AR Auto Regression.

CEC Constant error carousel.

CNN Convolutional Neural Network.

DER Distributed Energy Resources.

DOE Department of Energy.

ECE An acronym for Electrical and Computer Engineering.

ESTCP Environmental Security Technology Certification Program.

GRU Gated Recurrent Unit.

IDS Intrusion Detection Systems.

LSTM Long short term memory.

R&D Research and Development.

RDSI Renewable and distributed systems integration.

RES Renewable Energy Sources.

RNN Recurrent Neural Network.

SGDP Smart Grid Demonstration project.

VAR Vector Auto Regression.

CHAPTER 1: INTRODUCTION

The U.S. Department of Energy (DOE) Smart Grid R&D Program considers micro-

grids as a key building block for a Smart Grid and has established microgrid R&D as

a key focus area [1]. Microgrids have been identified as a key component of the Smart

Grid for improving power reliability and quality, increasing system energy efficiency,

and providing the possibility of grid independence to individual end-user sites. The

DOE defines the microgrid as "a group of interconnected loads and distributed energy

resources within clearly defined electrical boundaries that acts as a single controllable

entity with respect to the grid. A microgrid can connect and disconnect from the grid

to enable it to operate in both grid-connected or island-mode [2]".

The benefits of microgrids include:

1. Integration of renewable energy sources to help reduce peak load and losses by

locating generation near demand

2. Meeting end-user needs by ensuring energy supply for critical loads, controlling

power quality and reliability at local level

3. Supporting the macrogrid by handling sensitive loads and variability of renew-

ables locally and supplying ancillary services to the bulk power system

The bulk of DOE microgrid R&D efforts have been focused on demonstration activ-

ities to meet niche application needs such as needs for meeting peak load reduction,

renewable energy mandates and directives and reliability at some critical facilities

including military installations [1]. The ongoing microgrid demonstration projects

consist of lab-and field-scale R&D test beds, renewable and distributed systems inte-

gration [3] (RDSI) projects for peak load reduction, select Smart Grid Demonstration

2

Program (SGDP) projects as part of DOE’s implementation of grid modernization

under the American Recovery and Reinvestment Act of 2009 [4] (ARPA), and assess-

ment and demonstration projects jointly supported by the Department of Defense

(DoD) and DOE. These and other microgrid development and deployment projects

are shown in 1.1 including those projects funded under the DoD Environmental Se-

curity Technology Certification Program [5] (ESTCP) Installation Energy Test Bed

Initiative. The DOE projects shown in 1.1 are summarized below.

Figure 1.1: Microgrid Assessment and Demonstration Projects in the U.S.

Nine RDSI projects were selected in 2008 via a competitive DOE solicitation. The

primary goals of these projects were to demonstrate at least 15 percent peak demand

reduction on the distribution feeder or substation level through integrating distributed

energy resources (DER) and to demonstrate that could operate in both grid parallel

and islanded modes [6]. The application of technologies in an integrated fashion has

the potential to allow more power to be delivered through existing infrastructure,

thereby deferring transmission and distribution investment and to increase the reli-

ability of the grid by adding elements that make it more stable and re-configurable

[7]. Other potential benefits include addressing vulnerabilities in critical infrastruc-

ture, managing peak loads, lowering emissions, using fuel resources more efficiently

3

and helping customers manage energy costs. These RDSI projects progressed toward

achieving the goal of at least 15 percent peak reduction and some already demon-

strated 15 percent or more in reductions. The total value of the RDSI program

exceeded $100 million, with approximately $55 million from the DOE over five years

and the rest through participant cost share [3].

Figure 1.2: Major cost components of the microgrid

1.1 Microgrids: Components and Working

A microgrid [8] can effectively integrate various sources of distributed generation

(DG) especially Renewable Energy Sources (RES) and can supply emergency power,

changing between island and grid-connected modes as shown in 1.3. Control and

protection are challenges to the microgrid [9]. A very important feature is also to

provide multiple end-use needs such as heating, cooling and electricity at the same

time since this allows energy carrier substitution and increased efficiency due to waste

heat utilization for heating, domestic hot water and cooling purposes.

4

Figure 1.3: A typical scheme of an electric based microgrid with renewable energy
resources in grid-connected mode

The types of microgrids are :

1. Campus environment/Institutional microgrids whose focus is aggregating on site

generation with multiple loads in tight geography where the owner can easily

manage them [10].

2. Community Microgrids which can serve up to few thousand customers and

support penetration of local energy. In a community microgrid, some houses

may have some renewable sources that can supply their demand as well as that of

their neighbors within the same community [11]. The community microgrid may

also have a centralized or several distributed energy storage. Such microgrids

can be in the form of an ac and dc microgrid coupled together through a bi-

directional power electronic converter.

3. Remote-Off grid microgrids never connect to the Macrogrid and instead oper-

ate in an island mode at all times because of economic issues or geographical

position. Typically, an "off-grid" microgrid is built in areas that are far dis-

tant from any transmission and distribution infrastructure and, therefore, have

5

no connection to the utility grid. Studies have demonstrated that operating a

remote area or islands’ off-grid microgrids, that are dominated by renewable

sources, will reduce the levelized cost of electricity production over the life of

such microgrid projects [12].

4. Military microgrids are being actively deployed with focus on both physical and

cyber security for military facilities in order to assure reliable power without

relying on the Macrogrid [13].

5. Main reasons for the installation of an industrial microgrid are power supply

security and its reliability. There are many manufacturing processes in which an

interruption of the power supply may cause high revenue losses and long start-up

time.Industrial microgrids can be designed to supply circular economy (near-

)zero-emission industrial processes, and can integrate combined heat and power

(CHP) generation, being fed by both renewable sources and waste processing;

energy storage can be additionally used to optimize the operations of these

sub-systems.

There are a few basic components of a microgrid as described below:

1. Local Generation: A microgrid presents various types of generation sources that

feed electricity, heating, and cooling to user. These sources are divided into

two major groups namely; thermal energy sources (e.g, natural gas or biogas

generators or micro combined heat and power) and renewable generation sources

(e.g. wind turbines, solar).

2. Consumption: In a microgrid, consumption simply refers to elements that con-

sume electricity, heat, and cooling which range from single devices to lighting,

heating system of buildings, commercial centers, etc. In the case of controllable

loads, the electricity consumption can be modified in demand of the network.

6

3. Energy Storage: In microgrid, energy storage is able to perform multiple func-

tions, such as ensuring power quality, including frequency and voltage regu-

lation, smoothing the output of renewable energy sources, providing backup

power for the system and playing crucial role in cost optimization. It includes

all of chemical, electrical, pressure, gravitational, flywheel, and heat storage

technologies.

4. Point of Common Coupling (PCC): It is the point in the electric circuit where

a microgrid is connected to a main grid. Microgrids that do not have a PCC

are called isolated microgrids which are usually presented in the case of remote

sites

Figure 1.4: Sustainable Housing Community at Freiburg, Germany

A microgrid is capable of operating in grid-connected and stand-alone modes and

of handling the transition between the two. In the grid-connected mode, ancillary

services can be provided by trading activity between the microgrid and the main

grid. Other possible revenue streams exist. In the the islanded mode, the real and

reactive power generated within the microgrid, including that provided by the energy

7

storage system, should be in balance with the local loads [8]. Microgrids offer an

option to balancing the need to reduce carbon emissions while continuing to provide

reliable electric energy in periods of time that renewable sources of power are not

available. Microgrids also offer the security of being hardened from severe weather

and natural disasters by not having large assets and miles of above-ground wires and

other electric infrastructure that needs to be maintained or repaired following these

events [14]. A microgrid may transition between these two modes because of scheduled

maintenance, degraded power quality or a shortage in the host grid, faults in the local

grid or for economical reasons. By means of modifying energy flow through microgrid

components, microgrids facilitate the integration of renewable energy generation such

as photo voltaic, wind and fuel cell generations without requiring re-design of the

national distribution system. Modern optimization methods can also be incorporated

into the microgrid energy management system to improve efficiency, economics and

resiliency.

Microgrids and the integration of DER units in general, introduce a number of

operational challenges that need to be addressed in the design of control and pro-

tection systems [9], in order to ensure that the present levels of reliability are not

significantly affected and the potential benefits of Distributed Generation (DG) units

are fully harnessed. Some of these challenges arise from assumptions typically applied

to conventional distribution systems that are no longer valid, while others result of

stability issues formerly observed only at transmission system level. The presence of

distributed generation units in the network at low voltage levels can cause reverse

power flows that may lead to complications in protection coordination, undesirable

power flow patterns, fault current distributions and voltage control. Interactions

between control system of DG units may create local oscillations requiring a thor-

ough small-disturbance stability analysis. Moreover, transition activities between the

grid-connected and islanding modes of operation in a microgrid can create transient

8

instability. Many characteristics of traditional schemes such as the prevalence of

three-phase balanced conditions, primarily inductive transmission lines and constant

power loads do not necessarily hold true for microgrids and consequently models

need to be revised. Microgrids exhibit a low-inertia characteristic that makes them

different to bulk power systems, where a large number of synchronous generators en-

sures a relatively large inertia. Especially if there is a significant proportion of power

electronic-interfaced DG units in the microgrid, this phenomenon is more evident.

The low inertia in the system can lead to severe frequency deviations in island mode

operation if a proper control mechanism is not implemented [8]. The operation of

microgrids involves addressing much uncertainty, which is something the economical

and reliable operation of microgrids relies on. Load profile and the weather are two

of there uncertainties that make this coordination more challenging in isolated micro-

grids, where critical demand-supply balance and typically higher component failure

rates require solving a strongly coupled problem over an extended time horizon. This

uncertainty is higher than those in bulk power systems, due to the reduced number

of loads and highly correlated variations of available energy resources (the averaging

effect is much more limited).

1.2 Motivation of Study

Since the inception of data collection activities in the power and energy industry,

the amount of data generated or recorded is far too much for the operator to make

any sense about it. Tools must be created to process the data and provide useful

information to system planners, operators and protection engineers. Now, with all

this information, the question we seek the answer to is "How do we use this data

to improve our situational intelligence and awareness?" [15]. As shown in figure 1.5,

there are intelligent sensors installed which produce high resolution raw data to derive

insights from and answer questions like What, When, Where, How and What-If. This

results in improved operations, performance and system planning.

9

Figure 1.5: From data to business transformation using Intelligent Sensing, Control
and Analysis

1.3 Literature Review

Microgrid data is very seldom utilized for analysis. The data is often recorded but

there is not enough investment going into it for further analysis of the data. The few

basic components of a microgrid as explained in the earlier sections mention gener-

ation, consumption, energy storage and point of common coupling devices. Various

devices form a part of these different components and measure different quantities

ranging from voltages and currents to the frequency. As devices modernize, they

acquire the capability to generate data which can be transmitted to a central repos-

itory for storage and further analysis. This is called the time scale database since,

the quantities measured by the devices are in respect with the time. Sometimes the

zone, is set to Coordinated Universal Time to keep the time zone consistent while

performing the analysis in different regions of the world. With the amount of data

generated and the advancements in Big Data Analytics, there is a lot of valuable

information which can be used for deriving useful insights ranging from prediction

for the future (for example; load forecasting) to anomaly detection in the data. As

described by the authors in [16], the pervasive deployment of advanced ICT (Infor-

mation and Communication Systems), especially the smart metering will generate

10

big energy data in terms of volume, velocity and variety. The generated big data can

bring huge benefits to the better energy planning, efficient energy generation, and

distribution. This article discusses the far reaching effects of anomalous behaviour of

a smart grid. Since, there could be existing multiple sources leading to observed ab-

normal data, it is not always easy to determine the source of the data. Thus research

efforts are made to design general energy big data anomaly detection algorithms. In

[15] a scalable method is proposed to observe anomaly behaviour over energy big

data. Supervised learning classifiers have been applied to finding anomaly data. It

can be used to detect electricity theft, fault, and cyber intrusions. This approach has

utilized some ad hoc intuitions in addressing the big data challenge.

Wireless sensor networks have become integral components of the monitoring sys-

tems for critical infrastructures such as the power grid or residential microgrids.

Therefore, implementation of robust Intrusion Detection Systems (IDS) at the sen-

sory data aggregation stage has become of paramount importance. Key performance

targets for IDS in these environments involve accuracy, precision, and the receiver

operating characteristics which is a function of the sensitivity and the ratio of false

alarms. Furthermore, the interplay between machine learning and networked systems

has led to promising opportunities, particularly for the system level security of wire-

less sensor networks as described in [17]. In [18] a mathematical model of smart loads

in demand-response schemes is presented, which is integrated into centralized unit

commitment with optimal power flow coupled energy management systems for iso-

lated microgrids for optimal generation and peak load dispatch. The smart loads were

modelled as a function of neural network load estimator. To train this neural net-

work estimator, realistic data from actual energy hub management system was used

for supervised training. In [19] a supervised machine learning approach is introduced

to predict and schedule the real-time operation mode of the next operation interval

for residential battery systems controlled by mode-based controllers. The optimal

11

operation mode for each control interval was first derived from the historical data

used as the training set. Then, four ML algorithms of neural network [20], support

vector machine [21], logistic regression [22], and random forest [23] were applied.

The difference between supervised [24] and unsupervised learning techniques for

anomaly detection is labelled data. Since, the anomalies or anomalous behaviour is

rare in real life situations, there is a dearth of labelled data about anomalies and more

so in the power and energy industry. This is also because of the frequency at which

data points are recorded. 30 or 60 data points per second is a high frequency rate and

finding out instantaneous anomalies at these frequencies is difficult. Hence, the lack of

labelled data for anomalies. Which consequently leads to using unsupervised learning

techniques [25]. In [26], a comparison between supervised and unsupervised learning

techniques has been done for fraud detection in telecommunication networks. The

advantage of using unsupervised learning techniques for anomaly detection is that

the models do not need labelled dataset and with the advent of deep learning [27]

methodologies, the raw data can be used as is. In unsupervised learning techniques,

the network tries to model the correct or the non-anomalous data which is the majority

of the entire dataset and then a threshold is set according to how well the network

learns the good data. Based on this, and using the threshold any deviation from

the normal or good data beyond the threshold is classified as an anomaly. For the

purpose of this thesis, this is the mechanism we have used as well. In [28] a review of

faults and fault diagnosis in microgrids in electrical energy infrastructure is presented.

With the advancements of sensing, communication, and control technologies, the

existing power systems have evolved with the development of Smart Micro-grids.

Smart micro-grids integrate information technology, communication technology and

power generation systems into one unified micro power system for robust and reliable

power. A critical problem in power systems is the cascading effect of faults leading

to severe failures and blackouts unless timely protective actions are taken. As a

12

recovery mechanism, smart micro-grids are envisioned to detect these critical changes

and switch into island mode for continual power generation and system stability. The

paper essentially discusses two methods for fault diagnosis. One is model based and

the other is a data driven approach. In the model based approach, the training data

is generated for different scenarios and classification algorithms can be implemented

for detection and diagnosis. In a data driven approach, the data is mined from

the physical system instead of being generated. In island modes smart grids utilize

measurements generated from meters and non invasive sensing devices to perform

diagnostics and maintain performance. Some of the methods mentioned in the paper

are Support Vector Machine [20], K-Means Clustering [29], Artificial neural networks

[21], fuzzy logic [30] and many others. As concluded in the paper [28], fault detection

and diagnosis is critical to improve performance and reliability of power distribution.

Early diagnosis of failures of components within the distribution system facilitates

condition based monitoring and autonomous reconfiguration to reduce repair time

and costs while minimizing cascading failures.

1.4 Organization of thesis

This thesis is organized as per the following chapters:

• Chapter 2: The second chapter provides an overview of the dataset. We

explore the features present in the dataset, the features we use for analysis,

the time frame of the data collected and the significance of the features. We

also look in depth at the cleaning and preprocessing methodologies used on the

dataset to make it suitable for model training.

• Chapter 3: The third chapter covers an extensive review of time series data,

univariate and multivariate time series. We go further into identifying the out-

liers in such time series data sets and the methodologies to do so. We discuss

supervised and unsupervised learning approaches and why unsupervised learn-

13

ing approaches are the future in anomaly or outlier detection tasks in time series

data

• Chapter 4: The fourth chapter focuses on the Vector Auto Regression al-

gorithm for anomaly detection in time series data. This chapter covers the

algorithm in detail including its history and working as a statistical model that

can be used for anomaly detection.

• Chapter 5: The fifth chapter covers the Long Short Term Memory Network

Autoencoder model for anomaly detection. We discuss the LSTM Network

architecture, its success in time series tasks and the reasons behind the same.

We also look at autoencoders and their importance in unsupervised anomaly

detection tasks.

• Chapter 6: The sixth chapter covers the novel Conv-LSTM (Convolution Long

Short Term Memory Network) model for anomaly detection in time series tasks.

We discuss in this chapter, the disadvantages of the LSTM model and why

using the Convolutions from the Convolution Neural Network model would be

of significance.

• Chapter 7: This chapter is the conclusion of the thesis. The results generated

from the algorithms mentioned above are compared and we look at the best

performing model at the unsupervised anomaly detection tasks using various

parameters.

CHAPTER 2: OVERVIEW OF THE DATASET

The data utilized for the purpose of this thesis is acquired from Duke Energy’s

microgrid facility at Mt. Holly, NC. Thus, by nature the dataset is a most likely

representation of the data quality in the industry. That means the data is not curated

for research purposes and a primary data cleansing process is absolutely necessary

before any analysis is done on the data. Of the multiple devices installed at the

microgrid facility we make use of data from three of those devices at different points

in the microgrid. For the sake of confidentiality, we shall call the devices as "Device

A", "Device B" and "Device C" respectively. Device A is connected to a battery in

the microgrid and sees output from the battery. Device B is connected to a solar

farm (renewable energy component) in the microgrid and Device C is connected to

a point of common coupling between the microgrid and the main grid. For the

purpose of anomaly detection in this thesis, a entire week was identified when the

microgrid was functional to its optimum capacity. This week falls between the dates

2019-10-30 to 2019-11-05. This raw dataset has over an entire week and has roughly

2 million instances. Also, the frequency at which data is measured by the three

devices is sixty hertz (60 Hz) 2.1. As shown in 2.2 the raw dataset has 47 unique

columns. Out of these 47, the first 5 columns are identifiers, profile names and

timestamps. Of these 5, "timestamp" is the only column that is of interest to us

for the purpose of this analysis. The rest 42 columns are measurement columns.

There is a pattern in these column names. It follows, "measurement_type_phase

(if necessary)_magnitude/angle" pattern. For example, "a_net_mag" means that

measurement is for the net current magnitude. Based of the measurement type, there

are 8 distinct categories of measurements [31] that are recorded which are as follows:

15

1. a: Current, One Ampere of current is defined as one coulomb of charge passing

through a unique point in one second.

2. hz: Frequency, the rate at which something occurs or is repeated over a partic-

ular period of time in a given sample.

3. pf: Power factor, the ratio of the actual electrical power dissipated by an (Al-

ternating Current) AC circuit to the product of the root mean square values of

current and voltage. The difference between the two is caused by the reactance

in the circuit and represents power that does no useful work.

4. phv: Phase voltage, Voltage measured between line of the conductor to the

neutral (at zero potential).

5. ppv: Per Phase Voltage, Line to line voltage is the relative voltage between the

lines.

6. va: Apparent power, Measure of power by multiplying root mean square values

of current and voltage.

7. var: Reactive Power, Reactive power is the resultant power in watts of an AC

circuit when the current waveform is out of phase with the waveform of the

voltage, usually by 90 degrees if the load is purely reactive, and is the result of

either capacitive or inductive loads

8. w: Real Power, The actual amount of power being used or dissipated in a circuit

and is measured in Watts.

16

Figure 2.1: Snapshot of the raw data from 2019-10-30

Figure 2.2: Columns in raw data from 2019-10-30

2.1 Data Cleansing

From the Figure 2.1 we can clearly see that the raw data is not really of use to for

any direct analysis. Hence, the need for cleansing and preprocessing. This section

focuses on the data cleansing portion while the next discusses the preprocessing be-

fore making the data ready to be fed to a statistical or deep learning model. Data

Cleansing followed here is essentially a three step process described in order of the

sections below.

2.1.1 Removal of Null values or NaN’s

This is a very important step in any data analysis task. The raw data is always

analyzed for having null values in the same first. Since, this is a data set coming from

17

a real microgrid it is not curated for analysis and thus, we have to go through the

process. After analysis of all the columns where null values are present, we identify

that "w_net_mag" is the most appropriate column for our analysis, since it has

no missing data that is null values and is a good measure for the case of anomaly

detection [32]. The code snippet shown in Figure 2.3 creates a new data frame in

Python based on the device names, timestamps and the true power measurement for

all the devices.

Figure 2.3: Code snippet to remove NaN’s

2.1.2 3 point segregation

After removal of the null values, we have a dataframe consisting of the device names,

timestamps and the real power measurement for the three devices. So, to have the

values, device-by-device we segregate the dataframe into three different dataframes

for each of the individual devices. The code snippet shown in Figure 2.4 describes

this process.

Figure 2.4: Code snippet to segregate individual devices

2.1.3 Resampling

After the segregation of the original dataframe into 3 different dataframes for each

of the three devices, there is a problem of inconsistent timestamps for each of the

three devices. Thus, to get rid of the inconsistency in the timestamps, we go by

sampling the values to every 10 seconds instead of every 1 second by taking the mean

of the values from the original dataframe as shown in Figure 2.5. The method "ffill"

as seen in the Figure 2.5 is called the forward fill method. This method essentially

18

propagates the last valid observation forward to fill up the remaining NaN’s. This

reduces the number of data instances but is a trade-off and is essential to be carried

out for the analysis.

Figure 2.5: Code snippet for resampling data points to every 10 seconds

2.2 Data Preprocessing

After the data cleansing techniques performed in the previous section we have data

of real power measured at three different devices at different points in the microgrid.

The idea behind using one particular quantity at three different devices for the purpose

of anomaly detection and treating this as a multi-variate problem is to understand

whether the devices in the microgrid have any effects on each other and consequently

trying to answer the question of "Can we understand the behaviour of a microgrid

and model it to detect probable anomalies?" The total number of instances are now

amounting to 58,658 data spanning 7 days. It is believed that this data is the ideal or

expected way of the functioning of a microgrid. That means essentially the chances

of anomalies occurring in this data are very small. That makes this dataset ideal

for the purpose of this thesis as we discuss a methodology for unsupervised anomaly

detection [26]. This section discusses, the preprocessing of the dataset which involves

splitting the dataset into training and testing set, manipulating the skew values for

the training set and data normalization.

2.2.1 Splitting between training and testing set

The dataset we have is a time series and hence the training and testing set are

defined accordingly. Data in the interval of 2019-10-30 00:00:00+00:00 to 2019-11-04

18:00:00+00:00 comes under the training set while data in the interval 2019-11-04

19

18:00:00+00:00 to 2019-11-05 18:56:00+00:00 comes under the testing set. The code

snippet shown in Figure 2.6 implements this behaviour.

Figure 2.6: Code snippet for splitting data into train and test set

After splitting the training data for three devices at three different points in the

microgrid is plotted in the Figure 2.7

Figure 2.7: Real power measured plotted for the interval of training data

2.2.2 Skew values of the data

Skewness is a measure of the asymmetry of the probability distribution of a real-

valued random variable about its mean [33]. Skewness value can be positive, nega-

tive, zero or undefined. Based of literature review within statistics, for a normally

distributed data the skew value should be between -1 to +1. The code snippet shown

in Figure 2.8 calculates the skew values for all three measurements.

Figure 2.8: Skew values for the original training data

20

Skew values higher than +1 and lower than -1 indicate the presence of outliers

in the data. We do not want outliers in the training data. Thus, in this particular

case to preserve the total number of records, we substitute those outliers identified as

being lower than the tenth quantile and higher than the ninetieth quantile with the

values of the tenth and ninetieth quantile respectively. The Figure 2.9 implements

this behaviour and we can see the skew values modified for the three measurements.

Figure 2.9: Modified skew values after manipulating training data

2.2.3 Normalizing the data

By definition normalizing a vector often means dividing by the norm of the vector.

It also often refers to rescaling by the minimum range of the vector, to make all

elements lie between 0 and 1 thus bringing all numeric columns in a dataset to a

common scale [34]. The goal of normalization is to change values of numeric columns

in a dataset to a common scale, without distorting differences in the range of values.

Normalization is a good technique to use when we do not know the distribution

of our data or when we know the distribution is not Gaussian [35] (a bell curve).

Normalization is useful when data has varying scales and the algorithm trying to be

implemented does not make any assumptions about the distribution of the data such

as deep neural networks. The Min-Max Scalar used here, is useful as it is sensitive

to outliers. Essentially converting the data into bounds of 0 and 1 results in smaller

standard deviations which suppress the effect of outliers. The code snippet show in

the Figure 2.10 implements this behaviour.

21

Figure 2.10: Min-Max Scalar implemented from scikit-learn library

CHAPTER 3: ANOMALY DETECTION IN TIME SERIES

Observations that have been recorded in an orderly fashion and which are correlated

in time constitute a time series. Time series data mining aims to extract all meaningful

knowledge from this data like clustering, forecasting and outlier detection. Outlier

detection has become a field of interest for many researchers and practitioners and is

now one of the tasks of time series data mining [36]. Applications such as credit card

fraud detection, intrusion detection in cybersecurity or fault diagnosis in the industry.

From a classical point of view, a widely used definition of an outlier has been "An

observation which deviates so much from other observations as to arouse suspicions

that it was generated by a different mechanism." Therefore, outliers can be thought

of as observations that do not follow expected behaviour [37]. The most popular

and intuitive definition for the concept of a point outlier is a point that significantly

deviates from its expected value. Therefore, given a univariate time series, a point at

time t can be declared an outlier if the the distance to its expected value is higher

than a predefined threshold τ :

|xt − x̂t| > τ

where xt is the observed data point and x̂t is its expected value. This problem is

graphically depicted in the Figure 3.1 where observed values within the shadowed

area are at most at distance τ from their expected values. Clearly, O3 is the point

that differs the most from its expected value, although O1, O2, and O4 are also

farther than distance τ , so all four points are declared outliers.

23

Figure 3.1: Point outlier detection in univariate time series based on comparison
between expected and observed values

Outliers in time series can have two different meanings, and the semantic distinction

between them is mainly based on the interest of the analyst or the particular scenario

considered. These observations have been related to noise, erroneous, or unwanted

data, which by themselves are not interesting to the analyst. In these cases, outliers

should be deleted or corrected to improve the data quality and generate a cleaner

dataset that can be used by other data mining algorithms. For example, sensor

transmission errors are eliminated to obtain more accurate predictions because the

principal aim is to make predictions. Nevertheless, in recent years and, especially

in the area of time series data, many researchers have aimed to detect and analyze

unusual but interesting phenomena. Fraud detection [38] is an example of this because

the main objective is to detect and analyze the outlier itself. These observations are

often referred to as anomalies.

Figure 3.2: Meaning of outliers in time series data depending on aim of the analyst

Outlier detection techniques in time series data vary depending on the input data

type, the outlier type, and the nature of the method as seen in Figure 3.3

24

Figure 3.3: Outlier detection techniques

1. The first axis represents the type of input data that the detection method is

able to deal with (univariate or multivariate time series).

A univariate time seriesX = {xt}tεT is an ordered set of real-valued observations

where each observation is recorded at a specific time tεT . Then xt is the point

or observation collected at time t and S = xp, xp+1, · · ·, xp+n−1 the subsequence

of length n ≤ |T | starting at position p of the time series X, for p, tεT and

p ≤ |T | − n+ 1.

A multivariate time series X = {xt}tεT is defined as an ordered set of k-

dimensional vectors, each of which is recorded at a specific time tεT and consists

of k real valued observations xt = (x1t, · · ··, xkt). Then xt is said to be a point

and S = xp, xp+1, · · ·, xp+n−1 the subsequence of length n ≤ |T | of the mul-

tivariate time series X, for p, tεT and p ≤ |T | − n + 1. For each dimension

jε1, · · ·, K,Xj = {xjt}tεT is a univariate time series and each observation xjt in

the vector xt is a realized value of a random time dependent variable Xjt in

Xt = (X1t, · · ·, Xkt).

25

(a) Univariate time series

(b) Multivariate time series

Figure 3.4: Time series with univariate and multivariate input data

2. The second axis describes the outlier type that the method aims to detect (a

point, a subsequence or a time series). Point outliers are the ones that behave

26

unusually in a specific time instance when compared to the other values in the

time series (global outlier) or to its neighbouring points (local outlier). Point

outliers can be univariate or multivariate depending on whether they affect one

or more time-dependent variables, respectively. For example in Figure 3.4 in

the univariate time series we can see two point outliers, O1 and O2 whereas in

the multivariate time series composed of three variables has both univariate O3

and multivariate (O1 and O2) point outliers.

Subsequence outliers refer to consecutive points in time whose joint behaviour

is unusual although each observation individually is not necessarily a point out-

lier. Subsequence outliers can be global or local and can affect one (univariate

subsequence outlier) or more (multivariate subsequence outlier) time-dependent

variables. Figure 3.5 provides an example of univariate (O1 and O2) and mul-

tivariate (O1 and O2) subsequence outliers.

27

(a) Univariate time series with subsequence outliers

(b) Multivariate time series subsequence outliers

Figure 3.5: Time series with univariate and multivariate input data and subsequence
outliers

As an additional type of outliers, an entire time series can also be outliers. But

28

they can only be detected when input data is a multivariate time series. As seen

in Figure 3.6 the outlier time series corresponds to variable 4 as its behaviour

is significantly different from the rest of the variables over time.

Figure 3.6: Entire time series as outlier

3. The third axis analyzes the nature of the detection method employed (if the

detection method is univariate or multivariate). A univariate detection method

only considers a single time dependent variable, whereas a multivariate detec-

tion method is able to simultaneously work with more than one time dependent

variable. Note that the detection method can be univariate, even if the input

data is a multivariate time series, because an individual analysis can be per-

formed on each time-dependent variable without considering the dependencies

that may exist between the variables. In contrast, a multivariate technique

cannot be used if the input data is a univariate time series.

3.1 Anomaly detection in time series using supervised learning

This technique hinges on the prior labelling of data as "normal" or "anomalous".

The algorithm is trained using existing current or historical data, and is then deployed

to predict outcomes on new data. Though this technique finds application in fraud

29

detection in the banking/ financial technology space, it can only be applied to predict

known anomalies such as previously identified fraud/ misappropriations.

3.2 Unsupervised anomaly detection

In this technique, anomalies can be identified from unlabelled data by assuming a

majority of the data points to be normal. Deviating instances that are statistically

significant on either side of the established normal are regarded as anomalies. The

more powerful the algorithm, the higher the accuracy of the anomaly detection. This

method may be used for detecting anomalies in time series data and also to predict

and flag future anomalies. In case of raw, unlabelled data unsupervised anomaly

detection is feasible. It has a variety of applications across industries - from identifying

abnormalities in ECG data to finding glitches in aircraft sensor data.

Also, we normally know 20% of the anomalies or those which are expected. The

remaining 80% are new or unpredictable. Unsupervised anomaly detection is the

only technique that is capable of identifying these hidden signals or anomalies - and

flagging them early enough to fix them before they occur as seen in Figure 3.7

Figure 3.7: Unsupervised anomaly detection use case in flagging anomalies before
they occur

One of the most effective ways of detecting anomalies in time series data is via deep

learning. This technique involves the following steps:

1. Deep neural networks are applied to a series of input and output sets to establish

the normal and accordingly predict the time series. This process is repeated

until the predictions achieve a high level of accuracy. However, the models need

30

to be updated regularly to accommodate changing trends and ensure accuracy

and relevance. Long short-term memory (LSTM) neural networks are great at

remembering seasonal and other trends.

2. Once the model has been trained, it can predict the next series based on real-

time explanatory variables.

3. Once the values are predicted, the algorithm creates upper and lower limits at

a specified confidence level. For instance, a 95% confidence level means that

limits need to be at a 1.96 * standard deviation with respect to the mean on

both sides for a normal distribution.

4. Whenever an actual perceived value falls beyond the predicted normal range,

anomalies are marked and scored based on their magnitude of deviation. A

simple scoring methodology could be:

Score =
(predicted−minimum ∗ 100)

(maximum−minimum)

Anomaly scores help users filter out anomalies that are less than a set threshold

value and also to prioritise them so that they can focus on more serious anoma-

lies first and then move on to less serious ones. In case of critical metrics that

involve huge expenses, the threshold value can be set to zero so that the tiniest

of anomalies with the lowest of scores can be scrutinised for relevant action.

Anomaly detection in industrial data is by no means a simple process given the

scale at which it needs to happen, and also the highly dynamic nature of business

in this world. However, its still imperative to get it right, as no digital business can

hope to stay relevant and competitive in an increasingly tough economy without the

power of meaningful data analytics to back its growth.

CHAPTER 4: VECTOR AUTO REGRESSION

4.1 The algorithm

The vector autoregression (VAR) model is one of the most successful, flexible, and

easy to use models for the analysis of multivariate time series. It is a natural exten-

sion of the univariate autoregressive model to dynamic multivariate time series. The

VAR model has proven to be especially useful for describing the dynamic behavior of

economic and financial time series and for forecasting [39]. It often provides superior

forecasts to those from univariate time series models and elaborate theory-based si-

multaneous equations models. Forecasts from VAR models are quite flexible because

they can be made conditional on the potential future paths of specified variables in

the model. In addition to data description and forecasting, the VAR model is also

used for structural inference and policy analysis. In structural analysis, certain as-

sumptions about the causal structure of the data under investigation are imposed,

and the resulting causal impacts of unexpected shocks or innovations to specified vari-

ables on the variables in the model are summarized. These causal impacts are usually

summarized with impulse response functions and forecast error variance decomposi-

tions. Vector autoregression (VAR) is a stochastic process model used to capture

the linear inter dependencies among multiple time series. VAR models generalize the

univariate autoregressive model (AR model) by allowing for more than one evolving

variable. All variables in a VAR enter the model in the same way: each variable has

an equation explaining its evolution based on its own lagged values, the lagged values

of the other model variables, and an error term [40]. VAR modeling does not require

as much knowledge about the forces influencing a variable as do structural models

with simultaneous equations. The only prior knowledge required is a list of variables

32

which can be hypothesized to affect each other inter-temporally. By definition, a VAR

model describes the evolution of k variables called endogenous variables in over the

same sample period t = 1, ·, ·, ·, ·, T as a linear function of only their past values. A

pth order VAR denoted by VAR(p) is given by

yt = c+ A1yt−1 + A2yt−2 + · · ·+ Apyt−p + et

where the observation yt−i is called ith lag of y, c is a k-vector of constants, Ai is a

time invariant kxk matrix and et is a k-vector of error terms satisfying E(et) = 0

meaning every error term has mean 0. A pth order VAR is also called a VAR with

p-lags. The process of choosing maximum lags in VAR requires special attention

because inference depends on the correctness of the selected order. One can stack the

vectors in order to write a VAR(p) as a stochastic matrix difference equation, with a

concise matrix notation as

Y = BZ + U

For a general example of a VAR(p) with k variables, A VAR(1) in two variables can

be written in matrix form (more compact notation) as

y1,t
y2,t

 =

c1
c2

 +

a1,1 a1,2

a2,1 a2,2


y1,t−1
y2,t−1

 +

e1,t
e2,t


(in which only a single A matrix appears because this example has a maximum lag p

equal to 1), or, equivalently, as the following system of two equations

y1,t = c1 + a1,1y1,t−1 + a1,2y2,t−1 + e1,t

y2,t = c2 + a2,1y1,t−1 + a2,2y2,t−1 + e2,t

33

Each variable in the model has one equation. The current (time t) observation of each

variable depends on its own lagged values as well as on the lagged values of each other

variable in the VAR. A VAR with p lags can always be equivalently rewritten as a

VAR with only one lag by appropriately redefining the dependent variable. The trans-

formation amounts to stacking the lags of the VAR(p) variable in the new VAR(1)

dependent variable and appending identities to complete the number of equations.

For example, the VAR(2) model

yt = c+ A1yt−1 + A2yt−2 + et

can be recast as the VAR(1) model

 yt

yt−1

 =

c
0

 +

A1 A2

I 0


yt−1
yt−2

 +

et
0


where I is the identity matrix. The equivalent VAR(1) form is more convenient

for analytical derivations and allows more compact statements. An estimated VAR

model can be used for forecasting, and the quality of the forecasts can be judged, in

ways that are completely analogous to the methods used in univariate autoregressive

modelling. Christopher Sims has advocated VAR models, criticizing the claims and

performance of earlier modeling in macroeconomic econometrics. He recommended

VAR models, which had previously appeared in time series statistics and in system

identification, a statistical specialty in control theory. Sims advocated VAR models

as providing a theory-free method to estimate economic relationships, thus being an

alternative to the "incredible identification restrictions" in structural models. VAR

models are also increasingly used in health research for automatic analyses of diary

data or sensor data [41].

In statistics, the Dickey Fuller test tests the null hypothesis that a unit root is

34

present in an autoregressive model. The alternative hypothesis is different depending

on which version of the test is used, but is usually stationarity or trend-stationarity.

It is named after the statisticians David Dickey and Wayne Fuller, who developed

the test in 1979. The augmented Dickey Fuller test (ADF) tests the null hypothesis

that a unit root is present in a time series sample [42]. The alternative hypothesis is

different depending on which version of the test is used, but is usually stationarity or

trend-stationarity. It is an augmented version of the Dickey Fuller test for a larger

and more complicated set of time series models. The augmented Dickey Fuller (ADF)

statistic, used in the test, is a negative number. The more negative it is, the stronger

the rejection of the hypothesis that there is a unit root at some level of confidence

[43]. The intuition behind the test is that if the series is characterised by a unit root

process then the lagged level of the series yt−1 will provide no relevant information in

predicting the change in yt besides the one obtained in the lagged changes ∆yt−k. In

this case the γ = 0 and null hypothesis is not rejected. In contrast, when the process

has no unit root, it is stationary and hence exhibits reversion to the mean - so the

lagged level will provide relevant information in predicting the change of the series

and the null of a unit root will be rejected. The testing procedure for the ADF test

is the same as for the Dickey Fuller test but it is applied to the model

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + εt

where α is a constant, β the coefficient on a time trend and p the lag order of the

autoregressive process. Imposing the constraints α = 0 and β = 0 corresponds to

modelling a random walk and using the constraint β = 0 corresponds to modeling a

random walk with a drift. Consequently, there are three main versions of the test,

analogous to the ones discussed on Dickey Fuller test. By including lags of the order

p the ADF formulation allows for higher-order autoregressive processes. This means

35

that the lag length p has to be determined when applying the test. One possible

approach is to test down from high orders and examine the t-values on coefficients. An

alternative approach is to examine information criteria such as the Akaike information

criterion, Bayesian information criterion or the Hannan Quinn information criterion.

The unit root test is then carried out under the null hypothesis γ = 0 against the

alternative hypothesis of γ < 0. Once a value for the test statistic is computed it can

be compared to the relevant critical value for the Dickey Fuller test [44]. As this test

is asymmetrical, we are only concerned with negative values of our test statistic DFτ .

If the calculated test statistic is less (more negative) than the critical value, then the

null hypothesis of γ = 0 is rejected and no unit root is present.

DFτ =
γ̂

SE(γ̂)

The Augmented Dickey Fuller test is performed as shown in the code snippet shown

in Figure 4.1

Figure 4.1: Code snippet to perform the Augmented Dickey Fuller test

The Granger causality test is a statistical hypothesis test for determining whether

one time series is useful in forecasting another, first proposed in 1969. Ordinarily,

regressions reflect "mere" correlations, but Clive Granger argued that causality in

36

economics could be tested for by measuring the ability to predict the future values

of a time series using prior values of another time series. Since the question of "true

causality" is deeply philosophical, and because of the post hoc ergo propter hoc fallacy

of assuming that one thing preceding another can be used as a proof of causation,

econometricians assert that the Granger test finds only "predictive causality". Using

the term "causality" alone is a misnomer, as Granger-causality is better described

as "precedence", or, as Granger himself later claimed in 1977, "temporally related".

Rather than testing whether Y causes X, the Granger causality tests whether Y

forecasts X [45].

Figure 4.2: When time series X Granger-causes time series Y, the patterns in X are
approximately repeated in Y after some time lag

A time series X is said to Granger-cause Y if it can be shown, usually through

a series of t-tests and F-tests on lagged values of X (and with lagged values of Y

also included), that those X values provide statistically significant information about

future values of Y. Granger also stressed that some studies using "Granger causality"

testing in areas outside economics reached "ridiculous" conclusions. "Of course, many

ridiculous papers appeared", he said in his Nobel lecture. However, it remains a pop-

ular method for causality analysis in time series due to its computational simplicity.

The original definition of Granger causality does not account for latent confound-

37

ing effects and does not capture instantaneous and non-linear causal relationships,

though several extensions have been proposed to address these issues. We say that

a variable X that evolves over time Granger-causes another evolving variable Y if

predictions of the value of Y based on its own past values and on the past values of X

are better than predictions of Y based only on Y’s own past values. Granger defined

the causality relationship based on two principles:

1. The cause happens prior to its effect.

2. The cause has unique information about the future values of its effect.

Given these two assumptions about causality, Granger proposed to test the following

hypothesis for identification of a causal effect of X on Y :

P[Y (t+ 1) ∈ A | I(t)] 6= P[Y (t+ 1) ∈ A | I−X(t)]

where P refers to probability, A is an arbitrary non-empty set, and I(t) and I−X(t)

respectively denote the information available as of time t in the entire universe, and

that in the modified universe in which X is excluded. If the above hypothesis is

accepted, we say that X Granger-causes Y . If a time series is a stationary process,

the test is performed using the level values of two (or more) variables. If the variables

are non-stationary, then the test is done using first (or higher) differences. The number

of lags to be included is usually chosen using an information criterion, such as the

Akaike information criterion or the Schwarz information criterion. Any particular

lagged value of one of the variables is retained in the regression if (1) it is significant

according to a t-test, and (2) it and the other lagged values of the variable jointly add

explanatory power to the model according to an F-test. Then the null hypothesis of

no Granger causality is not rejected if and only if no lagged values of an explanatory

variable have been retained in the regression [46]. In practice it may be found that

neither variable Granger-causes the other, or that each of the two variables Granger-

38

causes the other. Let y and x be stationary time series. To test the null hypothesis

that x does not Granger-cause y, one first finds the proper lagged values of y to include

in a univariate autoregression of y:

yt = a0 + a1yt−1 + a2yt−2 + · · ·+ amyt−m + errort

Next, the autoregression is augmented by including lagged values of x:

yt = a0 + a1yt−1 + a2yt−2 + · · ·+ amyt−m + bpxt−p + · · ·+ bqxt−q + errort

One retains in this regression all lagged values of x that are individually significant

according to their t-statistics, provided that collectively they add explanatory power

to the regression according to an F-test (whose null hypothesis is no explanatory

power jointly added by the x’s). In the notation of the above augmented regression,

p is the shortest, and q is the longest, lag length for which the lagged value of x

is significant. The null hypothesis that x does not Granger-cause y is accepted if

and only if no lagged values of x are retained in the regression. Multivariate Granger

causality analysis is usually performed by fitting a vector autoregressive model (VAR)

to the time series. In particular, let X(t) ∈ Rd×1 for t = 1, . . . , T be a d-dimensional

multivariate time series. Granger causality is performed by fitting a VAR model with

L time lags as follows:

X(t) =
L∑
τ=1

AτX(t− τ) + ε(t)

where ε(t) is a white Gaussian random vector, and Aτ is a matrix for every τ . A

time series Xi is called a Granger cause of another time series Xj, if at least one of

the elements Aτ (j, i) for τ = 1, . . . , L is significantly larger than zero (in absolute

value). The Granger Causality test is can be performed as shown by the code snippet

in Figure 4.3

39

Figure 4.3: Code snippet to perform the Granger Causality test

4.2 Anomaly Detection

This section describes the anomaly detection algorithm using the statistical vector

auto regression model. The problems with the dataset has been discussed in chapter

2 in detail. The data that we are using is from an real world microgrid. It is the

net power values from three different points in the microgrid at the frequency of one

second. But because of inconsistent timestamps, we resampled it to have a frequency

of every 10 seconds. Also, the scaling of the data is an issue more so because this is

a statistical model and not a deep learning model which can work with mostly raw

data. We have to scale the three variables taken into consideration onto a common

scale. We use a MinMax scaler from the Scikit learn package library in Python to

scale our data values between 0 and 1.

Now before we go any further, we need to check for stationarity in the time series

data that we have. Checking for stationarity is important because it is one type of

dependence structure. Suppose we have a data X from 1 to n. The basic assumption

is that one is independent and hence is a sample. This property of independence is

nice as it can be used to derive a lot of useful results. But sometimes, this property

does not hold true. Two random variables can be independent only in one way, but

40

they can be dependent in various ways. So stationarity is one way of modeling the

dependence structure. Hence, here we check for stationarity of all the three variables

using the Augmented Dickey Fuller test as shown in the figure 4.4.

Figure 4.4: Augmented Dickey Fuller test results showing the series as stationary

41

After this we look for the lag order. For forecasting purposes the best statistical

criterion to choose is the AIC. It tends to select the model from a pool of models

that yields the smallest squared forecast error one step ahead. That is as shown in

the figure 4.5. We choose the AIC criterion. For a maximum of 12 lags the different

AIC values are calculated and we choose the lag number which has the minimum AIC

value.

Figure 4.5: Order selection in VAR using various criterion

The model is fit on lag order of 12. We use this fitted model to forecast for the

42

test data and then use the mean absolute error function to compute the average loss.

Plotting a loss distribution helps to identify a threshold value beyond which anomalies

can be classified as "True". The plotted loss distribution can be seen in the figure

4.6.

Figure 4.6: VAR Loss distribution plot

Looking at this plot, we can appropriate a threshold value of "0.35". Therefore,

any loss which goes beyond this threshold is classified as a true anomaly. The test

data anomaly plot is as shown in the figure 4.7. The red line is the threshold line

and the blue line plot is the test data loss values. Based on this plot, the timestamps

can be identified which have been classified as having anomalous data and further

investigation can be done. By digging deeper and reverse engineering our way through

the timestamp values, first sampled at 10 seconds and then at each second which is

the original data we can identify if the values were truly anomalous using the help of

subject matter experts.

The data we have is from a real world microgrid and the data points taken in time

43

when it was in "normal" or expected operations. Hence, the chances of anomalies

occurring are reduced greatly. The VAR model took 1 minute to run in Google

Colaboratory environment on 2vCPU at 2.2GHz and 13 GB RAM. It successfully

detected 145 anomalies from a total of 8,977 data points in the test data which is

1.65% of the total test data. Although, this makes sense the sheer number of the

anomalies leads to believe the presence of false positives. Also the fact that this is

a statistical algorithm and not a deep neural network, the chances of false positives

occurring are a lot more and cannot be neglected.

Figure 4.7: Anomaly detection in test data set using VAR

CHAPTER 5: LSTM AUTOENCODER

5.1 The algorithm

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)

architecture used in the field of deep learning. Unlike standard feed forward neural

networks, LSTM has feedback connections. It can not only process single data points

(such as images), but also entire sequences of data (such as speech or video) [47].

For example, LSTM is applicable to tasks such as unsegmented, connected hand-

writing recognition, speech recognition and anomaly detection in network traffic or

IDS’s (intrusion detection systems). A common LSTM unit is composed of a cell,

an input gate, an output gate and a forget gate as shown in Figure 5.1. The cell

remembers values over arbitrary time intervals and the three gates regulate the flow

of information into and out of the cell. LSTM networks are well-suited to classifying,

processing and making predictions based on time series data, since there can be lags

of unknown duration between important events in a time series. LSTM’s were de-

veloped to deal with the vanishing gradient problem that can be encountered when

training traditional RNN’s. Relative insensitivity to gap length is an advantage of

LSTM over RNN’s, hidden Markov models and other sequence learning methods in

numerous applications. In theory, classic (or "vanilla") RNN’s can keep track of arbi-

trary long-term dependencies in the input sequences. The problem of vanilla RNN’s

is computational (or practical) in nature: when training a vanilla RNN using back-

propagation, the gradients which are back-propagated can "vanish" (that is, they

can tend to zero) or "explode" (that is, they can tend to infinity), because of the

computations involved in the process, which use finite-precision numbers [48]. RNN’s

using LSTM units partially solve the vanishing gradient problem, because LSTM

45

units allow gradients to also flow unchanged.

Figure 5.1: LSTM cell can process data sequentially and keep its hidden state through
time

In 1997, LSTM was proposed by Sepp Hochreiter and Jurgen Schmidhuber. By in-

troducing Constant Error Carousel (CEC) units, LSTM deals with vanishing gradient

problem. The initial version of LSTM block included cells, input and output gates

[48]. In 1999, Felix Gers and his advisor Jurgen Schmidhuber and Fred Cummins

introduced the forget gate (also called the "keep gate") into the LSTM architecture,

enabling the LSTM to reset its own state. Gers and Schmidhuber and Cummins

added peephole connections in the year 2000 (connections from the cell to gate) into

the architecture. Additionally, the output activation function was omitted. In the

early 2009, an LSTM based model won the ICDAR connected handwriting recog-

nition competition. Three such models were submitted by team lead Alex Graves,

One was the most accurate model in the competition and the other was the fastest.

LSTM networks were a major component of the network that achieved a record 17.7%

phoneme error rate on the classic TIMIT natural speech dataset in the year 2013. In

46

2014, a simplified variant called the Gated Recurrent Unit (GRU) was put forward.

Google started using an LSTM for speech recognition on Google voice in the year

2015. According to the official blog post, the new model cut transcription errors by

49%. In the year 2016, Google started using an LSTM to suggest messages in the

Allo conversation app. In the same year, Google released the Google Neural Machine

Translation system for Google Translate which used LSTM’s to reduce translation er-

rors by 60%. Apple announced in its Worldwide Developer Conference that it would

start using the LSTM for quick type in the iPhone and for Siri. Amazon released

Polly, which generates the voices behind Alexa, using a bidirectional LSTM for the

text-to-speech technology in the same year. Facebook performed around 4.5 billion

automatic translations every day using long short-term memory networks in the year

2017. Researchers from the Michigan State University, IBM Research and Cornell

University published a study in the Knowledge Discovery and Data Mining (KDD)

conference which described a novel neural network that performs better on certain

data sets than the widely used long short-term memory networks. Microsoft reported

reaching 94.9% recognition accuracy on the Switchboard corpus, incorporating a vo-

cabulary of 165,000 words. The approach used "dialog session-based long-short-term

memory". In 2019, Researchers form the University of Waterloo proposed a related

RNN architecture which represents continuous windows of time. It was derived us-

ing the Legendre polynomials and outperforms the LSTM on some memory-related

benchmarks. An LSTM model climbed to the third place on the Large text compres-

sion benchmark.

There are several architectures of LSTM units. A common architecture is composed

of a cell (the memory part of the LSTM unit) and three "regulators", usually called

gates, of the flow of information inside the LSTM unit: an input gate, an output gate

and a forget gate. Some variations of the LSTM unit do not have one or more of

these gates or maybe have other gates. For example, gated recurrent units (GRU’s)

47

do not have an output gate as shown in the Figure 5.2.

Figure 5.2: A fully gated version of Gated Recurrent Unit

Intuitively, the cell is responsible for keeping track of the dependencies between the

elements in the input sequence. The input gate controls the extent to which a new

value flows into the cell, the forget gate controls the extent to which a value remains

in the cell and the output gate controls the extent to which the value in the cell is used

to compute the output activation of the LSTM unit. The activation function of the

LSTM gates is often the logistic sigmoid function. There are connections into and out

of the LSTM gates, a few of which are recurrent. The weights of these connections,

which need to be learned during training, determine how the gates operate.

An RNN using LSTM units can be trained in a supervised fashion, on a set of

training sequences, using an optimization algorithm, like gradient descent, combined

with back propagation through time to compute the gradients needed during the

optimization process, in order to change each weight of the LSTM network in pro-

portion to the derivative of the error (at the output layer of the LSTM network) with

respect to corresponding weight. A problem with using gradient descent for stan-

dard RNNs is that error gradients vanish exponentially quickly with the size of the

time lag between important events. This is due to limn→∞W
n = 0 if the spectral

48

radius of W is smaller than 1. However, with LSTM units, when error values are

back-propagated from the output layer, the error remains in the LSTM unit’s cell.

This "error carousel" continuously feeds error back to each of the LSTM unit’s gates,

until they learn to cut off the value. Many applications use stacks of LSTM RNN’s

and train them by connection temporal classification (CTC) to find an RNN weight

matrix that maximizes the probability of the label sequences in a training set, given

the corresponding input sequences. CTC achieves both alignment and recognition.

Sometimes, it can be advantageous to train (parts of) an LSTM by neuro-evolution

or by policy gradient methods, especially when there is no "teacher" (that is, training

labels).

There have been several successful stories of training, in a non-supervised fashion,

RNN’s with LSTM units. In 2018, Bill Gates called it a "huge milestone in advanc-

ing artificial intelligence" when bots developed by OpenAI were able to beat humans

in the game of Dota 2 [49]. OpenAI Five consists of five independent but coordi-

nated neural networks. Each network is trained by a policy gradient method without

supervising teacher and contains a single-layer, 1024-unit Long-Short-Term-Memory

that sees the current game state and emits actions through several possible action

heads. In 2018, OpenAI also trained a similar LSTM by policy gradients to control a

human-like robot hand that manipulates physical objects with unprecedented dexter-

ity. In 2019, DeepMind’s program AlphaStar used a deep LSTM core to excel at the

complex video game Starcraft II [50]. This was viewed as significant progress towards

Artificial General Intelligence.

An LSTM Autoencoder is an implementation of an autoencoder for sequence data

using an Encoder-Decoder LSTM Architecture. Once fit, the encoder part of the

model can be used to encode or compress sequence data that in turn may be used in

data visualizations or as a feature vector input to a supervised learning model. An au-

toencoder is a neural network model that seeks to learn a compressed representation

49

of an input. They are an unsupervised learning method, although they are trained

using supervised and thus referred to as self-supervised. They are typically trained as

part of a broader model that attempts to recreate the input. The design of autoen-

coder model purposefully makes this challenging by restricting the architecture to a

bottleneck at the midpoint of the model from which the reconstruction of the input

data is performed. A problem with sequences is that the length of the sequence can

vary. This is challenging because machine learning algorithms are designed to work

with fixed length inputs. Another challenge with sequence data is that the temporal

ordering of the observations can make it challenging to extract features suitable for

use as input to supervised learning models, often requiring deep expertise in the do-

main or in the field of signal processing. Recurrent neural networks such as the Long

Short-Term Memory networks are specifically designed to support sequences of input

data [51]. They are capable of learning the complex dynamics within the temporal

ordering of input sequences as well as use an internal memory to remember or use

information across long input sequences. The LSTM network can be organized into

an architecture called the Encoder-Decoder LSTM that allows the model to be used

to both support variable length input sequences and to predict or output variable

length output sequences. This architecture is the basis for many advances in complex

sequence prediction problems such as speech recognition and text translation. An

encoder LSTM model reads the input sequence step-by-step. After reading the entire

input sequence, the hidden state or output of this model represents an internal learned

representation of the entire input sequence as a fixed length vector. This vector is

then provided as an input to the decoder model that interprets it as each step in the

output sequence is generated. For a given dataset of sequences, an encoder-decoder

LSTM is configured to read the input sequence, encode it, decode it and recreate it.

The performance of the model is evaluated based on the model’s ability to recreate

the input sequence. Once the model achieves a desired level of performance recreating

50

the sequence, the decoder part of the model may be removed, leaving just the encoder

model. This model can then be used to encode input sequences to a fixed length vec-

tor. The resulting vector can then be used in a variety of applications, not least as a

compressed representation of the sequence as an input to another supervised learning

model.

Figure 5.3: An LSTM Autoencoder model

5.2 Anomaly detection

This section discusses the anomaly detection from the time series data using the

LSTM Autoencoder model explained in the previous section. The data that we are

looking at is the net power values at different points in a microgrid and is generated

at 1 second intervals. Because of the inconsistent timestamps, it had to be resampled

for every 10 seconds and is discussed in detail in the second chapter of this thesis.

Another problem with this dataset is the scaling. As can be seen from the figure

5.4, the three different variables that we are considering have different scales thus

different maximum and minimum values. Training the network on this data would

give erroneous results.

51

Figure 5.4: Training data from 3 different devices at different points in the microgrid
sampled at 10 second intervals

Hence, we use a MinMax scaler from the python package Scikit-learn, to scale this

data into the range of 0 to 1. Now, all the three variables have the same scale as

can be seen, from the figure 5.5. Now that we have the scaled data, we can perform

further model training on this data. Anomaly detection tasks are simplified if the

data points from different variables have the same scale.

Figure 5.5: Training data from 3 different devices at different points in the microgrid
sampled at 10 second intervals scaled between 0 to 1

52

As mentioned in the previous section, the LSTM Autoencoder features an encoder

and decoder section which essentially attempts to reconstruct the inputs. The figure

5.6 shows the model architecture. As can be seen from the model architecture, the

input data is reshaped into the format of [samples, timesteps, features]. The input is

then given to an LSTM layer with 32 filters with a rectified linear unit as the activation

function. This layer has an L2 regularizer to penalize the layer’s kernel. Each LSTM

cell will output one hidden state for each input. The return sequences parameter is

set to "True" here so that the hidden states return the hidden state output for each

time step. Then, the output from this layer is given to another LSTM layer with 8

filters with the same activation function. Here, the return sequences parameter is set

to "False" to reduce the dimension as can be seen in the model architecture. This

portion forms the encoder part of the model. Thus, the output of this layer is given to

a Repeat vector layer. This layer repeats the input specified number of times. After

this layer, comes the decoder part which is essentially flipping the encoder network.

Thus, the output from the repeat vector layer is given to another LSTM layer with

8 filters with the same activation function of rectified linear unit. The output of this

layer is given to an LSTM layer with 32 filters and the same activation function. For

both these layers, the return sequences parameter has to be set to "True" for the

dimensions to stay intact. After this decoder part, the final output layer is a Time

Distributed Dense layer which brings down the output dimensions and matches it to

that of the input layer as we can see from the figure. This wrapper allows to apply a

temporal layer to every slice of an input. It basically applies a specific layer such as

Dense, to every sample it receives as input.

53

Figure 5.6: The constructed LSTM Autoencoder model

This autoencoder model was fit on training data of size of 45,706 and validated

on a sample size of 3,975 samples for 50 epochs with a batch size of 10 and took

25 minutes to complete on the Google Colaboratory platform with 2vCPU at 2.2

GHz and 13 GB RAM. We use the Mean Absolute error loss for evaluation of the

model. After training, we make predictions on the training data and calculate the

loss distribution on the training data. This gives us a way of setting threshold values

to detect anomalies in the test set. The loss distribution plot can be seen from the

figure 5.7.

54

Figure 5.7: Loss distribution of LSTM Autoencoder model

Looking at the plot, we take "0.015" as an appropriate threshold value. Any loss

higher than this value would be classified as an anomaly. Now we make predictions

on the test data and calculate the same mean absolute error loss for each time step

in the test data. Comparing these loss values with the threshold value, we classify

which values are anomalies and which are not. The final plot of detected values based

on these loss values looks as shown in the figure 5.8. This plot is plotted using the

entire training as well as the test data. The red line on the plot is the threshold line.

Loss values that exceed that line are classified as anomalies. Based on this plot, the

timestamps can be identified which have been classified as having anomalous data

and further investigation can be done. By digging deeper and reverse engineering

our way through the timestamp values, first sampled at 10 seconds and then at each

second which is the original data we can identify if the values were truly anomalous

using the help of subject matter experts.

55

Figure 5.8: Anomaly detection using LSTM Autoencoder model

Since, the data we received is the actual operation data of a real microgrid, chances

of anomalous data coming to fore is extremely rare and besides, we have chosen a

time period where the microgrid was operating normally or as expected. The LSTM

Autoencoder detected 5 anomalies which form 0.05% of the entire test data of 8977

data points. This is possible and quite probable because of certain other anomalies

going undetected as the LSTM layers learn the temporal sequences or are good with

temporal data but may have missed certain relation between the features we have

selected. To overcome this problem, we look at using Convolution layers along with

LSTM layers as the convolution layers are good at interpreting relation between

features. For this, the model developed in the section is a Convoluted LSTM model

and for that to be successful, ideally it should return more number of anomalies and

at the same time it should be able to detect the same anomalies as detected by this

LSTM Autoencoder model. We look at that in the next chapter.

CHAPTER 6: CONVOLUTIONAL LSTM

6.1 The algorithm

Data nowadays is found in the form of sequence of images and is quite common.

The most typical example is video at social networks such as YouTube, Facebook or

Instagram. Data collected over successive periods of time are characterised as Time

Series. In such cases, an interesting approach is to use a model based on LSTM

(Long Short-Term Memory), a Recurrent Neural Network architecture [52]. In this

kind of an architecture, the model passes the previous hidden state to the next step of

the sequence. Therefore holding information on previous data the network has seen

before and using it to make decisions. In other words, the data order is extremely

important.

Figure 6.1: An LSTM Cell

When working with images, the best approach is a CNN (Convolutional Neural

Network) architecture. The image passes through the Convolutional Layers [53] in

which several filters extract important features. After passing some convolutional

layers in sequence, the output is connected to a fully connected dense network.

57

Figure 6.2: Convolution of image with one filter

In sequential images, one approach is using ConvLSTM layers. It is a recurrent

layer, but internal matrix multiplications are exchanged with convolution operations.

As a result, the data that flows through the ConvLSTM cells keeps the input dimen-

sion, instead of being just 1-dimensional vector with features. A different approach

of a ConvLSTM is a Convolutional-LSTM model, in which the image passes through

the convolution layers and its result is a set flattened to a 1-dimensional array with

obtained features. When repeating this process to all images in the time set, the

result is a set of features over time, and this is the LSTM layer input.

58

Figure 6.3: A ConvLSTM Cell

ConvLSTM is a variant of LSTM containing a convolution operation inside the

LSTM cell. Both the models are a special kind of RNN, capable of learning long-term

dependencies. ConvLSTM replaces matrix multiplication with convolution operation

at each gate in the LSTM cell. By doing so, it captures underlying spatial features

by convolution operations in multiple-dimension data. The main difference between

ConvLSTM and LSTM is the number of input dimensions. As LSTM input data

is one-dimensional, it is not suitable for spatial sequence data such as video, satel-

lite, radar image and such. On the contrary, a CNN-LSTM is an integration of a

CNN (Convolutional Neural Network) with LSTM. First, the CNN part of the model

processes the data and one-dimensional result is fed to the LSTM model.

6.2 Anomaly detection

This section discusses the anomaly detection algorithm using the Convoluted LSTM

neural network. As mentioned in the previous chapter, the raw training data shown

in the figure 5.4 is the data of net power values coming from a real microgrid sampled

59

at every one second. Because of inconsistent timestamps, we have to resample it

to every 10 seconds and is discussed in detail in the second chapter of this thesis.

Another problem with the data, which was scaling the values of all the variables in

one common scale which is very important before using the data as input to a neural

network. After scaling the raw data, the data looks something as shown in the figure

5.5. We use a MinMax scaler from the python package Scikit-learn, to scale this data

into the range of 0 to 1. Now, all the three variables have the same scale as can be

seen, from the figure 5.5. Now that we have the scaled data, we can perform further

model training on this data. Anomaly detection tasks are simplified if the data points

from different variables have the same scale.

As the name suggests this is a convolutional LSTM neural network meaning a

combination of convolution and the LSTM layers in one single layer. The term con-

volution refers to a mathematical combination of two functions to produce a third

function. It merges two sets of information. In the case of a Convolutional neural

network, the convolution is performed on the input data with the use of a filter or

kernel to then produce a feature map. A convolution is executed by sliding the filter

over the input. At every location, a matrix multiplication is performed and sums

the result onto the feature map. Numerous convolutions are performed on the input,

where each operation uses a different filter. This results in different feature maps.

In the end, all these feature maps are taken together and put together as the final

output of the convolution layer. This systematic application of the same filter across

an image is a powerful idea. If the filter is designed to detect a specific type of feature

in the input, then the application of that filter systematically across the entire input

image allows the filter an opportunity to discover that feature anywhere in the image.

This capability is commonly referred to as translation invariance meaning, the gen-

eral interest in whether the feature is present rather than where it was present. This

is why convolutional layers are good at identifying features and hence, we are using

60

that power to leverage in this anomaly detection application. The LSTM layer as a

combination is to provide the strength of temporal sequence remembrance which is

the primary strength of the LSTM layer. That is, it performs well on temporal data.

Combining that with convolution layer within each LSTM layer so that the internal

matrix operations of an LSTM layer are replaced by convolution operations to help

the network identify relationships between the features is a novel idea. The model

architecture leveraging this concept is as shown in the figure 6.4. We reshape inputs

first into the required dimensions which is [samples, timesteps, rows, columns, chan-

nels]. As can be seen from the model architecture after, the inputs are given to the

network where the first layer is the "ConvLSTM2D" using the Keras API in Python.

We choose a filter size of 64 which is appropriated after a few trial and error of differ-

ent permutations and combinations. The kernel size is taken to be [1,1] so that the

kernel is applied to each data point in the data set individually. The activation func-

tion used here is the rectified linear unit and as mentioned in the previous chapter,

we have the return sequences parameter set to "True" to keep the dimensions intact

and so that each LSTM hidden state output is passed on to the next layer. We use

four such layers stacked on top of each other with the same parameters. The number

of layers we appropriated after a lot of trial and error and finally optimizing 4 layers

based on the best results. After these 4 layers, we have two Dense layers and finally

a Reshape layer to reshape the output in the input dimensions for interpretation.

This ConvLSTM model was fit on training data of size of 46,700 and validated on a

sample size of 2,981 samples for 40 epochs with a batch size of 10 and took 40 minutes

to complete on the Google Colaboratory platform with 2vCPU at 2.2 GHz and 13

GB RAM. We use the Mean Absolute error loss for evaluation of the model. After

training, we make predictions on the training data and calculate the loss distribution

on the training data.

61

Figure 6.4: Convolutional LSTM Neural network architecture

This loss distribution plot helps us decide an appropriate threshold to detect

62

anomalies in the test data. The model is used to make predictions on the train-

ing data and the mean absolute error loss is computed and thus the loss distribution

plot is plotted. It looks as show in the figure 6.5.

Figure 6.5: Convolutional LSTM Loss distribution plot

Looking at the plot, we appropriated a threshold value of "0.02" to a good threshold

value for detecting the anomalies. Any loss higher than this value would be classified

as an anomaly. Now we make predictions on the test data and calculate the same

mean absolute error loss for each time step in the test data. Comparing these loss

values with the threshold value, we classify which values are anomalies and which are

not. The final plot of detected values based on these loss values looks as shown in

the figure 6.6. This plot is plotted using the entire training as well as the test data.

The red line on the plot is the threshold line. Loss values that exceed that line are

classified as anomalies. Based on this plot, the timestamps can be identified which

have been classified as having anomalous data and further investigation can be done.

By digging deeper and reverse engineering our way through the timestamp values,

63

first sampled at 10 seconds and then at each second which is the original data we can

identify if the values were truly anomalous using the help of subject matter experts.

Figure 6.6: Anomaly detection using Convolutional LSTM model

Because of the fact, that we are using data from a real world functioning microgrid

and have also selected data points range where the microgrid was working as expected

or "normally", the chances of anomalies occurring is very rare. This Convolutional

LSTM neural network was able to detect 23 anomalies from a test data set of 8,977

data points which is 0.2% of the entire test data. Due to the convolution operations

happening within the LSTM layers this network has a unique quality to learn hidden

interdependencies. Also, this network was able to detect the same anomalies as

detected by the LSTM autoencoder network but at the same time able to find more

thus proving that the LSTM layer on its own is good but convolution operations

within them give it more strength as network and can become more sensitive to the

anomalous data which is specially useful in unsupervised learning since there is a lack

of labelled dataset. This network is not as bad with the false positives as the VAR

model but at the same time sensitive enough than the LSTM autoencoder network to

detect more probable anomalies. This sort of approach or network is always better in

high risk conditions where the occurrence of anomalous data can be a big problem.

64

Then we need a network sensitive enough to detect probable anomalies but at the

same time not have too many false positives which is precisely the area where this

novel ConvLSTM neural network excels.

CHAPTER 7: CONCLUSIONS AND FUTURE SCOPE

Time series forecasting tasks are important in various industries, for forecasting

tasks, spotting trends, analysis of the trends, predictions for the future and also

for anomaly detection in time series data coming from sensors in an industrial or

commercial setting. The statistical methodologies such Moving Averages (MA), Auto

Regressive Moving Average (ARMA), Vector Auto Regression (VAR) and such, suffice

for most of the tasks until there is good data present. Anomaly detection tasks

present a problem for detecting anomalous behaviour in the available data. For this

to happen, accurate labels need to be present on which data points are anomalies.

This becomes a supervised learning problem. But there are a lot of scenarios where

the anomaly labels are not recorded. This becomes an unsupervised learning problem

and is the situation where machine learning or deep learning can come in handy. In

supervised learning, where any model developed and trained on available data looks

for labels of the anomalies and detects patterns which contribute to the anomaly.

On the contrary in unsupervised learning because of the lack of labelled data, the

models learn patterns which form a normal behaviour and any deviation from this

normal pattern beyond a certain threshold is classified as an anomaly. This makes the

model susceptible to potential false positives but over the course of time, the model

has the capability to learn from previous mistaken classifications and can improve in

accurately detecting the anomalies.

The purpose of this thesis was to investigate the novel approach of Deep Learning

methodologies over statistical approaches in the analysis of time series. For this, we

use the data at three different points in a real world microgrid at the frequency of

every one second. Since, this is an industrial dataset and is not curated for academic

66

purposes, we can safely say that the chances of anomalies happening are drastically

low. The dates for which we are performing the analysis on the data has been the

period of "normal" or expected behaviour in the functioning of the microgrid. There

is also a lack of labelled data in the classification of anomalies, which makes this an

unsupervised learning task. We chose to compare a statistical method of Vector Auto

Regression (VAR) and two deep learning approaches. One is an LSTM Autoencoder

which has been proven to perform well for anomalous detection tasks. The other is a

novel Convolutional LSTM neural network developed to investigate how the addition

of the convolutional operations within the LSTM layers affect its performance. As

we saw from the chapters 4 to 6 where each algorithm and their anomaly detection

results are mentioned in detail, the Vector Auto Regression was able to detect the most

number of anomalies which are 145 in number. Aside from the usual data cleaning

and preprocessing tasks, one additional task to perform for this model was to check

the stationarity in the time series data. For most statistical analysis it is important

we remove trends from the time series and then perform the analysis. Although this

model took only 1 minute to provide the results, the number of 145 anomalies out of

the total 8977 test data, leads to believe the presence of false positives. False positives

are those anomalies which are not anomalies in reality but have been classified by the

model as such. Then we used the LSTM Autoencoder model for this task. Essentially

an autoencoder model tries to reconstruct the input after passing through an encoder

and a decoder. This model was able to detect 5 anomalies from the 8977 test data

set. This model took 25 minutes to complete which understandably is a lot longer

than the VAR model but in terms of removing the false positives, is a much better

candidate. Then we look at the novel Convolutional LSTM model for this task.

This is a novel approach and is performed on an experimental basis. The addition

of convolution layers within the LSTM layers should help the model in identifying

the interdependencies between the features consequently being more accurate in the

67

anomaly detection tasks. The model was able to detect 23 anomalies from the 8977

test data points and took 40 minutes to complete. This model detected the same

anomalies as the LSTM Autoencoder and at the same time was able to detect 18

more. Of course, because of the lack of labelled anomaly data, we can not know

sure which one is an actual anomaly. This model provides timestamps where it has

detected the probable anomalies and these can be further investigated with help from

subject matter experts into identifying the true anomalies.

Figure 7.1: Proposed framework for real time anomaly detection

Over the course of time and making the wrong classifications, the model can eventu-

ally learn the right pattern and would no longer require labelled data for classification

and can perform extremely well in areas where labelled data cannot be acquired or

is too difficult. That is when, such techniques as discussed in these thesis come in

handy. Since, we are looking at data from three different devices in the microgrid,

this anomaly detection task also gives us insight into how the devices function with

respect to each other and further investigation of why the anomalies occur can lead

to interesting discoveries either in the device configuration or the microgrid. Once

the models get better at classifying the anomalous data, they no longer need to be as

68

standalone models where data is fed as chunks separately. The entire configuration

can at this point be in the form of a streaming format, where the input data is pro-

cessed and fed to the model and the results can be provided in real-time 7.1. This can

be possible because of the availability of big data tools like Apache Spark and cloud

technologies which does not require the organization to have on-premise hardware for

such high computation tasks. The use of cloud servers would also yield the results

quickly thus helping the near real-time approach. This would be of immense use to

any organization wanting to perfect their systems and situations where the occur-

rence of anomalies is either a high-risk area or can cause high losses. This real-time

approach and going forward predicting anomalies in the future can help organizations

investigate well in advance what is wrong, trigger warning systems and thus prevent

an eventual catastrophe.

69

REFERENCES

[1] D. T. Ton and M. A. Smith, “The u.s. department of energy’s microgrid initia-
tive,” The Electricity Journal, vol. 25, no. 8, pp. 84 – 94, 2012.

[2] N. Hatziargyriou, A. Anastasiadis, J. Vasiljevska, and A. Tsikalakis, “Quantifica-
tion of economic, environmental and operational benefits of microgrids,” in 2009
IEEE Bucharest PowerTech, pp. 1–8, IEEE, 2009.

[3] S. Bossart, “Renewable and distributed systems integration demonstration
projects,” in EPRI Smart Grid Demonstration Advisory Meeting. http://www.
smartgrid. epri. com/doc/15% 20DOE% 20RDSI% 20Project% 20Update. pdf,
2009.

[4] R. Act, “The american recovery and reinvestment act of 2009,” Public Law,
vol. 111, no. 5, pp. 5–30, 2009.

[5] F. P. Ultra-Wideband, “Environmental security technology certification pro-
gram,” Environmental security, 2005.

[6] P. Basak, S. Chowdhury, S. H. nee Dey, and S. Chowdhury, “A literature review
on integration of distributed energy resources in the perspective of control, pro-
tection and stability of microgrid,” Renewable and Sustainable Energy Reviews,
vol. 16, no. 8, pp. 5545–5556, 2012.

[7] A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key
drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews,
vol. 90, pp. 402–411, 2018.

[8] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE
power and energy magazine, vol. 5, no. 4, pp. 78–94, 2007.

[9] H. Zeineldin, E. El-Saadany, and M. Salama, “Distributed generation micro-
grid operation: Control and protection,” in 2006 Power Systems Conference:
Advanced Metering, Protection, Control, Communication, and Distributed Re-
sources, pp. 105–111, IEEE, 2006.

[10] M. Shahidehpour and J. F. Clair, “A functional microgrid for enhancing reliabil-
ity, sustainability, and energy efficiency,” The Electricity Journal, vol. 25, no. 8,
pp. 21–28, 2012.

[11] K. Ravindra and P. P. Iyer, “Decentralized demand–supply matching using com-
munity microgrids and consumer demand response: A scenario analysis,” Energy,
vol. 76, pp. 32–41, 2014.

[12] M. E. Khodayar, “Rural electrification and expansion planning of off-grid micro-
grids,” The Electricity Journal, vol. 30, no. 4, pp. 68–74, 2017.

70

[13] T. Abdallah, R. Ducey, C. A. Feickert, R. S. Balog, W. Weaver, A. Akhil, and
D. Menicucci, “Control dynamics of adaptive and scalable power and energy
systems for military micro grids,” tech. rep., CONSTRUCTION ENGINEERING
RESEARCH LAB (ARMY) CHAMPAIGN IL, 2006.

[14] R. M. Kamel, A. Chaouachi, and K. Nagasaka, “Carbon emissions reduction and
power losses saving besides voltage profiles improvement using micro grids,” Low
Carbon Economy, vol. 1, no. 1, p. 1, 2010.

[15] W. Hurst, M. Merabti, and P. Fergus, “Big data analysis techniques for cyber-
threat detection in critical infrastructures,” in 2014 28th International Confer-
ence on Advanced Information Networking and Applications Workshops, pp. 916–
921, 2014.

[16] J. Hu and A. V. Vasilakos, “Energy big data analytics and security: Challenges
and opportunities,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2423–
2436, 2016.

[17] S. Otoum, B. Kantarci, and H. Mouftah, “Adaptively supervised and intrusion-
aware data aggregation for wireless sensor clusters in critical infrastructures,” in
2018 IEEE International Conference on Communications (ICC), pp. 1–6, 2018.

[18] B. V. Solanki, A. Raghurajan, K. Bhattacharya, and C. A. Cañizares, “Including
smart loads for optimal demand response in integrated energy management sys-
tems for isolated microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 4,
pp. 1739–1748, 2015.

[19] G. Henri and N. Lu, “A supervised machine learning approach to control energy
storage devices,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 5910–
5919, 2019.

[20] Xin Yao, “Evolving artificial neural networks,” Proceedings of the IEEE, vol. 87,
no. 9, pp. 1423–1447, 1999.

[21] K. P. Bennett and A. Demiriz, “Semi-supervised support vector machines,” in
Advances in Neural Information processing systems, pp. 368–374, 1999.

[22] R. E. Wright, “Logistic regression.,” Machine learning, 1995.

[23] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[24] T. Shon and J. Moon, “A hybrid machine learning approach to network anomaly
detection,” Information Sciences, vol. 177, no. 18, pp. 3799–3821, 2007.

[25] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric frame-
work for unsupervised anomaly detection,” in Applications of data mining in
computer security, pp. 77–101, Springer, 2002.

71

[26] C. S. Hilas and P. A. Mastorocostas, “An application of supervised and unsuper-
vised learning approaches to telecommunications fraud detection,” Knowledge-
Based Systems, vol. 21, no. 7, pp. 721–726, 2008.

[27] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and di-
agnosis from system logs through deep learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1285–1298,
2017.

[28] J. Hare, X. Shi, S. Gupta, and A. Bazzi, “A review of faults and fault diagnosis
in micro-grids electrical energy infrastructure,” in 2014 IEEE Energy Conversion
Congress and Exposition (ECCE), pp. 3325–3332, IEEE, 2014.

[29] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algo-
rithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[30] L. A. Zadeh, “Fuzzy logic,” Computer, vol. 21, no. 4, pp. 83–93, 1988.

[31] K. Heumann, Basic principles of power electronics. Springer Science & Business
Media, 2012.

[32] W. McKinney et al., “pandas: a foundational python library for data analysis
and statistics,” Python for High Performance and Scientific Computing, vol. 14,
no. 9, 2011.

[33] G. Brys, M. Hubert, and A. Struyf, “A robust measure of skewness,” Journal of
Computational and Graphical Statistics, vol. 13, no. 4, pp. 996–1017, 2004.

[34] J. Quackenbush, “Microarray data normalization and transformation,” Nature
genetics, vol. 32, no. 4, pp. 496–501, 2002.

[35] N. R. Goodman, “Statistical analysis based on a certain multivariate complex
gaussian distribution (an introduction),” The Annals of mathematical statistics,
vol. 34, no. 1, pp. 152–177, 1963.

[36] B. Abraham and A. Chuang, “Outlier detection and time series modeling,” Tech-
nometrics, vol. 31, no. 2, pp. 241–248, 1989.

[37] D. M. Hawkins, Identification of outliers, vol. 11. Springer, 1980.

[38] Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P. Huang, “Survey of fraud detec-
tion techniques,” in IEEE International Conference on Networking, Sensing and
Control, 2004, vol. 2, pp. 749–754, IEEE, 2004.

[39] W. Härdle, A. Tsybakov, and L. Yang, “Nonparametric vector autoregression,”
Journal of Statistical Planning and Inference, vol. 68, no. 2, pp. 221–245, 1998.

[40] D. E. Spencer, “Developing a bayesian vector autoregression forecasting model,”
International Journal of Forecasting, vol. 9, no. 3, pp. 407–421, 1993.

72

[41] K. Holden, “Vector auto regression modeling and forecasting,” Journal of Fore-
casting, vol. 14, no. 3, pp. 159–166, 1995.

[42] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the augmented
dickey–fuller test,” Journal of Business & Economic Statistics, vol. 13, no. 3,
pp. 277–280, 1995.

[43] R. I. Harris, “Testing for unit roots using the augmented dickey-fuller test: Some
issues relating to the size, power and the lag structure of the test,” Economics
letters, vol. 38, no. 4, pp. 381–386, 1992.

[44] C. Agiakloglou and P. Newbold, “Empirical evidence on dickey-fuller-type tests,”
Journal of Time Series Analysis, vol. 13, no. 6, pp. 471–483, 1992.

[45] G. Shukur and P. Mantalos, “A simple investigation of the granger-causality test
in integrated-cointegrated var systems,” Journal of Applied Statistics, vol. 27,
no. 8, pp. 1021–1031, 2000.

[46] C. Diks and V. Panchenko, “A new statistic and practical guidelines for nonpara-
metric granger causality testing,” Journal of Economic Dynamics and Control,
vol. 30, no. 9-10, pp. 1647–1669, 2006.

[47] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language
modeling,” in Thirteenth annual conference of the international speech commu-
nication association, 2012.

[48] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural
nets and problem solutions,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[49] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi,
Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforce-
ment learning,” arXiv preprint arXiv:1912.06680, 2019.

[50] S. Stanford, “Deepmind’s ai alphastar showcases significant progress towards agi,”
ML Memoirs, 2019.

[51] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep learning for solar power fore-
casting, an approach using autoencoder and lstm neural networks,” in 2016 IEEE
international conference on systems, man, and cybernetics (SMC), pp. 002858–
002865, IEEE, 2016.

[52] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural networks and
robust time series prediction,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 240–254, 1994.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, pp. 1097–1105, 2012.

