
MULTI-TASK GENERALIZATION USING PRACTICE FOR DISTRIBUTED
DEEP REINFORCEMENT LEARNING

by

Upasana Pattnaik

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Computer Science

Charlotte

2021

Approved by:

Dr. Minwoo Lee

Dr. Min Shin

Dr. Liyue Fan

ii

c©2021
Upasana Pattnaik

ALL RIGHTS RESERVED

iii

ABSTRACT

UPASANA PATTNAIK. Multi-Task Generalization using Practice for Distributed
Deep Reinforcement Learning. (Under the direction of DR. MINWOO LEE)

Feedback driven deep reinforcement learning methodologies are widely favoured ap-

proaches to solving artificial intelligence problems. The algorithms navigate complex

decision-making tasks without manual state space engineering. Notable problems

considered out of reach by machines, like mastering Go, StarCraft, Dota2 and Atari

2600 games were solved successfully. However, these algorithms require extensive

amounts of time and data to specialize in one problem.

Transfer learning strategies approach this challenge by supplementing the reinforce-

ment learning task with shareable knowledge from a source task. The source provides

basal knowledge about the environment, thus reducing the time to learn. Addition-

ally, these strategies can be adopted in the multi-task learning domain. This strategy

favours building generalized representations capable of solving different problems si-

multaneously using shared representation from similar tasks as a source of inductive

bias. The addition of transfer learning helps to ground the simultaneous training of

different learning objectives.

This thesis employs the transfer learning paradigm Practice as an auxiliary task to

improve the generalization capabilities of a distributed deep reinforcement learning

algorithm in the multi-task problem setting. The algorithm implements distributed

learners that optimize on different task objectives and contribute to training a single

representation proficient in all objectives. Experimental results indicate that Prac-

tice’s addition of state dynamics information effectively improves the generalization

capabilities of the algorithm. Additionally, the contributions of each learner are ana-

lyzed to study their impact on the overall multi-task learning objective.

iv

DEDICATION

To Aniruddha Pattnaik, Leena Lama Pattnaik and Upamanyu Pattnaik for their

faith and love.

To the women in my life who lift me up.

v

ACKNOWLEDGEMENTS

I am incredibly grateful to Dr. Minwoo Lee for giving me this opportunity to learn.

His guidance and expertise have been invaluable in the development of this work. I

would like to extend my sincere thanks to Dr. Min Shin and Dr. Liyue Fan for their

patient support and feedback at every milestone. Their counsel provided me with the

tools I needed to choose the right direction for my thesis.

I would like to offer my appreciation to the University of North Carolina at Char-

lotte for providing the infrastructure to facilitate my love for learning. I would like to

acknowledge Chris Maher and Jon Halter at University’s Research Computing Team

for helping me harness the power of high performance computing.

This work could not have been done without the constant encouragement and

unwavering support from my family and friends. I would like to express my deepest

gratitude to them.

vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 2

1.2. Contributions 3

1.3. Thesis Outline 3

CHAPTER 2: BACKGROUND 5

2.1. Reinforcement Learning Basics 5

2.1.1. Markov Decision Process 5

2.1.2. Model-Based vs Model-Free 7

2.1.3. On-Policy vs Off-Policy 8

2.2. Deep Reinforcement Learning 9

2.2.1. Deep Neural Networks 10

2.2.2. Asynchronous Advantage Actor Critic 14

2.2.3. Distributed Deep Reinforcement Learning 17

2.3. Challenges of Deep Reinforcement Learning: Generalization 19

2.3.1. Transfer Learning 21

2.3.2. Multi-Task Learning 23

2.4. Practice 25

vii

CHAPTER 3: PROPOSED METHODS 29

3.1. Practice for Multi-Task A3C 30

3.2. Samples for Practice 36

3.2.1. Shared Experience Samples 37

3.2.2. Samples using Global Policy Head 38

3.3. Multi-Task Gradient Contribution Analysis 40

CHAPTER 4: EXPERIMENTS AND RESULTS 43

4.1. Environment 43

4.2. Practice for A3C on Pong 45

4.2.1. Results 49

4.3. Multi-Task Gradient Contribution Analysis 51

CHAPTER 5: DISCUSSIONS AND FUTURE WORK 56

5.1. What Determines Task Similarity? 56

5.2. Practice and Generalization 57

CHAPTER 6: CONCLUSIONS 59

REFERENCES 60

viii

LIST OF TABLES

TABLE 4.1: Multi-Task A3C Hyper-Parameters 46

TABLE 4.2: Practice: Shared Sampling Hyper-Parameters 47

TABLE 4.3: Practice: Global Sampling Hyper-Parameters 49

ix

LIST OF FIGURES

FIGURE 2.1: Agent-Environment Interaction 6

FIGURE 2.2: Model-Based Learning 7

FIGURE 2.3: Deep Neural Network Architecture 11

FIGURE 2.4: Deep Q Network CNN 12

FIGURE 2.5: Convolutional Neural Network Layers 13

FIGURE 2.6: CNN Max-Pooling Layer 13

FIGURE 2.7: A3C Overview 16

FIGURE 2.8: A3C Algorithm 17

FIGURE 2.9: GORILA Architecture 18

FIGURE 2.10: IMPALA Overview 19

FIGURE 2.11: Space Shooting Games 20

FIGURE 2.12: Practice Architecture 26

FIGURE 2.13: DRL Practice Architecture 27

FIGURE 3.1: Asynchronous Components Overview 31

FIGURE 3.2: Worker Network 32

FIGURE 3.3: Practice Network 33

FIGURE 3.4: Asynchronous Components: Practice for Multi-Task A3C 33

FIGURE 3.5: Practice for Multi-Task A3C 34

FIGURE 3.6: Shared Experience Sampling Strategy 37

FIGURE 3.7: Global Network Sampling Strategy 39

FIGURE 3.8: Gradient Analysis Overview 41

x

FIGURE 4.1: Pong Environments 44

FIGURE 4.2: Results: Easy Set 50

FIGURE 4.3: Results: Hard Set 51

FIGURE 4.4: Results: Practice vs Worker Gradient Similarity 53

FIGURE 4.5: Results: Worker vs Worker Gradient Similarity 54

xi

LIST OF ABBREVIATIONS

A3C An acronym for Asynchronous Advantage Actor Critic.

AI An acronym for Artificial Intelligence.

CKA An acronym for Centered Kernel Alignment

CNN An acronym for Convolutional Neural Network.

DL An acronym for Deep Learning.

DQN An acronym for Deep Q Networks.

DRL An acronym for Deep Reinforcement Learning.

MDP An acronym for Markov Decision Process

MSE An acronym for Mean Squared Error

MTL An acronym for Multi-Task Learning.

NN An acronym for Neural Network.

RL An acronym for Reinforcement Learning.

TL An acronym for Transfer Learning.

CHAPTER 1: INTRODUCTION

The Artificial Intelligence (AI) field was established to bridge machine capability

and qualities of human intelligence like reasoning, inference, adapting, abstract object

comprehension, and prior knowledge utilization. What is innate and inherent to hu-

man understanding currently requires AI approaches to explicitly factor each element

and its impact on a singular objective. Since the term emerged in 1956, research in

the field has branched in several directions to achieve the combination of mechanical

computing and human cognitive ability.

Deep Reinforcement Learning (DRL) has successfully solved AI problems consid-

ered out of reach for its time. DRL is a feedback-based learning methodology that

combines the principles of Reinforcement Learning (RL) [1] and Deep Learning (DL)

[2] to learn sequential decision making in complex environments. Celebrated achieve-

ments include DQN [3] that solved Atari games using raw pixel values, AlphaGo [4]

that mastered Go to beat the world champion in 2016, and OpenAI Five [5] that

achieved expert-level performance in Dota2. These algorithms present innovative

strategies and surpass human-level performance in numerous challenges.

However, DRL solutions are often developed to specialize in a single problem do-

main. The nature of such specialization leads to poor performance in unseen circum-

stances. Given the large amount of resources required to train DRL, this methodology

is not sustainable. This has led to research focused on increasing training efficiency

and generalized frameworks that enhance the algorithm’s ability to adapt to un-

observed states. Prominent approaches include transfer learning [6] and multi-task

learning[7].

Transfer learning uses source task information to improve target task learning. Un-

2

der the assumption that the tasks share underlying similarities, the addition of source

task knowledge has demonstrated reduction in training time and performance boost

[8][9]. Multi-task learning focuses on learning shared representation between multiple

tasks simultaneously. This approach is highly effective in building representations ca-

pable of generalizing [10][11]. Distributed learning is a popular approach incorporated

into multi-task learning to scale agent training and solve problems faster.

RL algorithms like Asynchronous Advantage Actor Critic (A3C) [12] parallelize RL

training by launching multiple learners to scale and decorrelate experience data for a

single task objective. It can also be extended to distributed multi-task learning, where

separate learners contribute to different learning objectives. However, multi-task

learning suffers from distraction actuated by optimizing multiple objectives, leading

to oscillations in performance [11].

This thesis incorporates Practice [13][14] paradigm into A3C to help ground multi-

task learning. Practice has demonstrated the ability to accelerate RL training by

transferring state dynamics information. It sets up a non-RL regression task to learn

environmental dynamics by predicting state change without any expert input. Intro-

ducing practice to distributed multi-task learning supplements individual task learn-

ers with common shareable knowledge about the environments. This methodology

exhibits enhancement of multi-task RL’s generalization capabilities.

1.1 Problem Statement

Hypothesis: Improvement of multi-task generalization capabilities of distributed

Deep Reinforcement Learning (DRL) algorithm by supplementing learning with a

predictive auxiliary task.

Given tasks ti ∈ T in a domain, we examine the hypothesis by integrating Practice

methodology as an auxiliary task taux to improve distributed DRL agent performance

on task set T . The following sub-goals help investigate the hypothesis:

3

• Implement non-reinforcement learning auxiliary task to enhance generalization

of distributed DRL algorithm in the multi-task setting.

• Develop strategies to increase the effectiveness of practice auxiliary task.

• Examine practice contributions to the multi-task learning objective.

1.2 Contributions

1. Practice for Multi-Task A3C: In this thesis, I extended the A3C algorithm with

practice to supplement multi-task learning. Practice serves as an auxiliary task

that recurrently optimizes the global network with state dynamics information.

This approach was evaluated on a multi-task version of the Pong game.

2. Practice Sampling Strategies: Producing good state dynamics knowledge on

all tasks improves practice’s impact on multi-task learning. To increase the

effectiveness of practice on multi-task objective, the training data is must be

representative of the entire domain. I implemented two sampling strategies to

increase the effectiveness of practice. They present the effect of sample source

on practice representation.

3. Multi-Task Gradient Contribution Analysis: Additionally, I provide an analysis

of the gradients produced between all the learners of Practice for Multi-Task

A3C using Centered Kernel Alignment (CKA) [15] similarity measure. This

provides the overarching impact of training a single neural network to optimize

multiple objectives using practice.

1.3 Thesis Outline

In Chapter 2, concepts that build the foundation of this thesis are briefly summa-

rized. Relevant avenues of investigation related to the proposed methodology serve

as the motivational basis for the line of questioning is pursued. Deep reinforcement

4

learning and its generalization challenges supply the rationale to study transfer learn-

ing and multi-task learning.

In Chapter 3, the research design is presented. It provides a comprehensive view of

the proposed methodologies used to examine the hypothesis. This chapter describes

the design of Practice for Multi-Task A3C and the sampling strategies that aim to im-

prove multi-task generalization. Additionally, the outline to study the contributions

of multi-task learners via gradient analysis is provided.

In Chapter 4, experimental results are presented. This chapter begins with the

multi-task environment set designed to test proposed methods and the experiment

configurations. The results report the effectiveness of the proposed methodology on

a multi-task environment set. In Chapter 5, the impact of experimental results and

future work is discussed. The thesis wraps up in Chapter 6, which provides concluding

statements about the proposed methods.

CHAPTER 2: BACKGROUND

2.1 Reinforcement Learning Basics

Reinforcement Learning (RL) algorithms are designed to use feedback signals to

learn successful navigation within its environment. Unlike machine learning algo-

rithms, RL algorithms are not given a fixed dataset to train. They are trained on

instances of the environment and learn how to maximize actions that produce the

desired behaviour.

RL methodology is built around five essential components- Agent, Environment,

Observation, Action, and Reward. An RL Agent embodies the algorithm that learns

how to maneuver around the environment. The universe that the agent interacts

with is called the Environment. An Observation is a snapshot of the environment at

a given discrete time step t. The agent receives observations recurrently and selects

actions to move around the environment. Actions are the legal set of motions defined

for successful navigation. The environment design includes a goal or reward signal

to drive the agent’s optimization towards maximizing it. The Reward is a positive

or negative scalar value sent to the agent by the environment based on the action

selected.

2.1.1 Markov Decision Process

Mathematically, this methodology is framed as a Markov Decision Process (MDP).

It formalizes sequential decision making by an agent in the environment. In MDP,

all states fulfill the Markov Property (MP). MP rules that future state dynamics are

conditionally dependent on the current state alone. An observation is called state

s, and change of state occur according to the system’s laws of dynamics. The agent

6

is given a state. It selects an action a and receives reward r based on goodness of

state-action selection defined by the environment design. An MDP is said to be fully

observable if the agent receives complete state information. If the agent is given

incomplete state information, the MDP is partially observable. Top-level agent and

environment interaction can be represented by Fig 2.1.

Figure 2.1: Agent-Environment Interaction [1]

MDP can be represented as a tuple in the form of (S, A, P , R), where S represents

set of all possible states, A is the legal action set, P is the transition probability, R

is the reward function. Transition probability P is the probability of moving from

state s to next state s′ given a, creating transition step. It is denoted by P (s′|s, a).

Reward function R produces the return reward for selection of action a in state s.

The agent’s understanding of the environment can be termed as model. The model

of the environment defines the transition probabilities and reward function.

A trajectory is tuple (st, at, rt, s′t) which is state, action, reward and next state at

time step t. At each t, given s, a is selected based on transition probability P to move

to s′. r is the scalar value obtained that indicates goodness of action selection. State

transition function P a
ss′ can be defined as P (s′|s, a) = P [St+1 = s′|St = s, At = a].

An important aspect of learning is finding good Policy π. It defines the agent’s be-

haviour in the environment. It can be stochastically represented as π(a|s) = P [At =

a|St = s]. Multiple trajectories are collected over time to learn policy. These trajecto-

ries are used to calculate return or discounted future reward Gt. Which is formulated

as Gt =
∑∞
k=0 γ

kRt+k+1. Gamma γ is the multiplicative factor used to discount future

7

rewards and disable infinite loops in state transition.

Value function uses Gt to calculate the value of a state; represented as Vπ(s) =

E[Gt|St = s]. If the state-action value needs to be calculated, a is added to the

formulation to produce the Q-value function, represented by Qπ = Eπ[Gt|St = s, At =

a]. Monte-Carlo (MC) Sampling finds the value of state Vπ(s) by fully traversing all

trajectories under current policy π until terminal state sT . This method is inefficient

if the state space is large. Temporal Difference (TD) methods overcome this drawback

by estimating state value using immediate reward and next state value.

2.1.2 Model-Based vs Model-Free

Model-based RL explicitly defines the model of the environment to simulate dy-

namics. It introduces planning to RL. Model-based RL uses planning to find optimal

strategies. The algorithm creates a transition model of the environment and select

actions using learned predictive control. Planning involves using simulated experience

from the model of the environment to find the policy. Some variations of model-based

methods use both real and simulated experiences to find optimal policy (Figure 2.2).

Using a model reduces the environmental interaction required to collect samples. It

leads to sample efficient RL.

Figure 2.2: Model-Based Learning [1]

Model-based RL algorithms work well in deterministic environments. However,

8

large state spaces limit the effectiveness of model-based RL. These spaces exponen-

tially increase the possible transition dynamics that the model might fail to capture.

The complexity can be overcome with vast computing resources, but this is not an

optimal solution. Model-free RL methods learn to map raw environment observations

directly to values or action. They learn policies from incomplete information about

the environment. Model-free methods do not use transition probability distribution.

They directly learn from environmental interaction. Monte-Carlo (MC) and Tem-

poral Difference (TD) methods are model-free RL approaches. Many popular RL

algorithms use model-free approach to learn.

2.1.3 On-Policy vs Off-Policy

There are two strategies to enforce action selection: On-Policy and Off-Policy.

On-policy methods choose actions under the current policy π. Samples from cur-

rent policy result in behaviour likely to explore. On the downside, it might not

utilize known patterns that could reliably yield rewards. State-Action-Reward-State-

Action (SARSA) is an example of an on-policy algorithm. On-policy TD control

method SARSA [1], termed after Q-value update sequence of (st, at, rt+1, st+1, at+1),

is a model-free approach which chooses actions from current policy.
Algorithm 1: SARSA

1 Initialize t = 0

2 Start with s0, and choose action a0 = argmaxa∈AQ(s0, a), using ε-Greedy

method

3 At time t, we observe reward rt+1 and go to next state st+1

4 Select action using method in step 2: at+1 = argmaxa∈AQ(st+1, a)

5 Update Q-value function Q(st, at)← Q(st, at) + α(r + γQ(st+1, at+1)−Q(st, at))

6 t = t+ 1 repeat from step 3

Off-policy methods use a greedy policy to learn optimal policy and a behaviour

policy to select actions. It offers more control between exploration and exploitation of

9

environmental knowledge. Q-Learning is an example of an off-policy algorithm. Off-

policy TD control method Q-learning [1] is a model-free approach. Unlike SARSA,

the greedy action in the next state is used to update the Q-value function.
Algorithm 2: Q-Learning

1 Initialize t = 0.

2 Starts with s0.

3 At t, pick action according to Q values, at = argmaxa∈AQ(st, a) and ε-Greedy.

4 After at, we observe reward rt+1 and go to next state st+1.

5 Update the Q-value function

Q(st, at)← Q(st, at) + α(r + γmaxa∈AQ(st+1, at+1)−Q(st, at))

6 t = t+ 1, repeat from step 3.

Using ε- Greedy, random action is selected with a small probability of ε, every

other time the highest value action is selected. Learning rate α is the hyperparam-

eter that tunes the importance of value during training. Between 0 and 1- 0 would

suggest prioritizing old values whereas, 1 suggests current information and encourages

learning.

2.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) employ Deep Neural Networks (DNNs) to

approximate functions. DNNs have been the driving force in advances and adoption

of AI in several industries including, but not limited to, computer vision [16] [17]

[18], audio and speech [19], natural language processing (NLP) [20] and board games

[21]. The depth and structural complexity of DNNs allow rich representations to be

learnt. When combined with RL algorithms, it can capture complex relationships

within the environment and successfully navigate without explicit state space design.

DNNs serve as function approximators for the value of state-action pairs and policy.

Games are a popular evaluation tool for DRL algorithms. They present a per-

ceivable measure to quantify human intelligence traits. In 2015, the researchers at

10

DeepMind presented the Deep Q Network (DQN) [3], a deep learning extension to the

Q-learning algorithm. DQN achieved superhuman or baseline scores on most of the

Atari Games using raw video game input. In the following year, AlphaGo algorithm

[4] beat Go World Champion Lee Sedol 4-1. It was an outcome that was considered

highly unlikely. The consensus at the time placed Go as a complex AI problem, out

of reach for at least a few more years. This led to a massive increase in interest in

Deep Reinforcement Learning as an approach to tackle AI challenges.

In 2017, AlphaZero algorithm [22], successor to AlphaGo, reported competition-

level or superior performance at Chess, Shogi, Go and the Atari games. In 2019,

model-based MuZero [21] succeeded AlphaZero. In the same year, OpenAI Five [5],

a 5-on-5 Dota-2 algorithm, beat the world champion team OG in a demonstration

match. Robotics problems like Solving Rubik’s cube with a robot hand [23], naviga-

tion optimization problems like autonomous stratospheric balloon navigation [24], or

self-driving vehicles [25] are some of the interesting applications in Deep Reinforce-

ment Learning.

2.2.1 Deep Neural Networks

Structure As seen in Figure 2.3, a Deep Neural Network(DNN) consists of an input

layer, multiple hidden layers and an output layer. Outputs are determined based on

how the input activates the layers of the neural network. The vector of each layer

li calculated by multiplying its weight matrix θlw with the previous layer’s vector

li−1, adding a bias θlb , and applying an activation function. The entire network’s

parameter, i.e., weights and biases, can be represented by θ. The goal of learning is

to improve the network’s approximation capabilities by updating θ.

11

Figure 2.3: Deep Neural Network Architecture [26]

This update is performed by calculating loss and optimizing in the direction of

loss reduction. The loss is the difference between the desired output and the neural

network output. For example, in supervised regression problems, mean squared error

(MSE) loss calculates the squared difference between provided true label and net-

work prediction. For classification problems, cross-entropy or negative log-likelihood

calculates the likelihood of network output matching target label.

The optimization process is trained on the loss function L(θ) to update each layer θl,

to improve the overall network’s capability of approximating desired output. Gradient

Descent optimization is used to calculate the gradient of the loss function with respect

to all the parameters θ. Using this method, the parameters can be shifted to the

direction that minimizes the overall loss. The Backpropagation algorithm [27] is used

to calculate all the parameter gradients using the chain rule. Autograd libraries like

PyTorch and TensorFlow provide tools to efficiently compute the partial derivatives

needed to apply the chain rule. Finally, using a gradient-based optimizer like Adam

or Stochastic Gradient Descent (SGD), the parameters are updated. Adam Optimizer

is the preferred DRL gradient optimizer.

Convolutional Neural Networks (CNNs) [28] are modified DNNs that are

highly successful in capturing spatial and temporal dependencies. They have been in-

valuable to the computer vision domain. The architecture was inspired by the brain’s

12

neural connectivity pattern in the visual cortex. The intuition behind the CNN func-

tion is that the hidden layer shares weights over the input to produce a feature map.

The neurons of the function are able to capture important characteristics/features of

an image.

Popular applications include image classification [27], object detection [17] [18],

reinforcement learning algorithms like DQN [3], A3C [12] and AlphaGo [22]. Figure

2.4 is a great example of CNN structure representation and how it maps pixel values

from a game frame to output Q-value for each action.

Figure 2.4: Deep Q Network Convolutional Neural Network Architecture [3]

The input is generally a 4-dimension tensor consisting of the number of input frames

x input height x input width x input colour channels. The hidden layer of a CNN is

called a kernel or filter and is smaller than the input. The neurons of the kernel are

arranged in 3-dimensions: height x width x depth. The kernel convolution operation

slides a predefined filter over the input, computing the dot product between the filter

values and input region values to generate the feature map.

The ReLu layer will activate elements on the map when similar features are de-

tected, as seen in Figure 2.5. The addition of pooling layers, like max-pooling, provide

the option to down-sample feature maps and increase spatial invariance (Figure 2.6).

13

The fully-connected (FC) layer is the final layer, and it bridges the activations from the

previous layers to the output layer. The convolutional layers are fully differentiable.

Effective filters can be learnt by updating the parameters using backpropagation and

optimizers.

Figure 2.5: Convolutional Neural Network Layers 1

Max-pooling is generally avoided in DRL network architectures as the algorithms

require spatial information for training. Small objects need to be tracked, and ex-

cessive down-sampling can cause loss of crucial information. This design leads to an

increase in the number of trainable parameters in a DRL network.

Figure 2.6: Max-Pooling Layer 2

1Image is retrieved from https://cs231n.github.io/convolutional-networks/
2Image is retrieved from https://cs231n.github.io/convolutional-networks/

14

CNNs are used in value-based DRL methods use to approximate the Q-value of

each possible state-action pair. For example, DQN [3] is an off-policy, value-based,

model-free algorithm that uses CNNs to learn policy from raw pixels. Value-based RL

assigns value to state-action selection by predicting future reward or return. The value

is the calculated by estimating the total reward that can be expected. Mathematically,

it can be represented by the Bellman equation: Q(s, a) = r + γmaxQ(s′, a′). Value

estimation updates the value function V (st) towards estimated return rt+1 +γV (st+1)

known as Temporal Difference(TD) target. Q function, represented by Q(st, at) ≈

E[
∑∞
k=1 γ

krt+k+1], is approximated by the neural network. The computational im-

practicality of memorizing Q-value tables for all state-action pairs in Q-learning was

overcome by DNN function approximation.

2.2.2 Asynchronous Advantage Actor Critic

Asynchronous Advantage Actor Critic (A3C) [12] is a representative example

for a Policy Gradient based DRL algorithm. It is an on-policy, model-free algorithm

that introduces efficient parallelism to RL training. The usage of state-value and

advantage functions gives A3C an edge over Q-learning based methods that stabilize

non-stationary Q-values.

Policy search methods directly learn policy πθ to maximize return G of all trajecto-

ries τ , represented by J(θ). Policy gradient methods apply gradient ascent on weights

θ to maximize the objective of J(θ). The gradient ascent equation can be represented

as:

θ ← θ + α∇θJ(θ) (2.1)

where,

J(θ) = Eτ∼ρθ [G(τ)] (2.2)

∇θJ(θ) = ∂J(θ)
∂θ

is the objective function with respect to the weight. The likelihood of

trajectory generated by policy πθ is ρ. α is the learning rate and in the equation 2.1, it

15

is the size of step taken in the gradient ascent direction. The REINFORCE algorithm

[29] provided an update to approximate policy gradient estimation (Eq. 2.3). Policies

have inherently lower variance than value functions which helps performance and

stability [8] [30].

∇θJ(θ) = Eτ∼ρθ [∇θ log ρθ(τ)G(τ)] (2.3)

Actor-Critic methods evolved from the replacement of the return of sampled trajec-

tories with Q-value for each action, which allowed single transition or bootstrapping

(Eq. 2.4). As the Q-values were unknown, an additional function approximator called

the Critic was added. Φ is used to parameterize the critic (Eq. 2.4). This enables

actor-critic architecture to learn parameterized policies. Most policy gradient algo-

rithms have actor-critic architectures. The actor learns to approximate the policy, and

the critic learns to estimate the goodness of policy using Q-values. Advantage Actor-

Critic methods introduced a baseline called the Advantage Aπ(s, a) = Qπ(s, a)−Vπ(s)

to reduce the variance of gradient methods and to multiply it to the log-likelihood of

the policy.

∇θJ(θ) = Es∼ρθ,a∼πθ [∇θ log πθ(s, a)QΦ(s, a)] (2.4)

To keep data independent and identically distributed (IID), a large buffer of tran-

sitions is required for training. This method requires a lot of memory. A solution to

this is to parallelize actor-critic methods. Asynchronous Advantage Actor Critic(A3C)

achieves this by launching multiple actor-critic instances called workers or learners.

As seen in Figure 2.7, using multiprocessing, the global A3C algorithm launches mul-

tiple workers to run on many environments and obtain large amounts of training data.

The actors exploit policy to select good actions, and their critics learn the state-value

function, which used as the baseline in policy gradient update. The workers calculate

16

gradients and asynchronously sends them to the global network for update. A3C

removes the need to wait for all the workers to synchronize for gradient update.

Figure 2.7: A3C Overview 3

A3C algorithms generally use 3 CNN layers followed by two outputs heads (ac-

tor and critic). The two heads can originate from a single network or have their

individual CNN networks. The actor outputs probabilities for taking each action

and updates policy parameters θ for πθ(a|s) as suggested by the critic. The critic

outputs a single number value for the current state and updates value function pa-

rameters using Vθv(s). The policy gradient update is mathematically formalized as

∇θ′ log π(at|st; θ′)A(st, at; θ, θv). Entropy regularization H is added to implement ex-

ploration by discouraging premature convergence on sub-optimal deterministic poli-

cies (Eq. 2.5). H is represented by H(πθ(st)) = −∑
a πθ(st, a) log πθ(st, a).

3Image is retrieved from https://medium.com/emergent-future/simple-reinforcement-
learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

17

Figure 2.8: A3C Algorithm [12]

∇θJ(θ) = Est∼ρπ ,at∼πθ [∇θ log πθ(st, at)(Gt − Vθv(st))− β∇θH(πθ(st))] (2.5)

Entropy is maximum if the policy is random and zero if deterministic. The reg-

ularization level is controlled using β parameter. High β results in random policy,

and low beta would be insignificant. The original A3C algorithm uses RMSProp to

optimize the model. Additionally, A3C can be extended to solve continuous action

space problems.

2.2.3 Distributed Deep Reinforcement Learning

Distributed DRL emerged from a demand for scalable architectures capable of

increasing the number of learners and experience generators, leverage multiple strate-

gies, and parallelizing mathematical computations. Distributed methods in DRL per-

form faster than a single agent and can be scaled to solve problems efficiently. A3C al-

gorithm encapsulates distributed DRL’s properties. A3C’s architecture launches mul-

tiple workers that conduct learning in their subsystem and work together to achieve

18

the overall goal. This work narrows the scope of distributed DRL to study single

agent problems that parallelize learning components.

GORILA [31] is a combination of AC methods and DQN, as seen in Figure 2.9.

Multiple actors contain a Q-network that interact with the environment and generate

experience. The experience samples are stored in a Replay Buffer. The learner

modules sample experiences from the buffer to update the Q-network. A target

network, like DQN’s, is periodically updated by the parameter server that keeps

track of network parameters θ. The actor’s parameters are also periodically updated

by the parameter server. Multiple workers and learners run within a single machine,

and the samples are stored in a replay buffer. However, storing experiences in the

replay buffer requires more memory and compute per interaction. Having agents

run asynchronously in A3C diversifies and decorrelates the training data. A3C has

parallel learning designed into its framework.

Figure 2.9: GORILA Architecture [31]

The Advantage Actor Critic (A2C) global network waits for all worker gradients

to arrive before averaging and optimizing the global network. Consequently, the

new parameters are sent to the worker. Distributed Proximal Policy Optimization

(DPPO) [32] combines A2C’s architecture with PPO’s clipped objective optimization

strategy. It is a continuous control problem extension to A3C. A2C and A3C have

19

similar performances. Asynchronous learning removes the need to wait for all the

workers to synchronize for gradient update.

Figure 2.10: IMPALA Overview [33]

Similar to GORILA and unlike A3C, IMPALA [33] separates acting from learning.

The actor generates experience, which is then sent to a central learner that computes

gradients. The central learner optimizes on the policy and value function. The actors

retrieve the latest parameters from the learner (Figure 2.10). The distributed actors

function as a massive source of data and remove the onus of calculating gradients.

IMPALA’s architecture allows experimentation in the multi-task setting and reaches

59.7% median human normalized score on 57 Atari games.

Distributed methods accelerate DRL and provide a framework to allow multiple

environments to interact with each other. These environments pose a challenge in

the form of multiple learning objectives. A single algorithm attempting to optimize

multiple tasks simultaneously requires design considerations to ensure that the differ-

ent objectives are being met efficiently. Distributed DRL algorithms serve as a great

tool to study the generalization capabilities of multi-task problems.

2.3 Challenges of Deep Reinforcement Learning: Generalization

Generalization is the quality that lays emphasis on an agent’s ability to adapt to

unobserved states and similar conditions. For example, Atari games like SpaceIn-

20

vaders, DemonAttack, BeamRider and Assault (Figure 2.11) are similar space shoot-

ing games, but there is variation in environmental setups and reward structures. A

person proficient in any one of these games can leverage their knowledge to find

commonalities and solve related tasks. The algorithmic equivalent is to create a

framework that can structurally support environmental variations and learn robust

policies. Most RL environments are developed in simulated environments. The over-

arching objective of generalization would be a smooth transition from simulation to

real environment.

Figure 2.11: Space Shooting Games

Success in DRL began with an agent being able to solve a single problem like

certain Atari games [3], Go [4] or Dota2 [5]. In the DQN paper [3], each Atari game

was trained on 50 million frames. Distributed framework IMPALA trained each Atari

game on 200 million frames. Atari games are rendered at the rate of 60 frames per

second. Training DRL to solve these problems successfully require a lot of computing

power and memory. Specialization in a single environment makes these algorithms

highly sample inefficient. The curse of a well-performing DRL agent is overfitting to

an environment.

Single agent algorithms are evaluated on their ability to successfully navigate an

environment rather than perform well in unobserved states. With the amount of

training data required for a single environment, the agent network evolves to be-

21

come highly specialized. The balance between specialization and generalization gets

skewed. The goal is to create an agent that can generalize to unseen states. There

are different strategies to approach generalization dependent on how information is

leveraged. Three high level strategies are Meta-Learning [34], Multi-Task Learning

[7] and Transfer Learning [6]. Meta-Learning learns an explicit representation during

training that generalizes to new tasks during testing. Multi-Task Learning trains on

multiple tasks in the same domain to improve performance during test time. Trans-

fer Learning transfers information from a source task to a target task. In this thesis,

Transfer Learning and Multi-Task learning are relevant to experimentation.

2.3.1 Transfer Learning

RL framework’s tabula rasa learning structure is computationally expensive and

tends to perform poorly on unseen states. It is sensitive to dynamic changes. DRL

requires a vast number of interactions to find optimal policies and typically special-

izes in one task. Transfer Learning (TL) avoids the tabula rasa state by providing

knowledge from a fully trained source agent or auxiliary task data. When executed

under the best circumstance, similar task and domain, the target task learning speed

improves. Pan and Yang’s Transfer Learning survey [35] provides an excellent start-

ing point to define generalization conventions. Although it contains formalism for

supervised learning TL, it introduces the relevant concept of domains and tasks.

Domain D consists of a feature space X, and marginal probability distribution

P (X) over the feature space, where X = x1, ..., xn ∈ X. Given a domain, D =

X,P (X), a task T consists of label space Y and conditional probability distribution

P (Y |X) that is typically learned from the training data consisting of pairs xi ∈ X

and yi ∈ Y .

In this thesis, domain D is an environment containing sub-tasks ti ∈ T . Source

domain Dsource contains source task Tsource or tasks ti ∈ Tsource. Target domain

Dtarget contains target task Ttarget or tasks ti ∈ Ttarget. The objective of generalization

22

methods is to use information from the source domain effectively to adapt and improve

learning for in-domain or cross-domain tasks.

TL leverages knowledge from a fully trained model in source task Tsource and utilizes

its knowledge on a target task Ttarget, assuming that tasks are similar. For example,

an agent trained on Tsource to grasp an object. This knowledge can be employed to

grasp objects of different shapes, sizes and locations.

From surveys [6][36], the high-level goals of reinforcement learning TL are the

reduction of training time, asymptotic performance improvement, jumpstart in per-

formance and effective knowledge usage. Empirical observations are the norm for

evaluating TL for RL. For example, observing a steeper learning slope for the target

task is an indicator of successful transfer.

TL has found successful application in the supervised DL domains by fine-tuning

a fully trained model in new tasks [37] [38]. However, DRL comes with its own set

of challenges which make TL tricky to implement successfully. Performance rapidly

deteriorates if the model does not generalize well. A dip in performance is indicative

of negative transfer, which occurs when source information is orthogonal to the target

task’s goals.

Early TL experiments in Reinforcement Learning leveraged rule induction and

classification [6] [39]. The emergence and success of DRL replaced these techniques.

Neural network weights, also known as parameters, are the popular choice of source

information to transfer for DRL problems. They contain abstract representations

that can embody the policy function, value function, or auxiliary tasks. These rep-

resentations remove the need to learn relevant features from scratch and reduce RL

training time.

Cross-domain weight initialization using the source domain’s neural network pa-

rameters was one of the first DRL TL approaches. In the initial TL experiments

conducted on Atari games [40], fully trained models were used to initialize a new

23

environment’s network and fully fine-tuned to solve the new environment. Perfor-

mance jump in DQN agent was observed from Pong to Breakout and vice versa, but

DemonAttack to SpaceInvaders experienced negative transfer. A DRL update to RL

approaches like rule transfer [39], exists in the form of visual transfer. It facilitates

TL by tasking an adversarial network to align the source and target task feature dis-

tribution and transfer representation to the target RL network [41]. This experiment

focuses on developing a generalized representation of visually distinct domain that

perform well on the target tasks.

In-domain TL occurs where the source information is transferred within the bounds

of the domain. TL can be conducted by way of pre-training or auxiliary tasks. In [9],

single domain A3C training is augmented by supervised learning classification pre-

training task on layman human demonstration data speeds up DRL feature learning.

In [42], the cosine similarity between task gradients is calculated to control auxiliary

task contribution to main task learning. Auxiliary task selection does not have an

exact science. Although, it is commonly chosen in relation to the main task. These

tasks could be related to domain task, classification, adversarial, attention, or output

prediction. Transferring from an auxiliary source has demonstrated the ability to

improve RL training by providing relevant representations.

There is no established method that guarantees successful transfer, and there are

no standards for measuring similarity between the source and target domains in deep

learning environments. What we understand as humans is vastly different from what

the agent perceives. This affects agent performance. Due to the imprecise nature of

TL, the possibility of negative transfer is high, and applications need to be carefully

designed to avoid performance damage.

2.3.2 Multi-Task Learning

Multi-Task Learning (MTL) is a method to improve generalization by training a

single representation using similar tasks as a shared source of inductive bias [7]. Multi-

24

Domain Learning (MDL) is multi-task learning carried out in different domains di ∈ D

that contain underlying similarity. In some experiments, MDL and MTL are used

interchangeably. For this thesis, MTL is conducted in a single environment domain

D contain multiple tasks ti ∈ T . The objective of MTL is to learn a generalized

representation by simultaneously solving multiple tasks. MTL reduces the risk of

overfitting, but it runs the risk of multiple objective distractions to overall learning.

Policy distillation [8] is an approach to leverage game-play information from fully

trained DQN teacher networks and use it to train a smaller student policy network

capable of solving multiple tasks. In the same vein, [10] presented the actor-mimic

approach to train a single generalized representation that learns to solve multiple

tasks successfully, similar to my thesis objective. It employs imitation learning by

using the information from multiple DQN networks, trained to expert level on differ-

ent tasks, as a supervised training signal to teach a single student multi-task policy

network. In addition to DQN’s employment of replay buffers to store a vast number

of transition information, these methodologies rely on domain experts, which require

a lot of resources to fully train.

Progressive neural networks [43] approaches multi-task learning by maintaining a

pool of trained A3C models on different tasks and using lateral feature learning to add

new tasks. This framework incorporates lifelong/continual learning into its objective

and is designed to avoid catastrophic forgetting and negative transfer. A new neural

network or column is added to the pool with every task addition. It is integrated

by leveraging lateral connections to previous columns and transferring relevant infor-

mation. Although this method presents successfully solves many complex multi-task

and multi-domain learning problems, it becomes computationally expensive as the

number of new tasks increases.

In [12], A3C was introduced with results that indicated faster performance over

DQN and GORILA (Section 2.2.3). It removes the need for a replay buffer by launch-

25

ing multiple workers that learn policy in their assigned environments and decorrelate

training experience. A3C’s advantages lie in its parallelizable, asynchronous frame-

work that can utilize the multithreading capabilities of CPUs. This makes it suitable

for simultaneous training and distributed learning.

In contrast, popular actor-critic method IMPALA [33] separates acting from learn-

ing and launches multiple actors instead. When trained in the multi-domain setting,

it achieved 59.7% median human normalized score on 57 Atari games trained on a

total of 11.4 billion frames. It performed better than A3C on multiple benchmarks

but did not achieve state-of-the-art performance in each game. It’s successor PopArt-

IMPALA [11] uses scale invariant normalization methodologies to address the balance

between optimizing the objective for multiple domains and single learner resources.

It achieved 110.7% median human normalized score, surpassing human-level perfor-

mance in DRL multi-domain, thus presenting a method highly effective in solving

MTL and MDL challenges.

Unlike IMPALA, A3C workers calculate the gradients and send them to the global

network for update. It does not separate acting from learning. The gradients are

intrinsic to the learning process of neural networks to find features that optimize

task objective. This structure allows the A3C workers to be independent in their

understanding of the environment assigned. Multiple workers launched by A3C dis-

tribute the learning, whereas IMPALA launches actors that generate trajectories and

send them to a central learner. A3C’s framework can be extended to understand

the behaviour of distributed multi-task learners. While IMPALA has its advantages,

studying multi-task generalization with respect to distributed learners is the primary

focus of this thesis.

2.4 Practice

Practice [44][13] is a transfer learning paradigm that initializes the RL network us-

ing the representation from a pre-training task focused on state dynamics prediction.

26

It finds shareable knowledge between the non-RL prediction task and the RL task.

It does not require expert information to train and speeds up RL training. As seen

in Figure 2.12, this approach uses a single neural network with two output heads to

predict state difference and produce Q-values.

Figure 2.12: Practice Architecture [13]

This methodology was expanded into DRL in [14] by integrating it with the DQN

algorithm. This was achieved by separating the practice task and RL task into two

networks. The DQN network (Figure 2.13 (b)) was initialized by transferring the

parameters from the pre-trained practice network (Figure 2.13 (a)). Additionally,

iterative practice was introduced, where practice was conducted recurrently for a

short duration to supplement RL training.

During training, samples (st, at, st+1) are collected using random action selection.

Practice does not use reward to train. The ground truth labels are calculated using

st+1 − st. It can be represented as ∆st ≈ st+1 − st. The practice network is used to

predict ∆st and is formalized by function f(st, at; θ) ≈ ∆st = st+1−st, which predicts

the approximate difference between next state and current state. The parameters of

the practice task θ are optimized on the MSE loss between the difference of ground

truth label ∆st and network estimation of f(st, at; θ).

27

Figure 2.13: DRL Practice Architecture [14]

A similar model-based approach conducts unsupervised pre-training on video frames

to learn task agnostic dynamic priors [45]. The dynamics model is initialized by the

predictor, which aims to capture the physics of the environment by enabling future

frames predictions. The future frames generated by the dynamics model are then used

as additional input to the policy network. Although model-based methods are sample

efficient, they suffer from variation in performance and generally do not achieve the

state of the art results.

Sample efficient version of model-based MuZero algorithm [46], MuZero Reanalyze,

achieves state-of-the-art performance on 57 Atari games using 200 million frames of

experience per game. It models parts of the environment that are important to

decision making and does not require knowledge of environmental dynamics. At a

smaller experimentation scale, practice has demonstrated to be sample efficient in

solving model-free RL problems.

Practice is similar to imitation learning approaches [8] which uses a teacher sig-

nal to guide learning but does not require multiple trained RL teacher environments

28

or expert supervision. Instead, it supplements RL with shareable knowledge about

environmental state transition. Practice and RL combined have shown to learn fea-

tures faster and help the model generalize better in single domains. Implementing

regression to predict state difference and capture change creates an implicit model of

the environment dynamics. My work builds upon this approach to study practice’s

impact on multi-task generalization in the asynchronous distributed learning setup.

CHAPTER 3: PROPOSED METHODS

Transfer learning paradigm Practice [44][13][14] uses a non-RL regression task,

that predicts state dynamics, to enhance RL task performance. This method has

demonstrated a reduction in RL training time and good generalizability in single

agent settings. The state dynamics representation learnt by practice shows promise

in guiding RL to adapt to new tasks. This thesis explores practice generalization

capabilities and effectiveness in the asynchronous distributed learning setup.

The A3C algorithm is a lightweight, on-policy DRL framework that distributes

gradient calculation by launching parallel actor-critic workers. These workers produce

gradients that are endemic to their network’s learning and asynchronously push their

updates to the global network. The nature of this framework provides independence to

individual workers and allows them to build their understanding of the environment.

This can be extended to study distributed multi-task learning where each worker

learns a different task and the goal is to find a single representation capable of solving

all the tasks.

Conflicting objectives between tasks cause distraction. When a single represen-

tation is learning multiple tasks, the priority keeps shifting to serve the needs of

different tasks. For example, performance increase in one task can harm the other

tasks if there is orthogonality between tasks objectives at the given instance. This can

cause learning to slow down. The proposed Practice for Multi-Task A3C incorpo-

rates model-free iterative practice [14] into the A3C ecosystem to improve multi-task

generalization for distributed learners and provide common dynamics knowledge to

boost multi-task RL training.

In this approach, practice is an auxiliary task that learns the underlying environ-

30

mental dynamics by predicting state difference. Two data sampling strategies are

implemented to analyze the impact of data sample origin on the learning objective.

The first strategy uses samples from the A3C workers, and the second utilizes the

global network’s policy head to produce samples. Additionally, the relationship be-

tween A3C’s learners is examined by comparing their gradients using Centered Kernel

Alignment(CKA) to study gradient contributions towards the multi-task learning ob-

jective.

3.1 Practice for Multi-Task A3C

The A3C algorithm is primarily selected to study the generalization capabilities

of independent distributed learners working towards a common representation. The

ecosystem allows practice’s contributions to be incorporated towards the overall multi-

task objective. The goal for Practice for Multi-Task A3C is to enhance generalization

of the A3C algorithm in the multi-task setting using non-RL regression auxiliary task

representation. For experimentation, the term environment is used interchangeably

with task. These tasks are different objectives ti ∈ T in a single domain D. Practice

is an auxiliary task taux that is does not have an RL task objective. It is a supervised

learning regression task that does not involve feedback-based variables like rewards

and shares its representation to help RL.

The main A3C algorithm launches multiple instances of its global actor-critic net-

work architecture. These instances are called workers or learners. The workers train

in their assigned environments and calculate the gradient of the loss function with

respect to their network parameters. As seen in Figure 3.1 (left), the calculated gra-

dients are asynchronously sent to the global network for optimization update. The

main algorithm maintains a queue that can accommodate sparse or synchronous up-

dation from different combinations of workers. It does not wait for all the workers to

finish calculating their gradients. In Figure 3.1 (right), an additional practice worker

is added. The practice network’s gradients aim to supplement the global network’s

31

learning with state dynamics information. There are two strategies with different

assumptions implemented to train the practice worker. They are discussed further in

Section 3.2.

Figure 3.1: Asynchronous Components Overview: A3C (left) and Practice for Multi-
Task A3C (right)

A3C Network Architecture The global actor-critic network consists of 3 convo-

lution layers. The input layer feeds the first convolutional layer raw pixel value input

of size 84x84. The first layer contains 32 8x8 filters with stride 4 and followed by

ReLu activation. The second layer convolves 64 4x4 filters with stride of 2, followed

by ReLu. The third convolutional layer convolves 64 3x3 filters with stride of 1 and

is followed by ReLu. The output of the convolution layer stack is connected to two

output heads- policy "actor" head and value "critic" head. Each head is connected to

the convolution layers output by a 512 hidden unit fully-connected layer. The actor

head outputs logits of n actions, where n depends on the environment’s legal action

set. Softmax is applied to find the probability distribution over the logits. The value

head produces the value of the state. A separate forward pass is required to compute

the value of each state. The main algorithm launches multiple instances of the global

actor-critic network called workers with the same network configuration (Figure 3.2).

Each worker’s network uses Adam optimizer to calculate its gradients. The gra-

dients are calculated on the Policy Gradient update (Eq. 3.1) with entropy regular-

32

Figure 3.2: Worker Network

ization H. Where H(πθ(st)) = −∑
a πθ(st, a) log πθ(st, a). Entropy Beta β parame-

ter controls exploration-exploitation. The calculated gradients are sent to the main

algorithm’s queue that updates global network. PyTorch’s multiprocessing allows

asynchronous parameter sharing and updates the worker networks to update without

explicit coding [47].

∇θJ(θ) = Est∼ρπ ,at∼πθ [∇θ log πθ(st, at)(Gt − Vθv(st))− β∇θH(πθ(st))] (3.1)

Practice Network Architecture Practice has the same CNN architecture as

A3C’s CNN. It is configured using 32 8x8, 64 4x4, 64 3x3 filters (Figure 3.3). The

value head is replaced by state difference head which outputs ∆st = st+1−st. Practice

network is also trained on raw pixel input of size 84x84. The network is used to

predict f(st, at; θ) (Eq. 3.2), which is the approximate difference between next state

and current state. The practice parameters θ are optimized on the MSE loss between

the actual state difference ∆st and network output state difference f(st, at; θ).

f(st, at; θ) ≈ ∆st = st+1 − st (3.2)

33

Figure 3.3: Practice Network

Practice for Multi-Task A3C Algorithm The workers of this algorithm are

denoted by N . The algorithm contains one practice worker Np with auxiliary task

taux and Ni ∈ N A3C workers paired with tasks from the task set T . These workers

are launched by the main algorithm that controls the overall process. Each worker

periodically sends gradients to the global network (Figure 3.4) via a queue managed

by the main algorithm. The algorithm is designed to incorporate the short train-

ing structure of iterative practice [14] into A3C’s asynchronous updation. Unlike

[14], A3C’s practice worker periodically transfers gradients instead of neural network

parameters.

Figure 3.4: Practice for Multi-Task A3C: Asynchronous Components Overview

Gradients contain information that suggests the direction of network loss opti-

mization. The intuition behind using practice gradients is to use the knowledge of an

auxiliary task focused on predicting underlying environment dynamics to supplement

34

the multi-task learning objective. The aim is not to optimize practice regression but

to use the shared knowledge representation to improve multi-task learning.

Training As seen in Figure 3.5, there are two steps to training. The algorithm

starts at Step 1, where initial practice is conducted. Pre-training TL is done by

training the practice network for a certain number of frames and using the developed

representation to initialize A3C’s global network. Initial practice trains on samples

(st, at, st+1) generated by all task environments T using random action selection. The

practice network is trained to perform state dynamics regression. Rewards are not

used in practice’s regression task. During training, samples are collected in batch

sizes of epr, and the network is optimized using Adam optimizer on MSE loss between

∆st and network output f(st, at; θ). After initial practice, the parameters of the first

two practice convolution layers are transferred to the global A3C network. The lower

layers of CNNs contain generalized features. Transfer-based initialization on networks

results in better performance over random initialization [48].

Figure 3.5: Practice for Multi-Task A3C Training Overview

Once the global network is initialized, Step 2 starts with the main algorithm launch-

ing N instances of the global network (workers). Each worker is initialized to a

corresponding task in task set T . Workers interact with the environment, collect

35

experience in batches of ei, train, and asynchronously push their gradient updates to

the global A3C network. The worker’s network trains and optimizes on the actor-

critic loss using Adam optimizer. Once the gradients are calculated, they are sent to

the global network for updation via a queue managed by the main algorithm. Un-

like the A3C workers, the practice worker sends gradients to the global network at

specified intervals dk. During Step 2, short practice is conducted recurrently. This

repetitive inclusion of an auxiliary task’s gradients periodically updates the network’s

parameters with state dynamics information.

DRL algorithms interact with highly dynamic environments and require a sub-

stantial amount of samples to navigate successfully. When the agent interacts with

the environment, the sequential trajectories run the risk of being highly correlated.

Learning on a set amount of samples require considerations to decorrelate the input.

For example, in model-based methods, sample efficiency is achieved by fixing the

number of training samples. The samples must be updated regularly to ensure that

the model operates on a good representation of the environment. Model-free methods

like DQN use a large replay buffer to store experience and sample from it.

A3C is an on-policy method that typically does not use replay buffer to store

trajectories. Samples are generated and decorrelated using parallel learners. Multi-

task A3C shifts learner’s focus from collectively working on a single task to different

tasks. To ensure that the A3C worker’s training data does not stagnate, multiple

instances of the assigned environment can be launched by the workers to gather

training data. To decorrelate the data, Practice for Multi-Task A3C uses PyTorch

toolkit PyTorch AgentNet (PTAN) [49] to manage trajectory generation.

PTAN library 1 is the PyTorch implementation of popular deep reinforcement learn-

ing frameworks and tools designed to aid research. It offers various functionalities

that make DRL experimentation efficient. PTAN’s Agent class provides the means
1The library is available from https://github.com/Shmuma/ptan (Accessed: 09 December 2020)

36

for a neural network to communicate with the environment. It implements a function

capable of accepting a batch of observations and producing the corresponding batch

of actions dependent on the neural network it is initialized on. This is designed to

reduce the computation time associated with processing each trajectory individually.

The Agent class can be initialized on different action selection strategies like argmax

or logits sampling.

The Agent class paired with PTAN’s ExperienceSource functionality provides con-

trol over the trajectory granularity. It can provide step by step trajectory data, gener-

ate trajectories from instances of the same or different environments, and be specified

to accumulate rewards from sub-trajectories. A single step generated by Experience-

SourceFirstLast class can be represented by tuple ExperienceSourceF irstLast(state =

0, action = 1, reward = 1, last_state = 1). Under the hood, ExperienceSource resets

the environment, the initialized agent selects action based on reset state, executes step

function to get reward and next state, provides the agent with next state, and re-

peats. Using this functionality, multiple instances of an environment can be launched

by each worker to generate decorrelated trajectories.

3.2 Samples for Practice

The quality of samples largely contributes to an agent’s overall understanding of

its surrounding. The samples that practice trains on are representative of current ob-

stacles that the environment is navigating. Shared knowledge learnt by the practice

network is dependent on samples that provide the best depiction of the environment.

Practice does not explore. It selects random actions independent of reward consider-

ations. Limited movement in the environment could reduce the impact of practice’s

representation on the overall learning.

During Step 1, initial practice trains on samples generated the environments sets

using random action selection. Step 2 bifurcates practice for multi-task A3C into

two approaches. Two different sampling strategies are presented based on different

37

assumptions about the source. The goal is to ensure that the training data is repre-

sentative of the multi-task environments. The first uses samples that the A3C worker

trains on, and the second uses the global network’s policy head.

3.2.1 Shared Experience Samples

In [14], iterative practice is trained on DQN’s replay buffer, effectively reducing

interactions between practice and the environment, and this method ensures that the

training data for practice represents the current state of the environment. Extending

this approach to Practice for Multi-Task A3C trains practice on samples generated

by A3C workers for their training. The experience that each A3C worker trains

on is task-specific. The trajectories generated are relevant to the worker’s current

progress in its environment. Using task-specific samples to train practice network

works under the assumption that learning generalized environmental dynamics from

specific environments can benefit the worker’s current navigation challenges and help

the overall multi-task objective.

Figure 3.6: Shared Experience Sampling Strategy

As seen in Figure 3.6, in Step 2, batch training samples from each worker is

sent to practice. The experience trajectories for workers take the form of tuples

(st, at, rt+1, st+1). As practice does not require rewards, that information field is not

38

used. Practice network optimization is a continuous process that trains on these

worker samples. The intuition behind this method is to train the practice network

on the same data that each worker is training to optimize its objective. Setting a

high interval value for practice update dk will ensure that the practice representation

incorporates samples from all the workers uniformly. After every dk global network

update, the first two CNN gradients from practice update is used to optimize the

global network.

3.2.2 Samples using Global Policy Head

After Step 1, the main algorithm launches N workers on different tasks (ti ∈

T) along with the global network. This network becomes endemic to the worker

environment and optimizes the specific task objective. The asynchronous nature of

A3C entails workers operating on lagging versions of the network. The most updated

network of the A3C is the global network. Generating practice samples from the

global network ensures that the dynamics learnt represents the overall multi-task

objective.

On-policy samples from the network’s understanding of the multi-task environ-

ments can be generated using the global network policy head initialized on each task

environment. Practice does not explore but this method could provide training data

focused on the areas of interest. The worker’s network lags behind the global network,

and their independent learning is primarily focused on their optimization problem.

Shifting the environmental dynamics from endemic sources to a global source favours

generalized understanding over specialized understanding.

As seen in Figure 3.7, the global network’s policy head is used to generate samples

for Practice after every dk network update. The samples are collected by iterating

over task set T . Single step trajectories are produced, and the reward field is not used

by practice training. In Step 2, practice occurs after k global network updates, and

at every dk step, short practice is conducted for a set number of frames. The global

39

network’s policy head is given the set of multi-task environments T and generates

samples by iterating over the set till the batch size epr is met. The samples are

generated, MSE loss is calculated between ∆st and network output f(st, at; θ), and

the practice network is optimized using the gradients generated. The gradients are

then sent to optimize the global network. Only the first two convolutional layer

gradients are incorporated in global network optimization. The intuition behind this

to use the general information captured by the lower levels of practice CNN. Training

ends when the threshold value of tasks is achieved.

Figure 3.7: Global Network Sampling Strategy

PTAN’s Experience function can be used to generate samples and maintain the

environment set. Using PTAN ExperienceSourceFirstLast class initialized on the

global network’s policy head and the set of multi-task environments, samples can be

produced for practice. Multi-environment sampling is implemented in round-robin

fashion. The practice function requires the most updated version of the global network

for training. The global network’s policy head produces single step trajectories, and

practice training does not use the rewards associated with the tuples generated.

40

3.3 Multi-Task Gradient Contribution Analysis

Distributed learner architectures like A3C utilize multiple learners to optimize a

single objective. When A3C is extended to the multi-task setting, the number of

objectives increase. This comes with certain advantages and disadvantages. Training

a single network to solve multiple tasks improves the generalization capabilities of

the model. The different tasks encourage the agent to balance specialization and

generalization. The downside to this approach is multiple objectives vying for a

single network to optimize on. Multi-task A3C’s workers periodically send gradients

to the global network for updation. The gradients calculated for the worker’s global

network copy represent the direction of its loss reduction. If the gradients are similar,

multi-task learning improves. If the gradients are orthogonal to each other, they harm

the multi-task learning objective. Understanding the underlying task similarity can

help us determine multi-task learning success.

Centered Kernel Alignment (CKA) [15] was designed to provide a measure to un-

derstand representation similarity between deep neural networks. This method is

invariant to invertible linear transform, orthogonal transformation and isotropic scal-

ing. CKA is made invariant to isotropic scaling by normalizing Hilbert-Schimidt

Independence Criterion (HSIC). HSIC (Eq. 3.5) determines the independence be-

tween Kij = k(xi, xj) and Lij = l(yi, yj), where k and l are kernels, and H is the

centering matrix. The inter-example dot product-based similarity between the rep-

resentations of network X and Y , XXTY Y T (Eq. 3.3) is centered (Eq. 3.4) and

generalized (Euclidean space to Hilbert space) Eq. 3.5. Radial Basis Function (RBF)

CKA uses parameter σ to control weightage of smaller distances over larger distances.

< vec(XXT), vec(Y Y T) >= tr(XXTY Y T) = ‖Y TX‖2
F (3.3)

41

1

(n− 1)2
tr(XXTY Y T) = ‖cov(XT , Y T)‖2

F (3.4)

HSIC(K,L) =
1

(n− 1)2
tr(KHLH) (3.5)

RBF CKA =
tr(KHLH)√

tr(KHLH)tr(KHLH)
(3.6)

CKA scale lies between 0.1 and 1, where 0.1 indicates low similarity and 1 is the

highest similarity value. CKA was able to capture the relationship between the same

CNN with two different initialization better than pre-existing methods [15]. Consid-

erations of transforms during neural network operations provides a reliable measure

of similarity. Gradients contain information on the direction of loss minimization.

Quantify similarity between gradients of different tasks using CKA can help visualize

single learner contribution towards multi-task learning objective.

Figure 3.8: Gradient Analysis Overview

Practice for Multi-Task A3C gradient updates are batched for global network op-

timization, but for this experiment, they update sequentially. Workers put gradients

in a queue collected by the global network updation algorithm (Figure 3.8). The

gradients from A3C actor-critic worker can be represented as GNi , where Ni ∈ N

42

workers are assigned an environment from the environment task set (ti ∈ T). GNp

are the gradients from the practice worker. In the CKA formulation, x and y can be

a combination between an A3C worker from task set T and practice worker p or be-

tween the A3C workers (ti ∈ T). For example, if the task set is T = 4 environments,

CKA between workers gradients can be represented by CKA(GN1 , GN3) and between

worker-practice gradients as CKA(GN2 , GNp).

As this experiment is conducted on the Global Network Sampling strategy, the

practice gradients are calculated periodically. A separate function was created to

keep a copy of the latest practice gradient GNp and calculate the CKA value with

the worker gradients GNi that arrive at the global network queue. The information

in the queue is representative of the direction of each worker’s loss at the same time.

Thus, the CKA of worker gradients GNi in the queue compared to each other. The

relationship between tasks can provide insight into how they could be better adapted

to solve the multi-task objective.

CHAPTER 4: EXPERIMENTS AND RESULTS

4.1 Environment

The similarity between tasks resides on a spectrum, and algorithms that capture

the underlying similarity are good at generalizing to unseen states. To illustrate

the efficacy of the proposed methods, multiple tasks were designed into the Pong

environment domain. In the micro-world of Pong, I designed a few variants to increase

the difficulty and introduce different objectives to test the multi-task generalizability

of the proposed methods.

Pong consists of two paddles that move vertically in competition to ensure the ball

does not cross its boundary. If the ball goes out of frame, 1 point is given to the

opposite paddle player that sent the ball. The computer is the right paddle in this

game setup. The max score achievable by classic Pong is 21. I have set the threshold

at 15 points to set a baseline performance for all variants. The Pong variants were

created using PyGame1.

Pong Variants:

• V1.0: Original Pong game.

• V1.1: Increase the ball size to make an easy, perceivable version.

• V1.2: Increase in paddle size to make easier defensive plays.

• V1.3: Decrease in paddle size to make harder defensive plays.

• V2.1: Rectangular block added perimeter to increase difficulty.
1Adapted from https://github.com/xinghai-sun/deep-rl (Accessed: 01 February 2021)

44

• V2.2: Floating immovable rectangular block added to increase difficulty.

• V3.0: Additional ball to increase difficulty.

• V3.1: Additional ball and floating rectangular block added to increase difficulty.

• V3.2: Additional ball and perimeter rectangular block added to increase diffi-

culty.

Figure 4.1: Pong Environments

These environments have varying levels of difficulty. The environments under V1

have changes to the main variables- the two bats and the ball. They were designed

to introduce small changes to challenge the perception of neural networks. V1.3 is

fairly harder to master as the bat size area was reduced and requires more time to

cover their respective bases. The V2 environments pose a challenge in the form of

stationary obstacles. The agent has to maneuver the block and successfully score

points. V3 environments are much more difficult as there is an additional ball that

the agent needs to balance. The additional ball does not reset the environment. The

45

stationary blocks added to V3.1 and V3.2 make this environment variant much more

difficult to solve. The max score is raised to 25 for these variants to account for the

additional ball’s scoring capabilities.

4.2 Practice for A3C on Pong

Environment Training Set: The Pong variants are divided into two sets to test

the proposed methods. The Easy Set containing four environments- the original Pong

environment (V1.0), decreased bat size (V1.3), additional perimeter block (V2.1), and

floating block (V2.2). This set contains environmental modifications that obstruct the

ball’s trajectory and challenge the agent’s ability to work with a smaller bat surface.

The Hard Set is more challenging than the Easy Set. It consists of the original Pong

environment (V1.0), additional perimeter block (V2.1), and additional ball along with

a perimeter block in the environments (V3.1 and V3.2). Keeping track of the second

ball and environment hindrance makes this set difficult. For Easy Set, environment

max score is set to 21, and for the Hard Set, the maximum score is set to 25 on

account of the additional ball rewards.

Experiments Three algorithms are evaluated- Practice for Multi-Task A3C with

Shared Sampling, Practice for Multi-Task A3C with Global Sampling, and baseline

Multi-Task A3C. The algorithms are evaluated based on their performance in Pong

Easy Set and Hard Set environments. During training, the positive rewards are

clipped at +1 and negative rewards at -1. This is done to limit the scale of error

derivatives and make it easier to learn multiple environments.

Training PyTorch Multiprocessing is used to launch A3C workers on different CPU

or GPU processes. Every worker is initialized with the global network and assigned

an environment. For clarity, the worker’s copy of the global AC network is referred

to as the worker network. As there are four environments in one set (T = 4), there

are four workers (N = 4). 84x84 Pong game frames are generated with frameskip of

4 to reduce computation. Each worker trains its network on mini-batch samples of

46

size 64 (ew = 64).

The actor head of the worker neural network selects actions using softmax, which

rank each action according to their action-value estimate. The critic’s head assigns

value to the states. The actor-critic loss is calculated, and the gradients of the loss

function with respect to all the network parameters are calculated. These gradients

are then added to a queue which is managed by the main algorithm for global network

updation. The global network uses Adam optimizer on gradient batch-size of 2 (Train

Batch). The model was tested on learning rates of 0.001 and 0.0001. The former was

selected due to consistent performance. The best performing hyperparameters for

baseline A3C’s are listed in Table 4.1.

Table 4.1: Multi-Task A3C Hyper-Parameters

Hyperparameters Value

Mini-Batch Size 64

Learning Rate 0.001

Optimizer Adam

Gamma 0.99

Clip Grad 0.1

Train Batch 2

Practice: Shared Experience Sampling During initial practice the practice

network is trained on about 1× 105 frames, using a batch size epr of 64. A dull agent

is used to select random actions and generate samples using PTAN’s Experience-

SourceFirstLast class. The difference between new state frame st+1 and current state

frame st produces the ∆ for the mini-batch. The MSE loss is calculated between ∆

and practice network output of ∆predicted when fed the batch’s current state st. The

practice network parameters are updated using Adam Optimizer using a learning rate

of 0.00001 on the MSE loss. Learning rate of 0.00001 was selected after 0.001 and

47

0.0001 produced inconsistent results. Additionally, epr of 32, 64, 128, 512 were tested.

epr = 64 results provided consistent and computationally efficient results. The best

performing hyperparameters are listed in Table 4.3.

Table 4.2: Practice: Shared Sampling Hyper-Parameters

Hyperparameters Value

Worker Batch Size 64

Learning Rate 0.001

Optimizer Adam

Gamma 0.99

Clip Grad 0.1

Train Batch 2

Practice Learning Rate 0.00001

Practice Loss MSE

Practice Optimizer Adam

Practice Batch Size 64

Initial Practice 100000 frames

Iterative Practice Updates 500

After initial practice, the first two network convolutional layer parameters are trans-

ferred to initialize the global network’s convolution layers 1 and 2. The main algorithm

subsequently launches four workers initialized on the different Pong environments.

Each worker trains on a mini-batch size of 64 (ew = 64). The workers calculate AC

loss, followed by the gradients for each network parameter. The gradients and batch

samples are then added to the main algorithm queue. The gradients are used to

optimize the global network using a gradient batch size of 2.

The batch samples from the worker are sent to the practice worker for training.

Every dk = 500 gradient update, the first two convolution layer gradients of the

48

practice network are sent to the global network for updation. Training concludes

when each environment achieves maximum reward or threshold reward value of 15.

This method is referred to as Shared Practice in the results.

Practice: Global Sampling Sampling using global policy head is referred to as

global sampling in this experiment. Initial practice is carried out for about 1 × 105

frames, using a batch size of 64 (epr = 64) to train the practice network. PTAN

ExperienceSourceFirstLast class is provided with the set of environments and a dull

agent to generate samples without implementing any frameskip. The MSE loss is

calculated between ∆ and practice network output ∆predicted. The practice network

parameters are updated using Adam optimizer using a learning rate of 0.00001 on the

MSE loss.

Once initial practice is done, the first two network convolutional layer parameters

are used to initialize the global A3C network’s convolutional layer 1 and 2. Subse-

quently, the main algorithm launches four workers initialized on the different Pong

environments specified by the environment training set. Each worker trains on a

mini-batch size of 64 (ew = 64), calculates AC loss, followed by gradients for their

network parameters. The gradients are then added to the main algorithm queue that

uses the gradients to optimize the global network using an update batch size of 2.

Every dk = 500 gradient update, short practice is conducted. Short practice trains

for about 1×104 frames using batch size 64 (epr = 64). The gradients of the first two

convolution layer are sent to the global network optimizer for update. The workers

train till maximum reward or threshold reward value of 15 is achieved by the envi-

ronments. The best performing algorithm hyperparameters are listed in Table 4.2.

This method is referred to as Global Practice in the results.

49

Table 4.3: Practice: Global Sampling Hyper-Parameters

Hyperparameters Value

Worker Batch Size 64

Learning Rate 0.001

Optimizer Adam

Gamma 0.99

Clip Grad 0.1

Train Batch 2

Practice Learning Rate 0.00001

Practice Loss MSE

Practice Optimizer Adam

Practice Batch Size 64

Initial Practice 100000 frames

Iterative Practice Updates 500

4.2.1 Results

The results in Figure 4.2 reflect the performance of Practice for Multi-Task A3C

in the easy environment set. The figures show the result curves for the algorithms

in the four environments during training. The experiments run for an average of

20 million frames. On the easy set, Global Practice matches or outperforms baseline

multi-task A3C. Shared Practice initially lags on learning. The easy set results have a

sharp learning curve, indicating that the agents can successfully optimize the multi-

task objective. On average, V1.3 (smaller bat size) does not meet the threshold

value during training. The harder set results provide more evidence on generalization

capability and similar environment behaviour.

50

(a) v1.0 (b) v1.3

(c) v2.1 (d) v2.2

Figure 4.2: Average of reward curves of Global Practice, Shared Practice and Multi-
Task A3C on the Easy Set during training. These results present the mean perfor-
mance over 10 experimental runs. The dotted red line indicates the threshold value
of 15.

The results in Figure 4.3 reflect the performance of Practice for Multi-Task A3C

on the hard Pong environment set. The experiments run for an average of 40 million

frames. Global Practice outperforms baseline A3C on the hard set and has more

impact on multi-task learning on this set. This could indicate that the global network

samples provide practice with the most generalized view of the domain. Similar to

easy set performance, Shared Practice initially lags on training but catches up. The

possible reasons are discussed in Chapter 5.

51

(a) v1.0 (b) v2.1

(c) v3.1 (d) v3.2

Figure 4.3: Average of reward curves of Global Practice, Shared Practice and Multi-
Task A3C on the Hard Set during training. These results present the mean perfor-
mance over 10 experimental runs. The dotted red line indicates the threshold value
of 15.

It is interesting to see how the v2.1 results differ in the easy set and hard set. With

the addition of a similar task v2.2 (Figure 4.2d), v2.1 is able to achieve the minimum

threshold score. This finding corroborated by v3.1 and v3.2 present in the hard set.

Having similar underlying dynamics tasks provides a boost in performance. These

results are further studied from a gradient contribution perspective.

4.3 Multi-Task Gradient Contribution Analysis

A3C launches multiple workers in different environments and send gradients to the

global network for update. The gradients contain information on how the network

52

should be updated to optimize the objective. In multi-task learning, each task has

a different objective. The gradients that arrive in the main algorithm’s queue are

studied in Global Practice’s training on the hard environment set. The purpose is to

observe the relationship between different task gradient updates and their contribu-

tion to the main network’s learning. CKA 2 is used to measure similarity.

Practice vs Worker Practice’s convolutional layer 1 and 2 gradients are compared

to each A3C worker’s. These two layers are selected by virtue of containing the most

general features. Due to the recurrent nature of practice, the worker gradients are

compared to the latest practice gradient version. This experiment provides insight

into practice’s optimization direction with respect to the other workers.

From Figures 4.4a, 4.4b, 4.4c and 4.4d, it can be observed that practice vs worker

gradients similarity is consistent across all the task environments. In the first convo-

lutional layer, CKA value starts at around 0.2 and sticks close to a score of 0.3 for

the rest of training. A score of 0.3 indicates low levels of similarity. Convolutional

layer 2 has a lower CKA score- hovering around 0.125. The practice-worker plots in-

dicate that practice is not adding the same experience. There is a slight similarity to

the gradients consistent throughout the training process, which adds to the learning

process without harming multi-task performance.

Worker vs Worker The worker gradients that arrive at the main algorithm queue

are compared to each other. Figures 4.5a, 4.5b, 4.5c, 4.5d, 4.5e, and 4.5f, report CKA

scores between the worker gradients. The relationship between the multiple tasks in a

distributed learning setup requires to have a degree of similarity to learn successfully.

The CKA results have the same pattern for all worker relationships.

On investigating the CKA values between workers, the similarity score is much

higher than the practice-worker CKA score, which ranges between 0.2-0.3. For con-

volutional layer 1, the CKA score hovers between 0.7 and 0.5 for most of the training.
2Referenced from https://github.com/google-research/google-research/tree/master/

representation_similarity (Accessed: 17 February 2021)

53

(a) Practice vs Worker v1.0

(b) Practice vs Worker v2.1

(c) Practice vs Worker v3.1

(d) Practice vs Worker v3.2

Figure 4.4: Results: Practice vs Worker Gradient Similarity

54

(a) Worker v1.0 vs Worker v2.1

(b) Worker v1.0 vs Worker v3.1

(c) Worker v1.0 vs Worker v3.2

(d) Worker v2.1 vs Worker v3.1

(e) Worker v2.1 vs Worker v3.2

(f) Worker v3.1 vs Worker v3.2

Figure 4.5: Results: Worker vs Worker Gradient Similarity

55

Convolutional layer 2 CKA scores have a sharper decrease in value. The CKA scores

of this layer point to their individual gradient updates being more task-specific and

losing generalizability. These values start from around 0.7 and drop to around 0.4.

Although these values are much higher than practice’s CKA score for this layer, simi-

larity scores between the second layer reduce as training progresses. This is indicative

of the upper layers focusing on task specificity. These results coincide with the find-

ings of [48] that state that lower levels of neural networks are capture general features.

It could be considered the same for gradients.

Env v3.1 and v3.2 have comparable environment dynamics. Their CKA scores

do not indicate their similarity, which leads to the assumption that their individual

task optimization does not focus on the same problem during training. Although the

results indicate that having a similar task improves learning, the gradient CKA scores

do not indicate high task similarity. The CKA values demonstrate that the worker

objectives move in different directions but have an underlying similarity that affects

the overall multi-task learning objective. This prompts the question about the slight

orthogonal nature of practice gradients. Gradient updates using practice objective

push general state dynamics information to the worker networks. As long as practice

is not entirely orthogonal to the multi-task objective, it matches or succeeded multi-

task A3C. This approach could be further tested on other multi-task and cross-domain

environment experiments.

CHAPTER 5: DISCUSSIONS AND FUTURE WORK

5.1 What Determines Task Similarity?

An RL algorithm’s understanding of similarity is difficult to gauge. Using the gra-

dient contribution analysis, it can be inferred that the practice gradients do not harm

the overall multi-task learning objective and provide representation that shares some

similarities with the multiple objectives. When and where gradients are unfavourable

to multi-task learning is not well understood, the human understanding of similarity

and algorithmic understanding of similarity is perpetuated differently.

In [42], cosine similarity is calculated between auxiliary and main task gradients to

control auxiliary task contribution to main task learning. A threshold value is used

to filter auxiliary gradients dissimilar to main task gradients. When this measure was

adapted to multi-task A3C worker gradient similarity, it resulted in values close to

0 for most of the training, suggesting that the tasks were orthogonal. However, the

success of multi-task learning in reaching the threshold value for the environments

implies differently.

The CKA results suggest a degree of similarity between tasks. The efficacy of

this approach could be studied under a few different circumstances. By removing

the asynchronous nature of the algorithm, the current state of the workers could be

reported over time. The line of questioning followed by this thesis can be expanded

to include larger task sets or different domains. This can provide an insight into the

relationship between a large number of different tasks and the degree of orthogonality

between domains with different environmental design. Understanding the relationship

between tasks can provide insight into how they could be better adapted to solve the

multi-task objective. Future work can determine the bounds to CKA’s ability to

57

grasp multi-task learning objectives and algorithmic understanding of task similarity.

By knowing its capabilities and limitations, it can be used as a hyperparameter to

tune multi-task learning and potentially help regulate multi-task or transfer learning

drift.

5.2 Practice and Generalization

The current experiment indicates that practice strategy helps improve multi-task

generalization in distributed DRL. Practice gradients do not optimize on the same

objective as these tasks, and with the help of CKA, it can be inferred that practice

gradients share some similarity with the tasks, albeit on the lower end. This provides

some grounds for the belief that practice develops common environmental dynamics

knowledge.

Generalization in DRL has multiple strategies. This thesis approached generaliza-

tion from multi-task and transfer learning perspectives. Approaches like L2 regular-

ization, data augmentation, batch normalization and noise injection address general-

ization from the data diversity perspective [50][51]. These methods enhance training

data by introducing variation and noise. They reduce the risk of overfitting and make

networks robust to change. However, the nature of the noise added to the training

data might introduce unwanted orthogonality resulting in poor performance. Un-

like using random noise, practice representation contains state dynamics information

that the CKA scores suggest is slightly similar to the RL gradients. It indicates that

the information being added shares some common knowledge and is not completely

orthogonal.

Future line of questioning could examine the limits of practice perception in dis-

tributed DRL. Practice perception depends on its training data. Global Practice’s

on-policy sampling does not follow a greedy or random approach. It leverages the cur-

rent policy trained on all the tasks to generate samples. The representation learnt by

practice using the global network can be further investigated by integrating practice

58

with the A2C algorithm, which is synchronous. This would ascertain if Shared Prac-

tice’s performance can be attributed to representation lag. Implementing a replay

buffer for practice in this setting can provide insight into the on-policy vs off-policy

sampling.

The current version of practice generalization is very similar to meta-learning [34]

which optimizes for representations that can quickly adapt to new tasks. It shares

the same goal of learning internal features applicable to all tasks in task distribution

P (T). Calculating the state difference requires less computation than calculating the

gradient step in multiple task directions. The representation learnt by practice helps

in the generalization of perception. Adapting practice to visually complex domains

could improve our understanding of the capabilities of practice perception.

Another parallel could be drawn by linking model-based learning and practice.

Model-based RL introduces planning by explicitly defining the model of the environ-

ment to find optimal strategies. It creates a transitional model of the environment

to simulated dynamics and select actions using predictive control. The model of the

environment created by practice learns state dynamics information and supplements

RL training. They serve a similar purpose of developing an understanding of the envi-

ronment, but model-based RL methods weigh in on action selection, whereas practice

transfers its knowledge about state dynamics.

This work uses practice as an auxiliary task. The current design of practice re-

currently contributes to the multi-task learning objective. Continuous integration of

practice gradients was tested but resulted in poor performance. In [42], cosine simi-

larity was used to regulate auxiliary task contributions and improve RL performance.

Future work could expand on this and explore the possibility of regulating practice

contributions in the multi-task setting using CKA. This investigation could provide

a stepping stone to adapt practice for multi-domain learning.

CHAPTER 6: CONCLUSIONS

Practice for Multi-Task A3C model is a promising avenue to explore generaliza-

tion in distributed learning architectures. The goal of this thesis was not to beat

state-of-the-art results but to provide evidence that supports practice’s generaliza-

tion capabilities. The two sampling strategies I have implemented lay emphasis on

sample generation impact on practice representation.

To evaluate the efficacy of the approaches, I developed variants of the Pong en-

vironment as the initial test-bed to present the merits of Practice for Multi-Task

Learning. Empirical results indicate that practice representation improves multi-task

performance when trained on global network samples. By analyzing the gradient con-

tributions, it can be inferred that practice provides representation that shares some

similarities with the multiple objectives.

Future Work As discussed in Chapter 5, future directions of this work could

examine the effectiveness of this approach in different multi-task and visually complex

environments. Investigating the cause of local samples lag could be the next steps of

this work. This could be examined by implementing synchronous advantage actor-

critic algorithm and different sampling strategies like a shared experience buffer.

Additionally, it would be interesting to explore developing practice as a robust

module that works as a bridging function between different domains by creating a

state dynamics knowledge base from different environments. Practice would serve as

a supplementary RL tool for adapting to new domains. Future work could extend

this methodology’s effectiveness to cross-domain learning.

60

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The
MIT Press, second ed., 2018.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
vol. 518, pp. 529–533, Feb 2015.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” Nature, vol. 550, pp. 354–359, Oct 2017.

[5] OpenAI, “Openai five.” https://blog.openai.com/openai-five/, 2018.

[6] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains:
A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685, Dec. 2009.

[7] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, pp. 41–75, Jul
1997.

[8] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,
R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy distillation,”
2016.

[9] G. V. de la Cruz, Y. Du, and M. E. Taylor, “Pre-training with non-expert hu-
man demonstration for deep reinforcement learning,” CoRR, vol. abs/1812.08904,
2018.

[10] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep multitask and
transfer reinforcement learning,” 2016.

[11] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van
Hasselt, “Multi-task deep reinforcement learning with popart,” CoRR,
vol. abs/1809.04474, 2018.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
2016.

[13] M. Lee and C. W. Anderson, “Can a reinforcement learning agent practice before
it starts learning?,” in 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 4006–4013, May 2017.

61

[14] V. S. S. R. Teja Kancharla and M. Lee, “Efficient practice for deep reinforce-
ment learning,” in 2019 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 77–84, Dec 2019.

[15] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of neural network
representations revisited,” in Proceedings of the 36th International Conference
on Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of
Proceedings of Machine Learning Research, pp. 3519–3529, PMLR, 09–15 Jun
2019.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’12,
(Red Hook, NY, USA), p. 1097–1105, Curran Associates Inc., 2012.

[17] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR,
vol. abs/1804.02767, 2018.

[18] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR,
vol. abs/1703.06870, 2017.

[19] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” CoRR, vol. abs/1609.03499, 2016.

[20] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

[21] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver,
“Mastering atari, go, chess and shogi by planning with a learned model,” Nature,
vol. 588, pp. 604–609, Dec 2020.

[22] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hass-
abis, “A general reinforcement learning algorithm that masters chess, shogi, and
go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[23] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak,
J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving
rubik’s cube with a robot hand,” CoRR, vol. abs/1910.07113, 2019.

[24] M. G. Bellemare, S. Candido, P. S. Castro, J. Gong, M. C. Machado, S. Moitra,
S. S. Ponda, and Z. Wang, “Autonomous navigation of stratospheric balloons
using reinforcement learning,” Nature, vol. 588, pp. 77–82, Dec 2020.

62

[25] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yogamani,
and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,”
2021.

[26] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press
San Francisco, CA, 2015.

[27] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural Comput., vol. 1, p. 541–551, Dec. 1989.

[28] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, Object Recognition with
Gradient-Based Learning, pp. 319–345. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1999.

[29] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, 2004.

[30] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction techniques
for gradient estimates in reinforcement learning,” J. Mach. Learn. Res., vol. 5,
pp. 1471–1530, Dec. 2004.

[31] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D. Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V. Mnih,
K. Kavukcuoglu, and D. Silver, “Massively parallel methods for deep reinforce-
ment learning,” CoRR, vol. abs/1507.04296, 2015.

[32] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, S. M. A. Eslami, M. A. Riedmiller, and D. Silver, “Emergence of
locomotion behaviours in rich environments,” CoRR, vol. abs/1707.02286, 2017.

[33] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron,
V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu, “Impala: Scalable
distributed deep-rl with importance weighted actor-learner architectures,” 2018.

[34] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adap-
tation of deep networks,” 2017.

[35] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[36] A. Lazaric, Transfer in Reinforcement Learning: A Framework and a Survey,
pp. 143–173. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[37] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Ges-
mundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer learning for
NLP,” in Proceedings of the 36th International Conference on Machine Learning
(K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine
Learning Research, pp. 2790–2799, PMLR, 09–15 Jun 2019.

63

[38] J. Howard and S. Ruder, “Fine-tuned language models for text classification,”
CoRR, vol. abs/1801.06146, 2018.

[39] M. E. Taylor and P. Stone, “Cross-domain transfer for reinforcement learning,”
in Proceedings of the 24th International Conference on Machine Learning, ICML
’07, (New York, NY, USA), p. 879–886, Association for Computing Machinery,
2007.

[40] G. de la Cruz, Y. Du, J. Irwin, and M. Taylor, “Initial progress in transfer for
deep reinforcement learning algorithms,” 07 2016.

[41] J. Roy and G. Konidaris, “Visual transfer for reinforcement learning via wasser-
stein domain confusion,” 2020.

[42] Y. Du, W. M. Czarnecki, S. M. Jayakumar, M. Farajtabar, R. Pascanu, and
B. Lakshminarayanan, “Adapting auxiliary losses using gradient similarity,” 2020.

[43] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,”
CoRR, vol. abs/1606.04671, 2016.

[44] C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after
pretraining deep networks to predict state dynamics,” 2015 International Joint
Conference on Neural Networks (IJCNN), pp. 1–7, 2015.

[45] Y. Du and K. Narasimhan, “Task-agnostic dynamics priors for deep reinforcement
learning,” CoRR, vol. abs/1905.04819, 2019.

[46] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,
A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. P. Lillicrap, and D. Silver,
“Mastering atari, go, chess and shogi by planning with a learned model,” CoRR,
vol. abs/1911.08265, 2019.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran
Associates, Inc., 2019.

[48] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?,” CoRR, vol. abs/1411.1792, 2014.

[49] M. Lapan, Deep Reinforcement Learning Hands-On: Apply Modern RL Methods,
with Deep Q-Networks, Value Iteration, Policy Gradients, TRPO, AlphaGo Zero
and More. Packt Publishing, 2018.

[50] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying gener-
alization in reinforcement learning,” CoRR, vol. abs/1812.02341, 2018.

64

[51] C. Zhao, O. Sigaud, F. Stulp, and T. M. Hospedales, “Investigating generalisation
in continuous deep reinforcement learning,” CoRR, vol. abs/1902.07015, 2019.

