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ABSTRACT 

MASOUD SOBHANI.  Delivery Point Load Forecasting.  (Under the direction of DR. 

TAO HONG) 

 

Electric load forecasting has been integrated into the business decision making processes 

across virtually every segment of the power industry. Power companies use short-term and 

long-term load forecasts primarily for power systems operations and planning, while 

electricity retailers use load forecasts for pricing and procurement decisions. In power 

delivery systems, a delivery point is a node where the electricity is delivered to the 

distribution network in order to supply power for a local area. Load forecasts at the delivery 

point level provide values for distribution system operators. Load forecasters face two 

major challenges when forecasting the load profiles at the delivery point level: data quality 

and randomness of the load. Data quality issues play a vital role in producing accurate 

forecasts. In the power system hierarchy, the frequency of events causing the quality issues 

for load data is unique and more intense at the delivery point level. In this research, a 

delivery point load forecasting framework is proposed, which includes different 

components focusing on the quality issues in both load data and weather data, such as load 

transfer detection; meter grouping; load anomaly detection; and weather data cleansing 

using multiple load zones. The framework is developed and evaluated using the data from 

a distribution company in the United States. Enhancements of data quality in each step are 

evaluated within a load forecasting process. The effectiveness of the proposed solution has 

been empirically confirmed through significant improvements to the forecast accuracy. 
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CHAPTER 1: INTRODUCTION 

 

Electricity infrastructure is a basic requirement for daily life in civilized countries. 

Power grids as one of the most complicated systems ever made, supply electricity to 

various consumers. The process of producing power in a plant and transferring it to a 

household or a factory requires precise and detailed planning. Electricity is a unique 

commodity that its consumption and production happen at the same time. On the other 

hand, the capacity for storing electricity is negligible in comparison to the amounts of 

supply and demand. Therefore, predicting the future electricity demand is crucial for a 

power delivery system, which makes the electric load forecasting fundamental information 

for power system planning and operations. 

Electricity demand is a function of various factors. Geographical location, weather 

conditions, population, energy policies, power grid structure, classification of consumers 

based on the sector, and many other variables drive the electricity demand for a particular 

group of consumers. Hence, any combination of these factors creates a unique case for load 

forecasting.  

Deployment of smart grid technology has provided opportunities for the power 

industry to enhance the capabilities of system monitoring. The modern metering 

infrastructure has made the data available for almost all nodes in a power delivery network. 

System load which is the total demand of a given service zone had been almost the only 

option for load forecasting before the smart grid era. The availability of the data at lower 



2 

 

levels of aggregation has opened a door for forecasters to have a better understanding of 

the load profiles in order to create forecasting models that are more accurate. 

Delivery points are the nodes in a power delivery network where electricity is 

delivered to the distribution system. The physical representatives of the delivery points are 

medium/low voltage substations that connect transmission lines to distribution lines. In a 

load aggregation hierarchy, a delivery point is located somewhere in the middle, which is 

higher than end-user level and lower than the system level. Therefore, the characteristics 

of the load profiles at the delivery point level are different from the ones at lower or higher 

levels. As a result, load forecasting at the delivery point level requires a distinctive solution.  

In this chapter, first, we briefly introduce the structure of a power delivery system. 

Then, the process of a typical load forecasting is explained. The last two sections describe 

the problem and corresponding challenges for delivery point load forecasting.  

 

1.1 The Structure of Power Systems 

A classic power system consists of three main components including generation, 

transmission, and distribution. The corresponding equipment includes generators, 

transformers (step-up and step-down), transmission and distribution lines, cables and 

switchgear (Sallam & Malik, 2011). Figure 1.1 shows a schematic diagram of a power 

system. At the first place, generators produce electricity. To transmit the power through 

long distance lines in an economic way, the voltage increases in the step-up transformers. 

When the electricity arrives at the distribution lines, the extra high voltage (EHV) power 

should be stepped down to the medium voltage (MV). The power is then transmitted 

through transmission lines to the secondary substations. The distribution transformers 



3 

 

reduce the voltage to the consumers’ level. At the final step, the low voltage (LV) power 

is delivered to the end users, which can be either residential, commercial or industrial 

consumers. 

 

Figure 1.1: A schematic diagram of a power system 

In addition to the main three components of a power system (generation, 

transmission, and distribution), technology improvements of the recent years have 

introduced another component to the classic arrangements. Previously, the traditional role 

of end-users in a power system was only consuming energy. Due to the deployment of 

smart grid technology, penetration of distributed energy resources (DER) such as solar 

roofs and small-sized wind turbines, and batteries an end-user is converted to an active 

component in a power grid. In addition, the bi-directional connection between the 

consumers and power utilities (because of Advanced Metering Infrastructure) makes it 

possible for the consumers to play a role in controlling the power system.   
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Utilization of the smart grid technologies in the past decades has improved the 

monitoring capacity of the power system. The integration of advanced metering 

infrastructure (AMI) to the smart grid has provided opportunities for the system operators 

to have near real-time data from the different points of the power network in high 

resolutions. The availability of the data in a massive order makes it possible to enhance the 

reliability of power delivery. In addition, analyzing the data at different levels of a power 

hierarchy requires exploring deeper, tacking new challenges and proposing novel solutions.  

 

1.2 Electric Load Forecasting 

Electric load forecasting is an essential input for decision-making in the power 

industry. Virtually, every sector from generation to transmission and distribution requires 

load forecasts for the planning and operations. The scheduling functions such as unit 

commitment, economic dispatch, and automatic generation control rely heavily on load 

forecasts (Yue, Hong, & Wang, 2019).  

The term electric load forecasting refers to the process of predicting future electric 

demand. A typical electric load forecasting process consists of three main components; 

input, model and output. Depending on the problem and application, these components 

could be different.  

The electricity consumption of a residential customer is responsive to weather 

variations because humans always expect comfortable ambient conditions. During the hot 

days in summer, we turn the A/C on to cool down the temperature and in the cold days of 

winter, heaters make homes warm. This significant correlation between the weather and 

electric consumption has been used in developing load forecasting models (Refer to section 
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3.1). Although temperature is one of the best explanatory variables in load forecasting 

models, other measurements such as humidity, cloud cover or wind speed could be 

employed to have better modeling.   

Typically, electric load profiles have three seasonal blocks, including the month of 

a year, days of a week, and hours of a day. The yearly block is due to the weather variations 

in different seasons of a year (see section 3.1 and Figure 4.4). In a weekly block, the work 

schedule of people makes the load profiles of weekdays different from the ones at 

weekends. Human activities and weather conditions are different in 24 hours a day. 

Therefore, in a daily block, the electric demand is not similar in different hours. Load 

forecasting models capture these three seasonal blocks by employing the calendar 

variables. Hence, categorical variables such as the month of a year or days of a week are 

utilized in load forecasting models. 

Depending on the application, load forecasting models use more variables other 

than weather and calendar variables. In long-term load forecasting, the prediction horizon 

is a few years ahead or longer. These forecasts are used for decision-making such as 

network expansion or building new power plants. In such cases, some socioeconomic 

variables such as population, gross domestic product (GDP) and land usage are better 

explanatory variables than the weather. 

The forecasting models can be categorized into two main groups; statistical and 

artificial intelligence (AI) models. The models based on statistical techniques are more 

interpretable than AI models. Time series or univariate models are basic statistical methods 

that only use the history of the target variable (load here) to capture the patterns. The 

methods include but not limited to Exponential Smoothing, Autoregressive, Moving 
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Average, ARMA and ARIMA (Autoregressive and Moving Average), ARCH 

(Autoregressive Conditional Heteroscedasticity) and GARCH (Generalized ARCH). 

Univariate models are useful when only endogenous variables are adequate to model the 

dependent variable. In addition, for longer forecasting horizon (more than a few steps 

ahead) time series models are not reliable and result in inaccurate forecasts. On the other 

hand, when exogenous variables have a considerable impact on the variation of the 

dependent variable, more advanced statistical models come into play. Multiple Linear 

Regression (MLR) is a well-known technique for developing forecasting models. 

The correlation between the load and exogenous variables are usually nonlinear. 

Although statistical methods are able to model nonlinearities in the data, AI models have 

better performance in capturing complex correlations in some cases. Models such as 

Artificial Neural Network (ANN), machine learning or gradient boosting are some AI 

methods that have been used to develop load forecasting models. These models are called 

black box because the process inside these models is very complicated and hard to be 

interpreted. 

In the power industry, point load forecasting has been a classic and favorite 

approach for a long time. In point load forecasting, the output is a single value for every 

timestamp in the future. In the past decades, due to the deployment of smart grids and the 

penetration of renewable resources, the need for predicting the future uncertainty is getting 

more challenging. Therefore, probabilistic load forecasting emerged as a solution to the 

modern challenges in the power industry, because it can provide more information about 

future uncertainties than what point forecasts can do (Y. Wang, Zhang, et al., 2018). 

Probabilistic forecasting provides a range of outputs for each timestamp in the future. 
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Hence, varieties of future outcomes are available for the decision-makers in the power 

industry. The probability of the future load gives the power utilities a handful of options 

for planning and operations.  

Traditionally, system load has been the preferred load level to analyze the power 

supply system. In the past decades, the integration of smart meters into the power grid 

provided the power industry with new opportunities by utilizing load hierarchies in order 

to improve the system performance. Load forecasts at different levels of hierarchy, from 

the system level to the end-users’ have different applications. The electric utilities use 

short-term and long-term load forecasts at the system level to plan their operations while 

the electricity retailers use load forecasts at the end-user level for pricing and procurement 

decisions. In addition, availability of the data with high granularity, either temporally or 

spatially, provides extensive chances to better understand electric load profiles and to 

improve the load forecasts. 

Developing and implementing load forecasting solutions are subjective to the 

conditions and constraints. Variable and model selection, weather station selection and 

combination, data cleansing, determining the length of history and residual analysis are a 

few examples for the procedures that a load forecasting process requires to be developed. 

In the following section, we review some fundamental concerns in a load forecasting 

process focusing on the delivery point level.  
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1.3 Randomness and Data Quality 

Two factors play a vital role in the success of a load forecasting process: 

randomness and data quality. Accurate outputs of a forecasting process are results of 

inputting high-quality data into a strong model (randomness). 

Although there is no certain definition for randomness, the interpretations of 

randomness could be summarized to three terms: unpredictability, typicality, and 

complexity. However, Khrennikov (2014) believes that none of the three basic 

mathematical approaches led to a consistent theory of randomness. The author concludes 

to the idea that randomness is not a mathematical but physical notion. Nevertheless, the 

definition of randomness in this research follows the idea of (Khrennikov, 2014), as well 

as three interpretations. 

To be more concise in electric load forecasting, the randomness mainly refers to 

unpredictability. High randomness is due to the difficulties in forecasting. Assume that we 

have a collection of load profiles from different households in a neighborhood. If we use a 

given model to forecast the load profile of each household, the predictions are likely to be 

very different. Randomness is the major factor in this case for variations of the accuracies. 

The model may work for a certain number of households but not for all of them. This is 

due to what Khrennikov (2014) mentioned that randomness is a physical notion. 

The electricity consumption of a given household is impacted by two driving 

factors, weather condition, and human activities. In a neighborhood, the weather condition 

is similar for all households, but human activities are different. The number of people, the 

number of adults and children, work schedule and many other human-related factors have 
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considerable impacts on electricity consumption. This is the origin of randomness in 

electric load profiles. 

Data quality is another important player in a load forecasting process. Generally, in 

any process, the quality of output is determined by the quality of input. In computer science 

and mathematics, garbage in garbage out (GIGO) is a common concept indicating the 

importance of input quality. It means that a high-quality output should not be expected by 

a low-quality input in a process.  

In load forecasting, as mentioned earlier in this chapter, we have different types of 

input data. Load and weather data are two major input variables. The quality of input data 

is crucial to forecast accuracy. On the other hand, real-world data always contain outliers 

and inconsistencies. Human error, instrument failures, natural events, and many other 

reasons create anomalies in the data. Therefore, in order to have accurate predictions, we 

should take care of anomalies and data quality issues in the input data. A healthy 

forecasting process should have an anomaly screening at the early stages to be able to 

produce accurate predictions.  

Load profiles at each level of a load hierarchy have different features and shapes. 

Forecasting the load at a given level requires particular analysis, modeling, and solution. 

Figure 1.2 displays a diagram of a load hierarchy in a power grid. This graph has four levels 

of aggregation: system, load zones, delivery points, and households. A hierarchy could 

have more or fewer levels but the concept is the same. As we move towards the lower 

levels of the system, the randomness of the load profiles increases and the data quality 

decreases. 
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High randomness means that there are fewer patterns to capture in the load profiles. 

This concept is tied to the level of predictability. The load profiles of the lowest level 

(household) represent the consumption behaviors of different end-users. Therefore, more 

random load profiles must be expected at this level due to the arbitrary nature of human 

behaviors. Aggregating the profiles of a number of households smooths the shapes and as 

we move to a higher level of aggregation, the load patterns get more repetitive and hence 

become more predictable. Hence, the profiles of the higher levels are respectively easier to 

model because of the predictable patterns they have. 

On the other hand, at lower levels of the hierarchy, the data quality issues are more 

frequent and more diverse.  For example, the reading failures of a smart meter are reflected 

in the corresponding household load profile, but the aggregating of multiple profiles wipes 

out the missing values.  

  

Figure 1.2: Load hierarchy in a power grid 

High randomness and intense data quality issues make the forecasting challenging 

at lower levels of the hierarchy. In this research, the main focus is in data quality issues 

and their impacts on the accuracy of load forecasting at the delivery point level. 
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Randomness, which could be controlled by customized forecasting models, is not the scope 

of this research. Therefore, in the proposed solution for delivery point forecasting, one 

particular model is used to keep the experiments consistent. Having a similar model for all 

experiments, the impacts of data quality issues can be investigated distinctively.  

 

1.4 Delivery Point Load Forecasting 

Deployment of smart grid technology has provided the opportunity for the power 

industry to have access to a vast amount of data. Before the smart grid era, the system load 

forecast was a typical input for power system planning and operations. The availability of 

the data from the highest to the lowest levels of a load hierarchy opens new doors for all 

participants of the power industry to improve the system reliability. As a result, the load 

forecast of the lower levels has provided more information for the decision-makers in the 

power industry.  

In a power delivery system, delivery points are the substations that deliver 

electricity from transmission lines to the distribution network. These substations supply 

power for a limited area such as a couple of neighborhoods or a building block. For 

example, the power demand of a given county is supplied typically through a few delivery 

points. The meter located in a substation monitors the electricity flow of the corresponding 

service zone.  

Analysis of the load data from the meters located at delivery points provides 

valuable information, which is useful for different applications. In a large service territory, 

the driving factors of energy consumption are not similar for all consumers. Therefore, the 

load profiles are expected to have different patterns and shapes depending on factors such 
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as demographics, weather conditions, and the sector. More accurate load forecasts at lower 

levels of a system create values for the power system planning and operations. The forecast 

at this level can leverage the accuracy of predictions at the upper levels of the system 

because it is customized for the conditions of the corresponding service zone. In addition, 

the predictions of the electricity flow through a given substation help the distribution 

operators have better planning to avoid outages due to the overloading of equipment. 

Eventually, the load forecast at lower levels gives the strength to the system operators to 

use the capacity of a smart grid in order to improve the system reliability.  

Delivery point load forecasting means predicting the load demand of a service zone 

supplied through a given delivery point. As we discussed in the previous section, the 

patterns of the load profiles at different levels of a power system hierarchy are not similar. 

Delivery points belong to MV/LV levels of the power system. Randomness and data 

quality issues are two major factors that play vital roles in the development of a forecasting 

framework for load time series of the delivery points. Although a strong forecasting model 

may capture nonlinear and irregular patterns of the load profile at a delivery point, the 

intensive data quality issues at this level affect the performance of the forecasting models 

significantly. 

The quality of input is crucial to the quality of output in any process. The same 

analogy can be adapted for electric load forecasting. The quality of the input data in a load 

forecasting process is vital for forecast accuracies. The hypothesis of this research relies 

on this concept that improving the data quality in a delivery point load forecasting enhances 

the accuracy of outcomes. In this hypothesis, we should quantify the “quality” factors to 

be able to evaluate it in order to test the hypothesis. The quality of output is measured 
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through the accuracy of load forecasts. The forecasted values are compared to the actual 

values through some metrics to calculate the accuracy. The quality of input data is 

quantified through detecting anomalies in the data. An anomaly is defined by comparing it 

to a normal observation. In this research, we will define the anomalies in delivery point 

load data, as well as the ones in temperature time series. Therefore, by quantifying the 

quality of input and output in the delivery point load forecasting we will test the hypothesis.  

Load transfers and outages are two major sources of data quality issues in the load 

profiles of delivery points. Load transfer is a load management task to improve system 

reliability. Distribution operators transfer the load from one substation to another one due 

to some reasons such as maintenance and congestion. An outage is typically due to some 

natural causes or equipment failures. Outages usually occur in local areas and depending 

on the intensity of the outage, the load profiles of one or more substations could be 

impacted. Both load transfers and outages are common events that cause noticeable effects 

on the load profiles. In addition, other factors such as meter failure, human error in 

recording or reporting can create some anomalies in the load profile and any level including 

delivery points. 

Data quality issues are not limited only to load data. Weather data which is a 

fundamental input in many load forecasting models have also anomalies and 

inconsistencies. Similarly, since we use weather variables in delivery point load forecasting 

models, we need to check the quality of weather data in the forecasting process.  

The intensity of the data quality issues along with the higher level of randomness 

makes the load profiles at the delivery point level unique. Therefore, forecasting the load 

at this low/medium voltage level requires a distinct solution. In this research, we conduct 
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a comprehensive study on the challenges at delivery point load forecasting. Our focus is 

mainly on data quality issues. In this research, we propose a framework to tackle these 

problems. The framework consists of a few components and each component addresses a 

specific challenge for delivery point load forecasting. The challenges are identified first 

and then fixed by a proposed solution. The proposed framework is evaluated through a case 

study using the data from a power utility in the United States. 

 

1.5 Dissertation Organization 

The organization of the dissertation is shown in Figure 1.3. Chapter two presents a 

literature review on electric load forecasting, load forecasting at MV/LV level and data 

quality issues. Chapter 3 gives a brief background from the statistical tools we use in this 

research. Chapter 4 introduces the data used in this research and presents a brief analysis 

of the data. Chapter 5 proposes a comprehensive methodology for detecting load transfers, 

as well as experiments and discussions on the results. Chapter 6 propose a solution for 

improving the data quality in meters with load transfers. In chapter 7, other data quality 

issues in delivery point load profiles are studied. Chapter 8 propose a methodology for 

weather data cleansing. Chapter 9 summarizes different components in order to propose a 

framework for the delivery point load forecasting. The research concludes in chapter 10.  
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Figure 1.3: The organization of the dissertation 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview of Load Forecasting 

Electric Load forecasting owns a wealthy literature with a sharp increase in 

publications in the past decades (Hong & Fan, 2016). Figure 2.1 shows the number of 

journal papers published in the field of electric load forecasting and related subjects since 

1985 (Web of Science query, TS = (load forecasting OR (electricity consumption AND 

forecasting) OR electric load forecasting OR energy forecasting)) ). The significant raise 

in the publications within the past decades is an evidence to the importance of load 

forecasting and the demand for new solutions. In this section, we review different angles 

of the literature and the representative papers to provide a perspective for the challenges 

and solutions in electric load forecasting.  

 
Figure 2.1: Number of journal papers in Web of Science (WoS) for the field of electric load 

forecasting 
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Model is a required and important component in a load forecasting process. A major 

portion of papers in the literature focused on proposing accurate and effective forecasting 

models. Various techniques and methods have been used in developing load forecasting 

models such as statistical and artificial intelligence techniques. Table 2.1 shows some 

forecasting models that have been used frequently in the literature and some representative 

papers in this field.  

Table 2.1: The list of frequently used forecasting models and some representative papers 

Model Papers 

Exponential Smoothing (Hyndman, 2008), (Taylor, 2008) 

ARIMA (Amjady, 2001), (Huang & Shih, 2003) 

MLR (Papalexopoulos & Hesterberg, 1990), (Hong, Pinson, & Fan, 2014), (P. 

Wang, Liu, & Hong, 2016) 

ANN (Khotanzad, Afkhami-Rohani, & Maratukulam, 1998), (Hippert, Pedreira, & 

Souza, 2001) 

Semi Parametric (Fan & Hyndman, 2012), (Nedellec, Cugliari, & Goude, 2014) 

Fuzzy Regression (Hong & Wang, 2014) 

SVR (B.-J. Chen, Chang, & Lin, 2004) 

Gradient Boosting (Ben-Taieb & Hyndman, 2014) 

 

Traditionally, time series models have been the favorite techniques in forecasting 

problems. Univariate models such as Exponential Smoothing (Hyndman, 2008) and 

ARIMA (Autoregressive Integrated Moving Average) use the history of the target variable 

(load here) to predict the next values. ARIMA is used as a model for short-term load 

forecasting in (Amjady, 2001). Different customized models were developed for 

weekdays, weekends and public holidays. The proposed model also showed capabilities 

for peak load forecasting. A modified version of the ARIMA model was proposed in 

(Huang & Shih, 2003) for short-term load forecasting by integrating Non-Gaussian 

process. The model was tested in a case study for a day-ahead, week-ahead, and peak load 

forecasting. A few time series models including ARIMA and variations of Holt-Winter’s 
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exponential smoothing model were evaluated in (Taylor, 2008) for very short term load 

forecasting. 

Time series models are typically good models when the forecasting horizon is just 

a few steps ahead. The longer horizons, the accuracy of univariate models drops 

dramatically. In addition, load history is not the only variable to capture the features of a 

load profile. Other factors could also have effects on energy consumption. Although time 

series models could show reasonable performance in forecasting, the univariate nature of 

them ignores the effects of other driving factors. 

Regression is a powerful statistical tool to explain the variations of a dependent 

variable using explanatory variables. Hong (2010) proposed a Multiple Linear Regression 

(MLR) model for short term electric load forecasting. The forecasting model utilizes the 

correlation between temperature and load of residential consumers to capture the features 

of the load profiles. The proposed model has been used as the benchmark in many 

competitions and researches (Hong, Pinson, et al., 2014). The model was improved later in 

another research by exploring different numbers of lagged temperature variables to study 

the recency effects in electricity consumption (P. Wang et al., 2016).  

Artificial Intelligence (AI) and specifically neural network models have been 

favorite techniques for forecasters in the past and today. In electric load forecasting, neural 

network models were dominant for years in the late twentieth century and years after 

(Khotanzad et al., 1998). A review of neural network models for short-term load 

forecasting is presented in (Hippert et al., 2001) and the representative models are 

evaluated and compared in a case study. A neural network model is used in (Taylor & 

Buizza, 2002) to predict the load for one to ten days ahead.  
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Other methods and techniques were also used in developing load forecasting 

models such as fuzzy regression models (Hong & Wang, 2014), support vector regression 

(SVR) models (B.-J. Chen et al., 2004), semi-parametric models (Fan & Hyndman, 

2012)(Nedellec et al., 2014) and gradient boosting models (Ben-Taieb & Hyndman, 2014). 

Load forecasting models employ a variety of variables to capture salient features of 

load profiles. Weather is a major driving factor for residential electricity consumption. 

Temperature is an explanatory variable that has been used frequently in load forecasting 

models. Hong (2010) employed a third-order polynomial function to model the u-shaped 

scatter plot of load versus temperature. The variation of weather conditions in a large 

geographical area increases the diversity of the load profiles. A multiregional load 

forecasting is proposed in (Fan, Methaprayoon, & Lee, 2009) for the system load with a 

large service zone. Nedellec et al. (2014) employed an exponential smoothing of real 

temperature in a semi-parametric approach for short and medium-term load forecasting . 

The researchers have used the weather variables other than the temperature in load 

forecasting models. The impacts of different weather variables on monthly electric demand 

are studied in (Hor, Watson, & Majithia, 2005). Wind speed is used as Wind Chill Index 

(WCI) in (Xie & Hong, 2017) for a load forecasting practice and a similar study was 

conducted on including relative humidity in a load forecasting model in (Xie, Chen, Hong, 

& Laing, 2018). 

Weather stations record the weather conditions for a limited area using point 

measurements of the instruments. On the other hand, consumers are typically distributed 

across a larger area. Therefore, a single weather station is not always adequate to represent 

the weather condition of a large service zone. Hong, Wang, and White (2015) proposed a 
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novel methodology for selection and combination of multiple weather stations for load 

forecasting (Hong et al., 2015). For a combination of weather stations in load forecasting, 

different methods were tested in (Sobhani et al., 2019) such as linear weights, geometrical 

average and genetic algorithm. The proposed combination methods were compared to the 

simple average as the benchmark in order to find the appropriate combination method.  

In most load forecasting models, calendar variables are used to explain the seasonal 

behavior and time-dependent features of the load data. The seasonal blocks are modeled in 

many load forecasting models by employing the month of a year, day of a week and hour 

of a day as the explanatory variables (Hong, 2010). To model the yearly seasonal block, 24 

solar-term variables are used in (Xie & Hong, 2018a). The load profiles are different on 

holidays. Some papers proposed solutions to consider holiday effects in load forecasting 

(Song, Baek, Hong, & Jang, 2005)(Ziel, 2018). 

In the competition between point load forecasting vs. probabilistic load forecasting, 

the former wins in terms of the number of publications. However, in the past decade, 

probabilistic load forecasting has attracted more attention from the researchers. A tutorial 

review on the literature of probabilistic load forecasting is presented in (Hong & Fan, 

2016). A probabilistic load forecasting can be achieved through three main approaches: 

simulating input scenarios representing the future uncertainties (Hyndman & Fan, 

2010)(Xie & Hong, 2018b)(Bracale, Caramia, De Falco, & Hong, 2020), using 

probabilistic models such as quantile regression (Ben-Taieb, Huser, Hyndman, & Genton, 

2016), and output simulation such as forecast combination (Liu, Nowotarski, Hong, & 

Weron, 2017) or simulating residuals (Xie, Hong, Laing, & Kang, 2017).  
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The majority of the literature is devoted to the research on the weather-responsive 

load while industrial load forecasting has attracted less attention. Some papers proposed 

methodologies for load forecasting in a factory (Bracale, Carpinelli, De Falco, & Hong, 

2017)(Ahmad, Javaid, Guizani, Alrajeh, & Khan, 2017) or for load consumption of 

industrial appliances (Alasali, Haben, Becerra, & Holderbaum, 2018). Reactive power 

forecasting has been touched rarely in the literature (Bracale, Carpinelli, De Falco, & Hong, 

2019). 

With respect to the forecast horizon, we can categorize load forecasting to the short-

term, medium-term and long-term. The cut-offs for these three categories are two weeks 

and three years respectively (Hong & Fan, 2016). Most of the papers we have reviewed in 

this section so far are on short-term forecasting. A solution to long-term peak load 

forecasting is proposed in (Hyndman & Fan, 2010). A long-term probabilistic forecasting 

methodology is presented in (Hong, Wilson, & Xie, 2014) and the benefits of using higher 

resolution data are compared with low-resolution ones. On the other hand, the methodology 

proposed in (Kandil, El-Debeiky, & Hasanien, 2002) used low-resolution data to predict 

the demand for fast-developing utilities.  

Traditionally, load forecasting at the system level was dominant approach in both 

academia and the industry. Deployment of smart meters has provided the opportunities for 

the power industry to study load profiles of other levels, from households to larger load 

zones (Ben-Taieb, Taylor, & Hyndman, 2017). Global Energy Forecasting Competition 

2014 and 2017 presented the most significant developments in Hierarchical Load 

Forecasting (HLF) and Probabilistic HLF respectively (Hong, Pinson, et al., 2014)(Hong, 

Xie, & Black, 2019). Hierarchical load forecasting is a vast topic to cover the challenges 
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in different levels of the load hierarchy. Forecasting the load of the households is becoming 

necessary for the power utility to provide better services for their clients. A comprehensive 

review on topics, challenges and current solutions for the smart meter era is presented in 

(Y. Wang, Chen, Hong, & Kang, 2018). 

Data integrity and cyber security are another emerging fields of study in the power 

industry. Robust and cyber-secure load forecasting models (Yue et al., 2019)(Luo, Hong, 

& Fang, 2018a)(Luo, Hong, & Fang, 2018b) and real-time anomaly detection methods 

(Luo, Hong, & Yue, 2018) were proposed in the literature to address the new challenges 

of the power industry.  

 

2.2 MV/LV Level 

A small share of the literature focused on the load forecasting at levels other than 

system load. Recently, this field has attracted more attentions from the researchers. Global 

Energy Forecasting Competition 2017 addressed the challenges in load forecasting at 

MV/LV level (Hong et al., 2019). In this section, we review some notable papers in load 

forecasting at lower levels of the power hierarchy including load forecasting of bus, feeder, 

substation, and distribution load profiles.  

A hybrid model is proposed in (Amjady, 2007) for bus load forecasting. The data 

of three buses as the representative load profiles are used to test the proposed model. A 

load forecasting framework is proposed in (Haben, Giasemidis, Ziel, & Arora, 2018) for 

the LV level. A dataset including 100 feeders of a small city in the UK is used to test the 

proposed models. Feeders provide electricity for an average of 45 households. Kernel 

density estimation, a simple linear regression, autoregressive, and Holt-Winters-Taylor 
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smoothing method are compared with some naïve models to study their performances on a 

few-days ahead forecasting practice. In the models that include temperature variables, both 

ex-post and ex-ante forecasting were implemented. The paper concludes that the accuracy 

of the forecast is related to the feeder’s size and forecasting horizon. In addition, the authors 

claimed that the temperature has little or no effect on the forecast accuracy. However, the 

conclusion is based on a case study using a dataset with only three winter months in a cold 

location.  

Neural network models are used for substation load forecasting in some papers. A 

simple ANN model is used in (C. S. Chen, Tzeng, & Hwang, 1996) to forecast the loads at 

three substations. The accuracy of the forecast is enhanced by considering the effect of 

temperature variations on the load profiles. Similarly, a neural network-based model is 

used in (Ding, Benoit, Foggia, Besanger, & Wurtz, 2016) for the substation load 

forecasting. The load profile is decomposed in this paper into the normal average and the 

intraday variation load profiles. The missing data due to the maintenance of the 

transformers are replaced by the data from a similar day. 

A forecasting methodology is presented in (Bennett, Stewart, & Lu, 2014) for the 

transformer load in Australia by using the end-user load profiles. The framework consists 

of an NN-based clustering method and an ARIMAX forecasting model. The data is 

preprocessed by removing the profiles with more than 10 missing points.  

The load profiles of some MV/LV substations were analyzed by a time series model 

to propose a solution for day-ahead forecasting. The methodology decomposes the times 

series into three components; trend, season, random error. Each component is then 

estimated separately. The proposed methodology was evaluated by using the data from 
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seven representative substations in France (Haben et al., 2018). A similar concept was used 

in (Ding, Bésanger, & Wurtz, 2015) by decomposing the load profile into the same three 

categories.  

Some other studies focused on data at the household level (Ben-Taieb et al., 2016). 

Wang et. al. propose a review study on the literature of smart meter analytics (Y. Wang, 

Chen, et al., 2018). A comprehensive methodology for a hierarchical load forecasting is 

proposed in (Ben Taieb, Taylor, & Hyndman, 2017) using data of more than 1500 smart 

meters in the UK. The methodology ensures the coherency of the mean forecasts in the 

bottom-level time series of a hierarchy, as well as in the probabilistic forecasts. Some 

studies showed that more advanced methods such as neural network and sparse coding can 

outperform classical times series models such as ARIMA or Exponential Smoothing in 

forecasting of the household loads (Wu, 2007)(Yu, Mirowski, & Ho, 2017) 

Wang et al. (2016) showed that the best forecasting model for the system level does 

not necessarily perform well in disaggregated load zones and it needs to be customized for 

each zone. The same result is approved in (Hayes, Gruber, & Prodanovic, 2015) by 

showing that a given model could produce significantly inaccurate forecasts at low voltage 

feeder and end-user levels in comparison to high/medium voltage substations. 

The reviewed papers revealed the fact that the literature suffers from a lack of 

comprehensive study on load forecasting at the delivery/distribution point. Although this 

limited literature shed lights to some dark corners of this topic, concise and detailed 

research are missing due to the reasons such as the inadequacy of available data, the 

dominance of system-level point of view in modeling, and misleading assumptions. 
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2.3 Data Quality Issues 

Real-world data always contain abnormal observations, which are called in 

different names but have similar properties. Outliers, anomalies, and inconsistencies are 

some terms used for abnormal observations. Grubbs defines an “outlying observation” as 

one that appears to deviate markedly from other members of the sample in which it occurs 

(Grubbs, 1969). Outlier detection and data cleansing are crucial for data analysis. The 

applications of outlier detection range from financial fraud detection  (Ngai, Hu, Wong, 

Chen, & Sun, 2011) to fault detection in manufacturing and many other cases.  

Data outlier detection has a history in statistics back to centuries ago (Edgeworth, 

1887). Many methods and techniques have been developed for anomaly detection and data 

cleansing in different fields of application. Hodge and Austin introduced a survey of more 

recent techniques for outlier detection and their pros and cons (Hodge & Austin, 2004). 

The approaches to the problem of outlier detection are grouped in this paper into three 

categories including detecting the outliers with no prior knowledge of data, classifying the 

data into normal and abnormal data by modeling (supervised classification), and modeling 

only the normality or only abnormality. 

Chandola, Banerjee, and Kumar (2009) presented a survey on anomaly detection 

methods in different applications. They believe that the desired anomalies are different in 

detection methods. They categorize the anomalies into three groups: point anomalies, 

which are individual data instances, contextual anomalies, and collective anomalies. The 

techniques are classified in this paper into three main categories: classification based (such 

as neural network, Bayesian network, support vector machine, and rule-based), and 
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nearest-neighbor based (such as k-nearest neighbor, using relative density), and clustering-

based methods.  

Anomalies are defined by comparing to normality. Sometimes, the number of 

anomalies is not sufficient to be described or be modeled. Novelty detection is a solution 

in such cases where the data contain a majority of observations with normal conditions. A 

review of novelty detection research is proposed in (Pimentel, Clifton, Clifton, & 

Tarassenko, 2014). The novelty detection methods are grouped into probabilistic, distance-

based, reconstruction-based, domain-based, and information-theoretic techniques. 

A review of techniques for outlier detection of temporal data is proposed in (Gupta, 

Gao, Aggarwal, & Han, 2014). The paper categorizes the data type into five groups 

including time series data, data streams, distributed data, spatio-temporal data, and network 

data. For each category, the techniques and methods proposed in the literature are 

reviewed. 

Outliers and data quality issues have an undeniable impact on model estimation. A 

procedure for outlier detection and model adjustments for time series data is proposed in 

(C. Chen & Liu, 1993a). The outliers are divided into four categories in this paper including 

innovational outliers (10), additive outliers (AO), level shifts (LS), and temporary change 

(TC). A joint outlier detection and model estimation in a repetitive procedure is proposed 

to address the data quality issues in time series models. The procedure is then examined in 

a case study by demonstrating a good performance. In another study, the authors 

investigated a time series forecasting when the outliers occur near or at the forecast origin 

(C. Chen & Liu, 1993b). The results depict that the effects of outliers become smaller as 

an outlier occurs further away from the forecast origin.  
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In linear models, earlier studies proposed some solution to tackle outliers and 

anomalies in regression data. Rousseeuw (1984) proposed the least median square (LMS) 

which is based on minimizing a more robust scale estimate than the sum of squared 

residuals. The proposed LMS was later found out to be inefficient. An alternative approach 

was proposed in (Rousseeuw & Leroy, 1987) to improve the inefficiency of the LMS 

algorithm. They used LMS to flag outliers in the data and then ordinary least square (OLS) 

is used for the model estimation.  

Although robust regression methods were effective at first for the data with outliers, 

they were computationally intensive at the time. Detecting outliers first, removing and 

replacing them from the data to make them clean was an emerging solution for the data 

quality issues. Two procedures were proposed in (Hadi & Simonoff, 1993). In both 

methods, the data are separated into clean data and the points with potential outliers. A 

clean subset of data is determined first using two model-based algorithms. Then the 

extremeness of potential outliers is ranked by comparing to the clean data. In (Pena & 

Yohai, 1999), OLS is used to calculate the residuals and the observations with large 

residuals are removed from the data in order to make them clean.  

A nonconvex penalized regression approach is proposed in (She & Owen, 2011) 

for outlier detection. To detect the outliers a mean shift parameter is added to each data 

point. Then by using the studentized residual, a t-test determines whether an observation is 

an outlier or not. The proposed solution outperforms other state-of-the-art procedures and 

works faster and more efficiently.  

Smearing and masking are two major problems in outlier detection. Smearing 

means an outlier makes a normal point appears as an anomaly. Masking means an outlier 
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prevents another one to be detected. A methodology based on Genetic Algorithm is 

presented in (Tolvi, 2004) to address these challenges. A dummy variable for each 

observation is added to the regression model indicating the possibility of being an outlier. 

The best model is selected in a genetic algorithm process by minimizing BIC (Bayesian 

information criteria) of the model. The results of the case study using two sets of data 

demonstrated that the GA is able to avoid the potential problems of smearing and masking.  

The papers introduced in this section are some representative methods used in 

statistics for outlier detection and data cleansing. In this research, we leverage some of 

these methods to develop the proposed solution.  

 

2.4 Data Cleansing 

A few papers in the load forecasting literature addressed the data quality issues in 

a load forecasting process. Some papers studied the data quality issues for the load at the 

higher levels of the system. The winning teams of GEFCom 2012 and 2014 detected 

anomalies in load data to improve the accuracy of their forecasts. A winning team in the 

hierarchical load forecasting track of GEFCom2012 screened outliers by taking the mean 

hourly load as the normal value and removed the hourly loads that are less than 20% of the 

mean (Charlton & Singleton, 2014) 

Using a model to validate the historical observation is one way for anomaly 

detection. A univariate model is used in (Chen, Li, Lau, Cao, & Wang, 2010) to estimate 

the load profiles in order to detect abnormal readings. In this paper, load anomalies are 

grouped into two categories: locally corrupted, which are the ones deviate from local 

patterns, and globally corrupted, which are the ones deviate from global patterns of the 
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load curves. However, univariate models are not reliable when the change in a load profile 

is due to weather variations. In the probabilistic load forecasting track of GEFCom2014, a 

winning team developed a model-based anomaly detection method with a fixed threshold 

to clean the load data (Xie and Hong 2016a). 

In addition, growing concerns about cybersecurity have pushed researchers to 

investigate load forecasting approaches using bad input data  (Yue et al., 2019). A real-

time load anomaly detection is proposed in (Luo, Hong, & Yue, 2018) for very short-term 

load forecasting. The method has two components: a dynamic regression model and an 

adaptive anomaly threshold. The proposed solution outperforms three other methods 

significantly in a case study using ISO New England data. 

Using a robust model under data integrity attacks could improve the reliability of a 

power system. Three robust load forecasting models are proposed in (Luo, Hong, & Fang, 

2018a) to address this challenge. The models include two customized versions of iteratively 

re-weighted least squares regression model and a L1 regression model. The performance of 

robust models are evaluated through a case study using GEFCom2012 data resulting in a 

dominant performance for L1 regression model.  

Among the small number of load forecasting papers that tackle data quality issues, 

few of them address the data quality issues in the temperature record. Hong, et. al. (2010) 

discussed the data qualities associated with the historical weather data and their 

implications in short term load forecasting. After GEFCom2012, Hong, Wang, and White 

(2015) proposed a method to select appropriate weather stations for load forecasting. In the 

final match of GEFCom2017, Kanda and Veguillas (2019) eliminated several weather 

stations due to data quality concerns. A novel temperature data cleansing method is 
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proposed in (Sobhani, Hong, & Martin, 2020). The authors adopted a load-based 

temperature prediction model to screen the anomalies in temperature profiles. The quality 

of weather data is then evaluated in a load forecasting practice.  

At lower levels of a power grid, the types of data quality issues change. Few studies 

in the literature have addressed load data issues at MV/LV level. In (Sun et al., 2016), 

irregular nodes of a distribution network were detected based on the Euclidean distance 

between the parent and corresponding child nodes. The switching operations that are 

responsible for irregular nodes are detected based on how far the corresponding load 

forecast is from the normal patterns. Two standard deviations are used to capture deviations 

from the normal patterns to mark irregular load profiles. 

A regression-based methodology was proposed in (Baran, Freeman, Hanson, & 

Ayers, 2005) to detect and fix the outliers of the meters’ data at delivery points of a 

distribution system. The meters with the correlation factors higher than an assumed value 

are grouped together and the outliers are detected based on a threshold (three standard 

deviations away from the mean). Then, the detected anomalies were estimated by a 

regression function using the load data of the grouped meters. 

A two-stage methodology was proposed to detect the anomalies in bus load data 

(Chen, Kang, Tong, Xia, & Yang, 2014). The authors assumed that the “bad data” is due 

to two sources; signal transmission (Null Point and zero point, consecutive constant 

points), system operation (Bus maintenance, load transfers). Zero points, consecutive 

constant points, bus maintenance, and load transfers are detected by pattern identification 

method and then replaced by linear interpolation. The non-obvious bad data is detected by 

using a typical daily load profile. The data quality was then tested through a load 
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forecasting practice. The anomaly detection and cleansing improved the forecast accuracy 

by 4%. 

To model unmonitored customers on LV networks, two methods are proposed in 

(Giasemidis, Haben, Lee, Singleton, & Grindrod, 2017). The profiles of a few monitored 

customers are assigned to the unmonitored ones by using the substations’ data. The match 

between the half-hourly demands at the aggregate level and approximations to the mean 

daily demand of customers is optimized to find the best profiles. They used a simple 

average and the genetic algorithm to find the best match for the unmonitored customers. 

The proposed methods outperform a benchmark method (Monte Carlo). The data are 

preprocessed and the outliers and missing values are replaced by the average of same-day 

data. 

As we will discuss in Chapter 3 and 4, data quality issues at the delivery point level 

require unique solutions, because they have specific features seen only at this level of the 

hierarchy. The literature suffers from a lack of a comprehensive study on delivery point 

load forecasting. In this dissertation, we explore data quality issues in the delivery point 

load profiles extensively. 
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CHAPTER 3: THEORETICAL BACKGROUND 

 

 

3.1 Multiple Linear Regression 

Regression is a statistical tool to study the dependency of one variable, the 

dependent variable, on one or more variables, the explanatory variables, in order to 

estimate or predict the dependent variable (Gujarati, 2003). Multiple Linear regression 

(MLR) is a type of regression with more than one explanatory variable in a linear regression 

function. By linear, we mean linear in parameters not in variables. In other words, the 

variables with any transformation are plugged in a linear function with linear parameters. 

MLR has been widely used in load forecasting practices. Two types of forecasting 

models are used in this dissertation including load forecasting and temperature forecasting 

models. Both models are regression-based ones with multiple independent variables in a 

linear function.  

There are many methods for estimating the parameters of a regression function. The 

method of ordinary least squares (OLS) is popular and strong. The general linear regression 

model, in terms of X as the explanatory variables, is defined: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝−1𝑋𝑖,𝑝−1 + 𝑢𝑖                                     (3-1) 

where, β0, β1, …, βp-1 are the regression parameters;  Xi1, Xi2, …, Xi,p-1 are explanatory 

variables; 𝑢𝑖 is the error term, and i = 1, 2, …, n. 

Under certain assumptions, the response function for regression model is shown in 

equation 3-2. OLS estimates the parameters by minimizing the square errors (eq. 3-3) 

𝑌�̂� = 𝛽
0

̂ + 𝛽
1

̂𝑋1 + 𝛽
2

̂𝑋2 + ⋯ + 𝛽
𝑝−1

̂𝑋𝑝−1                                    (3-2) 
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min ∑ �̂�𝑖
2𝑛

𝑖=1 = ∑ (𝑌𝑖 − �̂�𝑖)
2𝑛

𝑖=1         (3-3) 

The estimates by OLS are called Best Linear Unbiased Estimates (BLUE) under 

certain assumptions. The classic linear regression model (CLRM) has seven fundamental 

assumptions for MLR to make BLUE estimates. The assumptions are as follows (Gujarati, 

2003): 

1- The regression model is linear in the parameters (not necessarily linear in 

variables) 

2- The explanatory variables are independent of the Error term: 𝑐𝑜𝑣(𝑋𝑖 , 𝑢𝑖) = 0 

3- Zero mean: 𝐸(𝑢𝑖|𝑋𝑖) = 0 

4- Homoscedasticity: 𝑣𝑎𝑟(𝑢𝑖) = 𝜎2 

5- No Autocorrelation between errors: 𝑐𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 0 

6- The number of observations must be greater than the number of explanatory 

variables 

7- The observations’ values must not be all the same: 𝑣𝑎𝑟(𝑋𝑖) > 0 

8- No perfect collinearity between two explanatory variables 

9- There is no specification bias. 

 

In the regression models, there are two types of explanatory variables including 

quantitative and qualitative variables. Quantitative variables explain the variations of a 

factor with a value for each observation. On the other hand, the qualitative variables are 

defined by using dummy variables. The variables such as the month of a year or day of a 

week are assumed to be categorical variables in the models we use here. However, 
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advanced statistical software such as SAS, R or Python has the capability to take care of 

categorical or class variables by assigning dummy variables automatically.  

 

3.2 Error Metrics 

There are different types of error measurements in the literature. Depending on the 

applications and interpretation purposes, the error metric could be different. In this 

research, we use three metrics for the error measurements. Error, Mean Absolute Error 

(MAE) and Mean Absolute Percentage Error (MAPE) are two metrics for the prediction 

error that we use here.  

𝑒𝑟𝑟𝑜𝑟𝑖 = 𝑌𝑖 − 𝑌�̂�     (3-4) 

𝑀𝐴𝐸 =
100

𝑛
∑ |𝑌𝑖 − 𝑌�̂�|

𝑛
𝑖=1     (3-5) 

            𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑌𝑖−𝑌�̂�

𝑌𝑖
|𝑛

𝑖=1             (3-6) 

where 𝑌𝑖 is the actual values, 𝑌𝑖 is the predicted values and n is the number of observations. 

 

3.3 Error Diagnosis  

In a binary classification testing, typically, two factors are used to measure the 

performance of the testing. False positive and false negative errors check the accuracy of 

the test results and measure the detection performance. In statistical hypothesis tests, these 

errors are called type I and type II. In this research, we use these two factors to evaluate 

the performance of the proposed detection methods. 
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False positive error is a test result where a normal situation is detected as a failure 

(or any condition, which is not). False negative is the failure situations that are not detected 

in a test. In addition, to better quantify the detection performance, we use false positive 

ration (FPR) which is the number of false positive errors to total number of normal 

observations and false negative ratio (FNR) is the number of false negative errors to all 

failure observations. A higher FPR indicates that the detection method marks more normal 

observations as a failure and a high FNR determines that the method has less capability to 

detect failures. 

 

3.4 Greedy Algorithm 

Greedy is an algorithm paradigm based on a heuristic approach to find the best 

solution using a reasonable number of steps. In other words, the greedy algorithm is a 

heuristic optimization method to lower the calculation costs in order to achieve an 

acceptable solution. In an optimization process, the total number of steps to get to the global 

optimum is dependent to the method. The number of steps and their complexity makes the 

whole process more costly.  

A greedy strategy may not lead to the global optimum and it could fall into a local 

one, but the main purpose is to have a lower number of steps in a quicker procedure. In 

each step towards the optimum, the greedy algorithm selects the most possible candidate 

using a selection function. This function sacrifices other routes with lower chances of 

getting to the optimum point.  

Therefore, in a greedy algorithm, we need five components including a candidate 

set, a selecting function, feasibility criteria, an objective function, and a solution function. 
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By customizing the selecting function and the feasibility criteria, we can have different 

paces towards the optimum point.  

On the other hand, since a greedy algorithm does not test all possible routes to get 

to the global optimum, it is highly likely to fall into a local optimum. In the cases where 

the procedure of the optimization process is costly, using a greedy approach is more 

reasonable. In this research (Chapter 5), we develop a customized greedy algorithm to 

propose an alternative approach with lower labor costs for load transfer detection.   
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CHAPTER 4: DATA 

 

In this research, we conduct the experiments using the data from a power utility. 

The service territory of the utility is a large geographical area in the United States. It is 

divided into 26 load zones in addition to a control center. Each zone has a few substations 

at distribution level that supply power for a number of consumers. These substations are 

called delivery points and there is a meter at each delivery point measuring electric flow 

for the corresponding substation.  

Hourly load data are available in this dataset for a total of 428 meters. The number 

of meters in a zone ranges from 2 to 47. The dataset covers 11 years of history from 2006 

to 2016. Load data of the meters have different lengths of history, ranging from one to 

eleven years. Thirty two retired meters are also included in the dataset. Figure 4.1 shows a 

schematic diagram of the load distribution at the service territory.  

 

Figure 4.1: The schematic diagram of the load distribution is the service territory 
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The power utility purchases weather data from two vendors. The first vendor 

reports the data from 10 weather stations while the second one covers 28 stations. The 

weather stations are located across the service territory. In this research, we mainly use the 

hourly readings of temperature reported by vendor 2, because of the larger number of 

stations. This chapter presents an analysis of the dataset by providing some preliminary 

statistics for the load and weather data.  

 

4.1 Load Data 

The load data have three levels of aggregation (Figure 4.1): system level, load zone 

level, and delivery point level, which have 1, 26 and 428 members respectively. The 

members are not equally distributed over the load hierarchy. It means that although the 

members of a given level are at the same stage, the load profiles do not have similar load 

levels. In this section, we analyze the load data to provide a perspective for the properties 

of the profiles at different levels of the hierarchy. 

 

Figure 4.2: Grouped boxplot of the load at each load zone 
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Figure 4.2 depicts the statistics of the load at each zone for the whole 11 years of 

data. As we can see, the characteristics of the load at different zones are various. This is 

due to the corresponding service zone and number of consumers covered by a load zone. 

In this research, we analyze each load zone individually and we assume that there are no 

interactions between to load zones such as load transfer between two meters in two 

different zones. 

The second level of hierarchy belongs to the delivery points. The detailed data 

availability and simple statistics for all zones and meters are provided in Appendix A. In 

this section, we analyze the load data for a sample zone to provide a perspective to the load 

profiles of the delivery points. The sample zone is Zone 9 with 13 meters. The majority of 

consumers belong to the residential sector. This can be observed in the correlation between 

the temperature and load shown in Figure 4.3 and Figure 4.4.  

 

Figure 4.3: The scatter plot of load against temperature for Zone 9.  
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Figure 4.4: The grouped boxplot for the load time series in Zone 9. 

 Table 4.1 shows the availability of the data for these meters in the period between 

2006 and 2016. “Yes” means that the meter has at least one reading in that year and “No” 

means that there is no record for the whole year. Among 13 meters, five of them have full 

years of data and the rest are younger meters with a shorter history. Twelve meters are still 

operating and one meter (Meter 9.10) seems to have been retired in 2015.   

Table 4.1: Data availability in the meters of a sample load zone 

Zone 
Meter 

Code 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Zone 9 

9.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.7 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.8 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.9 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9.10 No No No No No No No Yes Yes Yes No 

9.11 No No No No No No No Yes Yes Yes Yes 

9.12 No No No No No No No Yes Yes Yes Yes 

9.13 No No No No No No No Yes Yes Yes Yes 
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Table 4.2 shows the statistics of the load data for the meters of Zone 9. The average 

load is an indicator of the load level in each meter. The value of the average load in a meter 

is highly related to the number of customers supplied through the corresponding delivery 

point. For example, the average loads of meter 9.10 to 9.13 are too low in comparison to 

the other meters. Therefore, we should expect higher randomness in these meters due to 

the aggregating of a lower number of household load profiles. In addition, we can see that 

the minimum load of each meter is zero, which is evidence for possible outages in all 

meters. The statistics do not reveal further information about the characteristics of the 

meters’ load profiles. 

Table 4.2: Statistics of the load data in the meters of Zone 9 (in kWh). 

Meter 

Code 

Available 

Period 

(years) 

Non-zero 

readings 

(%) 

Mean Std. Min. Max. 

9.1 11 95.0 11488 6159 0 54300 

9.2 11 98.6 15881 9639 0 51467 

9.3 11 97.6 14663 7524 0 51408 

9.4 11 94.9 11489 6159 0 54300 

9.5 11 96.8 24963 11023 0 65167 

9.6 11 98.0 16007 7353 0 60804 

9.7 10 99.6 26487 6694 0 49280 

9.8 9 95.7 2017 2471 0 10115 

9.9 9 99.2 2436 2606 0 10122 

9.10 3 0.1 23 680 0 22523 

9.11 4 74.2 139 103 0 477 

9.12 4 44.5 251 307 0 773 

9.13 4 91.5 428 180 0 575 

 

The line plots of the load profiles are shown in Figure 4.5. The profiles are for the 

hourly loads in 2014, while all meters were operating. The diversity of the load profiles 

demonstrates the high randomness in delivery point load data. Furthermore, we can find 

some obvious anomalies in the data by a quick visual inspection. For instance, we can see 

a long gap in meter 9.2 or a significant drop and raise in meter 9.3. Meter 9.7 and 9.9 look 
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like to be industrial load profiles, because the load does not show a strong correlation with 

the temperature variations through a yearly timeframe. In most days of the year, meters 9.8 

and 9.10 do not have considerable loads. The load profiles of the last three meters are low 

and very noisy, which is probably due to their immature loads. 

 

Figure 4.5: Load profiles of 13 meters in COOP 9 for the year 2014. 
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Figure 4.5.cont. Load profiles of 13 meters in COOP 9 for the year 2014. 
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Figure 4.5.cont. Load profiles of 13 meters in COOP 9 for the year 2014. 
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Figure 4.5.cont. Load profiles of 13 meters in COOP 9 for the year 2014. 
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Figure 4.5.cont. Load profiles of 13 meters in COOP 9 for the year 2014. 

The load profiles in other zones and meters (Appendix A) have similar properties 

and issues. The simple investigations we did in this section open a window to study the 

salient features of the load profiles at the delivery point level. Data quality issues play a 

vital role in analyzing the load data at this level of the hierarchy. Later, we dig deeper into 

the data to make a comprehensive study on the delivery point load forecasting.  

 

4.2 Weather Data 

 The utility purchases weather data from two vendors. The vendors acquire the data 

from the readings of multiple weather stations across the service zone. Vendor 1 and 

Vendor 2 report the data from 20 and 28 weather stations respectively while they share 14 

stations. The weather stations are located in different locations to provide a thorough 

assessment of the weather conditions for all load zones.  
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Figure 4.6: Grouped boxplot for the temperature distribution in different stations reported by 

Vendor 1 

 

Figure 4.7: Grouped boxplot for the temperature distribution in different stations reported by 

Vendor 2 

Figure 4.6 shows the simple statistics of the temperature time series for 20 weather 

stations reported by Vendor 1. The average and standard deviations of the temperature in 

different weather stations range approximately close to each other. Consider that the 
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average temperatures of 11 years data do not reflect accurate differences between the 

temperature time series. In addition, we see some unusual numbers in low temperature 

values at some stations. Although the mean temperatures are almost constant in all stations, 

in some stations the minimum temperature is too low. In addition, assuming that the reports 

are correct, having a temperature as low as -89oF is an unusual number. This could be an 

evidence for potential anomalies in the weather data.  

On the other hand, Figure 4.7 illustrates a boxplot for temperature distribution in 

28 weather stations reported by the Vendor 2. Consider that the same numbers for weather 

stations in two boxplots do not represent similar stations. We can see the average 

temperature in stations of Vendor 2 is almost similar to ones in Vendor 1. However, the 

deviations of temperature are not fluctuating in Vendor 2. It means that the reports by 

Vendor 2 are more accurate and the data have a filtering process before reporting.  

To confirm the possibility of anomalies in the temperature data, we made a simple 

test. We compared the temperature profiles of two vendors in the shared weather stations 

to find any differences. The temperature profiles reported by two vendors from a single 

weather station were identical in many cases. On the other hand, we found considerable 

samples that the temperature profiles are completely different. Figure 4.8 illustrates three 

examples of the aforementioned temperature profiles. Both time series are from a single 

weather station in the exact same timeframe. As we can see, the profiles are respectively 

different. 
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Figure 4.8: Temperature profiles from a given weather stations by the two vendors 

In the chapter 8, we explore the weather data in order to prepare them for the load 

forecasting process. We propose a methodology inspired by (Sobhani et al., 2020) to 

improve the weather data quality using multiple load zones.   
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CHAPTER 5: LOAD TRANSFERS 

 

Real-world data always contain some quality issues such as anomalies, outliers, and 

missing values. In a power system hierarchy, data quality issues of the load profiles vary 

in different levels of aggregation. For example, due to the malfunction of an electric meter 

in a household, missing values will be reflected in the corresponding load profile. If we 

move to the higher levels of the hierarchy, as we aggregate the load profiles of single 

households to generate the load profile of a building block, we will not identify the missing 

values of the aforementioned household. Therefore, these missing values are data quality 

issues at the household level, but not at the building block level. Hence, we cannot expect 

similar types of data quality issues in all levels of a load hierarchy.  

At delivery point level, outages and load transfers are two major data quality issues. 

An outage is typically a local event. Falling of a tree, contact of a squirrel, lightning, or 

equipment failure can cause temporary and typically short outages in one or a few 

neighborhoods. These outages usually occur in limited areas of the service zone and are 

reflected in the reading of substations’ meters. On the other hand, power system operators, 

due to some reasons, transfer load between different delivery points to improve systems 

reliability. A load transfer changes the shape of a normal load profile vividly and affects 

the quality of the load data. In this chapter, we propose a novel methodology for load 

transfer detection.  
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5.1 Properties 

A load transfer is a typical load management task at a low/medium voltage level to 

increase the reliability of the system. An equipment failure or inspection outage can result 

in transferring a portion of the load to another substation. Maintenance of the equipment, 

change of the network structure, extension of the distribution territory, and retirement of a 

meter are some other reasons for load transfers (Gu & Jiang, 2017). A load transfer can be 

either permanent, seasonal or temporary. Depending upon the situation, all or a part of the 

load may be transferred. Most of these transfers are between two meters, although 

sometimes load may be transferred among several meters. 

Load transfers are a major source of data quality issues at the delivery point level. 

Load transfers change the shape of load profiles that affects the performance of load 

forecasting and other data analysis tasks.  

This research proposes two methods, a model-free method (MFM) and a model-

based method (MBM), to detect the load transfers between two delivery points of a 

distribution network. Both methods are based on the simple idea that aggregating the 

meters with load transfers offsets the transfers. We first explore the features of load profiles 

to screen the meters with abnormal shapes. We then detect the best match for a load transfer 

by pairwise grouping the meters. MFM employs standard deviation as the measure to detect 

the correct paired meters. The MBM characterizes the load profiles using a regression 

model. 

Distribution engineers typically log load transfers manually. Inconsistent logging 

practices and the natural error that can happen with any human process leave plenty of 

room for inaccuracies in the load transfer log. Some load transfers go unlogged; some 
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logged transfers cannot be verified by the load profile. We manually checked the entire 

dataset by visual inspection of the load profiles and identified 177 load transfers between 

the meters. In this section, we will present some salient characteristics of these transfers. 

In Section 5.3 , we will develop simulations based on these characteristics to assess the 

performance of the proposed method. It should be noted that the manual check and visual 

inspection have their own drawbacks. Similar to any other detections, the visual inspection 

could have false negative and positive errors. The identified transfers are the ones with 

respectively significant drop and raise in load profiles. However, some transfers could be 

hidden in yearly load profiles.  

The load transfers are studied year by year.  Among all transfers, 75% of them were 

temporary and the rest were permanent. Temporary means that the load transfer will be 

back to the original delivery point sometime in the future but in a permanent transfer the 

original meter is become retired. In 63% of the identified load transfers, the total load was 

transferred from one meter to another. We call them complete load transfers in this study. 

In the remaining 37%, a portion of the load was transferred which are called partial 

transfers. Even in these partial transfers, on average, more than 80% of the total load was 

displaced. 

Figure 5.1 shows the histogram of the durations for the temporary transfers. Most 

temporary transfers take place in less than a month, which is mostly due to planned 

maintenance or because of an emergency when equipment needs to be de-energized. Figure 

5.2 depicts the number of load transfers started each month. While the frequency of load 

transfers is not uniformly distributed over a year, most transfers start in March, April, and 

October, which are the months before the summer and winter’s peak loads. Figure 5.3 
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shows the frequency of load transfers in each year for a given load zone. Most zones only 

have one or two load transfers in a year. It is rare to see more than three transfers per year. 

A few zones do not have any load transfer.  

 

Figure 5.1  Distribution of load transfer durations for temporary transfers 

 

Figure 5.2  Distribution of starting point month of load transfers. 
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Figure 5.3 Percentage of load transfer times per year 

 

5.2 Methodology 

We propose two methods for load transfer detection. The core idea is inspired by 

the fact that aggregating the meters with load transfers offsets the transfers. The first one 

is model-free, which utilizes simple statistics of the load data to screen meters with load 

transfers. The second one is model-based, which digs deeper into the data to have a better 

judgment on the meters with load transfers.  

 

5.2.1 Model-free load transfer detection 

Load transfers can shift load profiles upward or downward. These unusual 

elevations and drops change the distribution of the load data when compared to a normal 

load profile. To capture such structural breaks in the load profiles, we employ the standard 
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deviation as a measurement factor. The standard deviation does not reveal much 

information regarding the load transfers, but a pairwise comparison can screen the potential 

groups of meters with load transfers. For a given pair of meters, the standard deviation of 

their aggregated load versus the sum of individual standard deviations of each meter’s load 

should not be different if there was no load transfer. We measure the rate of this difference 

by indexing and ranking the pairs as explained below. 

To implement this methodology, we investigate the load data of all pairs of the 

meters in a given year and take the following steps: 

1) In each pair, calculate the standard deviation of each individual meter and the one 

for the corresponding aggregated load. 

2) Rank the pairs of meters based on an index to prioritize the pairs with the stronger 

potential of a load transfer. 

We propose a model-free index (MFI) for the ranking of the meter pairs. For a 

group of two meters, the MFI is defined as follows: 

 

𝑀𝐹𝐼 =
𝑆𝑇𝐷𝑎𝑔𝑔

𝑆𝑇𝐷𝑖+𝑆𝑇𝐷𝑗
      (5-1) 

where STDi and STDj are the standard deviations for loads of the two meters, STDagg 

is the standard deviation of the aggregated load. We then rank the pairs based on the MFI. 

The pairs with a lower index value have a higher potential of a load transfer. 
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5.2.2 Model-based Load Transfer Detection 

The Model-Based Method (MBM) improves the model-free detection by 

leveraging a load forecasting model that can extract additional salient features of the load 

profiles. It is based on the same idea that the aggregated load offsets the load transfers.  

When fitting the same load forecasting model to different load profiles, the ones 

without load transfers are more likely to have lower in-sample-fit errors than the ones with 

load transfers. Furthermore, if we aggregate two meters that transfer loads among each 

other, the aggregated profile tends to have a lower in-sample-fit error than the individual 

ones do. Therefore, the methodology includes three stages: 

1) Use a load forecasting model to fit each individual load profile and calculate the in-

sample-fit errors; 

2) Group the meters, fit the same model to each aggregated profile, and calculate the 

in-sample-fit errors; 

3) Compare the in-sample-fit errors of the aggregated and the corresponding 

individual profiles, and select the meter groups with biggest changes as candidate 

load transfers.  

Before implementing the methodology, we have to specify four components: a load 

forecasting model, a measure for in-sample-fit error, a method to pair weather stations with 

the individual meters and meter groups, and an index to rate the changes of in-sample-fit 

error due to aggregation. The scope of this paper does not include the refinement of each 

component to reach optimal detection results, but on proposing a methodological 

framework for load transfer detection. To stay focused on the proposed load transfer 

detection methodology, we keep these components as simple as possible.  
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We use the Vanilla model as the load forecasting model. The Vanilla model was 

used as the benchmark model in the series of Global Energy Forecasting Competitions 

(Hong, Pinson, et al., 2014)(Xie & Hong, 2016)(Hong et al., 2019).  It is a multiple linear 

regression model that includes a third-order polynomial coincident temperature, calendar 

variables, and their interactions. The Vanilla model can be specified as follows: 

𝐿𝑡 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑 + 𝛽2𝑀𝑡 + 𝛽3𝑊𝑡 + 𝛽4𝐻𝑡 + 𝛽5𝑊𝑡𝐻𝑡 + 𝛽6𝑇𝑡 + 𝛽7𝑇𝑡
2 + 𝛽8𝑇𝑡

3 + 𝛽9𝑀𝑡𝑇𝑡 +

𝛽10𝑀𝑡𝑇𝑡
2 + 𝛽11𝑀𝑡𝑇𝑡

3 + 𝛽12𝐻𝑡𝑇𝑡 + 𝛽13𝐻𝑡𝑇𝑡
2 + 𝛽14𝐻𝑡𝑇𝑡

3                    (5-2) 

 

where Lt is the load forecast for time t; βi are the coefficients estimated using the 

ordinary least square method; Mt, Wt and Ht are classification variables of the coincident 

month-of-the-year, day-of-the-week, and hour-of-the-day for time t respectively and Tt is 

the coincident temperature. 

We use the mean absolute percentage error (MAPE), which is widely used in the 

load forecasting research and practice, as the measurement of in-sample-fit error (eq. 3-6). 

We pair each meter with the weather station that offers the best in-sample-fit MAPE. For 

a meter group, we use the average temperature from the weather stations paired with each 

individual meter within the group.   

We propose a model-based index (MBI) to rank the meter groups.  The MBI for a 

given group of two meters is defined as follows: 

𝑀𝐵𝐼 = (
𝑀𝐴𝑃𝐸𝑎𝑔𝑔

𝑀𝐴𝑃𝐸𝑖
)

2
+ (

𝑀𝐴𝑃𝐸𝑎𝑔𝑔

𝑀𝐴𝑃𝐸𝑗
)

2

    (5-3) 

where MAPEi and MAPEj are the in-sample-fit errors for loads of the two meters 

and  MAPEagg is the in-sample-fit error for the aggregated load. A lower MBI value implies 
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a more significant improvement in the in-sample-fit due to load aggregation. The ratios are 

squared to amplify significant improvements.  

To screen a given year of load and weather data for a load zone, the proposed 

method can be implemented in the following 6 steps: 

1) Select weather station(s) for each meter; 

2) Estimate the Vanilla model for each load profile and the corresponding temperature 

profile, and calculate MAPEi; 

3) Group the meters to form all possible pairs, and calculate the load and temperature 

for each meter group; 

4) Estimate the Vanilla model for each meter group and the corresponding weather 

stations, and calculate MAPEagg; 

5) Calculate MBI for each meter group; 

6) Select the groups with MAPEagg smaller than both MAPEi, sorting the selected 

groups based on their MBI values from smallest to largest.  

Like most, if not all other, detection algorithms, this proposed methodology is not 

expected to offer perfect precision. Nevertheless, executing this method gives engineers, 

planners and data analysts the opportunity to narrow down the candidates of a load transfer 

to a small number. A visual inspection that compares the load profiles of the meters in a 

group will eventually confirm the occurrence of the load transfer. 
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5.3 Experiments 

A. A Medium-Size Load Zone 

We illustrate the proposed methodology by applying it to the same zone that we 

discussed in Section 4.1 Zone 9 is a medium-size load zone, which has 9 operating meters 

in the year 2009. The meters measure the load of the delivery points that supply power to 

the residential and industrial customers.  

Table 5.1 shows the results of the load transfer detection by the MFM for 2009. 

The groups of meters are sorted based on MFI values. The top pairs with lower index values 

are expected to have a higher likelihood of experiencing load transfer(s). 

Table 5.2 shows a heat map of the MAPE values for all meters during the period of 

2006 to 2016, which are the results of Step 2 of MBM. A cooler color (green) indicates a 

lower MAPE value, while a warmer color (red) indicates a higher MAPE value. For a given 

meter, a sudden increase in MAPE over the time raises a flag for a possible load transfer. 

For instance, meter 6 sees its MAPE being doubled in 2009 and 2010, which could be due 

to load transfer. At this stage, we cannot tell for sure whether it is a load transfer, because 

other abnormal events, such as major outages, may lead to increased MAPE as well. 

We then aggregate the meters to make all possible pairs. For each pair, the load 

becomes the sum of the meters, while the temperature is the average of the corresponding 

weather stations. If there were load transfers between the meters, the aggregate load would 

offset the transfers because the resulted profile reflects the total load regardless of the 

shapes of individual profiles. Therefore, the MAPE of the meter group is expected to be 

lower than the MAPEs for the individual meters. Table 5.3 shows the top meter groups 
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sorted by their MBI values in ascending order. A smaller MBI value means more significant 

improvement via load aggregation. 

 

Table 5.1: the standard deviations of the grouped meters 

Meteri Meterj STDi STDj STDagg MFI 

8 9 1080 952 767 0.38 

3 5 7864 10084 9958 0.55 

3 7 7864 6152 10148 0.72 

6 7 7207 6152 10339 0.77 

3 4 7864 4956 10193 0.80 

1 3 4956 7864 10193 0.80 

4 7 4956 6152 8872 0.80 

1 7 4956 6152 8872 0.80 

2 3 3335 7864 9092 0.81 

5 6 10084 7207 14153 0.82 

2 7 3335 6152 7767 0.82 

5 7 10084 6152 13471 0.83 

2 9 3335 952 3594 0.84 

2 6 3335 7207 8886 0.84 

1 6 4956 7207 10409 0.86 

4 6 4956 7207 10409 0.86 

3 8 7864 1080 7699 0.86 

4 9 4956 952 5098 0.86 

1 9 4956 952 5098 0.86 

7 9 6152 952 6178 0.87 

3 6 7864 7207 13198 0.88 

2 8 3335 1080 3898 0.88 

7 8 6152 1080 6511 0.90 

5 9 10084 952 9936 0.90 

6 8 7207 1080 7598 0.92 

4 5 4956 10084 13795 0.92 

1 5 4956 10084 13795 0.92 

6 9 7207 952 7553 0.93 

2 5 3335 10084 12441 0.93 

1 8 4956 1080 5604 0.93 

4 8 4956 1080 5604 0.93 

2 4 3335 4956 7796 0.94 

1 2 4956 3335 7796 0.94 

3 9 7864 952 8462 0.96 

5 8 10084 1080 10783 0.97 

1 4 4956 4956 9913 1.00 
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Table 5.2: In-sample MAPE’s of the meters 

Meter 

Code 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

1 288.88 17.76 9.61 8.62 37.50 8.36 14.84 12.43 7.33 8.00 10.05 

2 34.24 21.72 10.57 14.69 49.44 8.52 17.13 7.46 78.67 33.37 34.06 

3 12.12 7.25 12.16 20.09 16.13 8.16 18.21 5.44 15.28 18.78 10.12 

4 205.81 13.18 9.61 8.62 35.25 9.20 14.84 11.75 7.33 8.00 10.05 

5 10.15 5.05 7.50 10.30 5.84 5.82 10.08 5.37 10.41 44.23 9.86 

6 9.57 7.40 8.42 16.24 21.50 8.00 13.33 7.68 9.52 11.16 357.53 

7  774.49 8.69 8.01 12.85 6.48 14.07 7.28 11.45 8.68 12.15 

8   603.99 325.60 577.27 160.43 671.83 527.53 666.75 477.74 970.46 

9   76.71 610.35 157.80 415.50 162.40 1090.09 266.83 1468.50 427.02 

 

To further confirm a load transfer, one may take a visual inspection by comparing 

the load profiles of the two meters. Figure 5.4 shows the top three meter-groups in Table 

5.3, while the top two of them are also the top two groups in  

Table 5.1. The load of Meter 9 has transferred completely to Meter 8, which has 

been ranked as the highest possible transfer by both proposed methods.  

For the other groups of meters (other than top 3) in Table 4.1 and 4.3, since we 

cannot verify any load transfer via visual inspection, we consider them having no transfers. 

In this case, with 9 meters, the MFM ranked three existing load transfers as the 1st, 2nd 

and 14th potential pairs, while the MBM ranked them as first, second, and third pairs. In 

other words, if we just checked the three top-ranked pairs of meters in a visual inspection, 

we can detect two-thirds of the load transfers using BFM, and all of them using MBM. 
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Table 5.3: Meter groups sorted by MBI values 

Meteri Meterj MAPEi MAPEj MAPEagg 
Improved 

(Y/N) 
MBI 

8 9 325.60 610.35 9.95 Y 0.00 

3 5 20.09 10.30 4.87 Y 0.28 

2 6 14.69 16.24 6.25 Y 0.33 

2 9 14.69 610.35 10.29 Y 0.49 

3 8 20.09 325.60 17.25 Y 0.74 

6 8 16.24 325.60 14.59 Y 0.81 

6 7 16.24 8.01 6.67 Y 0.86 

2 7 14.69 8.01 6.64 Y 0.89 

7 8 8.01 325.60 7.62 Y 0.91 

1 6 8.62 16.24 7.26 Y 0.91 

4 6 8.62 16.24 7.26 Y 0.91 

2 8 14.69 325.60 14.10 Y 0.92 

3 6 20.09 16.24 12.73 Y 1.02 

1 2 8.62 14.69 7.52 Y 1.02 

2 4 14.69 8.62 7.52 Y 1.02 

7 9 8.01 610.35 8.13 N 1.03 

2 3 14.69 20.09 12.17 Y 1.05 

3 9 20.09 610.35 21.21 N 1.12 

1 7 8.62 8.01 6.28 Y 1.14 

4 7 8.62 8.01 6.28 Y 1.14 

3 7 20.09 8.01 8.28 N 1.24 

1 8 8.62 325.60 10.02 N 1.35 

4 8 8.62 325.60 10.02 N 1.35 

1 9 8.62 610.35 10.06 N 1.36 

4 9 8.62 610.35 10.06 N 1.36 

5 6 10.30 16.24 10.96 N 1.59 

5 7 10.30 8.01 8.12 N 1.65 

1 4 8.62 8.62 8.62 N 2.00 

1 3 8.62 20.09 11.46 N 2.09 

3 4 20.09 8.62 11.46 N 2.09 

1 5 8.62 10.30 9.73 N 2.17 

4 5 8.62 10.30 9.73 N 2.17 

2 5 14.69 10.30 13.27 N 2.47 

5 8 10.30 325.60 27.88 N 7.34 

6 9 16.24 610.35 358.46 N 487.59 

5 9 10.30 610.35 2930.68 N 80992.28 
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Figure 5.4: Load profiles of the top three meter groups (from top to bottom: 8 & 9; 3 & 5; 2 & 6). 

B. Detecting simulated transfers 

To further test the proposed methods, we simulate load transfers and inject them 

into the original load profiles of a load zone that does not transfer load among its delivery 

point meters. The simulation parameters are based on the characteristics of load transfers 

illustrated in Section 5.1 .  
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In simulating of the partial load transfers, it is not technically correct if we subtract, 

for instance, 80% of the hourly loads from a meter data and add it up to another meter, 

because we may ignore the randomness of load profiles. To model this arbitrary event, a 

random portion of each hourly load of the first meter is subtracted and then it is added to 

the corresponding hour of the other meter based on the following equation: 

𝐿𝑜𝑎𝑑𝑡(𝑖) = 0.01(𝑘 + 𝑟𝑎𝑛𝑑)𝐿𝑜𝑎𝑑(𝑖)    (5-4) 

where Loadt(i) is the transferred load between the meters, Load(i) is the initial load 

of the first meter, k is the average portion of transferred load and rand is a uniformly 

distributed random number between 0 and 1. 

To implement the simulation framework on a domain we pick a load zone with no 

load transfers. The selected coop (COOP 21) includes 22 meters with full years (2006 to 

2016) of hourly data. Based on the following factors we create virtual load transfers in 

different years to build a domain for the performance analysis.  

 N: total number of load transfers 

 nk: number of load transfers in each year (1 in 60% of years, 2 in 30%, more 

than 3 in  10% of years) 

 SDs: The month of the starting point (50% in Mar, Apr and Oct) 

 Li:  Length of each temporary load transfer. A random number following a 

log normal distribution, log-normal(μ,σ) 

In addition, we have: 

𝑁 = ∑ 𝑛𝑘
𝑇
𝑘=1      (5-5) 

where T is the total number of years in history data (here T is 11). 
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After preparing the domain, we apply the proposed methodologies to detect the 

virtual load transfers. We repeat the simulation and detection procedure for 100 times. In 

each iteration, the simulation parameters are allocated by assigning random numbers based 

on the criteria that we explained above. In total, we created 1700 virtual load transfers and 

injected them into the sample domain. 

Figure 5.5 illustrates the performance of two methodologies in detecting the 

simulated load transfers. The graph shows the percent of the load transfers being detected 

as the top x pairs. If we take the top 10 groups ranked by two methodologies, 72% of the 

load transfers are detected by MBM, while 62% by the MFM. Overall, MBM outperforms 

MFM. 

 

Figure 5.5:  Percentage of the detected load transfers in top ranked pairs 
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5.4 Discussion 

5.4.1 A Greedy Algorithm 

For both methods, we rank the meter pairs to find high potential candidates. The 

simulation study in Section 5.3 showed that if we checked the top 10 pairs for this specific 

load zone, on average, we could detect 72% of the load transfers by the MBM and 60% of 

them by the MFM. On the other hand, we might detect additional load transfers if we move 

the screening bar to the lower ranks, which would result in a higher false positive rate and 

additional labor costs from more visual inspections. To address this challenge, we propose 

a greedy algorithm to further narrow down the potential candidates and consequently 

reduce the false positive errors. The greedy algorithm filters the ranked pairs by prioritizing 

the higher-ranked meter pairs. For example, if the top-ranked group includes meteri and 

meterj, we filter any other groups with either one of these two meters until exhausting all 

groups. The algorithm process is explained in Algorithm 1. 

Algorithm 1: The greedy algorithm 

 Input: M = {meteri , i=1, 2, …, n} 

1: 𝑃 = {𝑝𝑖,𝑗} = {(𝑚𝑒𝑡𝑒𝑟𝑖 ,  𝑚𝑒𝑡𝑒𝑟𝑗), 𝑚𝑒𝑡𝑒𝑟𝑖,𝑗 ∈ 𝑀 } 

2: Calculate 𝑀𝐹𝐼𝑖,𝑗  𝑓𝑜𝑟 𝑝𝑖,𝑗 ∈ 𝑃 

3: Sort 𝑀𝐹𝐼i,j in ascending order 

4: Rank 𝑝𝑖,𝑗 based on 𝑀𝐹𝐼𝑖,𝑗 position: 𝑝𝑖,𝑗
𝑟 , 𝑟 = 1, 2, 3, … 

5: 𝐟𝐨𝐫 𝑝𝑖,𝑗 ∈ 𝑃 𝐝𝐨 

6:     𝐢𝐟 [(𝑝𝑖1,𝑗1
𝑟1 ∩ 𝑝𝑖2,𝑗2

𝑟2 ) ≠ ∅ 𝑎𝑛𝑑 𝑟1 > 𝑟2] 𝐭𝐡𝐞𝐧  

7:         𝑟𝑒𝑚𝑜𝑣𝑒 𝑝𝑖1,𝑗1
𝑟1  

8:     end if 

9: end for 

10: Return the list of filtered 𝑝𝑖,𝑗 

 

If we filter the pairs ranked by the model-free method in  

Table 5.1, the greedy algorithm narrows down 36 meter groups to five. Two of the 

three confirmed load transfers are in this shortlist of five. In Table 5.3, the greedy algorithm 
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finds a shortlist of four, which includes all three load transfers. In other words, by 

integrating the greedy algorithm, we significantly reduce the pairs that require visual 

inspection and the false positive errors. Nevertheless, it might increase the false negative 

errors, because some load transfers may not be included in the shortlist. To quantify the 

impact of the greedy algorithm on the performance of the proposed methodology, we use 

two measurements, False Negative Rate (FNR) and False Positive Rate (FPR). FNR is the 

ratio of undetected to all load transfers, while FPR is the ratio of normal pairs detected as 

the load transfers to all normal pairs (pairs with no load transfer). 

 

Figure 5.6: FNR and FPR of two methodologies in detecting simulated load transfers 

Figure 5.6 compares the FNR and FPR for six different methodologies; MFM and 

MBM by taking top 5 and top 10 pairs, and MFM and MBM integrated with the greedy 

algorithm. The results show that the greedy algorithm decreased the false positive errors 

significantly but only increase the false negative slightly.  
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5.4.2 Transfers Among Multiple Meters 

In the data, we did not find any load transfers among more than three delivery 

points. Therefore, in our experiments, we assumed that the load transfers always happen 

between only two meters. In reality, load transfers may occur among more than two meters 

sometimes. Detecting the load transfers among several meters can be done utilizing a 

similar idea. Instead of grouping two meters, we could group more than two meters and 

then investigate the aggregated load profiles. The proposed indices (MFI and MBI) could 

be extended to three or more components. Nevertheless, considering larger number of 

meters in a group would increase the computational costs of the implementation. 
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CHAPTER 6: GROUPING THE METERS 

 

In chapter 5, we proposed a methodology for detecting load transfers. Knowing the 

meters with load transfers, the next step must be a solution to fix them in order to improve 

the data quality. We showed that a load transfer happens typically between two or more 

meters. The statistics of all detected load transfers in the whole dataset reveal the fact that 

a load transfer does not occur between a pair of random meters. The transfer typically 

occurs inside the group of given meters. This is also confirmed by the arrangements in the 

real operations. Transmission operators make a pair or a group of substations tied together 

and the load could transfer only between these tied substations. 

Inspired by this fact, in this chapter, we propose a solution to fix the data quality 

issues caused by load transfers. This solution is a perquisite to the further improvement of 

the load data quality. It also is a fundamental requirement for the load forecasting at the 

delivery point level.  

 

6.1 Methodology 

A load transfer makes the shape of the corresponding load profiles abnormal. These 

damaged load time series are not appropriate to use in a load forecasting model. Removing 

or re-estimating the anomalies of a dataset are two typical approaches to fix the data quality 

issues. These methods are useful when the frequency of anomalies is reasonably low. The 

characteristics of the load transfers showed that a transfer could last from a few hours to 

even months. Therefore, removing or replacing the affected observations are not practical 

approaches.  
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The analysis of the load transfers in the case study demonstrates that the operators 

do not transfer load between two (or more) random meters. There are specific pairs (or 

groups) of meters that are tied together and the load could be transferred between them. 

Inspired by this finding, we propose a solution in order to improve the data quality issues 

for the meters with a load transfer.  

The first step is to detect all load transfers in the historical data. This determines 

the pairs and groups of meters with load transfers. By detecting the “transfer groups”, we 

create virtual aggregation points in the hierarchy in which the meters of a given group are 

added together. The new virtual delivery points offset the load transfer and the aggregated 

load is expected to be like a normal profile. 

To test the idea of grouping the meters, we compare the performance of a load 

forecasting practice in two approaches: with or without grouping. Assume that we have a 

group of (two or more) meters with load transfers and we want to forecast the load at one 

level higher in the load hierarchy. Without the information about the load transfer, one can 

use the forecasts by the individual meters to calculate the total forecast for the upper level. 

In the proposed methodology, we group the meters with load transfers. Therefore, in this 

approach, we first aggregate the loads of the meters that we already knew they have load 

transfers. Then, we use the aggregated load to generate the forecast for the upper level. 

Figure 6.1 shows schematic diagrams of two different approaches. In the case study, 

we will compare the forecast accuracies by the two mentioned methods. Tao’s Vanilla 

Model (eq. 5-2) is used as the forecasting model for both methods and MAPE is the metric 

for error measurement.  
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Figure 6.1: Two forecasting approaches for a pair of meters; top: approach 1, bottom: approach 2 

6.2 Experiments 

Similar to section 5.3 , we use Zone 9 to illustrate the proposed methodology. This 

zone has nine operating meters in the timeframe between 2014 and 2016. To show the load 

transfer history of these meters, we go back more years. This history defines the load 

transfer groups. By detecting the groups, in the next step, we test the grouping idea by 

comparing two forecasting approaches explained in the previous section.  

Table 6.2 compares the forecast accuracies for the meter groups of the Zone 9 using 

two aforementioned approaches. In this forecasting, two years of data (2014 and 2015) are 

used to forecast 2016. For each meter, the weather stations are ranked based on the in-

sample error in the training period. The weather station with the lowest error is selected as 

the best one. In the approach two, we aggregate the load first and then do the forecasting 

for the total load. In this case, the average temperature profiles are used in the model. 

As we can see, grouping the meters with a load transfer improves the forecast 

accuracy significantly for two groups and has a marginal drop for one of them. For the 

group with almost no change (group [9.3, 9.5]), similar load transfers happened in every 
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two years of the training period. Since the transfers were in the exact time, in a regression 

model, they cancel each other. Therefore, the grouping does not make a considerable 

difference in the forecast accuracy. Overall, the proposed solution for the meters with a 

load transfer improves the data quality and prepares them for a load forecasting process.  

 

  

Table 6.1 shows the detected load transfers between the meters of Zone 9. From 

2013 to 2016, 10 distinct transfers were found on a yearly basis. These transfers belong to 

three groups of meters. In other words, the transfers only happen between the meters of 

three different groups. The groups are [9.1, 9.2, 9.6], [9.8, 9.9] and [9.3, 9.5].  

Table 6.2 compares the forecast accuracies for the meter groups of the Zone 9 using 

two aforementioned approaches. In this forecasting, two years of data (2014 and 2015) are 

used to forecast 2016. For each meter, the weather stations are ranked based on the in-

sample error in the training period. The weather station with the lowest error is selected as 

the best one. In the approach two, we aggregate the load first and then do the forecasting 

for the total load. In this case, the average temperature profiles are used in the model. 

As we can see, grouping the meters with a load transfer improves the forecast 

accuracy significantly for two groups and has a marginal drop for one of them. For the 

group with almost no change (group [9.3, 9.5]), similar load transfers happened in every 

two years of the training period. Since the transfers were in the exact time, in a regression 

model, they cancel each other. Therefore, the grouping does not make a considerable 

difference in the forecast accuracy. Overall, the proposed solution for the meters with a 

load transfer improves the data quality and prepares them for a load forecasting process.  
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Table 6.1: The load transfers in the Zone 9 from 2013 to 2016. 

Zone Year Meteri Meterj Group 

9 2013 9.1 9.6 Group 1 

9 2013 9.8 9.9 Group 2 

9 2014 9.3 9.5 Group 3 

9 2014 9.8 9.9 Group 2 

9 2015 9.3 9.5 Group 3 

9 2015 9.2 9.6 Group 1 

9 2015 9.8 9.9 Group 2 

9 2016 9.2 9.6 Group 1 

9 2016 9.1 9.6 Group 1 

9 2016 9.8 9.9 Group 2 

 

Table 6.2: Comparing the forecast accuracies using two methods 

 MAPE (%) 

Meter Group 
Without 

Grouping 

With 

Grouping 

9.1, 9.2, 9.6 20.13% 9.36% 

9.8, 9.9 11.32% 9.99% 

9.3, 9.5 13.00% 13.01% 

 

6.3 Discussion 

The results showed in the previous section demonstrate the benefits of the proposed 

solution. Grouping the meters with load transfers improves the data quality noticeably, in 

which we can have a significant enhancement in the forecast accuracies. In a normal 

situation, where two load profiles have no serious data quality issues like a load transfer, 

combining them could have either a good, bad or a neutral impact on the data quality. Even 
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if combining two normal load profiles leads to a better performance in a load forecasting, 

the improvement is expected to be marginal ( 

Table 6.3). On the other hand, the results showed that combining the meters with a 

load transfer improved the data quality noticeably. 

 

Table 6.3: Comparison between two forecasting approaches using normal meters with no load 

transfers 

Group Approach 1 Approach 2 

[8.3, 8.4] 7.98% 7.87% 

[17.1, 17.2] 9.38% 9.38% 

[17.3, 17.4] 9.27% 9.30% 

[20.3, 20.4] 6.56% 6.56% 

[2.1, 2.4] 10.61% 10.36% 
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CHAPTER 7: OTHER LOAD ANOMALIES 

 

In chapter 5, we showed that the major data quality issues in the load data at the 

distribution level are caused by load transfers. Nevertheless, there are other types of quality 

issues in the load data such as power outages and missing data. An outage is typically a 

local event. Falling of a tree, contact of a squirrel, lightning, or equipment failure can cause 

temporary and typically short outages in one or a few neighborhoods. These outages 

usually occur in limited areas of the service zone and are reflected in the reading of meters 

at one or a few substations. Therefore, at distribution level the frequency of outages are 

respectively high. An outage creates a gap with low or zero values in the load profiles. The 

resulted anomalies reduce the data quality and need to be addressed in load data analysis 

such as load forecasting. Missing data is another source of issues in the load data that 

typically caused by human error or failure in a meter. 

In this chapter, we propose a methodology to detect the quality issues in the load 

data other than load transfers. The methodology is an additional step to the load transfer 

detection in order to screen all anomalies in the load data at the distribution level. The 

proposed idea is tested in a load forecasting practice in order to validate the improvement 

in the load data quality. 
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7.1 Methodology 

In this section, we propose a methodology to detect the anomalies in the load data. 

It should be considered that the load transfer detection and grouping the meters are two 

primary steps before implementing the load anomaly detection and cleansing. In other 

words, the meters with a load transfer are required to be detected by the proposed methods 

(Chapter 5) and then they should be fixed by the grouping methodology (Chapter 6). The 

load anomaly detection is the last step to screen the remaining outliers in the load data. 

The anomaly detection is a model-based methodology. The method employs a 

regression model to estimate the loads for the historical observations. The observations 

with high residuals are flagged as anomalies. The detected anomalies are then removed in 

order to cleanse the data. 

For this methodology, we need three components: a forecasting model, an error 

metric and a threshold. The model is the Vanilla model (eq. 5-2), which is similar to what 

we used for the model-based load transfer detection. For the error metric, we use simple 

error (eq. 3-4). 

 After we calculate the residuals for all observations in the historical data, we will 

have a distribution of errors. Since a regression model is used to estimate the expected load, 

the residuals must follow a normal distribution. In order to have a global threshold to screen 

the anomalies, the residual distribution is converted into a standard normal distribution by 

applying the following equation. 

𝑧𝑖 =
𝑒𝑟𝑟𝑜𝑟𝑖−𝜇𝑒𝑟𝑟𝑜𝑟

𝜎𝑒𝑟𝑟𝑜𝑟
           (7-1) 
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where z is the z-score, 𝜇𝑒𝑟𝑟𝑜𝑟 and 𝜎𝑒𝑟𝑟𝑜𝑟 are the mean and the standard deviation of the 

residuals. The threshold is defined for the z-score values. We know that for a two-tail 

normal distribution, the z-score equals to 1.96 and less covers 95% of the data. Therefore, 

any number greater than 1.96 leads to screening the observations in the far tails of the 

residual distribution. The higher the value we assume for the threshold (α), the more 

conservative detection results we get. A flowchart for the proposed algorithm is shown in 

Figure 7.1. 

 

 

Figure 7.1: The flowchart of the anomaly detection algorithm 

  

7.2 Experiments   

The performance of the proposed methodology is evaluated through a load 

forecasting practice. The forecasting domain is similar to the previous chapters in order to 

see the improvement in every step of the data cleansing process. Therefore, two years of 

history (2014 and 2015) are used to train the Vanilla model and the forecasting horizon is 
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the hourly loads of 2016. In this section, first, we test the anomaly detection methodology 

for a single meter (meter 7.6) which has no other data quality issues and then the method 

is implemented for the example zone (Zone 9). 

After implementing the load transfer detection algorithm, no transfer was detected 

in the load history of the meter 7.6. Figure 7.2 illustrates the load profile of the meter for 

the year 2014. By visual inspection, we can see a long gap in the load data sometime in 

April 2014. Since we tested this meter in the load transfer process, this gap is not supposed 

to be due to a transfer. Therefore, a power outage can cause such a drop following with a 

long gap in a load profile.  

 

 

Figure 7.2: The hourly load profile of the meter 7.6 for the year 2014 

 We applied the proposed method for anomaly detection on two years of history. 

Then we removed the detected anomalies in order to cleanse the data. The raw data and 

cleansed data are used in separate load forecasting practices. For the cleansing, we tested 

the threshold value (α) from 2 to 10. The accuracy of load forecast using the raw and 

cleansed data are compared to each other in the final step in order to make a conclusion. 
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Figure 7.3 displays the histogram of the residual distribution. Obviously, most parts 

of the residuals are in the safe area, but a portion of them are located in the larger z-score 

zone. Table 7.1 depicts the forecasting results for the meter 7.6 including the forecast 

accuracies in MAPE and the number of detected anomalies in different levels of the 

detecting threshold. The results indicate that by removing the detected anomalies, at any 

level, the data quality improves which is quantified by the forecast accuracies. 

On the other hand, the anomaly detection method has a different impact on the data 

quality at various threshold levels. Using a smaller value for the threshold leads to detecting 

more anomalies and as we move to the larger values, the number of anomalies decreases 

and consequently the forecast accuracy increases. The most accurate forecast is generated 

by screening the data and removing the detected anomalies with the threshold value equals 

three. Although alpha equals two detects more anomalies (which is 482), the forecast 

MAPE is larger than alpha equals three. This is because of the fact that the proposed 

method similar to any other detection algorithm can have false negative and false positive 

errors. Using a smaller value for the threshold moves the screening bar closer to the center 

of the residual histogram and exclude more observations from the data. Therefore, we 

expect higher false positive errors using smaller values and on the other hand higher false 

negative errors by larger values for the threshold.  
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Figure 7.3: The residual distribution for the anomaly detection of the meter 7.6 

Table 7.1: The accuracy of the forecasting in MAPE(%) using raw and cleansed data for the 

meter 7.6 

 Raw Cleansed 

Threshold (α) - 2 3 4 5 6 7 8 9 10 

MAPE 9.50% 7.18% 7.10% 7.32% 7.85% 9.06% 9.34% 9.49% 9.50% 9.50% 

Anomalies Count - 482 299 240 167 45 16 1 0 0 

 

 Furthermore, we test the proposed methodology on Zone 9 in order to monitor the 

improvement at each step of data cleansing. Table 7.2 shows the performance evaluation 

for the meter groups in Zone 9. In both single and group meters, we see improvement in 

the forecast accuracies after removing the detected anomalies.  

Table 7.2: The forecast accuracy in MAPE(%) using the raw and the cleansed data for the Zone 9  

Meter Group Raw 2 3 4 5 

9.1, 9.2, 9.6 9.06% 8.89% 8.93% 8.96% 9.03% 

9.8, 9.9 9.99% 9.65% 9.81% 9.91% 9.98% 

9.3, 9.5 13.01% 12.59% 12.80% 12.86% 12.94% 

9.7 14.70% 13.91% 14.80% 14.73% 14.70% 
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The proposed anomaly detection method adds another layer of data cleansing to the 

load data at the delivery point level. Eventually, by following three steps of load transfer 

detection, grouping the meters, and anomaly detection, we take care of almost any possible 

data quality issues at the load profiles. The final product of this cleansing procedure is 

ready to be used in a load forecasting process.  
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CHAPTER 8: WEATHER DATA CLEANSING 

 

The weather data used in load forecasting models are typically collected from the 

weather station instruments. The commercial weather companies serve the power utilities 

by providing more reliable reports than the public sources such as National Oceanic and 

Atmospheric Administration (NOAA). Although the private vendors improve the data 

quality through preprocessing phases to achieve the desired standard, the final products are 

not sufficiently prepared for a load forecasting process.  

Weather variables are measured by point readings of the instruments located in the 

weather stations. Therefore, the data reflect the characteristics of a limited geographic area. 

On the other hand, the load data, at any level of the power grid hierarchy, is the aggregation 

of the end-users’ load. Therefore, the electric load data come from the locations that are 

geographically spread across the service zone. The load profile of an end-user (a 

household) is affected by the weather conditions at the consumer’s location. Therefore, 

using a single weather station to explain the variations of the load in a vast service zone is 

not enough. Hence, the load forecasters use the combination of multiple weather stations 

to have a better representation of the weather conditions in a large geographic area (Hong 

et al., 2015). In (Sobhani, Hong, Martin, 2019), the proposed methodology utilizes the best 

one load zone to cleanse the data of a weather station. Similar concerns are valid in the 

case of using one load zone to cleanse the temperature data. 

In this chapter, we test the idea of using multiple load zones to cleanse the 

temperature time series for load forecasting. Three different approaches are proposed for 
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treating multiple load zones in order to detect the anomalies of weather station data. The 

methods are compared with the benchmark introduced in (Sobhani, Hong, Martin, 2019). 

 

8.1 Benchmark  

We use the framework proposed in (Sobhani et al., 2020) as the benchmark. In this 

method, one load zone is used to cleanse the temperature data of a given weather station. 

The methodology utilizes a load-based temperature prediction model to detect the 

anomalies in the temperature time series. The temperature prediction model estimates the 

historical temperatures using the correlation between the temperature and load. The 

estimated values validate the actual ones and based on a predefined threshold, the 

anomalies are screened. 

To implement the benchmark, four components are required including the 

temperature prediction model, the best load zone for a given weather station, error 

measurement and the threshold for the anomalies. The temperature prediction model is a 

piecewise regression function. Two regression functions are fitted to the corresponding 

legs of the temperature vs. load scatter plot (Figure 4.3). The cut-off point is set to the 

comfort temperature (here 61 ºF). To switch between the two models we group the history 

data by month and hour, which leads to 12×24 groups. For each group, we use the simple 

average temperature of that group as the cut-off. The regression model is formulated as 

follows: 

𝑇�̂� = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝑀𝑡 + 𝛽3𝐻𝑡 + 𝛽4𝑊𝑡 + 𝛽5𝑀𝑡𝐻𝑡 + 𝛽6𝑊𝑡𝐻𝑡 + 𝛽7𝐻𝐿𝐷𝑡 + 𝛽8𝐻𝐿𝐷𝑡𝑀𝑡 +

𝛽9𝐻𝐿𝐷𝑡𝐻𝑡 + ∑ 𝑓(𝐿𝑡+𝑖 , 𝑀𝑡 , 𝐻𝑡)3
𝑖=−3                                    (8-1) 
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and, 

𝑓(𝐿𝑡 , 𝑀𝑡 , 𝐻𝑡)

= 𝛽10𝐿𝑡 + 𝛽11𝐿𝑡
2 + 𝛽12𝐿𝑡

3 + 𝛽13𝑀𝑡𝐿𝑡 + 𝛽14𝑀𝑡𝐿𝑡
2 + 𝛽15𝑀𝑡𝐿𝑡

3 + 𝛽16𝐻𝑡𝐿𝑡 + 𝛽17𝐻𝑡𝐿𝑡
2

+ 𝛽18𝐻𝑡𝐿𝑡
3                                                                                                                                         

where 𝑇�̂� is the temperature prediction for time t; βi are the coefficients estimated using the 

ordinary least square method; Mt, Wt and Ht are the month-of-the-year, day-of-the-week, 

and hour-of-the-day for time t respectively, which are categorical variables; Lt+i  

represents different levels of lagged and lead values for load and HLDt is a classification 

variable representing the “big six” holidays of the U.S. including the New Year’s Day, 

Memorial Day, Independence Day, Labor Day, Thanksgiving Day, and Christmas Day.  

The benchmark method uses one load zone to cleanse the temperature data. 

Therefore, for a given weather station we need to find the best load zone. Hence, the load 

zones are ranked based on the in-sample-error of the temperature predictions using the 

historical data. The pair of the weather station and the load zone with the lowest error is 

chosen. Mean Absolute Error (MAE) is used to measure the temperature prediction error 

(eq. 3-5). 

After estimating the expected values for the temperatures, they are used to validate 

the actual observations. To detect the anomalies we use the in-sample errors of the 

temperature predictions. The residuals of a standard regression must follow a normal 

distribution. We convert it to a standard normal distribution, and then we mark the 

observations with the absolute value of the z-scores larger than a predefined threshold (α). 

The greater threshold we chose, the more conservative anomaly detection we haves. In 
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other words, moving the threshold bar to the far tails of the standard normal distribution 

detects only extreme anomalies. 

 

8.2 Methodology 

The fundamental question of using multiple load zones to validate weather station 

data is that how we should treat multiple load zones for anomaly detection. Three 

approaches are proposed in this section to answer this question. In the first approach, which 

is called Aggregation, the total load of the zones are used as the input into the temperature 

prediction model. In the other two methods called Intersection and Union, the anomaly 

detection is conducted multiple times by using load zones individually. Intersect or union 

of the resulted sets of anomalies is then considered as the final list. 

In all three methods, first we need to rank the load zones based on the correlation 

with the given weather station. Hence, the temperature prediction model introduced in 

Section 8.1  is trained with all pairs of the weather station and a load zone. The load zones 

are then ranked based on the in-sample errors with the lowest error having the top rank.  

 

8.2.1 Aggregation 

  In this approach, the load zones are combined by aggregation. The aggregated 

loads of a number of zones are fed into the temperature prediction model. In other words, 

loads of top n zones are added up to calculate the total load for each timestamp. The 

temperature prediction model is then trained by the aggregated load data. As a result, the 

residuals of the regression model create a normal distribution where we can capture the 

anomalies similar to what the benchmark method does.  
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8.2.2 Intersection 

Instead of combining multiple load zones, the temperature profiles of a weather 

station could be validated by each load zone separately. Therefore, the quality of weather 

data is being tested in multiple rounds. Given a number of load zones for a weather station, 

the final anomaly list of “Intersection” approach are the ones that have been confirmed by 

all load zones. We pair the weather data with every top n load zone and each pair is used 

to train the benchmark model. The output is n different sets of anomalies 

(𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛), which are not necessarily identical. Finally, we take the intersection set 

containing the members that belong to all anomaly sets. 

𝐴𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = ⋂ 𝐴𝑖
𝑛
𝑖=1                                                         (8-2) 

 

8.2.3 Union 

The Intersection approach conservatively narrows down the anomalies to the ones 

with higher possibility. In the “Union” approach, we broaden the list of anomalies 

containing the observations that are validated by either one of the load zones. Therefore, 

given the sets of anomalies detected by individual load zones (𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛), the final 

list is the union set: 

𝐴𝑢𝑛𝑖𝑜𝑛 = ⋃ 𝐴𝑖
𝑛
𝑖=1                                                       (8-3) 

 

8.3 Experiments 

The quality of the input data affects the performance of a forecasting process 

reflecting in the forecast accuracy. We can measure the quality of the temperature data 



87 

 

through a load forecasting practice. First, we input the raw data into a load forecasting 

model for an out-of-sample test and then calculate the forecast accuracy. In the next step, 

we detect the anomalies using the proposed methodologies and then cleanse the data by 

removing them. The same forecasting model is trained by the cleansed data and the 

accuracy of the corresponding forecast is calculated. By comparing the forecast accuracy 

before and after cleansing, we check the data quality improvement.  

To implement the experiments we need three components including the load 

forecasting model, the appropriate weather station for a load zone and the error metric. The 

forecasting model is consistent with previous experiments. We use Vanilla model again for 

load forecasting (eq. 5-2). The best weather station for a given load zone is selected by 

ranking them in an out-of-sample test for a validation year. The weather station with the 

best forecast accuracy is chosen as the best station for the corresponding load zone. We use 

the Mean Absolute Percentage Error (MAPE) to measure the load forecast accuracy.  

Four years (2013 to 2016) of hourly load and hourly temperature from 26 load 

zones and 28 weather stations are used in this experiment. To select the best weather station 

of a load zone, we use two years of 2013 and 2014 to forecast the validation year of 2015. 

For the data quality test, the training period is two years of 2014 and 2015 and forecast 

horizon is 2016. The weather station that is paired with each load zone goes through the 

data cleansing by the proposed methodologies. We check the load zones up to top10 to 

detect the anomalies of a weather station. The threshold for anomaly detection (α) is 

assumed three. In other words, the observation having the absolute z-score value greater 

than three is marked as an anomaly. This value excludes 1% from the tails of the 
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distribution. A lower value increases the possibility of false positive errors and larger 

values make the screening more conservative with more false-negative errors 

 Table 8.1: The load forecasting MAPE (%) for the Aggregation method 

 

 

 

   Number of load zones for temperature data cleansing 

Zone WS RAW 1 2 3 4 5 6 7 8 9 10 

1 25 8.729 8.708 8.706 8.716 8.715 8.711 8.707 8.715 8.711 8.714 8.710 

2 14 5.304 5.312 5.313 5.314 5.313 5.310 5.311 5.310 5.313 5.311 5.311 

3 18 7.811 7.817 7.807 7.806 7.801 7.800 7.800 7.795 7.801 7.797 7.796 

4 20 17.338 17.292 17.302 17.310 17.314 17.315 17.308 17.306 17.311 17.314 17.323 

5 23 7.808 7.791 7.797 7.793 7.781 7.786 7.789 7.784 7.777 7.782 7.787 

6 26 7.099 7.072 7.070 7.086 7.083 7.084 7.085 7.086 7.086 7.084 7.082 

7 10 7.274 7.376 7.363 7.335 7.344 7.335 7.320 7.331 7.318 7.312 7.318 

8 4 5.926 5.872 5.876 5.878 5.877 5.875 5.873 5.874 5.881 5.881 5.882 

9 8 6.732 6.729 6.737 6.732 6.734 6.738 6.738 6.736 6.735 6.734 6.735 

10 17 8.904 8.965 8.941 8.964 8.958 8.964 8.952 8.948 8.947 8.959 8.972 

11 3 6.395 6.403 6.395 6.408 6.408 6.417 6.415 6.414 6.415 6.414 6.414 

12 23 6.611 6.545 6.549 6.543 6.537 6.542 6.542 6.541 6.535 6.538 6.541 

13 8 8.855 8.803 8.810 8.805 8.807 8.812 8.809 8.807 8.809 8.812 8.809 

16 1 8.268 8.238 8.216 8.210 8.201 8.180 8.182 8.177 8.182 8.180 8.180 

17 17 7.022 6.947 6.981 6.981 6.981 6.990 6.983 6.982 6.982 6.983 6.985 

18 10 6.395 6.373 6.366 6.354 6.352 6.349 6.347 6.348 6.342 6.343 6.344 

19 13 6.098 6.076 6.069 6.072 6.069 6.068 6.069 6.067 6.068 6.068 6.069 

20 10 7.316 7.428 7.425 7.407 7.418 7.409 7.397 7.404 7.391 7.387 7.394 

21 4 6.066 6.068 6.077 6.060 6.061 6.061 6.066 6.067 6.049 6.049 6.048 

22 26 8.466 8.401 8.396 8.394 8.393 8.394 8.393 8.396 8.395 8.394 8.391 

23 22 6.370 6.385 6.377 6.382 6.382 6.384 6.381 6.382 6.382 6.381 6.383 

24 23 8.614 8.616 8.619 8.612 8.604 8.604 8.613 8.607 8.606 8.609 8.611 

25 10 7.925 7.975 7.956 7.941 7.941 7.931 7.916 7.926 7.911 7.905 7.910 

26 4 6.691 6.623 6.618 6.639 6.638 6.633 6.629 6.631 6.635 6.635 6.634 

27 27 6.823 6.749 6.746 6.746 6.744 6.739 6.739 6.731 6.733 6.742 6.742 

             

Average 7.634 7.623 7.620 7.620 7.618 7.617 7.615 7.615 7.613 7.613 7.615 
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Table 8.2: The load forecasting MAPE (%) for the Intersection method 

   Number of load zones for temperature data cleansing 

Zone WS RAW 1 2 3 4 5 6 7 8 9 10 

1 25 8.729 8.708 8.706 8.716 8.718 8.719 8.714 8.714 8.714 8.714 8.711 

2 14 5.304 5.312 5.308 5.303 5.307 5.310 5.308 5.307 5.305 5.304 5.310 

3 18 7.811 7.817 7.807 7.807 7.809 7.809 7.809 7.810 7.810 7.811 7.811 

4 20 17.338 17.292 17.283 17.280 17.285 17.287 17.285 17.283 17.303 17.299 17.302 

5 23 7.808 7.791 7.771 7.766 7.763 7.764 7.763 7.763 7.764 7.765 7.765 

6 26 7.099 7.072 7.070 7.070 7.067 7.065 7.062 7.065 7.065 7.060 7.060 

7 10 7.274 7.376 7.316 7.295 7.295 7.265 7.264 7.266 7.265 7.261 7.259 

8 4 5.926 5.872 5.862 5.869 5.888 5.897 5.896 5.895 5.902 5.899 5.900 

9 8 6.732 6.729 6.729 6.728 6.728 6.727 6.726 6.725 6.725 6.725 6.728 

10 17 8.904 8.965 8.974 8.965 8.917 8.922 8.921 8.921 8.920 8.921 8.924 

11 3 6.395 6.403 6.404 6.402 6.402 6.401 6.399 6.397 6.397 6.397 6.396 

12 23 6.611 6.545 6.539 6.532 6.539 6.543 6.542 6.542 6.545 6.545 6.545 

13 8 8.855 8.803 8.804 8.802 8.801 8.797 8.797 8.795 8.795 8.793 8.811 

16 1 8.268 8.238 8.215 8.241 8.242 8.239 8.239 8.244 8.242 8.235 8.237 

17 17 7.022 6.947 6.989 6.988 6.992 6.994 6.995 6.994 6.994 6.995 6.995 

18 10 6.395 6.373 6.350 6.345 6.340 6.351 6.355 6.358 6.358 6.356 6.354 

19 13 6.098 6.076 6.073 6.069 6.074 6.078 6.076 6.076 6.076 6.078 6.088 

20 10 7.316 7.428 7.394 7.377 7.378 7.340 7.338 7.339 7.338 7.336 7.332 

21 4 6.066 6.068 6.075 6.060 6.044 6.039 6.039 6.040 6.041 6.043 6.044 

22 26 8.466 8.401 8.398 8.398 8.397 8.396 8.398 8.403 8.401 8.401 8.401 

23 22 6.370 6.385 6.378 6.375 6.375 6.374 6.373 6.371 6.370 6.368 6.368 

24 23 8.614 8.616 8.595 8.596 8.594 8.596 8.596 8.596 8.597 8.598 8.600 

25 10 7.925 7.975 7.920 7.908 7.909 7.898 7.902 7.905 7.903 7.900 7.900 

26 4 6.691 6.623 6.622 6.640 6.662 6.668 6.666 6.666 6.680 6.674 6.675 

27 27 6.823 6.749 6.749 6.750 6.761 6.767 6.763 6.771 6.779 6.778 6.776 

             

Average 7.634 7.623 7.613 7.611 7.611 7.610 7.609 7.610 7.612 7.610 7.612 
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Table 8.3: The load forecasting MAPE (%) for the Union method 

   Number of load zones for temperature data cleansing 

Zone WS RAW 1 2 3 4 5 6 7 8 9 10 

1 25 8.729 8.708 8.726 8.720 8.721 8.681 8.683 8.682 8.699 8.698 8.699 

2 14 5.304 5.312 5.310 5.309 5.316 5.306 5.307 5.311 5.309 5.310 5.309 

3 18 7.811 7.817 7.817 7.819 7.819 7.816 7.810 7.814 7.815 7.815 7.818 

4 20 17.338 17.292 17.355 17.363 17.324 17.362 17.372 17.374 17.307 17.327 17.333 

5 23 7.808 7.791 7.818 7.807 7.806 7.811 7.811 7.809 7.810 7.807 7.807 

6 26 7.099 7.072 7.098 7.097 7.093 7.094 7.096 7.096 7.092 7.094 7.096 

7 10 7.274 7.376 7.287 7.260 7.264 7.264 7.234 7.235 7.252 7.253 7.252 

8 4 5.926 5.872 5.951 5.943 5.932 5.934 5.944 5.942 5.946 5.947 5.945 

9 8 6.732 6.729 6.737 6.735 6.731 6.731 6.733 6.733 6.734 6.728 6.728 

10 17 8.904 8.965 8.891 8.895 8.885 8.888 8.890 8.890 8.896 8.896 8.895 

11 3 6.395 6.403 6.381 6.385 6.382 6.385 6.389 6.390 6.393 6.392 6.389 

12 23 6.611 6.545 6.621 6.607 6.606 6.613 6.612 6.611 6.612 6.609 6.609 

13 8 8.855 8.803 8.858 8.857 8.858 8.859 8.861 8.855 8.852 8.839 8.838 

16 1 8.268 8.238 8.200 8.214 8.225 8.244 8.243 8.243 8.249 8.246 8.245 

17 17 7.022 6.947 6.967 6.966 6.964 6.970 6.969 6.967 6.969 6.968 6.967 

18 10 6.395 6.373 6.400 6.394 6.400 6.401 6.398 6.399 6.401 6.400 6.398 

19 13 6.098 6.076 6.093 6.086 6.083 6.080 6.077 6.078 6.082 6.083 6.084 

20 10 7.316 7.428 7.324 7.306 7.306 7.304 7.269 7.270 7.290 7.290 7.290 

21 4 6.066 6.068 6.049 6.050 6.054 6.046 6.044 6.045 6.035 6.035 6.038 

22 26 8.466 8.401 8.467 8.463 8.463 8.461 8.466 8.464 8.460 8.459 8.454 

23 22 6.370 6.385 6.374 6.370 6.368 6.366 6.365 6.364 6.362 6.362 6.362 

24 23 8.614 8.616 8.624 8.593 8.592 8.604 8.607 8.607 8.612 8.597 8.598 

25 10 7.925 7.975 7.925 7.912 7.915 7.916 7.901 7.901 7.911 7.913 7.912 

26 4 6.691 6.623 6.709 6.704 6.686 6.688 6.698 6.702 6.701 6.703 6.702 

27 27 6.823 6.749 6.820 6.819 6.832 6.825 6.821 6.820 6.821 6.822 6.832 

             

Average 7.634 7.623 7.632 7.627 7.625 7.626 7.624 7.624 7.624 7.624 7.624 

 

Table 8.1, Table 8.2 and Table 8.3 depict the results of the quality tests for the 

Aggregation, Intersect and Union methods respectively. Each table is a heat map with 

cooler color (green) indicating lower MAPE, and warmer color (red) indicating higher 
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MAPE. The “RAW” column means that the raw temperature data is used in the load 

forecasting with no primary cleansing. 

By the Aggregation method, in 60% of cases, using multiple load zones to cleanse 

the weather data generate the lowest MAPE, in 20%, using one zone resulted in the best 

MAPE and in the remaining, the data quality did not improve. In the Intersect method, 

cleansing by multiple load zone wins in 80% of the cases, single load zone wins in 8% and 

in the remaining, the forecast accuracy did not improve. In the Union method, single and 

multiple load zones tie and only in one case, the forecast accuracy does not improve. On 

average, using eight zones in the Aggregation method and six zones in the Intersect method 

produce the lowest MAPE, but using multiple load zone with Union method does not 

improve the data quality.    

 

8.4 Discussion 

The results demonstrate that using multiple load zones to cleanse the weather data 

performs better in most cases. It is because of that the variations of the temperature data 

cannot be explained completely by using only one load zone. Due to geographical reasons, 

the correlation between temperature data collected from a weather station, and various load 

zones is different. Therefore, using multiple load zones provides the opportunity of taking 

advantage of these diverse correlations to validate the temperature data. Among the three 

proposed methods, Intersect produces the most desirable results. The main reason is the 

conservative nature of this method. Using Intersect, we only take the observations that are 

confirmed by all quality tests. In other words, if only one load zone does not approve the 

anomalous behavior of a temperature reading, we will keep that observation. That makes 
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the Intersect method more likely to have lower false positive errors. On the other hand, the 

Union has the worst results on average, because the method tries to cover any possible 

anomalous observation. Therefore, the Union method raises the cost by increasing the false 

positive errors in order to achieve a lower false negative error. However, the benefit of the 

Union method is in the cases where the other two methods cannot improve the data quality 

but this method was able to do that.     
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CHAPTER 9: DELIVERY POINT LEVEL FORECASTING 

 

In the previous chapters, we studied different challenges in load forecasting at the 

delivery point level. The focus of this research is mainly on analyzing the data quality 

issues in both load and weather data, which are two major sources of input in an electric 

load forecasting model. The dataset used in this research includes the load data from 

hundreds of delivery points and weather data from a number of stations across the service 

territory. Up to this point, we took one of the load zones in order to elaborate on the 

proposed methodologies and their performances. In this chapter, we summarize the final 

framework for load forecasting at the delivery point level and then test the framework for 

all zones and meters in the dataset in order to demonstrate the effectiveness of the proposed 

solution.  

 

9.1 Framework 

The final solution for load forecasting at the delivery point level is a framework, 

which consists of different components. The framework tackles the expected challenges in 

a load forecasting practice at the delivery point through different components. The 

components include load transfer detection, grouping the meters, load anomaly detection, 

and weather data cleansing. The responsibility of all these solutions is to improve the data 

quality for both load and temperature. Therefore, we can divide the framework into two 

groups of components: load data quality improvement and weather data quality 

improvement. However, the forecasting model, which handles the randomness issue, kept 

consistent for the whole research because it is out of the scope.  
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Figure 9.1 illustrates the procedure for improving the quality of load data. The raw 

data of meters go through multiple layers of screening and quality enhancement. The final 

product is load time series that are ready to be inserted into the load forecasting model.  

 

Figure 9.1: The flowchart for the process of improving load data quality 

The second part of this framework is for  the procedure to improve the weather data 

quality. Figure 9.2 shows the corresponding flowchart for cleansing the weather data. 

Therefore, both weather data and delivery point load data must go through these two 

procedures in order to prepare for the forecasting model.  
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Figure 9.2: The flowchart for the process of improving weather data quality (Intersect method) 

 

9.2 Results 

This section presents the results of a comprehensive experiment using the whole 

dataset. We studied the performance of the proposed framework on all 26 load zones and 

corresponding delivery points. The load data is prepared using the flowchart shown in 

Figure 8.1 and the temperature is cleansed through the process explained in Figure 8.2. We 

used Intersection technique for weather data cleansing because of that the experiments in 

chapter 8 proved a better performance for Intersection method among three ones.  
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In this procedure, the very first step is to detect the load transfers between the meters 

in the historical data. In order to evaluate the performance of the proposed detection 

methods (Chapter 5), all meters were investigated manually by visual inspection. 

Therefore, we found all load transfers that look obvious through the visual inspection. In 

total, there are 177 load transferred in 11 years of data. The proposed methodologies (MFM 

and MBM) were successful to detect most of the transfers. The detailed results for the of 

the study of performances are shown in Appendix B. 

Figure 9.3 compares the detection strength of the two methods. If we check the top 

10 meters that are ranked by the methods, we are able to detect more than 75% of the 

transfers. In addition, the green bar shows the transfers that are detected by either one of 

the methods. The ratio of successful detection is significantly more than the individual 

ones. In other words, using both methods to detect load transfers is more effective than 

single ones. The performance results demonstrate that methods have different performance 

in different situations. For cases such as industrial load profiles where the model-based 

method cannot produce accurate load predictions, the model-free method is more effective 

and vice versa. The greedy algorithm also preforms reasonably good in detecting the load 

transfers. Seventy five percent of the transfers are detected by integrating the greedy 

algorithm into either one of the proposed methods.  
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Figure 9.3: The ratio of detected load transfers using two methods 

After detecting the load transfers, the meters are divided into two categories; single 

meters that are the ones with no load transfer in the history; groups of meters that are the 

sets of meters with load transfers. The groups of meters are required to be grouped first 

(Chapter 6) for load forecasting. The next step is similar for both single and groups which 

is load data cleansing (Chapter 7) and weather data cleansing (Chapter 8).  

Similar to what we did using the sample Zone in the previous chapter, we evaluate 

the quality improvement by the proposed framework through a forecasting practice. Same 

forecasting model (Vanilla) and the error metric (MAPE) is used in this section. Two years 

of data (2014 and 2015) are used to forecast 2016. The forecast accuracy at each phase of 

the quality improvement procedure is measured. 

 Table 9.1 depicts the results for the forecasting of the meter groups. The accuracy 

of the forecasting in MAPE is shown for each step of the proposed framework. The table 

is a heat map where the lower values in green color and higher ones in red color. In total, 
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24 groups were detected among all of the delivery points. In 67% of the case, grouping the 

meters improved the forecast accuracy significantly, while in the other cases, the MAPE 

remains almost the same. The load data cleansing method enhances the forecast accuracy 

in 88% of the cases and in 75% cases the forecast accuracy after weather data cleansing 

wins. In overall, the proposed framework shows a successful performance for the meter 

groups.  

Table 9.1: The load forecasting results in MAPE (%) for the meter groups 

Group 
Without 

Grouping 

With 

Grouping 

Clean 

Load 

Clean Load 

+ Weather 

[2.3, 2.4] 5.25 5.25 5.17 5.18 

[3.2, 3.4, 3.6, 3.8] 8.11 7.33 7.27 7.25 

[5.2, 5.6, 5.13] 19.44 7.53 7.44 7.44 

[6.9, 6.10] 17.71 17.71 17.58 17.50 

[6.11, 6.12] 15.40 15.44 15.50 15.47 

[8.15, 8.32] 9.30 9.30 9.42 9.40 

[9.1, 9.2, 9.6] 20.13 9.36 9.38 9.38 

[9.3, 9.5] 13.00 13.01 12.80 12.79 

[9.8, 9.9] 11.32 9.99 9.81 9.82 

[13.8, 13.21] 328.03 18.86 18.60 18.54 

[13.9, 13.22] 50.32 9.67 9.34 9.32 

[13.12, 13.23] 32.91 10.05 9.92 9.89 

[16.17, 16.18] 9.60 8.60 8.46 8.49 

[16.19, 16.20] 7.28 7.27 7.23 7.19 

[17.10, 17.13] 114.69 9.58 9.46 9.46 

[17.12, 17.14] 6158.52 20.71 20.52 20.49 

[18.3, 18.5, 18.8] 45.86 6.41 6.38 6.38 

[20.2, 20.9] 10.44 10.42 10.39 10.33 

[22.13, 22.15] 10.22 10.22 10.21 10.12 

[24.1, 24.2] 14.90 14.90 14.76 14.76 

[24.7, 24.8] 10.00 8.89 8.77 8.77 

[26.10, 26.11, 26.13] 14.63 8.04 8.02 8.02 

[27.1, 27.15] 7.40 7.15 7.10 7.07 

[27.8, 27.17] 180.43 7.69 7.63 7.59 

 

 The load transfer detection procedure screened 286 meters without any transfers. 

Appendix B presents the detailed results of the load forecasting test for the single meters. 
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The forecast accuracy is calculated using three sets of data: raw load and raw weather data, 

cleansed load and raw weather data, and cleansed load and cleansed weather data. In 69% 

of the single meters, using cleansed weather and cleansed load data produced the most 

accurate forecasts, in 20% of the cases, using cleansed load and raw weather data wins and 

in the remaining (11%) using the raw data for both load and weather have the lowest 

MAPE.  

 For a visual perspective, Figure 9.4 and Figure 9.5 compare the load forecasts for 

the group of the meters [9.1, 9.2, and 9.6] with the actual load profile in a sample week and 

day respectively. The line plots are for the forecasts using the data with different levels of 

quality improvement. As we can see, the forecast with no grouping as the most offset from 

the actual values. After grouping, the forecasts are very close to each other and the 

improvement is respectively marginal.  

  

 

Figure 9.4: Comparison of the load forecasts in a sample week, using the data with different 

levels of the quality improvement for the group meter (9.1, 9.2, 9,6) 
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Figure 9.5: Comparison of the load forecasts in a sample day, using the data with different levels 

of the quality improvement for the group meter (9.1, 9.2, 9,6) 

 

 

9.3 Discussion 

The results of the comprehensive experiment for all 428 meters demonstrate the 

effectiveness of the proposed methodology. The improvements are sometime significant 

but sometimes marginal. The intensity of the data quality issues in different situations 

determines the level of improvements. 

There are some arguments we can have for the proposed framework. The quality 

improvement started with the load data. Both procedures for cleansing load and weather 

data are done separately. In other words, we use raw weather data in load part of framework 

and vice versa. Therefore, the quality of raw weather data, for instance, can affect the 

performance of load data cleansing. The major question is that should we do it separately 
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or together. This raises the second question. Which one should be improved first? An 

alternative approach could be multiple rounds of cleansing.  

In all forecasting practices we have done in this research, for a given load data we 

only used one weather station. In the introduction and literature review we mentioned that 

a single weather station is not always enough to explain the variation of load. If we use 

multiple weather stations in the forecasting process, the cleansing becomes way more 

complicated.  

Although this research do not have particular answer for mentioned arguments, the 

purpose of this dissertation is to build a foundation for delivery point load forecasting. All 

these arguments could be investigated through the framework proposed in this research.  
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CHAPTER 10:  CONCLUSION 

 

Electric load forecasting is a basic requirement for every sector of the power 

industry. The power utilities use short-term and long-term load forecasts at the system level 

to plan their operations while the electricity retailers use load forecasts at the end-user level 

for pricing and procurement decisions. In a power delivery network, delivery points are the 

nodes where the electricity is delivered to the distribution lines in order to supply power 

for a limited area. The load forecasting at the delivery point level provides values to power 

utilities and distribution operators. More accurate forecasts at lower levels of a power 

hierarchy could improve the system load forecast accuracy, which leads to better planning 

and operations. For load management tasks, accurate load forecasts at substation level help 

operators and decision-makers to prevent some unexpected events such as outages, 

congestion and equipment overloading.  

Forecasting the load profiles at the delivery point level encounters two major 

challenges: data quality issues and randomness. The forecasting models are responsible to 

address randomness of load profiles. Data quality issues are related to the input data. The 

quality of data should be improved before they are used in a load forecasting model. The 

focus of this research is on data quality issues. The hypothesis is that by improving the 

quality of input data in a given forecasting model we expect an increase to the forecast 

accuracy.  

  Data quality issues at different levels of a load hierarchy are unique. Load transfers 

and outages are two major sources of quality issues in delivery point load data. Load 
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transfer is a load management task for enhancing system reliability. Outages are reflected 

more in load profiles of lower levels of aggregation. On the other hand, the load is not the 

only data used in a load forecasting model. The correlation between the load and weather 

for the residential sector has been used in many load forecasting models. Similarly, real-

world weather data contains anomalies and outliers.  

In this research, we proposed a framework for delivery point load forecasting. The 

framework consists of different components tackling the data quality issues for both load 

and weather data. The performance of the proposed solution is evaluated through a case 

study using the data from a power utility in the United States. 

Each component of the proposed framework addresses a specific problem and 

provides a solution. The components include detecting load transfers, grouping the meters, 

load data cleansing and weather data cleansing. For the load transfer detection, two novel 

methods are proposed and in the case study, they could detect 94% of the transfers. 

Grouping the meters improves the forecast accuracies in 67% of the cases. The proposed 

solution for load anomaly detection enhanced the data quality in 88% of the cases for the 

meter groups and in 81% of the single meters. For the weather data cleansing, a novel 

methodology was proposed where the load data from multiple load zones are used to 

validate the temperature data of a weather station. The results demonstrate that the 

proposed method is successful in 75% of meter groups and in 69% for the single meters.  

This research proposed a novel solution for delivery point load forecasting. The 

aim was to fill the gap in the literature with a comprehensive study on the forecasting 

problem at the MV/LV level of the power hierarchy. We tried to build a foundation for a 

practical solution addressing the data quality issues in delivery point load forecasting. The 
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effectiveness of the proposed framework was confirmed in a comprehensive case study 

using real-world data from a power utility in the United States. 

This research opens a door for future extensions. There are plenty of rooms to 

improve each component of the framework. Some extensions to this study are listed as 

follows: 

1. The methods for load transfer detection are designed for transfer between 

two meters. These methods can be leveraged for transfers between more 

than two meters.  

2. The load transfer detection methods are more effective for longer transfers. 

By customizing the features of the methods, short and very short transfers 

could be screened for a more precise analysis. 

3. The weather data cleansing procedure is developed for the quality 

improvement of the data from a single weather station. In many practices, 

multiple stations are combined for load forecasting. The optimal strategy 

for data cleansing of combined weather stations is another path for future 

research. 

4. In the proposed load and weather data cleansing methods, predefined 

thresholds were used to screen the anomalies. Finding the optimum value 

for the thresholds could enhance the performance of the anomaly detection. 

In addition, using a customized threshold for different periods of time 

instead of fixed values could be studied in the future.  

5. The procedure of data cleansing in the proposed framework starts with 

cleansing the load data and then the weather data. The quality of load data 
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affects the performance of weather data cleansing and vice versa. A 

procedure with multiple rounds of cleansing for both load and weather data 

can result in better outputs.  
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Appendix A: Data Availability and Simple Statistics for All Meters 

Table A.1: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

1 1.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.4 Yes No No No No No No No No No No 

1 1.5 Yes Yes Yes Yes No No No No No No No 

1 1.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 

1 1.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 

1 1.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.12 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

1 1.13 No No No Yes No No No No No No No 

1 1.14 No No No No No No No No No Yes Yes 

1 1.15 No No No No No No No No No No Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

2 2.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

2 2.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

2 2.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

2 2.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

2 2.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

3 3.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.7 Yes Yes Yes No No No No No No No No 

3 3.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.9 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

3 3.10 No No No No No Yes Yes Yes Yes Yes Yes 

3 3.11 No No No No No No No No No No Yes 

3 3.12 No No No No No No No No No No Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

4 4.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

4 4.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

5 5.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.13 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.14 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.15 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

5 5.16 No No No No No No Yes Yes Yes Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

6 6.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.5 Yes Yes Yes Yes Yes Yes Yes No No No No 

6 6.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

6 6.13 No No No No Yes Yes Yes Yes Yes Yes Yes 

6 6.14 No No No No Yes Yes Yes Yes Yes Yes Yes 

6 6.15 No No No No No No Yes Yes Yes Yes Yes 

6 6.16 No No No No No No Yes Yes Yes Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

7 7.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.3 Yes Yes Yes Yes Yes Yes Yes No No No No 

7 7.4 No No No No No No No No No No No 

7 7.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 

7 7.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.12 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

7 7.13 No No No No No No No Yes Yes Yes Yes 

7 7.14 No No No No No No No No Yes Yes Yes 

7 7.15 No No No No No No No No Yes Yes Yes 

7 7.16 No No No No No No No No No No Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

8 8.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.16 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.17 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.18 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.20 Yes Yes Yes Yes Yes Yes Yes Yes No No No 

8 8.21 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.22 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.23 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.24 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.25 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.26 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.27 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.28 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.29 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.30 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.31 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.32 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.33 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.34 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.35 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.36 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.37 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.38 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.39 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.40 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.41 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.42 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.43 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 8.44 No No No No Yes Yes Yes Yes Yes Yes Yes 

8 8.45 No No No No No No No Yes Yes Yes Yes 

8 8.46 No No No No No No No No No No Yes 

8 8.47 No No No No No No No No No No Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

9 9.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.7 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.8 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.9 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

9 9.10 No No No No No No No Yes Yes Yes No 

9 9.11 No No No No No No No Yes Yes Yes Yes 

9 9.12 No No No No No No No Yes Yes Yes Yes 

9 9.13 No No No No No No No Yes Yes Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

10 10.1 No No No No No No No No No No No 

10 10.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.7 No No No No No No No No No No No 

10 10.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.10 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.11 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.12 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

10 10.13 No No No No No No No No No Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

11 11.1 Yes Yes No No No No No No No No No 

11 11.2 Yes Yes No No No No No No No No No 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

12 12.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.7 No No No No No No No No No No No 

12 12.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.14 Yes Yes No No No No No No No No No 

12 12.15 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

12 12.16 No No No Yes Yes Yes Yes Yes Yes Yes Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

13 13.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No 

13 13.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.15 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.16 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.17 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.18 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

13 13.19 No No No No No Yes Yes Yes Yes Yes Yes 

13 13.20 No No No No No Yes Yes Yes Yes Yes Yes 

13 13.21 No No No No No No No No Yes Yes Yes 

13 13.22 No No No No No No No No Yes Yes Yes 

13 13.23 No No No No No No No No Yes Yes Yes 

13 13.24 No No No No No No No No No Yes Yes 

13 13.25 No No No No No No No No No Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

14 14.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.10 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

14 14.11 No No No No No No Yes Yes Yes Yes Yes 

14 14.12 No No No No No No Yes No No No No 

14 14.13 No No No No No No No Yes Yes Yes No 

14 14.14 No No No No No No No No No Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

15 15.1 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

15 15.2 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

15 15.3 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

15 15.4 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

15 15.5 No No No No No Yes Yes Yes Yes Yes Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

16 16.1 No No No No No No No No No No No 

16 16.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.4 Yes Yes Yes Yes No No No No No No No 

16 16.5 No No No No No No No No No No No 

16 16.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.13 No No No No No No No No No No No 

16 16.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.15 No No No No No No No No No No No 

16 16.16 Yes Yes Yes Yes No No No No No No No 

16 16.17 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.18 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.19 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.20 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

16 16.21 No No No No No No No Yes Yes Yes No 

16 16.22 No No No No No No No No Yes Yes No 

16 16.23 No No No No No No No No No Yes Yes 

16 16.24 No No No No No No No No No Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

17 17.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.5 Yes No No No No No No No No No No 

17 17.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.11 Yes Yes Yes Yes No No No No No No No 

17 17.12 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

17 17.13 No No No No No No No No No Yes Yes 

17 17.14 No No No No No No No No No No Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

18 18.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

18 18.2 Yes Yes Yes No No No No No No No No 

18 18.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

18 18.4 Yes Yes Yes Yes Yes Yes Yes Yes No No No 

18 18.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

18 18.6 Yes Yes Yes Yes Yes Yes Yes Yes No No No 

18 18.7 Yes Yes Yes No No No No No No No No 

18 18.8 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

18 18.9 No No No No No No No Yes Yes Yes Yes 

18 18.10 No No No No No No No Yes Yes Yes Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

19 19.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.3 Yes Yes Yes Yes Yes Yes Yes Yes No No No 

19 19.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

19 19.15 No No No No No Yes Yes Yes Yes Yes Yes 

19 19.16 No No No No No No No Yes Yes Yes No 

19 19.17 No No No No No No No No Yes Yes No 

19 19.18 No No No No No No No No No No Yes 

19 19.19 No No No No No No No No No No Yes 

19 19.20 No No No No No No No No No No Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

20 20.1 No No No No No No No No No No No 

20 20.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.14 No No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

20 20.15 No No No Yes Yes Yes Yes Yes Yes Yes Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

21 21.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.16 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.17 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.18 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.20 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.21 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

21 21.22 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

22 22.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.3 Yes Yes Yes Yes No No No No No No No 

22 22.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.9 Yes Yes Yes Yes Yes Yes No No No No No 

22 22.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.15 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.16 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.17 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.18 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.19 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.20 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.21 Yes Yes Yes Yes Yes Yes No No No No No 

22 22.22 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.23 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

22 22.24 No No No No No Yes Yes Yes Yes Yes Yes 

22 22.25 No No No No No No No Yes Yes Yes No 

22 22.26 No No No No No No No No No Yes Yes 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

23 23.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.2 Yes Yes Yes Yes Yes Yes Yes Yes No No No 

23 23.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

23 23.9 Yes Yes No No No No No No No No No 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

24 24.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

24 24.13 No No No No No No Yes No No No No 

24 24.14 No No No No No No No No No No Yes 

24 24.15 No No No No No No No No No No Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

25 25.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

25 25.14 No No No No Yes No No No No No No 
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Table A.1.cont: Data availability in different years for all zones and meters 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

26 26.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

26 26.2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

26 26.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.4 Yes Yes Yes Yes No No No No No No No 

26 26.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.10 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.12 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

26 26.13 No No No Yes Yes Yes Yes Yes Yes Yes Yes 

 

Zone Meter Code 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

27 27.1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.2 No No No No No No No No No No No 

27 27.3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.4 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.5 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.7 Yes Yes Yes Yes Yes Yes Yes No No No No 

27 27.8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

27 27.9 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.10 No No No No No No No No No No No 

27 27.11 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.13 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.14 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

27 27.15 No No No No No No Yes Yes Yes Yes Yes 

27 27.16 No No No No No No Yes Yes Yes Yes Yes 

27 27.17 No No No No No No No No No Yes Yes 

27 27.18 No No No No No No No No No Yes Yes 
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Figure A.1: Boxplot of the meter loads at Zone 1 

 

Figure A.2: Boxplot of the meter loads at Zone 2 

 

Figure A.3: Boxplot of the meter loads at Zone 3 
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Figure A.4: Boxplot of the meter loads at Zone 4 

 

Figure A.5: Boxplot of the meter loads at Zone 5 

 

Figure A.6: Boxplot of the meter loads at Zone 6 
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2.  

Figure A.7: Boxplot of the meter loads at Zone 7 

 

Figure A.8: Boxplot of the meter loads at Zone 8 

 

Figure A.9: Boxplot of the meter loads at Zone 9 
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Figure A.10: Boxplot of the meter loads at Zone 10 

 

Figure A.11: Boxplot of the meter loads at Zone 11 

 

Figure A.12: Boxplot of the meter loads at Zone 12 
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Figure A.13: Boxplot of the meter loads at Zone 13 

 

Figure A.14: Boxplot of the meter loads at Zone 14 

 

Figure A.15: Boxplot of the meter loads at Zone 15 
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Figure A.16: Boxplot of the meter loads at Zone 16 

 

Figure A.17: Boxplot of the meter loads at Zone 17 

 

Figure A.18: Boxplot of the meter loads at Zone 18 
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Figure A.19: Boxplot of the meter loads at Zone 19 

 

Figure A.20: Boxplot of the meter loads at Zone 20 

 

Figure A.21: Boxplot of the meter loads at Zone 21 
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Figure A.22: Boxplot of the meter loads at Zone 22 

 

Figure A.23: Boxplot of the meter loads at Zone 23 

 

Figure A.24: Boxplot of the meter loads at Zone 24 
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Figure A.25 Boxplot of the meter loads at Zone 25 

 

Figure A.26: Boxplot of the meter loads at Zone 26 

 

Figure A.27: Boxplot of the meter loads at Zone 27 
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Appendix B: Load Transfer Detection Results 

ID 
Load 

Zone 
Year Meteri Meterj 

MFM 

Rank 

MFM 

Greedy 

MBM 

Rank 

MBM 

Greedy 

1 1 2006 1.4 1.11 1 Yes 5 Yes 

2 1 2008 1.2 1.12 1 Yes 10 Yes 

3 2 2006 2.3 2.4 2 Yes 1 Yes 

4 2 2007 2.3 2.4 1 Yes 1 Yes 

5 2 2008 2.3 2.4 25 Yes 1 Yes 

6 2 2009 2.3 2.4 28 Yes 1 Yes 

7 2 2010 2.3 2.4 10 Yes 1 Yes 

8 2 2011 2.3 2.4 13 Yes 1 Yes 

9 2 2012 2.3 2.4 16 Yes 1 Yes 

10 2 2013 2.3 2.4 1 Yes 1 Yes 

11 2 2014 2.3 2.4 3 Yes 1 Yes 

12 2 2015 2.3 2.4 8 Yes 1 Yes 

13 2 2016 2.3 2.4 8 Yes 1 Yes 

14 3 2007 3.2 3.8 4 No 5 No 

15 3 2008 3.3 3.7 6 No . No 

16 3 2009 3.8 3.2 4 No . Yes 

17 3 2009 3.2 3.6 1 Yes 1 Yes 

18 3 2010 3.8 3.2 1 Yes 4 No 

19 3 2010 3.4 3.2 2 No 1 Yes 

20 3 2011 3.8 3.2 4 Yes 3 No 

21 3 2013 3.10 3.1 5 No 1 Yes 

22 3 2013 3.8 3.2 8 No 5 No 

23 3 2013 3.6 3.2 4 Yes 2 Yes 

24 3 2014 3.4 3.2 9 No 2 Yes 

25 3 2014 3.8 3.2 4 Yes 11 No 

26 3 2015 3.6 3.2 3 Yes 4 No 

27 3 2015 3.2 3.8 5 No 3 Yes 

28 3 2015 3.1 3.10 1 Yes 5 Yes 

29 3 2016 3.10 3.1 4 No . No 

30 3 2016 3.6 3.2 14 No 2 No 

31 5 2007 5.6 5.13 1 Yes 2 No 

32 5 2008 5.6 5.13 1 Yes 1 Yes 

33 5 2010 5.2 5.6 9 No 25 No 

34 5 2010 5.6 5.13 1 Yes 2 Yes 

35 5 2011 5.3 5.9 10 No 8 Yes 
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ID 
Load 

Zone 
Year Meteri Meterj 

MFM 

Rank 

MFM 

Greedy 

MBM 

Rank 

MBM 

Greedy 

36 5 2011 5.2 5.13 5 No 17 No 

37 5 2011 5.6 5.13 2 No 1 Yes 

38 5 2012 5.2 5.13 1 Yes 1 Yes 

39 5 2012 5.6 5.13 2 No 4 No 

40 5 2013 5.2 5.13 2 No . No 

41 5 2013 5.6 5.13 3 No 1 Yes 

42 5 2014 5.2 5.6 2 Yes . No 

43 5 2014 5.2 5.13 1 Yes . No 

44 5 2014 5.6 5.13 3 No 1 Yes 

45 5 2015 5.2 5.6 1 Yes 3 No 

46 5 2016 5.2 5.6 3 No 15 No 

47 5 2016 5.2 5.13 1 Yes 5 No 

48 5 2016 5.6 5.13 2 No 3 No 

49 6 2009 6.9 6.10 29 No 2 No 

50 6 2011 6.13 6.14 25 No 8 No 

51 6 2012 6.9 6.10 81 No . No 

52 6 2012 6.11 6.12 11 Yes . No 

53 6 2012 6.5 6.15 1 Yes 11 No 

54 6 2012 6.15 6.16 5 No 1 Yes 

55 6 2013 6.11 6.12 1 Yes . No 

56 6 2014 6.9 6.10 29 No . No 

57 8 2006 8.43 8.34 2 Yes 2 Yes 

58 8 2006 8.17 8.37 1 Yes 1 Yes 

59 8 2007 8.15 8.32 38 No 2 Yes 

60 8 2007 8.17 8.37 1 Yes 1 Yes 

61 8 2008 8.36 8.34 1 Yes 8 No 

62 8 2014 8.32 8.15 48 No 10 Yes 

63 8 2015 8.32 8.15 151 No 18 No 

64 9 2006 9.1 9.5 4 No 7 No 

65 9 2006 9.3 9.5 5 No 6 No 

66 9 2007 9.2 9.7 1 Yes 1 Yes 

67 9 2008 9.3 9.5 14 No 1 Yes 

68 9 2008 9.1 9.6 31 No 7 Yes 

69 9 2008 9.4 9.6 30 No 8 No 

70 9 2009 9.3 9.5 2 Yes 2 Yes 
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ID 
Load 

Zone 
Year Meteri Meterj 

MFM 

Rank 

MFM 

Greedy 

MBM 

Rank 

MBM 

Greedy 

71 9 2009 9.2 9.6 14 No 3 Yes 

72 9 2009 9.8 9.9 1 Yes 1 Yes 

73 9 2010 9.3 9.5 1 Yes 15 No 

74 9 2010 9.4 9.6 4 No 4 No 

75 9 2010 9.1 9.6 3 Yes 2 Yes 

76 9 2010 9.8 9.9 2 Yes 1 Yes 

77 9 2011 9.3 9.5 32 No 7 No 

78 9 2011 9.1 9.6 7 No . No 

79 9 2011 9.4 9.6 6 No . No 

80 9 2011 9.8 9.9 11 No 1 Yes 

81 9 2012 9.3 9.5 1 Yes 10 No 

82 9 2012 9.1 9.5 3 No 15 No 

83 9 2012 9.4 9.5 2 No 16 No 

84 9 2012 9.1 9.6 10 No 12 No 

85 9 2012 9.4 9.6 9 No 13 No 

86 9 2012 9.8 9.9 4 Yes 1 Yes 

87 9 2013 9.1 9.6 25 No 4 No 

88 9 2013 9.4 9.6 24 No 5 No 

89 9 2013 9.8 9.9 1 Yes 1 Yes 

90 9 2014 9.3 9.5 9 Yes 3 Yes 

91 9 2014 9.8 9.9 7 No 1 Yes 

92 9 2015 9.3 9.5 7 Yes 4 No 

93 9 2015 9.2 9.6 39 No 7 No 

94 9 2015 9.1 9.6 51 No 27 No 

95 9 2015 9.4 9.6 52 No 26 No 

96 9 2015 9.8 9.9 6 Yes 1 Yes 

97 9 2016 9.1 9.5 18 No . No 

98 9 2016 9.4 9.6 5 Yes 9 No 

99 9 2016 9.2 9.6 13 No 3 No 

100 9 2016 9.1 9.6 6 No 10 No 

101 9 2016 9.8 9.9 1 Yes 1 Yes 

102 10 2009 10.4 10.12 8 Yes 1 Yes 

103 10 2012 10.8 10.12 25 No 2 No 

104 12 2006 12.1 12.14 1 Yes 1 Yes 

105 12 2009 12.9 12.10 1 Yes . No 
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ID 
Load 

Zone 
Year Meteri Meterj 

MFM 

Rank 

MFM 

Greedy 

MBM 

Rank 

MBM 

Greedy 

106 12 2010 12.9 12.10 1 Yes . No 

107 12 2012 12.5 12.6 2 Yes 2 No 

108 13 2009 13.7 13.16 3 Yes 1 Yes 

109 13 2009 13.1 13.17 17 No 2 Yes 

110 13 2009 13.5 13.18 5 No 3 Yes 

111 13 2010 13.4 13.18 1 Yes . No 

112 13 2011 13.4 13.18 2 Yes . No 

113 13 2011 13.9 13.19 14 No . No 

114 13 2014 13.8 13.21 1 Yes . No 

115 13 2014 13.9 13.22 3 No . No 

116 13 2014 13.12 13.23 6 No 1 Yes 

117 14 2007 14.3 14.5 2 No 1 Yes 

118 14 2008 14.3 14.2 1 Yes 1 Yes 

119 14 2008 14.3 14.5 2 No 9 No 

120 14 2012 14.1 14.12 1 Yes 1 Yes 

121 14 2013 14.3 14.5 4 No 1 Yes 

122 14 2014 14.2 14.3 43 No . No 

123 14 2014 14.3 14.5 21 No 2 Yes 

124 16 2009 16.4 16.19 1 Yes 2 No 

125 16 2009 16.4 16.20 2 No 1 Yes 

126 16 2011 16.17 16.18 29 No 1 Yes 

127 16 2011 16.19 16.20 1 Yes 4 Yes 

128 16 2014 16.17 16.18 1 Yes 1 Yes 

129 16 2014 16.19 16.20 2 Yes 4 No 

130 17 2006 17.10 17.11 1 Yes 1 Yes 

131 17 2015 17.10 17.13 1 Yes 1 Yes 

132 17 2016 17.10 17.13 6 No 1 Yes 

133 17 2016 17.12 17.14 1 Yes . No 

134 18 2007 18.3 18.5 18 No 1 Yes 

135 18 2008 18.5 18.8 3 No . No 

136 18 2008 18.2 18.8 1 Yes . No 

137 18 2010 18.5 18.8 1 Yes 1 Yes 

138 18 2011 18.5 18.8 1 Yes 1 Yes 

139 18 2012 18.5 18.8 1 Yes 1 Yes 

140 18 2013 18.4 18.9 1 Yes 3 No 
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ID 
Load 

Zone 
Year Meteri Meterj 

MFM 

Rank 

MFM 

Greedy 

MBM 

Rank 

MBM 

Greedy 

141 18 2013 18.6 18.10 4 Yes . No 

142 18 2016 18.5 18.8 1 Yes 1 Yes 

143 19 2007 19.9 19.11 3 Yes 1 Yes 

144 19 2013 19.2 19.3 1 Yes . No 

145 20 2008 20.12 20.14 1 Yes 1 Yes 

146 20 2015 20.2 20.9 1 Yes 1 Yes 

147 22 2007 22.7 22.22 3 Yes 1 Yes 

148 22 2009 22.7 22.22 21 Yes 3 Yes 

149 22 2009 22.3 22.23 1 Yes 1 Yes 

150 22 2010 22.7 22.22 1 Yes 3 Yes 

151 22 2011 22.7 22.22 3 Yes . No 

152 22 2011 22.9 22.24 1 Yes 2 No 

153 22 2012 22.7 22.22 1 Yes 4 Yes 

154 22 2014 22.1 22.10 21 No 8 No 

155 22 2014 22.7 22.22 1 Yes 4 Yes 

156 22 2015 22.8 22.12 48 No 15 No 

157 22 2015 22.7 22.22 1 Yes 1 Yes 

158 22 2016 22.13 22.15 2 Yes 8 No 

159 22 2016 22.7 22.22 1 Yes 3 No 

160 23 2009 23.1 23.3 1 Yes 1 Yes 

161 24 2011 24.7 24.8 1 Yes . No 

162 24 2011 24.5 24.11 9 No 1 Yes 

163 24 2012 24.7 24.8 1 Yes 2 No 

164 24 2013 24.7 24.8 9 No 2 Yes 

165 24 2014 24.7 24.8 1 Yes 1 Yes 

166 24 2015 24.1 24.2 1 Yes 1 Yes 

167 26 2009 26.10 26.11 16 No 2 Yes 

168 26 2009 26.4 26.12 3 Yes 4 No 

169 26 2009 26.2 26.12 5 No 1 Yes 

170 26 2010 26.10 26.13 1 Yes 1 Yes 

171 26 2011 26.10 26.13 4 No 4 Yes 

172 26 2013 26.2 26.12 1 Yes 1 Yes 

173 26 2015 26.10 26.13 1 Yes 1 Yes 

174 26 2016 26.10 26.11 3 No 2 No 

175 26 2016 26.10 26.13 1 Yes 1 Yes 

176 27 2012 27.7 27.15 1 Yes . No 

177 27 2015 27.8 27.17 1 Yes 10 No 
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Appendix C: Load Forecasting Results 

 

Table C.1: Results for the single meters 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

1.1 9.77 9.68 9.67 

1.2 10.04 10.00 10.00 

1.3 8.82 8.68 8.67 

1.7 16.11 16.01 16.03 

1.8 9.46 9.39 9.36 

1.9 19.54 19.06 19.07 

1.12 20.18 20.37 20.33 

2.1 7.03 6.94 6.94 

2.2 5.53 5.50 5.51 

2.5 5.70 5.65 5.64 

3.9 8.95 8.90 8.86 

4.1 17.83 18.01 17.95 

5.3 9.24 9.07 8.99 

5.4 15.51 15.09 15.06 

5.5 9.20 9.04 9.06 

5.7 21.38 21.08 21.08 

5.9 10.84 10.80 10.78 

5.10 8.44 8.29 8.30 

5.11 9.24 9.07 9.10 

5.12 23.90 23.31 23.28 

5.14 10.14 9.86 9.90 

5.15 8.37 8.22 8.21 

6.1 9.67 9.61 9.60 

6.2 8.97 9.04 9.04 

6.3 15.05 15.13 15.09 

6.4 11.38 11.58 11.54 

6.6 11.44 11.63 11.59 

6.7 7.77 7.91 7.94 

6.8 9.75 9.69 9.68 

6.13 17.45 17.23 17.10 

6.14 14.99 14.37 14.25 

6.15 19.47 18.35 18.46 

6.16 7.87 7.71 7.78 

7.1 10.31 10.28 10.28 

7.2 10.96 10.79 10.72 
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Table C.1.cont. 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

7.5 9.34 9.27 9.26 

7.6 9.50 7.10 7.11 

7.8 10.15 10.13 10.11 

7.9 8.90 8.89 8.89 

7.10 15.40 15.30 15.32 

7.11 17.63 17.42 17.47 

7.14 24.21 21.70 21.71 

8.1 8.87 8.57 8.54 

8.2 17.67 17.40 17.38 

8.3 9.58 9.40 9.38 

8.4 17.52 16.93 16.95 

8.5 7.88 7.79 7.74 

8.6 7.51 7.37 7.36 

8.7 9.18 9.13 9.05 

8.8 8.31 8.28 8.21 

8.9 6.73 6.73 6.68 

8.10 7.12 7.09 7.10 

8.11 7.75 7.64 7.58 

8.12 8.27 8.25 8.23 

8.13 5.67 5.62 5.61 

8.14 8.17 8.13 8.12 

8.16 7.83 7.79 7.72 

8.17 6.18 6.08 6.03 

8.18 8.01 7.98 7.96 

8.19 7.87 7.85 7.87 

8.21 9.39 10.02 10.06 

8.22 6.17 6.17 6.15 

8.23 10.38 10.34 10.34 

8.24 9.27 8.46 8.56 

8.25 7.65 7.52 7.52 

8.26 7.46 7.42 7.40 

8.27 7.14 7.08 7.04 

8.28 5.56 5.68 5.65 

8.29 8.41 8.31 8.30 

8.30 6.85 6.79 6.76 
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Table C.1.cont. 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

8.31 8.96 8.65 8.62 

8.33 8.81 8.67 8.63 

8.34 13.87 13.69 13.65 

8.35 7.22 7.17 7.14 

8.36 7.99 8.00 7.99 

8.37 6.32 6.15 6.12 

8.38 19.40 19.25 19.16 

8.39 21.52 21.25 21.17 

8.40 5.61 5.53 5.51 

8.41 6.39 6.37 6.34 

8.42 5.32 5.28 5.27 

8.43 6.73 6.63 6.59 

8.44 8.95 8.93 8.90 

8.45 13.92 13.85 13.88 

9.7 14.70 14.80 14.76 

10.2 10.35 10.39 10.41 

10.3 8.35 8.36 8.43 

10.4 13.34 11.20 11.05 

10.5 7.98 7.87 7.88 

10.6 11.43 11.42 11.41 

10.8 11.37 11.32 11.31 

10.9 7.87 7.75 7.76 

10.10 7.03 6.97 6.99 

10.12 18.57 16.08 15.87 

12.1 8.36 8.09 8.09 

12.2 6.95 6.90 6.92 

12.3 14.50 14.05 14.06 

12.4 8.77 8.63 8.64 

12.5 7.24 7.20 7.20 

12.6 7.05 7.01 7.01 

12.8 10.39 10.16 10.17 

12.9 8.73 9.08 9.11 

12.10 7.13 7.04 7.04 

12.11 18.57 18.90 18.91 

12.12 28.41 28.29 28.31 
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Table C.1.cont. 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

12.13 8.35 8.34 8.36 

12.15 14.98 14.21 14.24 

12.16 18.52 19.55 19.59 

13.1 7.71 7.67 7.65 

13.3 9.78 9.54 9.53 

13.4 7.90 7.53 7.49 

13.5 6.29 6.25 6.21 

13.6 7.29 7.35 7.36 

13.7 9.18 9.16 9.07 

13.10 6.55 6.56 6.52 

13.11 9.04 8.96 8.85 

13.13 14.43 13.53 13.55 

13.14 7.25 7.20 7.11 

13.15 6.78 6.78 6.73 

13.16 8.36 8.30 8.26 

13.17 8.90 8.80 8.71 

13.18 5.82 5.79 5.73 

13.19 15.10 14.86 14.92 

13.20 9.65 9.60 9.54 

14.1 6.72 6.69 6.64 

14.6 21.25 21.24 21.14 

14.7 20.61 20.62 20.60 

14.8 10.18 10.04 10.00 

14.9 7.80 7.78 7.72 

16.2 20.40 20.41 20.42 

16.3 62.75 60.70 60.75 

16.6 8.11 8.12 8.05 

16.7 10.90 10.58 10.55 

16.8 7.71 7.67 7.65 

16.10 7.98 7.95 7.88 

16.11 8.17 8.18 8.11 

16.14 20.42 20.43 20.44 

17.1 13.05 13.01 13.05 

17.2 9.26 9.27 9.26 

17.3 15.22 14.82 14.83 
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Table C.1.cont. 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

17.4 9.96 9.94 9.94 

17.6 6.95 6.84 6.83 

17.7 7.64 7.56 7.54 

17.8 7.79 7.73 7.73 

17.9 10.83 10.41 10.37 

18.8 7.49 7.45 7.42 

18.9 10.47 10.44 10.44 

18.10 13.67 13.64 13.65 

19.1 18.61 18.52 18.51 

19.2 7.95 7.82 7.74 

19.4 8.16 8.28 8.28 

19.8 7.21 7.16 7.17 

19.10 7.03 6.88 6.86 

19.11 8.89 8.87 8.85 

19.12 7.60 7.56 7.55 

19.14 5.85 5.76 5.74 

19.15 20.41 19.63 19.65 

20.3 9.94 9.90 9.88 

20.4 6.62 6.64 6.63 

20.5 7.52 7.49 7.48 

20.6 28.07 27.94 27.98 

20.7 7.92 7.93 7.94 

20.8 8.16 8.13 8.14 

20.10 7.81 7.77 7.78 

20.11 10.00 10.06 10.02 

20.13 11.20 10.79 10.71 

20.14 9.53 9.48 9.46 

21.1 7.32 7.27 7.22 

21.2 7.14 7.07 7.07 

21.3 5.80 5.75 5.72 

21.4 12.42 12.32 12.37 

21.5 7.38 7.43 7.35 

21.6 7.46 7.37 7.37 

21.7 7.69 7.64 7.62 

21.8 10.95 12.01 12.03 
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Table C.1.cont. 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

21.9 9.13 8.98 8.96 

21.10 7.55 7.59 7.55 

21.11 7.32 7.30 7.21 

21.12 7.80 7.73 7.64 

21.13 15.17 15.20 15.24 

21.14 6.14 6.09 6.05 

21.15 7.71 7.67 7.61 

21.16 7.06 7.00 6.95 

21.17 6.03 6.03 6.01 

21.18 6.47 6.42 6.41 

21.19 8.79 8.79 8.75 

21.20 6.94 6.89 6.88 

21.21 6.50 6.44 6.43 

21.22 28.12 27.80 27.88 

22.2 19.39 19.45 19.43 

22.4 14.59 14.57 14.54 

22.5 8.10 7.98 7.90 

22.6 7.50 7.36 7.32 

22.11 8.85 8.80 8.75 

22.14 10.58 9.72 9.61 

22.16 8.58 8.59 8.54 

22.20 10.09 10.09 10.06 

12.15 14.98 14.21 14.24 

22.24 9.43 9.37 9.34 

23.1 6.40 6.36 6.36 

23.3 6.97 6.93 6.92 

23.4 21.49 21.26 21.26 

23.5 7.45 7.42 7.41 

23.6 7.98 7.90 7.90 

23.7 8.42 8.03 8.06 

23.8 7.90 7.89 7.89 

24.3 8.76 8.69 8.67 

24.4 9.14 9.10 9.05 

24.5 22.88 22.70 22.76 

24.9 7.86 7.84 7.88 
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Table C.1.cont. 

Meter Raw 
Clean 

Load 

Clean Load 

+ Weather 

24.12 16.17 15.76 15.71 

25.1 7.99 7.92 7.89 

25.2 17.29 17.22 17.16 

25.3 11.37 11.33 11.29 

25.4 61.90 61.74 61.76 

25.5 16.92 16.95 16.88 

25.6 12.12 12.03 11.99 

25.9 13.42 13.41 13.37 

25.10 10.82 10.70 10.68 

25.11 9.39 9.36 9.36 

25.12 14.98 14.94 14.87 

25.13 7.67 7.60 7.53 

26.3 8.40 8.35 8.31 

26.5 7.83 7.65 7.60 

26.6 7.80 7.76 7.70 

26.7 10.18 10.05 9.99 

26.8 12.39 12.04 12.01 

26.9 7.26 7.11 7.09 

27.4 9.43 9.45 9.46 

27.5 7.36 7.20 7.18 

27.6 6.71 6.59 6.57 

27.11 9.48 9.49 9.51 

27.12 8.31 8.10 8.03 

27.13 23.42 23.47 23.46 

27.14 8.95 8.85 8.80 
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