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ABSTRACT

TYLER MAJOR. A Novel Principal and Independent Component Analysis
Preprocessing Technique for Neural Network Classi�cation of

Electroencephalography Signals for Brain Computer Interface Development. (Under
the direction of DR. JAMES CONRAD)

The �eld of brain computer interfaces (BCI) is growing rapidly. Innovations that

help bene�t disabled persons is the overall goal of the research, currently. Every brain

computer interface consists of three basic parts: a sensing device, signal processing,

and an actuator. This work contributes to the second of the three parts, signal

processing. This work presents and tests a novel method for combining the already

established work of principal component analysis, independent component analysis,

and arti�cial neural networks to generate a brain computer interface for controlling

a robotic hand. The sensing device is substituted by a data set and the actuator

is substituted by using a simulator. This work also presents a framework for rapid

development using this method and testing inside the simulated environment with

di�erent hardware to ease the transition from the theoretical to the practical.

Results of the developed algorithm were assessed with current state of the art

techniques and was found to be competitive or more robust than other techniques.

The algorithm was evaluated across 10 subjects, with typical results from one subject

presented. Imagined left and right hand grasp intent were classi�ed, along with

another classi�er for neither intent.
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CHAPTER 1: INTRODUCTION

Brain computer interfaces (BCI) are a relatively new technology that takes ad-

vantage of the innate computing power of the brain. Developing BCI have, up until

recently, been thought of as science �ction. Ever since the �rst discovery of electroen-

cephalography (EEG) by Berger, scientists have been trying to decode signals from

the brain [11]. Generally, it can be said that a BCI is a system where there is a direct

communication pathway between the brain and an external device. For such a system

to be viable, it is imperative that interpreting signals from the brain is handled in a

safe and timely manner. This consists of many clinical trials with sensing hardware

and exhaustive testing of software interactions.

1.1 Motivation

Brain computer interfaces involve collaborative communication from a human brain

and the actuating system. Normally the actuating system is the human body i.e. legs,

arms, hands, and �ngers. When that pathway of communication is damaged or lost

in some way then control of those systems is no longer possible. In order to regain

function, these neurological connections must either be repaired or augmented. One

such, popular, area of research focuses on patients with amyotrophic lateral sclerosis

(ALS), also known as "locked-in" syndrome [12�18].

1.2 Objective of this Work

In this paper, the primary focus is to design and develop a simulation environment

using the Robot Operating System (ROS) to enable the testing, simulation, and

performance evaluation of di�erent classi�cation techniques for BCI development.

BCI also have to be trained on each individual separately; that is to say that one
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trained classi�er can not be used from one person to the next without heavy retraining.

This scheme could also hopefully cut down on the time one would have to spend

training by abstracting the evaluation and also brining in a generalized model of one

person's trained data and trying to apply that to another individual.

1.3 Contribution

The main contribution of this work is to provide an improved model for classi-

�cation of mental tasks and validation through a simulated environment. Special

consideration will be given to reduce the false positive classi�cation from prior work.

The combination of these directives will move the �eld of work closer to consumer

use of brain computer interfaces. Figure 1.1 highlights the area of contribution for

this work in the overall scheme of BCI development. Rather than focusing on sensing

signals, which would require metamaterial knowledge, or end user applications, which

would require clinical trials and mechanical focus, this work contributes to bridging

the gap between the two ends. Previous work in this area is expanded upon and new

combinations of techniques are presented that contribute to the overall �eld.

Figure 1.1: Basic structure of a BCI with highlighted section showing area of contri-
bution.
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1.4 Organization

This dissertation is divided into six chapters. Chapter 2 reviews the theory and

background of the work such as, practical applications, signal acquisition techniques,

various �ltering methods, and di�erent machine learning algorithms. Chapter 3 de-

scribes the system framework and each individual step with how it handles and mod-

i�es the signals it is given. Chapter 4 summarizes the MATLAB tools available to

researchers for developing a BCI and covers an example of a development process [19].

Chapter 5 covers the hardware systems that this BCI can control for grasping ap-

plications. Chapter 6 discusses the results of the research. Chapter 7 concludes the

document with �nal remarks and plans the pathway for future work of the research.



CHAPTER 2: THEORY AND BACKGROUND

In this chapter we will review the basic concepts of

• Brain Computer Interfaces (BCI) with examples

• Signal Acquisition techniques and hardware

• Filtering principles for separating signals

• Machine Learning that is starting to be used in the �eld

2.1 Introduction

Generally, it can be said that a BCI is any system that incorporates a direct

communication pathway between a brain and an external device. A BCI traditionally

consists of four main parts; a sensing device, an ampli�er, a �lter, and a control

system.

2.2 Practical Applications

The �rst proposed application of a BCI was for use in therapeutics and for mental

disorder classi�cations [20, 21]. Modern BCI research focuses on patients with amy-

otrophic lateral sclerosis (ALS), also known as "locked-in" syndrome [12�18]. BCI

research has also expanded to include systems that healthy individuals can utilize to

expand normal human capabilities [22, 23].

BCIs are categorized into two di�erent types: dependent and independent. A

dependent BCI relies on element pathway in the brain to generate activity. An

example of this BCI type would be the spelling program shown in Figure 2.1 [24].

This system is monitoring the brain waves for event related potentials (ERP), rec-

ognizable patterns in brain waves that occur during stimuli, such as being presented
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Figure 2.1: Example of a P300 Type Spelling BCI using a 6X6 Matrix of Letters and
Numbers, and a Backspace. [1]

with a speci�c image or an imagined movement. A matrix containing the desired

outputs, such as an array of letters in a spelling program, �ashes at a speci�c rate.

Utilizing the data from the �ashing and the timing of the ERP, the desired letter is

extrapolated. The speci�c ERP that is being monitored in the case of the spelling

program is called a visual evoked potential (VEP). The contribution from the visual

cortex is the dominant signal in VEPs, so naturally this signal is used to determine

which letter the subject is observing. The dependent BCIs are accurate and com-

monly used, however this model is inadequate for a person with severe neuromuscular

disabilities since the signal is derived from an extraocular muscles in this case.

An independent BCI does not depend on any of the normal pathways in the brain

for the output. One example is the utilization of the �ashing matrix of letters idea

discussed previously, but looking for a di�erent identifying signal. This study is

looking for a signal, called a P300 evoked potential, produced by the person that

corresponds to a speci�c �ashing letter [25, 26]. For this example the output EEG

signal generation is based on intent and not eye orientation. This is the preferred area

of theoretical research as the brain makes new pathways to control an output. This

is a great advantage to patients with disabilities who lack normal output pathways,

such as a patient with ALS.
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2.3 Signal Acquisition

Signal acquisition is a substantial challenge in the �eld of BCIs. Each method of

capturing signals from a brain has its own strengths and weaknesses for recording

di�erent portions of the signals. End use, intended by the designer, is the factor that

�lters out which method to move forward with.

2.3.1 Introduction

In medical applications where noise is a concern, such as measuring seizure patients

for temporal biopsy, an electrode mesh is placed directly on the brain's surface; this

method is known as electrocorticography (ECoG). This has also been adapted to

the �eld of BCIs [27] by taking advantage of the two-week window that the mesh

is implanted, identifying the portion of the brain to removed to reduce or eliminate

seizures. More widely available, and much safer due to being noninvasive, is the use of

an EEG recording cap to capture the electrical impulses of the brain. The drawbacks

of this method are attenuation of the signal and de�ection. To give a better idea of

how this e�ects the signal a typical amplitude of a scalp measurement is about 5-200

µV while the same measurement will be about 1-2 mV when measured on the surface

of the brain. This is the reason why there needs to be processing performed on the

signal to �lter out the ambient noise inherent in the signal.

2.3.2 Functional Magnetic Resonance Imaging (fMRI)

One of the more practiced methods for detecting neurological activity for research

purposes is called Functional Magnetic Resonance Imaging (fMRI). This process in-

volves observing a subject's change in blood �ow (hemodynamic response) while they

are laying in a Magnetic Resonance Imaging (MRI) machine. The response that ac-

tive neurological processes produce is known as the Blood Oxygen Level Dependency

(BOLD) [28]. This response arises from the basic principal that regions of the brain

that are more neurologically active will require a higher hemodynamic response than
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areas of the brain that are not engaged. One of the main drawbacks of using fMRI

is the relatively slow reaction time of the system. This delay is attributed to the

response time of the BOLD response of the brain which typically can delay anywhere

from 3 to 6 seconds [29]. However, there is research that suggests that this delay can

be overcome with techniques that look for �ner BOLD responses in speci�c areas and

using that information for a real-time BCI or as an initial guide for �ne tuning EEG

procedures [30].

The drawbacks of an fMRI do not exclude it as usable and viable technique for

BCI control. The BOLD signal response has successfully been used as an indicator

for intended movement [29]. A study placed participants in an MRI machine that

showed high variance between BOLD responses for di�erent intended movement. This

analysis was performed o�-line, but clearly shows the feasibility of using fMRI for an

on-line BCI. This study occurred with four volunteers and consisted of two calibration

sessions and a feedback session. During the feedback section the volunteers were

shown the activity levels through a video projection of the regions of interest (ROIs).

A custom developed software that ran separately on another computer made this

process possible. During the experiment it was very important, as it is with all

BCIs, to remove artifacts, such as background noise from eye and muscle movement

a.k.a. electromyography (EMG), would override the desired signals. Real-time motion

correction was used to remove the contributions from muscular movement.

Another example of fMRI use for brain control method is the detection of imagined

and executed unimanual and bimanual movements [31]. In this experiment eight

healthy right-handed volunteers were chosen to participate. Their handedness was

veri�ed using the Edinburgh Handedness Inventory [32]. The experiment consisted of

three parts: two unimanual movement and one bimanual movement. Subjects were

asked to individually move their �ngers, excluding thumbs, in prede�ned repeating

sequences. Once the sequence was completed, the trial was performed again with
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imagined movements as opposed to actual movements. While there was predicted

variability in each individual subject, there was also a clear trend. Actual movements

were consistently at a higher potential level than imagined movements, and thereby

providing a more accurate signal, but the imagined movements still provided a cluster

of neurons acceptable for reliable signal detection.

2.3.3 Near-Infrared Spectroscopy (NIRS)

NIRS is a method that uses light close to the infrared spectrum to monitor a

response that is similar to the BOLD response called regional cerebral blood �ow

(rCBF) [33]. NIRS is used to look over a general area of the brain for activity, though

LEDs have been used for more precise detection. Pairs of illuminators and detectors

form channels for the signals. Near-infrared rays emit from each illuminator and pass

through the skull and brain tissue to be received by the detectors. An example of

NIRS being used for an on-line BCI spelling program can be found [33]. This study

involved �ve individuals who underwent a baseline trial, a partition, and a motor

task. The motor task involved �nger tapping which would be dictated by on screen

prompts. One of the weaknesses of NIRS measuring is the dependency of passing

through the skull; this means that things like hair can greatly hamper the signals and

give faulty readings.

2.3.4 Magnetoencephalography (MEG)

MEG provides more sensors, and thus more spatial information, than traditional a

EEG. In order to take MEG recordings, a subject, in a magnetically shielded room,

is placed in a chair with an array of superconducting quantum interference devices

(SQUIDs) around their head as the magnometer. The obvious drawback to this

approach is the dependency of a magnetically shielded room and a large machine to

sense the brainwaves. Research has proven, even with these constraints that MEG is

still a viable and reliable enough of a method to be explored further [34].
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Figure 2.2: Electrical current activity in the brain generates a magnetic �eld.

2.3.5 Electrocorticography (ECoG)

Di�ering from the previous methods ECoG is an invasive method. ECoG requires

surgery to implant electrode pads directly onto the surface of the brain to receive

signals from the cerebral cortex. The advantages of this are immediately clear: high

spatial resolution, broad bandwidth, high amplitude, and less vulnerability to EMG

[27]. ECoG is also widely used as an identi�er for the localization of epilepsy focal

points. An array of 64 electrodes is implanted onto a portion of the brain called the

epileptic focus to identify the part of the brain that should be removed by resection

surgery.
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Figure 2.3: Intracranial electrode mesh for electrocorticography electrophysiological
monitoring [2].

During one study, patients with epilepsy were implanted with these electrodes [27].

In the period of the one to two weeks that the electrodes are recording data to localize

the seizure area, researches used the electrodes to generate a BCI. While the electrodes

were removed in this instance due to the epileptic nature of the patients, the success

of this study proves that these arrays are a valid method for use in BCI development

and not just epileptic identi�cation.

2.3.6 Electroencephalography

EEG is a technique involving the placement of electric �eld sensing electrodes

around the scalp of an individual. The placement of these electrodes is standardized

with a technique called 10/20 positioning [6]. A subject is instructed to clean their

hair vigorously the night before the readings are taken. Measurements are taken
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according to the international 10/20 manual and the electrodes are placed against

the scalp of the subject with a conductive medium, such as conductive gel, placed on

the pads to facilitate the acquisition of signals.

Figure 2.4: The 10/20 International Positions and Associated Labels [3].

This method is, by far, the most popular for capturing signals from the brain. A few

of the factors that make EEG such an attractive method are as follows: standardiza-

tion of electrode placement, information on acquisition techniques well documented

and plentiful, established as a reliable method with known �ltering techniques, and

the relatively low cost compared to other methods.

Since this is the most popular method, there is ongoing research to simplify the

use of EEG for commercial applications, rather than the often complex and time

consuming task of applying the 10/20 system [35]. Systems such as these are predicted

to be the on the user end of a BCI as opposed to the research end. These types of

headsets are attractive to the user for their ease of set up and very low calibration

times; with this example being in the range of ten seconds. Another big advantage

to this system is that it can potentially work with many di�erent types of headsets
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that are already available in the market.

One big caveat about EEG signals through, is that a sensed signal does not neces-

sarily mean that that electrode is the source of the signal [36]. This counter intuitive

phenomena is due to the fact that the brain is folded. In order to �nd the source of

the signals, methods such as independent component analysis (ICA) are being widely

used now as a localization technique. EEG signals are thus classi�ed as being dipolar,

meaning that in representations it is shown that there is a signal and an associated

direction for the propagation of that signal [37].

2.4 Filtering

2.4.1 Introduction

To solve the problem of a noisy signal, �ltering must be used to reduce that noise

and extract the underlying signal features. Such �ltering requires an understanding of

EEG signals and the challenges that must be overcome by using this sensing technique,

and a grasp of the expected signals.

2.4.2 Spectra Bands

A common way to di�erentiate between the activity in the brain is to separate it into

sensorimotor rhythm (SMR) bands, shown in Figure 2.5. In these frequency ranges the

α and β bands, 8-12 Hz and 13-25 Hz, respectively, are closely related to sensorimotor

processes. The onset of a voluntary movement causes a desynchronization between

the α and β bands, refereed to as an Event Related Desynchronization (ERD). Once

the movement concludes then there is an increase in the overall power between the two

bands, refereed to as an Event Related Synchronization (ERS). Using this concept it is

possible to identify intended movement in patients that have lost motor functionality.

The motor imagery can be identi�ed by measuring the α and β bands with sensors

over the primary sensorimotor cortex.
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Figure 2.5: Human motor cortex containing the primary sensorimotor cortex for
ERS/ERD detection of motor imagery [1].

2.4.3 Power Spectral Density

Power Spectral Density (PSD) describes the distribution of power in a physical

signal when decomposed over a frequency spectrum. This is useful in �nding the

frequency characteristics of a windowed event in a �nite time interval. Using the PSD

on a signal sampled in discrete time yields an estimate based on summation, rather

than integration. In order to generate a more accurate estimate of the true PSD of the

function it is necessary to average these estimates over many trials. This is commonly

refereed to as a periodogram, which converges to the true PSD as the number of

estimates approaches in�nity. It is important to �rst reduce the dimensionality of the

signal through Principal Component Analysis (PCA) and Independent Component

Analysis (ICA) to greatly reduce the computations needed in calculating the PSD.

The PSD only need be ran on independent components.
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2.4.4 Principal Component Analysis

Principal Component Analysis is a statistical transform used in data analysis to de-

compose correlated variables into uncorrelated variables, called principal components.

In BCI applications this has the use of reducing dimensionality and redundancy in

data.

PCA learns a linear transform h = f(x) = W Tx + b with input x ∈ IRdx , where

the columns of dx × dh matrix W form an orthogonal basis for the dh orthogonal

directions of greatest variance in the training data [38].

By taking a dataset and separating the components into di�ering principal compo-

nents, the leading eigenvectors of the covariance matrix, it is possible to use only the

principal components that have the greatest variation and prune the least represented

eigenvectors. PCA has the assigns the largest variance as the principle component.

In this sense, PCA is a tool used to help reduce dimensionality and retain the fea-

ture information, thereby improving classi�cation. This method is also closely tied

to Linear Discriminant Analysis (LDA) since they both seek linear combinations of

variables which best explain the data.

2.4.5 Independent Component Analysis

In order to use ICA there are three criteria that the signals must follow:

1. The number of ICs are less than or equal to the number of observed signals

2. The arti�cial and cerebral sources are linearly mixed and statistically indepen-

dent

3. Propagation delays through the missing medium are negligible

Since EEG signals fall under the purview of these conditions [39] it is possible to
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try and solve for x1, ..., xn of n linearly mixed components by

xj = aj1s1 + aj2s2 + ...+ ajnsn, forallj. (2.1)

The random variables x and s are said to be latent variables in the mixed signal.

These signals are generally represented in vector-matrix notation where x and s are

vectors and the elements aij are represented by the matrix A. In ICA the vectors are

column vectors. The general form of the mixing model is

x = As. (2.2)

2.5 Machine Learning for Classi�cation

This section discusses the leading machine learning algorithms used in the �eld.

Once EEG signals are su�ciently �ltered then it is necessary to use those signals to

extract the underlying patterns in the data that suggests intent. These patterns are

typically hard to describe programmatically, which necessitates the use of other tools

to classify this information.

2.5.1 Arti�cial Neural Networks

Arti�cial neural networks (ANNs) is a computational model used in machine learn-

ing that builds a complex connection of simple arti�cial neurons to mimic the struc-

ture of a biological brain. Without the use of back propagation this technique is

strictly a unidirectional process; input signals propagating through hidden layers to

arrive at outputs. The input signals travel through these hidden layers based on

how statistically likely they match the neuron; if the match is close enough then the

neuron activates and the signal propagates by the neuron activating. This is referred

to as the threshold or limiting function and is typically a value between 0 and 1.

Figure 2.6 demonstrates how a set of inputs is cascaded through a set of n hidden
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layers to determine an output.

Figure 2.6: Neural network example showing how an input of n number of signals
travels through hidden layers of neurons to choose the output with the highest prob-
ability of matching.

This function is generally trained in BCI applications through back propagation;

comparing a set of inputs and modifying the thresholds, using the gradient of a

loss function, based on a known outcome. In this way the threshold is trained and,

hopefully, optimized by the system. An important aspect of back propagation is

that the intermediate hidden layers self-organize themselves in such a way as to try

and characterize the entire input space. This is to say, the hidden layers will order

such that a new input, even if incomplete or containing noise, will be recognized if it

contains features that resemble the trained data.
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2.5.2 Support Vector Machine

Support Vector Machines (SVM) is a supervised learning model used for classi-

�cation and regression analysis. SVM is a non-probabilistic binary linear classi�er,

meaning the input of training examples is labeled as belonging to one of two cate-

gories to build a model of for new examples. In cases where data are not labeled, an

improved method to SVM is used, called Support Vector Clustering (SVC). SVC can

be used either when data is not labeled or is labeled incompletely.

Generally, a SVM is modeled as a hyperplane, or set of hyperplanes, that seeks

to maximize the separation in labeled data points, referred to as classes. Figure 2.7

illustrates how this margin is modeled.

Figure 2.7: Examples of linear separations created by a SVM. H1 does not separate
the classes. H2 and H3 both separate the classes, but H3 does so with a maximum
margin [4].

Assuming the training data is linearly separable, two parallel hyperplanes can

be selected that have the maximum distance between them. Strictly, this line is a
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maximum-margin hyperplane and the samples on the parallel hyperplanes constitute

the support vectors.

Figure 2.8: The solid line represents the maximum-margin hyperplane that maximizes
the linear separation of the two trained classes. The parallel dashed lines are the
hyperplanes that separate the two classes, with the intersecting test classes being the
support vectors of the system [5].



CHAPTER 3: SYSTEM FRAMEWORK

3.1 Overview of the System

This method di�ers from current methods in the �eld through use of PCA process-

ing before ICA processing and the use of a back-propagation neural network classi�er.

While ICA is used extensively in the �eld, it has, at the time of this research, never

been paired with PCA.

Figure 3.1 shows the architecture of the proposed method. The signals are acquired

through the use of an EEG cap �tted with electrodes or a dataset. The signals are

pre-�ltered and are input in to the PCA and ICA processing. Once that stage has

completed and the signals are framed properly then the neural network will train

and classify the signals as either a left or right hand grasp, or neither if the correct

signal is not present. The remainder of this chapter covers each stage of Figure 3.1

in greater detail.

3.2 Block Diagram of the System

The price and availability of neurally linked prosthetics poses challenges to re-

searchers in validating control and feedback schemes for practical, everyday, use.

Until a standard prosthetic emerges then it is to the bene�t of the community to try

and use frugal means to make their solution more widely applicable. This has the

added bene�t of a wide variety of systems being developed to exhaustively determine

the appropriate hardware and software reticulation. The proposed system diagram,

simpli�ed, can be seen in Figure 3.2. This consists of the Robotic Operating System

(ROS) as a communication middleware between the BCI developed here and an end

product; namely a prosthetic hand or some simulation software.
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Figure 3.1: BCI system detailing signal acquisition, α and β �ltering, PCA and ICA
processing, an ANN classi�er, and grasp detection.

3.3 Input Signal

The dataset used in this study was obtained from the open source readings from [40]

that were captured using the PhysioNet toolkit though the BCI2000 software [41].

Understanding how these readings were taken and what the signals mean is paramount

to understanding the BCI that was generated in this study. The total dataset contains

over 1500 one minute and two minute EEG recordings from 109 participants. The

subjects were instructed to perform di�erent motor and imagery tasks while the EEG

data were recorded using the BCI2000 system. Every subject performed the same 14

tasks. These tasks included two one minute runs, one with eyes open and one with

eyes closed, that were used to perform baseline readings of the participants resting

EEG functions. They then performed three two minute runs of four tasks. These

experiments included performing the following tasks three times each:
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Figure 3.2: System that consists of ROS acting as the middleware between the con-
trolling algorithm on the computer running MATLAB and either the simulation en-
vironment or an actuating hand. The ROS node communicates, bidirectionally, as a
handler for all signal �ow.

1. A target appeared on either the left side or the right side of the screen. The

subject was instructed to open and close the corresponding �st (left �st for the

target on the left side of the screen and the right �st for the target on the right

side of the screen). After the target disappeared the subject relaxes.

2. A target appeared on either the left side or the right side of the screen. The

subject was instructed to only imagine opening and closing the corresponding

�st (left �st for the target on the left side of the screen and the right �st for

the target on the right side of the screen) and to not physically open and close

their hand. After the target disappeared the subject relaxes.

3. A target appears on either the top or the bottom of the screen. The subject

was instructed to open and close both �sts if the target appears on the top of

the screen or to �ex and relax both feet if the target appears on the bottom fo

the screen. After the target disappeared the subject relaxes.

4. A target appears on either the top or the bottom of the screen. The subject was

instructed to only imagine opening and closing both �sts if the target appears
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on the top of the screen or to only imagine �exing and relaxing both feet if the

target appears on the bottom fo the screen. After the target disappeared the

subject relaxes.

The order in which these experiments were performed were: baseline with eyes

open, baseline with eyes shut, task 1, task 2, task 3, task 4, task 1, task 2, task 3,

task 4, task 1, task 2, task 3, and task 4 for a total of 14 experiments. The open

source data from these trials are provided in EDF+ format which each contain 64

EEG signals sampled at 160 samples per second. The �le also includes and annotation

channel to show when the targets were presented on the screen for the individuals for

each trial. The study also includes .event �les that contain identical data for use with

the PhysioToolkit software. The annotations for the events consist of three separate

states: rest, target for either the left �st or both �st movement for the appropriate

runs, and target for the right �st or both feet for the appropriate runs.

In order to capture the EEG signals the team used a 64 electrode cap in the

international 10-10 layout (excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2,

TP9, TP10, P9, and P10) as shown in Figure 3.3.

It is important to note that the signals recorded with the software are numbered

from 0 to 63, though the numbers of Figure 3.3 are labeled from 1 to 64. For example

the electrode number 33 in the software recording is in reference to the electrode

labeled 34 in Figure 3.3.

3.4 Signal Processing

As has been discussed, EEG signals are inherently noisy. It is important, however;

to de�ne exactly what "noise" means in the case of these signals. While a traditional

signal-to-noise ratio (SNR) applies to the electrical noise on the line, SNR, in the

case of EEG, also applies to the background processes of the brain. The "noise" of

stray electrons for brain activity need to also be �ltered out and characterized for

BCI development. A convenient de�nition for the SNR of a measurable, desired,
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Figure 3.3: The International 10-10 Labeling System for EEG Recording, Excluding
Electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10 [6].
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characteristic is to compare the signal with and without that stimuli present. If the

noise and signal are uncorrelated, which is taken care of by ICA, it is then possible to

determine the signal without noise through a linear subtraction to equate the SNR.

Since EEG requires many di�erent recordings and trials to characterize a signal with

machine learning, this process is slightly more involved due to the need of averaging to

take all of the trials into account. Since the result is an average of the SNR over time,

this is an approximation, due to the variance in physical setup, electrode placement,

and other factors that change from recording to recording. For any N number of

signals the SNR can be calculated by

SNR =

∑N
n=1 Signaln −Restn

N

where Signal represents the active signal time window and Rest represents the EEG

during inactive time windows, e�ectively the noise that should be removed to repro-

duce the pure active signal.

3.5 Robot Operating System

Rather than building, maintaining, repairing, and validating software solutions

on many physical systems in a lab, it is a better use of resources to simulate the

behaviors of the hardware on freely available software platforms. Currently, there

are quite a few options that give researchers and hobbyists �exibility in choosing

which simulator works best for each project [42]. A common factor in most of these

simulators; however, is the abstraction between the hardware and software layers.

These middleware abstractions make the portability of the code easier in eventually

moving to physical systems. Due to the open source nature of these tools most of the

solutions are implemented on a UNIX based platform.

Two of the most widely used systems that are open source are the Robot Operating

System (ROS) and Gazebo. ROS has the advantage of allowing users to help develop
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the platform though packages and code repositories. Another strength ROS has is

the ability to interface with other middleware and a variety of simulators. The core

concept of ROS being that ROS should be able to read, interpret, and communicate

between devices that largely have no concept of communicate protocols between them.

In this application that means that MATLAB need only be able to read in the signals

from a device and output a generalized command of what the output should be. This

can be as generic as an integer that has been classi�ed as being an event.

Rather than having to develop all of these tools for a standalone platform the focus

is on integration with a variety of other tools to allow researchers to use the tools

they are most comfortable with and still have the end product work. This is due to

the fact ROS is designed to be a partially real-time simulator so it is, theoretically,

easy to transition from the simulated environment to the real world. Gazebo �ts into

this picture by integrating with ROS to introduce a 3D simulated environment. This

allows a researcher to build an environment, program a system, and test the system

in that environment.



CHAPTER 4: MATLAB TOOLS FOR BCI PROCESSING

4.1 Introduction

MATLAB is a natural toolbox for BCI development; primarily because having the

EEG data stored in arrays where each row corresponds with an electrode's signal is

intuitive and easily manipulated without touching the other signals in the array. In

addition to just using MATLAB, many institutes and businesses have contributed

to the body of knowledge through add-ons; the two most widely used ones being

EEGLAB and BCILAB from the Swartz Center for Computational Neuroscience.

This chapter introduces a basic example on how these tools are used in MATLAB

to generate a working BCI, based on previous work by the Swartz Center. It is

important to note that this example is mostly presented in an idealized form for the

sake of example and some nuances are omitted and will be discussed later.

4.2 Example of BCI Development in MATLAB

To start analyzing the data, it must be �rst loaded into the EEGLAB. EEGLAB

abstracts the handling, ordering, and manipulating of the data arrays that contain the

raw EEG data. This abstraction is handled mostly though a graphical user interface so

the developer of the BCI need not be pro�cient in MATLAB. All of the manipulation

and �ltering of the raw EEG data will be performed in EEGLAB, while all of the

generation of the BCI to be used for a control system is completed in BCILAB. Since

the data come in the EDF+ format a special plug-in for EEGLAB must be used to

import the data. The option for downloading plug-ins can be accessed through the

GUI for EEGLAB, or from the EEGLAB website. It is import to note that the option

to import data must be selected, no the option for importing a dataset. A dataset of
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the modi�ed EEG signal will be generated later for import into BCILAB. Once the

correct data has been loaded an additional window will pop up; this window is shown

in Figure 4.1

Figure 4.1: Menu to change the channels read by EEGLAB.

To look at the data all that needs to be done is to use the "Channel data (scroll)"

option under the plot menu. The plot menu contains many useful functions that will

be used later to Analise the results of the operations that will be performed on the

data. For now, all that shows up is the raw data, as shown in Figure 4.2.

What is important to notice about the data is twofold; �rstly, the signal is quite

noisy and secondly, there are many more signals present than those that we care

about. To remove the noise on the signal, it is as simple as passing the data through

a �lter, here a standard Butterworth bandpass �lter. This can either be implemented

in MATLAB or abstracted through the EEGLAB interface. The kind of �lter that

is implemented here depends quite heavily on the type of analysis that is desired on

the end product. Since what is desired for creating this BCI based o� of imagined

movement, only those frequencies closely related to motor movements are important

for the analysis. The beta waves that contain motor movements are located in the
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Figure 4.2: Raw unprocessed waveform of EEG recordings from the trial.

15Hz to 30Hz, roughly. By using a bandpass �lter it is possible to isolate the beta

waves that exist inside the signals. Implementing a bandpass�lter with at these

frequencies the waveform now looks like Figure 4.3.

Figure 4.3: Filtered signal that removes noise on the signal.

As is evident in Figure 4.3 it is possible to see an example of the signal that we

would like to extract and characterize. Now that the signal is �ltered, the baseline
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signal has been normalized and the spikes on the signal are much more prevalent.

It is now much easier to see the activated signal and because of this it is easier to

see the electrodes that are associated with the signal. This will help in the future in

determining that a signal has occurred.

4.2.1 Event Duration

It is important to not only know when a visual target was presented to the partici-

pant, but to know for how long it was displayed on the screen. Since the participants

were instructed to continue the activated motion for a long as the target was presented

on the screen, knowing how long the target was displayed will help with selecting the

pertinent data associated with each motion. The more precisely and consistently the

associated data can be paired with the corresponding motion, the more precise and

consistent the resulting model of the control system will be. The data for how long

each tarted was displayed to the participant is embedded in the EDF+ �les that con-

tain the raw EEG data. EEGLAB can extract the data contained in the EDF+ �le to

annotate and display the duration of the presented target. By loading in some sample

data from one of the subjects and choosing 'show event duration' from the 'Display'

tab at the top of the graph the duration of the events is shown. From Figure 4.4

this duration is shown to be 4 seconds by looking at the X-axis of the graph, which

is represented in seconds. How long the event is present in the data was dependent

on the dataset used in the study. Generally, in gathering EEG recordings from an

individual this will be how long the subject was presented with a certain stimuli, in

this study an arrow on the screen. In EDF+ �le recordings where, and how long,

these events are contained is stored in an array in the �le.

4.2.2 Data Signals Associated with Motor Movement

To �nd which of the signals relate to motor movement, ICA must be performed.

An ICA is a special case of a blind source separation. A famous case of blind source
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Figure 4.4: Green area highlighting duration of a typical target that is presented to
a subject. This target was present from 24.5 - 28.5 seconds of the trial.

separation is a problem called the "dinner party problem." This problem is de�ned as

being at a dinner party and being able to separate the audio signal of one individual

attending the party. One can use the principal of blind source separation to solve this

problem. The key to solving this problem is also the key to separating the signals

on the EEG cap; there must be as many measurement devices as there are signals.

In the case of the dinner party problem there must be at least two measurement

devices, one for the background noise and one capturing the desired signal of the

person talking. This is simpli�cation of the method involved, but the same principals

apply for separating out the independent signals from all of the compiled EEG noise.

If an ICA were to not be performed on the data it would not be known how to weight
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all of the individual electrodes due to the signals represented on each electrode would

be the additive contributions of the entire signal rather than the independent com-

ponent. An ICA on the entire cap would be an unnecessarily complex computation

though. It is possible to simplify this computation by only evaluating the electrodes

that are known to be associated with what is being evaluated, motor movement. In

essence the ICA will show which signals are the most closely associated with motor

movements. At this step of the development process it is not an issue of con�rming

which movement took place, but that a movement took place at all. It is important

to note that since we already know what type of signal we are looking for in the

data, a motor movement, and the position of the motor cortex, which controls motor

movement in individuals, is already known from previous research [43], as shown in

Figure 4.5, the ICA can be simpli�ed somewhat, thereby reducing computation time

and complexity.

Since the signals from the brain are dipole signals, meaning that they have both

a magnitude and direction, the results of the ICA provide enlightenment as to the

radiation of the signal patterns also. Even though some of the signals were discounted

because it was previously known that those signals would not contribute to the desired

outcome, after the ICA other electrodes may be discounted. This is mainly done by

manual inspection of the component maps, one of which is shown in Figure 4.6.

Only the components with present or localized activation regions were chosen. It is

important to notice that the labeling of the electrodes has changed from the initial 10-

10 Standard shown in Figure 3.3. This is because of the channels that were removed

for the ICA. The updated numbering format is shown in Figure 4.6.

It is important to note that this procedure needs to be repeated for every trial that

is needed to create the BCI for the control. The �gures that are present were derived

from following the listed procedure from the trials detecting left hand and right hand

movements. These, along with the baseline trial, will be used in the machine learning
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Figure 4.5: Picture showing the relevant sections of the brain for motor movements.

algorithm to train a model for the imagined movement signals. In order to now

translate to BCILAB to create the BCI, all the signals that have been processed in

the above mannor need to be saved as a dataset in EEGLAB. This creates a ".set"

�le that is imported into BCILAB.

4.2.3 BCILAB

After downloading BCILAB and adding the folder to the MATLAB pathway run

the bcilab.m �le to start BCILAB. The �rst time that the �le runs it will take a while

to build all of the con�guration �les. Once BCILAB start a window will pop up that

has all of the options for BCILAB present in a graphical user interface (GUI) format.

This window is shown in Figure 4.7. As an aside, it is possible to write scrips to run
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Figure 4.6: Weighted ICA of one participant's trials of hand movements. This is
e�ectively a heat graph, with higher intensity areas colored in red, and lower intensity
areas transitioning to blue. This was generated with the help of the EEGLAB plugin
for MATLAB.

and compile all of the options presented here, but for this paper the GUI format will

be shown for clarity of the procedure.

Using the "Data Source" option on the menu and selecting the "Load Record-

ing(s)" option it is possible to now load the ".set" �le that was saved by the earlier



34

Figure 4.7: Main menu of the BCILAB plugin for MATLAB.

Figure 4.8: Menu and options for loading the dataset �le into BCILAB.

procedure. The �le that needs to be loaded �rst is one of the trials that used actual

muscle movements. It is very important to load one of the trials that used actual

movement because it will be used for training a model to �nd the signals in the

imagined movement �les. For now, the �le containing the data for the left and right

hand movements are loaded. Once the correct �le is selected the window shown in

Figure 4.8 will pop up. From this window it is possible to select the channels that

will be analyzed. All of the channels from Figure 4.6 were used since the signal has

already been processed to the degree that all of the pertinent signals are present, so

this �eld was left blank. The data can also be truncated based on time, but since

we use the whole of the recording, this is also left blank. The other options are for

other features of BCILAB that are not used in this development, but are useful for
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developing a BCI from other means, such as live recordings or importing data in other

formats.

Figure 4.9: Window for choosing the approach for the model. Common spatial pattern
approach shown.

Now that the data has been loaded into BCILAB it is time to start developing the

BCI that will be used for the control system. By selecting "New Approach" under the

"O�ine Analysis" from the main menu, it is possible to design an approach for our

BCI. The approach that is selected from the menu on the window that pops up will

de�ne what kind of BCI that is developed. There are many options here for di�erent

kinds of BCI processing that can occur. The windowed-means approach was shown

earlier, but what is desired now is an approach called common spatial patterns (CSP).
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A brief description of each approach shows as it is selected, and one such description

is shown in Figure 4.9. As the approach states, CSP is used for oscillatory processes

localized in the motor cortex. This is desirable for the BCI what we want to create

since it has to do with motor movement of the hands and feet. As is stated in the

description, CSP is a very common and robust approach so we will examine on how

to re�ne this approach later to tailor it more closely to what we are developing.

Figure 4.10: Option for CSP approach.

After selecting the CSP approach another window, shown in Figure 4.10 will pop

up. This window contains a lot of properties of the CSP that can be changed to

re�ne the approach. The CSP approach �lters the data to look for the embedded

oscillatory processes, in our case beta waves for motor control, so the default approach

con�gurations of the frequency speci�cations of the �lter can be left alone. Also it

is possible to narrow the time window of the epoch for each signal. As was shown

earlier the signal window of each signal that was presented on the screen for the trial

was 4 seconds. It is desirable to trim this slightly to account for reaction times of

the physical signals, so half of a second is trimmed from each side of each epoch.

The �nal important function that can be chosen is the machine learning function for
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the approach. It is possible to choose from a lot of di�erent functions for the CSP

approach for �tting the data for a model. The default linear discriminant analysis

(LDA) function is chosen here to highlight how accurate the default settings are. It

is worth changing this to di�erent functions and checking the results to �nd the best

model, but, as will be shown, the default LDA function can be an accurate learning

function. It is important to note here that it is possible to over characterize the

approach for the model. This occurs when the approach is too closely con�gured to

the data from actual motor movement that it is di�cult to distinguish an imagined

movement. Over training and �tting the approach to the model will result in it being

di�cult for the BCI to correctly identify the imagined signals due to them being too

dissimilar from the tightly trained model.

Figure 4.11 shows the window that opens after selecting to train a new model

through the main menu. The window already loads in the last approach made and

the last data loaded into memory. For the target �eld it is important to select the

�eld that contains the data for the markers for the signals. Due to how the data that

is being used was saved this �eld is labeled "type". Also, since the data, as shown

earlier, contain markers for rest along with the two markers for activation (either

hand or foot movement depending on the trial being examined) it is only desirable to

look at the markers that contain activations. Only the markers 1 and 2 contain the

data needed to direct the model to the appropriate signal times. Since the duration

was trimmed earlier, the model will calibrate using the data contained in these signals

with half a second delay and cuto�. The rest of the options can be left to the defaults

for now, but they may be changed in the future to re�ne the calibration data.

By selecting the correct options shown in Figure 4.11 the results shown in Fig-

ure 4.12 are obtained. Looking at this data it is shown that after �ve iterations of

machine learning the model is around 95.4% accurate for the model. This means that

with the values that were chosen for the model were very good for allowing the model
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Figure 4.11: Calibration options for generating a model.

to predict that a move has taken place. Again, it is important to note that these

steps must be taken with every dataset in order to create predictive models for each
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Figure 4.12: Results from the default parameters of the CSP model approach.

of the di�ering moves.

Now that the model has been created, it is time to �t it to the data. By selecting

"Apply model to data" from the main menu, it is possible to see how well this model

that was developed will predict and detect that the correct movement has taken place.

First though, the dataset that contains the imagined movements must be loaded into

memory using the steps listed beforehand. Once this data is loaded it is available

for selection in applying the model to the data. Once the process has ran the results

shown in Figure 4.13 are obtained. From these results we can see that after only one
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Figure 4.13: Results from using the generated CSP model on the imagined movement
data.

pass of the imagined movement data, the model that we generated through CSP was

successfully able to predict the correct movement 95% of the time. This is therefore

shown to be a very good model. Again, these are the results for the data containing

only the hand movements; although similar results were obtained using the other

datasets.

While this model that was generated is already very good, there is room for im-

provement. Let us take a look as to how changing the approach for the model cali-

bration can change the results on the same data.
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Figure 4.14: Approach of spectrally weighted CSP designed speci�cally for imagined
movements.

The approach that is chosen this time is a special variant of the CSP approach

called the spectrally weighted CSP. This is a more advanced form of the CSP that

takes into account the weight of each electrode in the machine learning stages. This

means that the ICA that was performed earlier will be used to spectrally weight each

signal for importance. This approach was originally designed for motor imagery BCI

in mind, as stated in the description in Figure 4.14, so it is especially suited to develop

our desired BCI.

By looking at the con�gurations for the spectrally weighted CSP in Figure 4.15,

we can see that the frequency speci�cation of the �lter has been changed slightly, and
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Figure 4.15: Con�gurations for the spectrally weighted CSP approach.

there is an option to modify the prior frequency weighting for the function. To keep

the same weights as were originally generated by the ICA, this should remain as a

default. Everything else was kept as the default values to more accurately show how

just changing the approach to one more suited to the desired task will change the

accuracy of the model on the data.

After training the model with the calibration data as was shown earlier, the results

from Figure 4.16 are calculated. At �rst glance these results seem quite similar to

the data obtained, only slight variations occur. This is due to the fact that the same

machine learning approach, LDA, was used to generate both of the models from the

same data. The variations that exist occur because of the di�erence in approach, so

the fact that the results of the machine learning on the calibration data are so close

is due to the function used.

The main variation of the results comes when the model that we trained is used

to analyze the imagined movement dataset. Since the spectrally weighted CSP was



43

Figure 4.16: Results of the generated spectrally weighted CSP on the calibration
data.

designed with this purpose in mind, it is safe to expect that this model, even will

all other settings remaining the same, to perform better than just the standard CSP

model. Looking at the results in Figure 4.17 it is shown that this is easily the case.

Looking at these results, the model that was generated successfully predicted the cor-

rect movement 98.8% of the time. Not only that, but the error rate and false positives

of signal detection were also greatly reduced. This shows that by choosing the correct

paradigm for the model that the accuracy of a BCI can be greatly improved.

In order to put this model into a more visual and intuitive perspective it is possible
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Figure 4.17: Final performance results of the spectrally weighted CSP model on
imagined movement.

to use the "visualize model" option under the BCILAB menu. Doing so yields the

results in Figure 4.18. What this result lets us see is the patterns that arise from the

model and data. There are 6 patterns represented here and as we can see they all

radiate from around the motor cortex region. This is to be expected since the dataset

contains motor movements.
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Figure 4.18: Visualization of spectrally weighted CSP model generated and the con-
tributions of each frequency for each pattern that emerged.

4.2.4 Online Analysis

Even though the data and analysis up to this point has been completed purely on

o�ine data, it is possible though BCILAB to simulate the performance of the model

on the data stream as though it was an online signal. Once the model has been

trained up to this point and the imagined data loaded into memory it is possible to

select "read input from dataset" though the online analysis menu. Once this has been

selected one must also select to output the data to MATLAB visualization though

the same menu. A window with two bars will pop up. The two bars on this window

will move up and down to simulate the model sweeping the data in real time and

making a decision on if a signal is presented and which one is currently being shown.



CHAPTER 5: HARDWARE SYSTEMS

5.1 HAPTIX

The Defense Advanced Research Projects Agency (DARPA) is currently funding

the Hand Proprioception & Touch Interfaces (HAPTIX) program for robotic limb

replacements. The program is designed to "develop new science and technology to

achieve closed-loop control of dexterous mechatronic prostheses that will provide am-

putees with prosthetic limb systems that feel and function like natural limbs." [44]

Unlike most robotic limbs of the past, HAPTIX is centered on closing the loop and

providing feedback to the user. So far, this research has partnered with Mobius Bion-

ics LLC to develop the Life Under Kinetic Evolution (LUKE) system for arm and

hand replacement [10].

The Open Source Robotics Foundation (OSRF) was tasked with simulating the

prosthetic hand in Gazebo and building test environments with interfaces for devel-

opment. Figure 5.1 shows what the current result of that research looks like.
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Figure 5.1: Example simulation environment of the DARPA HAPTIX robotic arm.
This simulation includes a graphical feedback of the touch sensors on each hand as
well as a list of the objects in the scene that can be manipulated [7].



48

Figure 5.2: Schematic describing the location of the motors in the hand. The numbers
on the diagram correspond to the index position of the array in the C API of each
motor. Each motor provides feedback on its position, torque, and velocity [7].
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Figure 5.3: Location of contact sensors of the DARPA HAPTIX hand. The numbers
on the diagram correspond to the index position of the array containing the sensors.
There is also another array that contains the IMU data (located under the �ngernails)
to be used as additional sensor feedback [7].

5.2 InMoov

The InMoov is a humanoid robot designed by French sculptor Gaël Langevin [45].

The InMoov project started in January of 2012 as the �rst open source prosthetic

hand; since then the project has expanded and evolved to include the entire upper
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body. The entire shell of the robot can be printed with a 3D printer with a build

size of only 12x12x12cm print area. Even though the InMoov is primarily supported

through myrobotlab, an open source programming environment, code can also be

developed to work with ROS. It is this open source nature, along with the, relative,

ease of obtaining an end product, that has popularized the model and is why it was

chosen for this research.

Figure 5.4: 3D printed had of the InMoov project that showcases a closeup of the
mechanics of �nger and joint location. Each servo, connected to each joint, provides
90 degrees of movement, enabling the hand to fully close.
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Figure 5.5: Forearm of the arm unit of the InMoov. While normally covered, this
shows the tensor strings that connect up to the hand and the servos that pull to close
the �ngers.
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Figure 5.6: Highlight of the wrist movement capabilities of the InMoov arm. The
wrist is capable of rotating 180 degrees, independent of the �nger movement.

5.3 Gazebo

As mentioned previously, building and maintaining physical hardware can be an

expensive endeavor. It is attractive, for researchers, to be able to test code and control

schema on a variety of systems before committing to a purchase. Gazebo is a popular

solution to this approach to design. Gazebo is a simulation and modeling tool used

to design and test robots and arti�cial intelligence (AI) systems. The reason Gazebo

has become so popular recently is due to it's free price tag and an active community.

There are many freely available models of robotic prosthetics, both hand and foot,

for testing.

To show how a simulated environment in Gazebo may be used to develop more

than just prosthetics, Figure 5.7 shows the Turtlebot2 navigating an environment. It

is easy to see from the �gure that a variety of objects can be simulated in order to
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develop any number of situations. Expanding this to the �eld of BCI development,

prosthetics, harnesses, caps, and sensors can all also be modeled in order to give an

overall picture of how a �nal design interacts when fully assembled and is moving.

Figure 5.7: Turtlebot2 placed in a simulated environment, powered by Gazebo.
Gazebo comes preloaded with example physics objects of a wide variety that are
already detailed and properly scaled for the simulator.

Gazebo is compatible with both ROS and MATLAB, so it easily �ts in with the

tools discussed so far. ROS handles the communication between MATLAB and

Gazebo, ful�lling its role as the information handling middleware [46]. Due to the

proli�c virtual machine (VM) usage with ROS, operating with Gazebo and MATLAB

is only a matter of IP address passing. Figure 5.8 shows a typical �ow of IP addressing

for such a setup.
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Figure 5.8: IP message communication �ow between MATLAB running on a physical
machine and Gazebo running on a virtual machine. ROS handles the communication
by connecting these applications through a Uniform Resource Identi�er (URI) to label
the applications with their IP addresses. As is shown, the ROS_MASTER_URI runs
on both machines and handles the data �ow.



CHAPTER 6: RESULTS

6.1 Similar Study Results

In order to discuss the results of the procedure described here it is bene�cial to

look at similar results in the �eld. By "similar" it is meant that these studies used

the same dataset used in this research and attempted to perform the same function as

this research, classi�cation of events within said dataset, with varying methods. The

metric for comparison, accuracy, is de�ned as the rate of correct classi�cation of an

event; false positives are also counted as incorrect classi�cation for this metric. While

no other paper details this particular technique, there have been many attempts to

reach a similar outcome. A short list of these results are identi�ed from [47] and are

compiled in Table 6.1 with the best performance of Subject 25.

Table 6.1: Comparison of Similar Methods

Comparable Methods

Method Accuracy

Almoari [48] 74.97%

Sun [49] 65.00%

Shenoy [50] 82.06%

Tolic [51] 68.21%

Previous work 72.56%

Current Method 96.36%

Similar methods to the one proposed here obtain a 72.56% correct classi�cation

accuracy [52]; false classi�cations are also factored into these performance reports.



56

As it is not mentioned how many subjects each method was applied to in order

obtain the results in Table 6.1, the proposed method of this dissertation applied the

method to 10 randomly chosen subjects of the 109 subjects present in the dataset.

As a representative of these 10 subjects, one subject will be presented for the results,

Subject 25. The performance of this representative is typical of the results of the

other subjects and highlights trends seen in the results.

6.2 Analyzing All 64 Electrodes

The �rst experiment that shall be discussed is the e�ect of starting with all 64 elec-

trodes of the cap as data and the e�ects of the method upon reducing the dimension

of the entire dataset as it relates to performance and training time.

Table 6.2 shows the results of using the proposed method with di�erent parameters,

but all starting with 64 electrodes. The parameters that were changed through the

trials were the PCA dimension, ICA dimension, hidden layer count of the neural net-

work, overall performance, and how many epochs it took to train the neural network.

Conventionally, the training time is discussed in epochs. An epoch is de�ned as the

time frame a certain signal is present. This is useful in the �eld of EEG and BCI

classi�cation because an epoch gives a constant window that is known. In the dataset

each epoch is de�ned as being 4 seconds long at 160 Hz, meaning each epoch contains

4(s)∗160(Hz) = 640 data points. Increasing the hidden layer count, the intermediate

steps shown in Figure 2.6, beyond what is presented here has diminishing returns,

with the typical optimal number of hidden layers being between 15 and 20. Since the

results in Table 6.1 that use neural networks all keep the number of hidden layers

small the trials in Table 6.2 are grouped in to sets of 3, with an increasing number of

hidden layers without changing the PCA or ICA dimensionality; the only exception

to this is trial 10, where 20 hidden layers is shown to highlight the diminishing re-

turns of increasing the layer count and to also show an interesting trend, which will

be discussed.
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Examining trials 1, 2, and 3 as a baseline the performance does not change signi�-

cantly with a change of hidden layers, though it is important to note that the number

of epochs it takes to train the neural network increases as the layer count increases.

Trials 4, 5, and 6 perform only an ICA on the data. This does not impact the

performance for correct classi�cation in a meaningful way, but it had the bene�t of

greatly reducing the number of epochs it takes to train the network. The trend for

this training is: The more hidden layers in the network, the more epochs it takes to

train the network.

Trials 7, 8, 9, and 10 introduce the full proposed method by performing PCA before

the ICA stage. Comparing trial 7 with 1 and 4, trial 8 with 2 and 5, and trial 9 with

3 and 6 there is a consistent increase in performance. By trial 9, there is an overall

increase of performance of 6.02%, on average. An interesting note is that adding in

the PCA inverses the trend of number of epochs needed when the PCA does not

reduce the dimensionality. Observing trial 10 it can be seen that there is not a large

increase in performance by increasing the number of hidden layers, although it does

reduce the number of epochs needed to train the network.
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Table 6.2: Sample of Results with Processing 64 Starting Electrodes

Subject 25: 64 Starting Electrodes

Trial
PCA

Dimension

ICA

Dimension

Hidden

Layer

Count

Performance

(%)
Epoch

1 N/A N/A 5 90.16 311

2 N/A N/A 10 90.85 326

3 N/A N/A 15 89.96 423

4 N/A 64 5 88.10 193

5 N/A 64 10 89.20 243

6 N/A 64 15 90.17 328

7 64 64 5 91.20 236

8 64 64 10 94.34 123

9 64 64 15 96.08 119

10 64 64 20 96.36 105

11 32 32 5 84.58 171

12 32 32 10 89.99 316

13 32 32 15 90.78 323

14 16 16 5 75.44 132

15 16 16 10 77.84 167

16 16 16 15 78.92 203

Starting with trial 11 the PCA is used to try and reduce the dimension of the data;

in doing so the overall performance su�ers when compared to the PCA and ICA of the

original dimensions, but once the hidden layers are increased to 15 the performance

is about the same as no ICA or ICA alone. The bene�t of the approach is a generally

faster training time. Reducing the dimension even further continues this trend. The
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comparison of reducing the dimension to 16 elements from 64 is compared to starting

with only 16 dimensions in section 6.5.

6.3 Analyzing 16 Electrodes

Table 6.3 contains the results from Subject 25 when starting with the 16 electrodes

outlined in [52] and highlighted in blue in Figure 6.1. The reason that only these

electrodes need to be observed is due to their placement directly above the motor

cortex of the brain, where muscular movement is generated.

Figure 6.1: 16 Electrodes over the motor cortex used to detect movement intent for
study.

Trials 1, 2, and 3 observe the trend of increasing the layer count for the neural

network on the signals. Predictably, the performance and number of training epochs

increases as the layer count increases. It should be noted that the performance in-

crease at this stage is noticeably greater than the same trials in Table 6.2.

Introducing the ICA into the system produces a slight increase in performance
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at 1.45%. At this stage the network is much quicker to train at lower hidden layer

counts, though this does not last as the count increases.

Table 6.3: Sample of Results with Processing 16 Starting Electrodes

Subject 25: 16 Starting Electrodes

Trial
PCA

Dimension

ICA

Dimension

Hidden

Layer

Count

Performance

(%)
Epoch

1 N/A N/A 5 77.70 295

2 N/A N/A 10 79.62 276

3 N/A N/A 15 83.26 374

4 N/A 16 5 77.09 130

5 N/A 16 10 81.29 283

6 N/A 16 15 84.80 382

7 16 16 5 77.26 330

8 16 16 10 80.91 195

9 16 16 15 86.80 176

10 8 8 5 71.09 146

11 8 8 10 73.32 169

12 8 8 15 75.02 244

With the whole method applying in trials 7, 8, and 9 the system reaches its peak

performance values; with an overall increase in performance by 3.54% over no pro-

cessing and 2.00% over just ICA processing. As was the case when starting with 64

electrodes, increasing the number of hidden layers decreases the training time for the

neural network.

Reducing the dimensionality in trials 10, 11, and 12 reduces the performance of the

system overall, but eventually approaches the performance of trials 1, 4, and 7.
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6.4 Baseline Neural Network Performance

This section will present a comparative analysis of Table 6.5, Table 6.2, and Ta-

ble 6.3 to more closely show the relationship in the trends that emerge in the pro-

cessing of the signals.

Table 6.4 compares the training of the neural network with no PCA or ICA pro-

cessing. These results are a baseline that was used to evaluate the performance with

other methods. As can be seen in the table there is an overall greater performance

when starting with 64 electrodes, as opposed to 16 electrodes, most likely due to

the greater resolution that more data provides. Also, while there was no signi�cant

increase in performance when starting with 64 electrodes, additional hidden layers

provided a 5.56% increase when only 16 electrodes worth of data was present.

Table 6.4: Comparing Neural Network Performance with no Technique

Subject 25: Comparison No Techniques

Starting

Electrodes

PCA

Dimension

ICA

Dimension

Hidden

Layer

Count

Performance

(%)
Epoch

64 N/A N/A 5 90.16 311

16 N/A N/A 5 77.70 295

64 N/A N/A 10 90.85 326

16 N/A N/A 10 79.62 276

64 N/A N/A 15 89.96 283

16 N/A N/A 15 83.26 374

6.5 Analysis of Research Results

Table 6.5 groups the results of the method when PCA and ICA were used, but

the dimension was not reduced beyond the starting number of electrodes. Using this



62

method there was an increase of performance of 5.16% using 64 electrodes and 9.63%

using 16 electrodes. This table is of special note, as when there is no dimensionality

reduction of the data, the number of epochs needed to train the increase in perfor-

mance decreased with the addition of hidden layers. There was a limit to this, as can

be seen in the �nal row of the table where the epochs increased, as was the case of

other methods.

Table 6.5: Comparing Results with No Dimensionality Reduction on Di�erent Num-
ber of Starting Electrodes

Subject 25: Comparison No Reduction

Starting

Electrodes

PCA

Dimension

ICA

Dimension

Hidden

Layer

Count

Performance

(%)
Epoch

64 64 64 5 91.20 236

16 16 16 5 77.26 330

64 64 64 10 94.34 123

16 16 16 10 80.91 195

64 64 64 15 96.08 119

16 16 16 15 86.80 176

64 64 64 20 96.36 105

16 16 16 20 86.89 203

Finally, Table 6.6 shows how the performance when reducing the dimensionality

to 16 from 654 electrodes compares to starting with 16 electrodes. With only 5

hidden layers in the network the performance is relatively close, 1.82% apart, but the

technique that started with 64 electrodes took less than half of the time to train than

starting with the base dimensions.

Moving to 10 hidden layers the performance gap widened to 3.07% with only a
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di�erence of 28 epochs in training time. This is due to the trend of adding hidden

layers to reduced dimension data needing more time to train and unreduced dimension

data needing less time to train.

The last two rows show the widening gap even more, with the number of epochs

to train the network for the dimension reducing technique overtaking the base 16

electrodes. With this comparison of performance values it can be said that reducing

the 64 electrodes to fewer dimensions starts with similar results, but is not as robust

as starting with that number of dimensions.

Table 6.6: Comparing Dimensionality Reduction with Similar Starting Dimensions

Subject 25: 16 Electrodes from Reduction VS No Reduction

Starting

Electrodes

PCA

Dimension

ICA

Dimension

Hidden

Layer

Count

Performance

(%)
Epoch

64 16 16 5 75.44 132

16 16 16 5 77.26 330

64 16 16 10 77.84 167

16 16 16 10 80.91 195

64 16 16 15 78.92 203

16 16 16 15 86.80 176

6.6 Generalized Neural Network

As an extension of this work there was an attempt to build a more generalized neural

network for many subjects. The intent of this procedure was to use ten subjects as

the training set and evaluate performance, individually, on ten di�erent subjects to

observe how a BCI trained on data that is not part of the individual will perform.

In developing a BCI the standard approach is to train an individual, much like in

physical therapy, to perform the action in order to develop the neural pathways for
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Table 6.7: Generalizing the BCI Neural Network

Generalized Neural Network

Trial
Performance

(%)
Network 98.26
Highest 78.01
Lowest 55.96
Average 69.98

the independent BCI. Moving forward in the �eld of BCI development it is desirable

to have a generalized model that has acceptable base performance as opposed to

starting from the beginning with each subject. Much like the early development of

speech recognition there will be a shift in the future to a model that doesn't need to

be trained on a per-person basis.

Table 6.7 gives an overview of how the BCI performs with the ten new subjects.

The training data used was the ten previous subjects in the study, with ten new

subjects randomly chosen for evaluation. There is no overlap in the training data

with the evaluation data. "Network" refers to the performance of the trained neural

network data validation set. Since there is ten times the amount of training data

than in previous chapters and each misclassi�cation is weighted less, the performance

is overall better than in previous chapters.

The neural network was trained using the best approach found in the results of this

research. The inputs were passed through a lowpass �lter, evaluated with a PCA of

64 dimensions, ICA of 64 dimensions, and the network utilized 20 hidden layers.

The highest performance in the resulting data was from Subject 43, with a 78.01%

correct classi�cation rate, and the lowest performance was Subject 19 with 55.96%.

Overall, the average performance was 69.98%. Comparing these results with Ta-

ble 6.1, the generalized model performs about as well as similar specialized methods.



CHAPTER 7: CONCLUSION

The novel technique presented in this dissertation was an expansion upon previous

research and developed a useful tool for the development of brain computer interfaces.

This technique was compared with current state of the art techniques for intent

classi�cation and was shown to be superior in accurate classi�cation of imagined hand

grasping. The application of the methodology of using PCA then ICA on EEG signals

increases the overall performance of a BCI and in the case where dimensionality is

not reduced in the PCA stage reduces the training time of the system.

Most of the goals for this research were met, including:

• Identi�cation of modern BCI techniques and architectures:

As covered in this work, a BCI consists of a set of hardware and software that

interprets electromagnetic impulses from the brain to actuate a physical device.

This research focused on the software portion of that connection and as such

presented di�erent techniques currently used in the �eld to train BCIs.

• Interfacing MATLAB, EEGLAB for processing signals:

A set of functions was created to allow the interaction of MATLAB, EEGLAB,

and the neural network toolbox within MATLAB. This included the pre-�ltering

of the signals before they were loaded into EEGLAB for graphing and epoch

framing, the stage where the events were linked with the time stamps included

in the data. Exporting from EEGLAB, PCA and ICA parameter analysis was

processed on the data. Finally the sweep of neural network hidden nodes was

automated.

• Saving of results for comparative analysis:
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Once the training of the network was complete the results were saved to excel

�les for later comparison. Various graphs, such as performance and region of

convergence were saved from the output of each hidden layer analysis.

7.1 Future Work

The only goal of the research that was not met was the simulation of a robotic

hand in a ROS environment. As the researched was focused on the development and

performance analysis of the software technique time did not permit simulation being

added. This step would be bene�cial as a more intuitive analysis to the end researcher

on the performance of the device. The current algorithm would be used as shown in

Figure 7.1. The algorithm would be loaded in MATLAB after the training stages have

been completed. Online, real-time, signals would then be streamed into MATLAB

via the use of an EEG cap with electrodes. The system would then parse the input

in to 4 second epochs at 160 Hz. These epochs would be processed by the algorithm

which would then send a signal to the ROS core, identifying the classi�cation of the

signal as a left, right, or no grasp. The ROS core would publish to the corresponding

node to control the output, that being either a simulator or a prosthetic hand.

Additional bene�t could be provided through the use of a graphical user interface to

abstract the functions created as a part of this research. This would enable the code

to be shared with a greater number of researchers and would help in the dissemination

of the technique.
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Figure 7.1: System �ow of �nal design for deployment. The training algorithm is
fed in to MATLAB with the online, real-time, signals as the input. The algorithm
classi�es the signal as either a left or right hand grasp and sends a signal to the ROS
core [8]. This is then either sent to the simulator [9] or a prosthetic limb [10].
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