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ABSTRACT 

 

 

BALASUBRAMANIYAN CHANDRASEKARAN. A selective sensor framework 

using sensor fusion and sensor maps to achieve complete coverage planning of a semi- 

autonomous robotic vehicle. (Under the direction of DR. JAMES M. CONRAD) 

 

 

Autonomous vehicles are increasingly used in many applications, such as 

elderly care, medical care, military, schools, and space exploration. In this research, 

we introduce the use of a framework for achieving the autonomy in a vehicle and 

describe the usage of sensor maps in managing the sensor space of a vehicle. 

Complete coverage planning is a new technique to achieve maximum coverage of a 

space during navigation. Path planning plays a key role in autonomous vehicle 

navigation and is achieved through several standard algorithms. In this research, a 

sensor fusion framework is formulated that utilizes the concept of complete coverage 

planning improvised it to include the feature of human interaction. Uncertainty 

during navigation is a common problem in robotic vehicle navigation and is neatly 

handled by including the human operator during vehicle’s traversal, thus forming a 

closed loop between the robot and the operator. The improved framework also 

causes the vehicle to visit the cells previously not covered because of the presence 

of an obstacle and hence provides the user with much detailed information on the 

terrain data, such as location of trees, locations of ravines, and their spread across 

the cells in the field.  

Robot cognition is achieved through the use of sensor map structures. These 

maps are very similar to the Penfield Maps or the Sensory Brain Maps, which are 

key concepts in human cognition. Sensor management and sensor data processing 
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are handled through these maps.  

In this research, the two important implementations are the robot navigation 

in a space (i.e., a field) achieving maximum coverage with human interaction and 

the cognitive sensor model of the vehicle similar to the brain map. The framework 

incorporates the usage of signal, feature and decision fusion between the stages and 

allows the vehicle to handle all cases of obstacle presence and initiate user help only 

when the fusion stages identify an uncertain confidence level.  
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CHAPTER 1:  INTRODUCTION 

 

 

Autonomous robots have been mostly used as a tool for performing tasks 

involving maneuverings and navigation in areas which are hazardous to humans or 

monotonous. Newer robots have now started to become more social and more 

involved in our everyday lives. Man-machine collaboration or Human-Robot 

Interaction (HRI) focuses on how machines can be made increasingly interactive 

with humans and how this communication paves way for better task performance of 

the robot and task reduction for human operator. For effective human-robot 

collaboration, it is imperative that the robot be capable of understanding and 

interpreting several communication mechanisms similar to the mechanisms 

involved in human-human interaction [1]. 

1.1 Motivation 

 

Human robot interaction involves collaborative communication between the 

robot and the user. There are several modalities involved in the interaction, namely 

speech, gesture, bio-feedback sensor, and environmental influence. When a two-way 

interaction exists between both entities, there is a need for better decision making, 

heavily constrained on the robot side during the interaction process. This requires 

gathering the data from not just one source but from multiple sources which are 

streaming information. The sensor readings (hard data set) and the user-fed 

information (soft data set) need to be combined to help the robot make the right 
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decision while executing the current task [2]. Although HRI aims at making the robot 

highly autonomous to achieve an interaction similar to human-human interaction, 

the robot can still query the user for command in case the result of the data fusion 

seems ambiguous or during high levels of uncertainty. 

Multi sensor fusion is advantageous over single sensor since the ability to 

identify multiple parameters is possible only by combining different sources of data. 

For instance, to identify a moving object, such as a airplane, requires the need to use 

information from infrared image sensor and pulsed radar [3] to get the range and 

angular direction of the airplane. A detailed description of the types of sensor fusion 

and architectures is described in Chapter 2. It is necessary to take into consideration 

the robot cognition while performing any robotic application. An overview of the 

types of learning that can be implemented on the vehicle is also described in the 

Introduction, Chapter 2.  

1.2 Objective of this Work 

 

In this research, the primary focus is on combining the data from multiple 

agents and improving the interaction process between the user and robot, thus 

increasing the efficiency of the interaction. We formulate a sensor framework that 

uses sensor fusion to achieve a decision before execution of a task and uses a sensor 

management interface through Sensory Maps to mimic the features of the Sensory 

Brain Maps [4, 5]. 

1.3 Contribution 

 

The main contribution of this research is to achieve complete coverage 

planning and dynamic sensor maps. The navigation application implemented covers 
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maximum area of the field and invokes human involvement through a help phase. 

This increases the reliability of the system by reducing the possible collision of the 

vehicle with the obstacle. The usage of sensory maps to incorporate a dynamic sensor 

management and resource management is a novel approach to utilizing sensor space 

effectively and simulating human-brain like model for robot cognition as opposed to 

using neural networks. 

The Complete Coverage application is implemented using Python and 

navigation is achieved on a terrain with surface and terrain obstacles. This 

applications does not use any path planning algorithm but only covers every 

reachable cell in the field. The application performs as expected by ensuring the 

robot to cover maximum area of the field while avoiding obstacles and calling the 

user at the right places for help. The sensor management implemented through 

machine learning works well by dynamically adjusting the space allocated for each 

sensor thereby handling the memory resources for each sensor effectively, 

simulating the human brain model.  

For demonstration of the sensor fusion framework, the navigation 

application is implemented using Robot Operating System. The environment has 

obstacles, namely surface obstacles like blocks, trees etc. and ravines, and the 

framework is customized for the navigation application of the vehicle in such a 

terrain. The Sensor fusion process is heterogeneous and combines information from 

surface obstacle and ravines. Based on the type of obstacle the robot either 

continues moving or queries the user. Interaction with the human user will be 

prompted when the fusion algorithm signals an uncertain state to achieve safe 
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maneuvering of the vehicle in the field. The simulation of the vehicle navigation in 

the terrain with unknown obstacles demonstrates the functionality of the framework 

and its role in achieving bidirectional communication through the help phase under 

conditions of uncertainty. For sensor fusion, we need at least two sensors. If many 

sensors are used there is a possibility of physical interference between them. Thus, 

the choice of three LIDARs for terrain and three LIDARs for surface obstacle 

identification in the navigation application.   

 

1.4 Organization 

 

This thesis is divided into nine chapters. Chapter 2 gives an introduction to 

the various topics, such as Human Robot Interaction, multi sensor fusion, machine 

learning and the brain maps. Chapter 3 describes the various multi sensor fusion 

techniques and methods. Chapter 4 describes the Robot Operating System (ROS) 

and Gazebo. Chapter 5 describes the robot build using Gazebo and Chapter 6 presents 

the simulation of the sensor fusion framework for the robotic vehicle navigation on an 

unknown terrain. Chapter 7 describes the complete coverage planning algorithm and 

the modifications of the algorithm. Chapter 8 demonstrates the dynamic sensor 

management through the sensor maps for the modified navigation application. 

Chapter 9 summarizes the work completed and plans a course for future innovation 

and development. 
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CHAPTER 2:  INTRODUCTION AND BACKGROUND 

 

 

In this chapter, we review the basic concepts of 

a) Human Robot Interaction (HRI) with examples 

b) Multi sensor fusion architectures and types 

c) Path planning  

d) Sensor management 

e) Machine learning – supervised and unsupervised classifications 

f) Sensory brain maps  

 

2.1 Human Robot Interaction 

 

2.1.1 An Introduction 

 

As the name suggests, HRI is combining user involvement during the 

execution of a robotic application. In the following section, we look into a few 

examples of human interactive robots that are used in several domains of our society 

[1].  

2.1.2 HRI in the Society 

 

Mobile robotics has been an area of interest for the past two decades.   

a) Elderly and Aged  

Robots have taken the role of a caretaker for the elderly people and those 

with disabilities. A good example can be found in a smart wheelchair, 

where the necessity of man machine collaboration is emphasized to 
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perform the task of mobility of the vehicle. A socially interactive robot 

called HOBBIT [8] caters the needs of elderly people at home. 

 

 

 

 

Figure 2.1.2.1. HOBBIT Robot to provide elderly care [8] 

 

 

b) Schools and Learning  

In the area of teaching and providing assistance to teachers in schools, 

robots, are becoming significantly used. An example of such can be 
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found in the robots that were used with kindergarten children where such 

an interaction was found to promote geometrical thinking in children 

while playing with the robot [9]. It showed that children enjoyed learning 

and improved their geometrical thinking. In addition to assisting in 

teaching, the robot also provided performance statistics of the children 

over time. Such a positive interaction between humanoids and humans 

is instrumental and necessary for the development and enhancement of 

human robot interaction. 

c) Bio-feedback Systems  

Understanding and interpreting emotional signals in a human-human 

interaction is necessary to ensure an effective communication. Similarly, 

robots should be made capable of recognizing and responding to the 

emotional levels of the human operator. A good example of such an 

integration is where bio-feedback sensors are worn on the user and the 

user’s physiological signals like anxiety levels were measured and these 

reading were then input to the robot [10]. In addition to normal 

operations, such as obstacle detection or wall following, based on the 

readings fed to the robot, actions can triggered such as to move closer or 

to start a conversation with the operator. This is a massive approach 

towards collaborating humans and robots communication and 

interaction. 

d) Medicine  

Medicine is another area where HRI is increasingly used. The use of 
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robotic assistants in hospitals has seen an increase in the recent years. An 

example of such, ‘Gestonurse’ helps the surgeon in the operating room 

(OR) by passing surgical instruments. The operations of the robot can be 

controlled via Speech and gesture [11]. Another application of HRI in 

medicine involves robots to treat patients affected with Autistic 

Disorders. In [12], techniques that were used to treat children with autistic 

disorders using robots are highlighted. Techniques were targeted on the 

areas of weakness found in these children, such as making a conversation, 

initiating social interactions, comprehending emotions through facial 

expressions, joint attention and motor skills.  

e) Industry 

Robots are increasing been used in several industrial applications. 

Human robot collaboration is important to reduce the burden of the 

operators in industrial assembly tasks, such as part acquisition, 

manipulation, and operations. LOCOBOT, the European project that 

involves developing customized robot co-workers in industrial assembly 

lines at lower costs [13] is an example of the use of HRI in industry. 

f) Space Exploration 

Space Exploration has seen increasing use of Robotics in the recent 

years.  One such example, a free-flying robot is referenced in [14] that 

operates inside the International Space Station (ISS).The purpose of the 

robot was to offload the tasks for the astronaut, such as logistics 

management, equipment tracking, and handle an emergency situation 
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(such as a smoke detection). 

g) Military 

Robots are also used in military operations. In [15], a reference is 

mentioned to a robot named BEAR [Battlefield Extraction Assist Robot] 

(Vecna Technologies Cambridge Research Laboratory) for rescue 

missions. The BEAR robot can carry heavy objects and people and is 

capable of navigating through uneven environments. Figure. 2.1.2 [15] 

shows the BEAR carrying a human. The robot is designed to have a 

human-like form that provides the necessary flexibility and versatility 

while operating in environments such as hospitals, building etc. 

 

 

 

 

Figure 2.1.2.2 BEAR Robot used in the military for rescue operations [15] 
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2.2 Multi Sensor Fusion 

 

2.2.1 An Introduction 

 

In order to produce reliable and more accurate information during an 

application, it becomes necessary to combine the data from a variety of sources such 

as voice, camera, touch and other sensors presently mounted on the robot.  Such a 

combination requires the use of a fusion architecture and depending on the type of 

data involved (such as signal, information, decision or image) several classifications 

of sensor fusion exist.  

2.2.2 Sensor Fusion Classes 

There are various classes of Data fusion as highlighted by Dasarthy [16] as 

shown in Figure 2.2.2. 
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Figure 2.2.2 Dasarthy Classification [16] 

 

 

2.2.3 Sensor Fusion Architectures 

Sensor fusion system can also be categorized into Centralized, De-

centralized, Distributed and Hierarchical [16, 17]. Figure 2.2.3 shows the various 

architectures [17]. 

In a centralized system, all the sensor data is streamed to a single node to 

execute the fusion process on the contrary, decentralized systems have nodes that 

autonomously perform the fusion process based on the local information received 
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by its sensors and from its neighboring nodes. Distributed architecture has a fusion 

node that receives the information from other source nodes. The source nodes have 

the ability to process the data associativity and state estimation on its sensor inputs 

before streaming it to the fusion node which hold the global view of the fused data. 

Hierarchical architectures include nodes which perform data fusion at 

various levels of hierarchy, nodes are decentralized and distributed in the system. 
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Figure 2.2.3 Types of Data Fusion Architectures [17] 
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2.2.4 Dempster-Shafer Theory of Evidence 

A variety of Data Fusion techniques exist such as Bayesian Inference, 

Evidential Reasoning, Interval Calculus et al [17, 18]. While probabilistic methods 

are used widely there exist inherent limitations as outlined in [18], such as assigning 

aprori probabilities, increased complexity in presence of multiple hypothesis, and 

handling uncertainties while making decisions. In order to interact with humans, a 

fusion method that can handle uncertainties is necessary. Dempster-Shafer theory 

of evidence [6, 7, 18] is used to handle incomplete knowledge and uncertainty. This 

data fusion method is described as follows. 

In this reasoning method [6, 7, 17, 18], all possible mutually exclusive 

events of the similar kind are listed in a set S. Each of the sensors based on its 

observation will assign belief mass over S. The elements of the set 2S are the 

hypotheses. The sum of the mass function of all hypotheses is one. Belief function 

is used to express inaccurate beliefs. 

The conditions on the belief function are: belief(S) =1, belief (null) =0 and belief 

(hypothesis) = Sum of all mass functions for all evidence to support the proposition.  

The confidence interval is upper-bounded by the plausibility value to include all 

observations that don’t rule out the proposition supported by the corresponding belief 

function. In order to combine two mass functions m1 and m2, the Dempster-Shafer 

theory defines the following rule [18, 19, 72]: 

m1 ⨁ m2(∅) = 0  (Equation 2.2.4.1) 

m1 ⨁ m2(H) = ∑ X ∩Y=H m1(X)m2(Y)       

1- ∑ X ∩Y= ∅ m1(X)m2(Y)         (Equation 2.2.4.2) 
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Thus, it is not necessary to have aprori probabilities and data is provided only at the 

time when sensor reads them. This is a significant advantage of evidential reasoning 

over probabilistic methods such as Bayesian inference [18, 19, 72]. 

2.3 Path Planning 

 

2.3.1 Introduction 

Path planning, as the name indicates is the process of formulating a route for 

the vehicle to navigate between any two or more locations. The overall path could 

be further dissected into global and local paths depending on how the path planning 

algorithm is executed. In the following section we discuss one such path planning 

technique used in vehicle navigation. Some of the path planning techniques are 

described in [18, 20]. 

2.3.2 Complete Coverage Planning 

In [20], the concept of complete coverage planning was introduced. The 

vehicle navigates through the field column by column following a global or regular 

path. On encountering an obstacle, it formulates a local path to navigate around the 

obstacle and avoid the obstacle. Figure 2.3.2 shows the algorithm used for path 

planning [20]. The algorithm uses stacks to store the left and the right local paths. 

The tables 2.3.2.1 and 2.3.2.2 show the calculation of the local paths when the 

vehicle faces an obstacle [20]. 
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Figure 2.3.2 Obstacle   Figure.2.3.2 Local path 

 

 

 

Table 2.3.2.1 : Case table for left local path [20] 

T = Top, L = Left, B = Bottom, R = Right 

Main case 1 Ysource < Ytarget  

Case No Condition Sequence 

1.1 
(SourceY < AltGoalY) && 

(SourceX == AltGoalX) 
TLBR 

1.2 
(SourceY < AltGoalY) && 

(SourceX > AltGoalX) 
TLBR 

1.3 
(SourceY < AltGoalY) && 

(SourceX < AltGoalX) 
LBRT 

1.4 
(SourceY == AltGoalY) && 

(SourceX > AltGoalX) 
RTLB 

1.5 
(SourceY == AltGoalY) && 

(SourceX < AltGoalX) 
LTBR 

1.6 
(SourceY > AltGoalY) && 

(SourceX == AltGoalX) 
BLRT 

1.7 
(SourceY > AltGoalY) && 

(SourceX > AltGoalX) 
TRLB 

1.8 
(SourceY > AltGoalY) && 

(SourceX < AltGoalX) 
BRLT 
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Table 2.3.2.1 : (continued) 
 

Main case 2 Ysource > Ytarget  

2.1 
(SourceY < AltGoalY) && 

(SourceX == AltGoalX) 
TLRB 

2.2 
(SourceY < AltGoalY) && 

(SourceX > AltGoalX) 
RBLT 

2.3 
(SourceY < AltGoalY) && 

(SourceX < AltGoalX) 
TLRB 

2.4 
(SourceY == AltGoalY) && 

(SourceX > AltGoalX) 
RBTL 

2.5 
(SourceY == AltGoalY) && 

(SourceX < AltGoalX) 
LTBR 

2.6 
(SourceY > AltGoalY) && 

(SourceX == AltGoalX) 
LTRB 

2.7 
(SourceY > AltGoalY) && 

(SourceX < AltGoalX) 
LTRB 

2.8 
(SourceY > AltGoalY) && 

(SourceX > AltGoalX) 
BLTR 

 

 

 

 

Table 2.3.2.2 : Case table for right local path [20] 

T = Top, L = Left, B = Bottom, R = Right 

Main case 1 Ysource < Ytarget  

Case No Condition Sequence 

1.1 
(SourceY < AltGoalY) && 

(SourceX == AltGoalX) 
TRBL 

1.2 
(SourceY < AltGoalY) && 

(SourceX > AltGoalX) 
TLBR 

1.3 
(SourceY < AltGoalY) && 

(SourceX < AltGoalX) 
TRBL 

1.4 
(SourceY == AltGoalY) && 

(SourceX > AltGoalX) 

  

RTLB 

 

 

1.5 

 

(SourceY == AltGoalY) && 

(SourceX < AltGoalX) 

 

LTRB 

1.6 
(SourceY > AltGoalY) && 

(SourceX == AltGoalX) 
BLRT 

1.7 
(SourceY > AltGoalY) && 

(SourceX > AltGoalX) 
TRLB 
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1.8 
(SourceY > AltGoalY) && 

(SourceX < AltGoalX) 
BLTR 

 

 

 

Table 2.3.2.2 : (continued) 

 

Main case 2 Ysource > Ytarget  

2.1 
(SourceY < AltGoalY) && 

(SourceX == AltGoalX) 
TLRB 

2.2 
(SourceY < AltGoalY) && 

(SourceX > AltGoalX) 
RBLT 

2.3 
(SourceY < AltGoalY) && 

(SourceX < AltGoalX) 
TLBR 

2.4 
(SourceY == AltGoalY) 

&& (SourceX > AltGoalX) 
RBTL 

2.5 
(SourceY == AltGoalY) 

&& (SourceX < AltGoalX) 
LBRT 

2.6 
(SourceY > AltGoalY) && 

(SourceX == AltGoalX) 
RTLB 

2.7 
(SourceY > AltGoalY) && 

(SourceX < AltGoalX) 
BRTL 

2.8 
(SourceY > AltGoalY) && 

(SourceX > AltGoalX) 
BLTR 

 

 

 

2.4 Sensor Management 

 

2.4.1 Introduction 

Sensor management is the heart of the entire multi sensor fusion system [21]. 

Sensor management provides a lot of freedom for the architect to formulate and 

deploy their designs and investigate existing architectures. In the following sub 

sections, we describe the several such sensor management architectures and their 

relevant applications. 

2.4.2 Sensor Management Architectures 

As described in [21, 23], there are two types of sensor management 

architectures. They are described as below [21]. In [22, 50], several implementations 
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of the sensor fusion architectures in MATLAB is presented. It is necessary to have a 

robust sensor management system to achieve a better performing multi sensor 

network. 

2.4.2.1 Information-Theoretic 

In this technique, the goal of the sensor manager/management is to decrease 

the measure of uncertainty in a sensor observation. This approach aims at 

maximizing the information gain of the sensor network to improve the overall 

performance [21].  

2.4.2.2 Bayesian Decision Making 

In contrast to maximizing the information, this method aims at minimizing 

the cost function associated with a decision. This approach utilizes apriori 

probabilities of the sensors and requires choosing “proper thresholds”, that will be 

used during the decision making process [21, 23]. It is more computationally 

intensive than the information centric approach. 

2.5 Machine Learning 

 

2.5.1 Introduction 

 

In order to incorporate automation into the vehicle or the robot, it becomes 

necessary to train the vehicle to self-adjust or self-modify its behavior when reacting 

to situations. Machine learning is a field in Artificial Intelligence [24] that caters to 

this purpose. From simple automated voice systems to the Self-driving cars, machine 

learning has made it possible to realize intelligent systems. Learning with experience 

is the key idea behind developing machine learning algorithms. 
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2.5.2 Types of Classifications 

 

To achieve the desired autonomous and intelligent system for the application 

we as the user need to train the robot with possible sets of stimuli known as the training 

set. Depending on the application, the user might know the corresponding outputs and 

define them or might need to let the system categorize the outputs by itself. Hence, 

there are three possible types of classifications to the end user requirements [25, 26, 

27]. 

a)  Supervised Classifiers 

The user knows the output patterns for the input sets and trains the system. 

When the system encounters a particular input pattern it recognizes it and fits it with 

an output label used during the training. Inductive learning [28] is a category of 

supervised learning. Naïve Bayes, Decision Trees etc. are a few examples of 

classifiers. 

b) Unsupervised Classifiers 

In Unsupervised learning, the system has to learn without a trainer i.e., the 

system has to deal with the environment and self-train since there are no explicit output 

patterns defined for the possible inputs. As mentioned in [25], the best way to train the 

system is through experiments, the system must possess memory and information 

retrieval abilities.  

Moreover, this technique requires heavy interaction of the system with the user 

and environment. Clustering is a commonly used unsupervised classifier. 

c)  Reinforced Classifiers 

Unlike supervised and unsupervised learning, reinforcement incorporates the 
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reward or punishment that the system will face during its experience. The interaction 

of the system with the environment produces feedback signals that are categorized as, 

reward and punish labels, hence the learner adapts its responses according to these 

labels. Some of the examples are Q learning and temporal difference learning [29]. 

 

2.6 Sensor Maps 

 

2.6.1 Introduction 

 

Dr. Ramachandran, in his book [4] has described the concept of brain maps. 

Brain maps or Penfield maps as shown in Figure 2.6.1 [4], are representation of the 

various sensory stimuli of the human body. As the figure shows, every sensory input 

has a corresponding slot or position on the map. These slots are of varying sizes and 

located in the sequence shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6.1 A portion of the Penfield map of the skin surface [4] 
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2.6.2 Dynamic Nature of the Maps 

 

The idea that the brain is not malleable in learning and that the brain maps are 

fixed in size and position was a long held belief in neuro science. However, in [5], Dr. 

Doidge, illustrates several examples and case studies of patients who were physically 

affected by pain due to trauma and other medical conditions such as brain injury. These 

patients were able to recover from their physical problems not because of the treatments 

proposed and highlighted by Dr. Doidge, but through the dynamic nature of the brain 

maps that changed as the treatments were practiced on the patients. The plastic nature 

of the brain (or the sensory brain maps!), is a remarkable finding that is inspires 

confidence into patients and gives hope that they can lead a normal life like their friends 

and peers.  

When a sensory input is not recognized for a long time due to a physical injury 

or under-utilization, the corresponding slot in the map starts to reduce, as described in 

the book by Dr. Ramachandran. By therapies or training, such a slot can be re-allocated 

back to the sensory input as described in [5, 30]. Similar to how brain exercises can 

help rewire the brain, learning disorders cured through training and several other 

methods of therapy to revitalize the brain, differentiation of the brain map can be 

achieved. This is the use-it-or-lose-it principle of the brain.  

2.7 System Integration 

 

The previous sections provided an introduction to each of the topics that are 

used in the research work. Here, we integrate them all into our framework that 

synthesizes these elements. The framework we formulate is very similar to the sensor 

fusion framework described in [21]. The main idea is to develop a robot navigation 
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application and utilize the machine learning techniques to implement the dynamic 

sensor map of the vehicle. We will deep dive into the implementation and results 

achieved so far in the following chapters. 
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CHAPTER 3: M U L T I  S E N S O R  F U S I O N  

 

 

3.1 Introduction 

 

Sensor fusion involves combining data from several sensors to obtain better 

information for perception. Humans and animals process multiple sensory data to 

reason and act and the same principle is applied in multi-sensor data fusion. Multi-

sensor fusion combines data from different sensors into a common representation 

format [31, 32]. In developing robotic systems, multi-sensor fusion plays a crucial 

role since interaction with the environment is instrumental in successful execution of 

the task. Significant applications of multi-sensor fusion can be found in applications 

such as mobile robots [32, 33,34, 35], defense systems (such as target tracking [32, 

36, 37, 38]), medicine [39, 40], transportation systems [41, 42] and industry [43, 44, 

45]. The motivation for sensor fusion is discussed in section 3.2. Section 3.3 

describes the various types of sensor fusion proposed in literature. The various 

topologies and models for sensor fusion is covered in sections 3.4 and 3.5. Sections 

3.6, 3.7 provide an overview of signal and decision level fusion. 

3.2 Motivation 

 

The main goal of multi-sensor fusion is to achieve better operation of the system 

using the collective information from all sensors. This is also referred to as the 

synergistic effect [46, 47, 48]. Combining the data from a single sensor at different 

time intervals can also produce this effect [48].  
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3.3 Sensor Fusion Categories 

 

Depending upon the sensor configuration, there are three main categories of 

sensor fusion: Complementary, Competitive and Co-operative [49]. These are 

described below as follows: 

a) Complementary 

In this method, each sensor provides data about different aspects or attributes 

of the environment. By combining the data from each of the sensors we can arrive at 

a more global view of the environment or situation. Since there is no dependency 

between the sensors combining the data is relatively easy [49, 50]. 

b) Competitive  

In this method, as the name suggests, several sensors measure the same or 

similar attributes. The data from several sensors is used to determine the overall value 

for the attribute under measurement. The measurements are taken independently and 

can also include measurements at different time instants for a single sensor. This 

method is useful in fault tolerant architectures to provide increased reliability of the 

measurement [49, 50]. 

c) Co-operative  

When the data from two or more independent sensors in the system is required 

to derive information, then co-operative sensor networks are used since a sensor 

individually cannot give the required information regarding the environment. A 

common example is stereoscopic vision [49, 50]. 

Several other types of sensor networks exist such as corroborative, 

concordant, redundant etc. [48]. Most of them are derived from the above mentioned 
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sensor fusion categories. 

Dasarthy [51, 52] classified sensor fusion types depending upon the 

input/output characteristics. Figure 3.3 [51], shows the various sensor fusion types. 

Only a few combinations are allowed in Dasarthy’s scheme for the inputs and 

outputs. 

 

 

 

Figure 3.3 Dasarthy’s classification of multi-sensor fusion [51]. 
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3.4 Sensor Fusion Topologies 

 

There are different topologies namely, Centralized, Decentralized and Hybrid 

[48, 50, 53, 54]. Each of these is described as follows: 

a) Centralized Architecture 

In this architecture, a single node handles the fusion process. The sensors 

undergo preprocessing before they are sent to the central node for the fusion process 

to take place. Figure 3. 4. 1 shows a typical centralized architecture [48, 50]. 

b) Decentralized  Architecture 

In this architecture, each of the sensor processes data at its node and there is 

no need for a global or central node. Since the information is processed individually 

at the node, it is used in applications that are large and widespread such as huge 

automated plants, spacecraft health monitoring etc. [50]. Figure 3.4.2  shows a typical 

decentralized architecture [48, 50]. 

c) Hierarchical Architecture 

This architecture is a combination of both centralized and distributed type. 

When there are constraints on the system such as a requirement of less computational 

workload or limitations on the communication bandwidth, distributed scheme can be 

enabled. Centralized fusion can be used when higher accuracy is necessary [50, 53]. 

A simple comparison between the centralized and decentralized topologies is 

shown below in Table 3.4 [48, 50, 17].  
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Figure 3.4.1 Centralized Topology [17, 53]  
 
 
 

 

 

 
 

 

Figure 3.4.2 Decentralized Topology [17, 53]. 
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Table 3.4: Centralized and Decentralized topologies [48, 50, 17] 

 

Parameter Centralized Distributed 

Communication 
Central node acts 

bottleneck 

Data processing 

load distributed 

Computation 

Depends on the  

performance of 

central processor 

Can be easily 

scaled 

Modularity 
Re-programming 

for new sensors 
Modular in design 

Fault-tolerance 
Depends on the 

central computer 

Distributed data 

processing 

 

 

 

3.5 Multi-Sensor Fusion Models 

 

The application that uses the sensor fusion plays a vital role in determining 

the type of architecture. Hence there is no specific model or architecture that is 

definitive for all applications [55, 56, 57].  

In this section, the two most widely used architectures namely, the JDL 

Fusion architecture and the Waterfall Fusion Process Model are discussed. 

a) JDL Fusion Architecture 

JDL stands for the US Joint Directors of Laboratories that was established 

under the guidance of Department of Defense and was proposed in 1985. The JDL 

model is functionality dependent and can be customized depending on the 

application. Varieties of applications from sensor networks to human robot interface 

can be implemented using this model [50].  

The model uses five levels for data processing and a database. These 
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components can communicate through a bus interface [50, 54, 56]. The JDL model 

is shown in Figure 3.5.1 [54, 56]. These levels could be executed sequentially or 

concurrently during the application. 

Sources, in the JDL model can consist of sensor data or data given by the user 

such as user input, reference data or geographical data. The Man-Machine Interaction 

block, as the name suggests, enables the user to interact with the system through user 

command, reports etc. Furthermore, this block helps in providing alert messages and 

could use multimedia tools such as displays, sounds etc. to achieve communication 

with the user. 

The Source Pre-Processing also referred to as Level 0, performs pre-screening 

of data and then allocates it to the appropriate process [54, 56].  In the Object 

Refinement or Level 1, the following operations are performed namely, alignment of 

data using frame transformation, data association, tracking and estimation of the 

current and future position of the object. Also, Level 1 can be considered to be 

composed of kinematic and identity fusion [50]. In kinematic fusion, the velocity, 

acceleration of the object is determined. In identity fusion, the type of the object such 

as aircraft or missile is determined using parametric estimation [50, 54]. After 

processing the data from Level 1, based on the situation the contextual relationship 

is determined between the event and the object under observation. This process of 

refinement is called as Situation Refinement or Level 2.  Depending on the a priori 

data and the future situation prediction inferences are drawn in Level 3 or Threat 

Refinement. The inferences are used to identify the vulnerabilities and the 

opportunities for the operation. This level uses game theoretic techniques [54].  
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Process Refinement or Level 4 deals with monitoring the system performance 

(handles real time constraints) and sensor allocation to satisfy mission objectives and 

goals. This level does not perform data processing operations and uses sensor 

management techniques [50, 54, 56]. The Database Management System helps 

monitor, update, add and provide information to the fusion process [50, 54, 56]. 

Although the JDL model helps in basic understanding of the sensor fusion 

process it is data centric and hence hard to extend or reuse the applications based on 

this model. It is abstract and interpretation could be difficult [54, 56].  

Table 3.5.1 [54] highlights the summary of various components used in JDL 

model. 

 

 

 

 

 

 

 

 

 

Figure 3.5.1 JDL Fusion Model [54, 56]. 
 

 
 
 
 
 
 
 

 



32 

 

Table 3.5.1: Summary of JDL process components [54] 
 

SOURCES 
Can include data from sensors to a priori information 

from databases to human input. 
 

 

PROCESS 

ASSIGNMENT 

 

Enables the data fusion process to concentrate on the data 

most pertinent to the current situation as well as reducing 

the data fusion processing load. Involves data pre-

screening and allocating data to appropriate processes. 

 
 

 

OBJECT 

REFINEMENT 

I 

(Level 1) 

 

Transforms data to a consistent reference frame and units 

and estimate or predict object position, kinematics, or 

attributes. Also, assigns data to objects to allow statistical 

estimation and refine estimates of the objects identity or 

classification. 

 
 

 

SITUATION 

REFINEMENT 

(Level 2) 

 

Describes of the relationship between objects and 

observed events. This processing determines the meaning 

of a collection of entities and accounts for environmental 

information, a priori knowledge, and observations. 

 
 

THREAT 

REFINEMENT 

(Level 3) 

 

Projects the current situation into the future and indicates 

possible threats, vulnerabilities, and opportunities for 

operations. 

 
 

PROCESS 

REFINEMENT 

(Level 4) 

 

Monitors real-time performance of data-fusion, identifies 

information required for data fusion improvement.     

Also,   allocates and directs sensor and sources to achieve 

mission goals. 
 

 

DATABASE 

MANAGEME

NT SYSTEM 

 

Most extensive ancillary function required to support 

data fusion. Also features data retrieval, storage, 

archiving, compression, relational queries, and data 

protection. 

 
 

HUMAN-

COMPUTER 

INTERACTIO

N 

 

Enables human input and communication of data fusion 

results to operators and users, and includes methods of 

alerting human as well as augmenting cognition. 
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b) Waterfall Fusion Process Model 

The Waterfall fusion process model (WFFM) deals with the low level 

processing of data and is shown in Figure 3.5.2  [54, 58]. The Waterfall model has a 

lot of common features as the JDL model. The processing stages of the Waterfall 

models relate to the levels of the JDL model [54, 56, 58] and the comparison is shown 

in Table 3.5.2.  

However, similar to the JDL model the Waterfall fusion model is abstract and 

doesn’t have feedback between the stages. It is an acyclic model. The modified 

WFFM is described in [50] that provides for some feedback between the stages. This 

modified model is action oriented and has the provision for control loop action or 

feedback loop as shown in Figure 3.5.3 [50]. Several other fusion models exist such 

as the Omnibus model [59], Boyd or OODA model [60], LAAS Architecture [61].  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.5.2 Waterfall Fusion Process Model [58] 
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Figure 3.5.3 Modified Waterfall Fusion Model [50].  

 

 

 

Table 3.5.2: JDL and Waterfall fusion models [54, 56, 58] 
 

JDL levels Waterfall stages 

 

Level 0 

 

Sensing and Signal Processing 

 

Level 1 

 

Feature Extraction and Pattern  

Processing 

 

Level 2 

 

Situation Assessment 

 

Level 3 

 

Decision Making 
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3.6 Signal Level Fusion 

 

In signal level fusion, data from multiple sources (sensors) are combined to 

obtain better quality data and higher understanding of the environment being 

observed. Signal level fusion often has either or both of the following goals:  

Obtain a higher quality version of the input signals i.e. higher signal to noise 

ratio [62]. Sensor measurements from several sensors which have same physical 

properties are combined to determine the parameter being measured, more accurately 

[48]. This minimizes and sometimes eliminates any uncertainty or inaccurate 

predictions caused by measurements from faulty sensors, measurement noise and 

state noise. For instance, readings from multiple temperature sensors in close 

proximity in a given space can be used for this kind of fusion. 

Obtain a feature or mid-level information about the system that a single 

measuring node cannot reveal. A feature is the first stage in understanding the state 

of the environment that helps the system in formulating a decision. Heterogeneous 

sensors are often employed for this process. For instance, signals from radar and 

images from camera are used in target recognition [54]. 

For sensor data to undergo signal level fusion, it is essential to condition the 

signals in the signal preprocessing phase. The signals have to be in a common 

representation format [48]. The stages involved in this process, as shown in Figure 

3.6.1, include but not limited to: Signal alignment, normalization and scaling [48]. 

There are several methods by which signal level fusion can be achieved. The 

choice of method depends on various factors like the scenario and type of application, 
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type of data or signal, relationship between the data or the state representation of the 

system. 

 

 

 

 

Figure 3.6.1 Common representation format functions [48]. 
 

 

The following are some of the commonly used signal fusion methodologies:  

 a) Weighted Averaging 

Signal fusion can be achieved by taking an average of the various sensor 

signals measuring a particular parameter of the environment. If signals from some 

sensors can be trusted more than the other, a higher weight is assigned to that sensor 

to increase its contribution towards the fused signal. The confidence level is a 

function of variance of the sensor signal. [62]  

 

                (1) 

where, wi = f(variance) 

 

 b) Kalman Filter 

The Kalman filter method is a common adaptive method of sensor fusion to 

remove redundancy in the system and to predict the state of the system. This is a 

linear model and the current state of the system is dependent on the previous state. 

 

𝑥𝑓𝑢𝑠𝑒𝑑 =  ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0





37 

 

The system is represented by the following state-space model: 

 

 

where, x: state vector, F: state transition matrix, B: Input transition matrix, u: Input 

vector, G: Process noise transition matrix, w: process noise vector, H: Measurement 

matrix, v: measurement noise vector. The covariance matrices of w and v are Q(k) 

and R(k) respectively. There are two phases of state estimation with Kalman filter: 

 Predict phase: 

 

                (2) 

               (3) 

 Update phase: 

         (4) 

          

             (5) 

                (6) 

where, P: estimation covariance, K: Kalman gain 

In the update or correction phase, the estimate from the predict phase is 

updated with the observation. If there are two sensors and both of them sending data 

simultaneously, then Z = [z1, z2]. If the sensors are sending data one after the other, 

then the reading from first sensor can be used as a priori information before 

observation from second sensor is used to update the prediction.  [62] 

 

x̂
𝑘 = 𝐴 x̂

𝑘−1 + 𝐵 𝑢𝑘 

𝑃𝑘 = 𝐴 𝑃𝑘−1 𝐴𝑇 

𝐾𝑘 =  𝑃𝑘𝐶𝑇(𝐶𝑃𝑘𝐶𝑇 + 𝑅)−1 

x̂
𝑘 =  x̂

𝑘 + 𝐾𝑘(𝑧𝑘

− 𝐶 x̂
𝑘) 

𝑃𝑘 = (1 −  𝐾𝑘𝐶)𝑃𝑘 

𝑥(𝑘) = 𝐹 𝑥(𝑘 − 1) + 𝐵 𝑢 + 𝐺 𝑤  
𝑧(𝑘) = 𝐻 𝑥(𝑘) + 𝑣 
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c) Track to Track Fusion 

Track to track fusion methodology has local tracks generated by distinct local 

sensors. Then at a central node the tracks are fused as shown in Figure 3.6.2 [63]. 

The local track can be individual Kalman filter nodes that provide state estimation at 

the local track level. These states are then fused into a state vector that has combined 

information from all the local sensor nodes. Sometimes, this new estimate is sent as 

feedback to the local sensor nodes. The new state estimate is obtained by the 

following formula [63]. 
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where, Pm
k|k  is the error covariance matrix of the corresponding state 

estimation x^m
k|k . P

12
k|k is the cross covariance matrix of the two state vectors where  

P12
k|k =  (P12

k|k)
T. 

P12
k|k is defined by the following equation: 
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(8) 

This configuration can be extended for multiple sensors. A modified track-

to-track fusion and three fusion algorithm are explained in detail in [63].  

There are other ways to define the track fusion algorithm such as taking 

confidence weighted averaging of the tracks based on variance [63].  

 d) Neural Networks 

An artificial neural network consists of interconnection of processing nodes 
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called neurons. There is a pattern of interconnection between the neuronal layers that 

are weighted and the learning process that updates these weights. Data fusion models 

can be established using neural networks such that neurons and interconnecting 

weights are assigned based on the relationship between the multi-sensor data input 

and the signal output. The neural networks can be multilayer feed-forward or 

recurrent type. [64] 

Unlike Kalman filters, neural networks offer non-linear transfer functions and 

parallel processing capabilities. This can help in performing image fusion. Figure 

3.6.3 shows a basic structure of three layer neural network with nonlinear mapping. 

 

 

 

Figure 3.6.2 Track to track fusion architecture [63]. 

 

 

 

 

 

Figure 3.6.3 Neural network structure for sensor fusion [64]. 
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The fused output is a combination of input signal and corresponding weights 

calculated by the equation [64]: 

 

                (9) 

where, wi is the weight; xi is the sensor data. 

Several fusion methodologies are used and depending on the input and 

outputs required the stages in the model can perform either signal, feature or decision 

level fusion. These methods are either used as standalone or can be combined with 

aforementioned signal fusion methods.   

 The probabilistic approach for sensor fusion includes the use of joint 

probability distributions and Gaussian distributions [68]. Other fusion methods 

include Bayesian, least-squares for feature extraction [69] and some statistical 

approaches. [48, 62, 70]. In [65, 66, 67] the authors explain various approaches for 

modeling sensor fusion architecture using neural networks. 

3.7 Decision Level Fusion 

 

Also known as Symbol level fusion, the decision level fusion combines 

several sub-decisions or features to yield a final or higher decision that can be used 

to take an action. Symbol could be an input decision. In this case, fusion of symbolic 

information insists the use of reasoning and inference while handling uncertainty. 

Symbol level fusion increases the confidence or truth value and is considered as 

decision fusion [71, 72]. Identity and Knowledge based methods form the two 

categories of decision fusion [50, 72]. Table 3.7 [50, 72] lists few of the decision 

fusion methods or AI techniques for each category.  

𝑦 =  ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0
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One of the most widely used decision or inference method is Dempster-

Shafer theory (D-S theory). This method is very useful for human-robot interaction 

based applications [71, 72, 75, 76]. We describe in detail the D-S theory in the 

following sub-section followed by a comparison with Bayesian inference which is 

another widely used decision fusion technique. 

a) Dempster-Shafer Theory of evidence  

D-S theory is a generalization of the probability theory [6, 7, 71, 75]. In this 

method, a frame of discernment Ω is defined which is set of elementary hypotheses: 

    Ω={ai},i=1, ..., n                 (10) 

 

 

Table 3.7: Decision Fusion Models [50, 72] 

Identity based Knowledge based 

Maximum a priori (MAP) Syntax rule 

Maximum Likelihood (ML) Neural Network (NW) 

Demspter-Shafer, etc Fuzzy Logic , etc 

 

 

 

The sum of the mass function of all hypotheses is one. Belief function is used 

to express inaccurate beliefs. Mass values are assigned to the elements of the power 

set 2Ω   of the frame of discernment which hold the following properties: 

  belief (null) = 0                                      

  belief (hypothesis) = Sum of all mass functions for all evidence to 
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support the proposition. 

The confidence interval is upper-bounded by the plausibility value to include 

all observations that don’t rule out the proposition supported by the corresponding 

belief function. In order to combine two mass functions m1 and m2 the Dempster-

Shafer theory defines the following rule [6, 7]: 

m1 ⨁ m2(∅) = 0            (11) 

               (12) 

 

b) Dempster-Shafer and Bayesian fusion comparison 

 Although both these methods are widely used in inference engines there 

are few differences between them [72, 76]. The main difference being the concept of 

support and plausibility to define uncertainty limits in Dempster-Shafer [72, 6, 7] 

which is not found in Bayesian inference. D-S theory is an evidential reasoning 

method where belief masses can be assigned to elements and sets, and on sets of sets 

[72]. Capturing ignorance or uncertainty is another strong feature of evidential 

reasoning methods which is not achievable in probabilistic methods. It is not 

necessary to have a prori probabilities and data is provided only at the time when 

sensor reads them [72, 76] during observation. Dempster-Shafer theory of evidence 

finds widespread use in human-robot interactive (HRI) applications. A review of a 

few applications of HRI can be found in [1].  

By using the power set as the frame of discernment beliefs can well 

represented. However, when the set is continuous the number of subsets cannot be 

measured and hence this is a significant limitation that is found in evidential 

𝑚1 ⊕ 𝑚2(𝐻) =  
∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌=𝐻

1 −  ∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌= ∅
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reasoning methods [71, 72] that work well with discrete sets.  

In the current research work the framework formulated is similar to that 

described in [73, 74]. The framework uses sensor fusion, machine learning and the 

robot operating system to navigate an unknown terrain with surface and terrain 

obstacles. 

 

3.8 Conclusion 

 

In this chapter a brief overview of the various concepts of multi-sensor fusion 

was presented. The types of sensor fusion, the sensor fusion topologies and 

architectures were reviewed. A survey of sensor fusion types can be found in [77]. 

Signal level and Decision level fusion was also covered highlighting the methods 

used to achieve each of them. 
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CHAPTER 4:  ROBOT OPERATING SYSTEM 

 

 

4.1 Introduction  

 

In this chapter we describe the basics of the Robot Operating System (ROS). 

It is a robotic platform for running simulations. ROS can be defined as [78, 79] a 

open source meta operating system that provides features similar to an operating 

system. These features include physical layer abstraction, low level device control, 

communication between processes and package management. There is also provision 

to obtain, build, write and run code across multiple computers [78] through different 

tools and libraries. ROS works together with the operating system currently installed 

and doesn’t replace it. 

 

4.2 Advantages of ROS 

 

Using ROS has some significant advantages that are summarized below [78]. 

a) Distributed Computation 

Several robotic systems have multiple processes that are executed on different 

computers. These processes could control one or more sub-systems of the robot such 

as sensors or actuators. Even a single robot could have its features written as a set of 

independent modules or processes that is easy to control and configure. This is called 

complexity via composition. The modules coordinate together in-order to 
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achieve the goal. Also, ROS helps multiple computers to co-ordinate and work on a 

shared task and helps in the communication between these computers. Most 

importantly, ROS provides mechanism to include human users to control and send 

commands to the robot from any electronic device such as laptop, mobile device etc. 

All of these are dependent on the communication between the processes and ROS 

helps to achieve them through message passing and through services [78]. 

b) Software Reusability  

 One of the key elements in software engineering is the ability to develop 

software that is adaptable to changing business or project requirements. Robotic 

applications require the use of path planning algorithms, navigation, motion planning 

and several others. ROS helps is modifying and applying these algorithms through 

its libraries depending upon the context and the application that is sought for. This 

eliminates the need to re-implement the algorithms for every new context or 

application that is being developed [78].  

Also, since ROS uses message passing as its means of communication. It 

integrates easily with the latest hardware and implementations of several frequently 

used applications such as navigation stacks, motion control etc, are readily available 

[78, 79].  

c) Rapid Testing  

While software development can be time consuming it is often more 

important to test the software modules being developed. In robotics software 

development testing is often time consuming [78] because of the non-availability of 

physical robots. The testing can be still time consuming in the presence of physical 
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robots because of their slowness and other physical level difficulties. 

With ROS it is possible to record and playback the sensor data and other 

similar messages through the use of rosbag [78, 79]. This helps to test the different 

ways by which the sensor data is processed by the system.  ROS also separates the 

physical level abstraction and the decision making (high level processing) 

components of the robotic system. By doing this the low level processing or hardware 

can be substituted with a simulator and testing can be performed on the higher levels 

of the system [78]. 

Although ROS offers such significant advantages it is not the only robotics 

platform. However, in our research work ROS was preferred because of the vast 

amounts of information available through the robotics community [79, 80, 81] which 

helps is faster development and debugging of the project. 

ROS is not a programming language but has its programs written using C++. 

There is also support for other libraries that are written using the languages such as 

python, lisp etc.  ROS includes server, command-line tools, graphical interface and 

a build system alongside several client libraries [78, 79]. ROS is not an integrated 

development environment like eclipse etc. 

4.3 ROS Distributions and Installation 

 

ROS versions are named as distributions. Some of the distributions are hydro, 

groovy, electric, fuerte, jade etc. In this research work we have used ROS indigo and 

its corresponding libraries. The various steps to install and configure ROS indigo [78, 

79, 80].  
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4.4 Gazebo Simulator 

 

Gazebo is a robotics simulator that aids in testing of robotic algorithms, 

designing robots, testing and training of AI based robotic systems [82]. Gazebo is a 

highly robust physics engine that offers capabilities of high quality graphics and 

programmable interfaces [82].  It was developed by the Open Source Robotics 

Foundation (OSRF) and is supported by Windows, Linux and MacOS. It provides 

support for various families of robots such as unmanned aerial vehicles (UAV), 

ground vehicles, underwater robots, humanoids, robotic arms, robotic hands and 

human avatars [80, 82]. It also provides support for various sensors such as odometry, 

IMU, collision, GPS, monocular and stereo cameras, depth cameras, 2D and 3D laser 

scanners [80, 82]. 

4.4.1 Gazebo Components 

 

In this section the different components of gazebo are defined from [82]. 

a) World File 

This file contains the details of the various elements used in the simulation 

such as the sensors, robots and the other static objects. Format of this file 

follows the Simulation Description Format (SDF). The world file has the 

extension “.world”. 

b) Model File 

This file helps to facilitate model reusability and simplifies the world file 

described above. It uses the same format as the world file. Gazebo 

features an online database of models and any model can be inserted from 

this database and downloaded at runtime. 
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c) Environment Variables 

There are several environmental variables that need to be set up to locate 

necessary files and to establish communication between the server and 

client. The list of these variables are: 

GAZEBO_MODEL_PATH: directories where Gazebo searches for 

models 

GAZEBO_RESOURCE_PATH: directories where Gazebo searches for 

world and media files. 

GAZEBO_MASTER_URI: Gazebo master URI. This is the IP and port 

of the server. 

GAZEBO_PLUGIN_PATH: directories where Gazebo searches at 

runtime for shared libraries. 

GAZEBO_MODEL_DATABASE_URI: Online model database URI. 

d) Gazebo Server 

The server parses the “.world” file and uses the physics and sensor engine 

to simulate the physical world. 

e) Graphical Client 

The client connects to the server and visualizes the elements. The 

simulation can be modified using the graphical client. 

f) Plugins 

Plugins can be used to interface with gazebo. They can be given through 

command-line or through the “.world” file.  The server or client also have 

the capability to load and run the plugins. 
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4.4.2 Robot Model using Gazebo 

 

In this section we describe a robot model built using gazebo also known as 

SDF Model Object [82]. The SDF model could be a simple shape such as rectangle, 

square, circle etc or a complex robot.  The various components of an SDF model are 

as follows: 

a) Links 

The physical properties of one body of the model is described using links. 

It could be a wheel or even a join chain link. For better performance and 

stability it is necessary to keep the links as less as possible. Links could 

also contain collision and visual elements which are described as follows. 

Collision elements encapsulates a geometric structure to detect any 

collisions. The visualization of the parts of the link are done through a 

visual element. A link may contain many collision elements and 0 or more 

visual elements. The mass and rotational inertia matrix are dynamic 

properties of the link and are described using the inertial element. The 

sensor element collects data from the environment and there could be 0 

or more sensor elements in a link. 

b) Joints 

Joints are used to connect links.  

c) Plugins 

This can be used to control a model and is a shared library. 

4.4.3 Gazebo and ROS Integration 

 

 To integrate stand-alone Gazebo with ROS a set of wrappers called 
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“gazebo_ros_pkgs” provide wrappers around the gazebo. Figure 4.4.3 gives an 

overview of the gazebo_ros_pkgs interface [82]. 

 

 

 
Figure 4.4.3 Gazebo ROS package interface [82]. 
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CHAPTER 5:  ROBOT MODEL USING GAZEBO 

 

 

5.1 Introduction 

 

We describe in this chapter the robot build using Gazebo. The basics of the 

gazebo simulator was described in the previous chapter. The version of gazebo used 

is 7.1 and the version of Ubuntu used is 16.04 with ROS Kinetic. 

5.2 Robot Model 

 

In the research work we are using a robot similar to turtlebot [80, 83]. In order 

to represent the turtlebot and use extra sensors it is necessary to create a new model 

file for the simulation and the exiting model files cannot be used directly because of 

the required modifications. 

The model file follows the Simulation Description Format (SDF). There are 

three sensors mounted horizontally to acquire readings of obstacle in front of the 

vehicle and there are three sensors mounted at 45 degree to identify and detect any 

ravine or slopes in the terrain. 

5.2.1 Robot Model SDF  

The figure 5.2.1 shows the snippet from the robot model specifying the 

parameters for the sensors.  The code is repeated for every sensor in the system 

making it occur 6 times in the robot model SDF file [82]. 
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Figure 5.2.1 Robot Model SDF [82] 
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5.2.2 Robot Model SDF parameters for sensors 

From figure 5.2.1 we can see there are several parameters that need to be 

configured while adding a sensor. Below we describe some of the important 

parameters [82]. 

a) Pose: This defines the spatial location of the sensor. From the figure the 

(x,y,z) for the sensor is (0.095 -0.05 0.408457). 

b) Inertia: This sets the values to balance the effects due to gravity. 

c) Sensor name: Identifies the nature of the sensor. The sensor here is of kind 

laser. 

d) Scan: This defines the number of samples needed per sweep, the 

resolution, the minimum and maximum angle of the laser. Here we set the 

number of samples to be recorded to 5 and the angle of the laser is from -

30 to +30 degrees. 

e) Topic name: This specifies the name that will be used in the ROS to 

publish the scan messages. 

f) Plugin filename: This specifies the file that establishes the connection 

between ROS and gazebo. Gazebo publishes the messages to be accessed 

by ROS through this file. 

 
 

5.3 Robot View 

 

Figures 5.3.1 to 5.3.3 show the robot that is built from different angles. 
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Figure 5.3.1 Front view of the robot  
 

 

Figure 5.3.2 Side view of the robot  
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Figure 5.3.3 Top view of the robot  
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CHAPTER 6:  ROS AND GAZEBO SIMULATION 

 

 

6.1 Introduction  

 

In this chapter we describe the simulation of the sensor fusion framework [73] 

using ROS and Gazebo. ROS and Gazebo were described in detail in Chapter 4. The 

robot model that we use for the simulation was covered in detail in Chapter 5. The 

sensor fusion framework is the basis of this thesis. In a completely human-centered 

approach of robot control; the operator serves as the master guiding the robot at each 

step of the process. Here we consider the human-operator as another input that is 

providing information and not as a controller except when the robot is unable to make 

a decision on an action [73, 85]. Human-robot interaction (HRI) is the key theme of 

this framework and the process by which the framework achieves it depends entirely 

on the type of application the framework is intended for.  

In the present research the application is the navigation of a robotic vehicle 

using LIDAR sensors [84] in an unknown terrain.  The robot is built using Gazebo 

and is coupled with ROS to achieve the physical layer abstractions and high level 

processing. The following section describes the various blocks/stages of the 

framework in detail similar to what was described in [73, 85].  

6.2 Block Diagram of the Framework 

 

The block diagram of the framework is shown in Figure 6.2. 
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Figure 6.2 The block diagram of the entire system.  
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6.3 Input Unit 

 

The input unit consists of the sensory data. The sensors used for the 

application are LIDARs [84]. There are three LIDARs that are mounted horizontally 

to gather information on obstacle in front of the vehicle. There are three more 

LIDARs that are mounted at 45 degree angle to acquire the data for any ravine or 

depth of the ground. 

6.4 Overlap Detection   

 

The purpose of pre-processing the data from the LIDARs is to acquire more 

specific information on the location of the obstacle in the cell in front of the vehicle.  

The sensors used for the application are LIDARs (lasers). There are three LIDARs 

that are mounted horizontally to gather information on obstacle in front of the 

vehicle. There are three more LIDARs that are mounted at 45 degree angle to acquire 

the data for any ravine or depth of the ground. Figure 6.4.1 shows the overlap 

detection happening in the current application. 

 

 

Figure 6.4.1 Overlap between the three horizontal sensors. 
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As shown in Figure 6.4.1, each sensor stores five values of readings in the 

five elements of the array. The overlap detection helps in identifying the more precise 

location of the obstacle in the cell. Also, when there are multiple sensors measuring 

the same attribute it is necessary to handle reliability between the sensors.   

The first overlap happens between left sensor’s 2nd and middle sensor’s 0th 

reading in the array. When both these sensors detect obstacle their confidence value 

is incremented by 1. Similarly for the left sensor’s 3rd and middle sensor’s 1st values. 

When the overlap happens between all the three sensors i.e., left sensor 4th, mid 

sensor’s 2nd and right senor’s 0th values then each of the sensors confidence is 

incremented by 0.5 except the mid sensor which is incremented by 1.  The reason left 

and right sensor confidence is only incremented by 0.5 is to distribute evenly the 

confidence between all the sensors. Similarly for the confidence increments between 

the mid sensor and the right most sensor values. 

At the end of the overlap detection we have the sensor whose value is the 

most reliable. Similar to the horizontal sensor the overlap detection is performed with 

the sensors that are mounted at 45 degree angle. The sensor with the highest 

confidence value will serve as the choice for the track-to-track fusion algorithm that 

will combine the data between the horizontal sensor and the 45 degree tilted sensor. 

The output of the overlap detector is the value of the sensor that is considered most 

reliable among the three sensors. Using such an overlap detection, the system can be 

extended to incorporate more sensors and identify the most reliable among them 

based on their current readings and reduces the complexity of using averaging or 

voting methods and improves the fault tolerance of the system. Figure 6.4.2 shows 
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the sensor values overlap through “rays”. 

 

 

 

Figure 6.4.2 Overlap between the three horizontal sensors illustrated through “rays”. 
 
 

 
6.5 Track-to-Track Fusion block 

 
The sensor with the best confidence, i.e., with highest value is chosen. One 

sensor value from the horizontal sensor group and one sensor value from the 45 

degree tilted sensor group is input into the track to track fusion block.  

Track to track fusion was described in Chapter 3. Track to track fusion 

methodology has local tracks generated by distinct local sensors. Then at a central 

node the tracks are fused as shown in Figure 3.6.2 of Chapter 3 and equations 7, 8 

[63]. The local track can be individual Kalman filter nodes that provide state 

estimation at the local track level. These states are then fused into a state vector that 

has combined information from all the local sensor nodes. Sometimes, this new 
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estimate is sent as feedback to the local sensor nodes. The new state estimate is 

obtained by the following formula [63]. The superscript 1, 2 refer to the values of the 

sensor 1 (horizontal) and sensor 2 (45 degree tilted sensor) respectively. These two 

sensors are measuring different attributes of the environment i.e., obstacle in front 

(could be a block, tree etc.) and ravine (or a ramp) on the terrain.  The fusion takes 

place using the equation for P12
k|k 
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where, Pm
k|k  is the error covariance matrix of the corresponding state 

estimation x^m
k|k . P

12
k|k is the cross covariance matrix of the two state vectors where  

P12
k|k =  (P12
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6.6 Pattern Identifier block  
 
The sensor with the best confidence i.e., with highest value is chosen. One 

sensor value from the horizontal sensor group and one sensor value from the 45 

degree tilted sensor group is input into the track to track fusion block. Based on the 

values given by the track to track fusion block we have two scenarios, one for 

obstacle present and other for obstacle not present. When the track fusion result is 

between 0 to 1 it is classified as no obstacle and we set a variable (or flag) to 0. When 

the value returned by the track fusion block is outside this range we consider that as 
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a sign of obstacle presence and we set the variable/flag to 1. Now, in order to improve 

the overall confidence, we use more evidence to identify the type of feature the 

obstacle could be from among tree/block, ramp or both these obstacle features. 

A truth table is generated using the track to track fusion result with the data 

provided by the physical sensors (horizontal sensor and 45 degree tilted sensor) 

observing the two attributes of the environment. The purpose of such an approach is 

to increase the reliability of the system by using more evidence present and to make 

the system scalable. Truth table can be altered easily by adding more columns to 

include features at more granular level. Also, when certain features don’t contribute 

to the decision the respective columns could be removed or considered as a don’t-

care similar to that found in digital logic systems. The rule based truth table is shown 

in Table 6.6. Sensor 1 (s1) is the horizontal sensor and sensor 2 (s2) is the tilted 

sensor. TF (t) is the track fusion block output variable. Boolean equation for 

uncertainty:  

uncertain = (s2 AND NOT(t)) OR (s1 AND NOT(t)) OR (s1 AND NOT(s2) AND t) 

 
 

   Table 6.6: Pattern Identifier 
 
 

Sensor 1 Sensor 2 TF Feature 

0 0 0 no obstacle 

0 0 1 uncertain 

0 1 0 uncertain 

0 1 1 terrain issue 

1 0 0 uncertain 

1 0 1 surface 

obstacle 

1 1 0 uncertain 

1 1 1 both 
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6.7 Ramp Identifier 
 

The type of feature is detected by the pattern identifier block. If there is a 

terrain issue, there are two possibilities. One is a ramp upwards/uphill and the other 

is a ramp downwards/downhill. For each of these ramps there exists two more 

possibilities. A traversable ramp up and non-traversable ramp up. There might be a 

traversable ramp down and a non-traversable ramp down. Table 6.7 will describe 

these more neatly. 

 

Table 6.7: Possible Ramp Scenarios in the terrain 

 

RAMP Type Angle Navigability 

Up 1<Angle<=4  Yes 

Up Angle>4 No 

Down -4<Angle<-1 Yes 

Down Angle<=-4 No 

 

 

The slope of the ramp determines whether the ramp can be traversed or not. 

The angle can be set by the user depending on the environment and the configuration 

of the robot.  

6.8 Dempster-Shafer (D-S) for Uncertainty  
 

The D-S decision method [6, 7] was covered in detail under Chapter 2 and 3. 

By using the properties of the sensors we can create a mass table with values as shown 

in Table 6.8. The rule of combination is used to calculate the uncertainty percentage. 

Although, in this research Dempster-Shafer is used for only calculating the 

uncertainty percentage it is possible to extend the decision block to include more 
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features and calculate their confidence percentages. In Table 6.8 the notations mass 

1 and mass 2 refer to mass values of sensors 1 and 2 respectively. This concept is 

similar to the method used in [86]. If D is the effective distance for the sensor. 

 

Table 6.8: Mass Values [86] 

Mass Value (m) D = 0 0.06 < D <=10 D > 10 

m(obstacle present) 0.3 0.8 0.2 

m(no obstacle) 0.3 0.2 0.7 

m(obstacle present, 

no obstacle) 
0.6 0 0.1 

 

 

6.9 Human Input under Uncertainty 
 

Help phase is initiated when the vehicle is unable to identify the outcome of 

the situation and queries the user for assistance. In this framework, at the pattern 

identification stage we can flag uncertain situation and calculate the degree of 

uncertainty using D-S rule of combination. Here we achieve coordination between 

the user and the robot by communicating through help commands. To minimize the 

communication delay the framework uses single characters to trigger commands. 

Entering ‘r’ sends the command to turn right, ‘f’ commands the vehicle to move 

forward. A complete list of commands is shown in Table 6.9. Such a collaborative 

control is similar to what was described in [73, 85]. 

Table 6.9: Possible Commands for the Robot 

 

Command Code 

Forward f 

Left l 

Right r 
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Although the help phase alleviates the problem of the vehicle getting stuck 

during its navigation it is imperative from the user side to be equally responsible as 

well. Timely issue of commands facilitates faster operation and the vehicle can 

complete its task on time, if there is a time constraint. To ensure the robot doesn’t 

wait indefinitely for the user prompt there is a time out embedded within the help 

phase. The time out can be configured based on the application or other requirements. 

A feature to include time out is available in ROS. If the time out occurs the robot can 

be made to abort the tasks to save energy and power and for safety.  

Once the user initiates the commands and the vehicle is out of certainty the 

sensing process is restarted and the vehicle navigates as usual autonomously. This is 

the closed loop feedback that is established and is similar to the modified waterfall 

fusion model described under Chapter 4. Robot sensing, perception and control are 

integrated into the framework with human-interaction under uncertainty.   

These are the different components of the framework and the next section 

describes the simulation of a vehicle navigation in Gazebo and ROS. The vehicle 

used is the model created and described from Chapter 5. 

6.10 Simulation in Gazebo and ROS 
 

The environment that the vehicle navigates is set up in gazebo. In order to 

create a terrain and include several features to the terrain a “world.sdf” file is created. 

The basics of gazebo was covered in detail in Chapter 4. Figure 6.6.1 shows the 

world.sdf file that was used to create the environment for simulation.  

6.10.1 World SDF in Gazebo 

The Figure 6.6.1 shows the snippet from the world model specifying the parameters 

for the environment. 
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Figure 6.6.1 World Model SDF [82] 
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6.10.2 World Model SDF parameters  

From Figure 6.6.1 we can see there are several parameters that need to be configured 

while creating a customized environment for the terrain. Below we describe some of 

the important parameters [82]. 

a) Model URI: By default the name assigned is sun. 

b) Model name: This is section where most of the modifications happen. It 

is called as the “heightmap”. 

c) Texture: This describes the type of element we want to add to our 

environment. The file has several textures added. There is greenery 

included by adding the “grass texture”, as shown in line 34 of figure 6.6.1.  

6.10.3 Environment View 

Figure 6.6.3 shows the environment where the vehicle navigates. The 

environment has uneven terrain with up/down ramps and flat ground. 

 

6.11 Vehicle Simulation in Gazebo and ROS 
 

Figures 6.11.1 to 6.11.9 show the screenshots of the vehicle navigation on an 

unknown terrain. The simulation world created is similar to that shown in Figure 

6.6.3 having some peaks and valleys or up ramps and down ramps. Also a few blocks 

or surface obstacles are also introduced to illustrate the working of the sensor fusion 

framework described in Figure 6.2. 
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Figure 6.6.3 Simulation environment for the vehicle generated through gazebo. 

 

 

Case 1: Surface Obstacle 

Figure 6.11.1 shows the environment where the vehicle faces the presence of 

a block in the front. The terminal screen shows the variable for front obstacle set. 

Surface Obstacles could be rocks, blocks, trees or any object that is hindering the 

vehicle from moving forward to the next cell in the field. In the example shown the 

front obstacle is a black block in front of the vehicle. 
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Figure 6.11.1 Handling an obstacle in front of the vehicle 

 

Case 2: Surface Obstacle and Ramp close to each other 

Figure 6.11.2 shows the environment where the vehicle faces the presence of 

a block in the front and then turns to its side and detects a ramp. On identifying it’s a 

non-traversable ramp the vehicle turn again and resumes autonomous navigation. 

The terminal screen shows the variables for front and ramp obstacles set accordingly.  

In order to turn backward, instead of doing a direct 180 degree turn the vehicle 

turns left twice and then proceeds forward. 
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Figure 6.11.2 Handling an obstacle in front and at the side of the vehicle. 

 

 

Case 3: Uncertainty handling and help phase 

Figure 6.11.3 shows the environment where the vehicle is uncertain on 

moving forward or navigating. Such a situation could happen when the track fusion 

results and the value provided by the sensor is out of range or when there is a 

difference between them. In Figure 6.11.3 the vehicle is navigating near an obstacle 

in front and ramps beside it. So the system enters uncertain mode and initiates user 

help. On entering the command the vehicle navigates by moving forward. Since there 

is more area that can be traversed before the front obstacle the vehicle keeps moving 

forward until it is very close to the block. This is shown in Figure 6.11.4 where the 

command entered is shown on the terminal and the vehicle resuming autonomy is 

shown in Figure 6.11.5. 
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Figure 6.11.3 Handling uncertainty during navigation 

 
 

 

Figure 6.11.4 Help phase and user entering commands. 
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Figure 6.11.5 Vehicle resuming autonomous mode of navigation after help phase. 

 

 

Case 4: Handling terrain issues:  flat ground to non-traversable ramps  

As described in ramp identifier section there are five possible scenarios for 

terrain issues. Figures 6.11.6 to 6.11.9 shows the environment where the vehicle faces 

these scenarios during navigation.  

 

 

 

 

 

 

 

 

Figure 6.11.6 Navigating a flat terrain or flat ground 
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Figure 6.11.7 Navigation on a traversable up ramp 

 

Figure 6.11.8 Navigation on a traversable down ramp 

 

 

 



74 

 

 

Figure 6.11.9 Navigation on a non-traversable ramps 

 

 

 
6.12 Framework Evaluation 

 
As described in [54, 55, 56], there doesn’t exist one type of sensor fusion 

framework for a particular application. So this makes comparison between different 

fusion frameworks hard since the application for which the fusion framework is 

designed influences the choice for different stages of the framework and the type of 

fusion methods i.e., signal, image or decision that can be used. 

However, in this section we evaluate the framework based on the basic 

principles of fusion consistency, data flow between the different stages, degree of 

autonomy of the vehicle, level of interaction and finally the computation load on the 

system with and without considering ROS.  

 
6.12.1 Data flow in the framework and consistency 

In this framework there are four stages of fusion. First at the track to track 

fusion, second at the pattern classification, third at the ramp classification and finally 
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at Dempster-Shafer fusion block that gives the confidence percentage. At each of 

these stages the data flow and fusion is consistent with respect to Dasarthy’s 

classification of fusion methodologies [51, 52]. Table 6.12.1 shows the type of data 

is flowing between the different stages in the framework. The data flow between the 

stages is consistent with the rules outlined in [51, 52] validating the correctness of 

the framework formulated for the navigation application encapsulating human robot 

interaction. 

 

 

Table 6.12.1: Data flow between the stages 

 

Stage Data Type IN Data Type OUT 

Track to Track 

Fusion 
Sensor data Feature 

Pattern 

Classification 
Feature 

Feature/Decision 

(uncertainty) 

Ramp 

Classification 
Feature 

Feature/Decision 

(uncertainty) 

Dempster-Shafer Feature Decision (uncertainty) 

 

 

6.12.2 Autonomy level 

Another important measure of the system performance is the amount of 

interaction or autonomy level of the vehicle as described in [88, 89]. In this 

framework, the interaction time between the user and the vehicle is at minimum 

possible. The vehicle signals for help from the user only when absolutely necessary 

and switches back to the autonomous mode on exiting the help phase. This ensures 

more independent operation of the vehicle and more time for the user to handle his 
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tasks.  

We thus have a vehicle that is not tele operated but an autonomous vehicle 

with collaborative control [73, 85]. For the field that is shown the vehicle navigates 

autonomously through all “cells” except at the cells where the help phase is initiated 

due to uncertainty.  

6.12.3 Communication Between User and Vehicle  

As outlined in [87], the type of information communicated between the 

entities and the effective use of this information by the vehicle not just plays a vital 

role but standardizes our evaluation criteria. We have used communication between 

the user and the vehicle through command numbers, which serves two important 

benefits, namely easier for the user to type into his console and faster decoding by 

the vehicle. 

6.12.4 Scalability  

The scalability of the framework is another important parameter that is 

necessary to quantify the system. There are two possible types of scalability namely 

scalable with respect to the number of sensors that can be added and scalable with 

respect to the size of the field the vehicle is navigating. The computation of the 

system using perf can be used to calculate the performance of the centralized 

processor that is handling the fusion of all the sensors into the system. 

The framework is centralized in design and thus requires evaluating the 

computation load on the central computer that runs the framework. The operating 

system used is Linux and by using the Linux tool, perf [90, 91], we can measure the 

computation performance of the system. The computation performance could also 
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help identify the bounds of the sensor inputs for the framework. Since the most 

computation intensive part is the track to track fusion for signal level fusion and since 

the sensor inputs are directly connected to this block measuring the computation load 

of this stage of the framework will help estimate the maximum number of sensors 

that can be supported by the system.  

The maximum possible area of navigation is also dependent on the power 

constraints of the central processor. With a long battery capacity the vehicle can 

navigate the field of any size provided there is user available to give the input when 

the help phase is sought. 

Figures 6.12.4.1 and 6.12.4.2 show the performance for the most computation 

intensive part of the framework i.e., track to track fusion block with Robot Operating 

System (ROS) and without ROS. The values for IPC, branch misses and page faults 

is higher for the block with ROS when compared to the block without ROS. This is 

because of the several I/O and communication load due to ROS. Hence, the 

maximum number of inputs that can be supported by the framework is dependent on 

the type of processor that runs the centralized fusion node and the communication 

load that arises due to ROS. For this application increasing the number of sensors 

would not be required since we have the necessary information to decide if the cell 

in front of the vehicle is navigable or not. 
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Parameter With ROS Without ROS 

Instructions 10,848,140,724 9,450,817 

Context Switches 970,881 42 

Branches 2,218,697,599 862,356 

Branch misses 172,617,622 16,644 

 

Figure 6.12.4.1 Performance of the track fusion with and without ROS 
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CHAPTER 7:  COMPLETE COVERAGE PLANNING 

 

 

In [20], the authors summarize a few planning algorithms for the vehicle. 

Also, in [20], the vehicle maneuvers over the obstacle by drawing a collision 

avoidance boundary and navigates along local paths computed while encountering 

obstacles and resumes navigation along the regular path to its destination once it is 

dealt with the obstacle.  To achieve human interaction it is necessary to have some 

form of dialogue between the operator and the vehicle. Command numbers are used 

to achieve bidirectional communication during the assist phase when the vehicle 

seeks help. This is similar to the collaborative control mentioned in [84].  

7.1 Experimental Setup 

 

In this chapter, we consider a grid of size 5 by 9. The field is decomposed 

into cells forming a 2 dimensional matrix. The robotic vehicle is non-holonomic (i.e., 

can make only 90 degree turns and cannot move in all directions). The vehicle 

traverses the field column-by-column covering as many cell blocks as possible. The 

borders of the field are considered reachable and are assumed to be obstacle free so 

that the vehicle can navigate the perimeter of the field. The vehicle makes 90 degree 

turns at the top and bottom cells of the field either turning right at the top of the 

column or turning left at the bottom of the field, to move to the neighboring column. 

Two types of obstacles are considered namely, trees and ravines.  Trees are assumed to be 

confined within a single cell boundary. Ravines could spread to more than one cell.  
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The vehicle is represented as a turtle, one of the possible shapes available in the 

graphics tool. The method of navigation and the obstacle avoidance are described in the 

following sections. The programming language used is Python 2.7 [92], IDE used 

was Spyder [93] and graphics implemented using Turtle Graphics tool [94]. The 

results of the complete coverage planning are similar to that described in [74]. 

7.2 Robotic Vehicle Navigation 
 

The vehicle traverses the field, cell-by-cell, from top to bottom or bottom to 

top along each column. It makes left turns when it reaches the bottom of column 

(i.e., highest index value for row) and makes a right turn when it reaches the top of 

the column (i.e., row index 0). The typical layout for the simulation is shown as in 

Figure 7.2.1. 

 

 

 

Figure 7.2.1 Simulation Environment. 
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 The vehicle’s regular traversal is as shown in Figure 7.2.2. The vehicle’s 

trace is shown in red. We can see from the figure the vehicle covers all the cells 

while travelling through each column of the grid.  Figure 7.2.2 assumes no 

obstacles in the field. 

 

 

 

 

Figure 7.2.2 Regular navigation with vehicle turns at the top and bottom cells of a 

column. 

 

 

The simulation environment with obstacles is as shown in Figure 7.2.3. 



82 

 

Trees are drawn as Green circles and Ravines are represented as thick black lines. 

 

 

Figure 7.2.3 Field with ravines a thick lines and trees as green circles. 

 

 

7.3 Obstacle Avoidance 

There are two types of obstacles, namely, trees and ravines. They are 

discussed in the following sub-sections. 

7.3.1 Handling Trees 

Since the goal of the vehicle is to cover as much area as possible, when faced 

with a tree or ravine, the vehicle tries to find a path over it using the information from 

its visited list. As shown in Figure 7.3.1, when a tree is found, the Turtle robot traverses 

along the path shown in red around the tree through the cells it had previously visited. 

Since the vehicle has only information about the cells in the left column, it uses that 
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information to avoid the tree.  

 

 

Figure 7.3.1 Navigation around a tree obstacle. 

 

 

7.3.2 Handling Ravines 

Ravine is another obstacle the vehicle encounters during its navigation. 

Figures 7.3.2.1 – 7.3.2.6 shows the navigation of the Turtle in the presence of a 

Ravine. When the vehicle encounters the Ravine for the first time it sees it as a tree 

and avoids it by going through the neighboring column cells as shown in the Figure 

7.3.2.1. 
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Figure 7.3.2.1 Navigation through a ravine.  

 

 

Figure 7.3.2.2 Initiates help phase to interact with the user. 
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During traversal through the neighboring column when it senses the 

continuity of the ravine, the vehicle looks up its visited cell history and identifies it 

cannot follow the same technique of going around the obstacle cell which is shown 

in Figure 7.3.2.2.  

When the turtle realizes this, it queries the user for assistance. In the help 

phase, the communication between the user and the vehicle is a dialogue of 

command numbers as illustrated in Figure 7.3.2.3. The options shown are the most 

fundamental commands required to drive the vehicle. 

 

 

 

Figure 7.3.2.3 Help phase options presented to the user to steer the vehicle away from 

the obstacle. 
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In order to move the vehicle away from the ravine, the user commands the 

vehicle to turn right twice by entering the command number 2. Alternatively, the 

user could also enter 3 twice making the vehicle turn left twice. These actions are 

shown in Figure 7.3.2.4 and 7.3.2.5. 

 

 

Figure 7.3.2.4 Turn right keyed by the user. 

 

To turn the vehicle backwards instead of using 180 degree turn the vehicle is 

programmed to turn only by 90 degrees left or right. So to turn backwards the 

operator needs to enter turn left or turn right twice. Here the operator turns the vehicle 

right twice to achieve the 180 degree turn. 
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Figure 7.3.2.5 Turn right keyed again. 

 

 

Since the goal of the help phase is to recover the vehicle from its uncertainty, 

the user gives only the minimum set of commands to bring the vehicle to a safe 

position and exits the help phase. The vehicle now resumes its regular traversal 

moving along the regular path as shown in Figure 7.3.2.6. 

Collaborative control is an example of bi-directional communication. The 

two entities that are involved in the communication are the robot and the operator. 

When the robotic vehicle interacts with the user through such help numbers the 

operator acts like a peer to the vehicle and the vehicle engages in coordinated task 

with the operator instead of following the task of navigation alone. 
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Figure 7.3.2.6 Autonomous mode resumed by the turtle. 

 

 

From Figures 7.3.2.1-7.3.2.6, we can see that the vehicle could traverse the 

entire column where user request was initiated. Hence, during its traversal through 

the next neighboring column it visits those cells from the previous column that are 

obstacle free as shown in the Figure 7.3.2.7. In the Figure 7.3.2.8, we can see that 

the vehicle continues its regular path again after visiting the non-visited cells. This 

ensures maximum area of the field can be covered and the turtle records the 

positions of the obstacles both trees and ravine as it navigates the field.  
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Figure 7.3.2.7 Vehicle visits the cells ignored previously due to the obstacle. 

 

Figure 7.3.2.8 Vehicle resumes its regular navigation until it reaches its destination 

after covering the obstacle free non-visited cells. 
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 7.3.3 Handling both Trees and Ravines 

In this section, we cover an application involving both trees and ravines in the 

field. The previous two examples described handling the tree obstacle and the ravine 

individually. The following example shows the presence of both these obstacles in the 

field but at different positions. The vehicle traversal through this field is shown in 

Figures 7.3.3.1 – 7.3.3.13. Figures 7.3.3.2 - 7.3.3.10, shows how the vehicle navigates 

in the presence of ravines in the field. Figures 7.3.3.11 - 7.3.3.12 show the tree obstacle 

avoidance which is less complex and doesn’t required user assistance. The vehicle at 

the destination is shown in Figure 7.3.3.13. 

 

 

 

Figure 7.3.3.1. Simulation Environment with ravines a thick lines and trees as green 

circles. 
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Figure 7.3.3.2. Vehicle navigates through the neighboring column to avoid the obstacle. 

 

 

Figure 7.3.3.3. Help phase invoked when the turtle identifies a continuous obstacle across 

cells. 
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Figure 7.3.3.4.  User keys in a sequence of commands to bring the vehicle to safe position. 

 

Figure 7.3.3.5.  Vehicle switches to autonomous mode. 
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Figure 7.3.3.6. Covering the cells below the obstacle cell.  

 

Figure 7.3.3.7. Vehicle goes through the neighboring cell to avoid the obstacle. 
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Figure 7.3.3.8. Help phase invoked similar to Figure 4.3.3.3. 

 

Figure 7.3.3.9. User controls the vehicle through commands 
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Figure 7.3.3.10. Vehicle swings back to autonomous navigation. 

 

 

Figure 7.3.3.11. Vehicle avoids the tree by navigating through the neighboring column. 



96 

 

 

 

Figure 7.3.3.12. Vehicle avoids the tree by navigating through the neighboring column. 

 

 

Figure 7.3.3.13. Vehicle at the final goal position. 



97 

 

 

Let us consider another example with the field shown in Figure 7.3.3.14. The 

field has more obstacles and the obstacles are placed close to each other. Figures 

7.3.3.15 – 7.3.3.28 show the vehicle navigation in the field. The Help phase is invoked 

when the vehicle becomes indecisive and the vehicle is capable of autonomous 

navigation even when obstacles are located close to each other (without having to call 

the user for assistance). 

 

 

 

Figure 7.3.3.14. Simulation Environment 
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Figure 7.3.3.15. Vehicle navigating around the obstacle. 

 

 

Figure 7.3.3.16. Vehicle seeks user’s help. 
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Figure 7.3.3.17. User enters turns the vehicle right twice to avoid the obstacle. 

 

 

Figure 7.3.3.18. Vehicle switches to the autonomous mode. 
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Figure 7.3.3.19. Covering cells that were previously not visited. 

 

Figure 7.3.3.20. Vehicle navigating around the ravine. 
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Figure 7.3.3.21. Vehicle navigating around the tree. 

 

 

Figure 7.3.3.22. Vehicle enters into the help phase. 
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Figure 7.3.3.23. User enters minimum commands to steer the vehicle away from the 

obstacle  

 

 

Figure 7.3.3.24. Vehicle handles the closely located tree and ravine without user’s help. 
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Figure 7.3.3.25. Vehicle covering cells not visited. 

 

 

Figure 7.3.3.26. Vehicle navigating around the trees. 
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Figure 7.3.3.27. Vehicle follows normal navigation until its destination. 

 

 

Figure 7.3.3.28. Vehicle at the destination. 
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CHAPTER 8:  ROBOT COGNITIVE MODEL 

 

 

In this chapter, we demonstrate the use of a robot sensor map similar to the 

sensory brain map [4] to perform information processing and resource management 

for sensors on a robot. The sensor map implemented works in a very similar manner 

as the sensory brain map, performing operations, such as -  sensor slot allocation, 

allocation of un-used sensor space to the other sensors and re-allocation of sensor 

space back to the sensors which had the original ownership. The sensor manager is 

the controller of the sensor space and handles these operations through several sub-

routines (or functions). There are three functions that do the following: 

a) Sensor slot allocation  

b) Allocating space from passive sensor slot to active sensor slots 

c) Re-allocation of space to dormant sensor slots when they become active 

again 

The sensors are assumed to be laid in a sequential manner in the sensor space. 

Depending on the initial conditions, the sensors could be originally assigned equally 

spaced memory slots. The dynamicity of the map is tested with the help of a 

navigation application. The application includes four tasks and has five sensors on 

the vehicle. The sensor functions are called depending on the availability of memory 

for the respective sensor. The sensor manager holds all the relevant information 

related to each sensor that is present on the vehicle. 
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The Sensor Manager holds the exclusive ownership of the sensor map space. 

It keeps track of which sensors are used for the application and periodically (or based 

on the user given requirements) can run different functions that manage and modify 

the space for the sensors.  

Similar to the use-it-or-lose-it principle, as outlined and described in [4, 5], 

the sensory brain map is a dynamic structure that keeps changing depending on the 

usage of our sensory organs. The concept and results are similar to that described in 

[74]. 

8.1 Sensor Maps 

 

8.1.1 Introduction and Theory 

 

In [4, 5, 30], the authors describe the cognitive model of the brain through 

sensory brain maps. When a sensory input is not recognized in the brain map for 

certain time, the map dynamically alters itself to accommodate more space and 

resources for those sensor slots that are adjacent to the one that is marked as dormant. 

This results in a few sensory areas on the map becoming larger, growing into the 

space that was utilized by the dormant sensor while the other sensor areas show no 

change in their space (those not adjacent to the dormant sensor). However, when the 

dormant sensor becomes active again, through the respective task (training), the map 

again starts to alter, re-assigning its original space in the brain map, showing increase 

in space at that slot. This is known as differentiation of the brain map [4, 30].  

These principles on which the brain operates and micro-manages the sensory map is 

applied in this work, and is demonstrated through the use of three functions namely, Sensor 

Space Reduce, Sensor Space Deallocate and Sensor Space Reallocate. 
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8.1.2 Machine Learning and Sensor Map Dynamicity 

 In order to illustrate the dynamic nature of the maps, it is necessary to use a 

learning technique. Since we as the user, can decide the criteria for memory usage 

and thresholds for the sensors, supervised classifiers are the best fit for this purpose. 

Each of the sensor space functions actively use a supervised classifier called the 

Random Forest. 

Random Forest [95] belongs to the class of Ensemble learning, and can 

handle large data sets providing higher accuracy in their predictions. A detailed 

explanation of the advantages of Random Forests with other classifiers is described 

in [96, 97].   

The user can choose the label for the data sets and define them during the 

training phase. However, for the present application the data sets are small hence the 

classifier is very reliable and accurate in its prediction on the test set.  

8.1.3. Sensor Map / Sensor Space Management Functions 

There are three functions used to manage the sensor space on the vehicle. The 

description of each of these functions is as below. 

a) Sensor Space Reduce: 

The purpose of this function is to identify the space that should be retained 

for each sensory input. This function keeps track of the usage of the sensors on the 

vehicle and determines how much space should be held in the map for each sensor. 

When a sensory input keeps reducing as the application progresses, or between 

different applications, the corresponding space in the map starts to dynamically 
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reduce as a function of its usage. The classifier uses the frequency of the sensor’s 

usage to determine the percentage by which the space should be reduced. This 

phenomenon is akin to how the brain reduces the space on its sensory map when a 

particular sensory input is less and less received on the map during one’s lifetime, 

also known as shrinkage of sensory space on the map.  

b) Sensor Space Reallocate: 

This function distributes the sensor space of a dormant sensor to its adjacent 

sensory members on the map. This function checks for sensors that are marked for 

deletion and identifies its adjacent members on the map. The classifier distributes the 

space to the dormant sensor’s neighbors.  

After space distribution, it notifies the sensor manager of these changes. As 

a result, the re-distribution causes some areas on the map to grow larger, however, 

when the sensors are at the borders, the entire distribution is for the one sensor that 

is adjacent to it. 

c) Sensor Space Deallocate: 

The purpose of this function is to de-allocate the space from those sensors 

that had previously taken space from the dormant sensor and re-allocate it back to 

the dormant sensor when it becomes active again. The function uses a classifier that 

identifies the sensors that become active again and automatically trains those sensors 

(this is done internally inside the function by running the tasks mapped to it) to 

increase its usage. Again, the usage metric causes the classifier to dynamically 

increase the space on the map for the trained sensor while reducing the extra space 

from its adjacent counterparts. 
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The use of these functions is illustrated through a navigation application of a 

vehicle on a field described in Chapter 7.  The vehicle has five sensors on its sensory 

map. We assume that these sensors are laid out adjacently to each other, each have 

initially full space (denoted as 100%) on the map. The vehicle navigation on the field 

causes a few sensors to be used and a few to remain un-used. The usage of these 

sensory inputs determine how the functions will allocate the space on the map for 

each of them. The sections below describe the use of these learning functions in the 

robotic navigation application and the corresponding sensor space dynamicity is 

illustrated through the bar graphs.  

8.2 Robotic Vehicle Navigation 

 

The application is implemented in Python 2.7 [92] and uses libraries from 

sklearn documentation [98, 99] to make use of some machine learning techniques 

[25, 26] for supervised classification. 

8.2.1 Problem Description and Experimental Set up 

High level Task: Navigate an unknown terrain consisting of trees and ravines in the 

field. 

Sub Tasks: Move forward, Turn right, Turn left and Check for person. 

Sensors: Five sensors, sensors 0, 1 for Move forward, sensor 2 for Turn right, sensor 

3 for Turn left and sensor 4 for identifying the person (camera). 

Problem statement: To demonstrate the dynamic nature of the robot’s sensory map 

as the application is executed and validate the usage of the three functions defined 

earlier. 
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Initial conditions: The vehicle is positioned at the origin of the grid. We assume a 

rectangular field and the robotic vehicle (represented as a turtle in the Figure 8.2.1) 

traverses the field (or a subspace in the field), by moving forward, turning right or 

left and detecting a person (performed internally in the vehicle, but not shown in 

figure).  

 

Figure 8.2.1 Robot navigation in a rectangular field. 

 

The robot’s sensory map is pre-filled with the memory allocation and sensor 

usage. We start off the experiment by assigning full space to each sensor slot and 

randomly assign sensors in the list with some usage value to illustrate how this 

concept works. Table 8.2.1 shows prefilled variables for the sensor slots.  
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Table 8.2.1. Initial state of the sensor map 

Sensor ID Space available 

(in %) 

Usage count 

0 100 50 

1 100 70 

2 100 50 

3 100 50 

4 100 55 

 

 

 

  8.2.2 Application Execution and Sensor Map Dynamicity 

The navigation application is executed and the vehicle updates the usage 

of the sub tasks and the sensors during this process. Once the field is navigated, 

the sensor manager runs the Sensor space dynamicity function. As a result, the 

space for each sensor starts to reduce depending on how much it was used during 

its previous application.  

The classifier present inside this function does not reduce the sensor space 

if its usage is above a certain threshold (user-defined), else it reduces the sensor 

space according to its usage. We present two possible scenarios below on the cases 

of dynamicity.  

Case 1: Dynamic allocation from a border sensor slot 

Table 8.2.2.1 indicates the space available for each sensor and the sensor 

usage after the application was executed. Figure 8.2.2.1, shows the sensor space 

distribution before and after the application.  
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Table 8.2.2.1: Sensor map after space reduction 

Sensor ID Space available  

(in %) 

Usage 

count 

0 100 121 

1 100 141 

2 80 82 

3 65 66 

4 55 55 

 

From the table 8.2.2.1 and Figure 8.2.2.1, we can see that as the usage is 

below a certain threshold the classifier marks the amount of space to be reduced for 

each sensor. The blue and orange bars indicate the available space before and after 

the application. The user can specify the criteria for reduction depending on how 

often the task is being used. When a sensor space is reduced, it refers to the active 

working area only. For instance in the above table, we can see that space for sensor 

2 was reduced by 20%, however this 20% is still under the ownership of sensor 2 

(until it reaches 0). 

After the space reduction phase, the Sensor manager calls the Sensor 

Reallocate function to identify the sensors with space reduced to 0. This function 

then deallocates the space from this sensor (sensor with space equal to 0) to its 

adjacent sensors. This causes some of the sensor spaces to be larger than others. In 

this experiment, we execute this function only when the space for a sensor has 

dropped to 0, indicating with certainty, that the sensor wasn’t used in the previous 

application (its usage count is reduced to 0).  
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Figure 8.2.2.1 Sensor space distribution before and after the navigation application. 

 

 

Table 8.2.2.2 shows the map distribution after this space reallocation. Figure 

8.2.2.2, shows the space distribution from the passive sensor to its adjacent member 

sensors. Since there is only sensor 3 as a neighbor to sensor 4, all of sensor 4 space 

is allocated to sensor 3 causing it to grow larger which is shown in the Figure 8.2.2.2. 

 

Table 8.2.2.2: Sensor map after sensor re-allocation 

Sensor 

ID 

Space available  

(in %) 

Usage count 

0 100 121 

1 100 141 

2 100 82 

3 200 66 

4 0 0 
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Figure 8.2.2.2 Space distribution after sensor de-allocation. Only sensor 3 gets the 

space from sensor 4 in this example. 

 

 

We then execute the application again and re-enable the task mapped to 

sensor 4 (check for person). When this test application is called, it wants to use the 

sensor 4 for its task (detect person). Since the map had de-allocated sensor 4 space 

(since it wasn’t used in the previous application) to sensor 3, it needs to re-assign that 

space back to sensor 4. 

When the test application identifies that this sensor has no space, it calls 

another function, Handle Feasibility. This function identifies the sensor with the ID 

specified in the argument list and starts training the vehicle internally to increase its 

usage thereby allocating space back into its area and simultaneously de-allocating 
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the space from its adjacencies. The feasibility function uses the Sensor De-allocate 

function internally to achieve this task. As a result, the sensor space is reduced for a 

few sensors as shown in the Table 8.2.2.3 and Figure 8.2.2.3.  

Sensor 3, which showed an increase in its space has now shrunk and sensor 4 

is re-allocated its space to be used in the application. The sensor manger, if necessary 

can now execute the sensor space reduction as described previously, to reduce the 

space depending on the usage in the application. 

 

 

Table 8.2.2.3: Sensor map after test application 

Sensor ID Space available  

(in %) 

Usage count 

0 100 184 

1 100 204 

2 100 100 

3 108 84 

4 92 63 

 

 

Case 2: Dynamic allocation from a sensor slot in between 

Table 8.2.2.4 (similar to Table 8.2.2.2) indicates the space available for each 

sensor and the sensor usage after the application was executed. Figure 8.2.2.4, shows 

the Sensor space distribution before and after the application.  
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Figure 8.2.2.3 Space distribution after test application. Sensor 4 becomes active and 

regains the space it had sacrificed to sensor 3 previously due its dormancy. 

 

 

Table 8.2.2.4: Sensor map after space reduction 

Sensor ID Space available 

(in %) 

Usage count 

0 100 121 

1 100 141 

2 80 82 

3 65 66 

4 55 55 

 

 

From the table and graph 8.2.2.4, we can see that as the usage is below a 

certain threshold the classifier marks the amount of space to be reduced for each 
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sensor. The blue and orange bars indicate the space before and after the application. 

The user can specify the criteria for reduction depending on how often the application 

was being executed.  

 

 

 

 

Figure 8.2.2.4 Sensor space distribution before and after the navigation. 

 

 

After the space reduction phase, the sensor manager calls the Sensor Re-

allocate function to identify the sensors with space reduced to 0. This function then 

de-allocates the space from this sensor (sensor with space equal to 0) to its adjacent 

sensors. This causes some of the sensor spaces to be larger than others.  

In this experiment, we execute this function only when the space for a sensor 
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has dropped to 0, indicating with certainty that the sensor wasn’t used in the previous 

application (its usage count is reduced to 0). Table 8.2.2.5 shows the map distribution 

after this space re-allocation.  

Figure 8.2.2.5 shows the space distribution from the passive sensor to its 

adjacent member sensors. For the purpose of demonstration we have disabled task 3 

that results in sensor 3 becoming unused and the usage dropping to 0 and space 

reduced to 0. On executing the Sensor space re-allocate function, we get the Table 

8.2.2.5. Since sensors 2 and 4 are adjacent to sensor 3 its space is distributed to 2 and 

4 causing their areas to grow larger which is evident from the Figure 8.2.2.5.  

 

Table 8.2.2.5: Sensor map after sensor re-allocation 

Sensor ID Space available 

(in %) 

Usage count 

0 100 126 

1 100 146 

2 135 82 

3 0 5 

4 155 59 

 

 

We then execute the application again and re-enable the task mapped to 

sensor 3. Since the map had de-allocated sensor 3 space (it was forcefully reset for 

testing) to sensors 2 and 4, it needs to re-allocate that space back to sensor 3. When 

the test application identifies that this sensor has no space it calls another function, 

Handle Feasibility. This function identifies the sensor with the ID specified in its 

argument list and starts training the vehicle internally, to increase its usage thereby 

allocating space back into its area, simultaneously de-allocating the space from its 
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adjacencies. The feasibility function uses the Sensor De-allocate function to achieve 

this task. As a result, the sensor space is reduced for a few sensors (2 and 4) as shown 

in the Table 8.2.2.6 and Figure 8.2.2.6.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2.2.5 Space distribution showing Sensors 2 and 4 acquiring sensor 3 

space. 

 

 

Sensors 2 and 4, which showed an increase in its space has now shrunk and 

sensor 3 is re-allocated its space to be used in the application. This process is also 

called Differentiation of the brain map [4, 5]. The sensor manger, if necessary can 

now execute the sensor space reduction as described previously, to reduce the space 

depending on the usage in the application. 
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Table 8.2.2.6: Sensor map after test application (de-allocate function) 

Sensor ID Space available 

(in %) 

Usage count 

0 100 184 

1 100 204 

2 106 104 

3 58 83 

4 126 83 

 

 

 

Figure 8.2.2.6 Space distribution after test application. Sensor 3 becomes active and 

regains the space it had sacrificed to sensors 2 and 4. 
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CHAPTER 9:  C O N T R I B U T I O N ,  CONCLUSION AND 

 FUTURE WORK 

 

 

9.1 Contribution 

 

In this research work, we have discussed the background research on Human-

robot interaction (HRI), the various application of HRI in our society, multi sensor 

fusion types and architectures, machine learning, path planning, sensor fusion 

framework for human robot interaction, sensor management architectures and brain 

sensor maps. The research proposes a sensor fusion framework that encapsulates 

each of the topics through different entities to achieve decision fusion for a high level 

task while increasing confidence through the stages and in the process use a cognitive 

model based on the brain map platform to achieve human-like sensor data processing. 

The sensor framework applies heterogeneous sensor fusion to achieve feature 

extraction and uses the features thus realized to formulate a decision. The idea that 

only the present evidence is necessary to decide the cell reachability and the inclusion 

of uncertainty makes Dempster-Shafer a good choice for our decision fusion. By 

measuring attributes of different characteristics and types, i.e., trees/blocks and 

ramps/ravines, we incorporate sensor fusion across heterogeneous sensors. 

Achieving high level task execution through heterogeneous sensor fusion and using 

a decision fusion approach close to human reasoning. 
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The main goal of this research was to formulate a sensor framework that uses 

sensor fusion and sensor maps to achieve robotic vehicle navigation application. The 

navigation application implemented covers maximum area of the field and invokes 

human involvement through a help phase. This increases the reliability of the system 

by converting the indecisive situations into an opportunity for collaborative control, 

thus reducing the possible collision of the vehicle with the obstacle. The cognition 

model for the robot is a sensory map that handle dynamic sensor management and 

resource management. This is a novel approach to handle sensor information on the 

robotic vehicle through concepts of neuro science to utilize sensor space effectively 

and simulate human-brain like model for robot cognition. The sensor maps is a 

concept introduced to define robot cognition that is similar to the brain maps. The 

research work does not focus on comparing the different cognition models that are 

used in AI or related fields. The dynamicity of the maps refers to both the sensor maps 

used in cognition and the environment map where the vehicle navigates. The number 

of sensors on the vehicle can change and hence the space for the sensors in the map 

also changes between applications thus making the sensor area dynamic. This is 

useful in resource management of sensors (and sensor space). 

  We were able to see from the navigation application that the vehicle covers 

more area on the field and invokes user’s assistance only when absolutely necessary 

thus increasing autonomy with human interaction as described in Chapter 6 and 7. 

The sensors demonstrated increase and decrease in their space and their behavior is 

dictated by their location on the map. The experiments presented through Case 1 and 

Case 2 under Section 8.2.2 describe the dynamicity of the maps that is parallel to our 
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brain sensory maps. 

The sensor fusion part of the framework is being implemented in C++ and 

uses ROS to simulate the LIDAR sensors.  There are two main types of features that 

will be extracted by the LIDARs, namely, trees (by the horizontal LIDAR) and 

ravines (by the 45 degree tilted LIDAR). These are two sensors that measure the 

condition of the environment. There is no path planning algorithm that the vehicle 

executes but a column-by-column navigation covering as many cells as possible is 

the main goal of the robotic navigation. 

The sensor fusion works at three levels, signal fusion using Kalman filter, 

feature extraction from the signal fusion result and finally using features to identify 

the nature of the obstacle and the reachability of the cell. Each fusion cell will carry 

information about the obstacle (or feature) through two main variables, an indicator 

flag and a confidence value that is dependent on the indicator. Human involvement 

is mandatory to provide more information i.e., soft data to the fusion algorithm. The 

framework incorporates several internal layers of sub-decisions before executing the 

final decision. Using the ROS helps to simulate the sensors and handle the physical 

layer of the sensor fusion framework and the robotic vehicle testing platform is on 

the turtle bot vehicle which runs on the Linux operating system. 

The framework is centralized in design and thus requires evaluating the 

computation load on the central computer that runs the framework. The most 

computation intensive part of the framework was the track to track fusion block and 

the performance was calculated bot with ROS and without ROS. There was 

significant increase in the performance bottleneck while using ROS because of the 
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several dependencies and processing due to ROS. The operating system used is Linux 

and by using the Linux tool, perf, we can measure the computation performance of 

the system. The computation performance could also help identify the bounds of the 

sensor inputs for the framework. Since ROS doesn’t allow dynamic allocation of 

sensor memory the concept of sensor maps was executed on a simple robotic 

navigation application created using python and run offline instead of real time inside 

the framework.  A detailed video showing the framework working with all test cases 

can be found in [100] that captures all the contributions of this research work. 

Identifying the scalability is dependent on the application and the computation load 

on the central node. Since sensor fusion frameworks are hard to compare [54, 55, 56] 

and is highly dependent upon the application and the system configuration we can 

conclude that the maximum number of sensors can be the upper limit of performance 

of the node and the fusion efficiency.   

9.2 Application of the framework  

 

 The framework combines the data from sensors to achieve heterogeneous 

fusion. Zapatabot, an autonomous robotic All Terrain Vehicle (ATV) that can 

navigate unknown terrains has several sensors such as LIDARs, camera etc. A 

detailed explanation of the Zapatabot and its features is described in [101, 102]. 

Figure 9.2 [101] shows the Zapatabot. The sensor fusion framework that was 

described will find its application on this vehicle that hosts many sensors and 

navigates rough terrains.  
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Figure 9.2 Zapatabot - An Autonomous Robotic All Terrain Vehicle (ATV) 

 

9.3 Future Work 

 

The framework can be extended to implement other robotic applications. The 

significant changes would require changing the sensors and their positions on the 

vehicle. Also, using Gazebo [82], different vehicle models exist that can be used in 

place of the vehicle that was customized for this research work. Since the system is 

scalable, more features can be added to the patter identifier and correspondingly 

including those features at all stages of the framework.
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