
A SELECTIVE SENSOR FRAMEWORK USING SENSOR FUSION AND SENSOR

MAPS TO ACHIEVE COMPLETE COVERAGE PLANNING OF A SEMI-

AUTONOMOUS ROBOTIC VEHICLE

by

Balasubramaniyan Chandrasekaran

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2017

 Approved by:

Dr. James Conrad

Dr. Yogendra Kakad

Dr. Hamed Tabkhi

Dr. Aidan Browne

ii

© 2017

Balasubramaniyan Chandrasekaran

ALL RIGHTS RESERVED

iii

ABSTRACT

BALASUBRAMANIYAN CHANDRASEKARAN. A selective sensor framework

using sensor fusion and sensor maps to achieve complete coverage planning of a semi-

autonomous robotic vehicle. (Under the direction of DR. JAMES M. CONRAD)

Autonomous vehicles are increasingly used in many applications, such as

elderly care, medical care, military, schools, and space exploration. In this research,

we introduce the use of a framework for achieving the autonomy in a vehicle and

describe the usage of sensor maps in managing the sensor space of a vehicle.

Complete coverage planning is a new technique to achieve maximum coverage of a

space during navigation. Path planning plays a key role in autonomous vehicle

navigation and is achieved through several standard algorithms. In this research, a

sensor fusion framework is formulated that utilizes the concept of complete coverage

planning improvised it to include the feature of human interaction. Uncertainty

during navigation is a common problem in robotic vehicle navigation and is neatly

handled by including the human operator during vehicle’s traversal, thus forming a

closed loop between the robot and the operator. The improved framework also

causes the vehicle to visit the cells previously not covered because of the presence

of an obstacle and hence provides the user with much detailed information on the

terrain data, such as location of trees, locations of ravines, and their spread across

the cells in the field.

Robot cognition is achieved through the use of sensor map structures. These

maps are very similar to the Penfield Maps or the Sensory Brain Maps, which are

key concepts in human cognition. Sensor management and sensor data processing

iv

are handled through these maps.

In this research, the two important implementations are the robot navigation

in a space (i.e., a field) achieving maximum coverage with human interaction and

the cognitive sensor model of the vehicle similar to the brain map. The framework

incorporates the usage of signal, feature and decision fusion between the stages and

allows the vehicle to handle all cases of obstacle presence and initiate user help only

when the fusion stages identify an uncertain confidence level.

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. James M. Conrad for his support and guidance

throughout this project and motivation for my career in academia as well as Dr. Yogendra

Kakad, Dr. Hamed Tabkhi, and Dr. Aidan Browne for serving on my committee.

I would like to thank my mom and dad whose prayers, support and encouragement

has instilled courage and determination that has helped me come so far. Finally, and mostly

importantly, I am thankful to God for giving me the opportunity, good health and mind to

study and pursue the education that I have always wanted to.

vi

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xii

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

1.2 Objective of this Work 2

1.3 Contribution 2

1.4 Organization 4

CHAPTER 2: THEORY AND BACKGROUND 5

2.1 Human Robot Interaction (HRI) 5

2.1.1 An Introduction 5

2.1.2 HRI in the Society 5

2.2 Multi Sensor Fusion 10

2.2.1 Introduction 10

2.2.2 Multi Sensor Fusion Classes 12

2.2.3 Multi Sensor Fusion Architectures 12

2.2.4 Dempster-Shafer Theory of Evidence 14

2.3 Path Planning 15

2.3.1 Introduction 15

2.3.2 Complete Coverage Planning 15

2.4 Sensor Management 18

2.4.1 Introduction 18

vii

2.4.2 Sensor Management Architectures 18

2.4.2.1 Information-Theoretic 19

2.4.2.2 Bayesian Decision Making 19

2.5 Machine Learning 19

2.5.1 Introduction 19

2.5.2 Types of Classification 20

2.6 Sensor Maps 21

2.6.1 Introduction 21

2.6.2 Dynamic Nature of Maps 22

2.7 System Integration 22

CHAPTER 3: MULTI SENSOR FUSION 24

3.1 Introduction 24

3.2 Motivation 24

3.3 Sensor Fusion Categories 25

3.4 Sensor Fusion Topologies 27

3.5 Multi-Sensor Fusion Models 29

3.6 Signal Level Fusion 35

3.7 Decision Level Fusion 40

CHAPTER 4: ROBOT OPERATING SYSTEM 44

4.1 Introduction 44

4.2 Advantages of ROS 44

4.3 ROS Distributions and Installation 46

4.4 Gazebo Simulator 47

viii

 4.4.1 Gazebo Components 48

4.4.2 Robot Model using Gazebo 49

 4.4.3 Gazebo and ROS Integration 49

CHAPTER 5: ROBOT MODEL USING GAZEBO 51

5.1 Introduction 51

5.2 Robot Model 51

5.2.1 Robot Model SDF 51

5.2.2 Robot Model SDF parameters for sensors 53

5.3 Robot View 53

CHAPTER 6: ROS AND GAZEBO FRAMEWORK SIMULATION 56

6.1 Introduction 56

6.2 Block Diagram of the System 56

6.3 Input Unit 58

6.4 Overlap detection 58

6.5 Track-to-Track Fusion block 60

6.6 Pattern Identifier block 61

6.7 Ramp Identifier 63

6.8 Dempster-Shafer (D-S) for Uncertainty 63

6.9 Human Input under uncertainty 64

6.10 Simulation in Gazebo and ROS 65

6.10.1 World SDF in Gazebo 65

6.10.2 World Model SDF parameters 67

6.10.3 Environment View 67

ix

6.11 Framework Simulation in Gazebo and ROS 67

6.12 Framework Evaluation 74

6.12.1 Data flow in the framework and consistency 74

6.12.2 Autonomy level 75

6.12.3 Communication between user and vehicle 76

6.12.4 Scalability 76

CHAPTER 7: COMPLETE COVERAGE PLANNING 79

7.1 Experimental Set Up 79

7.2 Robot Vehicle Navigation 80

7.3 Obstacle Avoidance 82

7.3.1 Handling Tree Obstacle 82

7.3.2 Handling Ravine Obstacles 83

7.3.3 Handling both Trees and Ravines 90

CHAPTER 8: ROBOT COGNITION MODEL 105

8.1 Sensor Maps 106

8.1.1 Introduction 106

8.1.2 Machine Learning and Sensor Maps 107

8.1.3 Sensor Space Management Functions 107

8.2 Robot Vehicle Navigation

8.2.1 Problem Description and Experimental Set Up 109

8.2.2 Application Execution and Sensor Map Dynamicity 110

CHAPTER 9: C O N T R I B U T I O N , CONCLUSION AND FUTURE WORK 121

 REFERENCES 126

x

LIST OF FIGURES

Figure 2.1.2.1 HOBBIT Robot 6

Figure 2.1.2.2 BEAR Robot 9

Figure 2.2.2 Dasarthy’s Classification 11

Figure 2.2.3 Types of Data Fusion Architectures 13

Figure 2.3.2 Complete Coverage Planning 16

Figure 2.6.1 A portion of the Penfield map of the skin surface 21

Figure 3.3 Dasarthy’s classification of multi-sensor fusion 26

Figure 3.4.1 Centralized Topology 28

Figure 3.4.2 Decentralized Topology 28

Figure 3.5.1 JDL Fusion Model 31

Figure 3.5.2 Waterfall Fusion Process Model 33

Figure 3.5.3 Modified Waterfall Fusion Model 34

Figure 3.6.1 Common representation format functions 36

Figure 3.6.2 Track to track fusion architecture 39

Figure 3.6.3 Neural network structure for sensor fusion 39

Figure 4.4.3 Gazebo ROS package interface 50

Figure 5.2.1 Robot Model SDF file 52

Figure 5.3.1 Front view of the robot 54

Figure 5.3.2 Side view of the robot 54

Figure 5.3.3 Top view of the robot 55

Figure 6.2 Block diagram of the entire system 57

Figure 6.2.1 Overlap between the three horizontal sensors 58

xi

Figure 6.2.2 Overlap between the three horizontal sensors illustrated through “rays” 59

Figure 6.6.1 World Model SDF 66

Figure 6.6.3 Simulation environment for the vehicle generated through gazebo 68

Figure 6.11.1 Handling an obstacle in front of the vehicle 69

Figure 6.11.2 Handling an obstacle in front and at the side of the vehicle 70

Figure 6.11.3 Handling uncertainty during navigation 71

Figure 6.11.4 Help phase and user entering commands 71

Figure 6.11.5 Vehicle resuming autonomous mode of navigation after help phase 72

Figure 6.11.6 Navigating a flat terrain/flat ground 72

Figure 6.11.7 Navigation on a traversable up ramp 73

Figure 6.11.8 Navigation on a traversable down ramp 73

Figure 6.11.9 Navigation on a non-traversable ramp 74

Figure 6.12.4.1 Performance of the track fusion with and without ROS 78

Figure 7.2.1 Simulation Environment 80

Figure 7.2.2 Regular navigation of the vehicle 81

Figure 7.2.3 Field with ravine and tree Obstacles 82

Figure 7.3.1 Navigation around a tree obstacle 83

Figure 7.3.2.1 Navigation around a ravine 84

Figure 7.3.2.2 Help phase initiation 84

Figure 7.3.2.3 Help phase options 85

Figure 7.3.2.4 Turn right keyed by the user 86

Figure 7.3.2.5 Turn right keyed again by the user 87

Figure 7.3.2.6 Autonomous mode resumed by the vehicle 88

Figure 7.3.2.7 Vehicle visiting the non-visited cells ignored due to the obstacle 89

xii

Figure 7.3.2.8 Autonomous mode resumed by the vehicle 89

Figure 7.3.3.1 Simulation Environment with ravines and trees 90

Figure 7.3.3.2 Vehicle navigates the neighboring column to avoid the obstacle 91

Figure 7.3.3.3 Help phase invoked 91

Figure 7.3.3.4 User keys in a sequence of commands 92

Figure 7.3.3.5 Vehicle switches to autonomous mode 92

Figure 7.3.3.6 Visiting the cells below the obstacle cell 93

Figure 7.3.3.7 Vehicle navigates the neighboring column to avoid the obstacle 93

Figure 7.3.3.8 Help phase invoked 94

Figure 7.3.3.9 User controls the vehicle through commands 94

Figure 7.3.3.10 Vehicle swings back to autonomous navigation 95

Figure 7.3.3.11 Vehicle avoiding the tree obstacle 95

Figure 7.3.3.12 Vehicle avoiding the tree obstacle 96

Figure 7.3.3.13 Vehicle at the final goal position 96

Figure 7.3.3.14 Simulation Environment 97

Figure 7.3.3.15 Vehicle navigating around the obstacle 98

Figure 7.3.3.16 Help phase invoked 98

Figure 7.3.3.17 User keys in turn right twice and exits 99

Figure 7.3.3.18 Vehicle swings back to autonomous navigation 99

Figure 7.3.3.19 Covering the non-visited cells 100

Figure 7.3.3.20 Vehicle navigates around the ravine 100

Figure 7.3.3.21 Vehicle navigates around the tree 101

Figure 7.3.3.22 Help phase invoked 101

Figure 7.3.3.23 User keys in a sequence of commands 102

xiii

Figure 7.3.3.24 Vehicle handles closely located tree and ravine 102

Figure 7.3.3.25 Covering the non-visited cells 103

Figure 7.3.3.26 Vehicle navigates around the trees 103

Figure 7.3.3.27 Normal navigation 104

Figure 7.3.3.28 Vehicle at the destination 104

Figure 8.2.1 Robot navigation in a rectangular field 110

Figure 8.2.2.1 Sensor space distribution before/after the navigation application 113

Figure 8.2.2.2 Sensor re-allocation with sensor 3 gets the space from sensor 4 114

Figure 8.2.2.3 Sensor space de-allocation showing sensor 4 regaining the space 116

Figure 8.2.2.4 Sensor space distribution before/after the navigation application 117

Figure 8.2.2.5 Sensor re-allocation with sensor 2, 4 getting the space from sensor 3 119

Figure 8.2.2.6 Sensor space de-allocation showing sensor 3 regaining its space 120

Figure 9.2 Zapatabot - An Autonomous All Terrain Vehicle (ATV) 125

xiv

LIST OF TABLES

Table 2.3.2.1 Case table for Left Local Path 16

Table 2.3.2.2 Case table for Right Local Path 17

Table 3.4: Centralized and Decentralized topologies 29

Table 3.5.1: Summary of JDL Process components 32

Table 3.5.2: JDL and Waterfall fusion models 34

Table 3.7: Decision Fusion Models 41

Table 6.6: Pattern Identifier 62

Table 6.7: Possible Ramp Scenarios in the Terrain 63

Table 6.8: Mass Values 64

Table 6.9: Human Commands 64

Table 6.12.1: Data flow between stages 75

Table 8.1.1 Initial Sensor space distribution 111

Table 8.2.2.1 Sensor map after space reduction 112

Table 8.2.2.2 Sensor map after sensor re-allocation 113

Table 8.2.2.3 Sensor map after sensor space de-allocation 115

Table 8.2.2.4 Sensor map after space reduction 116

Table 8.2.2.5 Sensor map after sensor re-allocation 118

Table 8.2.2.6 Sensor map after sensor de-allocation 120

1

CHAPTER 1: INTRODUCTION

Autonomous robots have been mostly used as a tool for performing tasks

involving maneuverings and navigation in areas which are hazardous to humans or

monotonous. Newer robots have now started to become more social and more

involved in our everyday lives. Man-machine collaboration or Human-Robot

Interaction (HRI) focuses on how machines can be made increasingly interactive

with humans and how this communication paves way for better task performance of

the robot and task reduction for human operator. For effective human-robot

collaboration, it is imperative that the robot be capable of understanding and

interpreting several communication mechanisms similar to the mechanisms

involved in human-human interaction [1].

1.1 Motivation

Human robot interaction involves collaborative communication between the

robot and the user. There are several modalities involved in the interaction, namely

speech, gesture, bio-feedback sensor, and environmental influence. When a two-way

interaction exists between both entities, there is a need for better decision making,

heavily constrained on the robot side during the interaction process. This requires

gathering the data from not just one source but from multiple sources which are

streaming information. The sensor readings (hard data set) and the user-fed

information (soft data set) need to be combined to help the robot make the right

2

decision while executing the current task [2]. Although HRI aims at making the robot

highly autonomous to achieve an interaction similar to human-human interaction,

the robot can still query the user for command in case the result of the data fusion

seems ambiguous or during high levels of uncertainty.

Multi sensor fusion is advantageous over single sensor since the ability to

identify multiple parameters is possible only by combining different sources of data.

For instance, to identify a moving object, such as a airplane, requires the need to use

information from infrared image sensor and pulsed radar [3] to get the range and

angular direction of the airplane. A detailed description of the types of sensor fusion

and architectures is described in Chapter 2. It is necessary to take into consideration

the robot cognition while performing any robotic application. An overview of the

types of learning that can be implemented on the vehicle is also described in the

Introduction, Chapter 2.

1.2 Objective of this Work

In this research, the primary focus is on combining the data from multiple

agents and improving the interaction process between the user and robot, thus

increasing the efficiency of the interaction. We formulate a sensor framework that

uses sensor fusion to achieve a decision before execution of a task and uses a sensor

management interface through Sensory Maps to mimic the features of the Sensory

Brain Maps [4, 5].

1.3 Contribution

The main contribution of this research is to achieve complete coverage

planning and dynamic sensor maps. The navigation application implemented covers

3

maximum area of the field and invokes human involvement through a help phase.

This increases the reliability of the system by reducing the possible collision of the

vehicle with the obstacle. The usage of sensory maps to incorporate a dynamic sensor

management and resource management is a novel approach to utilizing sensor space

effectively and simulating human-brain like model for robot cognition as opposed to

using neural networks.

The Complete Coverage application is implemented using Python and

navigation is achieved on a terrain with surface and terrain obstacles. This

applications does not use any path planning algorithm but only covers every

reachable cell in the field. The application performs as expected by ensuring the

robot to cover maximum area of the field while avoiding obstacles and calling the

user at the right places for help. The sensor management implemented through

machine learning works well by dynamically adjusting the space allocated for each

sensor thereby handling the memory resources for each sensor effectively,

simulating the human brain model.

For demonstration of the sensor fusion framework, the navigation

application is implemented using Robot Operating System. The environment has

obstacles, namely surface obstacles like blocks, trees etc. and ravines, and the

framework is customized for the navigation application of the vehicle in such a

terrain. The Sensor fusion process is heterogeneous and combines information from

surface obstacle and ravines. Based on the type of obstacle the robot either

continues moving or queries the user. Interaction with the human user will be

prompted when the fusion algorithm signals an uncertain state to achieve safe

4

maneuvering of the vehicle in the field. The simulation of the vehicle navigation in

the terrain with unknown obstacles demonstrates the functionality of the framework

and its role in achieving bidirectional communication through the help phase under

conditions of uncertainty. For sensor fusion, we need at least two sensors. If many

sensors are used there is a possibility of physical interference between them. Thus,

the choice of three LIDARs for terrain and three LIDARs for surface obstacle

identification in the navigation application.

1.4 Organization

This thesis is divided into nine chapters. Chapter 2 gives an introduction to

the various topics, such as Human Robot Interaction, multi sensor fusion, machine

learning and the brain maps. Chapter 3 describes the various multi sensor fusion

techniques and methods. Chapter 4 describes the Robot Operating System (ROS)

and Gazebo. Chapter 5 describes the robot build using Gazebo and Chapter 6 presents

the simulation of the sensor fusion framework for the robotic vehicle navigation on an

unknown terrain. Chapter 7 describes the complete coverage planning algorithm and

the modifications of the algorithm. Chapter 8 demonstrates the dynamic sensor

management through the sensor maps for the modified navigation application.

Chapter 9 summarizes the work completed and plans a course for future innovation

and development.

5

CHAPTER 2: INTRODUCTION AND BACKGROUND

In this chapter, we review the basic concepts of

a) Human Robot Interaction (HRI) with examples

b) Multi sensor fusion architectures and types

c) Path planning

d) Sensor management

e) Machine learning – supervised and unsupervised classifications

f) Sensory brain maps

2.1 Human Robot Interaction

2.1.1 An Introduction

As the name suggests, HRI is combining user involvement during the

execution of a robotic application. In the following section, we look into a few

examples of human interactive robots that are used in several domains of our society

[1].

2.1.2 HRI in the Society

Mobile robotics has been an area of interest for the past two decades.

a) Elderly and Aged

Robots have taken the role of a caretaker for the elderly people and those

with disabilities. A good example can be found in a smart wheelchair,

where the necessity of man machine collaboration is emphasized to

6

perform the task of mobility of the vehicle. A socially interactive robot

called HOBBIT [8] caters the needs of elderly people at home.

Figure 2.1.2.1. HOBBIT Robot to provide elderly care [8]

b) Schools and Learning

In the area of teaching and providing assistance to teachers in schools,

robots, are becoming significantly used. An example of such can be

7

found in the robots that were used with kindergarten children where such

an interaction was found to promote geometrical thinking in children

while playing with the robot [9]. It showed that children enjoyed learning

and improved their geometrical thinking. In addition to assisting in

teaching, the robot also provided performance statistics of the children

over time. Such a positive interaction between humanoids and humans

is instrumental and necessary for the development and enhancement of

human robot interaction.

c) Bio-feedback Systems

Understanding and interpreting emotional signals in a human-human

interaction is necessary to ensure an effective communication. Similarly,

robots should be made capable of recognizing and responding to the

emotional levels of the human operator. A good example of such an

integration is where bio-feedback sensors are worn on the user and the

user’s physiological signals like anxiety levels were measured and these

reading were then input to the robot [10]. In addition to normal

operations, such as obstacle detection or wall following, based on the

readings fed to the robot, actions can triggered such as to move closer or

to start a conversation with the operator. This is a massive approach

towards collaborating humans and robots communication and

interaction.

d) Medicine

Medicine is another area where HRI is increasingly used. The use of

8

robotic assistants in hospitals has seen an increase in the recent years. An

example of such, ‘Gestonurse’ helps the surgeon in the operating room

(OR) by passing surgical instruments. The operations of the robot can be

controlled via Speech and gesture [11]. Another application of HRI in

medicine involves robots to treat patients affected with Autistic

Disorders. In [12], techniques that were used to treat children with autistic

disorders using robots are highlighted. Techniques were targeted on the

areas of weakness found in these children, such as making a conversation,

initiating social interactions, comprehending emotions through facial

expressions, joint attention and motor skills.

e) Industry

Robots are increasing been used in several industrial applications.

Human robot collaboration is important to reduce the burden of the

operators in industrial assembly tasks, such as part acquisition,

manipulation, and operations. LOCOBOT, the European project that

involves developing customized robot co-workers in industrial assembly

lines at lower costs [13] is an example of the use of HRI in industry.

f) Space Exploration

Space Exploration has seen increasing use of Robotics in the recent

years. One such example, a free-flying robot is referenced in [14] that

operates inside the International Space Station (ISS).The purpose of the

robot was to offload the tasks for the astronaut, such as logistics

management, equipment tracking, and handle an emergency situation

9

(such as a smoke detection).

g) Military

Robots are also used in military operations. In [15], a reference is

mentioned to a robot named BEAR [Battlefield Extraction Assist Robot]

(Vecna Technologies Cambridge Research Laboratory) for rescue

missions. The BEAR robot can carry heavy objects and people and is

capable of navigating through uneven environments. Figure. 2.1.2 [15]

shows the BEAR carrying a human. The robot is designed to have a

human-like form that provides the necessary flexibility and versatility

while operating in environments such as hospitals, building etc.

Figure 2.1.2.2 BEAR Robot used in the military for rescue operations [15]

10

2.2 Multi Sensor Fusion

2.2.1 An Introduction

In order to produce reliable and more accurate information during an

application, it becomes necessary to combine the data from a variety of sources such

as voice, camera, touch and other sensors presently mounted on the robot. Such a

combination requires the use of a fusion architecture and depending on the type of

data involved (such as signal, information, decision or image) several classifications

of sensor fusion exist.

2.2.2 Sensor Fusion Classes

There are various classes of Data fusion as highlighted by Dasarthy [16] as

shown in Figure 2.2.2.

11

Figure 2.2.2 Dasarthy Classification [16]

2.2.3 Sensor Fusion Architectures

Sensor fusion system can also be categorized into Centralized, De-

centralized, Distributed and Hierarchical [16, 17]. Figure 2.2.3 shows the various

architectures [17].

In a centralized system, all the sensor data is streamed to a single node to

execute the fusion process on the contrary, decentralized systems have nodes that

autonomously perform the fusion process based on the local information received

12

by its sensors and from its neighboring nodes. Distributed architecture has a fusion

node that receives the information from other source nodes. The source nodes have

the ability to process the data associativity and state estimation on its sensor inputs

before streaming it to the fusion node which hold the global view of the fused data.

Hierarchical architectures include nodes which perform data fusion at

various levels of hierarchy, nodes are decentralized and distributed in the system.

13

Figure 2.2.3 Types of Data Fusion Architectures [17]

14

2.2.4 Dempster-Shafer Theory of Evidence

A variety of Data Fusion techniques exist such as Bayesian Inference,

Evidential Reasoning, Interval Calculus et al [17, 18]. While probabilistic methods

are used widely there exist inherent limitations as outlined in [18], such as assigning

aprori probabilities, increased complexity in presence of multiple hypothesis, and

handling uncertainties while making decisions. In order to interact with humans, a

fusion method that can handle uncertainties is necessary. Dempster-Shafer theory

of evidence [6, 7, 18] is used to handle incomplete knowledge and uncertainty. This

data fusion method is described as follows.

In this reasoning method [6, 7, 17, 18], all possible mutually exclusive

events of the similar kind are listed in a set S. Each of the sensors based on its

observation will assign belief mass over S. The elements of the set 2S are the

hypotheses. The sum of the mass function of all hypotheses is one. Belief function

is used to express inaccurate beliefs.

The conditions on the belief function are: belief(S) =1, belief (null) =0 and belief

(hypothesis) = Sum of all mass functions for all evidence to support the proposition.

The confidence interval is upper-bounded by the plausibility value to include all

observations that don’t rule out the proposition supported by the corresponding belief

function. In order to combine two mass functions m1 and m2, the Dempster-Shafer

theory defines the following rule [18, 19, 72]:

m1 ⨁ m2(∅) = 0 (Equation 2.2.4.1)

m1 ⨁ m2(H) = ∑ X ∩Y=H m1(X)m2(Y)

1- ∑ X ∩Y= ∅ m1(X)m2(Y) (Equation 2.2.4.2)

15

Thus, it is not necessary to have aprori probabilities and data is provided only at the

time when sensor reads them. This is a significant advantage of evidential reasoning

over probabilistic methods such as Bayesian inference [18, 19, 72].

2.3 Path Planning

2.3.1 Introduction

Path planning, as the name indicates is the process of formulating a route for

the vehicle to navigate between any two or more locations. The overall path could

be further dissected into global and local paths depending on how the path planning

algorithm is executed. In the following section we discuss one such path planning

technique used in vehicle navigation. Some of the path planning techniques are

described in [18, 20].

2.3.2 Complete Coverage Planning

In [20], the concept of complete coverage planning was introduced. The

vehicle navigates through the field column by column following a global or regular

path. On encountering an obstacle, it formulates a local path to navigate around the

obstacle and avoid the obstacle. Figure 2.3.2 shows the algorithm used for path

planning [20]. The algorithm uses stacks to store the left and the right local paths.

The tables 2.3.2.1 and 2.3.2.2 show the calculation of the local paths when the

vehicle faces an obstacle [20].

16

Figure 2.3.2 Obstacle Figure.2.3.2 Local path

Table 2.3.2.1 : Case table for left local path [20]

T = Top, L = Left, B = Bottom, R = Right

Main case 1 Ysource < Ytarget

Case No Condition Sequence

1.1
(SourceY < AltGoalY) &&

(SourceX == AltGoalX)
TLBR

1.2
(SourceY < AltGoalY) &&

(SourceX > AltGoalX)
TLBR

1.3
(SourceY < AltGoalY) &&

(SourceX < AltGoalX)
LBRT

1.4
(SourceY == AltGoalY) &&

(SourceX > AltGoalX)
RTLB

1.5
(SourceY == AltGoalY) &&

(SourceX < AltGoalX)
LTBR

1.6
(SourceY > AltGoalY) &&

(SourceX == AltGoalX)
BLRT

1.7
(SourceY > AltGoalY) &&

(SourceX > AltGoalX)
TRLB

1.8
(SourceY > AltGoalY) &&

(SourceX < AltGoalX)
BRLT

17

Table 2.3.2.1 : (continued)

Main case 2 Ysource > Ytarget

2.1
(SourceY < AltGoalY) &&

(SourceX == AltGoalX)
TLRB

2.2
(SourceY < AltGoalY) &&

(SourceX > AltGoalX)
RBLT

2.3
(SourceY < AltGoalY) &&

(SourceX < AltGoalX)
TLRB

2.4
(SourceY == AltGoalY) &&

(SourceX > AltGoalX)
RBTL

2.5
(SourceY == AltGoalY) &&

(SourceX < AltGoalX)
LTBR

2.6
(SourceY > AltGoalY) &&

(SourceX == AltGoalX)
LTRB

2.7
(SourceY > AltGoalY) &&

(SourceX < AltGoalX)
LTRB

2.8
(SourceY > AltGoalY) &&

(SourceX > AltGoalX)
BLTR

Table 2.3.2.2 : Case table for right local path [20]

T = Top, L = Left, B = Bottom, R = Right

Main case 1 Ysource < Ytarget

Case No Condition Sequence

1.1
(SourceY < AltGoalY) &&

(SourceX == AltGoalX)
TRBL

1.2
(SourceY < AltGoalY) &&

(SourceX > AltGoalX)
TLBR

1.3
(SourceY < AltGoalY) &&

(SourceX < AltGoalX)
TRBL

1.4
(SourceY == AltGoalY) &&

(SourceX > AltGoalX)

RTLB

1.5

(SourceY == AltGoalY) &&

(SourceX < AltGoalX)

LTRB

1.6
(SourceY > AltGoalY) &&

(SourceX == AltGoalX)
BLRT

1.7
(SourceY > AltGoalY) &&

(SourceX > AltGoalX)
TRLB

18

1.8
(SourceY > AltGoalY) &&

(SourceX < AltGoalX)
BLTR

Table 2.3.2.2 : (continued)

Main case 2 Ysource > Ytarget

2.1
(SourceY < AltGoalY) &&

(SourceX == AltGoalX)
TLRB

2.2
(SourceY < AltGoalY) &&

(SourceX > AltGoalX)
RBLT

2.3
(SourceY < AltGoalY) &&

(SourceX < AltGoalX)
TLBR

2.4
(SourceY == AltGoalY)

&& (SourceX > AltGoalX)
RBTL

2.5
(SourceY == AltGoalY)

&& (SourceX < AltGoalX)
LBRT

2.6
(SourceY > AltGoalY) &&

(SourceX == AltGoalX)
RTLB

2.7
(SourceY > AltGoalY) &&

(SourceX < AltGoalX)
BRTL

2.8
(SourceY > AltGoalY) &&

(SourceX > AltGoalX)
BLTR

2.4 Sensor Management

2.4.1 Introduction

Sensor management is the heart of the entire multi sensor fusion system [21].

Sensor management provides a lot of freedom for the architect to formulate and

deploy their designs and investigate existing architectures. In the following sub

sections, we describe the several such sensor management architectures and their

relevant applications.

2.4.2 Sensor Management Architectures

As described in [21, 23], there are two types of sensor management

architectures. They are described as below [21]. In [22, 50], several implementations

19

of the sensor fusion architectures in MATLAB is presented. It is necessary to have a

robust sensor management system to achieve a better performing multi sensor

network.

2.4.2.1 Information-Theoretic

In this technique, the goal of the sensor manager/management is to decrease

the measure of uncertainty in a sensor observation. This approach aims at

maximizing the information gain of the sensor network to improve the overall

performance [21].

2.4.2.2 Bayesian Decision Making

In contrast to maximizing the information, this method aims at minimizing

the cost function associated with a decision. This approach utilizes apriori

probabilities of the sensors and requires choosing “proper thresholds”, that will be

used during the decision making process [21, 23]. It is more computationally

intensive than the information centric approach.

2.5 Machine Learning

2.5.1 Introduction

In order to incorporate automation into the vehicle or the robot, it becomes

necessary to train the vehicle to self-adjust or self-modify its behavior when reacting

to situations. Machine learning is a field in Artificial Intelligence [24] that caters to

this purpose. From simple automated voice systems to the Self-driving cars, machine

learning has made it possible to realize intelligent systems. Learning with experience

is the key idea behind developing machine learning algorithms.

20

2.5.2 Types of Classifications

To achieve the desired autonomous and intelligent system for the application

we as the user need to train the robot with possible sets of stimuli known as the training

set. Depending on the application, the user might know the corresponding outputs and

define them or might need to let the system categorize the outputs by itself. Hence,

there are three possible types of classifications to the end user requirements [25, 26,

27].

a) Supervised Classifiers

The user knows the output patterns for the input sets and trains the system.

When the system encounters a particular input pattern it recognizes it and fits it with

an output label used during the training. Inductive learning [28] is a category of

supervised learning. Naïve Bayes, Decision Trees etc. are a few examples of

classifiers.

b) Unsupervised Classifiers

In Unsupervised learning, the system has to learn without a trainer i.e., the

system has to deal with the environment and self-train since there are no explicit output

patterns defined for the possible inputs. As mentioned in [25], the best way to train the

system is through experiments, the system must possess memory and information

retrieval abilities.

Moreover, this technique requires heavy interaction of the system with the user

and environment. Clustering is a commonly used unsupervised classifier.

c) Reinforced Classifiers

Unlike supervised and unsupervised learning, reinforcement incorporates the

21

reward or punishment that the system will face during its experience. The interaction

of the system with the environment produces feedback signals that are categorized as,

reward and punish labels, hence the learner adapts its responses according to these

labels. Some of the examples are Q learning and temporal difference learning [29].

2.6 Sensor Maps

2.6.1 Introduction

Dr. Ramachandran, in his book [4] has described the concept of brain maps.

Brain maps or Penfield maps as shown in Figure 2.6.1 [4], are representation of the

various sensory stimuli of the human body. As the figure shows, every sensory input

has a corresponding slot or position on the map. These slots are of varying sizes and

located in the sequence shown.

Figure 2.6.1 A portion of the Penfield map of the skin surface [4]

22

2.6.2 Dynamic Nature of the Maps

The idea that the brain is not malleable in learning and that the brain maps are

fixed in size and position was a long held belief in neuro science. However, in [5], Dr.

Doidge, illustrates several examples and case studies of patients who were physically

affected by pain due to trauma and other medical conditions such as brain injury. These

patients were able to recover from their physical problems not because of the treatments

proposed and highlighted by Dr. Doidge, but through the dynamic nature of the brain

maps that changed as the treatments were practiced on the patients. The plastic nature

of the brain (or the sensory brain maps!), is a remarkable finding that is inspires

confidence into patients and gives hope that they can lead a normal life like their friends

and peers.

When a sensory input is not recognized for a long time due to a physical injury

or under-utilization, the corresponding slot in the map starts to reduce, as described in

the book by Dr. Ramachandran. By therapies or training, such a slot can be re-allocated

back to the sensory input as described in [5, 30]. Similar to how brain exercises can

help rewire the brain, learning disorders cured through training and several other

methods of therapy to revitalize the brain, differentiation of the brain map can be

achieved. This is the use-it-or-lose-it principle of the brain.

2.7 System Integration

The previous sections provided an introduction to each of the topics that are

used in the research work. Here, we integrate them all into our framework that

synthesizes these elements. The framework we formulate is very similar to the sensor

fusion framework described in [21]. The main idea is to develop a robot navigation

23

application and utilize the machine learning techniques to implement the dynamic

sensor map of the vehicle. We will deep dive into the implementation and results

achieved so far in the following chapters.

24

CHAPTER 3: M U L T I S E N S O R F U S I O N

3.1 Introduction

Sensor fusion involves combining data from several sensors to obtain better

information for perception. Humans and animals process multiple sensory data to

reason and act and the same principle is applied in multi-sensor data fusion. Multi-

sensor fusion combines data from different sensors into a common representation

format [31, 32]. In developing robotic systems, multi-sensor fusion plays a crucial

role since interaction with the environment is instrumental in successful execution of

the task. Significant applications of multi-sensor fusion can be found in applications

such as mobile robots [32, 33,34, 35], defense systems (such as target tracking [32,

36, 37, 38]), medicine [39, 40], transportation systems [41, 42] and industry [43, 44,

45]. The motivation for sensor fusion is discussed in section 3.2. Section 3.3

describes the various types of sensor fusion proposed in literature. The various

topologies and models for sensor fusion is covered in sections 3.4 and 3.5. Sections

3.6, 3.7 provide an overview of signal and decision level fusion.

3.2 Motivation

The main goal of multi-sensor fusion is to achieve better operation of the system

using the collective information from all sensors. This is also referred to as the

synergistic effect [46, 47, 48]. Combining the data from a single sensor at different

time intervals can also produce this effect [48].

25

3.3 Sensor Fusion Categories

Depending upon the sensor configuration, there are three main categories of

sensor fusion: Complementary, Competitive and Co-operative [49]. These are

described below as follows:

a) Complementary

In this method, each sensor provides data about different aspects or attributes

of the environment. By combining the data from each of the sensors we can arrive at

a more global view of the environment or situation. Since there is no dependency

between the sensors combining the data is relatively easy [49, 50].

b) Competitive

In this method, as the name suggests, several sensors measure the same or

similar attributes. The data from several sensors is used to determine the overall value

for the attribute under measurement. The measurements are taken independently and

can also include measurements at different time instants for a single sensor. This

method is useful in fault tolerant architectures to provide increased reliability of the

measurement [49, 50].

c) Co-operative

When the data from two or more independent sensors in the system is required

to derive information, then co-operative sensor networks are used since a sensor

individually cannot give the required information regarding the environment. A

common example is stereoscopic vision [49, 50].

Several other types of sensor networks exist such as corroborative,

concordant, redundant etc. [48]. Most of them are derived from the above mentioned

26

sensor fusion categories.

Dasarthy [51, 52] classified sensor fusion types depending upon the

input/output characteristics. Figure 3.3 [51], shows the various sensor fusion types.

Only a few combinations are allowed in Dasarthy’s scheme for the inputs and

outputs.

Figure 3.3 Dasarthy’s classification of multi-sensor fusion [51].

27

3.4 Sensor Fusion Topologies

There are different topologies namely, Centralized, Decentralized and Hybrid

[48, 50, 53, 54]. Each of these is described as follows:

a) Centralized Architecture

In this architecture, a single node handles the fusion process. The sensors

undergo preprocessing before they are sent to the central node for the fusion process

to take place. Figure 3. 4. 1 shows a typical centralized architecture [48, 50].

b) Decentralized Architecture

In this architecture, each of the sensor processes data at its node and there is

no need for a global or central node. Since the information is processed individually

at the node, it is used in applications that are large and widespread such as huge

automated plants, spacecraft health monitoring etc. [50]. Figure 3.4.2 shows a typical

decentralized architecture [48, 50].

c) Hierarchical Architecture

This architecture is a combination of both centralized and distributed type.

When there are constraints on the system such as a requirement of less computational

workload or limitations on the communication bandwidth, distributed scheme can be

enabled. Centralized fusion can be used when higher accuracy is necessary [50, 53].

A simple comparison between the centralized and decentralized topologies is

shown below in Table 3.4 [48, 50, 17].

28

Figure 3.4.1 Centralized Topology [17, 53]

Figure 3.4.2 Decentralized Topology [17, 53].

29

Table 3.4: Centralized and Decentralized topologies [48, 50, 17]

Parameter Centralized Distributed

Communication
Central node acts

bottleneck

Data processing

load distributed

Computation

Depends on the

performance of

central processor

Can be easily

scaled

Modularity
Re-programming

for new sensors
Modular in design

Fault-tolerance
Depends on the

central computer

Distributed data

processing

3.5 Multi-Sensor Fusion Models

The application that uses the sensor fusion plays a vital role in determining

the type of architecture. Hence there is no specific model or architecture that is

definitive for all applications [55, 56, 57].

In this section, the two most widely used architectures namely, the JDL

Fusion architecture and the Waterfall Fusion Process Model are discussed.

a) JDL Fusion Architecture

JDL stands for the US Joint Directors of Laboratories that was established

under the guidance of Department of Defense and was proposed in 1985. The JDL

model is functionality dependent and can be customized depending on the

application. Varieties of applications from sensor networks to human robot interface

can be implemented using this model [50].

The model uses five levels for data processing and a database. These

30

components can communicate through a bus interface [50, 54, 56]. The JDL model

is shown in Figure 3.5.1 [54, 56]. These levels could be executed sequentially or

concurrently during the application.

Sources, in the JDL model can consist of sensor data or data given by the user

such as user input, reference data or geographical data. The Man-Machine Interaction

block, as the name suggests, enables the user to interact with the system through user

command, reports etc. Furthermore, this block helps in providing alert messages and

could use multimedia tools such as displays, sounds etc. to achieve communication

with the user.

The Source Pre-Processing also referred to as Level 0, performs pre-screening

of data and then allocates it to the appropriate process [54, 56]. In the Object

Refinement or Level 1, the following operations are performed namely, alignment of

data using frame transformation, data association, tracking and estimation of the

current and future position of the object. Also, Level 1 can be considered to be

composed of kinematic and identity fusion [50]. In kinematic fusion, the velocity,

acceleration of the object is determined. In identity fusion, the type of the object such

as aircraft or missile is determined using parametric estimation [50, 54]. After

processing the data from Level 1, based on the situation the contextual relationship

is determined between the event and the object under observation. This process of

refinement is called as Situation Refinement or Level 2. Depending on the a priori

data and the future situation prediction inferences are drawn in Level 3 or Threat

Refinement. The inferences are used to identify the vulnerabilities and the

opportunities for the operation. This level uses game theoretic techniques [54].

31

Process Refinement or Level 4 deals with monitoring the system performance

(handles real time constraints) and sensor allocation to satisfy mission objectives and

goals. This level does not perform data processing operations and uses sensor

management techniques [50, 54, 56]. The Database Management System helps

monitor, update, add and provide information to the fusion process [50, 54, 56].

Although the JDL model helps in basic understanding of the sensor fusion

process it is data centric and hence hard to extend or reuse the applications based on

this model. It is abstract and interpretation could be difficult [54, 56].

Table 3.5.1 [54] highlights the summary of various components used in JDL

model.

Figure 3.5.1 JDL Fusion Model [54, 56].

32

Table 3.5.1: Summary of JDL process components [54]

SOURCES
Can include data from sensors to a priori information

from databases to human input.

PROCESS

ASSIGNMENT

Enables the data fusion process to concentrate on the data

most pertinent to the current situation as well as reducing

the data fusion processing load. Involves data pre-

screening and allocating data to appropriate processes.

OBJECT

REFINEMENT

I

(Level 1)

Transforms data to a consistent reference frame and units

and estimate or predict object position, kinematics, or

attributes. Also, assigns data to objects to allow statistical

estimation and refine estimates of the objects identity or

classification.

SITUATION

REFINEMENT

(Level 2)

Describes of the relationship between objects and

observed events. This processing determines the meaning

of a collection of entities and accounts for environmental

information, a priori knowledge, and observations.

THREAT

REFINEMENT

(Level 3)

Projects the current situation into the future and indicates

possible threats, vulnerabilities, and opportunities for

operations.

PROCESS

REFINEMENT

(Level 4)

Monitors real-time performance of data-fusion, identifies

information required for data fusion improvement.

Also, allocates and directs sensor and sources to achieve

mission goals.

DATABASE

MANAGEME

NT SYSTEM

Most extensive ancillary function required to support

data fusion. Also features data retrieval, storage,

archiving, compression, relational queries, and data

protection.

HUMAN-

COMPUTER

INTERACTIO

N

Enables human input and communication of data fusion

results to operators and users, and includes methods of

alerting human as well as augmenting cognition.

33

b) Waterfall Fusion Process Model

The Waterfall fusion process model (WFFM) deals with the low level

processing of data and is shown in Figure 3.5.2 [54, 58]. The Waterfall model has a

lot of common features as the JDL model. The processing stages of the Waterfall

models relate to the levels of the JDL model [54, 56, 58] and the comparison is shown

in Table 3.5.2.

However, similar to the JDL model the Waterfall fusion model is abstract and

doesn’t have feedback between the stages. It is an acyclic model. The modified

WFFM is described in [50] that provides for some feedback between the stages. This

modified model is action oriented and has the provision for control loop action or

feedback loop as shown in Figure 3.5.3 [50]. Several other fusion models exist such

as the Omnibus model [59], Boyd or OODA model [60], LAAS Architecture [61].

Figure 3.5.2 Waterfall Fusion Process Model [58]

34

Figure 3.5.3 Modified Waterfall Fusion Model [50].

Table 3.5.2: JDL and Waterfall fusion models [54, 56, 58]

JDL levels Waterfall stages

Level 0

Sensing and Signal Processing

Level 1

Feature Extraction and Pattern

Processing

Level 2

Situation Assessment

Level 3

Decision Making

35

3.6 Signal Level Fusion

In signal level fusion, data from multiple sources (sensors) are combined to

obtain better quality data and higher understanding of the environment being

observed. Signal level fusion often has either or both of the following goals:

Obtain a higher quality version of the input signals i.e. higher signal to noise

ratio [62]. Sensor measurements from several sensors which have same physical

properties are combined to determine the parameter being measured, more accurately

[48]. This minimizes and sometimes eliminates any uncertainty or inaccurate

predictions caused by measurements from faulty sensors, measurement noise and

state noise. For instance, readings from multiple temperature sensors in close

proximity in a given space can be used for this kind of fusion.

Obtain a feature or mid-level information about the system that a single

measuring node cannot reveal. A feature is the first stage in understanding the state

of the environment that helps the system in formulating a decision. Heterogeneous

sensors are often employed for this process. For instance, signals from radar and

images from camera are used in target recognition [54].

For sensor data to undergo signal level fusion, it is essential to condition the

signals in the signal preprocessing phase. The signals have to be in a common

representation format [48]. The stages involved in this process, as shown in Figure

3.6.1, include but not limited to: Signal alignment, normalization and scaling [48].

There are several methods by which signal level fusion can be achieved. The

choice of method depends on various factors like the scenario and type of application,

36

type of data or signal, relationship between the data or the state representation of the

system.

Figure 3.6.1 Common representation format functions [48].

The following are some of the commonly used signal fusion methodologies:

 a) Weighted Averaging

Signal fusion can be achieved by taking an average of the various sensor

signals measuring a particular parameter of the environment. If signals from some

sensors can be trusted more than the other, a higher weight is assigned to that sensor

to increase its contribution towards the fused signal. The confidence level is a

function of variance of the sensor signal. [62]

 (1)

where, wi = f(variance)

 b) Kalman Filter

The Kalman filter method is a common adaptive method of sensor fusion to

remove redundancy in the system and to predict the state of the system. This is a

linear model and the current state of the system is dependent on the previous state.

𝑥𝑓𝑢𝑠𝑒𝑑 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0



37

The system is represented by the following state-space model:

where, x: state vector, F: state transition matrix, B: Input transition matrix, u: Input

vector, G: Process noise transition matrix, w: process noise vector, H: Measurement

matrix, v: measurement noise vector. The covariance matrices of w and v are Q(k)

and R(k) respectively. There are two phases of state estimation with Kalman filter:

 Predict phase:

 (2)

 (3)

 Update phase:

 (4)

 (5)

 (6)

where, P: estimation covariance, K: Kalman gain

In the update or correction phase, the estimate from the predict phase is

updated with the observation. If there are two sensors and both of them sending data

simultaneously, then Z = [z1, z2]. If the sensors are sending data one after the other,

then the reading from first sensor can be used as a priori information before

observation from second sensor is used to update the prediction. [62]

x̂
𝑘 = 𝐴 x̂

𝑘−1 + 𝐵 𝑢𝑘

𝑃𝑘 = 𝐴 𝑃𝑘−1 𝐴𝑇

𝐾𝑘 = 𝑃𝑘𝐶𝑇(𝐶𝑃𝑘𝐶𝑇 + 𝑅)−1

x̂
𝑘 = x̂

𝑘 + 𝐾𝑘(𝑧𝑘

− 𝐶 x̂
𝑘)

𝑃𝑘 = (1 − 𝐾𝑘𝐶)𝑃𝑘

𝑥(𝑘) = 𝐹 𝑥(𝑘 − 1) + 𝐵 𝑢 + 𝐺 𝑤
𝑧(𝑘) = 𝐻 𝑥(𝑘) + 𝑣

38

c) Track to Track Fusion

Track to track fusion methodology has local tracks generated by distinct local

sensors. Then at a central node the tracks are fused as shown in Figure 3.6.2 [63].

The local track can be individual Kalman filter nodes that provide state estimation at

the local track level. These states are then fused into a state vector that has combined

information from all the local sensor nodes. Sometimes, this new estimate is sent as

feedback to the local sensor nodes. The new state estimate is obtained by the

following formula [63].

  
 12

111211

ˆˆ

ˆˆ

k|kk|k

21

k|k

12

k|k

2

k|kk|kk|kk|kk|kk|k

xx

P+P+P+PPP+x=x






 (7)

where, Pm
k|k is the error covariance matrix of the corresponding state

estimation x^m
k|k . P

12
k|k is the cross covariance matrix of the two state vectors where

P12
k|k = (P12

k|k)
T.

P12
k|k is defined by the following equation:

   

   Tkk

T

kkkkk

T

kk

T

k|kkkk|k

HKGQGHK+

HKFPFHK=P

22

111

11

22

1

12

1-k1-k1

1112

11

11









(8)

This configuration can be extended for multiple sensors. A modified track-

to-track fusion and three fusion algorithm are explained in detail in [63].

There are other ways to define the track fusion algorithm such as taking

confidence weighted averaging of the tracks based on variance [63].

 d) Neural Networks

An artificial neural network consists of interconnection of processing nodes

39

called neurons. There is a pattern of interconnection between the neuronal layers that

are weighted and the learning process that updates these weights. Data fusion models

can be established using neural networks such that neurons and interconnecting

weights are assigned based on the relationship between the multi-sensor data input

and the signal output. The neural networks can be multilayer feed-forward or

recurrent type. [64]

Unlike Kalman filters, neural networks offer non-linear transfer functions and

parallel processing capabilities. This can help in performing image fusion. Figure

3.6.3 shows a basic structure of three layer neural network with nonlinear mapping.

Figure 3.6.2 Track to track fusion architecture [63].

Figure 3.6.3 Neural network structure for sensor fusion [64].

40

The fused output is a combination of input signal and corresponding weights

calculated by the equation [64]:

 (9)

where, wi is the weight; xi is the sensor data.

Several fusion methodologies are used and depending on the input and

outputs required the stages in the model can perform either signal, feature or decision

level fusion. These methods are either used as standalone or can be combined with

aforementioned signal fusion methods.

 The probabilistic approach for sensor fusion includes the use of joint

probability distributions and Gaussian distributions [68]. Other fusion methods

include Bayesian, least-squares for feature extraction [69] and some statistical

approaches. [48, 62, 70]. In [65, 66, 67] the authors explain various approaches for

modeling sensor fusion architecture using neural networks.

3.7 Decision Level Fusion

Also known as Symbol level fusion, the decision level fusion combines

several sub-decisions or features to yield a final or higher decision that can be used

to take an action. Symbol could be an input decision. In this case, fusion of symbolic

information insists the use of reasoning and inference while handling uncertainty.

Symbol level fusion increases the confidence or truth value and is considered as

decision fusion [71, 72]. Identity and Knowledge based methods form the two

categories of decision fusion [50, 72]. Table 3.7 [50, 72] lists few of the decision

fusion methods or AI techniques for each category.

𝑦 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=0

41

One of the most widely used decision or inference method is Dempster-

Shafer theory (D-S theory). This method is very useful for human-robot interaction

based applications [71, 72, 75, 76]. We describe in detail the D-S theory in the

following sub-section followed by a comparison with Bayesian inference which is

another widely used decision fusion technique.

a) Dempster-Shafer Theory of evidence

D-S theory is a generalization of the probability theory [6, 7, 71, 75]. In this

method, a frame of discernment Ω is defined which is set of elementary hypotheses:

 Ω={ai},i=1, ..., n (10)

Table 3.7: Decision Fusion Models [50, 72]

Identity based Knowledge based

Maximum a priori (MAP) Syntax rule

Maximum Likelihood (ML) Neural Network (NW)

Demspter-Shafer, etc Fuzzy Logic , etc

The sum of the mass function of all hypotheses is one. Belief function is used

to express inaccurate beliefs. Mass values are assigned to the elements of the power

set 2Ω of the frame of discernment which hold the following properties:

 belief (null) = 0

 belief (hypothesis) = Sum of all mass functions for all evidence to

42

support the proposition.

The confidence interval is upper-bounded by the plausibility value to include

all observations that don’t rule out the proposition supported by the corresponding

belief function. In order to combine two mass functions m1 and m2 the Dempster-

Shafer theory defines the following rule [6, 7]:

m1 ⨁ m2(∅) = 0 (11)

 (12)

b) Dempster-Shafer and Bayesian fusion comparison

 Although both these methods are widely used in inference engines there

are few differences between them [72, 76]. The main difference being the concept of

support and plausibility to define uncertainty limits in Dempster-Shafer [72, 6, 7]

which is not found in Bayesian inference. D-S theory is an evidential reasoning

method where belief masses can be assigned to elements and sets, and on sets of sets

[72]. Capturing ignorance or uncertainty is another strong feature of evidential

reasoning methods which is not achievable in probabilistic methods. It is not

necessary to have a prori probabilities and data is provided only at the time when

sensor reads them [72, 76] during observation. Dempster-Shafer theory of evidence

finds widespread use in human-robot interactive (HRI) applications. A review of a

few applications of HRI can be found in [1].

By using the power set as the frame of discernment beliefs can well

represented. However, when the set is continuous the number of subsets cannot be

measured and hence this is a significant limitation that is found in evidential

𝑚1 ⊕ 𝑚2(𝐻) =
∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌=𝐻

1 − ∑ 𝑚1(𝑋)𝑚2(𝑌)𝑋∩𝑌= ∅

43

reasoning methods [71, 72] that work well with discrete sets.

In the current research work the framework formulated is similar to that

described in [73, 74]. The framework uses sensor fusion, machine learning and the

robot operating system to navigate an unknown terrain with surface and terrain

obstacles.

3.8 Conclusion

In this chapter a brief overview of the various concepts of multi-sensor fusion

was presented. The types of sensor fusion, the sensor fusion topologies and

architectures were reviewed. A survey of sensor fusion types can be found in [77].

Signal level and Decision level fusion was also covered highlighting the methods

used to achieve each of them.

44

CHAPTER 4: ROBOT OPERATING SYSTEM

4.1 Introduction

In this chapter we describe the basics of the Robot Operating System (ROS).

It is a robotic platform for running simulations. ROS can be defined as [78, 79] a

open source meta operating system that provides features similar to an operating

system. These features include physical layer abstraction, low level device control,

communication between processes and package management. There is also provision

to obtain, build, write and run code across multiple computers [78] through different

tools and libraries. ROS works together with the operating system currently installed

and doesn’t replace it.

4.2 Advantages of ROS

Using ROS has some significant advantages that are summarized below [78].

a) Distributed Computation

Several robotic systems have multiple processes that are executed on different

computers. These processes could control one or more sub-systems of the robot such

as sensors or actuators. Even a single robot could have its features written as a set of

independent modules or processes that is easy to control and configure. This is called

complexity via composition. The modules coordinate together in-order to

45

achieve the goal. Also, ROS helps multiple computers to co-ordinate and work on a

shared task and helps in the communication between these computers. Most

importantly, ROS provides mechanism to include human users to control and send

commands to the robot from any electronic device such as laptop, mobile device etc.

All of these are dependent on the communication between the processes and ROS

helps to achieve them through message passing and through services [78].

b) Software Reusability

 One of the key elements in software engineering is the ability to develop

software that is adaptable to changing business or project requirements. Robotic

applications require the use of path planning algorithms, navigation, motion planning

and several others. ROS helps is modifying and applying these algorithms through

its libraries depending upon the context and the application that is sought for. This

eliminates the need to re-implement the algorithms for every new context or

application that is being developed [78].

Also, since ROS uses message passing as its means of communication. It

integrates easily with the latest hardware and implementations of several frequently

used applications such as navigation stacks, motion control etc, are readily available

[78, 79].

c) Rapid Testing

While software development can be time consuming it is often more

important to test the software modules being developed. In robotics software

development testing is often time consuming [78] because of the non-availability of

physical robots. The testing can be still time consuming in the presence of physical

46

robots because of their slowness and other physical level difficulties.

With ROS it is possible to record and playback the sensor data and other

similar messages through the use of rosbag [78, 79]. This helps to test the different

ways by which the sensor data is processed by the system. ROS also separates the

physical level abstraction and the decision making (high level processing)

components of the robotic system. By doing this the low level processing or hardware

can be substituted with a simulator and testing can be performed on the higher levels

of the system [78].

Although ROS offers such significant advantages it is not the only robotics

platform. However, in our research work ROS was preferred because of the vast

amounts of information available through the robotics community [79, 80, 81] which

helps is faster development and debugging of the project.

ROS is not a programming language but has its programs written using C++.

There is also support for other libraries that are written using the languages such as

python, lisp etc. ROS includes server, command-line tools, graphical interface and

a build system alongside several client libraries [78, 79]. ROS is not an integrated

development environment like eclipse etc.

4.3 ROS Distributions and Installation

ROS versions are named as distributions. Some of the distributions are hydro,

groovy, electric, fuerte, jade etc. In this research work we have used ROS indigo and

its corresponding libraries. The various steps to install and configure ROS indigo [78,

79, 80].

47

4.4 Gazebo Simulator

Gazebo is a robotics simulator that aids in testing of robotic algorithms,

designing robots, testing and training of AI based robotic systems [82]. Gazebo is a

highly robust physics engine that offers capabilities of high quality graphics and

programmable interfaces [82]. It was developed by the Open Source Robotics

Foundation (OSRF) and is supported by Windows, Linux and MacOS. It provides

support for various families of robots such as unmanned aerial vehicles (UAV),

ground vehicles, underwater robots, humanoids, robotic arms, robotic hands and

human avatars [80, 82]. It also provides support for various sensors such as odometry,

IMU, collision, GPS, monocular and stereo cameras, depth cameras, 2D and 3D laser

scanners [80, 82].

4.4.1 Gazebo Components

In this section the different components of gazebo are defined from [82].

a) World File

This file contains the details of the various elements used in the simulation

such as the sensors, robots and the other static objects. Format of this file

follows the Simulation Description Format (SDF). The world file has the

extension “.world”.

b) Model File

This file helps to facilitate model reusability and simplifies the world file

described above. It uses the same format as the world file. Gazebo

features an online database of models and any model can be inserted from

this database and downloaded at runtime.

48

c) Environment Variables

There are several environmental variables that need to be set up to locate

necessary files and to establish communication between the server and

client. The list of these variables are:

GAZEBO_MODEL_PATH: directories where Gazebo searches for

models

GAZEBO_RESOURCE_PATH: directories where Gazebo searches for

world and media files.

GAZEBO_MASTER_URI: Gazebo master URI. This is the IP and port

of the server.

GAZEBO_PLUGIN_PATH: directories where Gazebo searches at

runtime for shared libraries.

GAZEBO_MODEL_DATABASE_URI: Online model database URI.

d) Gazebo Server

The server parses the “.world” file and uses the physics and sensor engine

to simulate the physical world.

e) Graphical Client

The client connects to the server and visualizes the elements. The

simulation can be modified using the graphical client.

f) Plugins

Plugins can be used to interface with gazebo. They can be given through

command-line or through the “.world” file. The server or client also have

the capability to load and run the plugins.

49

4.4.2 Robot Model using Gazebo

In this section we describe a robot model built using gazebo also known as

SDF Model Object [82]. The SDF model could be a simple shape such as rectangle,

square, circle etc or a complex robot. The various components of an SDF model are

as follows:

a) Links

The physical properties of one body of the model is described using links.

It could be a wheel or even a join chain link. For better performance and

stability it is necessary to keep the links as less as possible. Links could

also contain collision and visual elements which are described as follows.

Collision elements encapsulates a geometric structure to detect any

collisions. The visualization of the parts of the link are done through a

visual element. A link may contain many collision elements and 0 or more

visual elements. The mass and rotational inertia matrix are dynamic

properties of the link and are described using the inertial element. The

sensor element collects data from the environment and there could be 0

or more sensor elements in a link.

b) Joints

Joints are used to connect links.

c) Plugins

This can be used to control a model and is a shared library.

4.4.3 Gazebo and ROS Integration

 To integrate stand-alone Gazebo with ROS a set of wrappers called

50

“gazebo_ros_pkgs” provide wrappers around the gazebo. Figure 4.4.3 gives an

overview of the gazebo_ros_pkgs interface [82].

Figure 4.4.3 Gazebo ROS package interface [82].

51

CHAPTER 5: ROBOT MODEL USING GAZEBO

5.1 Introduction

We describe in this chapter the robot build using Gazebo. The basics of the

gazebo simulator was described in the previous chapter. The version of gazebo used

is 7.1 and the version of Ubuntu used is 16.04 with ROS Kinetic.

5.2 Robot Model

In the research work we are using a robot similar to turtlebot [80, 83]. In order

to represent the turtlebot and use extra sensors it is necessary to create a new model

file for the simulation and the exiting model files cannot be used directly because of

the required modifications.

The model file follows the Simulation Description Format (SDF). There are

three sensors mounted horizontally to acquire readings of obstacle in front of the

vehicle and there are three sensors mounted at 45 degree to identify and detect any

ravine or slopes in the terrain.

5.2.1 Robot Model SDF

The figure 5.2.1 shows the snippet from the robot model specifying the

parameters for the sensors. The code is repeated for every sensor in the system

making it occur 6 times in the robot model SDF file [82].

52

Figure 5.2.1 Robot Model SDF [82]

53

5.2.2 Robot Model SDF parameters for sensors

From figure 5.2.1 we can see there are several parameters that need to be

configured while adding a sensor. Below we describe some of the important

parameters [82].

a) Pose: This defines the spatial location of the sensor. From the figure the

(x,y,z) for the sensor is (0.095 -0.05 0.408457).

b) Inertia: This sets the values to balance the effects due to gravity.

c) Sensor name: Identifies the nature of the sensor. The sensor here is of kind

laser.

d) Scan: This defines the number of samples needed per sweep, the

resolution, the minimum and maximum angle of the laser. Here we set the

number of samples to be recorded to 5 and the angle of the laser is from -

30 to +30 degrees.

e) Topic name: This specifies the name that will be used in the ROS to

publish the scan messages.

f) Plugin filename: This specifies the file that establishes the connection

between ROS and gazebo. Gazebo publishes the messages to be accessed

by ROS through this file.

5.3 Robot View

Figures 5.3.1 to 5.3.3 show the robot that is built from different angles.

54

Figure 5.3.1 Front view of the robot

Figure 5.3.2 Side view of the robot

55

Figure 5.3.3 Top view of the robot

56

CHAPTER 6: ROS AND GAZEBO SIMULATION

6.1 Introduction

In this chapter we describe the simulation of the sensor fusion framework [73]

using ROS and Gazebo. ROS and Gazebo were described in detail in Chapter 4. The

robot model that we use for the simulation was covered in detail in Chapter 5. The

sensor fusion framework is the basis of this thesis. In a completely human-centered

approach of robot control; the operator serves as the master guiding the robot at each

step of the process. Here we consider the human-operator as another input that is

providing information and not as a controller except when the robot is unable to make

a decision on an action [73, 85]. Human-robot interaction (HRI) is the key theme of

this framework and the process by which the framework achieves it depends entirely

on the type of application the framework is intended for.

In the present research the application is the navigation of a robotic vehicle

using LIDAR sensors [84] in an unknown terrain. The robot is built using Gazebo

and is coupled with ROS to achieve the physical layer abstractions and high level

processing. The following section describes the various blocks/stages of the

framework in detail similar to what was described in [73, 85].

6.2 Block Diagram of the Framework

The block diagram of the framework is shown in Figure 6.2.

57

S
1

S
2

S
3

O
V

E
R

L
A

P

D
E

T
E

C
T

IO
N

O
V

E
R

L
A

P

D
E

T
E

C
T

IO
N

N
O

R
M

A
L

IZ
E

A
N

D

 T
R

A
C

K
 F

U
S

IO
N

B
L

O
C

K

P
A

T
T

E
R

N

ID
E

N
T

IF
IE

R

B
L

O
C

K

S
L

O
P

E
 I

D
E

N
T

IF
IE

R

S
1

S
2

S
3

T
R

A
V

E
R

S
A

B
L

E

U
P

/D
O

W
N

 R
A

M
P

N
O

N
-

T
R

A
V

E
R

S
A

B
L

E

U
P

/D
O

W
N

R
A

M
P

F
L

A
T

G
R

O
U

N
D

S
IG

N
A

L
 L

E
V

E
L

 F
U

S
IO

N
F

E
A

T
U

R
E

 L
E

V
E

L

F
U

S
IO

N
D

E
C

IS
IO

N
 L

E
V

E
L

 F
U

S
IO

N

H
O

R
IZ

O
N

T
A

L
 S

E
N

S
O

R
S

4
5
 d

eg
re

e
 S

E
N

S
O

R
S

S
E

N
S

O
R

 F
U

S
IO

N
 F

R
A

M
E

W
O

R
K

U
N

C
E

R
T

A
IN

H
E

L
P

 P
H

A
S

E

O
R

A
S
S

IS
T

 P
H

A
S

E

Figure 6.2 The block diagram of the entire system.

58

6.3 Input Unit

The input unit consists of the sensory data. The sensors used for the

application are LIDARs [84]. There are three LIDARs that are mounted horizontally

to gather information on obstacle in front of the vehicle. There are three more

LIDARs that are mounted at 45 degree angle to acquire the data for any ravine or

depth of the ground.

6.4 Overlap Detection

The purpose of pre-processing the data from the LIDARs is to acquire more

specific information on the location of the obstacle in the cell in front of the vehicle.

The sensors used for the application are LIDARs (lasers). There are three LIDARs

that are mounted horizontally to gather information on obstacle in front of the

vehicle. There are three more LIDARs that are mounted at 45 degree angle to acquire

the data for any ravine or depth of the ground. Figure 6.4.1 shows the overlap

detection happening in the current application.

Figure 6.4.1 Overlap between the three horizontal sensors.

59

As shown in Figure 6.4.1, each sensor stores five values of readings in the

five elements of the array. The overlap detection helps in identifying the more precise

location of the obstacle in the cell. Also, when there are multiple sensors measuring

the same attribute it is necessary to handle reliability between the sensors.

The first overlap happens between left sensor’s 2nd and middle sensor’s 0th

reading in the array. When both these sensors detect obstacle their confidence value

is incremented by 1. Similarly for the left sensor’s 3rd and middle sensor’s 1st values.

When the overlap happens between all the three sensors i.e., left sensor 4th, mid

sensor’s 2nd and right senor’s 0th values then each of the sensors confidence is

incremented by 0.5 except the mid sensor which is incremented by 1. The reason left

and right sensor confidence is only incremented by 0.5 is to distribute evenly the

confidence between all the sensors. Similarly for the confidence increments between

the mid sensor and the right most sensor values.

At the end of the overlap detection we have the sensor whose value is the

most reliable. Similar to the horizontal sensor the overlap detection is performed with

the sensors that are mounted at 45 degree angle. The sensor with the highest

confidence value will serve as the choice for the track-to-track fusion algorithm that

will combine the data between the horizontal sensor and the 45 degree tilted sensor.

The output of the overlap detector is the value of the sensor that is considered most

reliable among the three sensors. Using such an overlap detection, the system can be

extended to incorporate more sensors and identify the most reliable among them

based on their current readings and reduces the complexity of using averaging or

voting methods and improves the fault tolerance of the system. Figure 6.4.2 shows

60

the sensor values overlap through “rays”.

Figure 6.4.2 Overlap between the three horizontal sensors illustrated through “rays”.

6.5 Track-to-Track Fusion block

The sensor with the best confidence, i.e., with highest value is chosen. One

sensor value from the horizontal sensor group and one sensor value from the 45

degree tilted sensor group is input into the track to track fusion block.

Track to track fusion was described in Chapter 3. Track to track fusion

methodology has local tracks generated by distinct local sensors. Then at a central

node the tracks are fused as shown in Figure 3.6.2 of Chapter 3 and equations 7, 8

[63]. The local track can be individual Kalman filter nodes that provide state

estimation at the local track level. These states are then fused into a state vector that

has combined information from all the local sensor nodes. Sometimes, this new

61

estimate is sent as feedback to the local sensor nodes. The new state estimate is

obtained by the following formula [63]. The superscript 1, 2 refer to the values of the

sensor 1 (horizontal) and sensor 2 (45 degree tilted sensor) respectively. These two

sensors are measuring different attributes of the environment i.e., obstacle in front

(could be a block, tree etc.) and ravine (or a ramp) on the terrain. The fusion takes

place using the equation for P12
k|k

  
 12

111211

ˆˆ

ˆˆ

k|kk|k

21

k|k

12

k|k

2

k|kk|kk|kk|kk|kk|k

xx

P+P+P+PPP+x=x






 (7)

where, Pm
k|k is the error covariance matrix of the corresponding state

estimation x^m
k|k . P

12
k|k is the cross covariance matrix of the two state vectors where

P12
k|k = (P12

k|k)
T.

P12
k|k is defined by the following equation:

   

   Tkk

T

kkkkk

T

kk

T

k|kkkk|k

HKGQGHK+

HKFPFHK=P

22

111

11

22

1

12

1-k1-k1

1112

11

11









(8)

6.6 Pattern Identifier block

The sensor with the best confidence i.e., with highest value is chosen. One

sensor value from the horizontal sensor group and one sensor value from the 45

degree tilted sensor group is input into the track to track fusion block. Based on the

values given by the track to track fusion block we have two scenarios, one for

obstacle present and other for obstacle not present. When the track fusion result is

between 0 to 1 it is classified as no obstacle and we set a variable (or flag) to 0. When

the value returned by the track fusion block is outside this range we consider that as

62

a sign of obstacle presence and we set the variable/flag to 1. Now, in order to improve

the overall confidence, we use more evidence to identify the type of feature the

obstacle could be from among tree/block, ramp or both these obstacle features.

A truth table is generated using the track to track fusion result with the data

provided by the physical sensors (horizontal sensor and 45 degree tilted sensor)

observing the two attributes of the environment. The purpose of such an approach is

to increase the reliability of the system by using more evidence present and to make

the system scalable. Truth table can be altered easily by adding more columns to

include features at more granular level. Also, when certain features don’t contribute

to the decision the respective columns could be removed or considered as a don’t-

care similar to that found in digital logic systems. The rule based truth table is shown

in Table 6.6. Sensor 1 (s1) is the horizontal sensor and sensor 2 (s2) is the tilted

sensor. TF (t) is the track fusion block output variable. Boolean equation for

uncertainty:

uncertain = (s2 AND NOT(t)) OR (s1 AND NOT(t)) OR (s1 AND NOT(s2) AND t)

 Table 6.6: Pattern Identifier

Sensor 1 Sensor 2 TF Feature

0 0 0 no obstacle

0 0 1 uncertain

0 1 0 uncertain

0 1 1 terrain issue

1 0 0 uncertain

1 0 1 surface

obstacle

1 1 0 uncertain

1 1 1 both

63

6.7 Ramp Identifier

The type of feature is detected by the pattern identifier block. If there is a

terrain issue, there are two possibilities. One is a ramp upwards/uphill and the other

is a ramp downwards/downhill. For each of these ramps there exists two more

possibilities. A traversable ramp up and non-traversable ramp up. There might be a

traversable ramp down and a non-traversable ramp down. Table 6.7 will describe

these more neatly.

Table 6.7: Possible Ramp Scenarios in the terrain

RAMP Type Angle Navigability

Up 1<Angle<=4 Yes

Up Angle>4 No

Down -4<Angle<-1 Yes

Down Angle<=-4 No

The slope of the ramp determines whether the ramp can be traversed or not.

The angle can be set by the user depending on the environment and the configuration

of the robot.

6.8 Dempster-Shafer (D-S) for Uncertainty

The D-S decision method [6, 7] was covered in detail under Chapter 2 and 3.

By using the properties of the sensors we can create a mass table with values as shown

in Table 6.8. The rule of combination is used to calculate the uncertainty percentage.

Although, in this research Dempster-Shafer is used for only calculating the

uncertainty percentage it is possible to extend the decision block to include more

64

features and calculate their confidence percentages. In Table 6.8 the notations mass

1 and mass 2 refer to mass values of sensors 1 and 2 respectively. This concept is

similar to the method used in [86]. If D is the effective distance for the sensor.

Table 6.8: Mass Values [86]

Mass Value (m) D = 0 0.06 < D <=10 D > 10

m(obstacle present) 0.3 0.8 0.2

m(no obstacle) 0.3 0.2 0.7

m(obstacle present,

no obstacle)
0.6 0 0.1

6.9 Human Input under Uncertainty

Help phase is initiated when the vehicle is unable to identify the outcome of

the situation and queries the user for assistance. In this framework, at the pattern

identification stage we can flag uncertain situation and calculate the degree of

uncertainty using D-S rule of combination. Here we achieve coordination between

the user and the robot by communicating through help commands. To minimize the

communication delay the framework uses single characters to trigger commands.

Entering ‘r’ sends the command to turn right, ‘f’ commands the vehicle to move

forward. A complete list of commands is shown in Table 6.9. Such a collaborative

control is similar to what was described in [73, 85].

Table 6.9: Possible Commands for the Robot

Command Code

Forward f

Left l

Right r

65

Although the help phase alleviates the problem of the vehicle getting stuck

during its navigation it is imperative from the user side to be equally responsible as

well. Timely issue of commands facilitates faster operation and the vehicle can

complete its task on time, if there is a time constraint. To ensure the robot doesn’t

wait indefinitely for the user prompt there is a time out embedded within the help

phase. The time out can be configured based on the application or other requirements.

A feature to include time out is available in ROS. If the time out occurs the robot can

be made to abort the tasks to save energy and power and for safety.

Once the user initiates the commands and the vehicle is out of certainty the

sensing process is restarted and the vehicle navigates as usual autonomously. This is

the closed loop feedback that is established and is similar to the modified waterfall

fusion model described under Chapter 4. Robot sensing, perception and control are

integrated into the framework with human-interaction under uncertainty.

These are the different components of the framework and the next section

describes the simulation of a vehicle navigation in Gazebo and ROS. The vehicle

used is the model created and described from Chapter 5.

6.10 Simulation in Gazebo and ROS

The environment that the vehicle navigates is set up in gazebo. In order to

create a terrain and include several features to the terrain a “world.sdf” file is created.

The basics of gazebo was covered in detail in Chapter 4. Figure 6.6.1 shows the

world.sdf file that was used to create the environment for simulation.

6.10.1 World SDF in Gazebo

The Figure 6.6.1 shows the snippet from the world model specifying the parameters

for the environment.

66

Figure 6.6.1 World Model SDF [82]

67

6.10.2 World Model SDF parameters

From Figure 6.6.1 we can see there are several parameters that need to be configured

while creating a customized environment for the terrain. Below we describe some of

the important parameters [82].

a) Model URI: By default the name assigned is sun.

b) Model name: This is section where most of the modifications happen. It

is called as the “heightmap”.

c) Texture: This describes the type of element we want to add to our

environment. The file has several textures added. There is greenery

included by adding the “grass texture”, as shown in line 34 of figure 6.6.1.

6.10.3 Environment View

Figure 6.6.3 shows the environment where the vehicle navigates. The

environment has uneven terrain with up/down ramps and flat ground.

6.11 Vehicle Simulation in Gazebo and ROS

Figures 6.11.1 to 6.11.9 show the screenshots of the vehicle navigation on an

unknown terrain. The simulation world created is similar to that shown in Figure

6.6.3 having some peaks and valleys or up ramps and down ramps. Also a few blocks

or surface obstacles are also introduced to illustrate the working of the sensor fusion

framework described in Figure 6.2.

68

Figure 6.6.3 Simulation environment for the vehicle generated through gazebo.

Case 1: Surface Obstacle

Figure 6.11.1 shows the environment where the vehicle faces the presence of

a block in the front. The terminal screen shows the variable for front obstacle set.

Surface Obstacles could be rocks, blocks, trees or any object that is hindering the

vehicle from moving forward to the next cell in the field. In the example shown the

front obstacle is a black block in front of the vehicle.

69

Figure 6.11.1 Handling an obstacle in front of the vehicle

Case 2: Surface Obstacle and Ramp close to each other

Figure 6.11.2 shows the environment where the vehicle faces the presence of

a block in the front and then turns to its side and detects a ramp. On identifying it’s a

non-traversable ramp the vehicle turn again and resumes autonomous navigation.

The terminal screen shows the variables for front and ramp obstacles set accordingly.

In order to turn backward, instead of doing a direct 180 degree turn the vehicle

turns left twice and then proceeds forward.

70

Figure 6.11.2 Handling an obstacle in front and at the side of the vehicle.

Case 3: Uncertainty handling and help phase

Figure 6.11.3 shows the environment where the vehicle is uncertain on

moving forward or navigating. Such a situation could happen when the track fusion

results and the value provided by the sensor is out of range or when there is a

difference between them. In Figure 6.11.3 the vehicle is navigating near an obstacle

in front and ramps beside it. So the system enters uncertain mode and initiates user

help. On entering the command the vehicle navigates by moving forward. Since there

is more area that can be traversed before the front obstacle the vehicle keeps moving

forward until it is very close to the block. This is shown in Figure 6.11.4 where the

command entered is shown on the terminal and the vehicle resuming autonomy is

shown in Figure 6.11.5.

71

Figure 6.11.3 Handling uncertainty during navigation

Figure 6.11.4 Help phase and user entering commands.

72

Figure 6.11.5 Vehicle resuming autonomous mode of navigation after help phase.

Case 4: Handling terrain issues: flat ground to non-traversable ramps

As described in ramp identifier section there are five possible scenarios for

terrain issues. Figures 6.11.6 to 6.11.9 shows the environment where the vehicle faces

these scenarios during navigation.

Figure 6.11.6 Navigating a flat terrain or flat ground

73

Figure 6.11.7 Navigation on a traversable up ramp

Figure 6.11.8 Navigation on a traversable down ramp

74

Figure 6.11.9 Navigation on a non-traversable ramps

6.12 Framework Evaluation

As described in [54, 55, 56], there doesn’t exist one type of sensor fusion

framework for a particular application. So this makes comparison between different

fusion frameworks hard since the application for which the fusion framework is

designed influences the choice for different stages of the framework and the type of

fusion methods i.e., signal, image or decision that can be used.

However, in this section we evaluate the framework based on the basic

principles of fusion consistency, data flow between the different stages, degree of

autonomy of the vehicle, level of interaction and finally the computation load on the

system with and without considering ROS.

6.12.1 Data flow in the framework and consistency

In this framework there are four stages of fusion. First at the track to track

fusion, second at the pattern classification, third at the ramp classification and finally

75

at Dempster-Shafer fusion block that gives the confidence percentage. At each of

these stages the data flow and fusion is consistent with respect to Dasarthy’s

classification of fusion methodologies [51, 52]. Table 6.12.1 shows the type of data

is flowing between the different stages in the framework. The data flow between the

stages is consistent with the rules outlined in [51, 52] validating the correctness of

the framework formulated for the navigation application encapsulating human robot

interaction.

Table 6.12.1: Data flow between the stages

Stage Data Type IN Data Type OUT

Track to Track

Fusion
Sensor data Feature

Pattern

Classification
Feature

Feature/Decision

(uncertainty)

Ramp

Classification
Feature

Feature/Decision

(uncertainty)

Dempster-Shafer Feature Decision (uncertainty)

6.12.2 Autonomy level

Another important measure of the system performance is the amount of

interaction or autonomy level of the vehicle as described in [88, 89]. In this

framework, the interaction time between the user and the vehicle is at minimum

possible. The vehicle signals for help from the user only when absolutely necessary

and switches back to the autonomous mode on exiting the help phase. This ensures

more independent operation of the vehicle and more time for the user to handle his

76

tasks.

We thus have a vehicle that is not tele operated but an autonomous vehicle

with collaborative control [73, 85]. For the field that is shown the vehicle navigates

autonomously through all “cells” except at the cells where the help phase is initiated

due to uncertainty.

6.12.3 Communication Between User and Vehicle

As outlined in [87], the type of information communicated between the

entities and the effective use of this information by the vehicle not just plays a vital

role but standardizes our evaluation criteria. We have used communication between

the user and the vehicle through command numbers, which serves two important

benefits, namely easier for the user to type into his console and faster decoding by

the vehicle.

6.12.4 Scalability

The scalability of the framework is another important parameter that is

necessary to quantify the system. There are two possible types of scalability namely

scalable with respect to the number of sensors that can be added and scalable with

respect to the size of the field the vehicle is navigating. The computation of the

system using perf can be used to calculate the performance of the centralized

processor that is handling the fusion of all the sensors into the system.

The framework is centralized in design and thus requires evaluating the

computation load on the central computer that runs the framework. The operating

system used is Linux and by using the Linux tool, perf [90, 91], we can measure the

computation performance of the system. The computation performance could also

77

help identify the bounds of the sensor inputs for the framework. Since the most

computation intensive part is the track to track fusion for signal level fusion and since

the sensor inputs are directly connected to this block measuring the computation load

of this stage of the framework will help estimate the maximum number of sensors

that can be supported by the system.

The maximum possible area of navigation is also dependent on the power

constraints of the central processor. With a long battery capacity the vehicle can

navigate the field of any size provided there is user available to give the input when

the help phase is sought.

Figures 6.12.4.1 and 6.12.4.2 show the performance for the most computation

intensive part of the framework i.e., track to track fusion block with Robot Operating

System (ROS) and without ROS. The values for IPC, branch misses and page faults

is higher for the block with ROS when compared to the block without ROS. This is

because of the several I/O and communication load due to ROS. Hence, the

maximum number of inputs that can be supported by the framework is dependent on

the type of processor that runs the centralized fusion node and the communication

load that arises due to ROS. For this application increasing the number of sensors

would not be required since we have the necessary information to decide if the cell

in front of the vehicle is navigable or not.

78

Parameter With ROS Without ROS

Instructions 10,848,140,724 9,450,817

Context Switches 970,881 42

Branches 2,218,697,599 862,356

Branch misses 172,617,622 16,644

Figure 6.12.4.1 Performance of the track fusion with and without ROS

79

CHAPTER 7: COMPLETE COVERAGE PLANNING

In [20], the authors summarize a few planning algorithms for the vehicle.

Also, in [20], the vehicle maneuvers over the obstacle by drawing a collision

avoidance boundary and navigates along local paths computed while encountering

obstacles and resumes navigation along the regular path to its destination once it is

dealt with the obstacle. To achieve human interaction it is necessary to have some

form of dialogue between the operator and the vehicle. Command numbers are used

to achieve bidirectional communication during the assist phase when the vehicle

seeks help. This is similar to the collaborative control mentioned in [84].

7.1 Experimental Setup

In this chapter, we consider a grid of size 5 by 9. The field is decomposed

into cells forming a 2 dimensional matrix. The robotic vehicle is non-holonomic (i.e.,

can make only 90 degree turns and cannot move in all directions). The vehicle

traverses the field column-by-column covering as many cell blocks as possible. The

borders of the field are considered reachable and are assumed to be obstacle free so

that the vehicle can navigate the perimeter of the field. The vehicle makes 90 degree

turns at the top and bottom cells of the field either turning right at the top of the

column or turning left at the bottom of the field, to move to the neighboring column.

Two types of obstacles are considered namely, trees and ravines. Trees are assumed to be

confined within a single cell boundary. Ravines could spread to more than one cell.

80

The vehicle is represented as a turtle, one of the possible shapes available in the

graphics tool. The method of navigation and the obstacle avoidance are described in the

following sections. The programming language used is Python 2.7 [92], IDE used

was Spyder [93] and graphics implemented using Turtle Graphics tool [94]. The

results of the complete coverage planning are similar to that described in [74].

7.2 Robotic Vehicle Navigation

The vehicle traverses the field, cell-by-cell, from top to bottom or bottom to

top along each column. It makes left turns when it reaches the bottom of column

(i.e., highest index value for row) and makes a right turn when it reaches the top of

the column (i.e., row index 0). The typical layout for the simulation is shown as in

Figure 7.2.1.

Figure 7.2.1 Simulation Environment.

81

 The vehicle’s regular traversal is as shown in Figure 7.2.2. The vehicle’s

trace is shown in red. We can see from the figure the vehicle covers all the cells

while travelling through each column of the grid. Figure 7.2.2 assumes no

obstacles in the field.

Figure 7.2.2 Regular navigation with vehicle turns at the top and bottom cells of a

column.

The simulation environment with obstacles is as shown in Figure 7.2.3.

82

Trees are drawn as Green circles and Ravines are represented as thick black lines.

Figure 7.2.3 Field with ravines a thick lines and trees as green circles.

7.3 Obstacle Avoidance

There are two types of obstacles, namely, trees and ravines. They are

discussed in the following sub-sections.

7.3.1 Handling Trees

Since the goal of the vehicle is to cover as much area as possible, when faced

with a tree or ravine, the vehicle tries to find a path over it using the information from

its visited list. As shown in Figure 7.3.1, when a tree is found, the Turtle robot traverses

along the path shown in red around the tree through the cells it had previously visited.

Since the vehicle has only information about the cells in the left column, it uses that

83

information to avoid the tree.

Figure 7.3.1 Navigation around a tree obstacle.

7.3.2 Handling Ravines

Ravine is another obstacle the vehicle encounters during its navigation.

Figures 7.3.2.1 – 7.3.2.6 shows the navigation of the Turtle in the presence of a

Ravine. When the vehicle encounters the Ravine for the first time it sees it as a tree

and avoids it by going through the neighboring column cells as shown in the Figure

7.3.2.1.

84

Figure 7.3.2.1 Navigation through a ravine.

Figure 7.3.2.2 Initiates help phase to interact with the user.

85

During traversal through the neighboring column when it senses the

continuity of the ravine, the vehicle looks up its visited cell history and identifies it

cannot follow the same technique of going around the obstacle cell which is shown

in Figure 7.3.2.2.

When the turtle realizes this, it queries the user for assistance. In the help

phase, the communication between the user and the vehicle is a dialogue of

command numbers as illustrated in Figure 7.3.2.3. The options shown are the most

fundamental commands required to drive the vehicle.

Figure 7.3.2.3 Help phase options presented to the user to steer the vehicle away from

the obstacle.

86

In order to move the vehicle away from the ravine, the user commands the

vehicle to turn right twice by entering the command number 2. Alternatively, the

user could also enter 3 twice making the vehicle turn left twice. These actions are

shown in Figure 7.3.2.4 and 7.3.2.5.

Figure 7.3.2.4 Turn right keyed by the user.

To turn the vehicle backwards instead of using 180 degree turn the vehicle is

programmed to turn only by 90 degrees left or right. So to turn backwards the

operator needs to enter turn left or turn right twice. Here the operator turns the vehicle

right twice to achieve the 180 degree turn.

87

Figure 7.3.2.5 Turn right keyed again.

Since the goal of the help phase is to recover the vehicle from its uncertainty,

the user gives only the minimum set of commands to bring the vehicle to a safe

position and exits the help phase. The vehicle now resumes its regular traversal

moving along the regular path as shown in Figure 7.3.2.6.

Collaborative control is an example of bi-directional communication. The

two entities that are involved in the communication are the robot and the operator.

When the robotic vehicle interacts with the user through such help numbers the

operator acts like a peer to the vehicle and the vehicle engages in coordinated task

with the operator instead of following the task of navigation alone.

88

Figure 7.3.2.6 Autonomous mode resumed by the turtle.

From Figures 7.3.2.1-7.3.2.6, we can see that the vehicle could traverse the

entire column where user request was initiated. Hence, during its traversal through

the next neighboring column it visits those cells from the previous column that are

obstacle free as shown in the Figure 7.3.2.7. In the Figure 7.3.2.8, we can see that

the vehicle continues its regular path again after visiting the non-visited cells. This

ensures maximum area of the field can be covered and the turtle records the

positions of the obstacles both trees and ravine as it navigates the field.

89

Figure 7.3.2.7 Vehicle visits the cells ignored previously due to the obstacle.

Figure 7.3.2.8 Vehicle resumes its regular navigation until it reaches its destination

after covering the obstacle free non-visited cells.

90

 7.3.3 Handling both Trees and Ravines

In this section, we cover an application involving both trees and ravines in the

field. The previous two examples described handling the tree obstacle and the ravine

individually. The following example shows the presence of both these obstacles in the

field but at different positions. The vehicle traversal through this field is shown in

Figures 7.3.3.1 – 7.3.3.13. Figures 7.3.3.2 - 7.3.3.10, shows how the vehicle navigates

in the presence of ravines in the field. Figures 7.3.3.11 - 7.3.3.12 show the tree obstacle

avoidance which is less complex and doesn’t required user assistance. The vehicle at

the destination is shown in Figure 7.3.3.13.

Figure 7.3.3.1. Simulation Environment with ravines a thick lines and trees as green

circles.

91

Figure 7.3.3.2. Vehicle navigates through the neighboring column to avoid the obstacle.

Figure 7.3.3.3. Help phase invoked when the turtle identifies a continuous obstacle across

cells.

92

Figure 7.3.3.4. User keys in a sequence of commands to bring the vehicle to safe position.

Figure 7.3.3.5. Vehicle switches to autonomous mode.

93

Figure 7.3.3.6. Covering the cells below the obstacle cell.

Figure 7.3.3.7. Vehicle goes through the neighboring cell to avoid the obstacle.

94

Figure 7.3.3.8. Help phase invoked similar to Figure 4.3.3.3.

Figure 7.3.3.9. User controls the vehicle through commands

95

Figure 7.3.3.10. Vehicle swings back to autonomous navigation.

Figure 7.3.3.11. Vehicle avoids the tree by navigating through the neighboring column.

96

Figure 7.3.3.12. Vehicle avoids the tree by navigating through the neighboring column.

Figure 7.3.3.13. Vehicle at the final goal position.

97

Let us consider another example with the field shown in Figure 7.3.3.14. The

field has more obstacles and the obstacles are placed close to each other. Figures

7.3.3.15 – 7.3.3.28 show the vehicle navigation in the field. The Help phase is invoked

when the vehicle becomes indecisive and the vehicle is capable of autonomous

navigation even when obstacles are located close to each other (without having to call

the user for assistance).

Figure 7.3.3.14. Simulation Environment

98

Figure 7.3.3.15. Vehicle navigating around the obstacle.

Figure 7.3.3.16. Vehicle seeks user’s help.

99

Figure 7.3.3.17. User enters turns the vehicle right twice to avoid the obstacle.

Figure 7.3.3.18. Vehicle switches to the autonomous mode.

100

Figure 7.3.3.19. Covering cells that were previously not visited.

Figure 7.3.3.20. Vehicle navigating around the ravine.

101

Figure 7.3.3.21. Vehicle navigating around the tree.

Figure 7.3.3.22. Vehicle enters into the help phase.

102

Figure 7.3.3.23. User enters minimum commands to steer the vehicle away from the

obstacle

Figure 7.3.3.24. Vehicle handles the closely located tree and ravine without user’s help.

103

Figure 7.3.3.25. Vehicle covering cells not visited.

Figure 7.3.3.26. Vehicle navigating around the trees.

104

Figure 7.3.3.27. Vehicle follows normal navigation until its destination.

Figure 7.3.3.28. Vehicle at the destination.

105

CHAPTER 8: ROBOT COGNITIVE MODEL

In this chapter, we demonstrate the use of a robot sensor map similar to the

sensory brain map [4] to perform information processing and resource management

for sensors on a robot. The sensor map implemented works in a very similar manner

as the sensory brain map, performing operations, such as - sensor slot allocation,

allocation of un-used sensor space to the other sensors and re-allocation of sensor

space back to the sensors which had the original ownership. The sensor manager is

the controller of the sensor space and handles these operations through several sub-

routines (or functions). There are three functions that do the following:

a) Sensor slot allocation

b) Allocating space from passive sensor slot to active sensor slots

c) Re-allocation of space to dormant sensor slots when they become active

again

The sensors are assumed to be laid in a sequential manner in the sensor space.

Depending on the initial conditions, the sensors could be originally assigned equally

spaced memory slots. The dynamicity of the map is tested with the help of a

navigation application. The application includes four tasks and has five sensors on

the vehicle. The sensor functions are called depending on the availability of memory

for the respective sensor. The sensor manager holds all the relevant information

related to each sensor that is present on the vehicle.

106

The Sensor Manager holds the exclusive ownership of the sensor map space.

It keeps track of which sensors are used for the application and periodically (or based

on the user given requirements) can run different functions that manage and modify

the space for the sensors.

Similar to the use-it-or-lose-it principle, as outlined and described in [4, 5],

the sensory brain map is a dynamic structure that keeps changing depending on the

usage of our sensory organs. The concept and results are similar to that described in

[74].

8.1 Sensor Maps

8.1.1 Introduction and Theory

In [4, 5, 30], the authors describe the cognitive model of the brain through

sensory brain maps. When a sensory input is not recognized in the brain map for

certain time, the map dynamically alters itself to accommodate more space and

resources for those sensor slots that are adjacent to the one that is marked as dormant.

This results in a few sensory areas on the map becoming larger, growing into the

space that was utilized by the dormant sensor while the other sensor areas show no

change in their space (those not adjacent to the dormant sensor). However, when the

dormant sensor becomes active again, through the respective task (training), the map

again starts to alter, re-assigning its original space in the brain map, showing increase

in space at that slot. This is known as differentiation of the brain map [4, 30].

These principles on which the brain operates and micro-manages the sensory map is

applied in this work, and is demonstrated through the use of three functions namely, Sensor

Space Reduce, Sensor Space Deallocate and Sensor Space Reallocate.

107

8.1.2 Machine Learning and Sensor Map Dynamicity

 In order to illustrate the dynamic nature of the maps, it is necessary to use a

learning technique. Since we as the user, can decide the criteria for memory usage

and thresholds for the sensors, supervised classifiers are the best fit for this purpose.

Each of the sensor space functions actively use a supervised classifier called the

Random Forest.

Random Forest [95] belongs to the class of Ensemble learning, and can

handle large data sets providing higher accuracy in their predictions. A detailed

explanation of the advantages of Random Forests with other classifiers is described

in [96, 97].

The user can choose the label for the data sets and define them during the

training phase. However, for the present application the data sets are small hence the

classifier is very reliable and accurate in its prediction on the test set.

8.1.3. Sensor Map / Sensor Space Management Functions

There are three functions used to manage the sensor space on the vehicle. The

description of each of these functions is as below.

a) Sensor Space Reduce:

The purpose of this function is to identify the space that should be retained

for each sensory input. This function keeps track of the usage of the sensors on the

vehicle and determines how much space should be held in the map for each sensor.

When a sensory input keeps reducing as the application progresses, or between

different applications, the corresponding space in the map starts to dynamically

108

reduce as a function of its usage. The classifier uses the frequency of the sensor’s

usage to determine the percentage by which the space should be reduced. This

phenomenon is akin to how the brain reduces the space on its sensory map when a

particular sensory input is less and less received on the map during one’s lifetime,

also known as shrinkage of sensory space on the map.

b) Sensor Space Reallocate:

This function distributes the sensor space of a dormant sensor to its adjacent

sensory members on the map. This function checks for sensors that are marked for

deletion and identifies its adjacent members on the map. The classifier distributes the

space to the dormant sensor’s neighbors.

After space distribution, it notifies the sensor manager of these changes. As

a result, the re-distribution causes some areas on the map to grow larger, however,

when the sensors are at the borders, the entire distribution is for the one sensor that

is adjacent to it.

c) Sensor Space Deallocate:

The purpose of this function is to de-allocate the space from those sensors

that had previously taken space from the dormant sensor and re-allocate it back to

the dormant sensor when it becomes active again. The function uses a classifier that

identifies the sensors that become active again and automatically trains those sensors

(this is done internally inside the function by running the tasks mapped to it) to

increase its usage. Again, the usage metric causes the classifier to dynamically

increase the space on the map for the trained sensor while reducing the extra space

from its adjacent counterparts.

109

The use of these functions is illustrated through a navigation application of a

vehicle on a field described in Chapter 7. The vehicle has five sensors on its sensory

map. We assume that these sensors are laid out adjacently to each other, each have

initially full space (denoted as 100%) on the map. The vehicle navigation on the field

causes a few sensors to be used and a few to remain un-used. The usage of these

sensory inputs determine how the functions will allocate the space on the map for

each of them. The sections below describe the use of these learning functions in the

robotic navigation application and the corresponding sensor space dynamicity is

illustrated through the bar graphs.

8.2 Robotic Vehicle Navigation

The application is implemented in Python 2.7 [92] and uses libraries from

sklearn documentation [98, 99] to make use of some machine learning techniques

[25, 26] for supervised classification.

8.2.1 Problem Description and Experimental Set up

High level Task: Navigate an unknown terrain consisting of trees and ravines in the

field.

Sub Tasks: Move forward, Turn right, Turn left and Check for person.

Sensors: Five sensors, sensors 0, 1 for Move forward, sensor 2 for Turn right, sensor

3 for Turn left and sensor 4 for identifying the person (camera).

Problem statement: To demonstrate the dynamic nature of the robot’s sensory map

as the application is executed and validate the usage of the three functions defined

earlier.

110

Initial conditions: The vehicle is positioned at the origin of the grid. We assume a

rectangular field and the robotic vehicle (represented as a turtle in the Figure 8.2.1)

traverses the field (or a subspace in the field), by moving forward, turning right or

left and detecting a person (performed internally in the vehicle, but not shown in

figure).

Figure 8.2.1 Robot navigation in a rectangular field.

The robot’s sensory map is pre-filled with the memory allocation and sensor

usage. We start off the experiment by assigning full space to each sensor slot and

randomly assign sensors in the list with some usage value to illustrate how this

concept works. Table 8.2.1 shows prefilled variables for the sensor slots.

111

Table 8.2.1. Initial state of the sensor map

Sensor ID Space available

(in %)

Usage count

0 100 50

1 100 70

2 100 50

3 100 50

4 100 55

 8.2.2 Application Execution and Sensor Map Dynamicity

The navigation application is executed and the vehicle updates the usage

of the sub tasks and the sensors during this process. Once the field is navigated,

the sensor manager runs the Sensor space dynamicity function. As a result, the

space for each sensor starts to reduce depending on how much it was used during

its previous application.

The classifier present inside this function does not reduce the sensor space

if its usage is above a certain threshold (user-defined), else it reduces the sensor

space according to its usage. We present two possible scenarios below on the cases

of dynamicity.

Case 1: Dynamic allocation from a border sensor slot

Table 8.2.2.1 indicates the space available for each sensor and the sensor

usage after the application was executed. Figure 8.2.2.1, shows the sensor space

distribution before and after the application.

112

Table 8.2.2.1: Sensor map after space reduction

Sensor ID Space available

(in %)

Usage

count

0 100 121

1 100 141

2 80 82

3 65 66

4 55 55

From the table 8.2.2.1 and Figure 8.2.2.1, we can see that as the usage is

below a certain threshold the classifier marks the amount of space to be reduced for

each sensor. The blue and orange bars indicate the available space before and after

the application. The user can specify the criteria for reduction depending on how

often the task is being used. When a sensor space is reduced, it refers to the active

working area only. For instance in the above table, we can see that space for sensor

2 was reduced by 20%, however this 20% is still under the ownership of sensor 2

(until it reaches 0).

After the space reduction phase, the Sensor manager calls the Sensor

Reallocate function to identify the sensors with space reduced to 0. This function

then deallocates the space from this sensor (sensor with space equal to 0) to its

adjacent sensors. This causes some of the sensor spaces to be larger than others. In

this experiment, we execute this function only when the space for a sensor has

dropped to 0, indicating with certainty, that the sensor wasn’t used in the previous

application (its usage count is reduced to 0).

113

Figure 8.2.2.1 Sensor space distribution before and after the navigation application.

Table 8.2.2.2 shows the map distribution after this space reallocation. Figure

8.2.2.2, shows the space distribution from the passive sensor to its adjacent member

sensors. Since there is only sensor 3 as a neighbor to sensor 4, all of sensor 4 space

is allocated to sensor 3 causing it to grow larger which is shown in the Figure 8.2.2.2.

Table 8.2.2.2: Sensor map after sensor re-allocation

Sensor

ID

Space available

(in %)

Usage count

0 100 121

1 100 141

2 100 82

3 200 66

4 0 0

114

Figure 8.2.2.2 Space distribution after sensor de-allocation. Only sensor 3 gets the

space from sensor 4 in this example.

We then execute the application again and re-enable the task mapped to

sensor 4 (check for person). When this test application is called, it wants to use the

sensor 4 for its task (detect person). Since the map had de-allocated sensor 4 space

(since it wasn’t used in the previous application) to sensor 3, it needs to re-assign that

space back to sensor 4.

When the test application identifies that this sensor has no space, it calls

another function, Handle Feasibility. This function identifies the sensor with the ID

specified in the argument list and starts training the vehicle internally to increase its

usage thereby allocating space back into its area and simultaneously de-allocating

115

the space from its adjacencies. The feasibility function uses the Sensor De-allocate

function internally to achieve this task. As a result, the sensor space is reduced for a

few sensors as shown in the Table 8.2.2.3 and Figure 8.2.2.3.

Sensor 3, which showed an increase in its space has now shrunk and sensor 4

is re-allocated its space to be used in the application. The sensor manger, if necessary

can now execute the sensor space reduction as described previously, to reduce the

space depending on the usage in the application.

Table 8.2.2.3: Sensor map after test application

Sensor ID Space available

(in %)

Usage count

0 100 184

1 100 204

2 100 100

3 108 84

4 92 63

Case 2: Dynamic allocation from a sensor slot in between

Table 8.2.2.4 (similar to Table 8.2.2.2) indicates the space available for each

sensor and the sensor usage after the application was executed. Figure 8.2.2.4, shows

the Sensor space distribution before and after the application.

116

Figure 8.2.2.3 Space distribution after test application. Sensor 4 becomes active and

regains the space it had sacrificed to sensor 3 previously due its dormancy.

Table 8.2.2.4: Sensor map after space reduction

Sensor ID Space available

(in %)

Usage count

0 100 121

1 100 141

2 80 82

3 65 66

4 55 55

From the table and graph 8.2.2.4, we can see that as the usage is below a

certain threshold the classifier marks the amount of space to be reduced for each

117

sensor. The blue and orange bars indicate the space before and after the application.

The user can specify the criteria for reduction depending on how often the application

was being executed.

Figure 8.2.2.4 Sensor space distribution before and after the navigation.

After the space reduction phase, the sensor manager calls the Sensor Re-

allocate function to identify the sensors with space reduced to 0. This function then

de-allocates the space from this sensor (sensor with space equal to 0) to its adjacent

sensors. This causes some of the sensor spaces to be larger than others.

In this experiment, we execute this function only when the space for a sensor

118

has dropped to 0, indicating with certainty that the sensor wasn’t used in the previous

application (its usage count is reduced to 0). Table 8.2.2.5 shows the map distribution

after this space re-allocation.

Figure 8.2.2.5 shows the space distribution from the passive sensor to its

adjacent member sensors. For the purpose of demonstration we have disabled task 3

that results in sensor 3 becoming unused and the usage dropping to 0 and space

reduced to 0. On executing the Sensor space re-allocate function, we get the Table

8.2.2.5. Since sensors 2 and 4 are adjacent to sensor 3 its space is distributed to 2 and

4 causing their areas to grow larger which is evident from the Figure 8.2.2.5.

Table 8.2.2.5: Sensor map after sensor re-allocation

Sensor ID Space available

(in %)

Usage count

0 100 126

1 100 146

2 135 82

3 0 5

4 155 59

We then execute the application again and re-enable the task mapped to

sensor 3. Since the map had de-allocated sensor 3 space (it was forcefully reset for

testing) to sensors 2 and 4, it needs to re-allocate that space back to sensor 3. When

the test application identifies that this sensor has no space it calls another function,

Handle Feasibility. This function identifies the sensor with the ID specified in its

argument list and starts training the vehicle internally, to increase its usage thereby

allocating space back into its area, simultaneously de-allocating the space from its

119

adjacencies. The feasibility function uses the Sensor De-allocate function to achieve

this task. As a result, the sensor space is reduced for a few sensors (2 and 4) as shown

in the Table 8.2.2.6 and Figure 8.2.2.6.

Figure 8.2.2.5 Space distribution showing Sensors 2 and 4 acquiring sensor 3

space.

Sensors 2 and 4, which showed an increase in its space has now shrunk and

sensor 3 is re-allocated its space to be used in the application. This process is also

called Differentiation of the brain map [4, 5]. The sensor manger, if necessary can

now execute the sensor space reduction as described previously, to reduce the space

depending on the usage in the application.

120

Table 8.2.2.6: Sensor map after test application (de-allocate function)

Sensor ID Space available

(in %)

Usage count

0 100 184

1 100 204

2 106 104

3 58 83

4 126 83

Figure 8.2.2.6 Space distribution after test application. Sensor 3 becomes active and

regains the space it had sacrificed to sensors 2 and 4.

121

CHAPTER 9: C O N T R I B U T I O N , CONCLUSION AND

 FUTURE WORK

9.1 Contribution

In this research work, we have discussed the background research on Human-

robot interaction (HRI), the various application of HRI in our society, multi sensor

fusion types and architectures, machine learning, path planning, sensor fusion

framework for human robot interaction, sensor management architectures and brain

sensor maps. The research proposes a sensor fusion framework that encapsulates

each of the topics through different entities to achieve decision fusion for a high level

task while increasing confidence through the stages and in the process use a cognitive

model based on the brain map platform to achieve human-like sensor data processing.

The sensor framework applies heterogeneous sensor fusion to achieve feature

extraction and uses the features thus realized to formulate a decision. The idea that

only the present evidence is necessary to decide the cell reachability and the inclusion

of uncertainty makes Dempster-Shafer a good choice for our decision fusion. By

measuring attributes of different characteristics and types, i.e., trees/blocks and

ramps/ravines, we incorporate sensor fusion across heterogeneous sensors.

Achieving high level task execution through heterogeneous sensor fusion and using

a decision fusion approach close to human reasoning.

122

The main goal of this research was to formulate a sensor framework that uses

sensor fusion and sensor maps to achieve robotic vehicle navigation application. The

navigation application implemented covers maximum area of the field and invokes

human involvement through a help phase. This increases the reliability of the system

by converting the indecisive situations into an opportunity for collaborative control,

thus reducing the possible collision of the vehicle with the obstacle. The cognition

model for the robot is a sensory map that handle dynamic sensor management and

resource management. This is a novel approach to handle sensor information on the

robotic vehicle through concepts of neuro science to utilize sensor space effectively

and simulate human-brain like model for robot cognition. The sensor maps is a

concept introduced to define robot cognition that is similar to the brain maps. The

research work does not focus on comparing the different cognition models that are

used in AI or related fields. The dynamicity of the maps refers to both the sensor maps

used in cognition and the environment map where the vehicle navigates. The number

of sensors on the vehicle can change and hence the space for the sensors in the map

also changes between applications thus making the sensor area dynamic. This is

useful in resource management of sensors (and sensor space).

 We were able to see from the navigation application that the vehicle covers

more area on the field and invokes user’s assistance only when absolutely necessary

thus increasing autonomy with human interaction as described in Chapter 6 and 7.

The sensors demonstrated increase and decrease in their space and their behavior is

dictated by their location on the map. The experiments presented through Case 1 and

Case 2 under Section 8.2.2 describe the dynamicity of the maps that is parallel to our

123

brain sensory maps.

The sensor fusion part of the framework is being implemented in C++ and

uses ROS to simulate the LIDAR sensors. There are two main types of features that

will be extracted by the LIDARs, namely, trees (by the horizontal LIDAR) and

ravines (by the 45 degree tilted LIDAR). These are two sensors that measure the

condition of the environment. There is no path planning algorithm that the vehicle

executes but a column-by-column navigation covering as many cells as possible is

the main goal of the robotic navigation.

The sensor fusion works at three levels, signal fusion using Kalman filter,

feature extraction from the signal fusion result and finally using features to identify

the nature of the obstacle and the reachability of the cell. Each fusion cell will carry

information about the obstacle (or feature) through two main variables, an indicator

flag and a confidence value that is dependent on the indicator. Human involvement

is mandatory to provide more information i.e., soft data to the fusion algorithm. The

framework incorporates several internal layers of sub-decisions before executing the

final decision. Using the ROS helps to simulate the sensors and handle the physical

layer of the sensor fusion framework and the robotic vehicle testing platform is on

the turtle bot vehicle which runs on the Linux operating system.

The framework is centralized in design and thus requires evaluating the

computation load on the central computer that runs the framework. The most

computation intensive part of the framework was the track to track fusion block and

the performance was calculated bot with ROS and without ROS. There was

significant increase in the performance bottleneck while using ROS because of the

124

several dependencies and processing due to ROS. The operating system used is Linux

and by using the Linux tool, perf, we can measure the computation performance of

the system. The computation performance could also help identify the bounds of the

sensor inputs for the framework. Since ROS doesn’t allow dynamic allocation of

sensor memory the concept of sensor maps was executed on a simple robotic

navigation application created using python and run offline instead of real time inside

the framework. A detailed video showing the framework working with all test cases

can be found in [100] that captures all the contributions of this research work.

Identifying the scalability is dependent on the application and the computation load

on the central node. Since sensor fusion frameworks are hard to compare [54, 55, 56]

and is highly dependent upon the application and the system configuration we can

conclude that the maximum number of sensors can be the upper limit of performance

of the node and the fusion efficiency.

9.2 Application of the framework

 The framework combines the data from sensors to achieve heterogeneous

fusion. Zapatabot, an autonomous robotic All Terrain Vehicle (ATV) that can

navigate unknown terrains has several sensors such as LIDARs, camera etc. A

detailed explanation of the Zapatabot and its features is described in [101, 102].

Figure 9.2 [101] shows the Zapatabot. The sensor fusion framework that was

described will find its application on this vehicle that hosts many sensors and

navigates rough terrains.

125

Figure 9.2 Zapatabot - An Autonomous Robotic All Terrain Vehicle (ATV)

9.3 Future Work

The framework can be extended to implement other robotic applications. The

significant changes would require changing the sensors and their positions on the

vehicle. Also, using Gazebo [82], different vehicle models exist that can be used in

place of the vehicle that was customized for this research work. Since the system is

scalable, more features can be added to the patter identifier and correspondingly

including those features at all stages of the framework.

126

REFERENCES

[1] Chandrasekaran, B., & Conrad, J. M. Human-robot collaboration: A survey. In

SoutheastCon 2015 (pp. 1-8). IEEE, 2015

[2] Pravia, M. A., Prasanth, R. K., Arambel, P. O., Sidner, C., & Chong, C. Y. Generation

of a fundamental data set for hard/soft information fusion. In Information Fusion, 2008

11th International Conference on (pp. 1-8). IEEE, June 2008

[3] Hall, D. L., & Llinas, J., An introduction to multisensor data fusion. Proceedings of the

IEEE, 85(1), 6-23, 1997

[4] Ramachandran, V.S., The Tell-Tale Brain: A Neuroscientist's Quest for What Makes

Us Human, New York, NY:W. W. Norton & Company, 2011

[5] Doidge, N., The Brain's Way of Healing: Remarkable Discoveries and Recoveries

from the Frontiers of Neuroplasticity, New York, NY: Penguin Publishing Group, 2015

[6] Dempster, P. A Generalization of Bayesian Inference, Journal of the Royal Statistical

Society B, vol. 30, no. 2, pp. 205–247, 1968

[7] Shafer, A. Mathematical Theory of Evidence , Princeton University Press, Princeton,

NJ, USA, 1976

[8] Vincze, M., Zagler, W., Lammer, L., Weiss, A., Huber, A., Fischinger, D., Gisinger

and C. Towards a Robot for Supporting Older People to Stay Longer Independent at

Home. ISR/Robotik 2014; 41st International Symposium on Robotics; Proceedings of, pp.

1-7, 2014

[9] Keren, G., Ben-David, A., & Fridin, M. Kindergarten assistive robotics (KAR) as a

tool for spatial cognition development in pre-school education. In Intelligent Robots and

Systems (IROS), 2012 IEEE/RSJ International Conference on (pp. 1084-1089). IEEE,

October 2012

[10] Rani, P., Sarkar, N., Smith, C. A., & Kirby, L. D. Anxiety detecting robotic system–

towards implicit human-robot collaboration. Robotica, 22(01), 85-95, 2004

[11] Jacob, M. G., Li, Y. T., & Wachs, J. P. Gestonurse: a multimodal robotic scrub nurse.

In Proceedings of the seventh annual ACM/IEEE international conference on Human-

127

Robot Interaction (pp. 153-154). ACM, March 2012

[12] Ricks, D. J., & Colton, M. B., Trends and considerations in robot-assisted autism

therapy. In Robotics and Automation (ICRA), 2010 IEEE International Conference on

(pp. 4354-4359). IEEE, May 2010

[13] Wögerer, C., Bauer, H., Rooker, M., Ebenhofer, G., Rovetta, A., Robertson, N., &

Pichler, A. LOCOBOT-low cost toolkit for building robot co-workers in assembly lines.

In Intelligent Robotics and Applications (pp. 449-459). Springer Berlin Heidelberg, 2012

[14] Szafir, D., Mutlu, B., & Fong, T. Communication of intent in assistive free flyers. In

Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction

(pp. 358-365). ACM, March 2014

[15] Levinger, J., Hofmann, A., & Theobald, D., Semi-autonomous Control of an

Emergency Response Robot. In AUVSI Unmanned Systems North America Conference,

San Diego, CA (pp. 914-927), 2008

[16] Dasarathy, B. V., Sensor fusion potential exploitation-innovative architectures and

illustrative applications. Proceedings of the IEEE, 85(1), 24-38, 1997

[17] Castanedo, F., A review of data fusion techniques. The Scientific World Journal,

2013

[18] Buede, D. M., & Girardi, P., A target identification comparison of Bayesian and

Dempster-Shafer multisensor fusion. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 27(5), 569-577, 1997

[19] Koks, D., & Challa, S., An introduction to Bayesian and Dempster-Shafer data

fusion, 2003

[20] Ghangrekar, S., & Conrad, J. M., Modeling and simulating a path planning and

obstacle avoidance algorithm for an autonomous robotic vehicle. In 2009 IEEE

International Symposium on Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (pp. 1-3). IEEE, 2009

[21] Mitchell, H. B., Sensor Management. In Data Fusion: Concepts and Ideas (pp. 323-

331). Springer Berlin Heidelberg, 2012

[22] Liggins II, M., Hall, D., & Llinas, J. (Eds.). (2017). Handbook of multisensor data

fusion: theory and practice. CRC press

128

[23] Mitchell, H. B., Data fusion: concepts and ideas. Springer Science & Business Media,

2012

[24] Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D., Artificial

intelligence: a modern approach (Vol. 2). Upper Saddle River: Prentice hall, 2003

[25] Patnaik, S., Robot Cognition and Navigation: An Experiment with Mobile Robots.

Springer Science & Business Media, 2007

[26] Mitchell, T. M., Machine learning. Burr Ridge, IL: McGraw Hill, 1995

[27] Carbonell, J. G., Michalski, R. S., & Mitchell, T. M., An overview of machine

learning. In Machine learning (pp. 3-23). Springer Berlin Heidelberg, 1983

[28] Michalski, R.S., A theory and methodology of inductive learning, Artificial

Intelligence, vol. 20, no. 2, pp. 111–161, 1983

[29] Watkins, C. J., & Dayan, P., Q-learning. Machine learning, 8(3-4), 279-292, 1992

[30] Doidge, N., The Brain That Changes Itself: Stories of Personal Triumph from the

Frontiers of Brain Science (James H. Silberman Books), 2007

[31] Iyengar, S. S., & Brooks, R. R. (Eds.)., Distributed sensor networks: sensor

networking and applications. CRC press, 2016

[32] Joshi, R., & Sanderson, A. C. Multisensor fusion: A minimal representation

framework (Vol. 11). World Scientific, 1999

[33] Luo, R. C., & Lai, C. C. Multisensor fusion-based concurrent environment mapping

and moving object detection for intelligent service robotics. IEEE Transactions on

Industrial Electronics, 61(8), 4043-4051, 2014

[34] Axenie, C., & Conradt, J. Cortically inspired sensor fusion network for mobile robot

egomotion estimation. Robotics and Autonomous Systems, 71, 69-82, 2015

[35] Matía, F., & Jiménez, A. Multisensor fusion: an autonomous mobile robot. Journal

of Intelligent and robotic systems, 22(2), 129-141, 1998

[36] Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. Multisensor data fusion: A

review of the state-of-the-art. Information Fusion, 14(1), 28-44, 2013

129

[37] Dallil, A., Oussalah, M., & Ouldali, A. Sensor fusion and target tracking using

evidential data association. IEEE sensors journal, 13(1), 285-293, 2013

[38] Bar-Shalom, Y., Willett, P. K., & Tian, X. Tracking and data fusion. YBS

publishing, 2011

[39] Banerjee, T. P., & Das, S. Multi-sensor data fusion using support vector machine for

motor fault detection. Information Sciences, 217, 96-107, 2012

[40] James, A. P., & Dasarathy, B. V. Medical image fusion: A survey of the state of the

art. Information Fusion, 19, 4-19, 2014

[41] El Faouzi, N. E., Leung, H., & Kurian, A. Data fusion in intelligent transportation

systems: Progress and challenges–A survey. Information Fusion, 12(1), 4-10, 2011

[42] Cho, H., Seo, Y. W., Kumar, B. V., & Rajkumar, R. R. A multi-sensor fusion system

for moving object detection and tracking in urban driving environments. In 2014 IEEE

International Conference on Robotics and Automation (ICRA) (pp. 1836-1843). IEEE,

2014

[43] Cardarelli, E., Sabattini, L., Secchi, C., & Fantuzzi, C. Multisensor data fusion for

obstacle detection in automated factory logistics. In Intelligent Computer Communication

and Processing (ICCP), 2014 IEEE International Conference on (pp. 221-226). IEEE,

2014

[44] Wan, W., Lu, F., Wu, Z., & Harada, K. Teaching robots to do object assembly using

multi-modal 3d vision. arXiv preprint arXiv:1601.06473, 2016

[45] Zhang, J., Song, C., Hu, Y., & Yu, B. Improving robustness of robotic grasping by

fusing multi-sensor. In Multisensor Fusion and Integration for Intelligent Systems (MFI),

2012 IEEE Conference on (pp. 126-131). IEEE, 2012

[46] Luo, R. C., & Kay, M. G. Multisensor integration and fusion in intelligent systems.

IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 901-931, 1989

[47] Xiong, N., & Svensson, P. Multi-sensor management for information fusion: issues

and approaches. Information fusion, 3(2), 163-186, 2002

[48] Mitchell, H. B. Multi-sensor data fusion: an introduction. Springer Science &

Business Media, 2007

130

[49] Durrant-Whyte, H. F. Sensor models and multisensor integration. The international

journal of robotics research, 7(6), 97-113, 1988

[50] Raol, J. R. Multi-Sensor Data Fusion with MATLAB®. CRC Press, 2009

[51] Dasarathy, B. V. Decision fusion (Vol. 1994). Los Alamitos, CA: IEEE Computer

Society Press, 1994

[52] Dasarathy, B. V. Decision fusion strategies in multi sensor environments. IEEE

transactions on systems, man, and cybernetics, 21(5), 1140-1154, 1991

[53] Wald, L. Data fusion: definitions and architectures: fusion of images of different

spatial resolutions. Presses des MINES, 2002

[54] Hall, D. L., & Llinas, J. Multisensor data fusion. In Multisensor Data Fusion. CRC

press, 2001

[55] Elmenreich, W. A review on system architectures for sensor fusion applications. In

IFIP International Workshop on Software Technologies for Embedded and Ubiquitous

Systems (pp. 547-559). Springer Berlin Heidelberg, 2007

[56] Elmenreich, W. An introduction to sensor fusion. Vienna University of Technology,

Austria, 2002

[57] Kam, M, Zhu, X. and Kalata, P. Sensor fusion for mobile robot navigation.

Proceedings of the IEEE, 85(1):108-119, Jan. 1997

[58] Markin, M., Harris, C., Bernhardt, M., Austin, J., Bedworth, M., Greenway, P.,

Johnston, R., A. Little, A., and Lowe, D. Technology foresight on data fusion and data

processing. Publication, The Royal Aeronautical Society, 1997

[59] Bedworth, M.D. and O'Brien, J. The omnibus model: A new architecture for data

fusion? In Proceedings of the 2nd International Conference on Information Fusion

(FUSION'99), Helsinki, Finland, July 1999

[60] Boyd, J. R. A discourse on winning and losing. Maxwell Air Force Base, AL: Air

University. Library Document No. MU, 43947, 79, 1987

[61] Alami, R., Chatila, R., Fleury, S., Ghallab, M. and Ingrand, F. An architecture for

autonomy. International Journal of Robotics Research, 17(4):315-337, April 1998

131

[62] Abidi, M. A., & Gonzalez, R. C. Data fusion in robotics and machine intelligence.

Academic Press Professional, Inc, 1992

[63] Jingwei, S., Yongjie, Z., Haiyun, Z., Tao, Z., Leigang, W., Wei, R. & Huifeng, L. A

multi-MEMS sensors information fusion algorithm. In The 26th Chinese Control and

Decision Conference (2014 CCDC) (pp. 4675-4680). IEEE, 2014

[64] Wang, Y. and Goodman, S.D. Data Fusion with Neural Networks, International

Conference on Systems Man and Cybernetics IEEE 1994, vol. 1, pp. 640-645, Oct 1994

[65] Chen, H. Research on multi-sensor data fusion technology based on PSO-RBF

neural network, Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC), 2015 IEEE, Dec 2015

[66] Liang, Y. H. and Tian, W.M. Multi-sensor Fusion Approach for Fire Alarm Using

BP Neural Network, 2016 International Conference on Intelligent Networking and

Collaborative Systems (INCoS), Ostrawva, pp. 99-102, 2016

[67] Liu, Q., Wang, X. and Rao, N.S.V. Artificial neural networks for estimation and

fusion in long-haul sensor networks, 2015 18th International Conference on Information

Fusion (Fusion), Washington, DC, pp. 460-467, 2015

[68] Kok, M. Probabilistic modeling for sensor fusion with inertial measurements,

Linköping studies in science and technology. Dissertations. No. 1814, ISBN 978-91-

7685-621-5, 2016

[69] Kovvali, N., Prior, C., Cizek, K., Galik, M., Diaz, A., Forzani, E., Tsui, R. Least-

squares based feature extraction and sensor fusion for explosive detection. In ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings. (pp. 2918-2921), 2010

[70] Hager, G.D., Engelson, S. P. and Atiya, S. On comparing statistical and set-based

methods in sensor data fusion, [1993] Proceedings IEEE International Conference on

Robotics and Automation, Atlanta, GA, pp.352-358 vol.2.,1993

[71] Munz, M., Dietmayer, K., & Mählisch, M. Generalized fusion of heterogeneous

sensor measurements for multi target tracking. In Information Fusion (FUSION), 2010

13th Conference on (pp. 1-8). IEEE, 2010

[72] Siciliano, B., & Khatib, O. (Eds.). Springer handbook of robotics. Springer Science

& Business Media, 2008

132

[73] Chandrasekaran, B., & Conrad, J. M. Sensor fusion using a selective sensor

framework to achieve decision and task execution. In SoutheastCon 2016 (pp. 1-7).

IEEE, 2016

[74] Chandrasekaran, B., & Conrad, J. M. Complete Coverage Planning: Achieving

Human Interaction and Maximum Coverage During an Autonomous Robotic Vehicle

Navigation of an Unknown Terrain. In Workshops at the Thirty First AAAI Conference

on Artificial Intelligence, 2017

[75] Wu, H., Siegel, M., Stiefelhagen, R., & Yang, J. Sensor fusion using Dempster-

Shafer theory [for context-aware HCI]. In Instrumentation and Measurement Technology

Conference, 2002. IMTC/2002. Proceedings of the 19th IEEE (Vol. 1, pp. 7-12). IEEE,

2002

[76] Challa, S., & Koks, D. Bayesian and dempster-shafer fusion. Sadhana, 29(2), 145-

174, 2004

[77] Chandrasekaran, B., Gangadhar, S., & Conrad, J. M. A Survey of Multisensor

Fusion Techniques, Architectures and Methodologies. In SoutheastCon, 2017 (pp. 1-8).

IEEE, 2017

[78] O'Kane, J. M., A gentle introduction to ROS., 2014

[79] http://www.ros.org/

[80] http://wiki.ros.org/

[81] http://answers.ros.org/questions/

[82] http://gazebosim.org/

[83] http://www.turtlebot.com/

[84] http://oceanservice.noaa.gov/facts/lidar.html

[85] Fong, T., & Thorpe, C. Vehicle teleoperation with collaborative control. In Multi-

Robot Systems: From Swarms to Intelligent Automata: Proceedings from the NRL

Workshop on Multi-Robot Systems (p. 195). Springer Science & Business Media,

November 2013

133

[86] Rubo, Z., Guochang, G., & Guoyin, Z. AUV obstacle-avoidance based on

information fusion of multi-sensors. In Intelligent Processing Systems, 1997. ICIPS'97.

1997 IEEE International Conference on (Vol. 2, pp. 1381-1384). IEEE, 1997

[87] Scholtz, J. Evaluation methods for human-system performance of intelligent

systems. NATIONAL INST OF STANDARDS AND TECHNOLOGY

GAITHERSBURG MD MANUFACTURING ENGINEERING LAB, 2002

[88] Feil-Seifer, D., & Matarić, M. J. Human-robot interaction (hri) interaction human

robot. In Encyclopedia of complexity and systems science (pp. 4643-4659). Springer

New York, 2009

[89] Yanco, H. A., & Drury, J. L. Classifying human-robot interaction: an updated

taxonomy. In SMC (3) (pp. 2841-2846), 2004

[90] https://perf.wiki.kernel.org/index.php/Tutorial

[91] http://www.brendangregg.com/perf.html

[92] https://www.python.org/download/releases/2.7/

[93] https://pythonhosted.org/spyder/

[94] https://docs.python.org/2/library/turtle.html

[95] Breiman, L. Random forests. Machine learning, 45(1), 5-32, 2001

[96] http://www.datasciencecentral.com/profiles/blogs/random-forests-algorithm

[97] http://www.dabi.temple.edu/~hbling/8590.002/Montillo_RandomForests_4-2-

2009.pdf

[98] http://scikit-learn.org/stable/documentation.html

[99] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., &

Vanderplas, J. Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12(Oct), 2825-2830, 2011

[100] https://youtu.be/S9fn2irSP-4

134

[101] McKinney, R. A., Zapata, M. J., Conrad, J. M., Meiswinkel, T. W., & Ahuja, S.

(2010, March). Components of an autonomous all-terrain vehicle. In IEEE SoutheastCon

2010 (SoutheastCon), Proceedings of the (pp. 416-419). IEEE.

[102] Cortner, A., Conrad, J. M., & BouSaba, N. A. (2012, March). Autonomous all-terrain

vehicle steering. In Southeastcon, 2012 Proceedings of IEEE (pp. 1-5). IEEE.

