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ABSTRACT 
 
 

FARAZ HEDAYATI. Generation and characterization of firebrands from selected fuels. 
(Under the direction of DR. AIXI ZHOU and DR. RUSSELL KEANINI)  

 
 

 Over the past few decades, thousands of lives and billions of dollars have been lost 

due to large open fires. Spotting caused by airborne burning firebrands (or embers) is a 

fundamental mechanism for fire spread in large fires in wildland, urban, and wildland 

urban interface (WUI) communities. Firebrands can travel more than a mile from their 

origin and are understood as the only mechanism that can initiate a fire at long distances.  

 Spotting by firebrands, or the firebrand phenomenon, can be understood in three 

major sequential phases:  production, transportation, and ignition of the recipient fuel. 

Numerous studies have been conducted to understand the firebrand phenomenon since 

the 1960s.  Firebrand generation is the first step and the basis for understanding the 

subsequent processes but has been the least studied phase. A limited number of studies 

have been devoted to the generation of firebrands from different fuels. Also, firebrand 

generators have been built to generate firebrands for experimental. Most of the previous 

researches on firebrand production focused on the experimental design and data 

collection, with significantly less efforts on a theoretical framework of the phenomena 

and a systemic analysis of experimental data.  

 This research analyzes the generation of firebrands from selected structural fuels. 

Having established this as the main goal, the flowing objectives are achieved. First, the 

Bayesian statistics is employed to analyze the available data and suggest proper 

Probability Density Functions (PDFs). Secondly, choosing the standard deviation 0.55 

and the margin of error 0.03, a statistical analysis shows that the sample size needs to be 
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at least 1300. Several tests to generate firebrands from such structural components as wall 

and corner assemblies and fences were conducted. To be more conservative, at least 1400 

samples from each test were collected. Such a large sample size required a more efficient 

measurement process as opposed to the conventional tedious methods. To address that, 

thirdly, a new framework to facilitate the cumbersome measurement process is 

developed. Among several quantities of interest for the measurement, projected area and 

mass are the most challenging ones. An efficient image processing algorithm is proposed 

for the former; for the latter, two predictive models are created, which can estimate the 

mass for each firebrand without physically weighing them. Fourthly, the effects of wind 

speed on the surface temperature of the smoldering firebrands are monitored with an 

infrared camera.  

 The results from chapter two indicated that the bivariate truncated normal and 

bivariate lognormal distributions had the highest likelihood among other probability 

density functions. Mass and projected area were strongly correlated, but their correlation 

with flying distant was either weak or moderate. The predictive models and image 

processing algorithm presented in chapter three was able to reduce the measurement time 

for mass and projected area significantly. The mean, standard deviation, and correlation 

between the parameters can be predicted within 10% error, measuring only 70% of the 

data (900 instead of 1400 measurements). In chapter five, a statistical analysis of the 

results concluded that it was more likely that the emissivity of the smoldering firebrands 

varies between 0.95 and 1. Setting this value on the infrared camera, the temperature 

reached 1000 degrees C at 6 m/s wind speed. However, the medium wind (3 m/s) may 

pose a greater threat because the firebrands can burn for a longer period of time.  
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CHAPTER 1: INTRODUCTION 
 
 

1.1. Problem Statement  

Wildfires threaten lives and properties worldwide. In this research, they are defined 

as fires which have almost unlimited access to the oxygen and fuel. The international 

Association of wildland fire reports that in the United States, the average number of lost 

structures in wildfires per decade has grown dramatically over the past 50 years; from 209 

in the 1960’s to 3000 in the 2000s. Fighting against the WUI fire costs 4.7 billion dollars 

every year [1-3]. It is apparent that the problem is growing and becoming more severe. 

This threat is not only limited to the wildland. It is hazardous to urban areas and their 

interface with wildland, which is often called Wildland Urban Interface (WUI). The WUI 

is a geographic location where manmade structures meet undeveloped wildland [4]. 

In open fires, three mechanisms have been renown for spreading of fire: (1) direct 

flame contact, (2) radiant and convective heat flux, and (3) firebrands.  A 2008 study found 

that the direct flame and radiant/convective heat flux mechanism is relatively weak and 

ultimately incapable of initiating another fire when the distance is more than 100 feet [3]. 

Therefore, the first two mechanisms are less dangerous with distance from source. On the 

other hand, firebrands are capable of initiating spot fires miles from the fire line. Wells 

reports that firebrands were found 6 miles away from the fire origin near the Lake Michigan 

[5]. These flying hot objects can be either burning combustible materials (wood) or high 

temperature non-combustible materials (metals) depending on their origin at which they 

have been lofted. Given both the firebrands’ ignition capabilities at far distances as well as 

the diversity of the firebrands’ origins [6], the natural problem culminates around the 
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firebrands’ potential for catastrophic destruction. Therefore, the primary objective of this 

research is to investigate and characterize firebrand generation and distribution from 

selected fuels. 

Spotting process by firebrands can be divided into three sequential key phases: 

generation, transportation, and ignition of the fuel bed. As a result of the abundance of 

available literature, it is clear that the first two phases have been the areas that the 

researchers have focused on the least [7]. Limited number of studies have addressed the 

generation of firebrands, most have focused on explaining the experimental design and 

firebrand collection method. However, less attention has been devoted to the measurement 

process, repeatability and reproducibility of the data, and statistical analysis of the results.  

Running firebrand generation tests are extremely expensive, financially, time-wise, 

and labor-wise. Tens of thousands of firebrands are generated in each test and it is not 

feasible to measure the physical quantities of interests for the entire population. Thus, 

sampling plays an important role in the measurement process. In the current literature, 

sample size is typically hundreds of firebrands without any statistical analysis of the sample 

size. If a statistical test suggests a sample size significantly larger than 500, the efficiency 

of the current measurement methodology so as to count and measure thousands of 

firebrands must be explored.  

In addition to the above mentioned issues, the surface temperature of the 

smoldering firebrands has not yet been measured accurately. Temperature is one of the 

influential parameters in ignition of solids, which needs to be addressed. This could provide 

a better understanding of ignition potential of the fuel bed. 
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1.2. Objectives, Goals and Scopes 

Considering the issues raised in section 1.1, the main goal of the current research 

is generating and characterizing firebrand from selected structural fuels. The ignition 

potential of firebrands depends on several parameters such as: their traveling distance and 

distribution model, thermal inertia, the surface with which the heat flux transfers to the 

recipient fuel, and the firebrand surface temperature. In order to investigate these 

parameters, the following objectives were established; 

I. Review previous studies on firebrand generation and development of a 

Probability Density Function employing Bayesian Statistics 

II. Conduct numerous tests to generate firebrands and collect a statistically 

sufficient sample to characterize 

III. Develop a framework to facilitate the measurement by employing machine 

learning and image processing techniques  

IV. Measure the surface temperature of a smoldering firebrand  

The following tasks were developed to address the the first objective: (1) collect 

and categorize all the published experimental data, (2) calculate the fundamental statistical 

factors (mean, standard division and median), (3) optimize the likelihood function to find 

the best probability density functions and compare the functions, and, finally, (4) consider 

the nature of the problem, present the best PDF(s) and discuss the corresponding results.  

To accomplish the second and the third objectives, (1) building components made 

from different materials and different geometries were burned at three different wind 

speeds in the IBHS research center test chamber, (2) the generated firebrands were 

collected, dried and characterized by measuring mass, projected area, frequency and the 
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burning level of the firebrands. (3) The measurement results were applied to deep and 

shallow machine learning techniques (Gaussian regression process and neural network) to 

find the trends in the data and provide a framework for future experiments. 

To achieve the fourth objective, noninvasive temperature measurement was used. 

The accuracy of the measurement relies on the emissivity value. Thus; (1) the emissivity 

value was calculated using the experimental data, (2) the effects of wind speed and 

moisture content on the surface temperature of two different materials were monitored 

using an infrared camera. 

1.3. Benefits of This Research  

More than one million fires were reported in 2015 where 50 percent of them were 

outside fires [8] and firebrands were understood to be an important fire spread mechanism. 

This develop our understanding about the size, mass, distribution pattern, and ultimately 

their threat. The results of this research will benefit federal and state fire managers, 

foresters, emergency responders, insurance companies and ultimately code and standard 

organizations. Also, the outcomes of this research can be employed to educate the public 

and increase the awareness about wildland fires [9].  

1.4. Organization of the Dissertation 

This dissertation is a three article based where the first chapter provides an 

introduction to and analysis of the available data.  The second chapter reviews and analyzes 

all the available literature in the field of firebrand production from structural fuels. In this 

chapter, after summarizing the experimental procedures, the statistical information of the 

studies is tabulated, the maximum likelihood method is explained, and the best Probability 
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Density Functions (PDF) presented. Finally, the results based on the finalized PDF are 

presented and discussed. 

The third chapter deals with generating and analyzing new firebrands. The 

Gaussian regression process regression is employed to generate a model which can predict 

the mass of each firebrand. Moreover, using neural networks, another predictive model is 

built and the results are compared. In this chapter a framework to automate the tedious 

measurement process is proposed. 

The fourth chapter deals with the surface temperature distribution of a smoldering 

firebrand. First a literature review is performed and then the results of the studies are 

compared. Having explained the measurement procedure for emissivity, the surface 

temperature for smoldering firebrands is measured.  

Finally, chapter five compares the results from the predictive models and 

summarizes achievements of this research. Its novelty is explained and future research is 

proposed. 

  



CHAPTER 2: CRITICAL LITERATURE REVIEW AND ANALYSIS OF THE 
DATA OBTAINED IN PREVIOUS RESEARCHES  

 
 
2.1. Abstract 

This section provides a probability density function (PDF) based statistical 

approach for the analysis of available experimental data on firebrand production from 

structural fuels, based on published between 1960 and the present. The Bayesian approach 

was employed to select the most likely PDF models. While several PDFs may be used to 

model firebrand generation, inverse normal, lognormal, and standard normal PDFs 

underestimated the probability of large, heavy, and far traveling firebrands. The truncated 

normal PDF usually overestimated but provided a conservative estimation of firebrands, 

had the most reasonable contour plots, and was therefore selected as an example for further 

statistical analysis. The results showed that that firebrand mass and size were strongly 

correlated, while the flying distance and firebrand size were moderately correlated. Using 

a 95% confidence interval for firebrands from outdoor whole building experiments, the 

flying distance was in the range of 48.3-50.2 meters from the fire location, the projected 

area was 14.7-17.6 cm2, and the mass was in the range of 0.6-3.6g. At the same 95% 

confidence interval, firebrands from indoor whole building experiments had projected area 

of 2.5-3.2 cm2 and mass of 0.2-0.3g. This indicated a difference in the size and mass 

between firebrands produced from outdoor experiments and firebrands generated from 

indoor experiments. The achievements of this section can provide us with valuable 

information for the probability of spot fires. The suggested PDFs can also be plugged into 

different models to predict more realistic firebrand characteristic distributions. 
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2.2. Introduction and Summary of the Previous Experiments 

 The growth in the urbanization rate in the United States has been dramatic in the 

past century; from 39% in 1980 to 75% in 1990 [10]. This leads to the development of 

wildland for human inhabitants. The Wildland-Urban Interface (WUI), was the magnet for 

this development in a way that in the United States in the 90s, 60% of the new housing 

constructions was built in the land categorized as WUI [11]. This interaction between the 

human daily life and the wildland threatened the lives and properties since they were 

exposed to wildland fires.  

As mentioned in chapter one, there are three known fire spread mechanisms out of 

these only firebrands can cause a spot ignition miles away from the fire front. Depending 

on the origin and the characteristics of the firebrands, they can cause different levels of 

threats. Burning vegetation and trees, interaction of power lines with trees and each other, 

forestry machinery and hitting rocks are among known origins of the firebrands [6]. In 

addition to those, they may loft from burning structures-residential or commercial- and are 

hazardous to both urban and wildland areas. 

In this research, we focused on the generation and characterization of the structural 

firebrands. Chapter one is organized as follows; first the previous studies which considered 

the generation of firebrands will be reviewed and the employed experimental procedure as 

well as their results will be discussed. These studies were categorized based on the 

experiment’s conditions. Some of the experiments were real world buildings and they are 

now labeled outdoor whole buildings (OWB), some were mock buildings ignited under the 

laboratory conditions which are labeled Indoor Whole Buildings (IWB) and some were 

only building components labeled Indoor Structural Components (ISC). From that, 
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theoretical studies will be discussed. This section will conclude with discussion about the 

knowledge gap and the benefits of the current research. In section 2.3 the raw data related 

to section 2.2 will be presented and then the data will be statistically analyzed to find the 

best PDF candidates. Then the results, based on the best PDF will be explained, ending 

with the conclusions of this chapter. 

The materials that are employed in constructions can be classified into two key 

groups: natural and synthetic. In the U.S., natural materials, customarily wood, are used in 

residential and commercial buildings are mostly cellulosic based products such as wood, 

structural sheathing, and particleboards. They may be used in different components of the 

structure, such as in sheathing, framing, roofing, siding, or decking [12]. Moreover, 

domestic furniture is typically made out of wood and will also contribute fuel to any 

burning structure.  

The earliest full-scale experiments were conducted by Vodvarka in 1969-1970 

[13,14]. Several buildings were ignited, but the generated firebrands were collected and 

analyzed for only eight of the experiments namely Star Center, Batavia, Heartview and 

Buildings 68-1, 68-2, 68-3, 69-1 and 69-7. The firebrand collecting method for in his 

experiments was different than other studies; instead of collecting firebrands in water pans, 

plastic sheets were laid down downstream of the wind and the hot firebrands would melt 

through the plastic and leave a footprint on the sheets. The size of the holes were measured 

and reported as well as the distance they traveled. For the sake of brevity, the testing 

conditions and the building characteristics are presented in table 2.1. The researchers 

reported that the damaged structures had access to unlimited oxygen through the openings 

and the rate of firebrand production was higher than undamaged structures. Moreover, at 
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the time that the roofs were collapsing, the firebrand production rate reached its maximum. 

One of the deficiencies of this study was that at closer distances to the fire, the researchers 

did not quantify the number of, reporting the results with descriptive phrases like “too 

many” or “too dense”. 

For almost 40 years no experiments were performed to study the generation of 

firebrands, with a focus mostly on the characterization of the firebrands which will be 

discussed later. In 2012, Suzuki and Manzello et al. [15] reported on an experiment where 

firebrands were collected a from a controlled burn-down of a two story house in Dixon, 

California. The burn occurred in a sunny day with mild winds. Water-filled pans were laid 

down at 4 and 18 meters away from the burning building to collect and quench firebrands. 

In total 139 firebrands were collected from the pans and their mass and projected area were 

measured.  

Since the real world full-size experiments are very expensive to conduct, smaller 

scale laboratory tests have been performed to enhance our knowledge of firebrands. 

Yoshioka et al. [16] was the first to conduct a whole building test in a wind tunnel. In this 

experiment, the wind velocity, temperature, heat flux, and mass change of the burning 

house were recorded during the experiment. An ignited wood crib was placed close to the 

house, which ignited the mock building (some other combustible materials were used as 

well). Two trays were placed two meters from the building one of which was filled with 

water to preserve the firebrands shape and mass and the other tray was empty to monitor 

how long the firebrands burned. The schematic of their setup is shown in figure 2.1.     
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Figure 2-1. Yoshioka et al. experiment layout; taken from [16] 

Combustion of wood crib and the house, as well as the generation of firebrands 

were recorded using CCD cameras. Utilizing hotwires and thermocouples, the velocity and 

temperature were monitored as suggested locations. Heat flux transducers were installed 

on the brand collectors. Similar to Vodvarka, the researchers concluded that the firebrand 

production range has a peak at the time the roof collapsed. They also reported that the total 

number of firebrands and their oven dried weight in the wet tray is about six times greater 

than that in the dry tray. 

Ten years after that, a very similar study was performed by Suzuki et al. [17]. 

Instead of using only two trays, arrays of water pans were placed downstream of the wind 

to capture the firebrands. Figure 2.2 depicts the schematic of their setup. There were load 

cells installed beneath the burning structure to record the mass loss rate and it was observed 

that for the first 6 minutes, the mass loss rate was almost steady and then it rose sharply. 

Similar behavior was seen with the temperature variation which was recorded by two 
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sensors installed, one meter from the ceiling and the other one from the floor. More 

information about this experiment is provided in Table 2.1. 

 

Figure 2-2. Suzuki et al experimental layout [17] 

The third category include the experiments which considered firebrand generation 

form the Indoor Structural Component (ISC). The earliest one was performed in 1969 and 

reported by Waterman [18]. The effect of building height, wind speed and roof type. Since 

the tests were done at small scale, in order to compensate for the effect of size on material 

strength, Waterman purposely used butted pieces for 50 percent of the sheathing. The 

experimental setup did not allow the firebrands to fly for a long distance and as soon as 

they left the assembly, they were caught by mesh screens. Thus, the firebrands did not have 

enough time to burn while they were flying and this would affect their size distribution. He 

reported that most of the firebrands were glowing rather than flaming. It was observed that 

covering the roof with more shingles can help to keep the roof integrated reduces the 

number of the generated firebrands. However, if the pathways of air get blocked by 

overusing the shingles, the pressure beneath the roof increases which causes a more intense 

firebrand production. 

To determine whether burning simple structures can provide realistic information 

about the characteristics of the real world firebrands, Suzuki et al. [19], conducted a study 
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to evaluate the  generation of firebrands from real scale building components in a wind 

tunnel; burning wall and re-entrant assemblies were exposed at a wind speed of 6 and 8 

m/s. Ultimately, 156 firebrands sampled from a burning wall at 6 m/s wind and 155 and 

154 firebrands from a corner assembly at 6 and 8 m/s wind were collected respectively. 

The experimental setup is very similar to the researchers’ previously explained study [17] 

and thus the setup layout is not provided again. 

Suzuki and Manzello [20], studied the effects of siding treatments on similar 

structural components at 6 and 8 m/s wind speed where 414 and 290 firebrands were 

sampled from the population for analysis. It was observed that siding treatments do not 

heavily affect the size and mass range of the firebrands from wall assemblies; however, the 

distribution has been changed. 

Beside the mentioned studies, there has been several reports which focus on 

generation and collection of firebrands originating from burning vegetation, both in the 

laboratories and real world forest fires [21,22]. The process of collecting the data was 

basically the same, however, the burning sample was different types of vegetation. In 

addition, there have been efforts to build a firebrand generator which can provide 

information about the size and mass distribution of a firebrand shower; the most well-

known one is the NIST firebrand generator often called the Dragon [23-25].  

The firebrand phenomenon has been studied from the theoretical point of view as 

well, with most studies focusing on vegetative fuels. Having taken turbulence into account, 

Himoto and Tanaka [26], have solved the coupled conservation equations of momentum 

and angular momentum numerically to obtain the traveling distance of a firebrand. These 
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research reported that the lognormal probability density function best estimated for 

firebrand distribution in the longitudinal direction. 

Barr and Ezekoye [27], developed a simple mechanical model based on the yielding 

stress of branches under aerodynamic and weight forces. The breakage model has 

ultimately coupled with a plume model to explain the transport and mass loss rate of the 

vegetative fuel. More recently, Tohidi et al. [28] developed another simple model to predict 

the mechanical failure of the vegetative fuel and generation of a firebrand. Using QQ plots, 

a lognormal regression was chosen as the input to the Monte-Carlo simulation [29] to 

predict actual spot fires. In addition, it was determined that the surface area of the firebrand 

was proportional to its mass by the power of two thirds. 

Table 2-1. Summary of firebrand generation experiments using structural fuels 
Experiment in Literature Structure 

ID 
Testing conditions1 Height2 Collection 

Method 
Vodvarka, Star Center [13] OWB1 5.3-8.9 m/s, 1.6 ˚C, 89% 2  

 
 
 
Plastic sheets 

Vodvarka, Batavia [13] OWB2 4.4-8   m/s, 21.1 ˚C 1 
Vodvarka, Heartview [13] OWB3 8.9-11.1 m/s, 4.4 ˚C 1 
Vodvarka, Building 68-1[13] OWB4 0.9-1.7 m/s, 28.8 ˚C, 65% 2 
Vodvarka, Building 68-2[13] OWB5 0.4-1.3 m/s, 30 ˚C, 70% 1.5 
Vodvarka, Building 68-3[13] OWB6 2.6-3.5 m/s, 28.3 ˚C, 70% 1.5 
Vodvarka, Building 69-1[14] OWB7 < 2.2 m/s, 21.1 ˚C, 75% 2.5 
Vodvarka, Building 69-7[14] OWB8 2.2-15.6 m/s, 13.8 ˚C, 45% 2 
Suzuki et al, at 4m [15] OWB9a 5.7 m/s, 25 ˚C 2 Water pans 
Suzuki et al, at 18m[15] OWB9b 5.7 m/s, 25 ˚C 2 
Yoshioka et al., wet[16] IWB1a 2-4 m/s 1  

Water pans Yoshioka et al., dry[16] IWB1b 2-4 m/s 1 
Suzuki et al. [17] 
 

IWB2 6 m/s 1 

Waterman [18] ISC1 6.9-15.6 m/s  
 
 
N.A. 

Mesh screen 
Suzuki et al., walls[19] ISC2 6 m/s  

 
Water pans 

Suzuki et al., corners[19] ISC3a 6 m/s 
Suzuki et al., corners[19] ISC3b 8 m/s 
Suzuki et al., corners[20] ISC4a 6 m/s 
Suzuki et al., corners[20] ISC4b 8 m/s 

1. Testing condition information includes wind speed, temperature, and relative humidity. 2. Building height in stories. 
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Parallel to the mentioned stream of research, which focused on the generation of 

firebrands specifically, some other scientists focused on other characteristics including 

flight path, mass loss, and surface temperature. Only the last parameter, surface 

temperature, was of interest to the current research. Thus, the studies which focused on the 

other parameters will not be reviewed here. Rigorous readers can find information about 

those elsewhere [30-37]. 

One may notice that there has been huge investments-both financially and 

timewise- to study the firebrand phenomenon. However, our understanding in this field is 

still inadequate. The first gap that comes up to the author’s mind is that the focus of all the 

mentioned studies was to develop a repeatable experimental procedure. Typically, most of 

the publications were dedicated to explaining sample preparation and experimental 

approach which were followed by a short statistical analysis. Mosely, the statistical 

analysis section reported the mean and sometimes not even the standard deviation [38] of 

the collected sample accompany with a busy mass versus project area plot [17,20,19,15]. 

Often histograms of the mass and size distributions were plotted which could have been 

plotted more accurately. As a rule of thumb, the number of the bins in a histogram needs 

to be greater than the square root of the sample size which has not been considered in 

numerous previous studies on this topic. [24,17,20,19,15]. Most the studies in this field 

employed graphical methods to suggest a distribution [24]. Graphical tests were qualitative 

and strongly depend on the opinion of the observer. For example, changing the bin size in 

a histogram can easily change the histograms appearance and influence how one intents to 

suggest a distribution. Also, in QQ plots the straightness of the line was the measure to 

determine the distribution. That “straightness” is also a very qualitative measure. Thus, no 
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solid statistical background was used to propose a proper PDF. Such a study would (1) 

provide an understanding the characteristics of produced firebrands from a statistical 

perspective, (2) assist future theoretical studies since, the results of this study could be used 

in any statistical approach, such as Monte Carlo simulations, (3)  help improve 

experimental design and procedures in future firebrand production research and (4) provide 

reliable information to modify the experimental procedures to make realistic, repeatable 

and reproducible data. 

2.3. Raw Data and the Statistical Analysis 

 The stochastic nature of the firebrand phenomenon, including production, transport 

and ignition, suggests the statistical-based approach should be favored here for this 

phenomenon. Whenever a system includes numerous particles, like the firebrand 

phenomenon, studying each particle individually is somewhat difficult. 

It is common sense that larger firebrands are more likely to ignite a material since 

their thermal inertia is typically higher and a single one of them can be hazardous. This 

does not mean, however, that smaller firebrands cannot be lethal since they can penetrate 

through small openings to a house, and if the fuel bed on which they land on is easily 

ignitable, like carpets, may be extremely dangerous. In addition, the accumulation of small 

firebrands is also understood as a great threat [39]. Thus, the distribution pattern-mean, 

standard deviation and the skewness- of the firebrands is very important. The distributions 

can predict how fatal a firebrand shower can be. 

 Hence, it is necessary to obtain a probability density function (PDF) that can model 

the size and mass distribution as well as the traveling distance. The benefits and 

applications of the PDFs include; (1) as discussed earlier, depending on the geographical 
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location, small or large firebrands can cause different threats. Thus, the estimating the 

probability of the different size of the firebrand would be helpful. This goal can be achieved 

by integrating the probability density function between the specific boundaries. (2) One of 

the criteria that has been suggested for ignition of solids is the critical heat flux [40]. Since 

calculating the heat flux for each firebrand is not practical (typically large sample size), 

estimating how the heat flux may vary with the mass or surface area of the firebrands, 

employing PDFs, the total energy of a firebrand shower can be estimated as follows: 

 ... ( ) ( , ...) ...one brandE E x, y... PDF x y dxdy
∞ ∞ ∞

−
−∞ −∞ −∞

= ∫ ∫ ∫  (2.1) 

where x, y and z can be different quantities of interest such as mass, projected area, or any 

other parameter. The PDFs can be plugged into different statistical simulators such as 

Monte Carlo to predict locations of spot fires. For details, see [28].  

(3) The effects of all the important parameters in firebrand generation are embedded 

in statistical concepts including mean, median and standard deviation from which the PDFs 

are constructed. It is already known that wind speed, moisture content of the fuel, heat 

release rate of the burning material etc. affect the generation and distribution of the 

firebrands. However, there are several unknown influential parameters that have not are 

understood. The indeterminate approach takes those into account as well. In order to build 

a PDF, the mean and standard deviation of each experiment needs to be calculated. 

2.3.1. Raw data extraction 

Table 2.2 represents the mean, median and standard deviation of all the previous 

researchers. The IDs are defined in table 2.1. For older studies (before the year 2000), the 
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data is extracted directly from the sources, for more recent studies, we contacted the authors 

and, requested the raw data from their studies. When the raw data could not be obtained 

from the authors, the data reported in the original sources were employed. These data are 

necessary to build any PDFs. An “N.A.” in a cell indicates that this parameter could not be 

obtained because an analysis could not be performed due to unavailable or insufficient 

data. Since the sample size is larger than 40 in all the studies, we constructed a confidence 

interval to have an estimation of the variation range of mass and projected area in the last 

column. 

It should be mentioned that some of the data in table 2.2 is constructed has been 

slightly modified.  In the original Vodvarka’s report [14] ,for OWB7 and 8, addresses both 

the radius and the angle of the collecting sheets. In order to be consistent with other studies, 

only flying distant was used in our analysis. Moreover, there are cases in the original 

studies where the quantity of firebrands were labeled as “uncountable” or “many”; these 

were not included in the calculations. For OWB1, at 800 ft (243.84 m), the size of the 

firebrands were not well defined. It was assumed that we only had one firebrand with the 

mentioned dimension and 39 brands with the area of 2.5×2.5 inch (6.35×6.35 cm). For 

OWB2, due to insufficient data, we assumed that the size of all the firebrands smaller than 

1×1 were normally distributed. Wherever it was necessary, the C size was transformed to 

cm based on Vodvarka 1969 [13]. 

Table 2.2 also provides the correlation between different parameters. As mentioned 

earlier, the influential parameters in the generation of firebrands were correlated which 

suggesting that there should be a correlation between the characteristics of the firebrands 
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as well. The primary investigations showed that there was a strong correlation between the 

mass and projected area. Also, a moderate correlation was observed between projected area 

and flying distance. Correlations basically defined how the growth in one parameter 

affected the variation in another. Their value can vary between -1 and 1. If the correlation 

between two parameters is one, it shows that they are in perfect relation with each other 

and the growth in one leads to growth in the other one. The Opposite trend can be 

interpreted for minus one correlation. Zero correlation means the variation of the 

parameters do not affect each other [41]. Considering the correlations is necessary if they 

exist, otherwise important terms in the statistical model is neglected which will be 

explained later. Neglecting the correlations is equivalent to 2 2 2
1 2 1 2( )x x x x+ = +  ! Hence 

the firebrand phenomena needs to be modeled with a multivariate PDF. 

 



19 

Ta
bl

e 
2-

2.
 S

ta
tis

tic
al

 p
ar

am
et

er
s i

n 
ea

ch
 e

xp
er

im
en

t 

ID
 

Sa
m

pl
e 

si
ze

 
Fl

yi
ng

 D
is

ta
nc

e 
x 

(m
) 

Pr
oj

ec
te

d 
A

re
a 

a 
(c

m
2 )

 
M

as
s m

 (g
) 

ρ x
,a
 

ρ m
,a
 

R
an

ge
 o

f 9
5%

 C
.I.

 
µ x

 
σ x

 
µ a

 
σ a

 
µ m

σ m
O

W
B

1 
21

2 
21

0.
91

 
32

.8
8 

18
2.

88
 

71
.9

6 
60

.4
4 

58
.0

6 

N
.A

. 

-0
.4

9

N
.A

. 
48

.3
<x

<5
0.

2 

17
.4

<a
<1

7.
6 

O
W

B
2 

18
2 

29
.5

1 
31

.4
1 

15
.2

4 
14

.7
0 

22
.6

0 
6.

45
 

0.
38

O
W

B
3 

17
0 

10
3.

27
 

32
.7

3 
76

.2
0 

24
.6

6 
25

.7
1 

25
.8

0 
-0

.1
1

O
W

B
4 

55
1 

30
.1

4 
12

.4
3 

21
.3

3 
2.

22
 

4.
41

 
1.

35
 

0.
13

 
O

W
B

5 
52

9 
49

.8
1 

11
.1

1 
50

.2
9 

1.
88

 
3.

49
 

1.
35

 
0.

04
 

O
W

B
6 

23
6 

46
.0

7 
12

.6
2 

45
.7

2 
1.

10
 

1.
22

 
0.

45
 

0.
03

 
O

W
B

7 
1,

18
0 

56
.1

0 
32

.4
0 

38
.1

 
6.

34
 

8.
32

 
2.

71
 

-0
.1

5
O

W
B

8 
1,

10
7 

45
.0

4 
22

.0
6 

47
.2

4 
2.

85
 

1.
02

 
2.

71
 

-0
.0

4
O

W
B

9a
 

89
 

N
.A

. 

2.
03

 
2.

70
 

1.
23

 
0.

06
 

0.
10

 
0.

03
 

N
.A

. 

0.
89

 
1.

9<
a<

2.
8 

0.
06

<m
<0

.1
 

O
W

B
9b

 
50

 
4.

50
 

11
.2

5 
1.

92
 

0.
12

 
0.

16
 

0.
04

 
0.

51
 

IW
B

1a
 

36
8 

0.
83

 
0.

57
 

0.
62

 
0.

01
 

0.
02

 
0.

01
 

0.
96

 
2.

5<
a<

3.
2 

0.
2<

m
<0

.3
 

IW
B

1b
 

62
 

1.
50

 
1.

26
 

0.
62

 
0.

06
 

0.
07

 
0.

02
 

0.
99

 
IW

B
2 

47
5 

3.
26

 
4.

93
 

1.
74

 
0.

29
 

0.
67

 
0.

07
 

0.
98

 
IS

C
1 

43
0,

30
3 

N
.A

. 
0.

12
 

0.
05

 
0.

11
 

N
.A

. 
m

 ≈
0.

12
 

IS
C

2 
15

6 
2.

27
 

2.
87

 
1.

31
 

0.
16

 
0.

33
 

0.
05

 
0.

59
 

3<
a<

3.
6 

0.
3<

m
<0

.4
 

IS
C

3a
 

15
5 

3.
13

 
3.

19
 

2.
18

 
0.

30
 

0.
44

 
0.

17
 

0.
94

 
IS

C
3b

 
15

4 
4.

52
 

4.
08

 
3.

11
 

0.
56

 
0.

72
 

0.
30

 
0.

86
 

IS
C

4a
 

41
4 

5.
66

 
12

 
1.

33
 

0.
41

 
1.

79
 

0.
04

 
0.

81
 

3.
1<

a<
4 .

5 
0.

16
<m

<0
.3

7 
IS

C
4b

 
29

0 
1.

16
 

3.
28

 
0.

44
 

0.
06

 
0.

25
 

0.
01

 
0.

95
 



20 
 

 
 

2.3.2. Statistical analysis of the available data 

In this section, the raw data (project area, mass and traveling distance) of the 

studies from the previous chapter are employed to build different PDFs. Table 2.1 

represents all of the studies in which a quantitative report about the size/mass/projected 

area of the firebrands were reported.  

The generation and distribution of firebrands is a complex natural phenomenon 

which depends on both of fire characteristics and environmental conditions. Fire 

characteristics itself, depends on construction characteristics [14] (i.e. structure height 

and material type (heat of combustion), geometry of the structure (i.e. roof type and area), 

etc. which determines the fire size and fire convection column. Some of the 

environmental characteristics are wind speed, humidity, temperature and the barriers in 

the wind flow. Many of the mentioned parameters are strongly correlated to each other 

and it is very unlikely that modeling a firebrand shower can be accomplished without 

simplifications. Common ways to model firebrand phenomenon include physical 

(deterministic), statistical (probabilistic) and/or the combination of these two. In the first 

approach, the momentum and energy balancing equations for the firebrands and/or the air 

are considered. An order of magnitude analysis can be utilized here to neglect some terms 

in the balancing equations, which simplifies the analytical or numerical procedure.  

For instance, environmental characteristics, such as wind, and construction 

features, like the openings and windows affect, the oxygen supply for a burning building. 

The burning fuel has its own combustion characteristics including heat release rate and 

the parameters that form the convection column. The convection column play a major 

role in the generation and distribution of firebrands [33] which needs to be considered in 
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deterministic approach. Typically, in a deterministic approaches, one may 

nondimensionalize the equations in order to find a general pattern for the firebrand 

distribution. This approach is more reliable when parameters which affect the distribution 

pattern are known. Often, not all the influential parameters in a phenomenon are known 

and this can affect the accuracy of a model. Employing a deterministic approach, three 

studies considered the firebrand formation from vegetative fuels. Since it is beyond the 

scope of the current study, the reader is referred to the original papers [26-28]. 

As explained in section 2.2, in all the studies in this field, the PDFs are chosen 

based on the graphical tests such as histograms and QQ plots which are incapable of 

providing a reliable statistical background. In order to provide a more solid statistical 

background to select a PDF, in this section, a method will be explained which can help 

us to develop different PDFs more reliably. 

The fundamental statistical concepts that have been provided in section 2.2 are 

applicable to all the PDFs in different ways. In order to find the most appropriate PDF, 

the Bayesian Maximum Likelihood Method was employed. The maximum Likelihood 

Method estimates the best way to employ the fundamental statistical concepts (mean and 

standard deviation) to maximize the probability of fitting of the model. The Bayesian 

Information Criterion (BIC) [42] can help us in this regard, which can be calculated as 

follows: 

( ) 2 log(L (s)) (s) log(n)nBIC s θ ν= − +  (2.2) 

where L (s)n θ  is the likelihood function, (s)ν  is the number of components in the model, 

and n is the sample size. Having calculated the BIC scores for a set of known PDFs, the 

PDF corresponding to the lowest BIC score can be presented as the most probable 
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function to occur [43].  Generally speaking, if the difference in BIC scores is larger than 

10, then there is strong support that the models are different [44].  

More than 200 PDFs exist in statistics and calculating the BIC score for all data 

set is not feasible. In this research, we tested 18 of the most common models that are 

available in computational engineering software such as MATLAB and R. The statistical 

distributions are as follows: Beta, Birnbaum-Saunders, Exponential, Extreme Value, 

Gamma, Generalized Extreme Value (GEV), Generalized Pareto, Inverse Normal (or 

Gaussian), Logistic, Log-logistic, Log-normal, Normal (or Gaussian), Rayleigh, Rician, 

t Location-Scale, Weibull, and Poisson.  Moreover, since most of the physical quantities 

of interest like mass and projected area cannot have a negative value, for the cases that 

the mean value was small enough that some parts of the curve could be negative, the 

truncated normal distribution was included in the statistical distributions, as a modifier of 

the standard normal distribution. The truncated normal distribution is a common 

distribution in many engineering problems [45]. The standard normal distribution needs 

to be modified by setting the values in the negative range to zero and normally scaling up 

the PDF in the positive domain of physical quantities in such a way that the total integral 

equals unity. Table 3.3 represents the selected five values of BIC scores among all 18 for 

all the studies tabulated in Table 3.1.  

For each experiment the corresponding BIC scores for the first ranked model, 

along with the three models that were used before [28,26,24] are reported. Due the 

reasons already explained, the truncated normal has also been included in the Table 2.3. 
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Table 2.3. Ranking of the distributions based on the BIC score 

Experiment Rank Distribution name BIC for 
distance/ 

mass 

Rank Distribution name BIC 
for area 

 
OWB2 

1 Generalized Pareto -3963 1 Generalized Pareto -4558 
4 Inverse Gaussian 1546 4 Inverse Gaussian 1147 
6 Lognormal 1567 6 Lognormal 1186 

13 Truncated Normal 1710 11 Truncated Normal 1547 
14 Normal 1780 14 Normal 1671 

 
OWB4 

1 GEV  4385 1 Generalized Pareto -1420 
2 Inverse Gaussian 5457 4 Inverse Gaussian -390 
4 Lognormal 5466 5 Lognormal -343 

11 Truncated Normal 5659 13 Truncated Normal 1150 
12 Normal 5662 14 Normal 1156 

 
 
OWB5 

1 Birnbaum  5286 1 Generalized Pareto -13777 
2 Inverse Gaussian 5286 3 Inverse Gaussian -478 
3 Lognormal 8288 4 Lognormal -445 
7 Truncated Normal 5315 13 Truncated Normal 493 
9 Normal 5317 14 Normal 863 

 
 
OWB7 

1 T Location scale 1531 1 Generalized Pareto -44870 
5 Inverse Gaussian 10606 5 Inverse Gaussian 6010 
6 Lognormal 10617 6 Lognormal 6079 

14 Truncated Normal 11433 11 Truncated Normal 7800 
15 Normal 11533 13 Normal 8360 

 
OWB8 

1 Truncated Normal 9924 1 Generalized Pareto -63550 
2 Generalized Pareto 9928 2 Lognormal 1300 
4 Normal 9969 3 Inverse Gaussian 1468 

12 Lognormal 10425 12 Truncated Normal 3205 
17 Inverse Normal 10670 13 Normal 3210 

 
OWB9 

1 Inverse Gaussian -451 1 GEV 472.69 
2 Generalized Pareto -445 2 Inverse Gaussian 474 
3 Lognormal -441 3 Lognormal 479 

12 Truncated Normal -251 12 Truncated Normal 618 
15 Normal -171 16 Normal 678 

 
IWB2 

1 Inverse Gaussian -594 1 GEV 1909 
2 Generalized Pareto -569 2 Inverse Gaussian 1915 
4 Lognormal -564 3 Lognormal 1928 

12 Truncated Normal 820 12 Truncated Normal 2597 
14 Normal 984 14 Normal 2875 

 
ISC2 

1 Lognormal -340 1 Inverse Gaussian 547 
2 Birnbaum  -338 2 Lognormal 547 
3 Inverse Gaussian -334 3 Birnbaum  549 

12 Truncated Normal -7 11 Truncated Normal 660 
14 Normal 114 14 Normal 781 

 
ISC3a 

1 Generalized Pareto -80 1 Inverse Gaussian 627 
2 Lognormal -75 2 Lognormal 630 
7 Inverse Gaussian -55 3 Generalized Pareto 630 

12 Truncated Normal 142 11 Truncated Normal 718 
14 Normal 198 16 Normal 806 

 

The histogram of mass, projected area and traveling distance are included with 

the fitted curves for selected studies (studies with larger sample size) are depicted in 

figures 2.3-2.8. As a rule of thumb, the minimum number of the bins is the square root of 
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the sample size. As seen in the mass/projected area plots, the lognormal and inverse 

normal curves are very similar in all the cases where they overestimate the frequency of 

the smaller firebrands and underestimate the frequency of larger ones. The truncated 

normal, however, underestimate the frequency of smaller firebrands and overestimate that 

of the larger ones. It was noted that the log-normal and inverse normal models tended to 

overestimate the frequency of smaller/lighter firebrands and underestimated the 

frequency of larger/heavier ones. Moreover, the frequency of the firebrands landing at 

closer distances was also over predicted by the log-normal and inverse normal models. 

 
Figure 2-3. Histogram and selected curve fits of mass for OWB9 
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Figure 2-4. Histogram and selected curve fits of projected area for OWB9 

 
Figure 2-5. Histogram and selected curve fits of projected area for OWB4 
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Figure 2-6. Histogram and selected curve fits of projected area for OWB5 

 
Figure 2-7. Histogram and selected curve fits of traveling distance for OWB9 
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Figure 2-8. Histogram and selected curve fits of projected area for IWb2 

As explained in section 2.3, the correlations between the variables take us to 

higher probability dimensions. Considering the list of the distributions in Table 2.3, one 

needs to employ higher dimension of the suggested PDFs. Since the raw data only provide 

us with one set of correlations, the bivariate distribution of the truncated normal, 

lognormal and inverse normal are presented, respectively. 
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(2.3) 

Where µ is the mean, σ is the standard deviation, x1 and x2 are variables to studied, and ρ 

is the correlation factor representing how strong the two variables are correlated [45,46]. 
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Where 
iyµ and 

iyσ are the mean and standard deviation of lni iY X=  and ,  ,  
i ix xµ σ ρ are 

the mean, standard deviation and the correlation coefficient of the samples [47].  
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(2.5) 

Where 
3

2
i

i
i

µλ
σ

=  is the shape parameter, iµ  is the mean and 
1 2

8K ρ
σ σ

=  where ρ  is the 

correlation coefficient and iσ  is the standard deviation of each data set [48].  

The plots regarding the equations 3 through 5, for selected samples, are shown in Figures 

2.9-2.14.  
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Figure 2-9. Bivariate Truncated Normal and the associated histograms for OWB1 

 
Figure 2-10. Bivariate Truncated Normal and the associated histograms for OWB9 

 
Figure 2-11. Bivariate Lognormal and the associated histograms for OWB1 
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Figure 2-12. Bivariate Lognormal and the associated histograms for OWB9 

 
Figure 2-13. Bivariate Inverse Normal and the associated histograms for OWB1 

 
Figure 2-14. Bivariate Inverse Normal and the associated histograms for OWB9 
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As can be seen, none of the models provided a perfect fir to the data. Truncated 

normal over predicted the mean value as well as the frequency of the larger firebrands. 

Log-normal and Inverse normal distributions can appropriately predict the smaller 

firebrands but were incapable of predicting the frequency of larger firebrands. The 

contour plots for the experiments OWB1, 2 and 8 were plotted. 

 

 

 

 

 

 

 

 

 

 

Figure 2-15. Contour plots of the three bivariate distributions using OWB1 
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Figure 2-16. Contour plots of the three bivariate distributions using OWB2 

 

 
Figure 2-17. Contour plots of the three bivariate distributions using OWB9 data 

Considering the histograms, Table 2.3 and the contour plots, there were several 

reasons that the truncated normal distribution was selected for further analysis in this 

research. (1) Figures2.15-2.17 showed that the variations of the inverse normal, for which 
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BIC scores were among the lowest, happened rapidly, which was probably not close to 

what would happen in reality. For example, in figure 2.17, at lower projected areas, mass 

had an abrupt change which typically does not happen in nature, (2) based on the Central 

Limit Theorem, if the sample size grows, the distribution of any phenomenon get closer 

to Normal distribution, (3) the quality of the available data was questionable since there 

is no report about the sampling techniques and sample size. For example, for OWB9, only 

140 firebrands were collected at 4 meters and 18 meters. The sample size was too small 

and the distance from the fire looked random. Assuming normality makes the 

computations much easier and also provided us with numerous useful tools, including 

confidence intervals, ANOVA and some machine learning techniques, without which one 

would not be able to do much [49]. It should be mentioned that assuming normality for 

non-normal data is a common assumption. The phrase “assuming normality” brings up 

more than 10,000 results on Google Scholar. George Box, a famous statistician, once 

said: “Essentially, all models are wrong but some are useful.” 

2.4. Results 

As can be seen in Table 2.2, the experiments recorded the projected area and also 

either flying distance or mass. Thus, the obtained bivariate truncated normal distribution 

for some studies was a function of mass and projected area and for some was a function 

of flying distance and projected area. Instead of plotting 3D graphs, the contour plots of 

those were depicted, similar to figures 2.15-2.17, since it was easier to observe the trends. 

For OWB studies, variation in the plot axis was quite different and it was not possible to 

plot all in a same figure. Along a contour line the probability stays constant and the inner 

loops were associated with higher probabilities. A positive slope of the major axis of the 
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ellipse indicated a positive correlation and zero and infinity slopes corresponded with no 

correlation. The length of the minor diameter represented how strongly the variables were 

correlated. The shorter the length, the stronger the correlation. The behavior of each 

contour plot can be analyzed based on the above mentioned explanations. To avoid 

repetitions, only selected ones will be discussed; the rest can be explained in a similar 

way. 

2.4.1. Experiments considered projected area and flying distance 

As can be seen in figures 18-20, the correlation values between the flying distance 

and projected area varied. For OWB1 there was a moderate negative correlation 

(approximately -0.5), which implied that the firebrands’ projected area at longer distances 

were higher than those close to the fire. On the other hand, the correlation value for 

OWB2 shows an opposite trend. For the other experiments, correlations were smaller. 

This observation suggests that more experiments need to be conducted to figure out how 

surface area and flying distance affect each other. 

 

 

 

 

 

 

 

 

 

Figure 2-18. Bivariate Truncated Normal PDF Contour plots for OWB1-3 
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Figure 2-19. Bivariate Truncated Normal PDF Contour plots for OWB4-6 

 
Figure 2-20. Bivariate Truncated Normal PDF Contour plots for OWB7 and 8 

2.4.2. Experiments considered projected area and mass 

Figures 2.21-2.24 showed that mass and projected area had stronger correlations 

than flying distance and projected area, which provided evidence that larger firebrands 

were also heavier. Figure 2.21 indicated that the correlation between mass and projected 
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area was stronger at closer distances to the fire-4m vs 18m-. Moreover, more variability 

in mass and projected area can be seen at 18 meters compared to that of at 4 meters. 

 
Figure 2-21. Bivariate Truncated Normal PDF contour plots for OWB 9 

 
Figure 2-22. Bivariate Truncated Normal PDF contour plots for IWB1a-b & IWB2 
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Figure 2-23. Bivariate Truncated Normal PDF contour plots for ISC2 & ISC3a-b 

 
Figure 2-24. Bivariate Truncated Normal PDF contour plots for ISC4a & ISC4b 

Comparing the contour plots of ISC2 and ISC3a, it can be seen that the firebrands 

lofted from the corner assembly had a larger variation range for mass and projected area. 

Moreover the correlation is much stronger in ISC3a. This may suggest that corner 

assemblies are able to produce more lethal firebrands comparing to walls, which should 
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be considered in the construction of buildings. Comparing ISC3a and ISC3b in figure 

2.23, also revealed that higher wind speed generated larger brands given the stronger 

correlations between mass and projected area. This can also be seen in figure 2.24. In the 

latter figure, the variation range in the contour plots is smaller, which may be a result of 

siding treatments [20]. 

Waterman’s experiment [18] only reported the mass of the firebrands so it was 

not possible to calculate a correlation coefficient. Table 2.4 presents the details of this 

experiment. This table shows that smaller sheets generated fewer firebrands except the 

last line of the table. In order to facilitate to investigate the effect of wind pressure on, the 

experiments were categorized into two parts; the low pressure group from 0.13 to 0.15 

inch (0.33-0.38 cm) of water and the high pressure group 0.49 to 0.59 inch (1.24-1.49 

cm) of water. Considering the average of the frequency of the generated firebrands, it was 

concluded that higher pressure increased the firebrand generation. On average, there were 

19,967 firebrands for the high pressure group versus 6,344 for the low pressure group. 

Also, higher pressure leads to generation of heavier firebrands; the average mass at lower 

pressure is 743.30 grams which increases to 2389.10 at higher pressure. 

Table 2-4. Summary of ISC1 firebrand information 

Sheet area  (m2) Frequency of Associated sheet 
 

Total number of  
generated brands 

Brand per unit area 

8.45 8 202740 2999 
6.41 2 3177 248 
5.94 24 220527 97 
5.66 3 9952 586 
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2.4.3. Comparing the results 

In order to compare the variation range of mass and projected area of the data 

obtained from different experiments, the 95% confidence intervals of the experiments 

that were conducted at 6 m/s are plotted in figure 2.25. In addition to the mentioned 

studies, the firebrands generated from the NIST firebrand generator [24,38] have also 

been included in this plot. 

Figure 2.25 shows that the firebrands generated from the only outdoor real world 

experiment (OWB9) were lighter than that of generated from the indoor full structure 

tests or components. However, the projected area of OWB9 was consistent with ISC2, 

IWB2 and ISC3a. The firebrands from the ISC4a were heavier and larger than most of 

the firebrands in other experiments which may be the effects of siding treatments. The 

NIST firebrand generator data (left bottom corner) was not in agreement of the other 

experiments. However, a huge improvement can be seen in the revised version of the 

apparatus. 

 

 

 

 

 

 

 

 

Figure 2-25. 95% confidence interval range for mass and projected area 
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2.5. Summary and conclusion 

In this chapter, all the studies reporting on the generation of firebrands from 

structural fuels were summarized, and the associated experimental data were gathered. 

The experiments were categorized based on how the firebrands were generated; (1) 

Outdoor Whole Buildings (OWB), Indoor Whole Buildings (IWB) and Indoor Structural 

Components (ISC). After plotting the histograms to visually observe the data, the 

Maximum Likelihood Method was employed to find the best Probability Density 

Function candidates (PDF). The Bayesian Information Criterion (BIC) score was also 

calculated for each PDF.  The BIC scores were listed, and based on the lowest BIC scores 

and the results of previous experiments, three PDFs were chosen for further analysis 

namely Lognormal, Inverse Normal and Truncated Normal. Distribution’s contour plots 

indicated that the variation of the inverse normal distribution happened very rapidly, 

which does not sound realistic. Both of the lognormal and truncated normal distributions 

sound reasonable, but as the Central Limit Theorem suggests, and the simplicity and the 

tools that truncated normal distribution provides, bivariate truncated normal distribution 

was finalized for further investigation. The contour plots based on the chosen model were 

depicted and each one was discussed. Finally, a confidence interval analysis was 

conducted to calculate the range of variation in the mass and projected area for each 

experiment. It was observed that the NIST firebrand generators’ data was not in 

agreement with other experiments. Moreover, there was a strong correlation between 

mass and projected area and a moderate/weak correlation between the flying distance and 

projected area. It was also observed that the firebrands which were lofted from corner 
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assemblies were typically larger and heavier than the ones lofted from flat wall 

assemblies. 
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CHAPTER 3: A NOVEL FRAMEWORK TO CHARACTERIZE 
FIREBRANDS 

 

3.1. Abstract 

The objective of this study was to (1) provide a statistically adequate firebrand 

sample size and (2) develop a framework to reduce the labor in the tedious measurement 

process of the firebrand experiments. For the first objective, several tests were conducted 

at the IBHS research center to generate and collect firebrands from burning OSB/cedar 

siding corner assemblies that were ignited at three different wind speeds. A statistical 

analysis suggested a sample size of at least 1300; however, a more conservative sample 

size of 1400 was chosen. Measuring the physical quantities of interest, including mass, 

projected area, flying distance and, the burning levels, for such a large sample size 

(3*1400), required an efficient measuring process. To achieve the second objective a 

unique image processing algorithm was developed to calculate the projected area. 

Moreover, to facilitate the weighing process, a Gaussian process regression was 

employed to predict the mass based on other parameters. It was observed that having 

measured 70% of the firebrands, the model could predict the mass of the remaining 

unseen 30% of the data within 5% error. Employing this predictive model, the sample 

size could be reduced by 30% (900 instead of 1400 firebrands) and the mean, standard 

deviation and correlation between the parameters can be predicted within 10% error. The 

model can also provide information about mass/size of the firebrands at the locations 

were not covered with pans during the experiment.  
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3.2. Introduction 

Three principal ways have been identified that cause fire spread in a Wildland 

Urban Interface (WUI): direct flame contact, radiant heat, and burning firebrands 

[4,35,22,50]. It has been reported that firebrands are capable of igniting a spot fire at 

distances more than 60 meters away from the fire [3]. Heat flux from flames is not high 

enough to initiate a fire at further distances.  Depending on the size and rate of spread of 

the wildfire, spotting often overpowers fire suppression efforts and becomes the dominant 

fire spread mechanism [51]. The firebrand process includes three components; 

generation, transportation, and ignition of the recipient fuel. The generation phase is 

probably the least developed area [52,53].  

The ignition potential of a firebrand depend on the susceptibility of the fuel bed 

and environmental conditions. The physics of ignition can help to identify influential 

parameters in each category. Thermal mass and thermal flux exchange are the two 

important parameters in the first category (fuel properties), which can be estimated by the 

mass and projected area of the firebrands. It was reported that re-flaming was observed 

for firebrands with some unburned material [54]. Thus, the burning level of a firebrand 

at the time of lofting was influential to determine the thermal flux exchange. 

Wind speed can be considered to be as the most important environmental 

parameter since the transport mechanism and area under threat by firebrands heavily 

dependent on the wind speed. In addition, the aerodynamic shape of the firebrand is 

important in the transport since the drag and lift coefficients are strong functions of the 

shape.  
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Several studies have been conducted to obtain a better understanding of the 

firebrand generation in structural fires. Typically, these experiments are extremely 

expensive (time and labor) to run.  For example, in full scale tests [13,14], structures were 

set on fire, and plastic sheets were laid out downstream of the structures. As a result, hot 

firebrands melted through the sheets, and by measuring the size of the remaining hole, 

the projected area and traveling distance of the firebrands were determined. One potential 

problem of this method was that, in case where firebrands were not hot, there would not 

be melt plastic and the results would not be accurate. A more common technique has been 

to distribute water pans [55,38,56,39,17,20,19,15,24] downstream of the burning 

structure. Quenching firebrands preserved their mass and shape, which provided valuable 

additional information to compare to plastic sheet test results. In this method, the center 

of each pan was considered to be the landing position for each ember which was not what 

happened. Thus, inevitably, the data was treated as discrete rather than continuous. 

In these experiments, the firebrand measurement process can be more time 

consuming than running the tests. To measure the mass, the firebrands need to be oven-

dried first, then weighed individually. In order to measure the surface area, various 

approaches have been employed, among which digital image processing has been the 

most effective [9,13]. The traveling distance of the firebrands have been determined by 

the location of the pans in which they were collected.  

In full-scale experiments, thousands of firebrands were generated, so extracting 

information for the entire population was not practical. Therefore, sampling techniques 

play a pivotal role in the validity of the measurements. The sample of the full-scale 

building component experiments conducted in the past 20 years varied between 50 and 
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500 firebrands [38,39,20,15]. The vital question is how many firebrands are needed to 

sufficiently quantify the characteristics of entire population of firebrands in an 

experiment. If the answer suggests a sample size far larger than 500, the feasibility of the 

current measurement methodology to count and measure thousands of firebrands must be 

explored. Furthermore, it is not practical to cover the entire area downstream of the wind 

with water pans to catch all the firebrands. Therefore, no information can be obtained at 

the uncovered locations. There is a need to find a way to determine (or at least estimate) 

different characteristics of the firebrands at those locations were pans are not located. 

In order to address the above-mentioned issues, two key goals were established for this 

chapter: 

 (1) Determine a statistically acceptable sample size for each experiment, based on the 

desired confidence interval, margin of error, and standard deviation. 

(2) Improve the efficiency of the labor intensive measurement process employing 

machine learning and image processing techniques. The predictive model, also enables 

us to estimate different characteristics of the firebrands locations not covered by water 

pans. 

To achieve the first goal, a statistical analysis was conducted which suggested that 

the sample size for each experiment needed to be at least 1300 (the details will be 

presented subsequently). To this end, numerous tests were conducted at the Insurance 

Institute for Business & Home Safety (IBHS) to generate firebrands from several 

materials and assemblies ignited an burned at different wind speeds. To be even more 

conservative, at least 1400 firebrand from each test were randomly chosen and measured.  

To satisfy the second goal, a framework to automize the tedious measurement process is 
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proposed. Given that measurement of mass and projected area were the two difficult 

tasks, an efficient image processing algorithm was developed to minimize the human 

effort in these measurement. Moreover, Employing shallow and deep machine learning 

techniques, the Gaussian regression process and neural network, two models were built 

to predict the mass of a firebrand without physically weighing it. These models were also 

capable of predicting the mass or surface area of the firebrands where no water pan was 

laid down. A comprehensive uncertainty analysis for all the measurements will be 

presented.   

The structure of this chapter is as follows: 1. the experimental procedure is 

explained. 2. A discussion about the measurement process is presented, 3. The predictive 

models based on the Gaussian regression process and neural network are introduced, and 

4. The results are analyzed, including the prediction errors (between the measured and 

predicted vales). 

3.3. Experimental Procedure 

The experiment procedure was divided into three section: pre-test, test, and post-

test. Pre-test included material selection, experiment design, and sampling. Testing 

included details about running the tests and collecting the firebrands. Finally, details 

regarding the measurement process is covered in the post-test section. 

3.3.1. Material selection  

Several parameters were considered in the experimental design, including 

material type, geometry, layout of the pans and wind speed. In a set of experiments, 

several full-scale geometries with different materials were designed and tested under 

different environmental conditions. This study only include the corner assemblies at three 
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different wind speeds. The corner assemblies were built from typical residential 

construction materials. All the samples were conditioned to reach a nominal moisture 

level of 6%. The schematic and dimensions of the corner assemblies are plotted in Figure 

3. 1. The OSB sheathing was covered with 0.5 inch gypsum on the non-fire and 1.25 inch 

western red Cedar on the fire side. 

 

 
(a) 

 
(b) 

Figure 3-1. The Corner assembly (a) dimensions (b) during a test 
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3.3.2. Pan layout 

The layout of the water is an important role in post-test analysis. As mentioned 

earlier, it is not practical to cover the entire downstream with water pans and 

consequently, only a fraction of the generated firebrands can be collected in the water 

pans. This inevitably affects the randomness of the sample. More discussions will be 

presented subsequently about sampling. In previous studies, a rectangular area of 

approximately 2×15 meters downstream area was covered completely with water 

pans[24]. If a model can predict different characteristics of the firebrands at the uncovered 

locations, spacing out the water pans can help to collect a more diverse sample that helps 

maintain randomness. Considering the dimensions of the test chamber at the IBHS 

research center, a more scattered water pan pattern was designed for the experiments. The 

test chamber floor area and the pan layout pattern are shown in Figure 3. 2. Since the 

wake flow behind the wall assembly is strong, four column of pans were placed at closer 

distances to cover a wider range. After that, assuming a symmetrical distribution, only 

one side of the center line was covered with water pans in each row to be able to cover a 

longer range. In total, 46 water pans with dimensions of 0.65×0.45 meter were placed 

downstream of the wall assembly. 
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(a) Test chamber 

 
(b) Pan layout  

Figure 3-2. Test chamber and the playout of the pans 

3.3.3. Sampling 

Sampling has probably been the least focused area in pre-test section. During a 

firebrand production experiment, the number of firebrands in the complete sample (or the 

whole firebrand population) is often very large. This makes the complete collection and 

characterization of the entire firebrand population impractical or impossible. Thus, 
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statistical sampling should be used, i.e., collecting a subset of manageable size should be 

used to represent the whole firebrand population. This procedure must follow statistical 

principles for sampling, because statistical values will be calculated from the collected 

firebrands, and further statistical analyses as well as extrapolations from the collected 

firebrands to the whole population will be made. Ideally, a firebrand collection process 

should result in an unbiased representative group of firebrands. In practice, only 

firebrands larger than a certain size can be collected as, very small firebrands cannot be 

collected and measured. For example, in some early firebrand studies, expressions such 

as “too small to be counted” appeared in reports [13,14]. When water pans were used in 

some firebrand studies, the collection of minute firebrands is not possible [24]. In strict 

terms, firebrand collection was not a random sampling process. Therefore, the sampling 

of firebrands is a nonprobability sampling procedure because some firebrand (i.e., the 

very small ones) of the population will not be selected. This exclusion bias is a source of 

uncertainty and brings limits on how much information a firebrand sample can provide 

about the population, which makes it difficult to extrapolate the results from the collected 

firebrands to the whole population. On the other hand, these minute firebrands usually do 

not have sufficient heat energy to ignite a recipient fuel on which they land, and thus they 

are not a threat and a concern (or population of interest) in the firebrand phenomenon. 

Given the limitations, a common practice to address this issue is to use a so-called 

consecutive sampling (or total enumerative sampling) technique, e.g., to collect 

firebrands that are large enough until the required sample size is achieved. This leads to 

an important question: what is the appropriate sample size for a firebrand production 

experiment so that meaningful statistical extrapolation can be made? 
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The number of samples in previous full-scale studies varied between 50-500 

firebrands. If the purpose of sampling is to describe/estimate characteristics of the entire 

population, random sampling should be employed. Two types of random sampling were 

considered: simple and stratified. Stratified is often used when there are different groups 

in the population [57]. Since each of the experiments was considered a separate group, 

stratified sampling was chosen for this research. Choosing the conservative values for 

standard deviation of the sample equals 0.55 and 0.03 as the margin of error; therefore, 

the recommended sample size, based on statistical analysis, was 1300 [58]. To become 

more confident in this study, at least 1400 firebrands from each test were randomly 

chosen for further analysis. This study only considers the firebrands lofted from the corner 

assemblies, which were made of cedar/OSB at three different wind speeds. In total, 4415 

firebrands were analyzed (1400, 1520, and 1495 at idle, medium, and high wind speed, 

respectively). 

3.3.4. Test procedure  

Before starting a test, in each pan a mesh screen was put and then the pans were 

filled up with water. An arrow shaped burner was manufactured for these tests, which 

winds were 0.71 meters long. The burner was placed adjacent to the wall for each test and 

kept “on time” for 10 minutes. The wind tunnel and burners turned on at the same time 

where the samples were exposed to three different wind speeds namely 5.36 m/s (idle), 

11.17 m/s (medium) and, 17.88 m/s (high).  After 30 minutes the test was stopped and 

firebrands collected from the pans. The firebrands were placed inside an oven for 24 hours 

to reach zero moisture content level.  
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3.4. Firebrand Characterization  

Boxes of oven-dried firebrands were taken to the Flammability Lab at UNC-

Charlotte, where a group of undergraduates and graduate students carefully analyzed 

them. Each box contained numerous sealed bags, each bag belonging to a specific pan 

from a given test. Four parameters for each firebrand were evaluated, including traveling 

distance, charring level (charred or partially charred), mass, and projected area. The first 

three were fairly straight forward to measure and are grouped together in Section 3.1. The 

latter measurement, however, involved a more complicated process and is discussed 

separately. 

3.4.1. Traveling distance, charring level and mass of the firebrands 

Traveling distance was calculated by applying the Pythagorean Theorem over the 

pan row and pan column, where the origin was set on the burning wall assembly. See 

Figure 3.1 for details.  

Since firebrands containing unburned material have greater tendency to switch to 

re-flaming phase [54], and it seemed beneficial to determine the charring level of the 

firebrands. In this study, it was observed that firebrands may have different charring 

levels as depicted in Figure 3.3. We counted the firebrands whose surface was not 

completely charred (black). However, since quantifying the charring level is complicated 

and out of the focus of this study, it was included in the statistical analysis. One possible 

criteria to define the charring level could be the density of each firebrand. This would an 

interesting future research subject. 

Measuring mass were the most tedious parts of the measurement process. A digital 

balance (Sartorius H51) was used to weigh the firebrands. 
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Figure 3-3. Charred and partially charred firebrands (from left to right) 

3.4.2. Projected area 

To determine the projected area, the randomly chosen firebrands from a given bag 

were scattered on a white sheet. A photo was taken using a digital camera (Nikon 

D5600+18-55 VR kit lens), placed perpendicular to the sheet. Three light sources 

provided adequate lighting from three directions (120 degrees interval) on the sheet to 

avoid shadows. Limited detailed information is available in the literature about the 

calculation of the surface of a firebrand [38,56,39,20]. Typically, the camera is fixed on 

a tripod and positioned over the center of the sheet. However, the sheet may be tilted from 

the desired position, and this could cause delay in the measurement process if a user 

wanted to rotate and crop the image manually. Furthermore, placing each firebrand on 

the sheet added significant time to the measurement process compared to just scattering 

them. These manual processes increased the overall measurement procedure time, 

especially with larger sample sizes. As the goal was to minimize the labor in measuring 

the projected area of the firebrands, a MATLAB code was written utilizing the algorithm 

described below: 

The firebrands were placed on a white paper regarding to the bag they belonged 

to and then using a digital camera, positioned perpendicular to the sheet, an image was 
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taken. There was adequate lighting on the sheet to avoid making any shadows. The images 

were processed with MATLAB Image Analysis Toolbox. The input of the code is a noisy 

image Figure 3.4.a. Stretching the histogram of the colors of the image, in the first step, 

the contrast of the image is increased (Figure 3.4.b). Then considering the increase in the 

intensity of the colors the edge of the sheet is detected (Figure 3.4.c) and the equation of 

the line, edge of the sheet, is calculated. After that, the tilt angle of the sheet is calculated 

and then the image is rotated by the same angle (Figure 3.4.d). The image is then cropped 

from the borders (Figure 3.4.e) and the noise is removed (Figure 3.4.f). Finally the borders 

are cleaned (Figure 3.4.g), the holes in the boundaries are filled (Figure 3.4.h), and the 

objects are labeled (Figure 3.4.i). The number of the pixels of the objects is counted for 

each image and with respect to the ratio that is defined by the rectangle, the projected 

areas are transferred to an Excel Spread sheet.  

Using this method, counting and calculating the projected area of hundreds of 

firebrands can be accomplished in seconds. 

3.4.3. Results 

In a sample, the expected value of a parameter represents the most probable value. 

For firebrands, the mean value (of any parameter) is an indicator of the accumulation of 

the firebrands. In addition to accumulation, the ignition potential of a firebrand storm 

depends on individual large firebrands whose thermal inertia are high. These larger 

firebrands cause the probability distribution function (PDF) to be asymmetric, which is 

measured by the skewness.  
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(i) 

Figure 3-4. Detailed steps to calculate the projected area 
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Table 3.1 tabulates the skewness of each parameter, including the mean, standard 

deviation, and correlation values between each parameter. The closer the correlations are 

to unity, the stronger the parameters grow with each other. When the correlations are 

closer to minus one, an increase in one parameter results in a decrease in another. 

Obviously, zero correlation means no relation between the parameters exists. 

Table 3.1 also showed that the mean and median for all the quantities of interest 

increased with increasing wind speed. Moreover, the standard deviation of the parameters 

increased with wind speeds, which implies that the range of variation in the size and mass 

of the firebrands was larger at stronger winds. As observed in previous studies [59], there 

is a strong correlation between mass and projected area but the value of the other two 

correlations (mass and flying distance/projected area and flying distance) were 

moderately small.  

Table 3-1. Summary of the measured parameters 
Physical quantity Statistical 

quantity 
Idle 

(5.36 m/s) 
Medium Wind 

(11.17 m/s) 
High wind 
(17.88 m/s) 

 
Flying Distance 

 (m) 

Mean 2.71 3.2 5.07 
S. D. 3.72 3.24 3.88 

Skewness 0.47 0.52 0.27 
Median 1.11  1.99 3.20 

 
Projected Area 

(cm2) 

Mean 2.10 3.90 4.87 
S. D. 2.72 6.48 7.87 

Skewness 5.17 6.62 13.47 
Median 1.26 2.08 2.99 

 
Mass 
 (g) 

Mean 0.09 0.25 0.38 
S. D. 0.24 1.28 1.44 

Skewness 7.63 25.37 21.99 
Median 0.02 0.06 0.14 

Mass and Area Correlation 0.83 0.72 0.90 

Mass and Flying Distance 
Correlation 

-0.20 -0.11 -0.07 

Area and Flying Distance 
Correlation 

-0.24 -0.20 -0.10 
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3.4.4. Uncertainty in the measurement  

Uncertainty in the measurement of mass and traveling distance may be easily 

determined by looking at the catalog of the devices. In order to investigate the uncertainty 

of the projected area, different geometries have been plotted on a sheet with known pixel 

numbers and areas. As Photoshop plots with three significant digits (0.01 cm2 resolution), 

the calculations also presented three significant digits. Miscounting the pixels typically 

happens at the borders of an object, which depend on the user-defined binary image 

threshold. The threshold defines how sensitive the code should be when it converts 

different shades of gray in an RGB image to a binary one. In order to investigate the 

effects of thresholding, objects with tilted sides and known surface areas were plotted, 

see Figure 3.5a. The object in the top left corner represents the edges with 45 degrees. 

The middle rectangular represents edges with 0/90 angles. Moreover, in order to study 

the curvature, a circle was also plotted. The right bottom corner rectangular is to check 

the validity of the code. As depicted, setting the thresholding value (α) to 0.20 results in 

loosing numerous pixels in counting. Conversely, setting the thresholding value to 0.9 

leads to identifying any dark point on the sheet as an object. 

In order to find the proper range for thresholding value, alpha was increased from 

0.1 to 1 with 0.1 intervals. It was observed that the minimum error (difference between 

the column number 1 and 2-4) happens when 0.6 0.8α< < which numerical values are 

shown in Table 3.2. 
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(a) 
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Figure 3-5. Effects of thresholding; (a) original (b) low (c) medium (d) high 
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Figure 3.5. Continued  
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Table 3-2. Relative Error calculation 

Best 
Estimation 

α=0.3 α=0.6 α=0.8 Error 
α=0.3 

Error 
α=0.6 

Error 
α=0.8 

Max-
Min 

 

 

1.81677 1.71437 1.74800 1.74891 0.05636 0.03786 0.03735 0.0345  
1.81677 1.69634 1.73638 1.73760 0.06629 0.04425 0.04358 0.0413  
1.81677 1.74188 1.77428 1.77673 0.04122 0.02339 0.02204 0.0348  
1.81677 1.73394 1.76114 1.76847 0.04559 0.03062 0.02658 0.0345  
19.35480 19.35480 19.35480 19.35480 0.00000 0.00000 0.00000 0.0000  
0.77880 0.57676 0.60274 0.60396 0.25943 0.22607 0.22450 0.0272  
0.77880 0.57034 0.60304 0.60365 0.26767 0.22567 0.22489 0.0333  
0.77880 0.58256 0.60274 0.60335 0.25197 0.22607 0.22528 0.0208  
0.77880 0.57095 0.60274 0.60274 0.26688 0.22607 0.22607 0.0318  
12.90320 12.92887 12.92887 12.92887 0.00199 0.00199 0.00199 0.0000  
Average    0.1257 0.1042 0.1033 0.0258  

 

The average difference between the minimum and maximum proper thresholding 

values is 0.026 which may be chosen as the uncertainty for this method. In practice, 

however, there are several sources of uncertainties which can affect the uncertainty which 

are demonstrated in Figure 3.6. 

 
Figure 3-6. Fishbone diagram for uncertainty  

Figure 3.6 shows the major influential parameters of uncertainty in measuring the 

projected area of firebrands. For example, if the central points of the camera and the sheet 

were not aligned or there was inadequate light on the sheet, shadows may be created that 
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leads to increasing uncertainty. Moreover, blurry images can lead to miscounting the 

pixels which can be minimized by employing camera’s auto focus tool. Aligning the sheet 

center with the camera, providing adequate light, and using a remote shutter, the 

uncertainty sources can be minimized. 

In order to address the effect of thresholding, 27 real-world firebrands over a range 

of sizes were scattered on a sheet and the complete measurement process was performed 

at two different thresholding values similar to the third and fourth columns in Table 3.2. 

Table 3.3 tabulates the numerical results based on two thresholding values (0.6 and 0.8). 

The last column in this the difference between the two middle columns.  

The average of the differences of the last two columns (0.04 cm2) in Table 3.3 can 

be cosnidered as the uncertainty value in this measurement. However, the maximum 

value (0.11 cm2) is selected in order to be extremely conservative. 

The standard uncertainty, standard error, of the measurement can be calculated by 

dividing the standard deviation by the square root of the sample size. The standard 

uncertainty of the measured mass, travel distance, and projected area are equal to 0.0037 

grams, 0.05 meter, and 0.05 cm2, respectively. 

Table 3-3. Effects of thresholding in measurement  

Firebrand 
Index 

α=0.6 α=0.8 Difference  

1 1.7774 1.8033 0.0259 

2 1.4041 1.5001 0.0961 

3 0.6840 0.7430 0.0590 

4 0.5803 0.5937 0.0134 

5 1.1888 1.2415 0.0527 

6 0.4161 0.4438 0.0277 

7 0.9574 1.0128 0.0554 

8 0.8936 0.9302 0.0366 

9 1.3351 1.4228 0.0876 

10 0.9822 1.0324 0.0502 
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11 0.5187 0.5665 0.0478 

12 0.6789 0.7055 0.0265 

13 0.7376 0.7644 0.0267 

14 0.6787 0.7227 0.0440 

15 0.7063 0.8179 0.1116 

16 0.5943 0.6193 0.0250 

17 0.2311 0.2652 0.0341 

18 0.4419 0.4685 0.0267 

19 0.2911 0.3196 0.0285 

20 0.3136 0.3483 0.0347 

21 0.8540 0.8996 0.0456 

22 0.4611 0.4817 0.0206 

23 0.5152 0.5886 0.0734 

24 0.1578 0.1827 0.0250 

25 0.8899 0.9414 0.0515 

26 0.3452 0.3983 0.0531 

27 0.3137 0.3737 0.0600 

As already mentioned, skewness is an important parameter in studying PDF 

asymmetry. In order to assess the uncertainty in measuring the reported value of skewness 

(Table 1), the uncertainty budget first needs to be determined. Equation 1 shows that the 

uncertainty in skewness depends on the uncertainties of the mean and individual 

firebrands: 
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Where ( )iu x and ( )u x  have already been calculated as 0.11 and 0.05, respectively. 

Taking the partial derivative with respect to ix  and x  we have: 
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The numerical values for the derivations are: 
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Finally, the numerical value for the combined uncertainty for skewness reduces 

to 0.05 cm2. Employing a similar approach, the uncertainty in measuring the skewness 

for mass and traveling distance are 0.005 and 0.2, respectively.  

3.5. Mass Predictive Models 
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As explained earlier, among all measured values, projected area and mass were 

more time consuming to measure. However, employing the suggested technique 

discussed in this chapter, measuring the projected area has become a straightforward task. 

Measuring the mass, on the other hand, still remains a tedious task because each of the 

4415 firebrands must be weighed individually. This sparked the process to begin 

brainstorming how to make the weighing process less labor intensive. 

To shorten the time needed to weigh firebrands, machine learning (a type of 

artificial intelligence that enables the computer to predict or classify a set of data [60]) 

can be employed. There are two major categories in machine learning, shallow and deep 

learning [61,60,62,63] and each one contains several different algorithms in order to 

predict a variable. From the first category (shallow learning), the Gaussian process 

regression was selected for this study. This type of regression works well for continuous 

regressed values, such as mass [64,65]. This method provided the best estimated value 

for the prediction as well as a probabilistic range that defined the certainty about the 

predicted values. From the deep learning category, feed-forward neural network was 

selected. This technique works best when the sample size is relatively large and the 

relationship between the predictors (input) and response (output) can be defined with a 

mathematical relation. The mathematical formulation of the Gaussian process regression 

and neural network is beyond the scope of this paper; however, the method has been 

subsequently explained in a narrative and explanatory way. 

3.5.1. Gaussian regression process 

The idea of Gaussian process regression [66,67] is the extension the probability 

distribution of numbers to the probability distribution of functions. In this study four 
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different measurements were conducted for each firebrand, where the obtained data set 

can be analyzed in two different ways. The conventional way is to see all the points in 

four dimensional space. The alternative look is to consider them as the values of a 

function sampled at four points. In the first perspective, points can be chosen from a 

probability distribution which are typically determined by a mean vector and a covariance 

matrix. In the second analyzation, we can have a probability distribution of functions 

determined by mean and covariance functions. This covariance function depends on the 

Kernel function which describes the influence of each point to its neighbors.  

In order to predict the value of an input that the model has not yet seen before 

(validation subset), Gaussian regression built a multidimensional normal distribution with 

the seen data (training subset). In other words, in order to regress the n+1th value, an n 

dimensional normal distribution is built. Having conditioned (sliced) the multivariate 

PDF, the dimensions of the PDF reduces and ultimately the most probable value, as well 

as a probabilistic range for the prediction, can be estimated [65]. The probabilistic range 

depends on the covariance function between the inputs that the user provides for the 

algorithm. 

Before moving on to neural network section, it was necessary to address the 

effects of the training and validating subsets on the model. The training subset is used to 

build a model to predict the response value and the validation set was used to assess the 

accuracy of the build model based on the training data set. Typically 70% of the data is 

implemented to train the model and 30% is held out for the validation set [68]. The 

accuracy of the model, however, heavily depends on how the data is split and trained. 

Although one may have chosen the subset elements randomly, it would be more accurate 
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if the division process was repeated multiple times in a random way in order to minimize 

the dependency of the model on the subsets. This process is known as cross validation 

[69]. In this method, the data would randomly be divided into k sets. K-1 of the sets would 

be used to train and 1 will be saved for validation. This process continues until all the 

subsets have been employed for validation at least once [69]. The larger the k is, the more 

computational efforts we will have but the model will be more robust. 

3.5.2. Back-propagation neural networks 
 

Three tasks can be done with neural networks: clustering, classification and 

regression.  The latter one is the desired goal in this research. The major difference 

between regression and the other two applications is the number of neurons in the output 

layer. Unlike regression, in clustering and classification multiple neurons can exist in the 

output layer. 

The fundamental concept of neural networks is to identify the key characteristics 

of human brain and mimic these into a form of computer model. In the human’s brain, a 

large number of neurons are interconnected by electrical pathways. Information flows 

between the neurons in form of impulses, get processed and then flows out. This enables 

the brain to react based on previously observed patterns. The same idea is employed to 

create an artificial interconnected neural network. The impulses in a human brain are 

modeled with numerical values known as “weights”. Adjusting the weight values trains 

the network to achieve the desired outcome.  

The back-propagation algorithm consists of two major processes: forward and 

backward propagating. In forward propagation the network typically learns the pattern 
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and in backward propagation the errors are minimized employing an optimization 

technique.   

The neurons are arranged in three discrete layers: input layer, hidden layer and 

output layer. Each neuron is connected to all the other neurons in the previous layer. 

Information is passed through the neurons via a numerically weighted value. The larger 

the values are, the stronger the connections are between the neurons. The values of the 

neuron in the previous layer, multiplying by the associated weight between the neurons 

forms an input for the transfer function for that layer. The transfer functions are typically 

simple mathematical relations which determine the relationship between the inputs and 

the outputs. The output of the transfer function is the input for the next layer of neurons.  

When training starts, usually the weights are distributed randomly at first and outputs are 

calculated. Then, the errors between the estimated outputs and the training data are 

calculated. At this point, the role of back-propagation appears. The error goes back to the 

network and the optimization algorithm changes the initial numerical weights to minimize 

the error. This procedure keeps repeating until the minimum error achieves. Figure 3.7 

graphically depicts the process. As can be seen, the weights (arrows) and organization of 

the hidden layer keep changing until the difference between the regressed value and the 

desire one (training data set) is small.   

 



68 
 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3-7. Neural network algorithm  

Several parameters can be manipulated to minimize the network error such as 

weights, learning rates, and number of neurons. Thus, it would not be difficult to 
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minimize the error by overfitting the data. In this case, the predictive model may work 

perfectly for a seen set of data but is not applicable for a new data set. Thus, the optimizing 

algorithm needs to stop before reaching the over fitting status. 

In neural networks the entire data set is divided into three groups: training, 

validation and testing. The validation partition is extracted from data to avoid 

overtraining. During the training phase, the validation set is evaluated and once the 

validation error begins to increase the optimization algorithm stops. A numerical example 

will be explained in section 3.6.  

3.6. Regression Results 

In order to evaluate the influence of different inputs on predicting the mass of 

each firebrand, a decision tree model was built based on the inputs. The main idea behind 

the decision tree is that it considers the different attributes in the data and uses them to 

split the data into subsets [70]. The obtained split subsets are called “pure” if all the 

elements in that subset are homogenous and called “impure” vice versa. Once all the 

predictors have been split, the algorithm starts to split each subset in order to find the 

purest subset. Needless to say, clustering the data into an absolutely “pure” subsets rarely 

happens.  

The importance of the predictors in estimating the response value is measured by 

the magnitude of a fraction; the nominator is the purity of each branch and the 

denominator is the number of binary decisions to reach the final step in each subset. The 

larger the ratio, the more significant that parameter in predicting the response. 

 Figure 3.8 represents the important parameter in predicting the mass for each 

firebrand. As can be seen, projected area, distance, and wind speed are the three important 
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predictors. In order to reduce the complexity of the model, the three most important 

predictors mentioned above were chosen to build the model with.  Having employed 3/2 

Matérn kernel function and used a cross validation factor of five, (k=5), a Gaussian 

regression was built over the training set. 

 

 
Figure 3-8. Predictor Importance 

 

3.6.1. The Gaussian process regression results 

Figure 3.9 depicts the results of the prediction of the mass for idle, medium, and 

high wind speed experiments. In the figures, the red dots depict the measured mass, and 

the blue circles illustrate the values from the predictive model. The dotted line shows the 

maximum probabilistic range for what the mass of a firebrand could be based on a given 

surface area, traveling distance, and wind speed. This will be helpful to simulate the worst 

case scenario and monitor how large/heavy a firebrand can be at any desired distance or 

wind speed. 

Proj
ec

ted
_A

rea
Dist

an
ce

W
ind

_S
pe

ed

Parameters

0

0.5

1

1.5

2

2.5

Im
po

rta
nc

e 
Le

ve
l



71 
 

 
 

 
(Idle) 

 
(Medium wind) 

 
(High wind) 

Figure 3-9. Results of predictive model with the upper limit estimation 
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In order to visualize the relative error between the predicted and measured values, 

the validation subsets were plotted for each firebrand (Figure 3.10). Referring to the 

figures, the model was able to predict mass within 7 percent. It must be noted that 

although the individual values for mass have been predicted sufficiently accurate, the 

individual values do not play an important role when one intends to create a PDF based 

on the data. 

 
(Idle) 

 
(Medium wind) 

Figure 4.10. Individual error for each prediction 
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(High wind) 

Figure 4.10. Continued  
 

Regardless of the underlying PDF for a statistical model, all of them require the 

mean, standard deviation and correlations between the parameters. Bearing in mind that 

the statistical analysis suggested a sample size of 1400, the relative error of mean, 

standard deviation, and correlations versus the training size are plotted in Figure 3.11-13. 

In each Figure, 5 and 10 percent error bars were plotted with red dotted lines. What stood 

out in these figures was when setting the training size of 700, the model can predict the 

mean, standard deviation and correlations of the mass with less than 10 percent error. In 

other words, employing this model, the results that one may obtain by counting 700 

firebrands was less than 10 percent deviated from counting 1400 firebrands. Hence, 

employing this technique can significantly reduce the labor involved with the 

measurement process. 
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Figure 3-10. Variation predication of mean for mass with sample size 

 
Figure 3-11. Variation predication of standard deviation for mass with sample size 
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Figure 3-12. Variation predication of mass and area correlation with sample size 

 
Figure 3-13. Variation predication of mass and distance correlation with sample size 
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originates from overtraining the model. In any regression problem, if the complexity of 
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uncertainty for the prediction. However, the model will lose the ability to predict a 

response value for a new unseen point. In Figures 3.10 and 3.11, since the concept of the 

mean and standard deviation was to subtract each point from the mean value, the noise in 

the data set goes away. Conversely for correlations, Figures 3.12 and 3.13, when the 

training size gets larger than 900, the model losses its accuracy to predict the mass and 

then the relative error in calculating the correlations increases. It should be mentioned 

that in the tests, we have no other option but to take the center pans as the landing position 

of the firebrand. Thus the data is inevitably being manipulated. Considering this fact, the 

calculated correlation between the mass and flying distance may have less degree of 

accuracy comparing to other presented parameters. 

3.6.2. Neural network results 

The results of neural network prediction is depicted in Figure 3-14 for idle, 

medium and high wind. Ten hidden layers were used for this prediction. As can be seen, 

the model can predict the mass for more than 200 firebrand in each wind speed with the 

maximum error of 6%. 

In addition to the current models, a model was created using random data from 

different the wind speeds. In total, 4415 firebrands were collected at three different wind 

speed. Using 70% for training, 15% for validation and 15% for testing, it was observed 

that the mass for approximately 650 firebrands were estimated within 10% error. See 

Figure 3.15 for details). The histogram of the error is plotted in Figure 3.16 where the 

majority of the errors fall in the vicinity of zero. 
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Figure 3-14. Error of regression with neural network 
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Figure 3-15. Error of over-all regression with neural network  

 
Figure 3-16. Histogram of errors in figure 4.15 

In section 3.5.2, overfitting phenomenon in deep learning was addressed. Figure 

3-17 depicts this issue graphically. The network parameters, weights and biases, can be 

adjusted in order to derive the regression error o minimum. However, this may lead to 

lose the robustness of the model. One way to avoid this is to stop the iteration before the 

error in validation subset falls into its local minimum. After each iteration on the training 

set, the current network regresses the validation subset and the error is calculated. Once 

the error started to increase, the network stopped generalizing accurately, providing 

evidence of overfitting. As can be seen in Figure 3.17, at the 10th epoch best validation 
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performance was seen. An epoch describes the number of times that the algorithm sees 

the entire data within the three subsets. 

 
Figure 3-17. Over training threshold  

 
3.6.3. Comparing the methods and conclusion  

 The essence of Gaussian process regression and neural networks differ 

significantly. The former one is a parametric technique and the latter one is a non-

parametric one. In parametric methods, a probability distribution is considered as the 

underlying statistical model and based on that, a finite number of parameters are needed 

to completely define the PDF. The number of parameters to define a non-parametric 

model is unlimited. Thus, comparing the result of the two models may be unfair. Both 

methods are helpful in different scenarios which are discussed subsequently.  

The Gaussian process regression maximizes the marginal likelihood function 

which provides us with an uncertainty in the regression. In firebrand studies, this can be 

beneficial to determine the lethality of the larger/heavier firebrands-worst-case 

scenario- by considering the upper limit. Moreover, employing different kernels enables 

0 2 4 6 8 10 12 14 16

16 Epochs

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

M
ea

n 
Sq

ua
re

d 
Er

ro
r  

(m
se

)

Best Validation Performance is 0.081934 at epoch 10

Train

Validation

Test

Best



80 
 

 
 

the user to effortlessly improve the accuracy of the regression. This method involves with 

a few user defined parameters which helps the users to employ the whole algorithm as a 

black box. On the other hand, the Gaussian process loses its efficiency at larger 

dimensions; if the number of predictors exceed 10, the efficiency of this method decreases 

[72,73]. 

As previously discussed, neural network is a non-parametric technique. When 

the number of the hidden layers approaches infinity, this non-parametric technique 

becomes more similar to a parametric ones [74]. In neural network, most of the network 

parameters such as learning rate, biases, initial values, and weights need to be defined 

by the user which act as a double-edged sword. It can lead to a proper regression if they 

are tuned properly. On the other hand, failing to match these parameters can damage 

the regression heavily [75,76].  

In order to compare the results of shallow and deep learning, root mean square 

error (RSME) at each wind speed was compared and tabulated in Table 4.4. As can be 

seen, the errors associated with the Gaussian process regression are smaller than that of 

the neural network.  

Table 3-4. Root mean square error for both models 

Experiment Gaussian process 
regression 

Neural Network 

Idle 0.02 0.11 
Medium 0.04 0.22 

High 0.08 0.27 
All combined  0.08 0.36 
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CHAPTER 4: SURFACE TEMPERATURE OF SMOLDERING FIREBRANDS 
 

 

4.1. Abstract 

Accurately measuring the surface temperature of a smoldering firebrand has been 

challenging. Different techniques have been employed for this task, such as contact 

method using thermocouples and noncontact method using infrared cameras. The infrared 

(IR) devices, in theory, are more convenient because they allow the user to analyze a large 

area, compared to thermocouples, which only measure the contact point. In other words, 

one IR image contains information equal to hundreds of thermocouples. In practice, 

however, the IR devices requires the user to accurately set radiative emissivity, which can 

be challenging. In order to determine the proper range for emissivity, ASTM E1933 is 

used. One spot on the firebrand was monitored with thermocouples, pyrometer, and IR 

camera. Then, the emissivity was adjusted to minimize the difference between the three 

recordings. It was observed that the emissivity varied between 0.95 and 1 with 99% 

confidence. Setting the emissivity value to 0.97, the surface temperature of smoldering 

firebrands ranged from 100 to 1000 degrees C depending on the wind speed. Also, it was 

observed that only 0.5 of the surface of the firebrands was hotter than 300 degreed C 

when smoldering started. In the presence of wind, this value (0.5) gradually decreases to 

0.25; without wind, it rapidly dropped to 0.1.  

4.2. Introduction 

Surface temperature is understood to be one of the criteria that can result in the 

ignition a solid [40,77,78]. Two definitions have been assigned to the term “ignition 

temperature”: (1) the temperature of the air surrounding the specimen, and (2) the surface 
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temperature of the sample just before ignition [40]. The latter definition is generally more 

helpful since it is more likely that this temperature does not vary markedly for a material. 

However, measuring a surface temperature is more difficult than measuring the 

temperature of the surroundings air [40]. Different techniques have been introduced to 

measure the temperature of a material, where each one employs a different physical 

principle. These principals are typically (1) expansion and contraction of a substance due 

to temperature change, (2) change in electrical resistance of a substance according to the 

temperature, and (3) employ the relation between temperature and heat radiation emitted 

from a body [79]. 

Typically, in order to take advantage of the first two principles, the instrument 

must be in contact with the medium whose temperature is to be measured. Gas/liquid in 

glass thermometers, thermocouples, and resistance temperature devices are common 

invasive instruments. Employing invasive instrument may cause a disturbance in the 

measurement. When the cold probe comes in contact with the target, it acts like a heat 

sink and drains away some thermal energy [80]. The resulting error is a function of the 

relative specific heat capacity of the thermocouple and target as well as the amount of 

heat being generated/absorbed in the target. If the thermal inertia of the probe and the 

target are in the same order, the result of the measurement is not reliable. In addition to 

that, a connection problem is often a source of error. Generally, thermocouples are the 

best if the target medium is a liquid or gas [81]. 

The noninvasive techniques work on the principal that all surfaces above absolute 

zero temperature emit a fraction of black body radiation and this amount is proportional 

to the temperature of the surface. Pyrometers and infrared cameras are typical devices 
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that work on this principle. They are equipped with a sensor that transforms the incident 

IR radiation to an electrical signal, and with accurate calibration, the temperature of the 

target surface can be precisely measured. Theoretically, these methods are very accurate, 

but in practice there can be serious obstacles [82]. One of the most important ones is 

calculating the emissivity. 

The rate of energy that leaves a surface, radiosity, is a combination of emitted 

power and the reflected energy from the surface (radiometry vs thermography). In other 

words, the surrounding radiation sources influence the amount of radiation that leaves the 

target surface. Hence, in order to relate the temperature and the emitted energy, one must 

know what portion of the total radiosity is the reflection of energy from the surrounding 

and how much is emitted from the surface; this portion is determined by the emissivity 

of a material.  

Both invasive and noninvasive techniques have been employed to measure the 

surface temperature of burning wood. Evans [83] measured the surface temperature of 

the cross section of burning cylinders, the dimensions of which were 2.7 cm in diameters 

and 11.4 in height with a thermocouple, pyrometer, and an IR camera. The thermocouples 

were implanted at the bottom of the cylinder to measure the internal temperature of the 

cylinder as a function of the distance to the burning surface. At the same time, a 

disappearing filament type thermal camera and an infrared pyrometers were aimed at the 

surface to measure the surface temperature. The study reported that the surface 

temperature varied nonlinearly in the range of 750 to 1100 C as a function of main stream 

wind velocity and the emissivity at 43 m/s wind speed and 1055 C was determind to be 

0.85. 
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Kansa et al. [84], developed a one dimensional mathematical model of charring 

pyrolysis that, considered permeable structural effects. He reported the best regression 

for charring and virgin material were 0.94 and 0.64, respectively. In order to investigate 

the radiative ignition mechanism of PMMA and red oak, Kashiwagi conducted two 

separate studies and reported that for wavelengths greater than 2 micro meters, the 

emissivity was 0.94. Bennini et al. [85] evaluated the behavior of wood pallets under an 

intense thermal flux and reported that the best estimate for charring wood was 0.94.  

Urbas and Parker [86] compared the recorded values of pyrometer and 

thermocouples in order to obtain the emissivity of a burning Douglas fir specimen 

exposed to a heat flux using a  the cone calorimeter. The IR pyrometer wavelength band 

was 8-12 micrometer and was located 750 mm from the surface. In order to have an 

appropriate contact between the thermocouples and the specimen, two small diameter 

holes were drilled through the specimen and two 0.127 mm diameter chromel-alumel 

thermocouples covered with Teflon tubes were passed through the holes in a way that the 

junction of the thermocouple was located on the specimen. The results showed that the 

values of the temperature of the thermocouple and pyrometer were in good agreement 

when the emissivity was set to unity. In a similar study [87], same researchers tested 10 

different materials in a vertical cone under 30 and 50 kW/m2 heat flux. Again it was 

reported that the emissivity should be set to unity.  

The only study which focused on the temperature of the glowing firebrands was 

Manzello et al. [88]. The temperature of the glowing 10 mm diameter with the length of 

76 mm Ponderosa pine firebrands were measured at two wind speeds. It is reported that 

the higher wind speed raised the temperature by almost 150 c and the average temperature 
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of the studied firebrands were in the range of 650-700 c in the air flow of 2.4 m/s and 

500-600 at the airflow of 1.3. Employing a thermocouple, the temperature recordings 

with an IR camera were validated and it was reported that the emissivity on the camera 

for the firebrands should be set to 0.6-0.7 to have a good agreement with the thermocouple 

data.  Table 4.1 summarizes the key points in each study.  

Table 4-1. Emissivity values 
Experiment Details Emissivity 
Evans and Emmons (1976) Cylinders of American basswood 0.85 

Kansa, Perlee & Chaiken (1977) Mathematical model 0.94 

Kashiwagi (1979) Red oak(horizontal) 0.95 

Kashiwagi (1981) Red oak (vertical) 0.95 

Bennini,Castillo&Traverse (1991) Pressed Poplar wood 0.93 

Urbas and Parker (1993) Douglas fir under the Cone 1 

Urbas and Parker (2004) 10 different woods in vertical Cone 1 
Manzello, Park and Cleary (2009) Ponderosa pine firebrands 0.6 

 

In addition to the importance of that the surface temperature in igniting a solid, it 

can also affect the generation of firebrands. For example, it is understood that it affects 

the heat release rate during a fire [83]. Heat release rate acts as the driving force of a fire; 

higher heat release rate equals to faster oxidation and a more intense fire. [89]. 

Strengthening the convection column, the pressure underneath the roof boosts and leads 

to the generation of more firebrands with larger size and mass [18]. Also, mechanical 

properties decrease with temperature, which is more obvious for live woods with higher 

moisture content [90]. Due to de-polymerization reactions at temperatures greater than 

100 C, chemical bonds begin to break [91] and the material gradually loses its strength. 

Under external forces such as wind pressure, the convective force of the fire etc. it is 

possible that pieces of the burning material separate from the large body and become 

lofted.  
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As explained, only one study has specifically focused on measuring the surface 

temperature of a firebrand in which the emissivity value was assumed to be in the range 

of 0.6-0.7 which is not in agreement with other reported values. Thus, there is a certain 

need to measure the emissivity value of a smoldering firebrand before determining the 

temperature distribution over the surface. 

4.3. Emissivity Measurement 

 As previously discussed, the emissivity of the burning wood is a controversial 

issue, which is an important parameter when temperature is recorded using optical 

instruments. There are tables which present the emissivity values of different materials. 

However, the emissivity of many materials are still unknown. Emissivity can be defined 

as the ratio of the emitted energy from a gray body divided by that from a black body and 

is always less than unity. A black body is a body that absorbs all incident electromagnetic 

radiation regardless of the wavelength and the incident angle.  A gray body, is one that 

absorbs some of the radiation. Six parameters have been recognized that affect the value 

of emissivity. The material is considered the most important [82] . The material can be 

categorized either in non-metal or metal. Other parameters are surface structure, viewing 

angle, geometry, wavelength and temperature.  All of these parameters are sources of 

uncertainty and affect the measurement process which will be discussed later.  

4.3.1. Experimental procedure 

Among different techniques that could be used to measure the emissivity, namely 

tape, paint, hole drilling, and contact thermometer, the last one was chosen for this 

research. The temperature of a same point was recorded via two different techniques; a 

pyrometer and three thermocouples. Adjusting the emissivity values on the pyrometer, 
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the difference between that and the average of the thermocouple recordings was 

minimized. The temperature varied under the following function with emissivity 

n n n
amb amb Pyrn

obj

U CT C T CT
T

C
ε
ε

− + +
=  

(4.1) 

where U is the detector signal, T is temperature, and obj., amb., and Pyr represent object, 

ambient and detector respectively. C is the device specific constant (efficiency) and 

epsilon is the emissivity. The constant n depends on the wavelengths at which the device 

operates in between.  Since the IR thermometers do not cover the whole wavelength 

range, n varies between 2 and 3 for long wavelengths and between 15 and 17 for short 

ones [92]. 

The difficulty in employing the pyrometers was to keep the junction in contact 

with the surface. During the mass loss, the volume shrank and thus, the connections got 

loose. Reduction in volume was a non-uniform phenomena and the surface height varied 

in a chaotic order. Moreover, some fissures might generate in the body, which might lead 

to improper contact. In order to address this problem, a returning mechanism had been 

designed to push the tip of the thermocouple downward on the surface; when the surface 

shrunk, the mechanism exerted a force on the thermocouple to push it towards the body 

to compensate the burned volume. In this way, we could guarantee that the junction is 

always in contact with the body. The thermocouples were carefully monitored to touch 

the surface for the entire testing period. Numerous experiments were abandoned due to 

sudden cracks in the material. Three Omega thermocouples (diameter 0.125 mm and 

response time 1.0 second) were used to be able to calculate the uncertainty more 

accurately and to check the consistency the results. At the same time, a pyrometer 

(Heitronics KT 19.81 II) which emissivity was set to unity and an IR camera were focused 
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on the same spot as where the thermocouples were located, and the temperature values 

were recorded for four minutes. The schematic of the experimental setup is depicted in 

figure 4.2. A fan was installed 1 meter away from the setup to generate wind (2 m/s) for 

some periods during the experiment. It was hypothesized that the temperature would 

increase with wind and we wanted to measure a wide range of temperature. 

 

Figure 4-1. Close-up of a measuring process 

 

Figure 4-2. Schematic of experimental setup 

4.3.2. Analysis of the results 

Figure 4.3 and 4.4 show the recorded values of the thermocouples and pyrometer 

readings and the difference in readings. A total of 15 experiments were conducted to 
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ensure the repeatability of this experimental setup and procedure. The triangle symbol 

shows the mean values of the three thermocouples and the red bars are the standard 

deviation of the three values. As can be seen, there is an acceptable agreement between 

the instruments which suggest that the emissivity can be approximately assumed to be 

one.  However, only a blackbody radiates all the incoming energy and thus more 

investigations need to be conducted. 

The expected value of any variable can be obtained by integrating the associated 

PDF. In order to build a PDF, the values of temperature as a function of emissivity must  

 

Figure 4-3.  Surface temperatures of a smoldering firebrands versus time 
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Figure 4-4. Surface temperatures of a smoldering firebrand versus time 

be calculated. The FLIR IR camera’s software can provide us with that information. The 

software uses the IR image taken with the camera (FLIR T620) as an input and generates 

new temperature values for any spot on the image given the user varied the emissivity. 

Figure 4.5 and 4.6 show the results. 

 

Figure 4-5. Spot temperatures of a smoldering firebrands versus time 
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Figure 4-6. Spot temperatures on a smoldering firebrand versus time 

Since the emissivity values were decreased by 0.1 intervals, the estimated value 

can be obtained by a summation as follows 

(i) ( ( (i)))
(( ( (i)))

PDF T
PDF T

ε ε
ε

ε
= ∑
∑

 
(4.2) 

where i is the number of data points. At each point (15 seconds interval), a normal 

distribution based, on the mean and standard deviation values of the three thermocouple 

recordings, was constructed. This PDF is a function of temperature. Employing equation 

4.1, the value of temperature at each emissivity was calculated and plugged into equation 

4.2. Hence, 10 emissivity values have been generated with the mean vale of 0.98 and 

standard deviation of 0.015. Performing a 99% confidence interval, the emissivity values 

for the smoldering firebrands were determined to be between 0.95 and 1.00. 

It should be noted that both the infrared camera and the pyrometer work in the 

long infrared band; the IR camera spectral range is 7.8-14 micrometers and the second 

one’s is 8-12 micrometers. Thus, the water vapor and CO2 emissions do not interfere with 

the measurement [87].  
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4.4. Firebrand Temperature Distribution 

Squared OSB samples were cut and placed in a small scale firebrand generator. 

Each sample was allowed to burn until it flamed out. Considering the results of the 

experiments at IBHS (Table 3-1), the maximum of the average projected areas was 4.87 

cm2; hence, the firebrands were generated in a way that their initial projected area was 

similar. As can be seen in Figure 4-7, each side of the firebrand was approximately 23 

millimeters after the flameout, which results in almost 5 cm2 projected area. 

 

Figure 4-7. Dimensions of the firebrand after flame out 

4.4.1. Experiment Procedure  

A T620 FLIR thermal camera was used to measure the surface temperature of 

smoldering firebrands. The camera has two temperature calibration ranges: 100-650c and 

300-2000c that are useful for this experiment. The lower range was chosen for the no 

wind tests and the upper range was chosen for the 3 and 6 meters per second tests. The 

smoldering firebrands were then placed on a wire bench which was placed 

perpendicularly 1 meter beneath the camera. Setting the emissivity to 0.97, every 10 

second a frame was recorded until either the firebrand was cold or scattered in the no-

wind and wind conditions, respectively. Three samples for each experiment were used. 

Figure 4-8 shows a recorded frame at 6 m/s wind condition.  
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Figure 4-8. A sample recorded from 6 m/s wind tests 
4.3.2. Results  

 Using the FLIR research IR software, a bounding box around the firebrand at each 

frame was defined and then the temperature values within that box was extracted and 

saved in a .csv file. During the burning process, firebrands took on an irregular shape; 

therefore, in each bounding box, several points belong to the background existed. Since 

the critical surface temperature for wood is 250-300 C, a Matlab code was developed to 

eliminate any pixel where the temperature was below 300 C. Then, the average 

temperature of the points on the firebrand (temperature was greater than 300c) at each 

time was determined and plotted in Figure 4-9. This temperature was chosen since it was 

reported as the ignition temperature of wood [93]. The error bars represent one standard 

deviation of three measurements made at each time.  
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Figure 4-9. Average temperature of the points with T>300 C 

Results showed that higher wind resulted in higher surface temperature. 

Moreover, the average surface temperature in the presence of wind stays almost steady 

through the test, but without wind, the temperature decreased by 200 degrees in 400 

second. The maximum temperature that a firebrand can reach is also an important quantity 

in assessing the lethality of firebrands which is depicted in Figure 4-10. It can be seen 

that at 6 m/s wind, the firebrands could reach 1000 c, and mostly fluctuating around 900 

C. What is striking about this figure is that medium wind speed was probably the most 

hazardous one; at the highest wind speed, firebrands rapidly lost mass and burned out in 

less than 300 seconds. At the lowest wind speed, the temperature drop was dramatic 

which reduced the possible threat. However, at medium wind, the firebrands could 

steadily burn at 800 degrees for almost 600 seconds which would generate the maximum 

heat flux (the area beneath each curve).  
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Figure 4-10. Maximum temperature of smoldering firebrands 

Figure 4.11 depicts the surface fraction of the firebrands for which temperature is 

greater than 300 C. It is obvious that for all three wind speeds, at the beginning, only half of the 

surface is hotter than 300 C. For no wind condition this fraction drops rapidly, conversely, for 3 

and 6 m/s wind speeds, the dangerous fraction decreased to almost 0.2. Again, the medium wind 

speed can be the most hazardous.  

 
Figure 4-11. The surface fraction with temperature greater than 300C
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CHAPTER 5: SUMMARY AND CONCLUSION 
 

The firebrand phenomenon is known as the only mechanism that can initiate a fire 

at distances further than 60 meters from the original fire. They are typically smoldering 

pieces of wood carried by wing at their terminal velocity. The lifetime of a firebrand is 

divided into three phases: generation, transportation and ignition of the fuel bed; among 

all, the former one is the least explored area. Depending on the original fire properties 

and the environmental conditions, firebrands may have different levels of lethality. 

Surface temperature, mass, projected area, and traveling distance are considered 

influential parameters in assessing the ignition potential of the firebrands. 

5.1. Contributions  

In this research, in order to characterize the firebrands generated from structural 

fuels, numerous tests have been conducted at IBHS. Various building assemblies, such 

as corner and wall assemblies and fences, were ignited in a wind tunnel. Forty two water 

pans were places downstream of the wind to catch the firebrands. Quenching the 

firebrands preserves their shape and mass. This information can be extracted later to 

assess the lethality of the firebrands and theoretical modeling. 

After completing the tests, the firebrands were collected and placed in an oven 

maintain at 104 C to reduce their moisture content to zero. Then, the mentioned quantities 

of interest (traveling distance, mass and projected area) were measured. Traveling 

distance can be determined by the position of the pans in which the firebrands land. Mass 

and projected area, however, are more challenging to measure. For mass, each firebrand 

must be weighed, and for projected area an image analysis technique can be used. This 

procedure has been almost the same for the tests conducted in the past 20 years. However, 
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in some tests, instead of using structural components in a wind tunnel, an entire building 

was set on fire outside in a real-world condition. 

5.2. Novel Objectives and Related Tasks 

In the past two decades, the number of firebrands collected from the pans for the 

post-test processing in structural experiments ranged between 50 and 500. Such small 

sample sizes may be the result of tediousness of the measurement process. The vital 

question that may arise is how many firebrands are needed to sufficiently quantify the 

characteristics of entire population of the firebrands in an experiment? If a statistical test 

suggests a sample size significantly larger than 500, is the current measurement procedure 

efficient enough? Moreover, it is not practical to cover the entire space downstream of 

the wind with water pans; thus, no information can be extracted from the uncovered 

locations. The second issue that comes to the author’s mind is to find a solution for this 

problem.  

In order to fill the knowledge gap, the following objectives were established for 

this research project: 

(1) Perform a thorough statistical analysis on the available data in the literature to 

estimate the proper probability density functions 

(2) Generate firebrands from structural fuels and collect statistically sufficient sample 

of firebrands for each test 

(3) Improve the efficiency of the tedious measurement process, employing machine 

learning and image processing techniques. 

(4) Measure the surface temperature of smoldering firebrands in different conditions 
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To achieve the first objective, the following tasks were performed: (1) All the raw 

data from the experiments conducted in the past 50 year was collected. (2) The Bayesian 

approach was employed to optimize the likelihood function. (3) The most likely 

probability density functions was suggested, based on the lowest BIC scores. The details 

about these tasks are presented in chapter two. 

The second and third goals were discussed in chapter four because they were closely 

related. To accomplish the third goal: (1) numerous tests were conducted to generate 

firebrands from structural fuels. Different building components were set on fire, and the 

firebrands were collected downstream. (2) Conducting a statistical analysis, the minimum 

suggested sample size, with a 95% confidence level and a 0.03 margin of error, was 1300. 

To be even more conservative, for each test at least 1400 firebrands were collected from 

the pans for further analysis. Since the 40 tests were conducted, the total sample size was 

56,000 firebrands which required a significant improvement in the measurement process. 

In addition, a detailed measurement uncertainty analysis was performed, using both GUM 

types A and B. 

Measuring the mass and projected area were the two challenging tasks, the fourth goal 

was satisfied by proposing an automated measurement framework. Accordingly, (1) An 

efficient image processing algorithm was proposed to minimize the human effort in this 

measurement. Scattering tens of firebrands on a white sheet and taking a photo were the 

only tasks performed by an operator. The code increased the contrast and detected the 

edges based on the change in the color intensity at the first step. Then, the debris beyond 

the borders were cropped out and the noises on the sheet were removed. Finally, the 

possible holes on the embers were filled and the firebrands were labeled. (2) In order to 



99 
 

 
 

facilitate the weighing process, two machine learning algorithms were employed; the 

Gaussian process regression as a parametric approach and the back propagating neural 

network as a non-parametric method. Two predictive models were created, which could 

estimate any quantity of the firebrands, given the other parameters. For example, in 

providing the traveling distance, surface area, and wind speed, the model could predict 

the mass within 5% error without physically weighing them. The parametric model, was 

able to provide a confidence interval for the predicted values. By employing the models, 

one was able to extract different characteristics of the firebrands even at the uncovered 

locations. 

For the fourth goal, a noninvasive temperature measurement technique was 

employed, which required a precise measurement of radiation emissivity. Accordingly, 

(1) A returning mechanism was designed that guaranteed a proper contact between the 

thermocouples’ tip and the surface of a smoldering firebrand. (2) At the same time, the 

temperature variation of the contact point was monitored with an infrared camera. 

Adjusting the emissivity on the camera, the difference between the average of 

thermocouples’ recordings and that from thermal the camera was minimized. (3) A 

confidence interval analysis was performed on the result to find the emissivity. (4) The 

surface temperature of the firebrands were measured at different wind speeds. Chapter 

three discusses the related materials. 

5.3. Summary of the Results 

 The results showed that the bivariate truncated normal and bivariate lognormal 

distributions were the best candidates, among 18 analyzed probability density functions 

evaluated. Mass and projected area were strongly correlated, but none of them were 
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heavily correlated with the traveling distance. In addition, the emissivity of the firebrands 

was observed to be between 0.95 and 1.00 with a 99% confidence. Considering that 

emissivity equals 0.97, the surface temperature of the firebrands varied between 100 and 

1000 C, depending on the wind speed. 

In order to have a sample that properly represents the characteristics of the population, 

the statistical analysis suggested a sample size of at least 1300; however, a sample size of 

1400 was chosen to be more conservative.  Two regression models (one parametric and 

one non-parametric) were created and then trained with 70% of the data. The robustness 

of the models were assessed by comparing the measurement results and the prediction 

values for the remaining 30%. It was observed that the mass for 1300 firebrands can be 

predicted within a 5% error without physically weighing them. Employing this predictive 

model, the sample size could be reduced by 30% (900 instead of 1400 firebrands). Also, 

mean, standard deviation, and correlation between the parameters could be predicted 

within 10% error. 

5.4. Future Research  

This research has raised several questions that need of further investigation, which 

may start by defining a firebrand explicitly. At the vicinity of the fire, direct flame contact 

and radiation are the dominant mechanisms that spread a fire. Firebrands are worthy of 

study because they are the only mechanism that can result in ignition of fuel beds at 

further distances; thus, traveling distance should be considered in defying the firebrands. 

Moreover, defining new influential parameters in travel distance and ignition potential of 

firebrands such as shape and charring level of embers will helpful to estimate the ignition 

potential. 
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In addition, recording the experiments with high speed and thermal cameras and then 

processing the videos, will be extremely insightful. Employing object tracking 

techniques, one may be able to accurately detect the flying path and traveling distance as 

well as the surface temperature of the firebrands. Moreover, the generation flux, burning 

out rate, and temperature variation can be analyzed in real time.  

Also, employing a machine learning classification algorithm, one may categorize the 

firebrands based on key differences in size, mass, traveling distance, or linear 

combinations of them. This can be beneficial in classifying the hazard that firebrands with 

different characteristics create.
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