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ABSTRACT 

 

 

SANDIPKUMAR ROYADHIKARI. Comparison of Taylor’s theory of spherical 

blast to a known numerical result. (Under the direction of DR. RUSSELL G. 

KEANINI) 

 

 

 

   Taylor’s blast wave theory was the first of its kind and focused on the dynamics and 

thermodynamics of spherical blast waves. Taylor’s model was stated as a similarity 

solution and determined the time-dependent blast radius, as well as the radially- and 

temporarily-varying pressure, density and velocity fields behind the blast wave.  Due 

to the stiffness of the associated governing, coupled differential equations, a special 

geometric projection method must be used to integrate the equations. The theoretical 

solution is compared against a rare and recently reported numerical solution for near-

ground, hemispherical blast wave propagation. While the theoretical solution for the 

time varying blast wave pressure jump is qualitatively quite similar to the reported 

numerical solution, significant quantitative differences are found.  These differences 

are attributed to: i) poorly defined model conditions and definitions in the numerical 

solution, and ii) differences in the blast waves modeled, spherical versus 

hemispherical.  It is argued that the present theoretical solution is valid since: 1) 

simple order of magnitude arguments indicate that predicted blast wave pressure 

ratios are of the correct magnitude, and 2) a numerical validation test using a simpler 

spherical blast wave model predicts results that are essentially identical to those 

obtained by the full Taylor model.  
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CHAPTER1: INTRODUCTION 

 

 
1.1 Introduction 

 

     Merriam Webster dictionary says a blast is “the sudden, loud, and release of 

energy that happens when something (such as a bomb) breaks apart in a way that 

sends parts flying outward”.  In a military combat the heat and the shock wave 

generated by a blast is propagated all the direction which destroy or damage the 

enemy vehicle, personnel. But the advent terrorism of 20
th

 and 21
st
 century changed 

the world, especially blast in Twin tower in New York, London, Madrid or Beslan 

bomb blast. They try to make more injury with less effort. It has changed our vision to 

study the blast. 

     In this study a known numerical solution is compared with the Taylor’s blast wave 

theory. The numerical solution had studied the free blast, blast reflection, but here 

only free standing wave is studied. Taylor has considered the blast phenomenon is 

only depending on the energy released and the density of the ambient. The numerical 

solution has studied the primary shock wave released by the blast along with the 

secondary and tertiary shock waves, but for simplicity purpose here only primary 

shock wave is studied. Usually the initial blast is considered in two different ways, 

one is point blast in which the blast is considered as an infinitesimally small point and 

the other is isothermal blast in which the blast is considered as a high pressure sphere 

with certain radius.  The numerical result which is taken as a reference is considered 

as an isothermal sphere.
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   In Taylor’s theorem the radius of the blast wave is proportional to the total energy 

released by the blast and inversely proportional to the ambient density and they are 

determined by the similarity solution process. Now by Hugonoit shock relationship 

the pressure, velocity and density along the shockwave was determined. Now it is also 

to be remembered that the radius of the shock changes with the time, because it is 

propagates all the direction with the progress of time.  

  The numerical solution has determined the solution of a particular location and other 

parameters are calculated behind the shock. Here also the same location is taken as 

the reference and calculated the parameters behind the shock. 

1.2 Literature Review 

     A bunch of literature had been studied while doing this research work among them 

the most significant are 1. Taylor’s blast wave [1] and the other is 2. Numerical study 

of spherical blast-wave propagation and reflection by Liang, Wang and Chen [2]. 

     G.I. Taylor work on blast wave theory is a theoretical approach. First he supposed 

that explosion can be idealized as the sudden release of an amount of energy 

concentrated at a point, and that is only dimensional parameter introduced by the 

explosion. Second it is supposed that the resulting disturbance will be so strong that 

the initial pressure and speed of the ambient air are negligible compared with the 

pressure and velocities produced in the disturbed flow. Then the only dimensional 

parameter to the ambient gas is the density. Then he did the non-dimensional 

calculation and found that the blast radius at any point of time after the blast is 

proportional to the energy released by the blast, inversely proportional to the density 

of the medium that is air and also proportional to the time. This is taken as the main 

reference to the study of the problem here. Other than Taylor, people like Vön 
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Neumann and Leonard Sedov had independently worked and found the same result. 

Then the pressure, density and velocity are calculated numerically. 

In the Liang et. al[2] paper they consider the blast to be an isothermal sphere. In This 

paper the authors used numerical method to capture the shock and they calculated the 

primary, secondary and tertiary shock in two different locations calculated the 

pressure ration. On those particular location the pressure is increased in a initially then 

decreased, then the secondary and tertiary shock also increased the pressure ratio 

again. 

     In Friedlander’s empirical relationship the pressure is increased rapidly when the 

shock passed to a particular location then gradually reduced to the atmospheric 

pressure then even in gone below the ambient pressure then once again increased to 

the atmospheric pressure. 

     Tai et. al.[3] worked on blast wave interaction and reflection around close ended 

and open ended bomb shell. The total Variation Diminishing Finite Volume method 

was employed to solve the three Euler’s equation. The reflected shock wave patterns 

transit from regular reflection to Mach reflection in both bomb shelters under an 

unsteady situation. For regular reflection, the incident shock and reflected shock wave 

and the Mach stem meet is formed. The incident, the reflected shock wave and the 

Mach stem meet at the triple point. Shi et. al.[4] simulated the blast wave interaction 

with a standalone structural column. Parametric studies included the scaled distance 

of the blast, column stiffness, and column dimension and geometry. The formula to 

predict the reflected pressure, and impulse on the front and on the rear surface of the 

columns with different dimensions and geometry were derived. Yang et al [5] 

numerically studied the shock wave reflection patterns generated by a blast wave 

impinging on a circular cylinder. The transition from regular to Mach reflection, 
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trajectory of the triple point, and the complex shock-on-shock interaction were 

discussed. Blast wave propagation and reflection has also been investigated 

experimentally. Takayama and Sekiquchi[6] studied the interaction of a spherical 

shock wave into free space in a conventional shock tube. When a spherical shock 

wave encounters a planar or conical wall, a transition from regular to Mach reflection 

takes place with the incident angle larger than the critical transition angle. Dewey and 

McMillin[7] used high speed photography to investigate the blast wave interaction 

with ideal and real surfaces. It was observed that a smooth surface induces a stronger 

Mach stem. 

     Blast wave reflection from plates had been Liang et al[2] studied the transition 

behavior of an unsteady cylindrical blast wave reflection from a flat plate. For the first 

outward-moving shock wave which is followed by expansion waves; the type of 

reflection transits from the regular reflection to Mach reflection. However, for the 

secondary shock-wave which is induced by expansion waves, the type of reflection 

remains the regular reflection. Colella et al[8] numerically studied the two 

dimensional axisymmetric reflection of a sphereical wave from a plate, which creates 

complex flow structures on multiple length scales. 

     Blast wave reflection from wedge has also been investigated, both numerically and 

experimentally. Olejniczak et al[9] numerically studied the steady inviscid shock 

interactions on the double-wedge geometries. The effects of varying second angle and 

Mach number on the phenomena of interaction were discussed. Five interaction types 

and the transition criteria between the various interactions, the transition criteria 

between the various interactions area identified. Ben-dor[10] simulated the reflection 

process of a planar shock wave over concave and convex double wedges. The 

pressure distributions along the two surfaces of the double wedge were investigated, 
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and the points along the double wedges that are subjected to the highest and lowest 

pressures were revealed. Igra et[11] a numerically studied the reflection process of a 

travelling wave from wedge was studied for different dust mass loading and different 

dust particle diameters. It was shown that the loading and dust particle diameter affect 

the wave reflection patterns. It was that the dust presence affects the pressure on the 

wedge surface significantly. Igra et al[12]investigated blast wave reflection from 

wedges experimentally and numerically. In the numerical study, the two-dimensional 

Euler equations were solved using a Godonuv based, second order accurate scheme. A 

shock tube equipped with a very short driver was employed for experiments.  

1.3 Spherical Blast wave Problem 

     The problem of interest is an isothermal blast where the initial blast is consider as a 

sphere where the pressure ratio 70 to the ambient pressure and the density is 

considered as 5 to the atmospheric density. The atmospheric considered as a 1 atm, 

the density and temperature and pressured as 1.225 kg/m
3
 and 288.15 K respectively. 

The initial radius of the blast 3 meters. Now the problem is solved by Taylor’s blast 

theory to calculate the pressure ratio at 9meters which is outside the then the result is 

compared with the result obtained from the numerical solution. The total energy is 

calculated from h=cp(T0-Tamb) where Tamb is the temperature of the environment.  

Then the time is determined to reach the shock at that particular location. Then the 

pressure ratio is calculated to the location behind the shock. The cp is specific heat at 

constant pressure. The temperature inside the blast is considered as 2717K. With this 

temperature the specific heat is calculated through a formula provided by NASA. 

1.4 Previous related works  

  Harold A. Brode[13] did a strong shock solution for both point blast and isothermal 

blast using gas motion in Lagrangian form. Von Neumann Richtmayer artificial 



6 
 
viscosity was employed to avoid the shock discontinuity. The results include 

overpressure, density, particle density and position as a function of time and space.  J. 

Lockwood Taylor[14] tried to find the problem of Taylor to get the exact solution. In 

the paper of the shape of blast wave: the studies of Friedlander equation, JM Dewey 

studied the modified Friedlander form to describe the physical properties of blast 

wave. Friedlander had given an empirical formulation of pressure location after the 

blast. The equation if quite simple but it has different modified version and it doesn’t 

work universally according to my belief. Alex Remnnikov and Timothy  Rose [15] 

studied the effect on a structure of a blast wave numerically. In that study they 

assumed there was no obstacle in between the explosion charge and building 

structure. They also mentioned that the effect of the blast can enhanced due to the 

presence of other structure in vicinity. John Von Neumannindependently studied the 

point blast by  similarity solution. Leonard Sedov also did the similar kind of study in 

the same way. Bethe, Fuchs, Hirshfelder et. al did the detail study of  point blast. 

1.5 Purpose of Study 

     The purpose of this study is very significant. There are pioneers did the study the 

analytically or numerically, like Brode studied in 1960’s numerically, whereas Taylor, 

Von Neumann and Sedov studied the cases in the analytically. But there is no study 

that is compared the results numerical with analytical at least not in my knowledge. 

So it is tried to study and compared the Taylor’s blast wave theory with a known 

numerical solution. 

It also opens to further study the effect of blast wave reflection and subsequent 

consequence of the reflection, how to react the blast, especially mechanical property 

and crack formation.



 

CHAPTER 2: SHOCK THEORY 

 

 
     Shock wave is a disturbance (essentially a pressure wave) that propagates through 

the solid, liquid or gas. It takes place when wave speed is faster than the sound wave. 

Like any other ordinary wave it carries energy, characterized by abruptly change of 

pressure, temperature and density.  Shock wave can be two types first one is normal 

shock and the other one is oblique shock. 

2.1 One dimensional Flow equation 

Consider a region which represents the one dimensional flow as shown in the figure 

below

.   

            Figure 1: control volume around the shock (courtesy by ref1)
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In the left region pressure, temperature, density, speed and energy are P1, T1, 1, u1 

and e1 respectively and in the right side pressure, temperature, density, speed and 

energy are p2, T2, 2, u2 and e2 respectively and also assume that the flow is steady. 

Now from continuity equation 

− ∯ 𝜌𝑽. 𝑑𝑺 =
𝜕

𝜕𝑡
∰ 𝜌𝑑𝛀

𝛀𝑺
                                 

Where 𝜌 is density, V is speed and  is volume. Since the flow is steady, hence 

∯ 𝜌𝑽. 𝑑𝑺 = 0                                                                                                            (2.1) 

Now from the above equation 

−𝜌1𝑢1𝐴1 + 𝜌2𝑢2𝐴2 = 0                                                 

Since the area is same which is A. 

𝜌1𝑢1 = 𝜌2𝑢2                                                                                                             (2.2) 

Now the momentum equation is  

∯ (𝜌𝑽. 𝑑𝑺)𝑽 + ∰
𝜕(𝜌𝑽)

𝜕𝑡
𝑑𝛀 = ∰ 𝜌𝑭𝑑𝛀 − ∯ 𝑝𝑑𝑺

𝑆ΩΩ𝑆
  

Considering steady state and no body force 

∯ (𝜌𝑽. 𝑑𝑺)𝑽 = − ∯ 𝑝𝑑𝑺
𝑆𝑆

                                                                                        (2.3)  

Since it is a one dimensional equation towards the x direction, hence 

Since the flow is steady and there is no body force 

∯ (𝜌𝑉. 𝑑𝑆)𝑢 = − ∯ (𝑝𝑑𝑠)𝑥𝑆𝑆
                                                                                    (2.4)  

Now evaluating the above equation 

𝜌1(−𝑢1𝐴)𝑢1 + 𝜌2(𝑢2𝐴)𝑢2 = −(𝑝1𝐴 + 𝑝2𝐴)         

or  𝑝1 + 𝜌1𝑢1
2 = 𝑝2 + 𝜌2𝑢2

2                                                                                      (2.5) 

Momentum equation for steady state one dimensional is 

∰ �̇�𝜌𝑑𝛀 − ∯ 𝑝𝑽. 𝑑𝑺 + ∰ 𝜌𝑭. 𝑽𝑑Ω = ∰
𝜕

𝜕𝑡
[𝜌 (𝑒 +

𝑉2

2
)] 𝑑𝛀 + ∯ 𝜌 (𝑒 +

𝑺𝛀Ω𝑺𝛀

𝑉2

2
) 𝑉. 𝑑𝑺  
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The first represents the total heat addition and represent by �̇� for simplicity. The third 

term is zero because there is no body force and the fourth term is zero because of the 

steady state. Hence we have 

�̇� − ∯ 𝑝𝑽. 𝑑𝑆 =
𝑆

∯ 𝜌 (𝑒 +
𝑉2

2
) 𝑽. 𝑑𝑺

𝑺
                                                                      (2.6) 

Evaluating the surface integral we have 

�̇� − (−𝑝1𝑢1𝐴 + 𝑝2𝑢2𝐴) = −𝜌1 (𝑒1 +
𝑢1

2

2
) 𝑢1𝐴 + 𝜌2 (𝑒2 +

𝑢2
2

2
) 𝑢2𝐴                                                               

By rearranging, 

�̇�

𝐴
+ 𝑝1𝑢1 + 𝜌1 (𝑒1 +

𝑢1
2

2
) 𝑢1 = 𝑝2𝑢2 + 𝜌2 (𝑒2 +

𝑢2
2

2
) 𝑢2                                           (2.7)         

Diving (2.7) by (2.2) that is left side by 𝜌1𝑢1 and the right side by 𝜌2𝑢2 

�̇�

𝜌1𝑢1𝐴
+

𝑝1

𝜌1
+ 𝑒1 +

𝑢1
2

2
=

𝑝2

𝜌2
+ 𝑒2 +

𝑢2
2

2
                                                                        (2.8)  

Now   ℎ = 𝑒 + 𝑝𝑣 

ℎ1 +
𝑢1

2

2
+ 𝑞 = ℎ2 +

𝑢2
2

2
                                                                                              (2.9)  

2.2 Speed of sound 

     Sound is a pressure wave and when it reaches the eardrum then through the 

eardrum the wave reaches the brain, by this human being perceives the presence of 

sound. Let the pressure wave is passing through the gas with speed 𝑎. Now consider if 

someone rides on the wave then that person will see the gas is moving towards him 

with speed 𝑎 from the front while in his back the speed will be different, though it is 

small , let’s say the speed is  𝑎 + 𝑑𝑎.  

Hence the other properties will different as well. Let’s say pressure, temperature and 

density corresponding to the speed  𝑎 are 𝑝, 𝑇 and 𝜌 respectively and pressure , 

temperature and density corresponding to the speed  𝑎 + 𝑑𝑎 are 𝑝 + 𝑑𝑝, 𝑇 + 𝑑𝑇 and 

𝜌 + 𝑑𝜌 respectively as shown in the picture above. 
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                         Figure 2. Schematic diagram of sound wave 

 

     Hence the other properties will different as well. Let’s say pressure, temperature 

and density corresponding to the speed  𝑎 are 𝑝, 𝑇 and 𝜌 respectively and pressure , 

temperature and density corresponding to the speed  𝑎 + 𝑑𝑎 are 𝑝 + 𝑑𝑝, 𝑇 + 𝑑𝑇 and 

𝜌 + 𝑑𝜌 respectively as shown in the picture above. 

Now say that the area on the both sides is equal, then by continuity equation  

𝜌𝑎 = (𝜌 + 𝑑𝜌)(𝑎 + 𝑑𝑎)  

𝜌𝑎 = 𝜌𝑎 + 𝜌𝑑𝑎 + 𝑎𝑑𝜌 + 𝑑𝜌𝑑𝑎                                                                             (2.10) 

Multiplication of between the differential is neglected and hence 

𝜌𝑎 = 𝜌𝑎 + 𝜌𝑑𝑎 + 𝑎𝑑𝜌  

Or 𝑎 = −𝜌
𝑑𝑎

𝑑𝜌
                                                                                                          (2.11) 

Now from momentum equation 

𝑝 + 𝜌𝑎2 = (𝑝 + 𝑑𝑝) + (𝜌 + 𝑑𝜌)(𝑎 + 𝑑𝑎)2                                                          (2.12) 

By ignoring the product of differential 

𝑑𝑝 = −2𝑎𝜌𝑑𝑎 − 𝑎2𝑑𝜌                                                                                           (2.13) 

Solve for 𝑑𝑎 
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𝑑𝑎 =
𝑑𝑝+𝑎2𝑑𝜌

−2𝑎𝜌
                                                                                                          (2.14) 

Substituting 

𝑎 = −𝑝(

𝑑𝑝

𝑑𝜌
+𝑎2

−2𝑎𝜌
)                                                                                                        (2.15)  

Hence for 𝑎2 

𝑎2 =
𝑑𝑝

𝑑𝜌
                                                                                                                   (2.16) 

Since the process is isentropic by considerations like no heat edition, no frictional 

work, change of properties are very small, hence the relation of sound speed equation 

above is the speed of sound in isentropic process and can be represented as  

𝑎2 = (
𝜕𝑝

𝜕𝜌
)𝑠                                                                                                              (2.17) 

Let say 𝜌 = 1/𝑣 where 𝑣 is specific volume, then  

𝑎2 = (
𝑑𝑝

𝑑𝜌
)𝑠 = − (

𝑑𝑝

𝑑𝑣
) 𝑣2 = −

𝑣

(1 𝑣)(𝜕𝑣 𝜕𝑝⁄ )𝑠⁄
                                                             (2.18) 

So, 

𝑎 = √(
𝜕𝑝

𝜕𝜌
)𝑠                                                                                                             (2.19) 

In isentropic relationship 

𝑝𝑣𝛾 = 𝑐  

Where  is the ratio of specific heat. 

𝑎 = √(
𝜕𝑝

𝜕𝜌
)𝑠 = √

𝛾𝑝

𝜌
                                                      

Now since  
𝑝

𝜌
= 𝑅𝑇, hence 

𝑎 = √𝛾𝑅𝑇                                                                                                               (2.20) 

 

Now Mach number (M) is the ratio of speed and sonic , so if  

M> 1                   supersonic 
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M=0                    sonic 

M<1                    subsonic 

If the kinetic and internal energy per unit mass is 𝑉2 2⁄  and 𝑒 respectively then 

 
𝑉2 2⁄

𝑒
=  

𝑉2 2⁄

𝑐𝑣𝑇
=

𝑉2 2⁄

𝑅𝑇 (𝛾−1)⁄
=

(𝛾 2⁄ )𝑉2

𝑎2(𝛾−1)
=

𝛾(𝛾−1)

2
𝑀2  

 

2.3 Some Convenient Definition 

 

     Let a flow adiabatically slow down (if M>1) or speed up (M<1) to Mach number 

1, then the temperature will get change and let say the new temperature is 𝑇∗, then 

speed is going to be 𝑎∗ = √𝛾𝑅𝑇∗ 

Then the characteristic Mach number 𝑀∗ = 𝑉/𝑎∗ 

Stagnation speed of sound 𝑎𝑜 = √𝛾𝑅𝑇𝑜 

Stagnation density 𝜌0 = 𝑝0 𝑅𝑇0⁄  

Where R is gas constant 𝑝𝑜, 𝑇0 are the stagnation pressure and temperature 

respectively. 

2.4 Alternative Form of One Dimensional Energy Equation 

     Assume that there is no heat addition  

ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
                                                                                                   (2.21) 

 

Since  ℎ = 𝑐𝑝𝑇, hence 

 

𝑐𝑝𝑇1 +
𝑢1

2

2
= 𝑐𝑝𝑇2 +

𝑢2
2

2
                                                                                            (2.22)              

 
𝛾𝑅𝑇1

𝛾−1
+

𝑢1
2

2
=

𝛾𝑅𝑇2

𝛾−1
+

𝑢2
2

2
                                                                                              (2.23) 

 

Since 𝑎 = √𝛾𝑅𝑇  

 
𝑎1

2

𝛾−1
+

𝑢1
2

2
=

𝑎2
2

𝛾−1
+

𝑢2
2

2
                                                                                                (2.24) 

 

The above equation can also be written as  
𝛾

𝛾−1
(

𝑝1

𝜌1
) +

𝑢1
2

2
=

𝛾

𝛾−1
(

𝑝2

𝜌2
) +

𝑢2
2

2
                                                                                (2.25) 
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Or 
𝑎2

𝛾−1
+

𝑢2

2
=

𝑎∗2

𝛾−1
+

𝑢∗2

2
  

 
𝑎2

𝛾−1
+

𝑢2

2
=

𝛾+1

2(𝛾−1)
𝑎∗2                                                                                              (2.26) 

 

𝑎 and 𝑢 are the Mach number and speed at any point. 

 

From the definition of stagnation temperature 

 

𝑐𝑝𝑇 +
𝑢2

2
= 𝑐𝑝𝑇0                                                                                                     (2.27) 

Now the ratio of stagnation temperature and temperature of a point can be found by  

 
𝑇0

𝑇
= 1 +

𝑢2

2𝑐𝑝𝑇
= 1 +

𝑢2

2𝛾𝑅𝑇/(𝛾−1)
= 1 +

𝑢2

2𝑎2/(𝛾−1)
= 1 +

𝛾−1

2
(

𝑢

𝑎
) = 1 +

𝛾−1

2
𝑀2    (2.28)                                                                                                                                                             

 

Now ratio of stagnation pressure and pressure, stagnation density and density 

 

 
𝑝0

𝑝
= (1 +

𝛾−1

2
𝑀2)𝛾 𝛾−1⁄                                                                                         (2.29) 

and  

 
𝜌0

𝜌
= (1 +

𝛾−1

2
𝑀2)1 𝛾−1⁄                                                                                          (2.30) 

 

So, 
𝑎2

𝛾−1
+

𝑢2

2
=

𝑎0
2

2
                                                                                                          (2.31)  

 

From (2.31) and (2.26) 

 
𝛾+1

2(𝛾−1)
𝑎∗2 =

𝑎0
2

𝛾−1
                                                                                                      (2.32) 

 

Now divide (2.32) by 𝑎∗ 𝑎0⁄  and use (2.20) 

 

(
𝑎∗

𝑎0
)2 =

𝑇∗

𝑇0
=

2

𝛾+1
                                                                                                     (2.33) 

 

By recalling the definition of 𝑝∗ and 𝜌∗ which calls for Mach=1 and from (2.29) and 

(2.30) 

 
𝑝∗

𝑝0
= (

2

𝛾+1
)𝛾 𝛾−1⁄                                                                                                       (2.34) 

 

And 
𝜌∗

𝜌0
= (

2

𝛾+1
)1 𝛾−1⁄                                                                                                       (2.35) 

 

Now , divide the (2.26) by 𝑢2  

𝑀2 =
2

[(𝛾+1) 𝑀∗2⁄ ]−(𝛾−1)
                                                                                           (2.36) 
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2.5 Normal Shock Relationship 

 

     Let’s now apply the formula for normal shock.  When the flow is subsonic then the 

flow is continued with any disturbance but when it is supersonic it produces shock as 

shown in the figure below. For quantitative reason all quantity ahead of shock is 

prescribed by subscript 1 and all quantity behind the shock is subscript by 2. There is 

no heat addition or extraction from the system, hence the system is adiabatic.  

 

 

 
 

 

Figure 3: Flow hindered by a body. The upper one is in subsonic flow and lower one 

in case of supersonic flow 

From continuity equation, 

 

𝜌1𝑢1 = 𝜌2𝑢2                                                                                                           (2.37) 

From momentum equation, 

 

𝑝1 + 𝜌1𝑢1
2 =  𝑝2 + 𝜌2𝑢2

2                                                                                         (2.38) 

 

From energy equation, 
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ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
                                                                                                   (2.39)  

Now from the equation for calorific perfect gas 

 

𝑝 = 𝜌𝑅𝑇                                                                                                                  (2.40) 

 

ℎ = 𝑐𝑝𝑇                                                                                                                  (2.41) 

 

Now divide (2.38) by (2.37) and rearranging 

 
𝑝1

𝜌1𝑢1
−

𝑝2

𝜌2𝑢2
= 𝑢2 − 𝑢1                                                                                            (2.42) 

 

 

By using  𝑎 = √𝛾𝑝/𝜌 in equation (2.42) 

 
𝑎1

2

𝛾𝑢1
−

𝑎2
2

𝛾𝑢2
= 𝑢2 − 𝑢1                                                                                               (2.43) 

 

By utilizing (2.43), (2.39) and (2.26) 

 

𝑎1
2 =

𝛾+1

2
𝑎∗2 −

𝛾−1

2
𝑢1

2                                                                                            (2.44) 

 

𝑎2
2 =

𝛾+1

2
𝑎∗2 −

𝛾−1

2
𝑢2

2                                                                                           (2.45) 

 

Using (2.45), (2.44) and (2.43) 

 

𝑎∗2 = 𝑢1𝑢2                                                                                                            (2.46) 

 

This is called Prandtl relation. 

1 =
𝑢1

𝑎∗

𝑢2

𝑎∗ = 𝑀1
∗𝑀2

∗                                                 

 

𝑀1
∗ =

1

𝑀2
∗                                                                                                                  (2.47) 

 

This proves that the behind the normal shock the Mach number of the flow is 

subsonic. 

Diving (2.26) by 𝑢2 

 

𝑀2 =
2

[(𝛾+1)/𝑀∗2]−(𝛾−1)
                                                                                            (2.48) 

 

From (2.48) and (2.47) 
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𝑀∗2 =
(𝛾+1)𝑀2

2+(𝛾−1)𝑀2
                                                                                                     (2.49) 

 

From (2.49) and (2.47) 

 
(𝛾+1)𝑀2

2

2+(𝛾−1)𝑀2
2 = 1/ [

(𝛾+1)𝑀1
2

2+(𝛾−1)𝑀1
2]                                                                                    (2.50) 

 

From the above equation evaluate for 𝑀2
2     

 

𝑀2
2 =

1+[(𝛾−1)/2]𝑀1
2

𝛾𝑀1
2−(𝛾−1)/2

                                                                                                 (2.51) 

 

The above equation is very powerful equation, which interprets that the downstream 

speed only on upstream speed. The other parameters can be found very easily 

𝜌2

𝜌1
=

𝑢1

𝑢2
=

𝑢1
2

𝑢1𝑢2
=

𝑢1
2

𝑎∗2 = 𝑀1
∗2                                                                                   (2.52) 

 

From (2.52) and (2.49) 

      

 
𝜌2

𝜌1
=

𝑢1

𝑢2
=

(𝛾+1)𝑀1
2

2+(𝛾−1)𝑀1
2                                                                                               (2.53) 

 

From momentum equation  

𝑝2 − 𝑝1 = 𝜌1𝑢1
2 − 𝜌2𝑢2

2                                       
 

Combining with (2.37) 

𝑝2 − 𝑝1 = 𝜌1𝑢1(𝑢1 − 𝑢2) = 𝜌1𝑢1
2(1 − 

𝑢2

𝑢1
)                                                           (2.54) 

 

Dividing (2.54) by 𝑝1 and recalling 𝑎1
2 = 𝛾𝑝1/𝜌1 

 
𝑝2−𝑝1

𝑝1
= 𝛾𝑀1

2 (1 −
𝑢2

𝑢1
)                                                                                            (2.55) 

 

From (2.55) and (2.53) 

 
𝑝2−𝑝1

𝑝1
= 𝛾𝑀1

2 (1 −
(𝛾+1)𝑀1

2

2+(𝛾−1)𝑀1
2)                                                                                (2.56) 

 

Simplifying (2.56) 

 
𝑝2

𝑝1
= 1 +

2𝛾

𝛾+1
(𝑀1

2 − 1)                                                                                           (2.57) 

 

The temperature ratio can be found out by equation of state 𝑝 = 𝜌𝑅𝑇 
𝑇2

𝑇1
= (

𝑝2

𝑝1
) (

𝜌1

𝜌2
)                                                                                                         (2.58) 

 

 

From (2.57), (2.53) and (2.58) 
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𝑇2

𝑇1
=

ℎ2

ℎ1
= [1 +

2𝛾

𝛾+1
(𝑀1

2 − 1)] [
2+(𝛾−1)𝑀1

2

(𝛾+1)𝑀1
2 ]                                                             (2.59) 

 

2.6 Hugoniot Equation 

 

In the last section the properties are the functions of Mach number, but in this section 

the properties will be explained on thermodynamic properties. 

From (2.37) 

𝑢2 = 𝑢1 [
𝜌1

𝜌2
]                                                                                                            (2.60) 

Now replace (2.60) into (2.38) 

𝑝1 + 𝜌1𝑢1
2 = 𝑝2 + 𝜌2(

𝜌1

𝜌2
𝑢1)2                                                                                 (2.61) 

From (2.61) 

𝑢1
2 =

𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌2

𝜌1
)                                                                                                       (2.62) 

From (2.37) 

𝑢1 = 𝑢2 (
𝜌2

𝜌1
)  

hence 

𝑢2
2 = 

𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌1

𝜌2
)                                                                                                       (2.63)       

From energy equation (2.39) 

     ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
  

By definitionℎ = 𝑒 + 𝑝/𝜌, so 

𝑒1 +
𝑝1

𝜌1
+

𝑢1
2

2
= 𝑒2 +

𝑝2

𝜌2
+

𝑢2
2

2
                                                                                    (2.64) 

Now, from (2.62), (2.63) and (2.64) 

 

𝑒1 +
𝑝1

𝜌1
+

1

2
[

𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌2

𝜌1
)] = 𝑒2 +

𝑝2

𝜌2
+

1

2
[

𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌1

𝜌2
)]                                               (2.65)  
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By simplification 

𝑒2 − 𝑒1 =
(𝑝1+𝑝2)

2
(

1

𝜌1
−

1

𝜌2
)                                                                                    (2.66)   

Or    

𝑒2 − 𝑒1 =
𝑝1+𝑝2

2
(𝑣1 − 𝑣2)                                                                                      (2.67) 

 

The equation (2.67) is called Hugoniot’s equation. 

 

Now, 𝑣 = 1/𝜌 and by (2.63) 

𝑢1
2 =

𝑝2−𝑝1

1 𝑣2−1 𝑣1⁄⁄
(

𝑣1

𝑣2
)                                                                                                 (2.68) 

By rearranging 

𝑝2−𝑝1

𝑣2−𝑣1
= −(

𝑢1

𝑣1
)2                                                                                                       (2.69) 

Now, (2.67) replace 𝑒 = 𝑐𝑣𝑇 and 𝑇 = 𝑝𝑣/𝑅 

𝑝2

𝑝1
=

(
𝛾+1

𝛾−1
)

𝑣1
𝑣2

−1

(
𝛾+1

𝛾−1
)−

𝑣1
𝑣2

                                                                                                          (2.70) 

2.7 Oblique Shock 

 

The oblique shock occurs when there is or are obstacle(s) or deviation(s) in the path, 

then the shock turned into itself as shown in the figure 3. At point A the stream is 

deflected at an angle 𝜃 upward. Consequently the flow is also deflecting to same 

degree of bend and the shock wave will be bending towards the main stream. All the 

flow the downstream of the shock will be parallel to the downstream surface. Across 

the shock Mach number decreases, temperature, pressure increases. 

On the other hand if the surface turns away from itself then it creates expansion fans. 

As shown in the figure 4. So the Mach number increases and pressure, temperature 

decreases. 

Mach waves are weak pressure wave caused by the slight pressure change in 

compressible flow. Mach wave can combine together and produce shock wave. Such 



19 
 

shock waves are called Mach stem. A Mach wave propagates across the flow with an 

angle which is called Mach angle which is the angle formed between Mach wave 

front and a vector that points opposite to the vector of motion. Mach angle 𝜇 can be 

calculated by 

𝜇 = 𝑎𝑟𝑐𝑠𝑖𝑛
1

𝑀
  

 

Where M is the Mach number. 

 

 
                Figure 4a. Oblique shock 
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      Figure 4b . Expansion fans 

 

 

                          

                                                          
 

                      Figure 5. Mach Wave (courtesy Wikipedia.com) 
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2.8 Oblique Shock Wave Relationship 

 

Consider a supersonic flow is hindered by a surface with an angle . So the shock is 

bending to the angle β and it is called wave angle. Now upstream to the flow the 

velocity is V1 and corresponding Mach number is M1. In the downstream direction the 

velocity and Mach number is V2 and M2 respectively. Now the normal component of 

upstream velocity, Mach number is 𝑢1, 𝑀𝑛1 respectively and tangential component of 

upstream velocity, Mach number is 𝑤1, 𝑀𝑡1 respectively. Along the downstream the 

normal component of velocity, Mach number is 𝑢2, 𝑀𝑛2 respectively tangential 

component of velocity, Mach number is 𝑤2, 𝑀𝑡2 respectively. 

Let’s consider two control surfaces opposite to the shock wave and calculate the 

different parameter. The details are as shown in figure 6. Let the area in both side is 

equal. 

From continuity equation  

 

𝜌1𝑢1 = 𝜌2𝑢2                                                                                                           (2.71) 

 

Now from energy equation, 

 

(−𝜌1𝑢1)𝑤1 + (𝜌2𝑢2)𝑤2 = 0                                                                                 (2.72) 

 

Comparing the above two equation it is found that the tangential components are 

equal. 

𝑤1 = 𝑤2                                                                                                                  (2.73) 

 

Now from Figure 6, balancing the normal components of the shock 

(−𝜌1𝑢1)𝑢1 + (𝜌2𝑢2)𝑢2 = −(−𝑝1 + 𝑝2)                         

𝑝1 + 𝜌1𝑢1
2 = 𝑝2 + 𝜌2𝑢2

2                                                                                          (2.74) 

 

Diving (2.75) by (2.72) 

 

ℎ1 +
𝑉1

2

2
= ℎ2 +

𝑉2
2

2
                                                                                                   (2.76) 
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               Figure 6. Oblique shock geometry 

 

 

By geometry 𝑉2 = 𝑢2 + 𝑤2 and 𝑤1 = 𝑤2 

 

𝑉1
2 − 𝑉2

2 = (𝑢1
2 + 𝑤1

2) − (𝑢2
2 + 𝑤2

2) = 𝑢1
2 − 𝑢2

2  
 

Hence from (2.76) 

 

ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
                                                                                                   (2.77) 

 

Looking at the equations it is clear that the oblique shock wave equations are identical 

with normal shock wave and governed by the normal component of the flow.  
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𝑀𝑛1 = 𝑀1 sin 𝛽                                                                                                      (2.78) 

 

For calorific perfect gas 

 
𝜌2

𝜌1
=

(𝛾+1)𝑀𝑛1
2

(𝛾−1)𝑀𝑛1
2 +2

                                                                                                       (2.79) 

 
𝑝2

𝑝1
= 1 +

2𝛾

𝛾+1
(𝑀𝑛1

2 − 1)                                                                                          (2.80) 

 

𝑀𝑛2
2 =

𝑀𝑛1
2 +[2/(𝛾−1)]

[2𝛾/(𝛾−1)]𝑀𝑛1
2 −1

                                                                                             (2.81) 

 

And  

 
𝑇2

𝑇1
=

𝑝2

𝑝1

𝜌1

𝜌2
                                                                                                                 (2.82) 

 

 

Behind the shock 

 

𝑀2 =
𝑀𝑛2

sin(𝛽−𝜃)
                                                                                                          (2.83) 

 

Now looking at the geometry 

 

tan 𝛽 =
𝑢1

𝑤1
                                                                                                               (2.84) 

 

tan(𝛽 − 𝜃) =  
𝑢2

𝑤2
                                                                                                    (2.85) 

 

Combining (2.84), (2.85) and 𝑤1 = 𝑤2 

 
tan (𝛽−𝜃)

tan 𝛽
=  

𝑢2

𝑢1
                                                                                                         (2.86) 

   

Combining (2.86) with equation (2.71), (2.78) and (2.79) 

 
tan(𝛽−𝜃)

tan 𝛽
=  

2+(𝛾−1)𝑀1
2𝑠𝑖𝑛2𝛽

(𝛾+1)𝑀1
2𝑠𝑖𝑛2𝛽

                                                                                      (2.87) 

 

By trigonometric manipulation  

 

tan 𝜃 = 2 cot 𝜃 [
𝑀1

2𝑠𝑖𝑛2𝛽−1

𝑀1
2(𝛾+cos 2𝛽)+2

]                                                                             (2.88) 

 

 

The above equation is called the famous 𝜃 − 𝛽 − 𝑀 relation. 
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a. For any given M1 , there is a corresponding max. If geometry is such that 

>max, then there will be a detached shock wave away from the distractor as 

shown in the figure 8. 

b. If <max then there will be two values  . For the larger value of  , the shock is 

called strong shock and for the smaller one is weak shock. But the nature 

selects such a way that the weak shock will be exist and it is shown in the 

figure 9. 

  

 

                
 

 

 

                                      Figure 7. Detached shock for >max 
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   Figure 8.  Oblique shock <max 

 

c. For =0 , there will be normal shock 

 

 

2.9 Unsteady Wave Motion 

 

  So far it is considered that the shock wave is stationary. If the shock speed gas 

behind the moves two different opposite with same speed then the shock appears to be 

stationary, but if the gas behind the shock is stationary then the shock moves as 

demonstrated in the Figure 9. 

Let us consider a shock tube, in which two different gases are enclosed in pressure 

and separated by a diaphragm as shown in the fig.10.  

Section 4 i.e. the left handed portion of the diaphragm which is kept at higher pressure 

which is called the driver section and the right portion (section 1)of the diaphragm is 

kept at lower pressure and called the driven section.  
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Figure 9. Schematic diagram of (a) stationary shock, (b) moving shock 
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  Figure 10. Shock tube at the initial condition 

 

Now if the diaphragm is broken by any mean then the higher pressure gas will create 

a shock wave which will travel on the lower pressure zone with velocity 𝑤 and the 

gas behind it will travel in the same direction with velocity  𝑢𝑝 and expansion wave 

propagates towards the opposite direction. Hence the properties will be not only 

depending upon the location it will also depend on time (𝑇(𝑥, 𝑡), 𝜌(𝑥, 𝑡), 𝑢(𝑥, 𝑡)). 

Let’s say after sometime the shock wave moves to a different location as shown in the 

Figure 11, then  𝑢𝑝 = 𝑢2 = 𝑢3.  

Shock tube phenomena are very important to demonstrate the shock property at very 

high temperature and speed. 
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Figure 11. Shock tube wave propagation after the diaphragm is broken 

 

 

2.10 Moving Normal Shock  

 

Now let’s manipulate the Normal shock wave equations for standing waves equation 

for continuity, momentum and energy, equation number (2.37), (2.38) and (2.39). 

Let’s look at the figure 10a 

𝑢1 = Velocity of the gas ahead of the shock wave, relative to the wave 

𝑢2 = Velocity of the gas behind the shock wave, relative to the wave 

Now looking at the Figure 10b 

𝑊 = Velocity of the gas ahead of the shock wave, relative to the wave 

𝑊 − 𝑢𝑝 = Velocity of gas behind the shock wave, relative to the wave 

Hence  

𝜌1𝑊 = 𝜌2(𝑊 − 𝑢𝑝)                                                                                               (2.89) 

𝑝1 + 𝜌1𝑊2 = 𝑝2 + 𝜌2(𝑊 − 𝑢𝑝)2                                                                          (2.90) 
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ℎ1 +
𝑊2

2
= ℎ2 +

(𝑊−𝑢𝑝)2

2
                                                                                         (2.91) 

Now, rearrange (2.89)  

𝑊 − 𝑢𝑝 = 𝑊
𝜌1

𝜌2
                                                                                                      (2.92) 

From (2.90) and (2.89) 

 

𝑝1 + 𝜌1𝑊2 = 𝑝2 + 𝜌2𝑊2(
𝜌1

𝜌2
)2                                                                              (2.93) 

 

By arranging  

 

𝑝2 − 𝑝1 = 𝜌1𝑊2 (1 −
𝜌1

𝜌2
)                             

 

𝑊2 =  
𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌2

𝜌1
)                                                                                                    (2.94) 

 

From (2.89) 

 

𝑊 = (𝑊 − 𝑢𝑝)
𝜌2

𝜌1
                                                                                                   (2.95) 

 

From (2.94) and (2.95) 

 

(𝑊 − 𝑢𝑝)2 =
𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌1

𝜌2
)                                                                                         (2.96) 

 

From equation (2.94), (2.96) and (2.91) and ℎ = 𝑒 + 𝑝/𝜌 

 

𝑒1 +
𝑝1

𝜌1
+

1

2
[

𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌2

𝜌1
)] = 𝑒2 +

𝑝2

𝜌2
+

1

2
[

𝑝2−𝑝1

𝜌2−𝜌1
(

𝜌1

𝜌2
)]                                               (2.97) 

By simplifying (2.97) 

 

𝑒2 − 𝑒1 =
𝑝1+𝑝2

2
(

1

𝜌1
−

1

𝜌2
)   

 

𝑒2 − 𝑒1 =
𝑝1+𝑝2

2
(𝑣1 − 𝑣2)                                                                                    (2.97a)   

 

The above equation is Hugoniot equation. 

If 𝑒 = 𝑐𝑣𝑇 and 𝑣 = 𝑅𝑇/𝑝 and by equation (2.97a) 

 

𝑇2

𝑇1
=

𝑝2

𝑝1
(

𝛾+1

𝛾−1
+

𝑝2
𝑝1

1+
𝛾+1

𝛾−1

𝑝2
𝑝1

)                                                                                                    (2.98) 

And 
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𝜌2

𝜌1
=

1+
𝛾+1

𝛾−1
(

𝑝2
𝑝1

)

𝛾+1

𝛾−1
+(

𝑝2
𝑝1

)
                                                                                                          (2.99)  

 

Hence it can be concluded that unlike normal shock wave unsteady shock wave 

properties are the function of pressure ration. 

Consider that the Mach number of the shock is Ms 

 

𝑀𝑠 =
𝑊

𝑎1
  

 

Where 𝑎1is the sonic speed at driver section. 

 

From (2.57) 

 
𝑝2

𝑝1
= 1 +

2𝛾

𝛾+1
(𝑀𝑠

2 − 1)                                                                                         (2.100) 

 

From (2.100) 

 

𝑀𝑠 = √
𝛾+1

2𝛾
(

𝑝2

𝑝1
− 1) + 1                                                                                      (2.101) 

 

𝑊 = 𝑎1√
𝛾+1

2𝛾
(

𝑝2

𝑝1
− 1) + 1                                                                                   (2.102) 

 

From equation (2.89) 

 

𝑢𝑝 = 𝑊 (1 −
𝜌1

𝜌2
)                                                                                                  (2.103) 

 

From (2.98) , (2.102) and (2.103) 

 

𝑢𝑝 =
𝑎1

𝛾
(

𝑝2

𝑝1
− 1) √

2𝛾

𝛾+1
𝑝2
𝑝1

+
𝛾−1

𝛾+1

                                                                                    (2.104) 

 

 

Now , if the sonic speed at driven section is 𝑎2, then 

 

𝑢𝑝

𝑎2
=

𝑢𝑝

𝑎1

𝑎1

𝑎2
=

𝑢𝑝

𝑎1
√

𝑇1

𝑇2
                                                                                               (2.105) 
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From (2.99),  (2.104) and (2.105) 

 

𝑢𝑝

𝑎2
=

1

𝛾
(

𝑝2

𝑝1
) √

2𝛾

𝛾+1
𝑝2
𝑝1

+
𝛾−1

𝛾+1

  
1+

𝛾+1

𝛾−1
(

𝑝2
𝑝1

)

𝛾+1

𝛾−1
(

𝑝2
𝑝1

)+(
𝑝2
𝑝1

)2
                                                                        (2.106) 

 

In the unsteady shock wave unlike the steady flow the total enthalpy in both side of 

shock is note equal. 

 

 

2.11 Reflected Shock Wave 

 

Let a shock wave travels with a speed W and is about to incident on the endwall. Now 

mass motion behind the shock wave 𝑢1 = 0 and behind the shock wave the mass 

motion is 𝑢𝑝 towards the wall. After the shock incident on the wall, it creates a 

reflected shock with speed 𝑊𝑅(relative to the laboratory) and behind the reflected 

shock wave the speed 𝑢5 = 0. The detail is shown in the Figure 13. 

  For convenience a 𝑥 − 𝑡 diagram is drawn. As shown in the figure 14. At time 𝑡 = 0 

the shock is at the diaphragm. At 𝑡 = 𝑡1 the shock moves towards the right direction 

and the location is  𝑥 = 𝑥1, then at 𝑥 = 𝑥2  and time 𝑡 = 𝑡2the shock reflects with a 

velocity 𝑊𝑅 , now at time 𝑡 = 𝑡3 the shock is at 𝑥 = 𝑥3. 

The slope incident and reflected shock wave is 1/𝑊 and 1/𝑊𝑅 respectively, where 

𝑊𝑅 < 𝑊. 
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 Figure 12. Incident and reflected shock wave 

 

Now from fig 13(b) 

 

𝑊𝑅 + 𝑢𝑝 = Velocity of the gas ahead of the shock relative to the wave 

 

𝑊𝑅 =  Velocity of the gas behind the shock wave relative to the wave 

 

Now from (2.37), (2.38) and (2.39) 

 

𝜌2(𝑊𝑅 + 𝑢𝑝) = 𝜌5𝑊𝑅                                                                                          (2.107) 

 

𝑝2 + 𝜌2(𝑊𝑅 + 𝑢𝑝)2 = 𝑝5 + 𝜌5𝑊𝑅
2                                                                      (2.108) 

 

ℎ2 +
(𝑊𝑅+𝑢𝑝)2

2
= ℎ5 +

𝑊𝑅
2

2
                                                                                     (2.109) 

 

The Mach number of incident shock 𝑀𝑠 = 𝑊/𝑎1 and Mach number of reflected 

shock wave𝑀𝑅 = (𝑊𝑅 + 𝑢𝑝)/𝑎2. From (2.89) through (2.91) and from equation 

(2.107) through (2.109) for a calorific perfect gas  

 

𝑀𝑅

𝑀𝑅
2−1

=
𝑀𝑠

𝑀𝑠
2−1

√1 +
2(𝛾−1)

(𝛾+1)2 (𝑀𝑠
2 − 1) (𝛾 +

1

𝑀𝑠
2)                                                     (2.110) 
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                   Figure 13. Wave diagram   



 
CHAPTER 3: THEORETICAL DEVELOPMENT 

 

 
3.1 Geometry 

 

  The authors had considered the blast as an isothermal sphere with radius R0 and 

distance along the horizontal axis as x and vertical axis as y. Here they took the non-

dimensional length.  

 

 

 
 

                       Figure 14: Computational domain and the initial and  

                                                 Boundary condition 

 

 

 

HOB= Height of blast 

P = Pressure inside the blast 

  = Density inside the blast
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T = Temperature of blast 

P0= Ambient pressure 

0= Ambient density 

T0=Ambient temperature 

The non-dimensional length along x axis from 0 to 4 while along the y- axis is taken 

as 0 to 6. 

Now in this study x axis is 0 to 40 meter, y axis is 0 to 60 meter. The blast radius is 

considered as 3 meter and the focus the pressure ratio at 9 meter.  

3.2 Taylor’s Blast Wave Theory  

 

  G.I. Taylor considered that the blast radius to a particular time is depends upon on 

the total energy of the blast, density of the atmosphere and time. 

The dimension of energy is ML
2
/T

2
, density is M/L

3 
and time is T.  

With the dimensional analysis time dependent radius becomes 

R (t) =S () (E/0)
1/5  

t
2/5  

Where S () is a constant and  is the ratio of the specific heat. 

     The propagation and decay of a spherical blast in air has been studied for the case 

when the maximum pressure does not crosses 2 atm. The pressure far away from the 

center of the blast decays as in a sound wave inversely proportional to R but at the 

center the pressure decays faster than the R
-1

.  When the excess pressure is 0.5 atm, 

Taylor claimed that a logarithmic plot shows that it varies as     R
-1.9

, when the excess 

pressure is 1.5 atm, the decay is proportional to R
-2.8

. The intensity of the blast at the 

center is very difficult because of initial shock wave raises entropy along the traverse 

direction by an amount which depends on the intensity of the shock wave. So the 

passage of the shock leaves the air in a state in which the entropy decays radially so 

that after the passage, when the air has returned to atmospheric pressure, the air 
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temperature decreases with increasing distance from the site of the explosion. For this 

reason the density is not a single valued function of pressure in a blast wave. After 

passage of the blast wave, the relationship between pressure and density for any given 

particle of air is simply the adiabatic one corresponding with the entropy with which 

that particle was endowed by the shock wave during its passage past it. For this reason 

it is general necessary to use a form of analysis in which the initial position of each 

particle is retained as one of the variables. This introduces a great complexity and  , in 

general, solutions can only be derived by using step by step method of numerical 

integration.  But great simplicity is introduced in the spherical detonation problem, by 

assuming that the disturbance is similar at all time , merely increasing its linear 

dimensions with increasing time from initiation, gives encouragement to an attempt to 

apply similar principles to the blast produced by a very intense explosion in a very 

small volume. 

Taylor considered the appropriate similarities for an expanding blast wave of constant 

total energy are 

Pressure, p/p0 = y= R
-3

f1                                                                                                 (3.1) 

Density, /0 =                                                                                                        (3.2) 

Radial velocity, u = R
-3/21                                                                                        (3.3) 

Where R is the radius of the shock wave forming the outer edge of the disturbance, p0 

and 0 are the pressure and density of the undisturbed atmosphere. If r is the radial co-

ordinate, =r/R and f1, 1 and  are functions of. It is found that these assumptions 

are consistent with the equations of motion and continuity and with the equation of 

state of a perfect gas. 

The equation of motion is 

∂u

∂t
+ u

∂u

∂r
= −

p0

p

∂y

∂r
                                                                                                    (3.4) 
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Substituting from (3.1), (3.2) and (3.3) in (3.4) and writing, f1’, 1’ for 
𝜕

𝜕𝜂
𝑓1,

𝜕

𝜕𝜂
𝜙1  

− (
3

2
𝜙1 + 𝜂𝜙1

′ ) 𝑅−
5

2
𝑑𝑅

𝑑𝑡
+ 𝑅−4 (𝜙1𝜙1

′ +
𝑝0

𝜌0

𝑓1
′

𝜓
) = 0                                                 (3.5) 

This can be satisfied if 

𝑑𝑅

𝑑𝑡
= 𝐴𝑅−

3

2                                                                                                                (3.6) 

Where A is a constant, and  

−𝐴 (
3

2
𝜙1 + 𝜂𝜙1

′ ) + 𝜙1𝜙1
′ +

𝑝0

𝜌0

𝑓1
′

𝜓
= 0                                                                     (3.7) 

The continuity equation is 

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
+ 𝜌 (

𝜕𝑢

𝜕𝑟
+

2𝑢

𝑟
) = 0                                                                                    (3.8) 

Substituting from (3.1), (3.2), (3.3) and (3.6), (3.8) becomes 

−𝐴𝜂𝜓′ + 𝜓′𝜙1 + 𝜓 (𝜙1
′ +

2

𝜂
𝜙1) = 0                                                                     (3.9) 

The equation of state for a perfect gas is 

(
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑟
) (𝑝𝜌−𝛾) = 0                                                                                          (3.10) 

Where  is the ratio of specific heats. 

Substituting from (1), (2), (3) and (6), (10) becomes 

𝐴(3𝑓1 + 𝜂𝑓1
′) +

𝑟𝑓1

𝜓
𝜓′(−𝐴𝜂 + 𝜙1) − 𝜙1𝑓1

′ = 0                                                    (3.11) 

The equation (3.7), (3.9) and (3.11) may be reduced to a non-dimensional form by 

substituting  

𝑓 = 𝑓1𝑎2/𝐴2                                                                                                           (3.12) 

𝜙 = 𝜙1/𝐴                                                                                                               (3.13) 

Where 𝑎 is the velocity of sound in air so that𝑎2 = 𝛾𝑝0/𝜌0. The resulting equations 

only one parameter, namely, , are 

𝜙′(𝜂 − 𝜙) =
1

𝜂

𝑓′

𝜓
−

3

2
𝜙                                                                                           (3.7a) 
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𝜓′

𝜓
=

𝜙′+2𝜙/𝜂

𝜂−𝜙
                                                                                                             (3.9) 

3𝑓 + 𝜂𝑓′ +
𝛾𝜓′

𝜓
𝑓(−𝜂 + 𝜙) − 𝜙𝑓′ = 0                                                                (3.11a) 

Eliminating 𝜓′ from (3.11a) by means of (3.7a) and (3.9a) the equation for calculating 

𝑓′ when 𝑓, 𝜙, 𝜓 and 𝜂 are given is 

𝑓′{(𝜂 − 𝜙)2 −
𝑓

𝜓
} = 𝑓{−3𝜂 + 𝜙 (3 +

1

2
𝛾) −

2𝛾𝜙2

𝜂
}                                              (3.14) 

When 𝑓′ has been found from (14), 𝜙′ can be calculated from (7a) and hence 𝜓′ from 

(3.9a). Thus if for any value of 𝜂, 𝑓, 𝜙 and 𝜓 are known their values can be computed 

step-by-step for other values of  𝜂 

3.3 Shock-Wave Conditions 

     The conditions at the shock wave 𝜂 = 1are given by Rankine-Hugoniot relations 

which may be reduced to the form 

𝜌1

𝜌0
=

𝛾−1+(𝛾+1)𝑦1

𝛾+1+(𝛾−1)𝑦1
                                                                                                     (3.15)        

𝑈2

𝑎2 =
1

2𝛾
{𝛾 − 1 + (𝛾 + 1)𝑦1}                                                                                  (3.16)    

𝑢1

𝑈
=

2(𝑦1−1)

𝛾−1+(𝛾+1)𝑦1
                                                                                                     (3.17)         

Where 𝜌1, 𝑢1 and 𝑦1 represent the value of 𝜌, 𝑢 and 𝑦 immediately behind the shock 

wave and 𝑈 = 𝑑𝑅/𝑑𝑡 is the radial velocity of the shock wave. 

  The conditions cannot be satisfied consistently with the similarity assumptions 

represented by (3.1), (3.2) and (3.3). On the other hand, when 𝑦1 is large so that the 

pressure is high compared with atmospheric pressure, (3.15), (3.16) and (3.17) assume 

the approximate asymptotic forms 

𝜌1

𝜌0
=

𝛾+1

𝛾−1
                                                                                                                 (3.15a) 

𝑈2

𝑎2 =
2𝛾

𝛾+1
𝑦1                                                                                                            (3.16a)  
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𝑢1

𝑈
=

2

𝛾+1
                                                                                                                 (3.17a) 

These approximate boundary conditions are consistent with (3.1), (3.2), (3.3) and 

(3.6); in fact (3.15a) yields, for the conditions at 𝜂 = 1 

𝜓 =
𝛾+1

𝛾−1
                                                                                                                 (3.15b) 

 (3.16a) yields 

 𝑓 =
2𝛾

𝛾+1
                                                                                                                (3.16b) 

and (3.17a) yields  

𝜙 =
2

𝛾+1
                                                                                                                 (3.17b)  

3.4 Energy 

The total energy E of the disturbance may be regarded as consisting of two parts, the 

kinetic energy 

𝐾. 𝐸. = 4𝜋 ∫
1

2
𝜌𝑢2𝑟2𝑑𝑟

𝑅

0
                                  

and the heat energy  

𝐻. 𝐸. = 4𝜋 ∫
𝑝𝑟2

𝛾−1
𝑑𝑟

𝑅

0
  

In terms of the variables 𝑓, 𝜙, 𝜓 and 𝜂 

𝐸 = 4𝜋𝐴2{
1

2
𝜌0 ∫ 𝜓2𝜙2𝜂2𝑑𝜂 + (

𝑝0

𝑎2(𝛾−1)
∫ 𝑓𝜂2𝑑𝜂

1

0

1

0
}    

Or since 𝑝0 = 𝑎2𝜌0/𝛾 , 𝐸 = 𝐵𝜌0𝐴2 , where B is a function of  only  

whose value is  

𝐵 = 2𝜋 ∫ 𝜓𝜙2𝜂2𝑑𝜂 +
4𝜋

𝛾(𝛾−1)
∫ 𝑓𝜂2𝑑𝜂

1

0

1

0
                                                                (3.18) 

Since the two integrals in (3.18) are both functions of 𝛾 only it seems that for a given 

value of 𝛾, 𝐴2 is simply proportional to E/𝜌0 
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3.5 Initial Conditions 

For this calculation the  

𝑃1

𝑃2
= 70  

Atmospheric pressure is 1 atm 

P1= 7092750 N/m
2 

Temperature inside the sphere T1=2717 K 

Ambient temperature T2= 288.15 K 

𝜌1

𝜌2
= 5  

Density of the environment 2= 1.225 Kg/m
3 

Density inside the blast 1= 6.125 Kg/m
3 

Non-dimensional radius of the sphere R0=3 meter 

Total mass of the sphere M= 
4

3
𝜋𝑅0

3𝜌1 =
4

3
𝜋33𝑋 6.125 = 692.72 𝐾𝑔 

Ratio of specific heat at temperature 2717K is determined by the equation can be 

found out by the following relationship which is available in NASA website 

 

𝛾 = 1 +
(𝛾𝑝𝑒𝑟𝑓 − 1)

1 + (𝛾𝑝𝑒𝑟𝑓 − 1)[(
𝜃
𝑇)2 𝑒

𝜃
𝑇

(𝑒
𝜃
𝑇 − 1)2

]

 

 

𝛾𝑝𝑒𝑟𝑓=1.4  

𝜃 =5500° Rankine 

T= 2717 K= 4890.6 Rankine 

Hence we get 𝛾 =1.2929 

Energy per unit mass ℎ =
𝑃𝛾

𝜌(1+𝛾)
 = 

7092750X 6.125

6.125(1+1.2929)
= 652962.711 Joule/kg  
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Total energy inside the sphere E = M X h 

                                                                = 652962.7 X 692.72 

                                                               = 452320329.164 Joule 

3.5 Boundary Conditions 

  The boundary conditions are found by finding 𝑓, 𝜙 and 𝜓 in 𝜂 = 1 

𝑓 =
2𝛾

𝛾+1
 = 

2 𝑋 1.2929

1.2929+1
= 1.1277 

𝜙 =
2

𝛾+1
= 0.87  

 𝜓 =
𝛾+1

𝛾−1
= 7.828  

Then the values of the 𝑓, 𝜌 and 𝜓 are determined numerically. These values are used 

to determine the values of the pressure, density and velocity ratio.        

 

 

 

 

 

 

 

 

                                                                                                                       



 

CHAPTER 4: DEVELOPING WORKING EQUATION 

 

 

4.1 Numerical Method 

 

When 𝛾=1.2929 the boundary values of 𝑓, 𝜙 and 𝜓 at 𝜂=1 are (3.15a), (3.16a), 

(3.17a), 1.1277, 0.87 and 7.828. Values of 𝑓, 𝜙 and 𝜓 were calculated from 𝜂=1 to 

𝜂 = 0.5, using intervals in 0.02 in . Starting each step with values of 𝑓′, 𝜙′, 𝜓′, 𝑓, 𝜙 

and 𝜓 found in previous steps, values of 𝑓′, 𝜙′ and 𝜓′ at the end of the interval 

predicted by assuming that the previous two values form a geometrical progression 

with the predicted one; thus the (s+1)th term, 𝑓𝑠+1
′  in a series of 𝑓′ was taken as 

1

2
(𝑓𝑠

′)2/𝑓𝑠−1
′ . With this assumed value the mean 𝑓′ is the sth interval was taken as 

1

2
(𝑓𝑠+1

′ + 𝑓𝑠
′) and the increment in 𝑓 was taken as (0.02)(

1

2
)(𝑓𝑠+1

′ + 𝑓𝑠
′) . The values 

of  𝑓𝑠+1
′ , 𝜙𝑠+1

′ and 𝜓𝑠+1
′ were then calculated from the formula (3.14), (3.7a) and (3.9a). 

If that is differed appreciably from the predicted values of 𝑓𝑠+1
′  by this new calculated 

value. In the early stages of calculation near =1 two or three approximations were 

made, but in the later stages the estimated value was so close to the calculated one 

that the value of 𝑓′ calculated in this first approximation was used directly in the next 

stage. 

     The results are tabulated in the table1 and are shown in the figure. These curves 

and the tables show three striking feature: (a) the  curve rapidly settles down to a 

curve which is very nearly a straight line through the origin, (b) the density curve  

rapidly approaches the axis =0, (c) the pressure becomes practically constant. These 

facts suggest that the solution tends to a limiting as  decreases in which =c, 
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𝜙′=c=constant, 𝑓, 𝑓′, 𝜓 and 𝜓′ become small. Substituting for 
1

𝛾

𝑓′

𝜓
 from (3.7a), (3.14) 

becomes 

 
𝑓′

𝑓
(𝜂 − 𝜙)2 = 𝛾𝜙′ +

3

2
𝛾𝜙 − 3𝜂 + (3 +

1

2
𝛾) 𝜙 −

2𝛾𝜙2

𝜂
                                            (4.1) 

 

 

Table 1: Step by step calculation for  = 1.2929 

 

Serial No Location f  ѱ 

1 1 1.1277 0.872 7.828 

2 0.98 0.966 0.8355 5.267 

3 0.96 0.8399 0.819 3.5344 

4 0.94 0.7571 0.7895 2.3487 

5 0.92 0.7 0.7628 1.4862 

6 0.9 0.6592 0.7384 1.0128 

7 0.88 0.6295 0.7159 0.7792 

8 0.86 0.6074 0.695 0.5931 

9 0.84 0.5908 0.675 0.487 

10 0.82 0.5783 0.656 0.305 

11 0.8 0.5689 0.638 0.251 

12 0.78 0.5617 0.62 0.183 

13 0.76 0.5562 0.6 0.141 

14 0.74 0.5521 0.586 0.101 

15 0.72 0.5489 0.5699 0.075 

16 0.7 0.5466 0.5536 0.056 

17 0.68 0.5448 0.5374 0.043 

18 0.66 0.5435 0.5214 0.0325 

19 0.64 0.5426 0.505 0.0245 

20 0.62 0.5419 0.489 0.0166 

21 0.6 0.5414 0.4735 0.0127 

22 0.58 0.541 0.4577 0.0083 

23 0.56 0.5408 0.4418 0.0058 

24 0.54 0.5406 0.426 0.004 
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25 0.52 0.5406 0.41 0.0027 

26 0.5 0.5404 0.3944 0.0018 

 

 

 
 

                 Figure15. The blue line is for different values of 𝑓 and the red line is  

Different values of  𝜙. Blue line is for 𝑓 and the redline is 𝜙 
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                 Figure 16. The blue line is for different values of  

 

 

Diving by (-) (19) becomes  

𝑓′

𝑓
(𝜂 − 𝜙) = 𝛾𝜙′ − 3 +

2𝛾𝜙

𝜂
                                                                                     (4.2) 

If the left-hand side which contains 𝑓′/𝑓 be neglected the approximate solution of 

(4.2) which  vanishes at =0 is  

𝜙 = 𝜂/𝜙                                                                                                                   (4.3) 

The line 𝜙 = 𝜂/𝛾 is shown in figure above. It will be seen that the points are 

calculated by the step by step method nearly run into this line. The difference appears 

to be due to the accumulation of errors in calculation. 
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3.2 Approximate Formulae 

The fact that the  curve seems to leave the straight line 𝜙 = 𝜂/𝛾 rather rapidly 

remaining close to it over the range =0 to =0.5 suggests that an approximate set of 

formula might be assuming  

𝜙 =
𝜂

𝛾
+  𝛼𝜂𝑛                                                                                                            (4.4) 

Where n is a positive number which may be expected to be more than, say, 3 or 4. If 

this formula applies at =1. Then from equation (4.4) and (3.17b) 

1

𝛾
+ 𝛼 =  

2

𝛾+1
   

𝛼 =  
𝛾−1

𝛾(𝛾+1)
                                                                                                                (4.5) 

Now differentiate the equation with respect to 𝜂  

𝜙′ =
1

𝛾
+ 𝑛𝛼𝜂𝑛−1       

The above value insert in equation (4.2) 

𝑓′

𝑓
=  𝛼𝛾(𝑛 + 2)(𝛾 + 1)/(𝛾 − 1)     

From (3.14) and (3.15b), (3.16b), (3.17b) the true value of 𝑓′/𝑓  at =1 is 

2𝛾2+7𝛾−3

𝛾−1
                                                                          

Equating the above two equation are  

𝑛 =
7𝛾−1

𝛾2−1
                                                                                                                    (4.6) 

Now substitute the (4.4) in the equation (4.2), with new value of 𝑛 and 𝛼   

𝑓′

𝑓
=

(𝑛+2)𝛼𝛾2𝜂𝑛−2

𝛾−1−𝛾𝛼𝜂𝑛−1
                                                                                                      (4.7) 

Now integrating both side of the equation (4.7) 

log 𝑓 = log
2𝛾

𝛾+1
−

2𝛾2+7𝛾−3

7−𝛾
log(

𝛾+1

𝛾
−

𝜂𝑛−1

𝛾
)                                                             (4.8) 
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Now insert the value of 𝜙 and 𝜙′ in the equation number (3.9a) and the new value of 

 is 

log 𝜓 = log
𝛾+1

𝛾−1
− ∫

3+(𝑛+2)𝛼𝛾𝜂𝑛−1

(𝛾−1)𝜂−𝛼𝛾𝜂𝑛
𝑑𝜂

1

𝜂
                                                                    (4.9) 

Integrating this and substituting for 𝛼 from (4.5) 

log 𝜓 = log
𝛾+1

𝛾−1
+

3

𝛾−1
log 𝜂 − 2

(𝛾+5)

7−𝛾
log(

𝛾+1−𝜂𝑛−1

𝛾
)                                             (4.10) 

When 𝜂 is small this formula gives 

𝜓 = 𝐷𝜂3 (𝛾−1)⁄                                                                                                         (4.11) 

Where  

log 𝐷 = log
𝛾+1

𝛾−1
− 2

(𝛾+5)

7−𝛾
log(

𝛾+1

𝛾
)                                                                         (4.12) 

When =1.2929, using (4.12) gives D=2.2124 so that 

D=2.2124 𝜂11.986                                                                                                    (4.13)   

3.3 Blast Wave Expressed in Terms of the Energy of the Explosion  

     In the equation (3.18) it can be seen that E/0A
2
 is a function of  only. Evaluating 

the integral in (3.18) for =1.2929, and using the values for calculation, it is found  

∫ 𝜂2𝜙2𝜓𝑑𝜂 = 0.113
1

0
  

And 

∫ 𝜂2𝑓𝑑𝜂
1

0
= 0.2636  

So the total kinetic energy is as follows 

K.E.= 2𝜋(0.113)𝜌0𝐴2 = 0.7096𝜌0 𝐴
2                                                                  (4.14) 

And the Heat energy is 

H.E.= 
4𝜋

1.2929𝑋0.2929
(. 2636)𝜌0𝐴2 = 8.743𝜌0𝐴2                                                     (4.15) 

Hence the total energy 

E= 0.7096𝜌0 𝐴
2 +  8.743𝜌0𝐴2 = 9.4436 𝜌0𝐴2                                                    (4.16) 
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Pressure 

The pressure p at any point is found 

𝑃 = 𝑃0𝑅−3𝑓
𝐴2

𝑎2 =  𝑅−3𝑓
𝜌0 𝐴

2

𝛾
= 0.1059 𝑅−3𝐸𝑓                                                    (4.17) 

Now the maximum pressure is at 𝑓 = 1.1277 at r=R . Hence the maximum pressure 

is 

𝑝𝑚𝑎𝑥 =  0.1194𝑅−3𝐸                                                                                             (4.18) 

Velocity of air and shock wave 

The velocity u of the gas at any point is  

 𝑢 = 𝑅−
3

2𝐴𝜙 =  𝑅−
3

2 𝐸
1

2(𝐵𝜌0)−
1

2𝜙                                                                          (4.19) 

The velocity of radial expansion of the disturbance is, from  (3.6), 

𝑑𝑅

𝑑𝑡
= 𝐴𝑅−

3

2                                                                                                              (4.20) 

So that, if t is the time since the begging of the explosion, 

𝑡 =  
2

5
𝑅−

5

2(𝐵𝜌0)
1

2𝐸−
1

2                                                                                              (4.21) 

Now   

𝐸 = 𝐵𝜌0𝐴2 = 9.4436 𝜌0𝐴2                                                                                 (4.20a) 

So,  

B= 9.4436                                                                                                             (4.20b) 

Insert the value B in (4.21) 

 𝑡 =
2

5
𝑅

5

2𝜌𝑜

1

2(9.4436)
1

2 𝐸−
1

2 = 1.22922 𝑅
5

2𝜌𝑜

1

2𝐸−
1

2                                                   (4.20c) 

It can be seen that pressure ratio is only depended on 𝐸𝑅−3and it is not depended on 

the atmospheric density𝜌0. But the time scale is depended on 𝜌0

1

2 .  So now to calculate 

the local pressure i.e a particle will subject feel the pressure due to the blast wave 

passed through a given location. 
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 If 𝑡0 is the time since initiation taken for the wave to reach radius 𝑅𝑜 the pressure at 

time t at 𝑅𝑜 is given by 

𝑝

𝑝0
= (

𝑅0

𝑅
)

3 𝑓

[𝑓]𝜂=1
                                                                                                      (4.22) 

Where 𝑝1 is the pressure in the shock wave as it passed over radius 𝑅0 at the time 𝑡0 , 

R is the radius of the shock wave at time t and 𝜂 = 𝑅0/𝑅 . [𝑓]𝜂=1 is the maximum 

value of 𝑓 at =1.2929.  

Now from equation (4.21) 𝜂 = (𝑡/𝑡0)2 5⁄   

And 

𝑝

𝑝1
=

1

[𝑓]𝜂=1
(

𝑡0

𝑡
)

6 5⁄

[𝑓](𝑡0 𝑡⁄ )2 5⁄                                                                                  (4.23) 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 5: RESULT AND DISCUSSION 

 

 

     In this section the results from Analytical process is discussed and compared with 

the numerical result. While calculating the pressure ratio at different time step, only 

the primary shock wave phenomena is considered. The secondary and tertiary shocks 

are neglected.  

    To calculate the pressure ratio equation (4.40) is used. Local 𝑓 is calculated by 

equation (4.26). The calculated value of 𝑓 by equation doesn’t always match with the 

step by step numerical value. If the graph is noticed then it can be seen that the 

equation holds good at after the sharp downward. 

    Here are the different pressure ratio calculated at different instances by the and 

simultaneously the results from the numerical value is shown below. 

Serial 

No 
Time Numerical value Analytic value 

1 0.15 1 0.025647 

2 0.2 5.33 0.01816 

3 0.25 4.5 0.013893 

4 0.3 1.4 0.011163 

5 0.35 1.1 0.009278 

6 0.4 1 0.007904 

7 0.45 0.9 0.006862 

8 0.5 0.8 0.006047 

9 0.55 0.7 0.005394 

10 0.6 0.7 0.004859 

11 0.625 1.2 0.004627 

12 0.65 1 0.004414 

13 0.7 0.9 0.004038 

14 0.75 0.85 0.003718 

15 0.8 0.8 0.003441 

16 0.85 0.7875 0.003199 
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Serial No Time Numerical value Analytic value 

17 0.9 0.775 0.002987 

18 0.95 0.7625 0.002799 

19 1 0.75 0.002632 

20 1.05 0.75 0.002483 

21 1.1 0.75 0.002348 

22 1.15 0.75 0.002226 

23 1.2 0.8 0.002115 

24 1.25 0.8 0.002014 

25 1.3 0.9 0.001921 

26 1.35 0.75 0.001836 

27 1.4 0.7 0.001758 

28 1.45 0.7 0.001685 

29 1.5 0.7 0.001618 

30 1.55 0.7 0.001556 

31 1.6 0.7 0.001498 

32 1.65 0.7 0.001443 

33 1.7 0.7 0.001393 

34 1.75 0.8 0.001345 

35 1.8 0.8 0.0013 

36 1.85 0.8 0.001258 

37 1.9 0.8 0.001219 

38 1.95 0.9 0.001181 

39 2 0.9 0.001146 

40 2.05 0.9 0.001112 

41 2.1 0.9 0.001081 

42 2.15 0.9 0.001051 

43 2.2 0.9 0.001022 

44 2.25 0.9 0.000995 

45 2.3 0.9 0.000969 

46 2.35 0.9 0.000944 

47 2.4 1 0.000921 

48 2.5 1 0.000877 

49 3 1 0.000704 

50 3.5 1 0.000585 

51 4 1 0.000499 
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                  Figure17. Time versus Pressure ratio total time frame (Analytic Method) 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
re

ss
u

re
 R

at
io

 

Time 

Time-Pressure ratio 



53 
 

 

 
 

         Figure18. Time versus Pressure ratio for only primary shock wave  
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Figure19. Numerical time versus Pressure ratio 

 

It can be seen in the numerical graph that the pressure ratio at the beginning increased 

rapidly and then slowed down rapidly. In the analytical results (Fig. 17)are get 

reduced very fast at the beginning and after that it become almost stable same things 

can be seen in the shock wave diminished the pressure ratio become almost constant 

(Fig. 19). In the figure 18, the pressure ratio is reduced very fast till 0.25 then the 

reduction rate gets reduced and after the portion reduction rate gets slow



 

 

CHAPTER 6: CONCLUSION & FURTHER STUDY 

                                       

 

Looking at the numerical graph and the analytical graph has the similarity and the 

dissimilarity as well. Both the graph have same trend of reduction in the pressure ratio 

except for the secondary and tertiary phase. In the analytical section there is no 

secondary and tertiary shock wave (they are not calculated). When Taylor had given 

his famous theory, probably there was no concept of secondary and tertiary shock 

wave concept until in 1960’s. But another very important point to look is that the 

results don’t match at all. All the results are way different from the numerical results. 

The authors of the numerical experiment had claimed that they had compared their 

results with the experiment. So I can guess that their something in the Taylor’s 

calculation is missing perhaps the calculation of secondary and tertiary shock wave 

may give some clue which has not calculated in this research paper.  

     In the further study the theory of secondary and tertiary shock can be brought to 

the picture, so that the whole result can be seen. In the main numerical paper the 

authors had also studied the shock reflection from a plate due to strong and weak 

shock. So the in the further study the same things can be studied on analytically. 

     One more thing is very important, while doing the numerical calculation the 

authors had used a numerical coding, the same numerical model can be recreated by 

commercial software like “Ansys Explicit Analysis”.  

     It can be also studied the how the different kind lands element like soil, stone 

reacts to the explosion. Not only that the different elements which are used to make 
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building reacts to the blast. By doing so there can possibilities to design and 

manufacture different kind material which can be shock resistance. This is because 

there are a lots of countries which suffer from regular terrorist attack, they can build 

houses or other constructions, so that at least some life can be saved, every single life 

is more precious than any jewel in the world. 
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