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ABSTRACT

XINTIAN YU. Nonparametric predictive regression. (Under the direction of DR.
JIANCHENG JIANG)

In financial time series nonlinear effects and time-varying effects are observed. In

this dissertation we propose a predictive regression model with time varying coeffi-

cients and functional coefficients. It allows for nonstationary predictors. We establish

asymptotics for the coefficient estimation and show oracle properties of the result-

ing estimators under stationary and nonstationary settings. Simulations demonstrate

good finite sample performance of our estimators. A real example illustrates the use

of our methodology.
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CHAPTER 1: INTRODUCTION

Nonlinear effects and time-varying effects exist widely in financial markets. For ex-

ample, for the capital asset pricing model (CAPM) [see the books by Cochrane (2001)

and TSAY (2002) for details], Blume (1975) suggested that beta coefficients change

over time, and Fabozzi (1978) revealed that many stocks’ beta coefficients move ran-

domly through time rather than remain stable. The nonstationarity of beta and the

time-varying behavior of equity return co-movements may exist, see Blume (1981),

McDonald (1985), Lee (1986), Levy (1971), Rosenberg (1985), Kaplanis (1988), and

Koch (1991). Another example is for the relationship between the electricity demand

and other variables such as the income or production, the real price of electricity, and

the temperature. Chang (2003) found that this relationship may change over time.

These motivate us to consider the following time-varying coefficient model,

Yt = β(t)>Xt + εt, (1.1)

for fitting financial data, where Yt and εt are scalar, Xt = (xt1 , . . . , xtd)
> is a vector

of covariates with dimension d and β(·) is a d× 1 vector function.

It is well known that many variables in financial markets are nonstationary. People

are interested in how models could be built for those nonstationary data. Granger

(1981) and Engle (1987) introduced cointegration models in 1990s, which are built

on nonstationary X and nonstationary Y . Cointegration models have attracted an
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amount of research attentions in econometrics since then. The concept of cointegra-

tion provides an attractive and appealing characterization theoretically, but there is

only a few evidences of cointegration found in empirical applications. This empiri-

cal consequence is probably due to constant parameters. That is, the cointegrating

parameters are constant in the cointegration model introduced by Engle (1987).

A general conclusion of empirical studies is that constant cointegration relationships

cannot be found from these time series. Although the present value model suggests

that asset prices are cointegrated with market fundamentals, empirically it is well

known that stock prices are much more volatile than market fundamentals.

A more general set-up for a class of cointegration models is the following model:

Yt = γ(zt)
>Xt + εt, (1.2)

where Yt , zt and εt are scalar, Xt = (xt1 , . . . , xtd)
> is a vector of covariates with

dimension d and β(·) is a d× 1 vector function.

Cai and Park (2009) considered model (1.2) for nonstationary time series data.

Xiao (2009) also considered (1.2) for nonstationary time series data and focused on

inference procedures for both parameter instability and the hypothesis of cointegra-

tion.

In application with models (1.1)-(1.2), we predict the stock price of Morgan Stanley

(Yt) using the predictors, S&P 500 (Xt) and log ”difference” of 5 year daily Treasury

bond yield rate and 6 month daily Treasury bill yield rate (zt). We estimate β(·)

functions in model (1.1) by running local linear smoother and show them in the top

panels in Figure 1. We estimate γ(·) functions in model (1.2) also by running local
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linear smoother and show them in the bottom panels in Figure 1. Figure 2 displays

estimated residuals from the two models. Both residuals are stationary according to

the ADF test in Table 1. This indicates that both time-varying effects and nonlinear-

ity effects are found here. Naturally, one would ask: ”Which model is better? Which

effect is true? Do these two effects exist in the relationship between the predictors and

response?” To address these important questions, we propose the following model:

yi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)}>xi + εi. (1.3)

Since model (1.3) includes models (1.1) and (1.2) as specific examples, it can be

used to validate if models (1.1) and (1.2) are appropriate for fitting the above data.

We fit model (1.3) with real data and compare the goodness of fit with models

(1.1) and (1.2) in the Chapter 8.

We propose a two-step estimation method to estimate the time-varying and non-

linear coefficients for stationary or nonstationary explanatory variables. We show

that our estimators are ”oracle” in the sense that the asymptotic distribution of the

estimator of one coefficient function is the same as if other coefficient functions are

known.

The rest of this dissertation is organized as follows. In Chapter 2 we show the model

we consider in this dissertation. In Chapter 3 we give a brief introduction of the two-

step estimation procedure. In Chapter 4 we consider the case when xi is stationary.

The asymptotic results for stationary xi are showed here. In Chapter 5 we consider

the case when xi is nonstationary. The asymptotic results for nonstationary xi are

showed here. In Chapter 6 we run simulation for both stationary xi and nonstationary
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xi. In Chapter 7 we consider a real example. Concluding remarks are presented in

Chapter 8. Proofs are contained in the Appendix.

Table 1: ADF test for estimated residuals in model (1.1) and estimated residuals in
model (1.2)

ADF Test Statistic P value
Estimated residuals in model (1.1) -5.6321 < 0.01
Estimated residuals in model (1.2) -4.311 < 0.01
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functions in the bottom panels are estimated from model (1.2)
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uals from model (1.2)



CHAPTER 2: MODEL WITH TIME VARYING AND NONLINEAR EFFECTS

Assume a sample {yi}ni=1 are generated from

yi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)}>xi + εi. (2.1)

xi can be a p-dimensional I(0) or I(1). xi does not involve constant. ti = i/n. zi is

I(0). E(εi|xi, zi) = 0. var(εi|xi, zi) = δ2. β0(ti) and γ0(zi) both are scalar. β1(ti) and

γ1(zi) both are p × 1 function vectors. εi is a strictly α-mixing stationary process.

We assume E[γ0(zi)] = E[γ1(zi)] = 0 for identifiability.

When xi and yi both are nonstationary and εi is stationary, we say that xi and yi

are cointegrated with a varying coefficient cointegration vector β1(ti) + γ1(zi), which

are function vectors of time ti and smooth functions of zi. This setting is more general

than the usual assumption that the cointegration vector is constant.



CHAPTER 3: ESTIMATION

Horowitz (2004) considered the nonparametric estimation of an additive model with

a link function, they proposed a two-step estimation method to estimate the unknown

link function. In the first step, least squares is used to obtain a series approximation

to each unknown function. The first-step estimators are inputs to the second stage.

But this method was limited on additive model and i.i.d. variables. Cai and Park

(2009) showed local linear smoother could be used to estimate the unknown functions

even though the independent variables and dependent variable were nonstationary.

Their estimators had good properties. Xiao (2009) showed local polynomial could

be used to estimate the unknown functions in the same situation. We can estimate

all our unknown functions by local linear smooth or local polynomial method at the

same time, however, the convergent rate of estimators will be slow. If we know the

functions of ti, we can estimate the unknown functions of zi by local linear smoother

with a fast convergent rate. If we know functions of zi, we can estimate the unknown

functions of ti by local linear smoother with a fast convergent rate. That is the basic

idea of our two-step estimation method. If we have good estimators in the first-step

estimation, we should expect estimators from local linear smoother in the second step

have the same properties as those in Cai and Park (2009) and Xiao (2009).
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3.1 Orthogonal Series Estimation

Without loss of generality, we assume that the support of zt is Z = [−1, 1]. We

assume Eγ0(z) = Eγ1(z) = 0 so that we could identify γ0(·) and γ1(·). Let {pk(·),

k = 1, 2, . . .} be a standard orthogonal basis for smooth functions on [−1, 1] which

satisfy
∫ 1

−1
pk(x)dx = 0 and

∫ 1

−1

pk(x)pj(x) dx =


1 if k = j;

0 otherwise.

One choice of the orthogonal basis is orthogonal spline basis. Let Pκ(t, z)

=
[
1, p1(t), . . . , pκ(t), p1(z), . . . , pκ(z)

]>
and Θκb = (θ0,b, θ11,b, . . . , θ1κ,b, θ21,b, . . . , θ2κ,b)

>

for b = 0, 1, . . . , p. Then P>κ (t, z)Θκ0 is a series approximation to β0(t) + γ0(z),

and P>κ (t, z)Θκd is a series approximation to the dth component of β1(t) + γ1(z) for

d = 1, . . . , p. Our orthogonal series estimator of β0(t) + γ0(z) and the dth component

β1d(t) + γ1d(z) of β1(t) + γ1(z) are respectively defined as

β̃0(t) + γ̃0(z) = P>κ (t, z)Θ̂κ0 and β̃1d(t) + γ̃1d(z) = P>κ (t, z)Θ̂κd,

where

(Θ̂κ0, Θ̂κd) = arg min
Θκj

n∑
i=1

{
yi − P>κ (ti, zi)Θκ0 −

p∑
d=1

Θ>κdPκ(ti, zi)xi,d
}2
, (3.1)

where xi,d is the dth component of xi.

Define following notations:

B =
[
Θ>κ0,Θ

>
κ1,Θ

>
κ2, . . . ,Θ

>
κp]
>.

B̂ =
[
Θ̂>κ0, Θ̂

>
κ1, Θ̂

>
κ2, . . . , Θ̂

>
κp

]>
.
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Ai =
[
Pκ(ti, zi)

>, Pκ(ti, zi)
>xi,1, Pκ(ti, zi)

>xi,2, . . . , Pκ(ti, zi)
>xi,p]

>.

Equation 3.1 can be written as

B̂ = arg min
Θκj

n∑
i=1

{
yi − A>i B

}2
. (3.2)

Then B̂ can be found. B̂ =
(∑n

i=1AiA
>
i

)−1(∑n
i=1 yiAi

)
. In order to keep Eγ0(z) =

Eγ1(z) = 0, we have to centralize γ̃0(z) and γ̃1(z). Denote γ̃∗b (z) = γ̃b(z) − Eγ̃b(z),

β̃∗b (t) = β̃b(t) + Eγ̃b(z). Then Eγ̃∗b (z) = 0. γ̃∗b (z) and β̃∗b (t) are first-step estimators.

The orthogonal series estimators will be employed as initial estimators for regression

components in the second-step estimation introduced below. The orthogonal series

estimators are used to ensure that the biases of first-step estimators converge to zero

rapidly.

3.2 Local Smoother

It is well known that for any t ∈ [0, 1] and ti in the neighborhood of t, by Taylor’s

expansion,

βk(ti) ≈ βk(t) + β′k(t)(ti − t) ≡ ak + bk(ti − t), k = 0, 1,

and for any zi in the neighborhood of z, by Taylor’s expansion,

γk(zi) ≈ γk(z) + γ′k(z)(zi − z) ≡ ck + dk(zi − z) k = 0, 1.

Note that a1, b1, c1 and d1 are unknown vectors for every t and z. a0, b0, c0 and d0

are two unknown constants for every t and z. In the second step, we minimize

n∑
i=1

[yi − β̃∗0(ti)− γ̃∗0(zi)− β̃∗1(ti)
>xi − {c1 + d1(zi − z)}>xi]2Kh1(zi − z) (3.3)
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and get the minimizer ĉ1 which estimates γ1(z) denoted by γ̂1(z), where Kh1(·) =

1
h1
K( ·

h1
). Similarly, we minimize

n∑
i=1

[yi − β̃∗0(ti)− γ̃∗0(zi)− γ̃∗1(zi)
>xi − {a1 + b1(ti − t)}>xi]2Kh2(ti − t), (3.4)

n∑
i=1

[yi − γ̃∗0(zi)− β̃∗1(ti)
>xi − γ̃∗1(zi)

>xi − {a0 + b0(ti − t)}]2Kh0(ti − t) (3.5)

and

n∑
i=1

[yi − β̃∗0(ti)− β̃∗1(ti)
>xi − γ̃∗1(zi)

>xi − {c0 + d0(zi − z)}]2Kh4(zi − z). (3.6)

We get minimizer â0, â1 and ĉ0 which estimates β0(t), β1(t) and γ0(z) denoted by

β̂0(t), β̂1(t) and γ̂0(z).

We could see from equation (3.3), (3.4), (3.5) and (3.6) that we estimate the un-

known functions each time as if we have already known the other unknown functions.

We show oracle properties of our estimators in two cases: stationary xi and nonsta-

tionary xi in Chapter 4 and Chapter 5. We derive close form of our estimators in the

following.

Define following notations:

Pκ(t) =
(
1, p1(t), . . . , pκ(t)

)>
. Pκ(z) =

(
p1(z), . . . , pκ(z)

)>
.

Θκbt = (θ0,b, θ11,b, . . . , θ1κ,b)
>. Θκbz = (θ21,b, . . . , θ2κ,b)

>, for b = 0, 1, · · · p.

Θ̂κbt = (θ̂0,b, θ̂11,b, . . . , θ̂1κ,b)
>. Θ̂κbz = (θ̂21,b, . . . , θ̂2κ,b)

>, for b = 0, 1, · · · p.

It can be easily check that

Pκ(t, z) = [Pκ(t)
>, Pκ(z)>]>.
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Θκb = [Θ>κbt,Θ
>
κbz]
>.

Θ̂κb = [Θ̂>κbt, Θ̂
>
κbz]
>.

β̃0(ti) = P>κ (ti)Θ̂κ0t.

β̃1(ti)
>xi =

∑p
d=1 P

>
κ (ti)Θ̂κdtxi,d.

γ̃0(zi) = P>κ (zi)Θ̂κ0z.

γ̃1(zi)
>xi =

∑p
d=1 P

>
κ (zi)Θ̂κdzxi,d.

β̃∗0(ti) = P>κ (ti)Θ̂κ0t + Eγ̃0(zi).

β̃∗1(ti)
>xi =

∑p
d=1[P>κ (ti)Θ̂κdt + Eγ̃0(zi)]xi,d.

γ̃∗0(zi) = P>κ (zi)Θ̂κ0z − Eγ̃0(zi).

γ̃∗1(zi)
>xi =

∑p
d=1[P>κ (zi)Θ̂κdz − Eγ̃0(zi)]xi,d.

We have the following notations:

Wih1(z) = (1, zi−z
h1

)⊗ x>i .

A∗ =
∑n

i=1 Wih1(z)>Wih1(z)Kh1(zi − z).

B∗ =
∑n

i=1[yi − β̃∗0(ti)− γ̃∗0(zi)− β̃∗1(ti)
>xi]Wih1(z)>Kh1(zi − z)

=
∑n

i=1[yi − P>κ (ti)Θ̂κ0t − P>κ (zi)Θ̂κ0z −
∑p

d=1[P>κ (ti)Θ̂κdt − Eβ̃0(ti)]xi,d]Wih1(z)>

Kh1(zi − z).

After we take the first derivative of equation (3.3), we will have the following

solution for (c1, h1d1): ĉ1

h1d̂1

 = [A∗]−1B∗.

Similarly â0, ĉ0 and â1 could be easily determined.



CHAPTER 4: MODELS WITH STATIONARITY XI

4.1 Notations And Conditions

Some notations:

Aik denotes the kth component of Ai.

Q̂κ = n−1
∑n

i=1AiA
>
i . Then Qκ = EQ̂κ. Let Qij denote the (i,j) element of Qκ.

Zk is d(κ)× n matrix whose ith column is Ai.

Epi(tk)pj(zk) = Cij for all i, j from 1 to κ and k from 1 to n.

for j 6 0, µj(K) =
∫∞
−∞ υ

jK(υ)dυ and νj(K) =
∫∞
−∞ υ

jK2(υ)dυ.

S = E(xix
>
i

∣∣zi = z), S0 = E(xix
>
i

∣∣ti = t).

γ(s)(z) = dsγ(z)/dzs for s = 1 and 2.

R(zi) = γ1(zi)− γ1(z)− γ(1)
1 (z)(zi − z).

A(ti) = [Pκ(ti)
>, Pκ(zi)

>, Pκ(ti)
>xi,1, Pκ(zi)

>·0, Pκ(ti)>xi,2, Pκ(zi)>·0, · · · , Pκ(ti)>xi,p,

Pκ(zi)
> · 0]>.

Snk(B) = 1
n

∑n
i=1(yi − A>i B)2.

Sk(B) = E(Snk(B)).

θκ0 = arg minSk(B).

bκ0(i) = β0(ti) + γ0(zi) + (β1(ti) + γ1(zi))
>xi − A>i θκ0.

bκ0(i) = β0(ti) + γ0(zi) + β1(ti)
>xi − Ai

>
θκ0.

θk = [Θ>κ0t,Θ
>
κ0z,Θ

>
κ1t,Θ

>
κ1z,Θ

>
κ2t,Θ

>
κ2z, · · · ,Θ>κdt,Θ>κdz]>.
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θk = [Θ>κ0t,Θ
>
κ0z,Θ

>
κ1t,Θ

>
κ1z ∗ 0,Θ>κ2t,Θ

>
κ2z ∗ 0, · · · ,Θ>κdt,Θ>κdz ∗ 0]>.

Σν =

 ν0(K)S ν1(K)S

ν1(K)S ν2(K)S

.

The following conditions are needed to derive the asymptotic properties of the

proposed estimators.

(A1) xi is p-dimensional I(0). Let xi,j is the jth component of xi, without loss of

generality, assume xi,j = bjxi−1,j+δi,j, where 1 6 i 6 n, 1 6 j 6 p, δi,j is independent

with Eδi,j = 0, V arδi,j = ζ2
j and E(δi,jδi,k) = ζj,k for 1 6 k 6= j 6 q so that

E(xi,jxi,k) =
ζj,k

1−bjbk
. There are constants Cj,k < ∞ such that E(x2

i,jx
2
i,k) = Cj,k < ∞

for any j, k from 1 to p and any i from 1 to n.

(A2) ti = i/n. εi has finite fourth moment. E(εi|xi, zi) = 0. var(εi|xi, zi) = δ2 is a

positive constant.

(A3) zi is I(0). f(z) is continuously differentiable in a neighborhood of z and

fz(z) > 0.

(A4)(i) Assume that E[γ0(zi)] = E[γ1(zi)] = 0.

(ii) γ0(z) and γ1(z) are twice continuously differentiable in z for all z ∈ [−C,C],

where C is any constant in <. S is positive-definite and continuous in a neighborhood

of z.

(iii) β0(t) and β1(t) are twice continuously differentiable in t for all t ∈ [0, 1], S0 is

positive-definite and continuous in a neighborhood of t.

(A5) There are constants CQ <∞ and cλ > 0 such that |Qij| 6 CQ and λκ,min > cλ

for all κ and all i, j = 1, ..., d(κ).

(A6) Assume bκ0(i) = O(κ−2) for all i from 1 to n.
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(A7) (i) Assume h1 = Ch1n
−1/5, h2 = Ch2n

−1/5, h0 = Ch0n
−1/5 and h4 = Ch4n

−1/5

for some constants Ch1 ,Ch2 , Ch3 and Ch4 satisfying 0 < Ch1 < ∞, 0 < Ch2 < ∞,

0 < Ch0 <∞ and 0 < Ch4 <∞.

(ii) κ = Cκn
ν for some constant Cκ satisfying 0 < Cκ < ∞ and some ν satisfying

1
5
< ν < 3

10
.

(A8) Assume supti,zi ‖Pκ(ti, zi)‖ = O(κ1/2).

(A9) Assume the kernel function K(·) is a symmetric and continuous density func-

tion supported by [−1, 1], µ0(K) = 1 and µ1(K) = 0.

We give some comments on the above conditions. We have assumption A1 to make

the proof can be done easily. Assumptions A2 and A3 are regularity conditions. As-

sumption A4 defines the sense in which γ1(zi), γ2(zi), β1(t) and β2(t) must be smooth.

Assumption A4(i) is needed for identification. Assumptions A4(ii) and A4(iii) are

smoothness conditions. Assumption A5 insures the existence and nonsingularity of

the covariance matrix of the asymptotic form of the first-step estimators. This is

analogous to assuming that the information matrix is positive-definite in parametric

maximum likelihood estimation, see Horowitz (2004). Assumption A6 bounds the

magnitudes of the basis functions and insures that errors in the series approximations

to the γ1(z) and γ2(z) converge to zero sufficiently rapidly as κ → ∞. Assumption

A7 states the rates at which κ → ∞, h0 → ∞, h1 → ∞, h2 → ∞ and h4 → ∞

as n → ∞. The assumed convergent rate of h0, h1, h2 and h4 is well known to be

asymptotically optimal for kernel regression when the conditional mean functions are

twice continuously differentiable. The required rate of κ insures that the asymptotic

bias and variance of the first-step estimators are sufficiently small to achieve the n−2/5
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rate of convergence in the second-step, see Horowitz (2004). Assumption A8 helps

the second-step estimators to avoid the curse of dimensionality. These conditions are

satisfied by splines and the Fourier basis. To simplify the proofs of the theoretical

results, K(·) is assumed to have a compact support. It can be relaxed to allow kernel

with noncompact support if we put restrictions on the tail of K(·), see Jiang J. (2008)

4.2 Asymptotics

In this section, we establish the asymptotic of two-step estimators when xi is sta-

tionary. Detail proof of the following Theorems are provided in Appendix.

Theorem 4.1. Under conditions (A1) ∼ (A9),

√
nh1[γ̂1(z)− γ1(z)− h21

2
µ2(K)γ

(2)
1 (z){1 + op(1)}] d→ N{0, fz(z)−1δ2S−1ν0(K)}.

Theorem 4.2. Under conditions (A1) ∼ (A9),

√
nh2[β̂1(t)− β1(t)− h22

2
µ2(K)β

(2)
1 (t){1 + op(1)}] d→ N{0, δ2S−1

0 ν0(K)}.

Theorem 4.3. Under conditions (A1) ∼ (A9),

√
nh4[γ̂0(z)− γ0(z)− h24

2
µ2(K)γ

(2)
0 (z){1 + op(1)}] d→ N{0, fz(z)−1δ2ν0(K)}.

Theorem 4.4. Under conditions (A1) ∼ (A9),

√
nh0[β̂0(t)− β0(t)− h20

2
µ2(K)β

(2)
0 (t){1 + op(1)}] d→ N{0, δ2ν0(K)}.

Above theorems can be extended to that xi, zi, ε, ζ is a strictly α-mixing stationary

process with more than second moment, See assumption A6 in Cai and Park (2009).

Theorem 4.1 is exactly the same as that in Cai (2000). The bandwidth is taken to be

of the order n−1/5 so that γ̂1(z)− γ1(z) , β̂1(t)− β1(t), γ̂0(z)− γ0(z) and β̂0(t)− β0(t)

reach the optimal convergent rate.



CHAPTER 5: MODEL WITH NONSTATIONARY XI AND STATIONARY ZI

5.1 Notations And Conditions

xi, which is a vector of I(1) process, can be expressed as xi = xi−1 + δi = x0 +∑i
s=1 δs(i ≥ 1), where δs is an I(0) process with mean zero and variance Ωδ.

x[nr]√
n

=
xi√
n

=
x0√
n

+
1√
n

i∑
s=1

δs =
x0√
n

+
1√
n

[nr]∑
s=1

δs, (5.1)

where r = i/n and [x] denotes the integer part of x, see Cai and Park (2009).

Under some regularity conditions, Donsker’s theorem, see Theorems 14.1 and 19.2

in Billingsley (1999) for i.i.d. δi and ρ-mixing δi, generalizes in an obvious way to the

multivariate cases and leads to

x[nr]√
n

=⇒ Wδ(r) as n −→∞, (5.2)

where Wδ(·) is a p-dimensional Brownian motion on [0, 1] with covariance matrix Σδ.

For any Borel measurable and totally Lebesgue integrable function Γ(·), one has

1

n

n∑
i=1

Γ(x[nr])√
n

d−→
∫ 1

0

Γ(Wδ(s))ds as n −→∞, (5.3)

where
d−→ denotes the convergence in distribution, so that, for l = 1, 2,

1

n

n∑
i=1

(
x[nr]√
n

)⊗`
d−→
∫ 1

0

Wδ(s)
⊗`ds ≡ Wδ,` as n −→∞, (5.4)

see Theorem 1.2 in Berkes (2006) and Cai and Park (2009).
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Define Q̂∗κ = n−2
∑n

i=1 AiA
>
i and Q∗κ = EQ̂∗κ. Let Q∗ij denote the (i,j) element of

Q∗κ.

(B1) xi is p-dimensional I(1). xi,j is the jth component of xi. Without loss of

generality, assume xi,j = xi−1,j + δi,j, where 1 6 i 6 n, 1 6 j 6 p, δ.,j is independent

with Eδ.,j = 0, V arδ.,j = ζ2
j .

(B2) (i) Assume h1 = Ch1n
−2/5 for a constant Ch1 satisfying 0 < Ch1 < ∞, κ =

Cκn
ν for a constant Cκ satisfying 0 < Cκ <∞ and a constant ν satisfying 3

20
< ν < 7

20
.

(ii) Assume h2 = Ch2n
−2/5 for a constant Ch2 satisfying 0 < Ch2 < ∞, κ = Cκn

ν

for a constant Cκ satisfying 0 < Cκ <∞ and a constant ν satisfying 3
20
< ν < 7

20
.

(iii) Assume h0 = Ch0n
−1/5 for a constant Ch0 satisfying 0 < Ch0 < ∞, κ = Cκn

ν

for a constant Cκ satisfying 0 < Cκ <∞ and a constant ν satisfying 1
5
< ν < 3

10
.

(iv) Assume h4 = Ch4n
−1/5 for a constant Ch4 satisfying 0 < Ch4 < ∞, κ = Cκn

ν

for a constant Cκ satisfying 0 < Cκ <∞ and a constant ν satisfying 1
5
< ν < 3

10
.

(B3) Assume supx |bκ0(i)| = O(κ−2).

(B4) Assume supti,zi ‖Pκ(ti, zi)‖ = O(κ1/2) for all i from 1 to n.

(B5) There are constants CQ∗ < ∞ and cλ∗ > 0 such that |Q∗ij| 6 CQ∗ and

λκ,min > cλ∗ for all κ and all i, j = 1, ..., d(κ).

(B6) Assume ti = i/n, zi is stationary, εi has a finite fourth moment, E(εi|Xt, Zt) =

0, var(εi|Xt, Zt) = δ2, β0(ti) is scalar and εi is a strictly α-mixing stationary process.

(B7) (i) Assume that E[γ0(zi)] = 0, E[γ1(zi)] = 0, γ0(z) and γ1(z) are twice

continuously differentiable in z for all z ∈ [−C,C], where C is any constant in <. S

is positive-definite and continuous in a neighborhood of z.

(ii) Assume that β0(t) and β1(t) are twice continuously differentiable in t for all
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t ∈ [0, 1]. S0 is positive-definite and continuous in a neighborhood of t.

(B8) Assume the kernel function K(·) is a symmetric and continuous density func-

tion supported by [−1, 1], µ0(K) = 1 and µ1(K) = 0

We give some comments on above conditions. Assumption B1 makes the proof

can be done easily. Assumption B2 states κ → ∞ and bandwidths converge to 0 as

n→∞. It requires the first-step estimators to be undersmooth. Undersmoothing is

needed to insure the sufficiently rapid convergence of the bias of the orthogonal series

estimators. We will show the asymptotic of two-step estimators does not depend on

the choice of κ if assumption B2 is satisfied. Optimizing the choice of κ would require

a rather complicated higher-order theory and is beyond the scope of this dissertation,

see Jiang J. (2008). Assumption B3 bounds the magnitudes of the basis functions and

insures that errors in the series approximations to γ0(z) and γ1(z) converge to zero

sufficiently rapidly as κ → ∞, See Horowitz (2004). Assumption B4 helps second-

step estimators to avoid the curse of dimensionality. These conditions are satisfied by

splines and the Fourier basis. α-mixing is one of the weakest mixing conditions for

weakly dependent stochastic processes. Stationary linear and nonlinear time series

or Markov chains fulfilling certain (mild) conditions are α-mixing with exponentially

decaying coefficients, see discussions and examples in Cai (2002), Carrasco (2002)

and Chen (2005). Assumption B5 insures the existence and nonsingularity of the

covariance matrix of the asymptotic form of the first-step estimators, see Horowitz

(2004). Assumption B6 can be relaxed to allow for conditional heteroscedasticity of

the form var(εi|xt, zt) = δ2(zt), i.e. the conditional variance is only a function of the

stationary zt. However, it is technically difficult to let it also be a function of the
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nonstationary xt; see Cai and Park (2009). Assumption B7 are smoothness condition.

Assumption B8 that K(·) be compactly supported is imposed for the sake of brevity

of proofs, and can be removed at the cost of lengthier arguments.

5.2 Asymptotics

In this section, we establish the asymptotic of the two-step estimators when xi is

nonstationary. Detail proofs of following Theorems are provided in Appendix.

Theorem 5.1. Under conditions (B1),(B2)(i),(B3) ∼(B8),

n
√
h1[γ̂1(z)− γ1(z)− h21

2
µ2(K)γ

(2)
1 (z){1 + op(1)}] d→MN

(
Σδ(z)

)
where MN(Σδ(z)) is a mixed normal distribution with mean zero and conditional

covariance matrix given by Σδ(z) = δ2ν0(K)W−1
δ,2 /fz(z).

Here, a mixed normal distribution is defined as follows. Conditional on the random

variable that appears at the asymptotic variance, the estimator has an asymptotic

normal distribution, see Phillips (1989) and Phillips (1998) for a formal definition of

a mixed normal distribution Cai and Park (2009).

We have similar results for β1(t).

Theorem 5.2. Under conditions (B1),(B2)(ii),(B3) ∼(B8),

n
√
h2[β̂1(t)− β1(t)− h22

2
µ2(K)β

(2)
1 (t){1 + op(1)}] d→MN

(
Σδ(t)

)
where MN(Σδ(t)) is a mixed normal distribution with mean zero and conditional

covariance matrix given by Σδ(t) = δ2ν0(K)W−1
δ,2 .

Following theorems show the asympototic of γ0(z) and β0(t)

Theorem 5.3. Under conditions (B1),(B2)(iii),(B3) ∼(B8),
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√
nh0[β̂0(t)− β0(t)− h20

2
µ2(K)β

(2)
0 (t){1 + op(1)}] d→ N{0, δ2ν0(K)}.

Theorem 5.4. Under conditions (B1),(B2)(iv),(B3) ∼(B8),

√
nh4[γ̂0(z)− γ0(z)− h24

2
µ2(K)γ

(2)
0 (z){1 + op(1)}] d→ N{0, f−1

z (z)δ2ν0(K)}.

The rate of convergence in Theorem 5.1 and Theorem 5.2 is n
√
h, which is the same

as those in Cai and Park (2009) and Xiao (2009) for nonstationary xi case. It implies

that our estimators, γ̂1(z) and β̂1(t), are ”oracle” in the sense that their asymptotic

distribution are the same as the case with known β1(t) and γ1(z). The bandwidth of

h1 and h2 is taken to be of the order n−2/5 so that γ̂1(z) − γ1(z) and β̂1(t) − β1(t)

reach the optimal convergent rate. The bandwidth of h0 and h4 is taken to be of the

order n−1/5 so that β̂0(t)−β0(t) and γ̂0(z)−γ0(z) reach the optimal convergent rate.



CHAPTER 6: SIMULATIONS

We have simulations to demonstrate that the proposed two-step estimators give

an accurate approximation to the unknown functions. Since B-spline, see C. (1978)

is efficient in digital computation and functional approximation, we here use the B-

spline basis in the first-step estimation. κ is chosen to be 8. Smaller number κ

or larger number κ will not have a big effect on the simulation results. We choose

standard normal kernel as our kernel function used in the simulation. We consider

the following model.

yi = β0(ti) + γ0(zi) + (β1(ti) + γ1(zi))xi,1 + (β2(ti) + γ2(zi))xi,2 + εi

= e3ti + 20ti + (0.5z3
i − 1.5z2

i − 0.5zi + 8) + (−40t2i − 20ti + 1.5z2
i − 7.5zi − 8)xi,1

+ (e4ti + 2ti + 3z2
i − 6zi − 16)xi,2 + εi, (6.1)

where γ0(zi) = 0.5z3
i − 1.5z2

i − 0.5zi + 8, γ1(zi) = 1.5z2
i − 7.5zi − 8 and γ2(zi) =

3z2
i − 6zi − 16. p = 2 in this example.

We assume that ε ∼ N(0, 0.25), zi = 0.3zi−1 + Ui and Ui ∼ Uniform (−4, 4)

in above model. The initial value for the first component of x is denoted by x1,1,

the first component of x at time i is denoted by xi,1, the initial values for the second

component of x is denoted by x1,2 and the second component of x at time i is denoted

by xi,2. Note that we choose those γ(·) functions so that E(0.5z3−1.5z2−0.5z+8) = 0,
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E(1.5z2 − 7.5z − 8) = 0 and E(3z2 − 6z − 16) = 0.

6.1 Stationary

Example 1:

Choose x1,1 = x1,2 = 0, xi,1 = 0.9xi−1,1 + δ1i, where δ1i ∼ t(3) and xi,2 = 0.6xi−1,2 +

δ2i, where δ2i ∼ t(7). y is generated from above model (6.1). So that x1, x2 and y all

are stationary. 10 grid points for β functions and 40 grid points for γ functions are

chosen with 500 simulations at each grid point.

Simulation results are shown in Figure 3 for n = 100.

Simulation results are shown in Figure 4 for n = 400.

The solid lines are true lines of β0, γ0, β1, β2, γ1 and γ2 functions in Figure 3 and

Figure 4. The middle dash dot lines in Figure 3 and Figure 4 are the median of the

estimators. The upper and lower dot lines in Figure 3 and Figure 4 are 2.5% and

97.5% quantile of the estimators.

You could see from Figure 3 and Figure 4 that the estimation is very good. The

solid lines almost cover the middle dash dot lines.

6.2 Nonstationary

Example 2:

Choose x1,1 = x1,2 = 0, xi,1 = xi−1,1 + δ1i, where δ1i ∼ t(3) and xi,2 = xi−1,2 + δ2i,

where δ2i ∼ t(7). y is generated from above model (6.1). So that x1, x2 and y all are

nonstationary. xi and yi are cointegration. 10 grid points for β functions and 40 grid

points for γ functions are chosen with 500 simulations at each grid point. So the only

difference between example 1 and example 2 is stationarity of xi.
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Figure 3: Estimated function β and γ, their mediums and 95% pointwise confidence
intervals for Model (6.1) when x is stationary and n = 100
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Figure 4: Estimated function β and γ, their mediums and 95% pointwise confidence
intervals for Model (6.1) when x is stationary and n = 400
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Simulation results are shown in Figure 5 for n = 100.

Simulation results are shown in Figure 6 for n = 400.

The solid lines are true lines of β0, γ0, β1, β2, γ1 and γ2 functions in Figure 5 and

Figure 6. The middle dash dot lines in Figure 5 and Figure 6 are the median of the

estimators. The upper and lower dot lines in Figure 5 and Figure 6 are 2.5% and

97.5% quantile of the estimators.

You could see from Figure 5 and Figure 6 that the estimation is very good. The

solid lines almost cover the middle dash dot lines.
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Figure 5: Estimated function β and γ, their mediums and 95% pointwise confidence
intervals for Model (6.1) when x is nonstationary and n = 100
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Figure 6: Estimated function β and γ, their mediums and 95% pointwise confidence
intervals for Model (6.1) when x is nonstationary and n = 400



CHAPTER 7: REAL EXAMPLE

We consider a real application here. We download 5 year daily Treasury bond

yield rate, 6 month daily Treasury bill yield rate, stock price of Morgan Stanley and

price of S&P500 from websites https://www.treasury.gov/resource-center/data-chart-

center/interest-rates/Pages/TextView.aspx?data=yield, https://finance.yahoo.com/

quote/MS?p=MS and https://finance.yahoo.com/quote/%5EGSPC/?p=ˆGSPC. All

data are from the Jan. 2nd, 2003 to Dec. 31st, 2015. The sample size is 3249. It can

be easily seen from Table 2 that stock price of Morgan Stanley and price of S&P500

are nonstationary by ADF test, however, log ”difference” of 5 year daily Treasury

bond yield rate and 6 month daily Treasury bill yield rate is stationary by ADF test,

see AN APPLICATION in Jiang (2014). We build our model based on CAPM model:

yi = β0(ti−1) + γ0(zi−1) + (β1(ti−1) + γ1(zi−1))xi−1 + εi. (7.1)

We choose log ”difference” of 5 year daily Treasury bond yield rate and 6 month

daily Treasury bill yield rate as z, stock price of Morgan Stanley as y, price of S&P500

as x. It is well known that return of S&P500 and Morgan Stanley, which is stationary,

is xi and yi, in traditional CAPM. We can see that xi and yi are nonstationary and

are the price of S&P500 and Morgan Stanley, respectively. That is different with

those in the traditional CAPM. The coefficients are constant in traditional CAPM.

But they are not constant in our model. We split the sample into two parts:training
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sample, the first 3000 data and testing sample, the remaining 249 data. Define one

step forecast ŷj for y at time j as following:

ŷj = β̂0(tj−1) + γ̂1(zj−1) + (β̂1(tj−1) + γ̂1(zj−1))xj−1, (7.2)

where j from 3001 to 3249 and β̂0, γ̂0 β̂1 and γ̂1 are estimated by the proposed two-step

estimation method using only the data from 1 to j − 1.

Figure 8 shows the cointegration relationship between Stock price of Morgan Stan-

ley and price of S&P500 as well as the estimated β0 function. The functions in Figure

7 is estimated by the training data. We could see that β0 and β1 change with time

and γ0 and γ1 change with yield rate. Figure 8 shows that the positive relationship

between Stock price of Morgan Stanley and price of S&P500 is increasing from 2003 to

2006 and it is relatively high before 2008. This implies that the market is bull at that

time. However, this positive relationship is decreasing during the crisis. It reaches

the bottom at 2011. After that it begins to increase. This is coincident with what we

have observed in the financial market now. Financial market begins to recover after

2011.

We compare our model with model (1.1) and model (1.2) in Table 1. The residual

is stationary from ADF test. I calculate the variance of the residual, which is 13.380.

That is larger than the variance of the residual in our model (7.1), which is 5.859.

We believe our model (7.1) is better than model (1.1). It is easily to see that our

model (7.1) is better than model (1.2) from Table 3 too. The variance of the residual

in model (1.2) is 68.504. This indicates that our model corrects the error as the error

correction model of Engel and Granger.
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We test the ε̂ by ADF test. The test statistic is -2.9771, which has a p-value 0.01.

ADF test rejects the null hypothesis that ε̂ is nonstationary. So ε̂ is stationary, which

implies that yi and xi are cointegrated. Figure 9 shows ŷ from the first 3000 data,

which are red dots left of the vertical line, and one-step forecasts, which are red dots

right of the vertical line. We can see that the estimation error is small and the forecast

is very well.

Table 2: ADF test for stock price of Morgan Stanley, price of S&P500 and log ”differ-
ence” of 5 year daily Treasury bond yield rate and 6 month daily Treasury bill yield
rate

ADF Test Statistic P VALUE
Stock price of Morgan Stanley -0.5896 0.4284
Price of S&P500 1.3095 0.9522
Treasury yield rate from Jiang (2014) -3.3093 < 0.01

Table 3: Variance of the residual in each model

Variance of the residual model (1.1) model (1.2) model (7.1)
13.380 68.504 5.859
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CHAPTER 8: DISCUSSION

In this dissertation, we studied the varying coefficient model with both nonlinear

effects and time-varying effects for stationary and nonstationary data. We suggested

using the proposed two-step method to estimate the unknown coefficient functions

and derived the asymptotic properties of the proposed estimators. Our estimation

method could be extend to the function coefficient model with more than two variables

in coefficient. We would like to mention three interesting future research topics related

to this dissertation. First, it would be very useful and important to discuss how to

select data-driven (optimal) bandwidths theoretically and empirically. Secondly, an

important extension would be to generalize the asymptotic analysis of this dissertation

to the case where both zi and xi are nonstationary. Further, we can consider an

extension of the test in Xiao (2009) so that we could test not only I(1) process but

also I(2), I(3) or even I(p) process. We are currently exploring these extension.
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APPENDIX A: SKETCH OF PROOFS

Theorem 4.1

This section begins with lemmas that are used to prove Theorem 4.1.

Lemma A.1. If A and B are nonnegative matrices, then

(a)λmin(A)Tr(B) 6 Tr(AB) 6 λmax(A)Tr(B),

(b)λmin(A)λmax(B) 6 λmax(AB) 6 λmax(A)λmax(B).

Proof of lemma A.1,

Part(a) is the lemma 6.5 of Zhou S (1998). Part(b) is a basic inequality.

Lemma A.2. Let Ωκ1 = Q−1
κ E(A⊗2

i ε2i )Q
−1
κ and Ωκ2 = Q−1

κ E(A⊗2
i )Q−1

κ , by(A3) and

(A6), the largest eigenvalues of E(A⊗2
i ε2i ), E(A⊗2

i ), Ωκ1 and Ωκ2 are bounded for all

κ.

Proof of lemma A.2,

This result holds from the same argument as for Lemma 2 of Jiang J. (2008).

Lemma A.3. If condition (A1) - (A9) hold, then

(a)‖Q̂κ −Qκ‖2 = Op(κ
2/n),

(b)‖Q̂−1
κ ‖2 = Op(κ),‖Q−1

κ ‖2 = Op(κ),

(c)‖Q−1
κ (Qκ − Q̂κ)‖2 = Op(κ

2/n).

Proof of lemma A.3,

(a)E‖Q̂κ −Qκ‖2=
∑d(κ)

k=1

∑d(κ)
j=1 E

(
n−1

∑n
i=1AikAij −Qkj

)2

=
∑d(κ)

k=1

∑d(κ)
j=1

(
En−2

∑n
i=1

∑n
`=1AikA`kAijA`j −Q2

kj

)
.
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Define Mk1,j1 = En−2
∑n

i=1

∑n
`=1Aik1A`k1Aij1A`j1 − Q2

k1j1
, where Aik1 are from

Pκ(ti, zi)
>xi,m1 and Aij1 are from Pκ(ti, zi)

>xi,m2 for any m1 and m2 from 1 to p and

m1 6= m2.

Define Nk2,j2 = En−2
∑n

i=1

∑n
`=1Aik2A`k2Aij2A`j2 −Q2

k2j2
, where Aik2 and Aij2 are

from Pκ(ti, zi)
>xi,m for any m from 1 to p. Then E‖Q̂κ − Qκ‖2=

∑
k1

∑
j1
Mk1,j1 +∑

k2

∑
j2
Nk2,j2 .

In the following, we will prove Mk1,j1 = O(n−1) and Nk2,j2 = O(n−1).

Without loss of generality, assume Aik2 = p1(ti)xi,1, Aij2 = p1(zi)xi,1 and Exi,1 = 0.

It is easy to check that EAik2Aij2 = C11ζ
2
1/(1− b2

1) and Q2
k2j2

= C2
11ζ

4
1 (1− b2

1)−2.

EAik2Aij2Ai+1k2Ai+1j2 = E(p1(ti)xi,1p1(zi)xi,1p1(ti+1)(b1xi,1+δi+1,1)p1(zi+1)(b1xi,1+

δi+1,1)) = C2
11b

2
1Ex

4
i,1 + C2

11ζ
4
1 (1− b2

1)−1.

EAik2Aij2Ai+2k2Ai+2j2 = C2
11b

4
1Ex

4
i,1 + C2

11ζ
4
1 (1− b2

1)−1(b2
1 + 1).

Similar arguments yield that

E
∑n

i=1

∑n
`=1Aik2Aij2A`k2A`j2

= C2
11Ex

4
i,1[n+

∑n−1
m=1 2(n−m)b2m

1 ] +C2
11ζ

4
1 (1− b2

1)−1
∑n−1

m=1[2(n−m)(
∑m

s=1 b
2(s−1)
1 )].

It is easy to check that C2
11Ex

4
i,1[n+

∑n−1
m=1 2(n−m)b2m

1 ] = O(n).

Note that lim
n→∞

n2b
2(n−1)
1 = 0.∑n−1

m=1[2(n−m)(
∑m

s=1 b
2(s−1)
1 )] =

∑n−1
m=1[2b

2(m−1)
1

∑n−1
s=m(n− s)]

=
∑n−1

m=1[b
2(m−1)
1 (n−m)(n−m+ 1)]

= n2
∑n−1

m=1 b
2(m−1)
1 − n

∑n−1
m=1[b

2(m−1)
1 (2m− 1)] +

∑n−1
m=1[b

2(m−1)
1 (m2 +m)]

→ n2(1− b2
1)−1 +O(n).

Nk2,j2 = n−2[C2
11ζ

4
1 (1− b2

1)−2n2 +O(n)]− C2
11ζ

4
1 (1− b2

1)−2 = O(n−1).

Without loss of generality, assume Aik1 = p1(ti)xi,1, Aij1 = p1(zi)xi,2 and Exi,1 =
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Exi,2 = 0.

Qk1j1 = 1
n

∑n
i=1Ep1(ti)p1(zi)xi,1xi,2 = C11

ζ1,2
1−b1b2 so that Q2

k1j1
= C2

11

ζ21,2
(1−b1b2)2

.

It is easy to check that Ex2
i,1 = ζ2

1/(1− b2
1) and Ex2

i,2 = ζ2
2/(1− b2

2).

EAik1Aij1Ai+1k1Ai+1j1 = E(p1(ti)xi,1p1(zi)xi,2p1(ti+1)xi+1,1p1(zi+1)xi+1,2)

= b1b2E(p1(ti)p1(zi)p1(ti+1)p1(zi+1))E(x2
i,1)(x2

i,2) +

E(p1(ti)p1(zi)p1(ti+1)p1(zi+1))Exi,1xi,2δi+1,1δi+1,2 = b1b2C
2
11ζ

2
1 (1− b2

1)−1ζ2
2 (1− b2

2)−1 +

C2
11

ζ21,2
1−b1b2 .

Following the arguments of Nk2,j2 ,

Note that C2
11ζ

2
1 (1− b2

1)−1ζ2
2 (1− b2

2)−1[n+ 2
∑n−1

m=1(n−m)bm1 b
m
2 ] = O(n).

Therefore, Mk1,j1 = n−2[C2
11

ζ21,2
(1−b1b2)2

n2 +O(n)]− C2
11

ζ21,2
(1−b1b2)2

= O(n−1).

(b) follow lemma 3 of Jiang J. (2008).

(c) ‖Q−1
κ (Qκ − Q̂κ)‖ = Tr{(Qκ − Q̂κ)Q

−2
κ (Qκ − Q̂κ)} = Tr{Q−2

κ (Qκ − Q̂κ)
2} 6

λ2
max(Q−1

κ ) · ‖Qκ − Q̂κ‖2 = Op(κ
2/n).

Lemma A.4. By condition (A1)-(A9),

(a) ‖n−1Q̂−1
k

∑n
i=1{Aibk0(i)}‖ = Op(κ

−2),

(b) ‖n−1Q̂−1
k

∑n
i=1(Aiεi)‖ = Op(κ

1/2n−1/2).

Proof of lemma A.4,

(a) Define % = [bk0(1), bk0(2), . . . , bk0(n)]> and Λ = [A1, A2, . . . , An], by condition

(A6),

‖n−1Q̂−1
k

∑n
i=1{Aibk0(i)}‖2 = ‖Q̂−1

κ Λ%/n‖2 = n−2%>Λ>Q̂−2
κ Λ% 6 n−2λmax(Q̂−2

κ )%>Λ>

Λ% = n−1λmax(Q̂−2
κ )%>Q̂κ% 6 n−1λmax(Q̂−1

κ )2λmax(Q̂κ)%
>% = O(κ−4).

(b) follow lemma 5 of Horowitz (2004).
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Lemma A.5. By condition (A1)-(A9),

B̂−θk0 = n−1Q−1
k

∑n
i=1 Aiεi+n

−1Q−1
k

∑n
i=1Aibk0(i)+Rn where ‖Rn‖ = Op(κ

3/2n−1).

Proof of lemma A.5,

Define Mi = β0(ti) + γ0(zi) + {β1(ti) + γ1(zi)}>xi and ηi = A>i B̂ −Mi = A>i (B̂ −

θk0)− bκ0(i), so that A>i B̂ = ηi +Mi,

From (3.3), we know that
∑n

i=1(yi−A>i B̂)Ai = 0⇒
∑n

i=1(Mi+εi−Mi−ηi)Ai = 0

⇒
∑n

i=1(εi − ηi)Ai = 0⇒ 1
n

∑n
i=1 εiAi = 1

n

∑n
i=1AiA

>
i (B̂ − θκ0)− 1

n

∑n
i=1Aibκ0(i)

⇒ B̂ − θk0 = 1
n
Q̂−1
κ

∑n
i=1 εiAi + 1

n
Q̂−1
κ

∑n
i=1Aibκ0(i)

⇒ B̂−θk0 = n−1Q−1
k

∑n
i=1Aiεi+n

−1Q−1
k

∑n
i=1Aibk0(i)+n−1(Q̂−1

κ −Q−1
κ )
∑n

i=1 Aiεi+

n−1(Q̂−1
κ −Q−1

κ )
∑n

i=1Aibk0(i) = Jn1 + Jn2 + Jn3 + Jn4 .

‖Jn3‖ = ‖Q−1
κ (Q̂κ−Qκ)n

−1Q̂−1
κ

∑n
i=1 Aiεi‖ 6 ‖Q−1

κ (Q̂κ−Qκ)‖·‖n−1Q̂−1
κ

∑n
i=1 Aiεi‖

= Op(κn
−1/2)Op(κ

1/2n−1/2) = Op(κ
3/2n−1).

‖Jn4‖ = ‖Q−1
κ (Q̂κ−Qκ)n

−1Q̂−1
κ

∑n
i=1Aibk0(i)‖ 6 ‖Q−1

κ (Q̂κ−Qκ)‖·‖n−1Q̂−1
κ

∑n
i=1Ai

bk0(i)‖ = Op(κn
−1/2)Op(κ

−2) = Op(κ
−1n−1/2).

Lemma A.6.
√

h
n

∑n
i=1 εiKh(zi − z)xi → N(0, fz(z)ν0(K)δ2S).

Proof of lemma A.6,

E(
∑n

i=1 εiKh(zi − z)xi)
2 = E

∑n
i=1 ε

2
iK

2
h(zi − z)xix

>
i + op(1)

= nh−1δ2ν0(K)fz(z)E(xix
>
i

∣∣zi = z).

Define Ft = σ(xi, zi, εi−1, i 6 t). By martingale central limit theorem,√
h
n

∑n
i=1 εiKh(zi − z)xi goes to Normal Distribution.

Lemma A.7. By condition(A1)-(A9),

(a) n−1
∑n

i=1 xix
>
i Kh(zi − z)( zi−z

h
)` = fz(z)µ`(K)S,
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(b) n−1
∑n

i=1R(zi)
>xiKh(zi − z)( zi−z

h
)`x>i = 1

2
h2Sγ

(2)
1 (z)fz(z)µ2+`.

Proof of lemma A.7,

(a) could be easily proof by change-of-variable, the kernel theory and an application

of Taylor’s expansion.

(b) Note that R(1)(zi|zi = z) = 0 and R(2)(zi|zi = z) = γ
(2)
1 (z), (b) could be

easily proof by change-of-variable, the kernel theory and an application of Taylor’s

expansion.

Lemma A.8. ‖ 1
n

∑n
i=1Kh(zi − z)xiA(ti)

>‖ = Op(1)

Proof of lemma A.8,

E‖ 1
n

∑n
i=1Kh(zi − z)xi‖2 = Op((nh)−1)

E‖ 1
n

∑n
i=1Kh(zi − z)xi‖2 = 1

n2{
∑n

i=1Ex
2
iK

2
h(zi − z) + 2

∑n−1
i=1 Exixi−1K

2
h(zi − z) +

. . .} = 1
n2{
∑n

i=1 O(h−1) + 2
∑n−1

i=1 b1O(h−1) + . . .} = O(h−1) 1
n2{n+ 2(n−1)b1 + . . .} =

O((nh)−1).

The result holds from the same argument as for Lemma A.7. Define G(z) =

E{xixi,1|zi = z}f(z), ξi = Kh(zi−z)xiP
>
κ (t)xi,1, C(z) =

∫
E{xixi,1|zi = z}P>κ (t)f(z)dt,

rn1 = 1
n

∑n
i=1{ξi − Eξi} and rn2 = Eξ1 − C(z).

For each z ∈ [−C,C], the components of C(z) include the Fourier coefficients of

a function that is bounded uniformly over z. Therefore, by Bessel’s inequality, there

exists some finite constant M for allκ, such that C>(z)C(z) 6M .

The arguments similar to those used to prove E‖rn1‖2 = 1
n2{E‖

∑n
i=1 ξi‖2−‖Eξi‖2} =

Op(
κ
nh

) = Op(1).

By the definitions of C(z) and ξi,
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rn2 = EKh(zi−z)xiP
>
κ (t)xi,1−

∫
G(z)P>κ (t)dt =

∫
[
∫
{G(z+µh)K(µ)−G(z)K(µ)}

dµ]P>κ (t)dt =
∫

[
∫
{∂G(z+∆)

∂z
µhK(µ)}dµ]P>κ (t)dt (Dominated convergence theorem) =

h
∫ ∂G(z)

∂z
P>κ (t)dt(1 + op(1)) where ∆ is between 0 and µh. Therefore, we obtain that

‖rn2‖2 = O(κh2) = OP (1).

So that 1
n

∑n
i=1 Kh(zi − z)xiP

>
κ (t)xi,1 = C(z) + rn1 + rn2 = OP (1).

Lemma A.9. 1
n

∑n
i=1{β̃0

∗
(ti)+γ̃0

∗(zi)+β̃1
∗
(ti)
>xi−β0(ti)−γ0(zi)−β1(ti)

>xi}Kh(zi−

z)xi = op(h
2).

Proof of lemma A.9,

By Lemma A.5, 1
n

∑n
i=1{β̃0

∗
(ti) + γ̃0

∗(zi) + β̃1
∗
(ti)
>xi− β0(ti)− γ0(zi)− β1(ti)

>xi}

Kh(zi − z)xi = 1
n

∑n
i=1{A(ti)

>B̂ − β0(ti)− γ0(zi)− β1(ti)
>xi}Kh(zi − z)xi

= 1
n

∑n
i=1{A(ti)

>(B̂ − θκ0)− bκ0(i)}Kh(zi − z)xi

= 1
n

∑n
i=1[xiA(ti)

>Kh(zi − z)( 1
n
Q−1
k

∑n
j=1 εjAj)] + 1

n

∑n
i=1[xiA(ti)

>Kh(zi − z) 1
n
Q−1
k∑n

j=1 Ajbκ0(j)}]− 1
n

∑n
i=1[xibκ0(i)Kh(zi−z)]+ 1

n

∑n
i=1[xiA(ti)

>Kh(zi−z)Rn] = Cn1 +

Cn2 + Cn3 + Cn4 .

Arguments like those used to prove Lemma 7 in Horowitz (2004) show that, ‖Cn1‖ =

op(h
2).

Arguments like those used to prove Lemma A.4 show that E‖ 1
n
Q−1
κ

∑n
j=1 Ajbκ0‖2 =

O(κ−4), by Lemma A.8, ‖Cn2‖ 6 ‖ 1
n

∑n
i=1 xiA(ti)

>Kh(zi − z)‖‖ 1
n
Q−1
k

∑n
j=1 Ajbκ0‖ 6

Op(κ
−2) = op(h

2).

‖Cn3‖ 6 1
n

∑n
i=1 ‖xi‖Kh(zi − z) max bκ0(i) = Op(1)O(κ−2) = Op(κ

−2) = op(h
2).

‖Cn4 6 ‖ 1
n

∑n
i=1 xiA(ti)

>Kh(zi − z)‖‖Rn‖ = Op(κ
2/n) = op(h

2).

Proof of Theorem 4.1,
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To simplify the notation,

Recall R(zi) = γ1(zi)− γ1(z)− γ(1)
1 (z)(zi − z), Wih(z) =

 xi

xi
(zi−z)
h

.

Define ∆β0,β1 = β0(ti) + γ0(zi) + β1(ti)
>xi − β̃0

∗
(ti) − γ̃0

∗(zi) − β̃1
∗
(ti)
>xi, Φ = γ̂1(z)− γ1(z)

hγ̂1
(1)(z)− hγ(1)

1 (z)

 and η̂i = R(zi)
>xi −Wih(z)>Φ + ∆β0,β1 ,

then Wih(z)>Φ = x>i γ̂1(z) − x>i γ1(z) + x>i γ̂1
(1)(z)(zi − z) − x>i γ

(1)
1 (z)(zi − z) and

η̂i = {x>i γ1(zi)− x>i γ1(z)− x>i γ
(1)
1 (z)(zi− z)}− {x>i γ̂1(z)− x>i γ1(z) + x>i γ̂1

(1)(z)(zi−

z)− x>i γ
(1)
1 (z)(zi − z)}+ {β0(ti) + γ0(zi) + β1(ti)

>xi − β̃0
∗
(ti)− γ̃0

∗(zi)− β̃1
∗
(ti)
>xi}

= x>i γ1(zi)− {x>i γ̂1(z) + x>i γ̂1
(1)(z)(zi − z)}+ {β0(ti) + γ0(zi) + β1(ti)

>xi − β̃0
∗
(ti)−

γ̃0
∗(zi)− β̃1

∗
(ti)
>xi}.

From equation 3.3, by taking the first derivative, we have∑n
i=1{yi−β̃0

∗
(ti)−γ̃0

∗(zi)−β̃1
∗
(ti)
>xi−x>i γ̂1(z)−x>i γ̂1

(1)(z)(zi−z)}Wih(z)Kh1(zi−

z) = 0

⇒
∑n

i=1{εi+β0(ti) +γ0(zi) +β1(ti)
>xi+γ1(zi)

>xi− β̃0
∗
(ti)− γ̃0

∗(zi)− β̃1
∗
(ti)
>xi−

x>i γ̂1(z)− x>i γ̂1
(1)(z)(zi − z)}Wih(z)Kh1(zi − z) = 0

⇒
∑n

i=1(εi + η̂i)Kh(zi − z)Wih(z) = 0

⇒ 0 =
∑n

i=1 εiKh(zi − z)Wih(z) +
∑n

i=1 η̂iKh(zi − z)Wih(z) = In1 + In2 .

In2 =
∑n

i=1 η̂iKh(zi − z)Wih(z) =
∑n

i=1R(zi)
>xiKh(zi − z)Wih(z)−∑n

i=1 Wih(z)Wih(z)>ΦKh(zi−z)+
∑n

i=1[β0(ti)+γ0(zi)+β1(ti)
>xi− β̃0

∗
(ti)− γ̃0

∗(zi)−

β̃1
∗
(ti)
>xi]Kh(zi − z)Wih(z) = Ln1 − Ln2 + Ln3

⇒ −n−1Ln1 + n−1Ln2 − n−1Ln3 = n−1In1 .

From Lemma A.7.b, n−1Ln1 = n−1
∑n

i=1 R(zi)
>xiKh(zi−z)Wih(z) = h2

2
fz(z)γ

(2)
1 (z)
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S

 µ2(K)

µ3(K)

 ⇒ n−1
∑n

i=1R(zi)
>xiKh(zi − z)xi = h2

2
fz(z)γ

(2)
1 (z)µ2(K)S.

From Lemma A.7.a, by noting that µ0(K) = 1 and µ1(K) = 0,

n−1Ln2 = n−1
∑n

i=1Wih(z)Wih(z)>Kh(zi − z)Φ

= {n−1
∑n

i=1

 xix
>
i xix

>
i ( zi−z

h
)

xix
>
i ( zi−z

h
) xix

>
i ( zi−z

h
)2

Kh(zi−z)}Φ = fz(z)

 S 0

0 µ2(K)S

Φ.

From Lemma A.9, by condition A(8), n−1Ln3 = op(h
2) = op(n

−1Ln1).

From Lemma A.6,
√

h
n
In1 =

√
h
n

∑n
i=1 εiKh(zi − z)Wih(z)→ N(0, fz(z)δ2Σν)

⇒
√

h
n

∑n
i=1 εiKh(zi − z)xi → N(0, fz(z)δ2ν0(K)S).

So that
√

h
n
Ln2 −

√
h
n
Ln1 =

√
h
n
In1 .

Hence,
√
nh(γ̂1(z)− γ1(z)− h2

2
µ2(K)γ

(2)
1 (z))→ N(0, fz(z)−1δ2S−1ν0(K)).

Proof of Theorem 4.2, Theorem 4.3 and Theorem 4.4,

Following the same argument as the proof of Theorem 4.1, we have
√
nh2[β̂1(t) −

β1(t)− h22
2
µ2(K)β

(2)
1 (t){1 + op(1)}] d→ N{0, δ2S−1

0 ν0(K)},
√
nh4[γ̂0(z)− γ0(z)−

h24
2
µ2(K)γ

(2)
0 (z){1+op(1)}] d→ N{0, fz(z)−1δ2ν0(K)} and

√
nh0[β̂0(t)−β0(t)− h20

2
µ2(K)

β
(2)
0 (t){1 + op(1)}] d→ N{0, δ2ν0(K)}.
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APPENDIX B: SKETCH OF PROOFS

Theorem 5.1

Proof of Theorem 5.1,

Lemma A.10. (a) ‖Q̂∗κ −Q∗κ‖2 = Op(κ
2/n),

(b) ‖Q̂∗−1
κ ‖2 = Op(κ),‖Q∗−1

κ ‖2 = Op(κ),

(c) ‖Q∗−1
κ (Q∗κ − Q̂∗κ)‖2 = Op(κ

2/n).

Proof of above lemma,

(a),(b) and (c) hold from the same argument as for Lemma A.3.

Lemma A.11. By condition (B1)-(B8),

(a) ‖n−2Q̂∗−1
k

∑n
i=1(Aibk0)‖ = Op(κ

−2/n),

(b) ‖n−2Q̂∗−1
k

∑n
i=1(Aiεi)‖ = Op(κ

1/2/n).

Proof of lemma A.11,

(a) define % = [bk0(1), bk0(2), . . . , bk0(n)]> and Λ = [A1, A2, . . . , An], by condition

(B3),

‖n−2Q̂∗−1
k

∑n
i=1{Aibk0(i)}‖2 = ‖Q̂∗−1

κ Λ%/n2‖2 = n−4%>Λ>Q̂∗−2
κ Λ% 6 n−4λmax(Q̂∗−2

κ )

%>Λ>Λ% = n−2λmax(Q̂∗−2
κ )%>Q̂∗κ% 6 n−2λmax(Q̂∗−1

κ )2λmax(Q̂∗κ)%
>% = O(κ−4n−2).

(b) hold from the same argument as for Lemma A.4.

Lemma A.12. By condition (B1)-(B8),

B̂−θk0 = n−2Q∗−1
κ

∑n
i=1 Aiεi+n

−2Q∗−1
κ

∑n
i=1Aibk0+Rn where ‖Rn‖ = Op(κ

3/2/n3/2).

Proof of above lemma,

This result holds from the same argument as for Lemma A.5.
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B̂ − θk0 = n−2Q∗−1
κ

∑n
i=1Aiεi + n−2Q∗−1

κ

∑n
i=1Aibk0(i) + n−2(Q̂∗−1

κ −Q∗−1
κ )

∑n
i=1

Aiεi + n−2(Q̂∗−1
κ −Q∗−1

κ )
∑n

i=1 Aibk0(i) = Jn1 + Jn2 + Jn3 + Jn4 .

‖Jn3‖ = ‖Q∗−1
κ (Q̂∗κ−Q∗κ)n−2Q̂∗−1

κ

∑n
i=1Aiεi‖ 6 ‖Q∗−1

κ (Q̂∗κ−Q∗κ)‖ · ‖n−2Q̂∗−1
κ

∑n
i=1

Aiεi‖ = Op(κ/n
1/2)Op(κ

1/2/n) = Op(κ
3/2/n3/2).

‖Jn4‖ = ‖Q∗−1
κ (Q̂∗κ −Q∗κ)n−2Q̂∗−1

κ

∑n
i=1Aibk0(i)‖ 6 ‖Q∗−1

κ (Q̂∗κ −Q∗κ)‖ · ‖n−2Q̂∗−1
κ∑n

i=1Aibk0(i)‖ = Op(κ/n
1/2)Op(κ

−2/n) = Op(κ
−1/n3/2).

Lemma A.13. By condition (B1)-(B8),

(a) 1
n2

∑n
i=1 xix

>
i R(zi)

>Kh1(zi − z) = h2

2
fz(z)Wδ,2γ

(2)
1 (z)µ2(K){1 + op(1)},

(b) 1
n2

∑n
i=1 xix

>
i Kh1(zi − z)( zi−z

h1
)j = fz(z)µj(K)Wδ,2 + op(1).

Proof of lemma A.13,

See the proof of Theorem 2.1 in Cai and Park (2009).

Lemma A.14. By condition (B2)(i), 1
n2

∑n
i=1(β0(ti) + γ0(zi) + β1(ti)

>xi − β̃0
∗
(ti)−

γ̃0
∗(zi)− β̃1

∗
(ti)
>xi)Kh1(zi − z)xi = op(h

2
1).

Proof of lemma A.14,

1
n2

∑n
i=1(β0(ti) + γ0(zi) + β1(ti)

>xi − β̃0
∗
(ti)− γ̃0

∗(zi)− β̃1
∗
(ti)
>xi)Kh1(zi − z)xi

= 1
n2

∑n
i=1[xiAi

>
Kh1(zi−z)( 1

n
Q∗−1
κ

∑n
j=1 εjAj)]+

1
n2

∑n
i=1[xiAi

>
Kh1(zi−z)( 1

n
Q∗−1
κ

∑n
j=1

Ajbκ0)]− 1
n2

∑n
i=1[xibκ0(i)Kh1(zi − z)] + 1

n2

∑n
i=1[xiAi

>
Kh1(zi − z)Rn] = Cn1 +Cn2 +

Cn3 + Cn4 .

By condition (B2)(i), note that 1
n2

∑n
i=1 xix

>
i Kh1(zi− z) = fz(z)µ0(K)W +op(1) =

Op(1) from Cai and Park (2009), arguments like those used to prove Lemma 7 in

Horowitz (2004) show that, ‖Cn1‖ = op(h
2
1).
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Arguments like those used to prove Lemma A.4 show thatE‖ 1
n2Q

∗−1
κ

∑n
j=1Ajbκ0(i)‖2

= O(κ−4/n2).‖Cn2‖ 6 ‖ 1
n2

∑n
i=1 xiĀ

>
i Kh1(zi − z)‖‖ 1

n2Q
∗−1
κ

∑n
j=1Ajbκ0(i)‖

= Op(κ
1/2)Op(κ

−2/n) = Op(
1

κ3/2n
) = op(h1

2).

‖Cn3‖ 6 ‖ 1
n2

∑n
i=1 xiKh1(zi − z)‖ sup ‖b̄κ0(i)‖ = Op(n

−1/2)Op(κ
−2) = Op(

1
κ2n1/2 ) =

op(h1
2).

‖Cn4‖ 6 ‖ 1
n2

∑n
i=1 xiĀ

>
i Kh1(zi − z)‖‖Rn‖ = Op(κ

1/2)Op(κ
3/2n−3/2) = Op(

κ2

n3/2 ) =

op(h1
2).

Lemma A.15.
√
h1
n

∑n
i=1 εixiKh1(zi − z)

d→
√
ν0(K)fz(z)

∫ 1

0
Wδ(r)dWε(r).

Proof of above lemma,

Define Wε(r) is a Brownian motion on [0,1] with variance δ2.

Note that
√
h1/n

∑n
i=1 Kh1(zi − z)εi

d→ N(0, δ2ν0(K)fz(z)) =
√
ν0(K)fz(z)Wε(1).

This result holds from the same argument as for Theorem 2.1 in Cai and Park

(2009).

Proof of Theorem 5.1, γ̂1(z)

h1γ̂1
(1)(z)

 = [A∗]−1B∗ =

[ 1
n2

∑n
i=1Wih(z)>Wih(z)Kh1(zi − z)]−1

[
1
n2

∑n
i=1(yi − β̃0

∗
(ti)− γ̃0

∗(zi)− β̃1
∗
(ti)
>xi)

Wih(z)Kh1(zi − z)
]
.

Following the proof of Theorem 2.1 in Cai and Park (2009), by Lemma A.13 and

A.14,

γ̂1(z) = [fz(z)Wδ,2]−1[ 1
n2

∑n
i=1(β0(ti)+γ0(zi)+β1(ti)

>xi−β̃0
∗
(ti)−γ̃0

∗(zi)−β̃1
∗
(ti)
>xi)

Kh(zi − z)xi + 1
n2

∑n
i=1 γ

>
1 (zi)xix

>
i Kh1(zi − z) + 1

n2

∑n
i=1 εixiKh1(zi − z)].
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So that

n
√
h1[γ̂1(z)− γ1(z)− h21

2
µ2(K)r(2)(z){1 + op(1)}]

= W−1
δ,2 fz(z)−1/2

√
ν0(K)

∫ 1

0
Wδ(r)dWε(r).

Theorem 5.2

Lemma A.16. 1
n2

∑n
i=1 xix

>
i Kh2(ti − t)( ti−th2

)j = µj(K)Wδ,2 + op(1) for j = 0, 1, 2.

Proof of lemma A.16,

See the proof of Theorem 2.1 in Cai and Park (2009).

Lemma A.17.
√
h2
n

∑n
i=1 εixiKh2(ti − t)

d→
√
ν0(K)

∫ 1

0
Wδ(r)dWε(r).

Proof of above lemma,

See the proof of Theorem 2.1 in Cai and Park (2009).

Lemma A.18. By condition (B2)(i), 1
n2

∑n
i=1(β0(ti) + γ0(zi) + γ1(zi)

>xi − β̃0
∗
(ti)−

γ̃0
∗(zi)− γ̃1

∗(zi)
>xi)Kh2(ti − t)xi = op(h

2
2).

Proof of above lemma,

See the proof of Lemma A.14.

Proof of Theorem 5.2,

Theorem 5.2 could be derived by following the same procedure of proof of theorem

5.1.

Theorem 5.3

Lemma A.19. By condition (B1) ‖ 1
n3/2

∑n
i=1 Pκ(ti)xi,1Kh0(ti − t)‖ = Op(1).

Proof of lemma A.19,
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By condition, sup06r61 ‖x[nr]/
√
n−Wδ(r)‖ = O(n−θ∗logλ∗(n)) = op(1), see Theorem

4.1 in Shao (1987) and Einmahl (1987) for details.

By the same argument in Lemma 8, it is easy to show that ‖ 1
n

∑n
i=1 Pκ(ti)

Kh0(ti − t)‖ = Op(1),

‖ 1
n3/2

∑n
i=1 Pκ(ti)xi,1Kh0(ti − t)‖ = ‖ 1

n

∑n
i=1 Pκ(ti)

xi,1√
n
Kh0(ti − t)‖ 6 ‖ 1

n

∑n
i=1 Pκ(ti)

Wδ(ti)Kh0(ti−t)‖+‖ 1
n

∑n
i=1 Pκ(ti){

xi,1√
n
−Wδ(ti)}Kh0(ti−t)‖ 6 ‖ 1

n

∑n
i=1 Pκ(ti)Kh0(ti−

t)‖ sup ‖Wδ(ti)‖ + ‖ 1
n

∑n
i=1 Pκ(ti)Kh0(ti − t)‖ sup ‖xi,1√

n
−Wδ(ti)‖ = Op(1) + op(1) =

Op(1).

Lemma A.20. By condition (B1), 1
n

∑n
i=1(γ0(zi)

>−γ̃0
∗(zi)

>+β1(ti)
>xi−β̃1

∗
(ti)
>xi+

γ1(ti)
>xi − γ̃1

∗(ti)
>xi)Kh0(zi − z) = op(h

2
0).

Proof of above lemma,

DefineA(ti, zi) = [Pκ(ti)
>·0, Pκ(zi)>, Pκ(ti)>xi,1, Pκ(zi)>xi,1, Pκ(ti)>xi,2, Pκ(zi)>xi,2,

· · · , Pκ(ti)>xi,p, Pκ(zi)>xi,p]>, by the same argument in Lemma A.9, 1
n

∑n
i=1(γ0(zi)

>−

γ̃0
∗(zi)

>+β1(ti)
>xi−β̃1

∗
(ti)
>xi+γ1(ti)

>xi−γ̃1
∗(ti)

>xi)Kh0(zi−z) = 1
n

∑n
i=1[A(ti, zi)

>

Kh0(ti− t)( 1
n2Q

∗−1
k

∑n
j=1 εjAj)]+

1
n

∑n
i=1[A(ti, zi)

>Kh0(ti− t) 1
n2Q

∗−1
k

∑n
j=1Ajbκ0(j)]−

1
n

∑n
i=1[bκ0(i)Kh0(ti − t)] + 1

n

∑n
i=1[A(ti, zi)

>Kh0(ti − t)Rn] = Cn1 +Cn2 +Cn3 +Cn4 .

Arguments like those used to prove Lemma 7 in Horowitz (2004) show that, ‖Cn1‖ =

op(h
2
0).

By Lemma A.11 and A.19, ‖Cn2‖ = ‖ 1
n

∑n
i=1 A(ti, zi)

>Kh0(ti−t)‖‖ 1
n2Q

∗−1
k

∑n
j=1Aj

bκ0(j)‖ = Op(n
1/2κ1/2)Op(κ

−2n−1) = op(h
2
0).

By the same argument, it can be shown that ‖Cn3‖ = Op(κ
−2) = op(h

2
0).

‖Cn4‖ = Op(n
1/2κ1/2)Op(κ

3/2n−3/2) = Op(
κ2

n
) = op(h0

2).
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Proof of Theorem 5.3,

It is easily to check that 1
n

∑n
i=1Kh0(ti− t)→ 1, 1

n

∑n
i=1Kh0(ti− t)β0(ti)→ β0(t) +

1
2
h2

2β
(2)
0 (t)+op(h

2
0), under (B2)(ii) 1

nh20

∑n
i=1(γ0(zi)

>−γ̃0
∗(zi)

>+β1(ti)
>xi−β̃1

∗
(ti)
>xi+

γ1(zi)
>xi − ˜̃γ1(zi)

>xi)Kh0(ti − t) = op(1).

Following the proof of Theorem 5.1, we can easily show Theorem 5.3.

Proof of Theorem 5.4,

Following the same argument as the proof of Theorem 5.3, Theorem 5.4 can be

proved.


