
OPTIMIZATION OF COMMUNICATION TRAFFIC IN HAMMER PROTOCOL
USING 3D ELECTRONIC MESH NETWORK ON CHIP

by

Harishankar Suresh

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in
Electrical and Computer Engineering

Charlotte

2016

Approved by:

Dr. Tao Han

Dr. Asis Nasipuri

Dr. Arun Ravindran

ii

c© 2016

Harishankar Suresh

ALL RIGHTS RESERVED

iii

ABSTRACT

HARISHANKAR SURESH. Optimization of communication traffic in hammer
protocol using 3D ELECTRONIC MESH NETWORK ON CHIP

(Under the direction of DR. TAO HAN)

In 1980s a processor had only one core, whose performance was improved by in-

creasing the processor frequency. But this caused overheating and thus improvement

in performance was halted. To get more performance multi core processor was in-

troduced that gave better performance. For a chip multiprocessor with hundreds of

cores, the cache coherence communication affected the memory access time. The goal

of this work is to improve scalability in System on Chip(SoC) multi core processors by

using the Hammer cache coherence protocol to maintain cache coherency and reduce

the communication traffic by using 3D Mesh Network on Chip as the interconnection

network. The GEM5 open source simulator is modified as a part of this thesis to

simulate the 3D Mesh NoC. The 3D NoC is observed to produce 11% reduction in

network traffic than the 2D NoC for the Hammer cache coherence protocol and is pre-

dicted to provide better performance for higher number of cores and thus improving

the scalability of the system.

This research is organized into three sections. In the first section, the discussion of

different types of cache coherence protocols are discussed and the selection of Hammer

protocol for scalability is explained. In the second section, the discussion of various

Network on Chips are discussed. In the third section, the implementation in GEM5

and the network algorithm is discussed.

iv

ACKNOWLEDGMENTS

I would like to thank my late advisor Dr. Bharatkumar Joshi, for his guidance and

motivation, without which, this thesis would not have been possible. His teachings

has always been useful and gave encouragement.

It would be my duty to extend my gratitude to the committee members Dr. Tao

Han, Dr. Assis Nasipuri and Dr. Arun Ravindran for taking time to be on my

committee and assess my work.

I am thankful to EPIC (Energy Production and Infrastructure Center) for its

generous support.

v

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1: INTRODUCTION 1

1.1 Many core processor era 1

1.2 Objective 3

1.3 Thesis Motivation 3

1.4 Contribution 4

1.5 Organization of Thesis 5

CHAPTER 2: BACKGROUND 6

2.1 Multi Core Architecture 6

2.2 System on Chip 8

2.3 Tiled Chip multiprocessor 9

2.4 Symmetric Multiprocessors vs Non Uniform Memory Access 9

2.5 CPU and memory Performance Gap 11

2.6 Cache Coherence protocol 13

2.6.1 Hammer CMP protocol 14

2.6.2 Directory CMP protocol 14

2.6.3 Token CMP protocol 15

2.6.4 Direct Coherence CMP protocol 15

2.6.5 Comparison between the protocols 16

2.7 Network on Chip 18

2.7.1 Open Systems Interconnection Model of NoC 18

2.7.2 Electronic Network on Chip 19

2.7.3 Optical NoC 22

2.7.4 Wireless NoC 23

vi

2.7.5 Network Flow Control 23

2.8 3D Mesh NoC architectures 24

2.8.1 3D Mesh NoC 24

2.8.2 3D Stacked NoC 25

2.8.3 3D NoC in market 25

2.8.4 Analysis of 2D and 3D Mesh NoC 26

2.8.5 Router for NoCs 28

CHAPTER 3: DESIGN AND IMPLEMENTATION 34

3.1 Simulation Environment 34

3.2 The GEM5 simulator 34

3.3 GEM5 source code 38

3.4 GEM5 code documentation 39

3.4.1 Link class 39

3.4.2 Message class 40

3.4.3 MessageBuffer class 41

3.4.4 SimpleNetwork Class 42

3.4.5 PerfectSwitch Class 43

3.4.6 Topology class 44

3.4.7 Function flow graph 46

3.4.8 Execution of pre implemented 2D Mesh NoC in GEM5 46

3.5 3D Mesh NoC implementation 47

CHAPTER 4: EVALUATION 50

4.0.1 Experimental Setup 50

4.0.2 Comparison between Hammer and Directory Protocol 53

4.0.3 Comparison between 2D and 3D NoCs 53

4.0.4 CPU2006 Benchmark output 53

4.0.5 Scalability of 3D NoC 56

vii

CHAPTER 5: CONCLUSION 59

REFERENCES 60

APPENDIX A: GEM5 CODE DOCUMENTATION 65

viii

LIST OF TABLES

TABLE 2.1: Comparison between SMP and NUMA 12

TABLE 2.2: Comparison between BUS and Network on Chip 17

TABLE 2.3: Comparison between NoC Topologies 21

TABLE 2.4: Routing table entry 33

TABLE 3.1: States of cache blocks in MOESI Directory CMP protocol 37

TABLE 3.2: States of cache blocks in MOESI Hammer CMP protocol 38

TABLE 3.3: The implementation of the weight matrix 44

TABLE 3.4: Output for 2 core X86 simulation 47

TABLE 3.5: Output of weight matrix for 3D NoC 48

TABLE 4.1: CPU2006 integer benchmark 51

TABLE 4.2: CPU2006 floating point benchmark 52

TABLE 4.3: Network traffic for Hammer and Directory protocol in 2D NoC 53

TABLE 4.4: Execution time for 2D and 3D NoCs 54

TABLE 4.5: Average latency for 2D and 3D NoCs 54

TABLE 4.6: Network traffic in 2D and 3D NoC for integer CPU2006 benchmark 56

TABLE 4.7: Network traffic in 2D and 3D NoC for floating point benchmark 57

ix

LIST OF FIGURES

FIGURE 2.1: Growth in clock rate of microprocessors 7

FIGURE 2.2: Multi-core chips with shared memory 7

FIGURE 2.3: Multi-core chips with distributed memory 8

FIGURE 2.4: Transistor integration density per die 9

FIGURE 2.5: System on Chip organization 10

FIGURE 2.6: Tiled chip multiprocessor organization 11

FIGURE 2.7: CPU and Memory performance gap 14

FIGURE 2.8: A Cache-to-cache transfer miss 15

FIGURE 2.9: OArea overhead for cache coherence protocols 16

FIGURE 2.10: ISO/OSI reference model for NoCs 19

FIGURE 2.11: 2D Mesh Topology 20

FIGURE 2.12: 2D Mesh and Torus Topology 21

FIGURE 2.13: Fat Tree Network 22

FIGURE 2.14: Hypercube Network 23

FIGURE 2.15: The Mesh based 3D NoC architecture 26

FIGURE 2.16: A 2-tier stacked 3D NoC 27

FIGURE 2.17: Comparison of area lost to TSV in NoCs 29

FIGURE 2.18: Comparison of worst case delay in NoCs 29

FIGURE 2.19: Comparison of energy dissipation in NoCs 30

FIGURE 2.20: Comparison of usage of wiring area in NoCs 30

FIGURE 2.21: Hermes Router with 2 virtual channels for 2D Mesh NoC 32

FIGURE 2.22: A 2D Hermes router with connections established 32

FIGURE 2.23: Hermes Router modified into a 3D router 33

FIGURE 3.1: GEM5 Ruby 35

FIGURE 3.2: CPU - Timing Simple 35

x

FIGURE 3.3: CPU - Atomic Simple 36

FIGURE 3.4: GEM5 source code layout 39

FIGURE 3.5: All Pairs Shortest Path Algorithm 45

FIGURE 3.6: Function flow graph of pre implemented GEM5 code 46

FIGURE 3.7: Numbering of the cores and routers in the matrix 47

FIGURE 4.1: Network Traffic for Hammer and Directory Protocols 54

FIGURE 4.2: Execution time for 2D and 3D NoCs 55

FIGURE 4.3: Average Latency for 2D and 3D NoCs 55

FIGURE 4.4: NoC Traffic in CPU2006 integer benchmark 57

FIGURE 4.5: NoC Traffic in CPU2006 floating point benchmark 58

FIGURE 4.6: Percentage of traffic reduction in 3d NoC compared to 2D NoC 58

CHAPTER 1: INTRODUCTION

1.1 Many core processor era

Towards the end of the 20th century, the single core processor dominated the

market. The Intel Pentium 4 [1] and the AMD Athlon 64 FX-55 [2] were some

of the prominent processors used. But they all used very high clock speed nearly

3 GHz to increase processor performance. To increase the performance further, the

scalability of the processor has to be increased. Many previous research have focussed

on scalability with respect to improving the processor performance with less dense

circuit technologies [3]. With the growth of multi core processors in the market,

the research was focussed on the problems with implementing many core processors.

The shared memory architecture [4] and the distributed memory architecture [5] were

studied and developed for experimentation. Various algorithms were developed for

mutual exclusion and barier synchronization in shared memory parallel programs [6].

Even though a lot of software optimizations were required to utilize the many core

processor to the full extent [7], the system as a whole gave better performance with

lesser clock frequency and thus reducing the power and heat dissipation which was a

bottleneck for single core processor.

Present day servers and supercomputers need very high performance. To meet

the performance requirements, processors that have tens to hundreds of cores are

required. The fastest supercomputer in the year 2016 TIANHE-2 (MILKYWAT-2)

has 3,120,000 cores distributed in multiple intel Xeon processors [8]. As the number

of cores increased, the communication between the processors increased [9]. For

scientific workloads, the cache coherence messages were observed to be an overhead

for the system as the multi core processors were placed on different chips. So for

2

every cache miss, the cores had to communicate between the chips using the front

side bus which is now replaced by the Quick Path Interconnect or the HyperTransport

protocol [10]. This inter chip communication is expensive and thus the chip multi

processors were introduced.

In the chip multiprocessor, all the cores are implemented in a single chip and the

communication between the cores are implemented on an interconnection network.

For example, in the Intel Developer Forum 2006, a 80 core processor prototype was

demonstrated. The on chip implementation reduces the latency of memory access as

the link delay on a chip is lesser compared to the front side bus [11]. To maintain cache

coherency between the cores, the cores follow a cache coherence protocol in which

coherence messages are exchanged between the cores through the interconnection

network. When the core count increases, the coherence messages on the network

increases and the network becomes a bottleneck.

In the chip multiprocessor with hundreds of cores, the communication overhead

between the processors reached a saturation and thus reducing the scalability of the

system [12]. With present day systems requiring hundreds of cores, the research was

shifted to focussing on the interconnection network between the cores for supporting

the cache coherence traffic. The bus interconnection network was optimized to sup-

port large amount of processors, but they had a bandwidth limit and arbiter delay

which slowed down the system [13]. Thus Network on Chip was proposed to provide

better bandwidth and there is no need of arbitration to send messages. The research

in NoC have been done in the last few years, but they are mainly focussed on the

conventional directory based protocol implemented for cache coherence [14]. In our

thesis research, we will be focussing on the Hammer cache coherence protocol, which

is more scalable than conventional protocols.

3

1.2 Objective

This thesis discusses the methods to support hundreds of cores on a single chip and

thus improving the scalability of the system. The first goal is to identify the scalable

cache coherence protocol for on chip multiprocessor. The second goal is to discuss

different types of interconnection network to reduce the communication overhead so

that the scalability of the system is improved. Network on Chip is an emerging

technology that enables the communication network to be implemented as a part of

the System on Chip. Since this technology has not come up in the market [15], we will

be using GEM5 simulator for simulation. The GEM5 has cache coherence protocols

and 2D Mesh NoC simulation package and being an open source simulator we will

modify the simulator for implementing the 3D Mesh NoC. The NoC traffic generated

for the scalable Hammer protocol is observed to be 30% more than the efficient but

non scalable directory protocol and by implementing the 3D NoC in GEM5, our goal

is to reduce the traffic overhead.

1.3 Thesis Motivation

A lot of work have been done in the multi core architecture field. But with the

present System on Chip and Network on Chip technology, the scalability of multi

core processors is not researched with the most scalable cache coherence protocol.

The cache coherence is the main criteria that affects the memory access latency. The

processor speed is higher than the memory speed and this gap in performance is one

of the main research interests for improving system performance. This acts as the

motivation for this thesis.

In chip multiprocessor, the cache coherence protocol and the Network on Chip

are responsible for the memory delay. The use of directory based cache coherence

protocol in 3D NoC have been simulated in previous research [16]. But they did

not focus on the high on chip area overhead of the directory protocol and thus not

providing a complete scalability solution. This research overcomes this problem by

4

use of the Hammer cache coherence protocol with the 3D Network on Chip. This

produces a system in which the memory traffic is reduced by using a 3D NoC and

producing almost the same NoC traffic that is produced in the Directory protocol

based implementation.

There have been research going on the 3D NoC routers [17] and the implemen-

tation in hardware. But 3D Network on Chip is still an emerging technology [15]

and is predicted to reach the market in near future. In the implementation level,

research is still going on, but a lot of simulators have been developed for predicting

its performance. The main focus of this thesis is on scalability of multicore processors

in System on Chip. The hammer cache coherence protocol for distributed systems

is chosen as it is scalable and the communication traffic is proposed to be reduced.

The main disadvantage of this protocol is the high communication overhead and thus

leading to higher power consumption. Since this protocol uses a Network on Chip for

communication between the cores, the research focusses on network on chip and how

to reduce communication overhead. Thus, the hypothesis is:

The scalability of multicore processors will be improved when using a non uniform

cache memory, uses the hammer protocol for cache coherence and a 3D Mesh Network

on Chip to reduce communication overhead.

1.4 Contribution

The 3D Network on Chip is still an emerging technology, so much of the research

in this area is focussed only on the communication network. In this thesis the scala-

bility of System on Chip scalability with respect to the cache coherence protocols is

discussed. The following are the major contributions in this research:

• The Hammer Protocol was chosen as the scalable protocol due to its low on

chip memory area overhead. The previous research was focussed on using the

Directory based coherence protocol, which occupies more on chip area and thus

reducing scalability.

5

• On executing the simulation for our system, the Hammer protocol produced

consistently 30% more traffic compared to Directory Protocol in 2D Mesh NoC.

Since the Hammer protocol is a broadcast based protocol, the extra traffic is

produced and this traffic increases with increase in number of cores.

• 3D Mesh NoC was proposed to reduce the extra traffic caused by the Hammer

Protocol. The 3D NoC was chosen as the net diameter of the network is reduced

and the amount of traffic per instruction is reduced compared to the 2D NoC.

• GEM5 computer architecture simulator was modified to implement 3D Mesh

NoC. The GEM5 simulator was chosen as it is an cycle accurate simulator that

had the Hammer and Directory protocol implemented, and also supported 2D

Mesh NoC.

• The 3D Mesh NoC was observed to reduce traffic by 11% for 64 core count

X86 processor and the amount of traffic reduction increases with increase in

number of cores. Since the GEM5 simulator can simulate only upto 64 cores,

the amount of traffic reduction is predicted to reduce with higher number of

cores and thus improving scalability of the system.

• Thus the many core System on Chip can be made scalable by using the Ham-

mer Cache Coherence Protocol and 3D mesh Network on Chip for high traffic

workloads.

1.5 Organization of Thesis

This thesis is organized into five chapters. The chapter 1, gives the pre requisite

knowledge for this research. The literature survey and research done is presented in

the chapter 2. The implementation and the design of the GEM5 software is discussed

in the chapter 3. The results obtained from the simulation and observations is pre-

sented in charpter 4. The conclusion and summary of the research is written in the

chapter 5.

CHAPTER 2: BACKGROUND

This chapter discusses the basic topics that are necessary to understand the imple-

mentation of this thesis. The cache coherence protocols and different types of Network

on Chips,its implementation, are discussed focussing on the scalability of multi-core

processors. For those familiar with these topics can proceed to the Section 3.

2.1 Multi Core Architecture

In the 1980s single core processors was implemented in which as the frequency of

switching increased, the dynamic power consumed increased leading to heat dissipa-

tion [18].

Powerdynamic ∝ 1/2× CapacitiveLoad× V oltage2 × FrequencySwitched

Thus the performance hit the power wall at around the year 2002 as shown in

figure 2.1. Despite innovations like pipelining and Dynamic Voltage-Frequency Scaling

(DVFS), the performance of a single core processor was not enough. So the multi

core processor was introduced into the market, which gave better performance with

less frequency of switching. There are two types of multi core architecture based on

the memory between the cores:-

• Shared memory multi core processors

In shared memory multi core processors, the cores have their caches private and

share the memory through the interconnect bus as shown in figure 2.2. As the

number of cores increased, the bus became the bottleneck for the system and

thus the distributed memory system was introduced.

7

Figure 2.1: Growth in clock rate of microprocessors [18].The processor clock
frequency is increased from 5 MHz in 1978 to 3000 MHz in 2004. After 2004, the
clock speed could not be increased due to the heat generated. Thus the processor
speed met the power wall in 2004 and the processor performance did not improve
until the multi core processor was brought in the market.

Figure 2.2: Multi-core chips with shared memory [19].In shared memory sys-
tem, all the processors shared a common main memory using a bus architecture. The
provides the indirection in the system to avoid race conditions, but has a upper limit
for the bandwidth and arbiter delay.

8

Figure 2.3: Multi-core chips with distributed memory [4]. In the distributed
memory architecture, each core has a physically separated memory, but they are
logically shared between the cores. The interconnection network should support the
point to point communication between the cores for using this architecture. Even
though this architecture uses more hardware, it is more scalable compared to shared
memory multiprocessors.

• Distributed Memory multi core processors

In the distributed memory system, the memory is distributed between the cores,

but they are logically shared between the cores as shown in figure 2.3. The

interconnect is used to access the memory of other cores.

2.2 System on Chip

According to Moores law [20] the transistor density increased as shown in fig-

ure 2.4, which led to the development of System on Chip (SoC). System on Chip

provides a very efficient solution, which incorporates all the processor cores and

reusable components like L1 cache, L2 cache, the Network Interface and the net-

work on chip/bus on one single chip as shown in figure 2.5. With the invention of

3D stacked ICs, the implementation of multiple layers of SoCs are possible.The SoC

helps to reduce the I/O count, system noise, power, EMI, and cost, and to increase

performance [21].

9

Figure 2.4: Transistor integration density per die [20]. According to Moores
law, the transistor density per square inch doubles every year. This diagram shows
the transistor density growth in Intel processors from the year 1970 to 2010, and this
increase in trend is predicted to grow in the following years.

2.3 Tiled Chip multiprocessor

As the number of cores increases, the system should be able to support the scal-

ability, which includes the memory organization, cache coherence protocol and the

communication network. The tiled Non Uniform Cache Hierarchy (NUCA) provides

the cores to virtually share distributed memory. Here each tile consists of a CPU

core, Private L1 cache,logically shared L2 cache, router to communicate with the

network and directory for storing cache coherence information as shown in figure 2.6.

The system must be able to support the increase in traffic, inter core communication,

heat dissipation and synchronization. The system should also implement routing al-

gorithms to avoid deadlock, livelock, starvation and aliasing [22]. In this thesis we

will be focussing on optimizing the communication overhead for kilo core processors.

2.4 Symmetric Multiprocessors vs Non Uniform Memory Access

Symmetric Multiprocessing (SMP) is the implementation of shared memory with

uniform access time and bus interconnect. Cache Coherent Non Uniform Memory

Access (cc-NUMA) is the implementation of distributed memory with non uniform

10

Figure 2.5: System on Chip organization [21]. The System on Chip uses the
high transistor density to incorporate the full system on a single chip. The system
consists of the CPU cores, cache memory, the interconnection network/switch fabric
and the main memory of the system.

11

Figure 2.6: Tiled chip multiprocessor organization [22]. In the Tiled chip mul-
tiprocessor, the CPU core, private L1 cache, logically shared L2 cache, the directory
and the router are on a tile, and many tiles put together forms the chip. The L2 cache
is accessible to all the cores through the network whereas the L1 cache is private and
accessed only by one core.

access time and scalable interconnect [4]. The table 2.1 compares the two architectures

based on scalability and programmability.

As we are focussing on the scalability in this thesis work, Non Uniform Memory

Access architecture is preferred. It provides more scalability than symmetric multi-

processors provided we implement a scalable point to point interconnection network

to communicate between the nodes.

2.5 CPU and memory Performance Gap

In the single core processor, as the frequency increased, the processor speed was

improved. Micro-architecture level changes became prominent in the beginning of the

21th century. Pollacks’s rule1 [24] have led to the successful introduction of multi-core

processors in the market. It is also said that the micro-architecture improvement

lead to two times improvement in performance while maintaining the same power

consumption. This had led to the processor performance improvement with lower

frequency and power consumption.

But the memory access speed only had little improvement for the single core

processor as shown in figure 2.7. The processor line shows the increase in memory

1Pollacks’s rule states that the micro-architecture causes performance improvement at the rate
of square root of increase in complexity.

12

Table 2.1: Comparison between Symmetric Multiprocessor and Non Uniform Memory
Access [4]

Field Name Symmetric
Multi Processors

Non Uniform Memory
Access

Key Value Less scalable More scalable
Programmability Easily pro-

grammable
Requires substantial
application in order to
handle capacity and
conflict misses well

Scheduling policy Easy to schedule
processes

Requires operating-
system optimization
and scheduling algo-
rithm is not trivial

Real Communication
workload performance

SMPs are also
more efficient
in handling
communication
misses , which
are common
in commercial
applications

They are less opti-
mal for access pat-
terns caused by ”real”
communication, such
as producer-consumer
and migratory data
[23]

13

requests per second on an average 2, while the memory line shows the increase in

DRAM accesses per second 3. Initially to access a memory it was expected to approach

100 clock cycles. But there have been steady improvement from the year 1990. The

faster SRAM cache memory was used to provide better hit time and thus faster

memory, but it was not enough to match the processor speed which had an exponential

performance rate. Various workloads have been run to show that the memory accesses

became the bottleneck of the single core system [25].

With the growth of multi core processors, the memory was distributed among the

processors and thus a faster hit time was obtained, but this architecture had a new

memory overhead which is maintaining the cache coherence and memory consistency

between the cores [26]. The main reason for slow memory in multi core processors

is the overhead to maintain cache coherency in the system. Various software and

operating system support [27] was researched for improving the data locality and the

cache misses, but they could not provide enough improvement to meet the proces-

sor speed. Various protocols have been developed for maintaining cache coherency

and the research now focusses on the communication network between the cores for

efficient communication [28].

2.6 Cache Coherence protocol

With the increase in number of cores, the private cache for each core have to be

coherent with each other. Various coherence protocols for shared and distributed

memory are used for maintaining coherence. Bus-Snooping cache coherence protocol

is a broadcast based protocol using a bus architecture used in symmetric multi proces-

sors. Each processor snoops the bus for shared data. The protocol uses write update

or write invalidate policy. But as the number of cores increased, the bus became the

bottleneck of the system [29]

So different protocols for tiled chip multi processor was introduced:-

2The inverse of the latency between memory references
3The inverse of the DRAM access latency

14

Figure 2.7: CPU and memory performance gap [18]. Till 1985, the processor
speed and the memory speed has little difference. But as the research in processor
speed grew, the performance gap increased and the memory became the bottleneck
of the system. This memory and CPU performance gap is a major motivation for
research in industries.

2.6.1 Hammer CMP protocol

This is the protocol used by AMD in their Opteron systems [22]. This protocol like

snooping based protocol does not store any information about the blocks in private

cache and is based on broadcasting misses to all the tiles. The Hammer protocol is

targeted for unordered point to point interconnection networks. The ordering point

in this network is the home tile.

The protocol does not store any block information which implies that the area

overhead is constant with respect to the number of cores.Thus it is more scalable

compared to the directory protocol. But the protocol has one level of indirection

through the home tile and thus requires three hops for the requestor to get the data

block as shown in figure 2.8. Also, due to the broadcasting of invalidation messages

there is a lost of traffic in the network thus increasing energy consumption.

2.6.2 Directory CMP protocol

The directory protocol is similar to the intra-chip protocol used in Piranha [22].

This protocol has a directory that keeps track of each cache block in the system.

This allows the protocol to send invalidation messages only to the tiles that share

15

Figure 2.8: A Cache-to-cache transfer miss [22].

the block, thus reducing unnecessary communication overhead. In this protocol also,

ordering is maintained by indirection to the home tile.

The Directory CMP also requires three hops as there is one level of indirection

through the home tile as in figure 2.8. More directory memory is compensated by

low amount of network traffic. As the number of cores in the system increases, the

directory in each core grows the area increases in the order of O(N), where N is the

number of cores and thus this protocol does not support scalability.

2.6.3 Token CMP protocol

Token coherence maintain cache coherence by assigning a fixed number of tokens

to each memory block [30]. A processing core can read a block only if it has at least

one token and can write only of it has all the tokens with it. On every cache miss the

requesting core broadcasts cache miss to every other tiles as in figure 2.8. In case of

a write miss, they have to answer with all the tokens that they have. The data block

is sent along with the owner token.

Since this is also a broadcast based protocol, this produces traffic in the network.

Its area overhead grows in the order of O(log(N)), where N is the number of cores.

Thus this reduces indirection, but does not support scalability.

2.6.4 Direct Coherence CMP protocol

In direct coherence protocol, the ownership is changed according to the owner of

the data [31]. The ordering point of the request of a particular memory block is the

16

Figure 2.9: Area overhead for cache coherence protocols [22]. The percentage
of on chip area required for each cache coherence protocol is plotted in this graph.
With the increase in number of cores, it is observed that the Hammer protocol uses
the least area whereas the directory protocol has exponential increase. Thus the
directory protocol does not support scalability of chip multiprocessor.

current owner tile. In this way the request block is obtained by the requester in two

hops as in figure 2.8. Then the ownership change is sent to the home tile, which sends

an acknowledgement to the requestor.

The traffic in this protocol on the network is very less, but this protocol has to

maintain a directories for each cache block and thus result in area requirement of the

order of O(N), where N is the number of cores in the system.

2.6.5 Comparison between the protocols

Thus on observing the protocols, the area requirement grows as shown in as shown

in figure 2.9. It is observed that hammer protocol uses the least memory/area over-

head compared to other protocols. Its main disadvantage is the high message traffic

on the network and thus causing higher energy consumption. In the next section we

can see how to deal with this problem by considering different types of Network on

Chips.

17

Table 2.2: Comparison between BUS and Network on Chip [32]

BUS Network on Chip

Every unit attached adds para-
sitic capacitance, therefore elec-
trical performance degrades with
growth.

- + Only point-to-point one-way
wires are used, for all network
sizes, thus local performance is
not degraded when scaling.

Bus timing is difficult in a deep
submicron process

- + Network wires can be pipelined
because links are point-to-point.

Bus arbitration can become a
bottleneck. The arbitration delay
grows with the number of mas-
ters.

- + Routing decisions are distributed,
if the network protocol is made
non-central.

The bus arbiter is instance-
specific

- + The same router may be re-
instantiated, for all network sizes.

Bus testability is problematic and
slow.

- + Locally placed dedicated BIST is
fast and offers good test coverage.

Bandwidth is limited and shared
by all units attached.

- + Aggregated bandwidth scales
with the network size.

Bus latency is wire-speed once ar-
biter has granted control.

+ - Internal network contention may
cause a latency.

Any bus is almost directly com-
patible with most available IPs,
including software running on
CPUs.

+ - Bus-oriented IPs need smart
wrappers. Software needs clean
synchronization in multiprocessor
systems.

The concepts are siaple and well
understood

+ - System designers need re-
education for new concepts.

18

2.7 Network on Chip

Chip Multiprocessor (CMP) architectures integrate tens of processor cores onto

one chip. As the number of cores increases, a shared interconnect between the cores

becomes impractical and thus the cores has to be connected through unordered point

to point networks as shown in table 2.2. When a Chip Multiprocessor is implemented

as a System on Chip, the Network on Chip provides the best scalable interface for

communication between the processors.

2.7.1 Open Systems Interconnection Model of NoC

The basic protocol used for a Network on Chip is shown in figure 2.10 [32].

• The Application Layer consists of the resources of the system like microproces-

sors which does several tasks simultaneously.

• The Presentation Layer does the conversion between the resources between the

CPU layer and the network layer like endian conversion or data type conversion.

• The Session Layer establishes connection between the resources using the trans-

port layer.

• The Transport Layer ensures secure transmission of all the packets. It also deals

with the segmentation of messages into packets and their reassembling. It also

handles the flow control which highly affects the performance of the NoC.

• The Network Layer handle the routing mechanism of the network using the

routing algorithm. The most widely used techniques for routing are circuit

and packet switching. In the circuit switching algorithm the network control

overhead incurs only once and this algorithm is best in case of persistent commu-

nication. Packet switching algorithm has distributed network control overhead

and is a more energy efficient for irregular communication.

19

Figure 2.10: ISO/OSI reference model for NoCs [33].

• The Data Link Layer ensures reliable transfer of data by correcting errors in

the physical layer. This may include retransmission of data in case of a failure.

• The Physical Layer refers to the driver information, the electrical circuits and

the clocking mechanisms. Fault tolerant measures are introduced in this layer

in case of a link failure.

2.7.2 Electronic Network on Chip

The complexity of designing Electronic NoCs with increasing number of cores is

dealt with the tiles CMP architectures. Here we discuss the design of area-efficient

and energy-efficient Electronics on chip networks for tiles CMP architecture [33].

2.7.2.1 Mesh Topology

The mesh topology is a symmetric topology that has equal number of links for

every router. In this topology, every node has a router assigned to it as shown in

figure 2.11. Every Interconnecting Processor core is connected to one router. Every

router except those at the edges are connected to four other routers and one node.

All the links are bidirectional. The 2D Mesh topology has all the links of the same

20

Figure 2.11: 2D Mesh Topology [35]. In a Mesh topology NoC, every core/IP is
connected to one router. Each router has four neighbouring routers to form a Mesh
structure NoC.

length which imposes a regularity in the topology. The area of the mesh topology

grows linearly with the increasing number of cores [32]. Apart from these features,

this topology has some drawbacks. The amount of routers in this topology cerates

congestion in the middle of the network. So careful mapping of the workload has to

be done.

This topology uses the O1Turn routing algorithm [34]. O1Turn algorithm follows

the XY or YX routing algorithm, where the messages traverse the X or Y coordinate

first and then traverses the other coordinate. Even though this causes a lot of con-

gestion in the middle of the network, this algorithm is optimum for finding one of the

shortest path between the nodes.

2.7.2.2 Torus Topology

The Torus Topology is generated by extending the Mesh Topology by adding end-

around links at the edges as shown in figure 2.12. This provides uniform channel

length at the expense of longer average channel length. Due to this the diameter

of the network reduces as shown in Table 2.3. Also the congestion in the middle of

the network is reduced as the messages can be routed around the edges. But the

drawback in this topology is the high amount of area overhead as the number of cores

increases.

21

Table 2.3: Comparison between NoC Topologies

Network Nodes Degree Diameter Bisection
Bandwidth

Edge
Length

2D Mesh K2 4 2(K − 1) K Const
2D Torus K2 4 K 2K Const
Binary
Tree

2K − 1 3 2(K − 1) 1 Var

Hypercube 2K K K 2K − 1 var

Figure 2.12: 2D Mesh and Torus Topology [37]. The Torus topology is a Mesh
NoC with the ends connected and thus forming a cylindrical NoC. This reduces the
network diameter, but increases the average length of the links and the area required
for the NoC.

This topology uses the dimension order routing algorithm [36]. This follows the

routing in one dimension at a time and according to the congestion in the network,

the dimension is chosen.

2.7.2.3 Fat Tree Topology

In this topology, the topology is implemented such that the nodes of the tree are

routers and the leaves are the processing elements [36]. The nodes above the leaves

are called its ancestors and the nodes below the nodes are called its children. In a

Fat Tree Topology, each node has replicated ancestors which provides multiple paths

to move from each node to another a shown in figure 2.13.

The main disadvantage of the Tree Topology is that all the messages must route

22

Figure 2.13: Fat Tree Network [38]. The tree topology is implemented such that
the nodes of the tree are routers and the leaves are the cores/IP. For the Fat tree
topology, more links are used to connect multiple routers to the same node.

through the root of the tree, which makes it a bottleneck. This is avoided in Fat Tree

Topology, but this requires extra links to be introduced in the system and thus it is

not scalable.

2.7.2.4 Hypercube Topology

The hypercube has a cube like structure with the vertices as the nodes. The

hypercube based topologies provide regularity, symmetry, high connectivity, small

diameter and programmability as shown in figure 2.14. They appear as the most

suitable ones for our image processing applications in MPSoC.

For a N node Hypercube the diameter of the network is log2N . The Hypercube

Topology has good bisection width compared to other topologies and has logarithmic

vertex degree of log2N . The drawback with this topology is its high number of routers

and links which restricts it from supporting scalability.

2.7.3 Optical NoC

The Optical NoC uses optical telecommunication mechanisms for message transfer.

It relies on the photonic technology instead of electrical signals. It provides better

energy efficient communication and better performance compared to Electronic NoC.

It provides low latency and high bandwidth and thus enhances the communication

bounds present in Electronic signal communication [40].

23

Figure 2.14: Hypercube Network [39]. In a Hypercube topology, the vertices
of a cube are taken as nodes, and all the vertices of a cube is connected to all the
corresponding vertices of its neighbouring cubes.

The drawback of this system is that it is prone to thermal instability. With

fluctuating temperatures, the systems becomes unstable. Presently ring resonators

used for inter layer communication produces lots of losses, which causes interference

in some environments. A lot of research is being done in this area for enhancement.

2.7.4 Wireless NoC

Wireless Network on Chip work on the principle of wireless transfer of messages.

This creates a communication protocol where Network congestion can be avoided and

thus provide less latency communication of messages. It depends on the Transmit-

ter/Receiver theory and used antennas for communication [41].

The Wireless NoC has the drawback with the high area requirement for alignment

of antennas. Another main disadvantage is that it has an upper bound on the band-

width that can be sent over the network. It also uses high amount of energy if not

used effectively.

2.7.5 Network Flow Control

Netowork Flow Control is the method by which message packets are transmitted

inside the network [36]. The following modes are generally used in present day NoCs.

2.7.5.1 Store and Forward Routing

In Store and Forward Routing, the packets move in one piece and are stored in

the routers memory. Then it gets transferred to the next router. So the memory of

the router should be equal to the largest packet in the network. The Latency is the

24

time of receiving the packet, storing it and sending it again to the next router. A

packet can be sent only after the whole packet has arrived to the router.

2.7.5.2 Virtual-Cut Through Routing

Virtual-Cut Through Routing is an improvement over the Store and Forward

Routing technique. Here the packet can start transmission to next router as soon as

the next router is ready to accept the packet. It need not wait for the full packet to

arrive to the router. This method also need same memory as in Store and Forward

technique but the latencies are reduced.

2.7.5.3 Wormhole Routing

In Wormhole Routing, the messages are divided into equal size flits. After the

first flit is sent, the routing path is reserved to transmit the remaining flits of the

message. This technique requires less memory compared to other two techniques as

only one flit needs to be stored at a time in a router. Even though the latency is

reduced, the probability of deadlock is higher in this routing technique. This can

be avoided by introducing virtual ports by multiplexing one physical port. By doing

this, the possibility of traffic congestion and blocking decreases.

2.8 3D Mesh NoC architectures

2.8.1 3D Mesh NoC

In a System on Chip, the on-chip interconnect is the principle bottleneck. The

conventional 2D IC had limited floor planning choices and thus does not support the

performance enhancements of the NoC. The three dimensional IC was introduced

recently which contains multiple layers of active devices to connect layers using short

vertical connections [42]. The NoC and 3D ICs together form the 3D NoC architecture

as shown in figure 2.15. Using a cycle accurate simulator, it is shown that 3D Mesh

NoC exhibits less execution and average latency than 2D Mesh NoC for fast fourier

transform and matrix multiplication workloads [43].

With the development of 3D ICs, multilayer networks became prominent [44].

25

By introducing the 3D topologies, the network diameter was reduced, the length of

the links is reduced and provides more scalability than 2D Mesh NoC. For the 3D

Mesh NoC, the router configuration has to be changed from a 5 port router to a 7

port router. Even though this reduces the energy consumption of the system, this is

compensated by the short links and thus provides lesser power consumption.

There have also been physical implementations of 3d NoC architectures and ver-

ified the working of the system.A 2 tier Tezzaron 3D technology to compare the 3D

Mesh and 3D Stacked Mesh NoC have been implemented [45].The different types of

3D topology constraints are discussed and implementation in terms of wire delay,

area and energy is observed [46]. Description on how to determine the best topology,

compute paths and placement of the NoC components in each 3D layer is provided.

65 nm low power technology libraries are used for synthesis.

2.8.2 3D Stacked NoC

Through Silicon Vias technology have been developed for stacked NoC architec-

ture. Staked NoC is a combination of bus based architecture and 3D NoC architecture

where it uses a bus structure for inter layer communication as shown in figure 2.16.

Even though the manufacturing of TSVs is difficult, it produces a faster interconnec-

tion mechanism between the layers of the NoC [47].

2.8.3 3D NoC in market

The research on 3D NoC development have been improving in the last 5 years.

Although there have been experimental implementations for research in VHDL, it

has not come up in the market due to insufficient 3D design and synthesis tools

as well as the limitations of TSVs and extra manufacturing process such as wafer

thinning of 3D IC [48]. This is yet to be generally accepted by the industry. The

implementation paradigms for heat dissipation, floor planning, switch placement, NoC

partitioning, router area and power consumption have been discussed in terms of cost

and implementation.

26

Figure 2.15: The Mesh based 3D NoC architecture [15]. This is a three tier
Mesh NoC, where three 2D Mesh NoCs are connected using links between the layers.
Each router has seven ports, six for connecting to its neighbouring routers and one
to connect to the processing element(PE).

There have been research going on specifically in the concentration of cost and

implementation of 3D NoCs [15]. Various strategies for the router placement and

implementation of hybrid routers4 have been discussed to reduce the manufacturing

cost and implementation. Even though 3D NoCs are not present in the market today,

it is an emerging technology for scalable servers and supercomputers necessary for

large scale multi core processors.

2.8.4 Analysis of 2D and 3D Mesh NoC

With the above mentioned analysis, the binary tree has low bandwidth and con-

gestion at the root. Thus for increasing number of cores, the tree NoC is not scalable.

Depending on the workload and the requirements of the system, the performance of

each NoC is chosen. Since the scalability of the system is of prime importance in this

research, we will analyse the NoCs with increasing number of cores.

The Torus topology uses a lot of wiring area with the increase in number of cores.

The hypercube adds more ports to the router with increase in number of cores, and

4Hybrid router is a combination of 2D and 3D routers on the same chip

27

Figure 2.16: A 2-tier stacked 3D NoC [15]. In a stacked NoC, the links between
the layers are bus structures, where the messages are broadcast to reach multiple
layers in one cycle. This reduces the inter layer communication delay and reduces the
link count of the Noc.

thus does not support scalability. Thus the Mesh topology will be most suitable for

scalability reasons. Even though the Mesh topology has the disadvantage that it has

high worst case delay, when the Through Silicon Vias 5 is introduced, this drawback

is overcome easily.

The comparison in terms of scalability has been done for the 2D and 3D Mesh NoC

in [44]. The two NoCs are compared based on wiring area, energy dissipation, worst

case delay and area for Through Silicon Vias. Wiring area is the percentage of wiring

area required for the NoC compared to the whole System on Chip area. As shown in

figure 2.20 the wiring area is observed to be very high for Torus NoC. As the number

of cores increases, the percentage of area for Mesh and Torus decreases and becomes

equal to the 2D Mesh NoC as shown in figure. This is because as the number oc cores

increases, the System on Chip area increases more rapidly than the NoC area. So

for high number of cores, the 3D NoC provides lesser network diameter and almost

same percentage of area compared to 2D NoC. The energy dissipation is in nano

5Through silicon vias(TSV) is a bus structure that is used to connect the layers between the
stacked NoC [49]. Using the TSVs the communication between the layers are broadcasted and thus
take very less time for communication. TSVs are difficult to manufacture and occupy on chip area.

28

joules which is measured for the Network on Chip. As observed from the figure 2.19

the energy consumption in 3D NoC is lower as the network diameter is reduced and

each message needs to spend lesser time on the network. Even though the energy

of a 3D router is higher compared to a 2D router, the overall power consumption

for Torus and Mesh NoC is reduced. For the Hypercube NoC, the number of router

ports increases as the number of cores increases and thus the energy consumption is

higher compared to other NoCs. With the introduction of TSVs, each TSV occupy

considerable area on the chip. The on chip area occupied by the TSVs for Torus

NoC is higher compared to Mesh and Hypercube as shown in figure 2.8.4. The TSVs

provide a faster communication mechanism by broadcasting the messages to all the

layers though the bus. This is used for quick communication between the layers of

the NoC. The drawback with the Mesh 3D NoC compared to 2D is the worst case

delay as shown in figure 2.18. The worst case delay is the maximum delay possible

between two nodes in the system. As the number of cores increases, the delay increases

exponentially. But this is being overcome with 3D stacked NoC and TSVs for the

Mesh NoC. By implementing the stacked 3D NoC and TSVs, the length of the links

gets shortened and the messages between the layers gets transmitted easily. Thus 3D

Mesh NoC is a good performer considering the four factors namely wire delay, energy

consumption, TSV area and usage of wiring area.

2.8.5 Router for NoCs

To implement the 3D router, we will first understand the working of a 2D router.

Various router configurations have been introduced in the market, but the basic router

configuration is the Hermes router [50] shown in figure 2.21. The router consists of

the following signals:

• clock tx - Synchorizes data transmission

• tx - Indicates data availability

29

Figure 2.17: Comparison of area lost to TSV in NoCs [44]. For the 3D fout
tier plot, the Mesh topology requires less percentage of TSV area compared to Torus
and Hypercube. The difference in TSV ares is high for the 3D-4 tier. For the 3D-2
tier, the difference is less, but the hypercube and Mesh requires the same area for
higher number of cores. Thus the 3D requires almost same percentage of TSV area
for higher number of cores

Figure 2.18: Comparison of worst case delay in NoCs [44]. The worst case
delay increases for the 3D-4tier plot with increase in number of cores compared to
other 3D-4tire topologies. This is a drawback with the Mesh NoC, but with the
implementation of Through Silicon Vias and 3D IC technology, this delay can be
overcome.

30

Figure 2.19: Comparison of energy dissipation in NoCs [44]. For the 3D Mesh
topology, the energy dissipated is least compared to the 3D Torus and Hypercube
topologies. This is because the Mesh topology has smaller links and occupies lesser
on chip area.

Figure 2.20: Comparison of usage of wiring area in NoCs [44]. For the 3D-4tier
Torus topology, the on chip area occupied is very high compared to other topologies.
As the number of cores increases, the 3D-2tier and the 2D NoC occupies the same
percentage of area as the percentage of NoC area becomes negligible compared to the
total area. Thus 3D NoC occupies almost same area as 2D NoC for high core counts.

31

• lane tx - indicates the lane transmitting data

• data out - Data to be sent

• credit i - Indicated available buffer space for each lane

East, west, north and south are the two way ports for the router. Since this is a

router for 2D Mesh NoC, it has four ports for connecting four routers and one port

to connect to the core. Each port had n virtual lanes and thus n buffers. So each

buffer can store upto d/n flits. As the flits are received in a lane, the credits are

decremented and the flits are stored in the buffer indicated by lane rx.

When multiple packets come to the input port, round robin arbitration grants

access to the packets. Once the incoming packet reaches the buffer, the XY routing

algorithm is used to find the correct output lane. When the routing algorithm finds an

available output port, the connection is established and the routing table is updated.

An example routing table entry is shown in table 2.4 for the connection shown in

figure 2.22.

In the routing table, three vectors namely in, out and free are used. The in

vector connects the input lane to an output lane. The out vector connects an output

lane to an input lane. The free vector is responsible for modifying the output lane

to free(1) or busy(0) state. The in and out vector use identifier (id) using the port

number(np) and the lane number (nl) by the equation

id = (np× numberoflanes) + nl

. The ports are numbered from 0 to 4 for the East, West, North, South and Local

ports respectively. In the table the North port L1 lane is busy(free = 0) and is being

driven by the input lane L1 of the West port(out = 2). The input lane L1 of North

port is driving the output L1 lane of the South port(in = 6). Once the output lane

is decided, the flit is removed from the input buffer and the number of credits is

32

Figure 2.21: Hermes Router with 2 virtual channels for 2D Mesh NoC [50].

Figure 2.22: A 2D Hermes router with connections established [50].

incremented and the credit information is passed to the neighbouring router through

credit o.

In a 3D Mesh router, the number of ports increases by two to connect the top and

bottom layers. This increases the number of switches as well as the power consump-

tion of the router as shown in figure 2.23. To overcome this Through Silicon Vias

was introduced to overcome the high energy consumption. The router placement on

a NoC has various effects on the power consumption and there is a trade-off between

performance and power consumption.

33

Table 2.4: Routing table entry [50]

Port E1 E2 W1 W2 S1 S2 N1 N2 L

id 0 1 2 3 4 5 6 7 8
Free 1 1 1 1 0 1 0 1 1
In 4 6
Out 2 4

Figure 2.23: Hermes Router modified into a 3D router [50].

CHAPTER 3: DESIGN AND IMPLEMENTATION

3.1 Simulation Environment

So far we had discussed the necessary background to understand the theory behind

this research. To implement this system, various simulation software are available.

One of the efficient software is GEM5, which is a simulator platform for computer

architecture simulation. This chapter discusses how this thesis is implemented in

GEM5 by modifying the open source software for our requirements.

3.2 The GEM5 simulator

GEM5 is the merger of M5 and GEMS software. It supports various CPU ar-

chitectures like ALPHA, ARM, SPARC and X86 processors. It supports an event

driven model of simulation which includes caches, cache coherence protocols, network

on chips and different I/O memory. It also provides Kernel Virtual Machine sup-

port which is used for binary translation. Its an open source software founded by

collaboration from various institutes like University of Michigan, The University of

Wisconsin Madison and various industries like ARM and AMD. GEM5 is based on

command line interface and does not depend on the hardware it is installed in.

The GEM5 Ruby model supports three implementations namely Caches and mem-

ory, coherence protocol and inter connection network as shown in figure 3.1. The Ruby

model works separate from the processors and thus provide flexibility to run any pro-

cessor on any memory related simulation. The domain specific language Specification

Language for Implementing Cache Coherence (SLICC) creates the state machines to

connect the processor and memory system.

In GEM5, we have two models of CPU namely Atomic Simple CPU and Timing

Simple CPU. The Atomic model does the memory access instructions atomically as

35

Figure 3.1: GEM5 Ruby [51].

Figure 3.2: CPU - Timing Simple [51]. In the Timing Simple CPU the sendTiming
and recvTiming are used to depict the memory access. The CPU stalls till the memory
access is finished.

shown in figure 3.3. In atomic mode the processor does not wait for the memory access

to finish. It continues execution after sending the memory request to the memory

system. Even though this method looks faster, a lot of dependency analysis has to

be done beforehand to avoid stalls. The timing model waits for the every memory

instruction to finish as shown in figure 3.2. Even though this method is independent

of dependency analysis, there is lot of delay in the pipeline. Since this is a simulation,

we will be able to observe the memory accesses clearly. Thus, here we will be using

the Timing Simple CPU as we need the memory readings for our application.

36

Figure 3.3: CPU - Atomic Simple [51]. In the Atomic CPU, the CPU does
not stall for the memory accesses and the memory access is done atomically and
independently of the CPU pipeline.

GEM5 supports the MOESI Hammer CMP and MOESI Directory CMP based

cache coherence protocols for single chip, 2 level caches. MOESI describes the different

states of a cache block namely Modified, Owner, Exclusive, Shared and Invalid states.

For the Hammer protocol, the cache hierarchy follows strictly-exclusive hierarchy

whereas the Directory protocol follows the strictly-inclusive cache hierarchy. The

states of the Hammer CMP protocol are explained in table 3.2 and that of Directory

CMP protocol is explained in table 3.1. During a read operation, the cache block

changes from modified or exclusive state to shared state. During a write operation,

the cache block change from shared state to exclusive or modified or invalid state.

We will be using the GEM5 2D Mesh implementation for our thesis. This topology

requires the number of directories to be equal to the number of cpus. The number of

routers/switches is equal to the number of cpus in the system. Each router/switch

is connected to one L1, one L2 (if present), and one Directory. It can be invoked

from command line by –topology=Mesh. The number of rows in the mesh has to

be specified by –mesh-rows. This parameter enables the creation of non-symmetrical

37

Table 3.1: States of cache blocks in MOESI Directory CMP protocol [51]

States Invariants

MM The cache block is held exclusively by this node and
is potentially locally modified (similar to conventional
”M” state).

O The cache block is owned by this node. It has not been
modified by this node. No other node holds this block
in exclusive mode, but sharers potentially exist.

M The cache block is held in exclusive mode, but not writ-
ten to (similar to conventional ”E” state). No other
node holds a copy of this block. Stores are not allowed
in this state.

S The cache block is held in shared state by 1 or more
nodes. Stores are not allowed in this state.

I The cache line is invalid and does not hold a valid copy
of the data.

MM W The cache block is held exclusively by this node and is
potentially modified (similar to conventional ”M” state).
Replacements and DMA accesses are not allowed in this
state. The block automatically transitions to MM state
after a timeout.

M W The cache block is held in exclusive mode, but not writ-
ten to (similar to conventional ”E” state). No other
node holds a copy of this block. Only loads and stores
are allowed. Silent upgrade happens to MM W state on
store. Replacements and DMA accesses are not allowed
in this state. The block automatically transitions to M
state after a timeout.

38

Table 3.2: States of cache blocks in MOESI Hammer CMP protocol [51]

States Invariants

MM The cache block is held exclusively by this node and
is potentially locally modified (similar to conventional
”M” state).

O The cache block is owned by this node. It has not been
modified by this node. No other node holds this block
in exclusive mode, but sharers potentially exist.

M The cache block is held in exclusive mode, but not writ-
ten to (similar to conventional ”E” state). No other
node holds a copy of this block. Stores are not allowed
in this state.

S The cache line holds the most recent, correct copy of the
data. Other processors in the system may hold copies
of the data in the shared state, as well. The cache line
can be read, but not written in this state.

I The cache line is invalid and does not hold a valid copy
of the data.

meshes too [51].

To meet our needs, we have to understand the code implementation of 2D Mesh

NoC and convert it into 3D Mesh NoC. Since GEM5 is an open source software, the

documentation for the implementation of the 2D NoC was studied as described in

appendix 5 and the modification of the code is discussed in the following sections.

3.3 GEM5 source code

GEM5 Ruby is implemented using python and C++ languages. As shown in

figure 3.4 the python program provides the user interface objects and the C++ is

used for the low level design of the system. The SLICC combines the memory and

the CPU models in a state machine to run the system. The source code consists of

configuration and implementation files. The configuration files are implemented in

python and the implementation files are implemented in C++. Each file consists of

a class implementing a modular programming structure.

39

Figure 3.4: GEM5 source code layout [52].

3.4 GEM5 code documentation

For modifying the GEM5 2D NoC structure for our requirements, a proper code

analysis of the implementation of 2D Mesh NoC was done. Since its a modular object

oriented implementation, all the parts of the network is implemented as classes in

separate Python and C++ languages. The Scons compiler was used to compile both

types of files. This section briefly explains the top level implementation of the code

that is pre implemented in GEM5 by the code developers. The analysis of every line

of code for the pre implemented 2D Mesh NoC was done and the brief working of

each class is described.

3.4.1 Link class

The link class uses two types of links namely ExtLinks and IntLinks. ExtLinks

are used to connecting the router to the core and IntLinks are used for connecting the

routers together. Each link class object contains the information for a link like the

bandwidth, latency and weight of the link. For each link, an object is created and the

40

link details are updated. Each link had a corresponding link ID which is numbered

based on the type of link. The ExtLinks going from core to router are numbered

from 0 to numberofcores− 1. The internal links are numbered from numberofcores

to 2 × numberofcores − 1. The ExtLinks from router to core is numbered from

2×numberofcores to 3×numberofcores−1. See code 3.1 for the BasicLinkParams

structure which shows the structure parameters of a basic link class.

Listing 3.1: Structure of a Link

struct BasicLinkParams : public SimObjectParams

{

BasicLink ∗ c r e a t e () ;

int bandwidth factor ; // Bandwidth

Cycles l a t ency ; // Latency

int l i n k i d ;

int weight ;

} ;

3.4.2 Message class

The Message class contains the parameters required for a message. It keeps track

of the tick time, the last enqueued time, delayed ticks and the lane of the router link

that the message has to be routed to as shown in the code 3.2. This class is used

by the Messagebuffer class for enqueue and dequeue operations. An object of the

message class is used as input and output for all the networking classes.

Listing 3.2: Private parameters of Message class

class Message

{

private :

41

const Tick m time ;

Tick m LastEnqueueTime ; // my l a s t enqueue time

Tick m DelayedTicks ; // my de layed c y c l e s

u i n t 6 4 t m msg counter ;

// V a r i a b l e s f o r r e q u i r e d network t r a v e r s a l

int i n coming l ink ;

int vnet ;

}

3.4.3 MessageBuffer class

The MessageBuffer class keeps the information required for all the buffers that

act as intermediate storage between the nodes and the routers. It keeps track of

the available buffer size, the type of master and slave port connection and the order

of extraction of messages from the buffer as shown in code 3.3. The Throttle class

uses the MessageBuffer class to move the message from input vnet/buffer to output

vnet/buffer(input and output buffers are passed and changes the bandwidth. For

every iteration it checks if the previous message was sent and then pushes the message.

Listing 3.3: Parameters of MessageBuffer class

struct MessageBufferParams : public SimObjectParams

{

MessageBuffer ∗ c r e a t e () ;

unsigned b u f f e r s i z e ; // S i z e o f Buf fer

bool ordered ;

bool randomizat ion ; // Order o f message e x t r a c t i o n

unsigned int por t mas t e r connec t i on count ;

unsigned int p o r t s l a v e c o n n e c t i o n c o u n t ;

} ;

42

3.4.4 SimpleNetwork Class

The basic network layout is done in the SimpeNetwork class. It uses the above

defined Link, Message, Router and MessageBuffer classes to implement a simple net-

work. The simple network models hop by hop network traversaland abstracts out

the detailed implementation of of the switches. The switches are modelled in the

PerfectSwitch class while the links are modelled in Throttle class. The flow control is

implemented by monitoring the available buffers and available bandwidth in output

links before sending. There are two types of routing that are followed:

• Adaptive Routing - In adaptive routing the path is a function of network instan-

taneous traffic. It increases the number of possible paths usable by a packet to

arrive to its destination. However deadlock and livelock situations can happen

in fully adaptive algorithms which limits its usage.

• Deterministic Routing - In deterministic routing, the path is completely speci-

fied from the relative position of source and target address.

The basic parameters of the class is shown in code 3.4. The RubyNetworkParams

has the basic parameters like the links, routers and the type of ruby system used. The

SimpleNetworkParams inherits the RubyNetworkParams and provides the variables

for the network. The create function initializes the classes to the corresponding

values. The adaptive routing specifies the type of routing that has to be followed.

The MessageBuffer vector is used to store the messages in the network.

Listing 3.4: Parameters of SimpleNetwork class

struct RubyNetworkParams : public ClockedObjectParams

{

int c o n t r o l m s g s i z e ;

s td : : vector< BasicExtLink ∗ > e x t l i n k s ;

s td : : vector< Bas ic IntL ink ∗ > i n t l i n k s ;

43

std : : vector< ClockedObject ∗ > n e t i f s ;

unsigned number o f v i r tua l ne tworks ;

s td : : vector< BasicRouter ∗ > r o u t e r s ;

RubySystem ∗ ruby system ;

std : : s t r i n g topology ;

unsigned int por t mas t e r connec t i on count ;

unsigned int p o r t s l a v e c o n n e c t i o n c o u n t ;

} ;

\\ I n h e r i t RubyNetworkParams

struct SimpleNetworkParams : public RubyNetworkParams

{

SimpleNetwork ∗ c r e a t e () ; // I n i t i a l i z a t i o n

// s e t s the Routing method−s t a t i c or a d a p t i v e

bool adapt i v e rou t ing ;

int b u f f e r s i z e ;

int endpoint bandwidth ;

std : : vector< MessageBuffer ∗ > i n t l i n k b u f f e r s ;

} ;

3.4.5 PerfectSwitch Class

The PerfectSwitch class works on the round robin scheduling of incoming messages

to a router and the scheduling of messages at the output port of the router based

on the routing table entry. The PerfectSwitch class uses the Swith class discussed

in next section, to model the switch. So for a 5 port router, the switch will connect

input port to all the corresponding lanes of the output port. The PerfectSwitch class

also operates the MessageBuffer for each router-node pair using the Throttle class

44

Table 3.3: The implementation of the weight matrix

Types of Links Horizontal Vertical Interlayer No Con-
nection

Weight 1 2 3 10000

and thus operates the network efficiently.

3.4.5.1 Switch class

The Switch in a router is modelled in this class. It is used to initiate the Per-

fectSwitch class by getting the routing table entry from Topology class and passing

it to the PerfectSwitch class. The Switch class sets up the switch by populating the

input vectors and the output vectors for the routers. This class calls the addOutPort

and addLinks functions in the PerfectSwitch and Throttle class respectively to set up

the ports and links for the system.

3.4.6 Topology class

The Topology class is the main class that implements the routing algorithm and

runs the network. Topology weights, component latencies and component inter switches

are 2d integer matrices that has src routers/nodes as rows and destination routers/n-

odes as columns. These three matrices are passed to shortest path function to find

the shortest path matrix whose algorithm is defined in figure 3.5 using Hash Map

data structure. Makelink function creates the inlinks and outlinks using makeOut-

Link,makeInLink and makeInternalLink functions. The table 3.3 explains how the

weight matrix is populated for each kind of link connection. The weight between a

link connecting the node and the same node is zero depicted as the diagonal elements.

The weight for the links connecting the horizontal and another horizontal axis node

is 1, between horizontal node and vertical node is 2 and the links between the layers

connecting the two planes are depicted with weight 3.

45

Figure 3.5: All Pairs Shortest Path Algorithm [52]. The algorithm follows
the flow shown in this figure. First the flag is set to 1 to indicate that the routing
algorithm is being calculated. Then the minimum weight in the matrix for every node
is calculated using the Dijkstra and Bellman-Ford algorithms. This is done till all
the nodes receive the shortest path weight and then the fag is set to zero, to allow
message passing through the path.

46

Figure 3.6: Function flow graph of pre implemented GEM5 code.

3.4.7 Function flow graph

The function flow of the pre implemented GEM5 code is depicted in figure 3.6

based on the discussion of the classes in the above sections. Here the SimpleNetwork

class acts as the main class that inherits all the other classes. The Message class,

MessageBuffer class and the Link class acts as the basic parameters used to build

the network. The Switch class provides the framework for the PerfectSwitch class,

which works on throttling the links of the input and output ports of the router. The

Topology class runs the shortest path algorithm and populates the routing table entry,

which is fed to the other classes for running the network.

3.4.8 Execution of pre implemented 2D Mesh NoC in GEM5

The following command is used to execute the 2D Mesh NoC:

./build/X86 MOESI hammer/gem5.debugconfigs/example/ruby network test.py−

−num− cpus = 2−−num− dirs = 2−−topology = Mesh−−mesh− rows = 1

whose output is shown in table 3.4. The rows of the matrix has the source nodes

and the columns are the destination nodes. As for each node the simulation has a

cache controller and a directory controller, each node is depicted as two nodes . Also,

for each of these nodes, uni direction links are simulated and thus there should be

47

Table 3.4: Output for 2 core X86 simulation

col0 col1 col2 col3 col4 col5 col6 col7 col8 col9

row0 0 10000 10000 10000 10000 10000 10000 10000 1 10000
row1 10000 0 10000 10000 10000 10000 10000 10000 10000 1
row2 10000 10000 0 10000 10000 10000 10000 10000 1 10000
row3 10000 10000 10000 0 10000 10000 10000 10000 10000 1
row4 10000 10000 10000 10000 0 10000 10000 10000 10000 10000
row5 10000 10000 10000 10000 10000 0 10000 10000 10000 10000
row6 10000 10000 10000 10000 10000 10000 0 10000 10000 10000
row7 10000 10000 10000 10000 10000 10000 10000 0 10000 10000
row8 10000 10000 10000 10000 1 10000 1 10000 0 1
row9 10000 10000 10000 10000 10000 1 10000 1 1 0

Figure 3.7: Numbering of the cores and routers in the matrix.

one node for outgoing and one node for incoming from the network. For a two node

network, there will be four nodes (two for cache controller and two for directory con-

troller) for receiving the data from network and four nodes for sending the data to

the network. These are numbered from 0 to 7, and the two routers are numbered as

8 and 9 as shown in figure 3.7.

3.5 3D Mesh NoC implementation

Based on the study of the pre implemented 2d Mesh NoC, the changes in the

source code was made. The Mesh.py python file was changed and the above classes

was verified to work correctly by displaying the weight matrix in Topology class. The

code listing in 3.5 was added to the Mesh.py file of 2D Mesh NoC. The links between

the planes are added by calling the intlinks and extlinks functions, which in turn calls

the underlying C++ functions for the Link class. The Link class in turn calls the rest

of the functions to make the changes.

48

Table 3.5: Output of weight matrix for 3D NoC

col0 col1 col2 col3 col4 col5 col6 col7 col8 col9

row0 0 10000 10000 10000 10000 10000 10000 10000 1 10000
row1 10000 0 10000 10000 10000 10000 10000 10000 10000 1
row2 10000 10000 0 10000 10000 10000 10000 10000 1 10000
row3 10000 10000 10000 0 10000 10000 10000 10000 10000 1
row4 10000 10000 10000 10000 0 10000 10000 10000 10000 10000
row5 10000 10000 10000 10000 10000 0 10000 10000 10000 10000
row6 10000 10000 10000 10000 10000 10000 0 10000 10000 10000
row7 10000 10000 10000 10000 10000 10000 10000 0 10000 10000
row8 10000 10000 10000 10000 1 10000 1 10000 0 3
row9 10000 10000 10000 10000 10000 1 10000 1 3 0

Listing 3.5: Code added to Mesh.py

#Creat ing the l i n k s between the p lanes

for row in xrange (num rows) :

for c o l in xrange (num columns) :

for ht in xrange (num height) :

i f (ht + 1 < num height) :

down id = (ht∗num rows∗num columns)

+ c o l + (row ∗ num columns)

up id = ((ht+1)∗num rows∗num columns)

+ c o l + (row ∗ num columns)

i n t l i n k s . append (IntLink (l i n k i d=l ink count ,

node a=r o u t e r s [down id] ,

node b=r o u t e r s [up id] ,

weight =3))

l i n k c o u n t += 1

network . i n t l i n k s = i n t l i n k s

The input to the hash map in Topology class is changed according to the input

from the Mesh.py file. Thus the code is verified and the weight matrix is taken as a

49

verification parameter. The number of links and the link ids are displayed to verify

the number of links for a 3D NoC. For example, for a 4 × 4 × 4 3D Mesh NoC, 144

internal links are generated, whereas for 4 × 16 2D Mesh NoC, we get 108 internal

links. The following command is used to run the 3D NoC and the weight matrix is

displayed for verification:

./build/X86 MOESI hammer/gem5.debugconfigs/example/ruby network test.py−

−num − cpus = 2 − −num − dirs = 2 − −topology = Mesh − −mesh − rows =

1−−mesh− height = 2

whose output is shown in table 3.5. The links that has weight 3 are the links that are

used for inter layer communication. This is verified for higher number of cores and

thus the implementation of the 3D Mesh NoC is verified to be correct.

CHAPTER 4: EVALUATION

The simulation is carried out for the SPEC CPU2006 benchmark for different

system specifications to obtain the required output. First the Hammer and Directory

protocols are compared based on the network traffic. Then the simulator is used to

obtain the traffic pattern in 2D and 3D mesh NoCs. This uses the modification to

the software described in chapter 3. Then the whole system with Hammer protocol

and 3D Mesh NoC is simulated to obtain the performance parameters. All these

simulations will try to prove the thesis statement described in chapter 1.

4.0.1 Experimental Setup

Simulation Parameters:

• Software: GEM5 modified for 3D Mesh NoC implementation

• CPU : X86 Timing CPU with private L1 and Logically shared L2 cache

• Flags used:-

– num-cpus - Number of cores

– num-dirs - Number of directories (Equal to number of cores for Mesh NoC)

– topology = Mesh

– mesh-rows - Specify the number of rows of the NoC

– mesh-height - Specify the height/number of tiers of the NoC - typically

limited to a max value of 8 due to lack of hardware support

CPU2006 SPEC benchmark: CPU2006 is the latest Standard Performance Eval-

uation Corporation (SPEC) benchmark [53]. This new suite will exercise new corners

51

Table 4.1: CPU2006 integer benchmark

States Invariants

400.perlbench Derived from Perl V5.8.7. The workload includes Spa-
mAssassin, MHonArc (an email indexer), and specdiff
(SPEC’s tool that checks benchmark outputs).

401.bzip2 Julian Seward’s bzip2 version 1.0.3, modified to do most
work in memory, rather than doing I/O.

403.gcc Based on gcc Version 3.2, generates code for Opteron.
429.mcf Vehicle scheduling. Uses a network simplex algorithm

(which is also used in commercial products) to schedule
public transport.

445.gobmk Plays the game of Go, a simply described but deeply
complex game.

456.hmmer Protein sequence analysis using profile hidden Markov
models (profile HMMs)

458.sjeng A highly-ranked chess program that also plays several
chess variants.

462.libquantum Simulates a quantum computer, running Shor’s
polynomial-time factorization algorithm.

464.h264ref A reference implementation of H.264/AVC, encodes a
videostream using 2 parameter sets. The H.264/AVC
standard is expected to replace MPEG2

471.omnetpp Uses the OMNet++ discrete event simulator to model
a large Ethernet campus network.

473.astar Pathfinding library for 2D maps, including the well
known A* algorithm.

483.xalancbmk A modified version of Xalan-C++, which transforms
XML documents to other document types.

of CPUs, memory systems and compilers. This benchmark consists of real life appli-

cations, rather than using synthetic and artificial loop kernels. For our evaluation,

we will be running the integer and floating point benchmark in GEM5 for our simu-

lation. The integer benchmarks used in this simulation is described in table 4.1 and

the floating point benchmarks used is described in table 4.2.

The omentpp and sphnix3 benchmarks have traffic generators which produce high

traffic for simulation. In these kind of benchmarks, the 3D NoC is predicted to

produce better improvement in network traffic than 2D NoC.

52

Table 4.2: CPU2006 floating point benchmark

States Invariants

410.bwaves Computes 3D transonic transient laminar viscous flow.
416.gamess Gamess implements a wide range of quantum chemical com-

putations. For the SPEC workload, self-consistent field
calculations are performed using the Restricted Hartree
Fock method, Restricted open-shell Hartree-Fock, and Multi-
Configuration Self-Consistent Field

433.milc A gauge field generating program for lattice gauge theory pro-
grams with dynamical quarks.

434.zeusmp ZEUS-MP is a computational fluid dynamics code developed
at the Laboratory for Computational Astrophysics (NCSA,
University of Illinois at Urbana-Champaign) for the simula-
tion of astrophysical phenomena.

435.gromacs Molecular dynamics, i.e. simulate Newtonian equations of
motion for hundreds to millions of particles. The test case
simulates protein Lysozyme in a solution.

436.cactusADM Solves the Einstein evolution equations using a staggered-
leapfrog numerical method

437.leslie3d Computational Fluid Dynamics (CFD) using Large-Eddy
Simulations with Linear-Eddy Model in 3D. Uses the Mac-
Cormack Predictor-Corrector time integration scheme.

444.namd Simulates large biomolecular systems. The test case has
92,224 atoms of apolipoprotein A-I.

447.dealII deal.II is a C++ program library targeted at adaptive finite el-
ements and error estimation. The testcase solves a Helmholtz-
type equation with non-constant coefficients.

450.soplex Solves a linear program using a simplex algorithm and sparse
linear algebra. Test cases include railroad planning and mili-
tary airlift models.

453.povray Image rendering. The testcase is a 1280x1024 anti-aliased
image of a landscape with some abstract objects with textures
using a Perlin noise function.

454.calculix Finite element code for linear and nonlinear 3D structural
applications. Uses the SPOOLES solver library.

459.GemsFDTD Solves the Maxwell equations in 3D using the finite-difference
time-domain (FDTD) method.

465.tonto An open source quantum chemistry package, using an object-
oriented design in Fortran 95. The test case places a con-
straint on a molecular Hartree-Fock wavefunction calculation
to better match experimental X-ray diffraction data.

470.lbm Implements the ”Lattice-Boltzmann Method” to simulate in-
compressible fluids in 3D

481.wrf Weather modeling from scales of meters to thousands of kilo-
meters. The test case is from a 30km area over 2 days.

482.sphinx3 A widely-known speech recognition system from Carnegie
Mellon University

53

Table 4.3: Network traffic for Hammer and Directory protocol in 2D NoC

Number of
Cores

Hammer traf-
fic(Bytes/instruction)

Directory traf-
fic(Bytes/instruction)

2 6 4
4 8 6
8 14 10
16 22 15
32 28 20
64 34 23

4.0.2 Comparison between Hammer and Directory Protocol

The Sphnix3 benchmark is executed for various number of cores for the X86

processor using the 2D NoC in GEM5 and it is observed that Hammer Protocol

produces about 30% more traffic than directory. The output obtained in table 4.3 is

plotted in figure 4.1. The x axis is the number of cores simulated and the y axis is the

NoC traffic in Bytes per Instruction. The system is simulated for the 2D Mesh NoC.

This extra traffic is due to the high communication traffic produced by broadcasting

the cache coherence messages between the cores.

4.0.3 Comparison between 2D and 3D NoCs

To compare the 2D and 3D NoCs, the execution time and latency of messages

on the network are plotted. The 64 core X86 processor with private L1 and logically

shared L2 cache is used for simulation in GEM5. It is observed that for 3D Mesh

produces lesser execution time than 2D Mesh for the sphinx3 benchmark as shown

in figure 4.2 and table 4.4. 3D Mesh produces a fixed improvement in the instruction

latency compared to 2D Mesh NoC as shown in figure 4.3 and table 4.5.

4.0.4 CPU2006 Benchmark output

The 64 core X86 processor with private L1 and logically shared L2 cache is used

for simulation of the benchmarks in GEM5. Consistently 3D Mesh produces less

Network traffic. For high traffic workloads like omnetpp and sphinx3 as shown in

table 4.6 and table 4.7, the 3D NoC reduces traffic by 50% as shown in figure 4.4 and

54

Figure 4.1: Network Traffic for Hammer and Directory Protocols.In the
graph, the Hammer protocol produces 30% more traffic than Directory protocol for
all the core counts. The higher difference is observed for the 64 core count than the
32 core count, and thus the traffic increases with the increase in number of cores.

Table 4.4: Execution time for 2D and 3D NoCs

Number of
Cores

2D
NoC(Cycles)

3D
NoC(Cycles)

2 19894 17986
4 38567 34783
8 60451 49659
16 85042 69518
32 105892 85128
64 130695 97371

Table 4.5: Average latency for 2D and 3D NoCs

Number of
Cores

2D
NoC(Cycles)

3D
NoC(Cycles)

2 6 5
4 12 10
8 18 15
16 24 19
32 29 25
64 35 30

55

Figure 4.2: Execution time for 2D and 3D NoCs. In the graph, the difference
in 2D and 3D Mesh NoC execution time is higher for 64 core than 32 core count.
Similarly for higher core count, better 3D execution time is observed.

Figure 4.3: Average Latency for 2D and 3D NoCs. The 3D Mesh NoC produces
lesser latency than the 2D Mesh NoC for higher number of core count. For lower core
count like for 2 cores, the latency is almost same and the 2D and 3D NoC structures
are similar for lower core count.

56

Table 4.6: Network traffic in 2D and 3D NoC for integer CPU2006 benchmark

Benchmark 2D
NoC(Bytes/Instruction)

3D
NoC(Bytes/Instruction)

perlbench 18 14
bzip2 19 16
gcc 35 28
mcf 15 12
gobmk 34 25
hmmer 22 15
sjeng 4 4
libquantum 27 25
h264ref 5 4
omnetpp 38 25
astar 28 23
xalancbmk 16 8

figure 4.5. The 3D NoC reduces traffic by around 11% on an average compared to

2D NoCs for both integer and floating point CPU2006 Benchmark.

4.0.5 Scalability of 3D NoC

It is observed that the percentage of improvement is increasing and thus is ex-

pected to reduce the extra traffic produced in hammer protocol with the increase in

number of cores as shown in figure 4.6, which is equal to the traffic produced by the

Hammer CMP Protocol. As the simulation in GEM5 does not support more than 64

cores in full system emulation mode, the polynomial equation for the growth should

be identified by implementing in a simulator that handles simulation parameters for

more number of cores.

57

Table 4.7: Network traffic in 2D and 3D NoC for floating point benchmark

Benchmark 2D
NoC(Bytes/Instruction)

3D
NoC(Bytes/Instruction)

bwaves 45 32
gamess 63 49
milc 53 50
zeusmp 38 26
gromacs 70 51
cactusADM 56 43
leslie3d 40 18
namd 66 50
dealII 71 40
soplex 38 35
povray 52 45
calculix 39 30
GemsFDTD 52 49
tonto 49 32
lbm 62 38
wrf 54 43
sphinx3 67 40

Figure 4.4: NoC Traffic in CPU2006 integer benchmark. From the graph for
high traffic workloads like omnetpp, 3D Mesh NoC shows a lot of traffic improvement
compared to 2D Mesh NoC. Whereas for less traffic workloads like sjeng, both NoCs
have similar performance.

58

Figure 4.5: NoC Traffic in CPU2006 floating point benchmark. From the
graph for high traffic workloads like sphnix3, 3D Mesh NoC shows a lot of traffic
improvement compared to 2D Mesh NoC. Whereas for less traffic workloads like
soplex, both NoCs have similar performance. The floating point benchmark generates
more traffic than the integer benchmark and thus the 3D Mesh NoC shows better
improvement in traffic for floating point benchmarks.

Figure 4.6: Percentage of traffic reduction in 3d NoC compared to 2D NoC.
With the increase in number of cores, the traffic improvement increases, which is
observed by the 11% improvement for 64 core count. For small core count, the
improvement is diminishing. Thus the 3D Mesh NoC is expected to compensate the
extra traffic produced by the Hammer cache coherence protocol for high core count.

CHAPTER 5: CONCLUSION

The increase in number of cores have lead to bottlenecks in various supercom-

puting systems. These problems were discussed and the high communication traffic

was taken as a challenge in this research. Various architectures were researched and

the most scalable Cache Coherence Protocol and Network on Chip were chosen. The

Hammer Protocol was chosen as the scalable protocol due to its low on chip memory

area overhead. But it produced more communication traffic and thus a 3D Mesh

interconnect was proposed to reduce the traffic. Due to the unavailability of hard-

ware resources, the system was simulated using the open source GEM5 computer

architecture software by implementing a 3D Mesh NoC code package.

On executing the simulation for our system, the Hammer Protocol produced con-

sistently 30% more traffic compared to Directory Protocol in 2D Mesh NoC. By im-

plementing the 3D Mesh NoC and through the regression modelling, it was observed

that for high traffic load, the 3D Mesh NoC reduces NoC traffic by 30% for around

500 cores. So the extra traffic produced by the Hammer Protocol is compensated by

the 3D Mesh NoC implementation.

Thus the aim of this research to improve scalability of many core systems is

proved theoretically and in simulation that a Many Core System on Chip can be made

scalable by using the Hammer Cache Coherence Protocol and 3D mesh Network on

Chip for high traffic workloads.

60

REFERENCES

[1] B. Bentley, “Validating the intel (r) pentium (r) 4 microprocessor,” in Design
Automation Conference, 2001. Proceedings. IEEE, 2001, pp. 244–248.

[2] M. W. Welker and O. A. Place, “Amd processor performance evaluation guide,”
2003.

[3] R. B. Garner, “The scalable processor architecture (sparc),” in The SPARC
Technical Papers. Springer, 1991, pp. 3–31.

[4] E. Hagersten and M. Koster, “Wildfire: A scalable path for smps,” in High-
Performance Computer Architecture, 1999. Proceedings. Fifth International
Symposium On. IEEE, 1999, pp. 172–181.

[5] J. Laudon and D. Lenoski, “The sgi origin: a ccnuma highly scalable server,” in
ACM SIGARCH Computer Architecture News, vol. 25, no. 2. ACM, 1997, pp.
241–251.

[6] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization
on shared-memory multiprocessors,” ACM Transactions on Computer Systems
(TOCS), vol. 9, no. 1, pp. 21–65, 1991.

[7] B. S. Ang, D. Chiou, D. L. Rosenband, M. Ehrlich, L. Rudolph et al., “Start-
voyager: a flexible platform for exploring scalable smp issues,” in Proceedings of
the 1998 ACM/IEEE conference on Supercomputing. IEEE Computer Society,
1998, pp. 1–13.

[8] “Top500 tianhe-2 (milkyway-2),” 2016. [Online]. Available:
http://www.top500.org/system/177999

[9] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter, “Char-
acterization of scientific workloads on systems with multi-core processors,” in
Workload Characterization, 2006 IEEE International Symposium on. IEEE,
2006, pp. 225–236.

[10] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen,
K. Taylor, and R. Biswas, “Performance impact of resource contention in multi-
core systems,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE Inter-
national Symposium on. IEEE, 2010, pp. 1–12.

[11] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A single-chip multiprocessor,”
Computer, no. 9, pp. 79–85, 1997.

[12] M. A. Al-Mouhamed and K. A. Daud, “Experimental analysis of smp scalability
in the presence of coherence traffic and snoop filtering,” in High Performance
Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International
Conference on. IEEE, 2012, pp. 81–88.

61

[13] A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Towards scalable,
energy-efficient, bus-based on-chip networks,” in High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on. IEEE,
2010, pp. 1–12.

[14] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “Noc-out: Microarchitecting a scale-
out processor,” in Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2012, pp. 177–187.

[15] T. C. Xu, P. Liljeberg, J. Plosila, and H. Tenhunen, “A high-efficiency low-cost
heterogeneous 3d network-on-chip design,” in Proceedings of the Fifth Interna-
tional Workshop on Network on Chip Architectures. ACM, 2012, pp. 37–42.

[16] P. Foglia, C. A. Prete, M. Solinas, and G. Monni, “Re-nuca: Boosting cmp
performance through block replication,” in Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro Conference on. IEEE, 2010,
pp. 199–206.

[17] M. O. Agyeman and A. Ahmadinia, “Optimising heterogeneous 3d networks-on-
chip,” in Parallel Computing in Electrical Engineering (PARELEC), 2011 6th
International Symposium on. IEEE, 2011, pp. 25–30.

[18] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-
proach. Elsevier, 2011.

[19] L. R. Vittanala and M. Chaudhuri, “Integrating memory compression and de-
compression with coherence protocols in distributed shared memory multipro-
cessors,” in Parallel Processing, 2007. ICPP 2007. International Conference on.
IEEE, 2007, pp. 4–4.

[20] R. R. Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE, vol. 34,
no. 6, pp. 52–59, 1997.

[21] R. S. Patti, “Three-dimensional integrated circuits and the future of system-on-
chip designs,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1214–1224, 2006.

[22] A. Ros, J. M. Garcia, and M. E. Acacio, Cache coherence protocols for many-core
CMPs. INTECH Open Access Publisher, 2010.

[23] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system characteriza-
tion of commercial workloads,” ACM SIGARCH Computer Architecture News,
vol. 26, no. 3, pp. 3–14, 1998.

[24] F. J. Pollack, “New microarchitecture challenges in the coming generations of
cmos process technologies (keynote address),” in Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society, 1999, p. 2.

62

[25] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system characteriza-
tion of commercial workloads,” ACM SIGARCH Computer Architecture News,
vol. 26, no. 3, pp. 3–14, 1998.

[26] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. ACM, 1990, vol. 18, no. 2SI.

[27] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, Operating system support
for improving data locality on CC-NUMA compute servers. ACM, 1996, vol. 31,
no. 9.

[28] A. Psathakis, V. Papaefstathiou, N. Chrysos, F. Chaix, E. Vasilakis, D. Pnev-
matikatos, and M. Katevenis, “A systematic evaluation of emerging mesh-
like cmp nocs,” in Architectures for Networking and Communications Systems
(ANCS), 2015 ACM/IEEE Symposium on. IEEE, 2015, pp. 159–170.

[29] S. Al-Hothali, S. Soomro, K. Tanvir, and R. Tuli, “Snoopy and directory based
cache coherence protocols: A critical analysis,” Journal of Information & Com-
munication Technology, vol. 4, no. 1, pp. 01–10, 2010.

[30] M. M. Martin, M. D. Hill, and D. A. Wood, “Token coherence: Decoupling
performance and correctness,” in Computer Architecture, 2003. Proceedings. 30th
Annual International Symposium on. IEEE, 2003, pp. 182–193.

[31] A. Ros, M. E. Acacio, and J. M. Garcia, “A direct coherence protocol for many-
core chip multiprocessors,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 21, no. 12, pp. 1779–1792, 2010.

[32] K. Tatas, K. Siozios, D. Soudris, and A. Jantsch, Designing 2D and 3D Network-
on-chip Architectures. Springer, 2014.

[33] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip networks,”
in Proceedings of the 20th annual international conference on Supercomputing.
ACM, 2006, pp. 187–198.

[34] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-optimal
worst-case throughput routing for two-dimensional mesh networks,” in ACM
SIGARCH Computer Architecture News, vol. 33, no. 2. IEEE Computer Society,
2005, pp. 432–443.

[35] J. Wu, D. Xie, L. Tang, and H. Wang, “Cost evaluation of three-dimensional
network-on-chip,” in Emerging Intelligent Data and Web Technologies (EIDWT),
2013 Fourth International Conference on. IEEE, 2013, pp. 133–136.

[36] R. Ville, L. Teijo, and P. Juha, “Network on chip routing algorithms,” TUCS
Technical Report, 2006.

63

[37] M. Hafizur Rahman, A. A. Y. Hag, R. M. Nor, and T. M. T. Sembok, “Topaz
simulator on mesh and torus network,” in Information and Communication Tech-
nology for The Muslim World (ICT4M), 2014 The 5th International Conference
on. IEEE, 2014, pp. 1–5.

[38] D. Ludovici, F. Gilabert, S. Medardoni, C. Gomez, M. E. Gómez, P. Lopez,
G. N. Gaydadjiev, and D. Bertozzi, “Assessing fat-tree topologies for regular
network-on-chip design under nanoscale technology constraints,” in Proceedings
of the Conference on Design, Automation and Test in Europe. European Design
and Automation Association, 2009, pp. 562–565.

[39] T. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde,
and R. Lauwereins, “Topology adaptive network-on-chip design and implemen-
tation,” in Computers and Digital Techniques, IEE Proceedings-, vol. 152, no. 4.
IET, 2005, pp. 467–472.

[40] Q. Feng, J. Cao, Y. Qian, and W. Dou, “An analytical approach to modeling
and evaluation of optical chip-scale network using stochastic network calculus,”
in High Performance Computing and Communication & 2012 IEEE 9th Inter-
national Conference on Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on. IEEE, 2012, pp. 1039–1046.

[41] C. Wang, W.-H. Hu, and N. Bagherzadeh, “A wireless network-on-chip design
for multicore platforms,” in Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference on. IEEE, 2011, pp.
409–416.

[42] C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, and A.-Y. Wu, “Traffic-and
thermal-aware run-time thermal management scheme for 3d noc systems,” in
Networks-on-Chip (NOCS), 2010 Fourth ACM/IEEE International Symposium
on. IEEE, 2010, pp. 223–230.

[43] M. Xie, D. Zhang, and Y. Li, “Meshim: A high-level performance simulation plat-
form for three-dimensional network-on-chip,” in ASIC (ASICON), 2011 IEEE
9th International Conference on. IEEE, 2011, pp. 349–352.

[44] F. Radfar, M. Zabihi, and R. Sarvari, “Comparison between optimal intercon-
nection network in different 2d and 3d noc structures,” in System-on-Chip Con-
ference (SOCC), 2014 27th IEEE International. IEEE, 2014, pp. 171–176.

[45] M. H. Jabbar, D. Houzet, and O. Hammami, “Impact of 3d ic on noc topologies:
A wire delay consideration,” in Digital System Design (DSD), 2013 Euromicro
Conference on. IEEE, 2013, pp. 68–72.

[46] S. Murali, C. Seiculescu, L. Benini, and G. De Micheli, “Synthesis of networks
on chips for 3d systems on chips,” in Proceedings of the 2009 Asia and South
Pacific Design Automation Conference. IEEE Press, 2009, pp. 242–247.

64

[47] I. Loi, F. Angiolini, and L. Benini, “Supporting vertical links for 3d networks-
on-chip: toward an automated design and analysis flow,” in Proceedings of the
2nd international conference on Nano-Networks. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2007, p. 15.

[48] M. O. Agyeman, “A study of optimization techniques for 3d networks-on-chip
architectures for low power and high performance applications,” International
Journal of Computer Applications, vol. 121, no. 6, 2015.

[49] M. O. Agyeman, A. Ahmadinia, and A. Shahrabi, “Low power heterogeneous 3d
networks-on-chip architectures,” in High Performance Computing and Simula-
tion (HPCS), 2011 International Conference on. IEEE, 2011, pp. 533–538.

[50] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual channels in networks
on chip: implementation and evaluation on hermes noc,” in Proceedings of the
18th annual symposium on Integrated circuits and system design. ACM, 2005,
pp. 178–183.

[51] “Gem5 cache coherence documentation,” 2016. [Online]. Available:
http://www.m5sim.org/Ruby

[52] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation of gem5
simulator system,” in Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), 2012 7th International Workshop on. IEEE, 2012, pp. 1–7.

[53] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH Com-
puter Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

65

APPENDIX A: GEM5 CODE DOCUMENTATION

NetDest . cc :−

Summary:− c r e a t e s a b i t s e t conta ine r that keeps t r a ck s

o f every type (DMA, Cache , d i r e c t o r y) o f c o n t r o l l e r nodes .

Add func t i on to enable a node

AddNetDest − Sets nodes in m bits that are a l r eady s e t in

” netDest ”

SetNetDest func t i on :− Copies the ” s e t ” to m bits [machine]

Remove func t i on :− Removes the ” oldElement .num th” node in

m bits [o lde lement . type] s e t

Removeset func t i on :− This func t i on c l e a r s b i t s that are =1

in the parameter s e t

Clear func t i on :− Clears the s e t

Broadcast func t i on :− t h i s f unc t i on s e t s a l l b i t s in the s e t

Count func t i on :−This func t i on r e tu rn s the populat ion count

o f 1 ’ s in the s e t

IsEqual func t i on :−This func t i on checks f o r s e t e q u a l i t y

OR func t i on :− r e turn the l o g i c a l OR of t h i s s e t and orSet

And func t i on :− r e turn the l o g i c a l AND of t h i s s e t and andSet

Inte r sec t ionI sEmpty func t i on :−Returns t rue i f the

i n t e r s e c t i o n o f the two s e t s i s empty

I sSupe r s e t func t i on :−Returns f a l s e i f a b i t i s s e t in the

parameter s e t that i s NOT s e t in t h i s s e t

i e . Checks i f the s e t b i t s i s supe r s e t o f t e s t . b i t s

Subset func t i on :− checks i f t e s t i s a subset o f the s e t b i t s

IsElement func t i on :−check i f the node in ” element th”

66

p o s i t i o n i s s e t or not

I sBroadcast :− t h i s f unc t i on r e tu rn s t rue i f f a l l b i t s in use

are s e t

IsEmpty func t i on :−Checks i f a l l b i t s are s e t to zero

SmallestElement func t i on :−To f i n d the nodeID o f the f i r s t

node s e t in the b i t s b i t s e t

ElementAt func t i on :− r e tu rn s the va lue at b i t s [index]

Get s i z e func t i on :− r e tu rn s the number o f nodes in the s e t

Se tS i z e func t i on :−Sets the s i z e o f the s e t and r e s e t s the

s e t (i e . Makes a l l b i t s as ze ro)

Per f ec tSwi tch . cc :−

Summary:−adds the input and output port and per formes

swi t ch ing i e . A l l o ca t i ng input

port and lane to appropr ia t e output port and lane

depending on the r o u t i n g t a b l e e n t r y in

addoutport func t i on .

Constructor :−

I n i t i a l i z e s

m round rob in s ta r t =0, //KEEPS TRACK OF ROUND ROBIN FOR

INPUT PORT

m wakeups wo switch = 0 and

m vi r tua l networks = 5 //VIRTUAL NETWORK PER PORT

Consumer = sw

M switch id = s i d //KEEPS TRACK WHICH SWITCH IS CONSIDERED

67

M switch = sw

I n i t func t i on :− Copies input network in to m network ptr

M pending message count i s c r ea ted as a zero vec to r o f s i z e

5AddInPort:−adds incoming port vec to r to m in vec to r

AddOutPort

Create l i n k s with m value = 0 and m link = port number

Add output port to M out :− vec to r o f por t s v e c t o r s

Update m rout ing tab l e with incoming r o u t i n g t a b l e e n t r y

Operate Vnet

Round rob in o f input por t s

S e l e c t s the vnet in the input port and puts that in b u f f e r

v a r i a b l e

Ca l l s operateMessageBuf fer func t i on

OperateMessageBuffer :−

Output l inks − s t o r e s the output l i n k s that are a l l o t t e d to

O u t p u t l i n k d e s t i n a t i o n s − s t o r e s the d e s t i n a t i o n s

Network . cc :−

Summary:− s e t s up the b u f f e r s f o r the network and i n i t i a l i z e s

the network by c a l l i n g c l a s s

topology cont ruc to r and other network v a r i a b l e s l i k e

M network and m net ptr

Constructor :−

Ass ign ing va lue s to

m vi r tua l networks ; // number o f v i r t u a l networks

68

M cont ro l msg s i z e // s i z e o f c o n t r o l message

M nodes//number o f DMA c o n t r o l l e r s

Creates topology by i n s t a n t i a t i n g c l a s s topology

Res i ze m toNetQueues To number o f m nodes , // keeps t rack o f

queues f o r messages that are

going from component/ nodes to network

m fromNetQueues to number o f m nodes // keeps t rack o f queues

f o r messages that are going

from network to nodes /components

m ordered to number o f v i r t u a l networks // keeps t rack o f l ane s

(v i r t u a l l ane s) whether they are

t rue or f a l s e− i f i t i s t rue then i t has a message in i t . I f

f a l s e , then i t does not have any message in

i t .

R e g i s t e r s ” t h i s ” network i e . M network = t h i s ; in

Rubysystem . cc s e t s the m net ptr to t h i s network

I n i t i a l i z e netqueues

I n i t Function :− Sets m data msg s ize = payload +

c o n t r o l message s i z e

M e s s a g e s i z e t y p e t o i n t :− I f input i s c o n t r o l message , i t

r e tu rn s c o n t r o l message s i z e ; i f input i s

data message , i t r e tu rn s data msg s i z e

CheckNetworkAllocation func t i on :− s e t t i n g the network num the

v i r t u a l network value to t rue in

m ordered s e t s the vnet type in m vnet type

Settonetqueue func t i on :−Ca l l s the ne tworka l l o ca t i on

func t i on to s e t the lane to t rue and s p e c i f y

69

the type o f vnet Adds the b u f f e r to the network numth element

in m toNetQueues [id]

SetFromNetQueue func t i on :− Ca l l s the ne tworka l l o ca t i on

func t i on Adds the b u f f e r to the

network numth element in m fromNetQueues [id]

Throt t l e . cc :−

Summary:− moves the message from input vnet / b u f f e r to output

vnet / b u f f e r (input and output b i f f e r s are passed to the c a l s s

func t i on from somewhere (may be p e r f e c t s w i t c h . cc) and changes

the bandwidth . For every i t e r a t i o n i t checks i f the prev ious

message was sent and then pushes the message .

Constructor :−

consumer = em,

m switch id = sID ,

m switch = em,

m node = node

m vnets = 0

m l ink bandwidth mul t ip l i e r = l i n k b a n d w i d t h m u l t i p l i e r ;

m l i nk l a t ency = l i n k l a t e n c y ;

m endpoint bandwidth = endpoint bandwidth ;

m wakeups wo switch = 0 ;

m l i n k u t i l i z a t i o n p r o x y = 0 ;

Addlinks func t i on :−

70

Gets the input and output b u f f e r and puts them in m in and

m out vec to r

I n c r e a s e s m vnets by 1

m units remain ing . push back (0)// m units remain ing keeps

t rack o f v i r t u a l l i n k s . Each

element o f the vec to r s t o r e s the s i z e o f message to be

t ransmit ted in t h i s lane .

Set consumer and d e s c r i p t i o n

Operatevnet func t i on :−

Checks i f the prev ious message was sent from the v i r t u a l

l ane and then dequeues the message in the input queue

and enqueues i t i n to output queue . According ly updates

the bandwidth remaining (bw remaining) .

Wakeup func t i on :−

Decides the order in which vnets / l ane s are passed to

operatevnet

Switch . cc :−

Constructor func t i on :− i n s t a n t i a t e s p e r f e c t s w i t c h c l a s s as

m per f e c t sw i t ch ; i n i t i a l i z e s m id (router−id) , m por t bu f f e r s

and m num connected buf fers

I n i t f unc t i on :− pas se s the m network ptr to i n i t f unc t i on o f

p e r f e c t s w i t c h . cc and m pending message vec to r i s changed to

a s i z e o f 5

AddInPort func t i on :− send the ” in ” vec to r to the addinport

71

func t i on in p e r f e c t s w i t c h . cc which adds the in b u f f e r vec to r

to m in vec to r

Input :− in (& const vector<MessageBuffer∗>)

Addoutport func t i on :−

m t h r o t t l e s . push back (t h r o t t l e p t r)

Hook the queues to the Per f ec tSwi tch

m per f ec t sw i tch−>addOutPort (in t e rmed ia t eBu f f e r s ,

r o u t i n g t a b l e e n t r y) ; // i n t e r m e d i a t e b u f f e r s g e t s passed

as ”out” vector , which ge t s added to m out as a port .

// Hook the queues to the Throt t l e

t h r o t t l e p t r−>addLinks (in t e rmed ia t eBu f f e r s , out) ;

// i n t e r m e d i a t e b u f f e r ge t s added as i n v e c t o r in AddIinks

in t h r o t t l e . cc

Ge t th ro t t l e func t i on :− r e tu rn s the t h r o t t l e ob j e c t accord ing

to l ink number

SimpleNetwork . cc :−

Constructor

Input :− p(po in t e r o f type SimpleNetworkParams)

Summary:−

I n i t i a l i z e s the nerwork parameters (m b u f f e r s i z e ,

m endpoint bandwidth ,

m adapt ive rout ing , m i n t l i n k b u f f e r s ,

72

m num connected buf fers) and

pas s e s i t to i n i t f unc t i on in p e r f e c t s w i t c h . cc

Res i z e s m endpoint switches to m nodes (// number o f

DMA c o n t r o l l e r s in

Network . cc)//// m endpoint switches t e l l s the

d e s t i n a t i o n node that which

source switch i s r e s p o n s i b l e f o r supply ing data

Sto r e s the r o u t e r s (sw i t che s) in m switches

I n i t func t i on :− Sets the m data msg s ize to

p a y l o a d c o n t r o l m s g s i z e

in Network . cc

c r e a t e s the topology us ing r o u t e r s . s i z e ,

e x t l i n k s and i n t l i n k s , that

were passed to the simplenetwork con s t ruc to r .

Makeoutlink :−

// From a switch to an endpoint node

Typecast BasicLink to SimpleExtLink and pass

i t to s r c switch ’ s

addoutport i e . We are adding an output port

which hooks the

m fromNetQueues [des t] (d e s t i n a t i o n port

MakeInLink func t i on :−

// From an endpoint node to a switch

Ca l l s the AddInPort func t i on which adds the

m toNetQueues [s r c] which

s e l e c t s the s r c port

make in t e rna l l i nk func t i on :−

73

// From a switch to a switch

m switches [des t]−>addInPort (queues) ;

m switches [s r c]−>addOutPort (queues , r o u t i n g t a b l e e n t r y ,

s i m p l e l i n k−>m latency ,

s i m p l e l i n k−>m bw mult ip l i e r) ;

