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ABSTRACT

NELYADI SAMYAK SHETTY. Particle �lter approach to overcome multipath
propagation error in SLAM indoor applications. . (Under the direction of DR.

JAMES CONRAD)

Robot localization faces the classic chicken or egg problem where it has to either

know the location of the robot or the map to localize itself. In most applications this

can be using Simultaneous Localization and Mapping(SLAM) through measurements

via sensors. Most applications of SLAM involve taking measurements that contain

both range and orientation information about its environment. But Range-Only

SLAM localization faces an ambiguity because it receives only range measurements

from its sensors. Hence in order to implement localization we would need to know

atleast an approximate initial location of the landmarks. Previous approaches to this

issue involves basic trilateration, probabilistic methods, least squares approximation,

multiple hypothesis methods using the Extended Kalman Filter. This however does

provide a delay the localization. In order to overcome this there are multiple hypothe-

sis methods that initialize the problem in real time. However, this is computationally

expensive and all of these methods do not cope well with multipath noise. Multipath

is the propagation phenomenon that results in radio signals reaching the receiving

antenna by two or more paths leading to false range measurements.

In this research we explore the problem put forward with the use of radio beacons

when applied to RO SLAM and multipath noise that has a non Gaussian distribution.

In particular, the use of the particle �lter approach that copes with multipath noise

as compared to the Extended Kalman Filter that is only applicable to noise that has a

Gaussian distribution. This thesis proposes a method using particle �lters to perform

SLAM and is then compared to the established methods through simulations.
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CHAPTER 1: INTRODUCTION

Recent advancements in sensors, embedded devices and wireless communication

have propelled the �eld of research regarding robotic autonomy. Because of this

industrial need, monumental leaps have been made in everything from intelligent

navigation solutions to automated product assembly development. Examples of these

solutions include Kuka robots that deploy autonomous logistic navigation in Amazon

warehouses and autonomous assembly line robots that manufacture products. Robots

in these applications have to accommodate for the erroneous uncertainty in their

environment as every environment tends to be highly unpredictable. There are several

sources of error, such as sensor noise and control noise, that cause great uncertainity

for a robot. Most systems use probabilistic algorithms to estimate their actions to a

certain degree. One of the popular actions are ones that involve robot localization.

Localization refers to estimating a robot's position in respect to a global map.

The robot obtains its position through odometry measurements given to the robot

and sensor measurments obtained from its surroundings. Only once it establishes

its position can it decide on the optimal action needed. These odometry and sensor

measurements tend to be highly noisy. Hence the positions are represented with a

certain level of con�dence or certainity. Therefore acquiring its position allows it to

establish its momentary uncertainty which determines future uncertainity and only

then can it perform the necessary actions to complete a task successfully. However

robots face the delima of either knowing the map in order to localize itself. In most

industrial applications today various changes to the enviornment are made to help

with the localization of the robot. Magnetic strips on the �oor or visual markers

are placed around the robots enviornment in industrial applications. The robot uses
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these markers along with prior knowledge of their preset positions in the environ-

ment, estimates its distance to the landmarks and localizes itself. This method of

localization is impractical as it requires make physical changes in the enviornment or

provides a map prior in advance to the robot. SLAM attempts to remove the need

for knowledge of the prior positions of the landmarks while simultaneously building

a map and localizing itself in it.

SLAM uses the odometry control information given to the robot to predict its po-

sition. As these control inputs tend to be highly noisy it furthur tends to correct

is position incorporating measurement information from its surroundings. Simul-

taneous localization and mapping (SLAM) uses probabilistic estimation algorithms

that are used by a robot to estimate both its position and also map its environment

which is very crucial for path planing algorithms. The robot uses sensors to collect

measurement from distinguishable objects in its environment (landmarks) and then

determines the position and uncertainty of the robot and landmarks.

A landmark can be any distinguishable feature in the enviornment like a wall, cor-

ner, a visual marker or signal measured by the robot. The measurement in the case

of a visual feature would generally be through cameras or laser scanners mounted on

the robot. In the case of signals it is obtained through a radio transmitter mounted

on top of the robot. The measured data using visual features usually gives both

orientation and range measurments of its enviornment whereas the radio signals only

provide range information. The data obatined from the sensors furthur undergoes

processing to identify the di�erences in the features in an enviornment. The SLAM

algorithm that uses radio signals is called Range Only SLAM. In our research we

focus on Range-Only SLAM using radio beacons as landmarks. RO SLAM involves

receiving only the range data from the sensors when compared to most other imple-

mentations where both range and orientation is derived from the measurement. In

our application we use signals received from radio beacons to implement SLAM. Here
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the measured data is the Received Signal Strength Indicator (RSSI) received from

the radio beacon. This is used to determine the range measurement to the landmark.

There are di�erent methods of implementing SLAM based on the type of sensor

used and �ltering method. One of the most common sensors used are range �nders

such as sonar and lidar, however, recent advances in computing e�ciency and parallel

computing has resulted in the use of cameras as sensors employing various image

processing techniques to build maps. In addition, SLAM methods also vary based

on the type of �ltering method involved. The �ltering methods di�er in the way on

how they handle uncertainty when they identify landmarks, building a map, or deal

with robot motion. Extended Kalman �lter (EKF)[3], GMapping [4], Graph SLAM

and Particle Filter just to name a few. Each of these algorithms use di�erent �ltering

methods to handle uncertainties which have their own advantages and disadvantages.

1.1 Motivation

Most SLAM applications tend to run into memory and computational issues as

the numbers of landmarks in the enviornment increases. It also faces data association

problems where the landmarks in the enviornment become indistinguishable from one

another. Utilizing radio beacons as landmarks largely solves memory scaling problems

that occurs in most algorithms, since the number of transceivers is �nite, limiting the

number of landmarks to the number of devices within the network. In addition, the

landmark association problem which involves distinguishing di�erent landmarks from

one another is entirely solved as each landmark has a network address associated with

it. This network address is transmitted in the data packet along with signal. Most

sensors require line of sight measurements in order to identify landmarks which is not

required when using wireless beacons, also reducing the need for numerous landmarks

in the map.

Some of the most popular methods to implement RO SLAM such as the EKF and

SEIF use the core bayesian estimation principle that assumes a gaussian represen-
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tation of data. In addition they require an approximate estimate of the landmarks

before application as an initial position of the landmark cannot be determined from

range information alone. Multipath fading is also a huge problem when estimating

range from wireless beacons, especially in indoor enviornments. Multipath fading

occurs when a signal takes multiple paths from the transmitter to the receiver. De-

pending on the phase of signals when they arrive together, they can either cause

either large attenuation or large ampli�cation of the signal. When the signal is sud-

denly ampli�ed, the model will not hold and will generate highly erroneous readings.

Some models account for multipath, but are intended for long range transmission,

such as transmission from a cell tower. Multipath fading e�ects in short range indoor

environments are much more di�cult to predict due to the many factors that e�ect

its behavior. For mobile robot operating environments, such as a warehouse or a

private home, short range multi path is the most prevalent problem in RSSI distance

estimation. Most common SLAM methods reply on a Gaussian distribution of the

signals and cope poorly with the noise presented by multipath as it tends to be highly

non Gaussian. In addition, RO EKF has a high probability of falsely intializing the

landmarks in highly noisy indoor environments which also is problematic in common

SLAM methods. In this work, we implement a RO SLAM algorithm using range

beacons with a emphasis on the multipath problems that occur during its utilization

in a indoor environment.

1.2 Objective of this work

The main objective of the work is to implement a SLAM method that functions

e�ciently even in the presense of multipath signals occur and unknown noise dis-

tributions. In addition the SLAM method would also avoid false intializations by

dynamically converging to the radio beacons. Thus, it solves the false initialization

problem and also avoids the high probability of error due to multipath.
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1.3 Contribution

This work provides an in-dept study into the various advantages and disadvan-

tages of utilizing radio beacons for localization in indoor environments. Di�erent

localization techniques are discussed with respect with their e�ectiveness in indoor

applications. A novel con�guration is introduced to overcome the multipath prob-

lems using a particle �lter for both the landmarks and the robot thus reducing the

e�ects of non-Gaussian signal error in the localization process. A simulation is built

using the new method and metrics such as estimation error and computation time

are collected. Simulations are built for the established methods such as Range-Only

EKF SLAM and dead reckoning. These are compared with the proposed method and

a conclusion is presented.

1.4 Organization

This thesis is organized into �ve sections. The �rst chapter provides the motiva-

tion for the work presented here. The second chapter provides a background on RO

EKF SLAM and the various works related to beacon initializations already present

and their drawbacks. The third chapter introduces the proposed new method using

Particle Filter SLAM and also the simulation conditions. The fourth chapter covers

the simulation of all the methods and the metrics collected. The �nal chapter con-

cludes by discussing the shortcomings of the particle �lter method, the strengths and

weaknesses of the simulation method, and the results of the comparisons between the

di�erent techniques in the SLAM simulation.



CHAPTER 2: BACKGROUND

Simultaneous Localization and Mapping involves 2 main steps. A prediction step

where the next position of the robot is predicted using its kinematic or motion model

and the control information given to it. However since odometry information tends

to be highy noisy. The second ste is a update step where it tries to correct its position

by incorporating the measurement information it obtains from its enviornment. In

addition to this SLAM continuously builds a map of the enviornment by appending

new landmarks that it encounters. One of the most popular and widely used method

uses the Extended Kalman Filter to estimate the robots position and build the map of

its enviornment. A high level representation of a general SLAM algorithm is depicted

in Figure :2.1.

Figure 2.1: Example of a prediction and updation step in SLAM.
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2.1 Extended Kalman Filter SLAM

This is one of the most widely used and most reliable implementation of SLAM.

It can be easily adapted for various kinds of landmarks, can be easily implemented

and computed. EKF is a recursive Bayesian estimation �lter which models the input

and prediction variables as a Gaussian distributed random variables. In order to

understand EKF in a SLAM application the EKF has to be introduced �rst. The

following explains the workings of the basic Kalman �lter, the Extended Kalman

Filter and concluding with the particulars related to EKF SLAM.

2.1.1 Kalman Filter

The Kalman �lter algorithm take a series of noisy measurements over time to

estimate the state of unknown variables in a system. It models the noise the signals

as Gaussian random variables and updates the state variables each iteration based on

the previous state and the uncertainity in measurement. It has 2 phases: a prediction

phase and a measurement phase. The prediction phase attempts to update the state

variables based on the state transition model which predicts what the state of the

variables should be during the next time step and the uncertainities in the variables

represented by the error covariance matrix are also updated. The measurement phase

corrects the prediction phase by using sensor measurements and taking into account

the noise from sensor measurements and the transition model[5].

Algorithm 1 The Kalman Filter (xk−1|k−1, Pk−1|k−1, uk, zk)

1: KF_Prediction:
2: xk|k−1 = Fkxk−1|k−1 + Bkuk

3: Pk|k−1 = FkPk−1|k−1F
T
k + Qk

4: KF_Measurement:
5: yk = zk −Hkxk|k−1
6: Sk = HkPk|k−1H

T
k + Rk

7: Kk = Pk|k−1H
T
k S
−1
k

8: xk|k = xk|k−1 + Kkyk
9: Pk|k = (I −KkHk)Pk|k−1

10: return xk|k, Pk|k
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2.1.2 The Extended Kalman Filter

A real world environment is highly non-linear. The Kalman �lter is only a lin-

ear estimator, hence it fails for non-linear applications. However, there are various

solutions to the Kalman �lter that can adapt it to account for non-linear models.

Examples of this are seen in the Extended Kalman Filter, Hybrid Kalman Filter and

the Unscented Kalman Filter. One of the most popular non linear forms is the EKF.

It accounts for non linearities by linearizing the system through taking he �rst order

taylor series expansion of the observation and state transition model [3]. We obtain

the Jacobian's F and H, which contain the �rst order derivative of a vector function

of several variables. They are used to describe how the probability mass is spread

during the measurement and prediction processes by approximating the curvature of

the non-linear function models with a linear one.

Fk−1 =
∂f

∂x
|xk−1|k−1,uk

(2.1)

Hk =
∂h

∂x
|xk−1|k−1

(2.2)

The EKF introduces non linearity in its algorithm by replacing the state transition

model and the observation matrix by non linear function which describes the state

transitions and observation models f and h, in the prediction and measurement steps.

Using these the Jacobians are calculated as the values of F and H will change de-

pending on the time of the linearization. Algorithm: 2 shows the EKF in its complete

form.

The extended Kalman �lter in its complete form is shown in Algorithm: 2. In the

section covering EKF SLAM, examples of the f and h functions can be found along

with Jacobian calculations based on these functions [3].
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Algorithm 2 The Extended Kalman Filter (xk−1|k−1, Pk−1|k−1, uk, zk)

1: EKF_Prediction:
2: xk|k−1 = f(xk−1|k−1, uk)
3: Pk|k−1 = FkPk−1|k−1F

T
k + Qk

4: EKF_Measurement:
5: yk = zk −Hkxk|k−1
6: xk|k−1 = h(xk−1|k−1, zk)
7: Sk = HkPk|k−1H

T
k + Rk

8: Kk = Pk|k−1H
T
k S
−1
k

9: xk|k = xk|k−1 + Kkyk
10: Pk|k = (I −KkHk)Pk|k−1 return xk|k, Pk|k

2.1.3 EKF SLAM

One of the most in�uential and most popular SLAM algorithm is based on the

Extended Kalman Filter. EKF SLAM applies the linearization to the kinematic

motion model and the measurement model since they are non linear in real world

applications. It uses sensor measurements to detect landmarks which is further used

to correct odometric error in the robot. Odometry error is obtained from sensors on

the robot like the wheel encoders or from sensors used to measure inertial information

or from both. However, odometry readings alone aren't reliable because of factors

such as wheel slippage or noisy readings from inertial sensors which over time tend

to accrued into a large error rendering the information useless. Therefore the EKF

utilizes landmarks as inputs to a measurement vector to correct the accrued error

from odometry. An example of the prediction and update step is shown in the �gure

below.
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Figure 2.2: Example of a prediction and updation step in SLAM.

In Figure:2.2:a a robot represented by the triangle takes measurements from land-

marks represented by the stars. Figure:2.2:b shows the robot moves forward and

updates the position from odometry data. In Figure:2.2:c it takes measurments from

the landmarks. Figure:2.2:d shows the robot corrects its position (represented by the

thicker traingle) based on the data from the landmarks.

Algorithm 3 EKF SLAM (xk−1|k−1, Pk−1|k−1, uk, zk) [3]

1: z0, R0 = get_measurements
2: for k = 1 to steps do

3: uk, Qk = get_odometry
4: xk|k−1, Pk|k−1 = EKF_Prediction(xk)
5: zk, Rk = get_measurements
6: DAk = data_association(xk|k−1, zk, Rk)
7: xk|k−1, Pk|k−1 = append_landmarks(xk|k−1, zk, Rk)
8: xk = EKF_Update(xk|k−1, zk, Rk, DAk)
return xk|k, Pk|k

2.1.4 RO EKF SLAM

Using wireless beacons as landmarks helps reduce the scaling probelms mentioned

in regular EKF as the number of landmarks are static. This prevents EKF SLAM from

continuously appending landmarks and consuming memory. If the number of beacons
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is already known at the start it can avoid the appending step of EKF by pre allocating

space for all the landmarks. Using nodes also solves the data association problem as

each node includes a network address correctly identifying each measurement with

each landmark.

In the SLAM algorithm mentioned before it gets both distance and bearing is

obtained from measurement. Here when using wireless beacons we can only get range

only measurements. This still can be utilized for re�ning the position of the robot

within the world. These algorithms are refered to as RO SLAM algorithms. The

EKF based solution is the most common. It uses the same algorithm used for EKF

SLAM but only a few modi�cations to the measurement model, as the measurement

is scalar valued rather than vector valued.

yk = zk − h(xk|k−1, uk) (2.3)

h(xk|k−1, uk) =

[
(
√

(xr − xi)2 + (yr − yi)2

]
=

[
range

]
(2.4)

The Jacobian of h() has the bottom row removed, giving the following:

H =

[
xr−xi

r
yr−yi

r
0 . . . −xr−xi

r
−yr−yi

r
. . . 0 0

]
(2.5)

A main drawback to RO SLAM is that a approximate location of the beacons must

be known in advance for the �lter to work. If a false localization occurs it leads to

erreous results. To overcome this there are various pre-intialization processes men-

tioned in 2.1.5. It is also subject to many approximations and limiting assumptions.

It makes Gaussian noise assumption for robot motion and perception. Mutipath noise

from wireless beacons do not follow the properties of a Gaussian. Also the possibility

of having multipath in indoor environments might lead to false localization during the

initialization phase. The landmark's initial position is not so easily determined, as

the range-only beacon has an unknown orientation relative to the robot. Therefore,
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the landmark could reside approximately anywhere within the sensed distance radius.

To compensate for this, most beacons go through an initialization phase before

appending it to the map and using the RO-SLAM algorithm. This initialization

phase is usually performed over several iterations until the position converges to an

acceptable degree. If the landmarks are not initialized properly the robot uncertainty

increases and the �lter diverges. There are various pre initializations processes that

delay the localization of the robot by �rst initializing just the beacons. These methods

are further divided into delayed and undelayed initializations.

2.1.5 Delayed/O�-line initializations

Delayed/o�-line initializations are methods that attempt to localize the beacon

prior to incorporating it into the active RO-SLAM algorithm. Some SLAM algo-

rithms require an approximate location of each landmark before being incorporated

into the on line/real time algorithm. Since beacons only provide data regarding range,

the location of the beacon is not known upon �rst observation, and must be initial-

ized. These processes which determines the initial estimated location of the beacon

before being incorporated into the SLAM algorithm are known as delayed or o�-line

initializations. These initialization methods can be undesirable as they require the

SLAM algorithm to run without corrective measurements until the �rst beacon is ini-

tialized. Presented in this section are the most prevalent methods for o�-line beacon

initialization.

Figure 2.3: Multilateration used for Pre-initialization in RO-SLAM.
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Trilateration

Trilateration refers to the process of using the distance to at least three devices

at known locations in order to estimate the location of a fourth device. Methods

generally use the geometry of circles and triangles in order to accomplish this. [6]

mentions a basic trilateration technique that involves geometric intersection in both

2D and 3D state space. If there are more than three measurements its is known as

multilateration. Trilateration uses the distance to each device with a known location

referred to as a anchor node as well as radii for circles representing the possible

locations of the device we wish to localize known as the mobile node. Rings are drawn

at di�erent points of the robots path as shown in Figure:2.3:a, where the radius of

the rings is the distance measured to each beacon. We need atleast three circles

around anchor nodes, ideally there should be a position at which each circle overlaps,

resulting in the position of the mobile node. Figure 3.a shows basic trilateration

scenario. The equations below describe how to calculate the trilaterated position [7]:

(X1 −X4)
2 + (Y1 − Y4)

2 = r21 (2.6)

Where (X1, Y1) and (X4, Y4) represent the Cartesian coordinates for anchor node 1

and mobile node 4, respectively, and r1 represents the estimated Euclidean distance

between the two nodes. This equation can be rearranged to the following form:

(X1 −X4)
2 + (Y1 − Y4)

2 − r21 = 0 (2.7)

This equation can be repeated for each remaining anchor node and formed into the

following system of equations:
(X1 −X4)

2 + (Y1 − Y4)
2

(X2 −X4)
2 + (Y2 − Y4)

2

(X3 −X4)
2 + (Y3 − Y4)

2

−

r21

r22

r23

 =


0

0

0

 (2.8)
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Figure 2.4: An ideal trilateration where we have a single point of intersection (a) and
trilateration scenario with expected range estimation error (b) [7].

Where the solution to this equation yields the coordinates X4, Y4. However, due

to inaccuracies in the equipment, resolution of the RSSI values, fading e�ects from

multipath, or the empirically calculated path loss exponent, distance estimation to

each anchor node is usually a�icted by some error. Figure: 2.4 shows a trilateration

scenario with distance estimation error. Therefore, we need to examine the error

terms instead.

abs




(X1 −X4)
2 + (Y1 − Y4)

2

(X2 −X4)
2 + (Y2 − Y4)

2

(X3 −X4)
2 + (Y3 − Y4)

2

−

r21

r22

r23


 =


e21

e22

e23

 = E (2.9)

Where abs is the absolute value function, e2n is the squared error term for the nth

anchor node, and E is the error vector. In this form, the solution becomes �nding the

(X4, Y4) coordinates which minimizes the error vector. This is usually accomplished

by utilizing a non-linear least squares method to �nd that value [8].

This method of initialization is highly ambiguous as the rings can have more than

one point of intersecting as shown in Figure:2.3:b or no intersecting points as shown in

Figure:2.3:c. Hence, it doesn't initialize a landmark until it get only one intersecting

point in all 3 circles.
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Particle Filtering

Particle �lters take a probabilistic approach to estimating the initial location of

the beacons as mentioned in [9]. Here, a particle refers to a possible hypothesis of

position of the landmark. Initially the robot assumes global uncertainty through a set

of particles that are distributed all over the map as shown in Figure:2.5(a). Hence the

position of the landmarks are uncertain. As the robot moves around and measures

sensor data it re-samples the particle set weighted according to the probability of the

particle being the corect one based on sensor measurements as shown in Figure:2.5:b.

After several iterations the particles that have a higher degree of probability remain

and eventually converge to the location of the landmarks as shown in Figure:2.5:c.

The methods presented above tend to be the more common approaches, however,

there are several o� line algorithms that perform localization. A least squares ap-

proach is described in [10], a posed-based EKF (Extended Kalman Filter) method

is mentioned in [11], and a moving horizon estimation is presented in [12]. These

methods have also proven e�ective for the beacon types used in their respective ap-

plications.

These methods have higher probability of failure when there is a large amount of

multi-path interference when used in noisy indoor environments (i.e the landmarks

might get initialized to the multi-path signals). Hence even with the pre initialization

processes, there will always be a chance where the robot obtains noisy range mea-

surements leading to false localization and erroneous results. An example of which is

shown in Figure 2.6. The particle �lter represented by the blue particles converges

to a false location of the landmark.
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(a) Initially the particles are uniformaly distributed.

(b) After one iteration the particles with higher probability particles resampled

(c) Covergence of the particles to the landmark positions.

Figure 2.5: Particle Filter used for pre-intialization in SLAM (without mutipath).
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Figure 2.6: Example of a false intialization when it converges to a mutipath signal.

2.1.6 Undelayed/On-line initializations

With undelayed/on-line initialization it simultaneously initializes the landmarks

and localizes itself and the beacons as it moves, as mentioned in [13]. A Gaussian

Mixture Model is integrated into the EKF to create a multiple hypothesis state repre-

sentation. This multiple hypothesis approach is used to solve the RO-SLAM problem

and its use allows for the un-delayed initialization of landmarks, however a large

number of hypothesis can lead to increased computational burden. [14] presents a

method that models a Gaussian mixtures for beacon initialization in EKF. The paper

proposes that under di�erent circumstances the landmark could be represented using

di�erent parameters. This representation would lead to reduced computation cost for

large scale range only SLAM as opposed to the high computation cost of multiple

hypothesis landmark representations. The update function in a single EKF update

step would have a computational complextity O(d3). If there were N hypothesis the

computatinoal complexity become O(N ∗ d3); Hence there are scalling limitations

depending on compiutational complexity.
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2.2 RSSI Models

Recently, considerable attention has been focused on wireless sensor networks

(WSN) for autonomous robot navigation in �exible, indoor environments as they

have the potential to be extremely cheap, easily deployed and distributed monitoring

tools. The sensors range from acoustic ranging systems to radio frequency systems.

Once these wireless beacons are deployed and initialized, the robot can navigate au-

tonomously without the needing a map and by acquiring the information from the

pre-set radio emission sensors deployed in the indoor environment. By measuring the

distance from the sensor nodes, the robot locates itself and knows its pose. There are

several ways of obtaining range measurements from signals. One method is measuring

RSSI strength decay and the other is measuring time of �ight. However, these sig-

nals cannot be predicted accurately due to attenuation in indoor environments from

signal interference, absorption and re�ection from objects within the environment.

These factors cause unnecessary ampli�cation or attenuation at the receiver known

as multipath interference.

There are several mathematical models that derive the distance from RSSI but most

do not take the multipath fading into account. There are models to predict multipath

in long distance transmission such as Ricean Fading model or the free space path loss

model. Indoor short range environments are more di�cult to predict. Some of the

mathematical models try modeling RSSI variance by taking into account the odom-

etry of the robot such as the Menegatti �lter [15]. It uses the odometry information

from the robot to generate a estimated RSSI multipath value that combines the es-

timated RSSI with the measured RSSI to a particular node. Hence when the robot

moves a smaller distance the RSSI value cannot undergo an extreme change relative

to the frame of the world map and vice versa. In addition to this there are several

other factors that e�ect the accuracy of the robot such as odometry error.
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RSSIe = 10n log d± u + A (2.10)

RSSIp =
RSSIe + RSSm

2
(2.11)

df = 10
RSSIp−A

10n (2.12)

Where RSSIe is the expected RSSI strength, RSSIm is the measured signal

strength at a given distance d or minus the displacement, u. The �ltered distance, df ,

is the �ltered distance by rearranging the log distance model and applying the pre-

dicted RSSI value. However this model has been heavily criticized for relying heavily

on odometry data.

There are several solutions available to solve the multi-path issue that either by

wireless modulation of the hardware [16] or with the use of directional antenna arrays

[17]. But these cause an increase in the implementation costs due to the hardware

modi�cations. These implementations also involve of non standard communication

protocols and hence cannot be successfully used in existing networks.



CHAPTER 3: Particle Filter for RO SLAM

The EKF assumes the noise to be gaussian and hence it can represent the state

of the variable with a mean and a variance. But as it encouners mutipath in indoor

enviornments the data becomes highly non gaussian and hence the mean and variance

estimated by EKF fails to represent the distribtuion. The particle �lter represents the

state variable in random samples drawn from its posterior, allowing it to represent

data in all dstributions.

Particle �lters are a type of genetic algorithms which estimates the state of a

random variable. They are based on the same core principle of Bayesian estimation.

The fact that every model no mater how complex fails to completely capture even the

most simplistic environment has led to speci�c tricks and techniques for the success

of particle �lter, especially in robotics. Particles �lters are a category of monte carlo

algorithms that are used to estimate states in partially observable Markov chains as

shown in [18]. Early successes of particle �lters can be seen in area of robot localization

where a robot has to localize itself in a known environment using measurements from

sensors. They have also been successful in solving global localization problems [19] or

the kidnapped robot problem [20], where a robot has to recover its state from global

uncertainty.

A particle here represents the hypothesis of a particular state variable. The particle

�lter used for global localization is graphically depicted in Figure 3.1. It describes

the process where a robot localities itself inside a known map. The �rst image, (a),

shows the map of an interior building �lled with uniformly scattered black dots. The

dots represent a particle or hypothesis of the state, or position, of the robot. Over

time, as the robot moves, The particles "condense" or converge over iterations as the
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Figure 3.1: Particle �lter for mobile robot localization [3].
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erroneous particles predicted measurements generate a low importance weight when

compared to the sensor measurements, hence, they are resampled less and less each

iteration. In Figure 3.1 image b, if there are two possible locations of the robot as

indicated by 2 clusters. The symmetrical nature of the hallway introduces two nearly

equally likely position for the robot to exist. Once the robot moves to a structurally

unique position on the map the the �lter converges into one cluster as shown in Figure

3.1:c.

Particle �lters have been successfully able to solve applications in the robotics

domain for more than one reason. They can be applied to any model that is prob-

abilistic and can be represented as a Markov chain. Secondly particle �lters do not

require a �xed computational time rather their accuracy increases with increase in

computational resources as mentioned in [21] and [22].

They also overcome several drawbacks that are faced by traditional SLAM using

EKF. It can process negative information unlike the EKF. They provide better data

association outcomes than standard EKF and handle non-gaussian noise. It has also

been at the core higher dimensional computational problems. In addition, in the

context of RO SLAM using beacons it can minimize the error that can be caused due

to false localization that occur in RO SLAM using EKF due to multipath.

Algorithm 4 The Particle Filter (Xt−1, zt)[3]

1: X̄t = Xt = ∅
2: for m = 1 to M do

3: sample x
[m]
t p(xt|ut, x

[m]
t−1)

4: w
[m]
t = p(zt|x[m]

t )

5: X̄t = X̄t+ < X
[m]
t , w

[m]
t

6: for m = 1 to M do

7: draw i with probability ≈ w
[i]
t

8: add x
[i]
t to Xt

9:
return Xt

A particle �lter algorithm is mentioned in [3] All the particles are contained within
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the set of data Xt. Initially algorithm, Xt and X̄t are initialized as empty sets. These

are later populated as particles are drawn from the previous set, Xt−1. Depending

on the number of particles initially the �lter assumes global uncertainty by either

by uniformly distributing the particles or according to a certain distribution over

the entire map. The more particles used the faster the �lter converges and more

accurately it represents the variables. The prediction is performed in the sample

process, where xt is calculated based on xt−1 and control input to the robot ut.

The Bayesian posterior is also calculated p(xt|ut, x
[m]
t−1) for all the particles. Once

it receives a measurement, zt, it calculates a importance weight for each particles.

The importance weight is assigned from the distribution p(zt|xt), which uses the

measurement vector and the calculated posterior for xt. The set X̄t is then populated

with M hypothesis, xt, and associated importance weights, wt. The next step re

samples M particles from X̄t according to the importance weights assigned.

The particle �lters scale exponentially with the amount of variables in state space.

However, since indoor robot localization using range only measurements involve low

dimensional state variables a standard particle �lteris an appropriate solution. Also

since the particle �lter eventually converges to actual localization of the robot and

the landmarks, it avoids false initializations of landmarks due to mutipath signals as

seen in RO SLAM using EKF. As the robot traverses its environment and receives a

line of sight signal from a beacon, the particle �lter would eventually converge to the

true location

3.1 Implementation

.

The implementation uses the same core algorithm mention in Algorithm: 4. The

particle �lter for the robot uses importance weights derived from the measurement

obtained by the robot and the actual distance between each particle representing the

robot to the mean of the particles representing the landmark. The process is repeated
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for the landmarks but by taking the weighted average of the particles representing

the robot and each particle representing the landmarks. These importance weights

are used to resample the particles for the robot and landmark respectively. Hence a

particle with a higher importance weight is resampled more compared to one with

a smaller importance weight. As we can see the particles for the state variables

eventually converge to the positions of the robot and the landmark as shown in 3.2.

The red dots and red circle are the actual landmark and robot positions. The blue,

purple, yellow, orange particles represent each landmark. The green set of particles

represent the robot particle �lter and the black circle represents the average of the

particles.

Figure 3.2: Implementation of Particle Filter used to perform SLAM.

3.1.1 Particle Filter algorithm

The algorithm used for implementation is shown in algorithm: 5. Particle sets X1

to XN represent the N landmarks while the set XN + 1 represent the robot. Lines

1-5 in algorithm:5 refer to the initial generation of the particles uniformly across the

entire region of interest for the landmarks. It is assumed that the initial location of

the robot is known, as the world is generated from the initial position of the robot
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Algorithm 5 Implementation

1: Landmarks:
2: for n = 1 to number of landmarks do

3: for t = 1 to number of particles do

4: X(t)(n) = particles uniformly distributed
5: X̄(t)(n) = ∅

Robot:
6: for t = 1 to number of particles do

7: X(t)(N+1) = particles at the origin

8: Measurement Step:
9: Landmarks:

10: for n = 1 to number of landmarks do

11: for t = 1 to number of particles do
12: w

[n]
t = p(zt|X [n]

t ,mean(X
[N+1]
t ))

13: X̄
[n]
t = X̄

[n]
t + < X

[n]
t , w

[n]
t

14: for t = 1 to T do

15: draw i with probability ≈ w
[i]
t

16: add x
[i]
t to X

[n]
t

17:
return X

[1:N ]
t

18: Robot:
19: Prediction Step :
20: for t = 1 to number of particles do

21: x
[N+1]
t ≈ p(xt|ut, x

[N+1]
t−1 )

22: if (landmarks converge) then
23: for n = 1 to number of landmarks do
24: for t = 1 to number of particles do
25: w

[n]
t = p(zt|X [N+1]

t ,mean(X
[n]
t ))

26: X̄
[N+1]
t = X̄

[N+1]
t + < X

[N+1]
t , w

[n]
t

27: for t = 1 to T do

28: draw i with probability ≈ w
[i]
t

29: add x
[i]
t to X

[N+1]
t

30:
return X

[N+1]
t
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(0,0). The particles for the robot are generated at the origin. In the measurement

phase for the landmarks importance weights are computed for each particle based

on the error between distance from the received RSSI measurement and the distance

from each particle to the mean position of the particles X[N + 1] representing the

robot. Once these importance weights are computed they are normalized and the

particles representing the landmarks are resampled based on the weights represented

by w
[n]
t with the particles with higher importance weights being sampled more than

the rest. Now the particles representing the robot undergo a prediction step based on

the motion model used and the control input given. If the particles for the landmarks

converge then previous process for generating weights is repeated for the particles

representing the robot but by taking the mean position of the particles representing

the landmarks in lines 23 to 29. Then particles representing the robot are resampled

according to the weights. If the landmarks have not converged the algorithm is

repeated from line 6. A high level representation of the algorithm is depicted in

Figure:3.3.

3.2 Simulation

MATLAB was used to simulate realistic RSSI signals in di�erent environments

using a Markov chain training method mentioned in [1]. A XBee IEEE 802.15.4

transmitter and receiver was used to record RSSI strengths in di�erent environments

and in increasing increments of 0.25m positions at 2.4GHz. The environments repre-

sented varying levels of multipath propagation. This data was used to train a markov

chain that provided us with realistic RSSI signals in our simulations. As shown in

Figure:3.4 from [1] the simulated RSSI signal closely matched the actual measured

values collected in the environment. The radiation patterns generated by the model

Figure:3.5. This method of using actual data tracks multipath very accurately and

overcomes the need of accurately modeling di�erent test environments.
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Figure 3.3: High Level Representation.

Figure 3.4: Measured and simulated RSSI data over distance[1].
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Figure 3.5: Simulated radiation patterns from Markov chains trained on various en-
vironment data [2]



CHAPTER 4: Results

The simulation is run for the data sets representing a lab, a hallway, an open room

and an outdoor environment. The test cases for each environment are further divided

into landmarks initialized at true locations and falsely initialized landmarks. Both

cases use the same set of RSSI signals generated by our simulator. The �rst graph

in each case represents the histogram of the error in distance derived from the RSSI

value from the radio beacons. This is obtained through the di�erence between the

actual robot and landmark to the distance derived from the signal generated by our

simulator. The following graphs represents the accumulated robot position error for

the di�erent methods, landmark localization error, the actual path followed by ground

truth, dead reckoning, RO SLAM and Particle �lter. In all cases the robot is assumed

to start at the same location. In each case the robot is driven with constant linear

velocity of 0.1 m/sec in a 'S' Shaped track and a angular velocity of 30 degrees during

the turns. It is assumed the landmarks have already been initialized.
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4.0.1 Case: Outdoors

Figure 4.1: The histogram of the error in RSSI signals (in meters) generated by the
simulator by using the data set representing outdoor environments at 2.4 GHz.

Since the histogram of the beacon noise has a variance of 2.25 meters, it is assigned

as the variance of the measurement noise in RO EKF. Also a Gaussian zero mean

odometry noise with a variance of 0.1 meters linear velocity is introduced, a zero

mean gaussian noise of 10 degrees is used for the angular velocity noise. It uses a

particle �lter that maintains 1000 particles for each landmark and also the robot.
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True Landmark Initialization

Figure 4.2: The error in path followed in outdoor environments.

In this case we assume the landmarks are intialized approximately to the true

locations. The landmarks are represented by the red dots shown in Figure: 4.2. The

black trace indicates the mean position of the particle �lter representing the robot,

red line represents the true robot position, the dashed blue line represents the dead

reckoned position and the dashed green line represents the position given by RO-EKF.
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Figure 4.3: The error in the robots position accumulated over the entire path in an
outdoor environment.

Figure 4.4: The error in the landmark localization in an outdoor environment.

False Landmark Initialization

It is clear from the Figure:4.1 that the noise is highly non gaussian, and we can see

burst of multipath signals even at a distance of 3-4 meters from the landmark position.

Now we initialize two landmarks to false locations and measure the accumulated error



33

over the entire path.

Figure 4.5: The error in path followed in an outdoor environment with false initial-
ization.

Figure 4.6: The error in the robots position accumulated over the entire path in
outdoor environments.
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Figure 4.7: The error in the landmark localization in an outdoor environment.

From Figure: 4.7 we can see that even if the particle �lter converges to a false

location due to mutipath, it would eventually converge to the true locations of the

landmarks as the robots moves across the map.

4.0.2 Case: Hallway

Figure 4.8: The histogram of the error in RSSI signals (in meters) generated by the
simulator by using the data set representing hallway environments at 2.4GHz.
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In this case we have used a measurement noise with a variance of 3.25 in our RO

EKF and have repeat the process mentioned in the previous test case.

True Landmark Initialization

Figure 4.9: The error in path followed in Hallway environments.

Figure 4.10: The error in the robots position accumulated over the entire path in a
Hallway environment.
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Figure 4.11: The error in the landmark localization in a Hallway environment.

False Landmark Initialization

Figure 4.12: The error in the path followed in a Hallway environment with false
initializations.
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Figure 4.13: The error in the robots position in a Hallway environment with false
initialization.

Figure 4.14: The error in the landmark localization in a Hallway environment with
false initialization.
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4.0.3 Case: Lab environment

Figure 4.15: The histogram of the error in RSSI signals (in meters) generated by the
simulator by using the data set representing a lab at 2.4GHz.

In this case we have used a measurement noise having variance of 2 meters variance

in our RO EKF and have repeated the process mentioned in the previous test case.
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True Landmark Initialization

Figure 4.16: The error in path followed in a Lab environment.

Figure 4.17: The error in the robots position accumulated in a Lab environment over
time.
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Figure 4.18: The error in the landmark localization in a Lab environment over time.

False Landmark Initialization

Figure 4.19: The error in path followed in Lab environments with false initialization.
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Figure 4.20: The error in the robots position in a Lab environment with false initial-
ization over time at 2.4GHz.

Figure 4.21: The error in the landmark localization in a lab environment over time.
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4.0.4 Case: Large Open Room

Figure 4.22: The histogram of the error in distance derived from RSSI (in meters) in
a large open room environment at 2.4GHz.

In this case we have used a measurement noise of 3.5 meters variance in our RO

EKF and have repeated the process mentioned in the former test cases.
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True Landmark Initialization

Figure 4.23: The error in path followed in a large open room environment.

Figure 4.24: The error in the robots position accumulated over the path in a large
open room environment over time.
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Figure 4.25: The error in the landmark localization in a large open room environments
over time.

False Landmark Initialization

Figure 4.26: The error in path followed in a large open room environments with false
initialization.
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Figure 4.27: The error in the robots position in a large open room environment with
false initialization over time.

Figure 4.28: The error in the landmark localization in a large open room environment
with false initialization over time.

4.1 Comparision of environments

As shown in Table: 4.1 the EKF becomes comparable to the particle �lter when

the landmarks are correctly initialized depending on the amount of mutipath it comes
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across as it traverses through the path. But when falsely initialized it becomes com-

parable to dead reckoning.
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Table 4.1: Comparison of accumulated robot error over the entire path using particle
�lter, dead reckoning and EKFmethods in di�erent enviornments collected at 2.4GHz.

RO SLAM Particle Filter

(meters)

Dead

Reckoning

(meters)

EKF (meters)

Outdoor with

true

initialization

156.642 1583.940 310.213

Outdoor with

false

initialization

155.053 1856.145 1449.172

Lab with true

initialization

114.814 1099.564 359.098

Lab with false

initialization

193.620 1721.309 1454.422

Large open

room with true

initialization

198.720 1649.809 224.575

Large open

room with

false

initialization

173.566 1148.057 1376.107

Hallways with

true

initialization

143.880 2038.918 517.027

Hallways with

false

initialization

193.273 3277.957 1609.154
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4.2 Analysis on the size of the particle set

Below we have presented the di�erences in the e�ciency when we use particles sets

of di�erent sizes. We ran the particle �lter, dead reckoning and Range Only EKF

for a lab environment. We repeated the process for the particle �lter using 2000,

1000, 500, 300 and 150 particles. The cases were run using the same look up table

generated by the RSSI signal simulator.

Figure 4.29: The error in the robots position in a large open room environment with
2000 particles.
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Figure 4.30: The error in the robots position in a large open room environment with
1000 particles.

Figure 4.31: The error in the robots position in a large open room environment with
500 particles.
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Figure 4.32: The error in the robots position in a large open room environment with
300 particles.

Figure 4.33: The error in the robots position in a large open room environment with
150 particles.

The Figure: 4.29, Figure: 4.30 have the fastest convergence time and least error

collected over the path with a negligible di�erence. As we reduce the number of

particles we have a trade o� in the convergence time and error incured over the path
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as seen in Figures: 4.29 - 4.33 with the particle �lter with 150 particles taking the

most time to converge along with the most accumulated error incured.



CHAPTER 5: CONCLUSION

Existing pre intilization techniques for EKF such as multi-lateration and particle

�lter techniques are explored. These methods have a high probability of failure in

highly noisy environments due to landmarks being intialised at false locations. This

occurs when the convergence or multilateration occurs on a multipath signal. This

causes the EKF to diverge and hence resulting in false results. Existing RSSI models

to model multipath fading into account is discussed. But most of the models are more

suited to combat mutipath in outdoor applications, failing to correctly model indoor

enviornments.

A novel con�guration for the particle �lter is proposed and implemented in a sim-

ulation using realistic RSSI measurements. It is compared to RO EKF from [23] and

dead reckoning in di�erent environments varying in the degrees of multipath prop-

agation. It is tested for both true and false landmark initializations. Performance

metrics such as total error incured over the path and landmark localization error is

collected and compared. The noise from the beacons are also compared to show the

distribution in the error.

In conclusion, with true landmark initialization the EKF and the particle �lter in-

curs comparable amounts of error depending on the mutipath signals received. How-

ever the EKF copes poorly with the non Gaussian noise presented by mutipath. When

it is falsely initialized in RO EKF it barely updates the robots position from the mea-

surement and hence it accumulates the error incured from odometery and becomes

comparable to dead reckoning. The non-Gaussian distribution of the measurement

noise furthur causes the landmark to be inaccurately corrected. The results also de-

termine the minimum number of particles required to represent the error distribution
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in the RSSI signals so that positions related to multipath signals have some proba-

bility of being re-sampled along with the line of sight signals. Thus represnting the

entire distribution. In our case anything greater than 1000 particles have negligible

improvement in results.

5.1 Future work

Further research on this topic includes physical implementation of the particle �lter

using turtlebots for the robot and UVW radio beacons. Ultra wideband solutions

have proven to provide a much more robust distance estimation due to the ability

to �lter out multipath by examining how each frequency is attenuated for the same

transmission. Another line of research can also be developing e�cient computational

ways of parallel computation using GPUs as the particle �lter is a computationally

expensive process.
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