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ABSTRACT 

 

 

JENNY FARMER.  New Algorithms for Protein Structure Analysis:  From 

Nonparametric Density Estimation to Characterization of Molecular Volume Spatial 

Distributions.  (Under the direction of DR. DONALD JACOBS). 

 

 

 The Flexibility and Stability Test (FAST) is a C++ class library designed in the early 

2000’s to execute free energy decomposition and reconstitution operations applied to 

protein structures.  The library has been substantially expanded to include structural 

bioinformatics tools useful in the analysis of protein dynamics. Motivated to advance 

FAST by improving modeling aspects on atomic packing and solvation, two new 

algorithms have been developed and implemented, enabling high throughput 

nonparametric probability density estimation and spatial characterization of cavity volume 

in proteins. In two separate studies involving molecular dynamics trajectories, novel 

methods were developed for the analysis of statistical significance in the dynamics of beta-

lactamase mutants.  Additionally, the core methodologies developed through these studies 

have been validated as critical components of the FAST library, which aims to advance the 

field of computational biology and structural bioinformatics as a next generation simulation 

software for protein and drug design.   



iv 
 

TABLE OF CONTENTS 

 

 

LIST OF TABLES vii 

LIST OF FIGURES viii 

LIST OF ABBREVIATIONS x 

CHAPTER 1: BACKGROUND 1 

1.1 Introduction:  History of Protein Dynamics 1 

1.2 Molecular Dynamics 2 

1.3 Distance Constraint Model 5 

1.4 FAST 9 

1.5 New Contributions 11 

CHAPTER 2: PROTEIN VOID ANALYZER 13 

2.1 Introduction 13 

2.2 Definitions of Volume Space 16 

2.3 Method 18 

2.4 Probe Averaging 22 

2.5 Results 23 

2.5.1 Accuracy and Convergence 24 

2.5.2 Time Complexities 26 

2.5.3. Linear Scaling by Protein Length 27 

2.5.4 Volumes as a Function of Probe Size 29 



v 
 

2.5.5 Partial Volumes 32 

2.6 Summary of Protein Volume Calculator 32 

CHAPTER 3: PROBABILITY DISTRIBUTION FUNCTION ESTIMATOR 34 

3.1 Introduction 34 

3.2 Maximum Entropy 35 

3.3 Order Statistics and Maximum Likelihood 37 

3.4 Results 38 

3.4.1 Uniform distribution 39 

3.4.2 Cauchy distribution 39 

3.4.3 Gamma distribution 41 

3.4.4 Five weighted Gaussian distributions 42 

3.4.5 Independent assessment of results 42 

3.5 Summary of PDF Estimator 42 

CHAPTER 4:  PERCOLATION 45 

4.1 Microvoid Percolation Threshold 46 

4.2 Microvoid Cluster Dimensionality 51 

4.3 Finite Size Scaling and Standard Percolation Exponents 53 

4.4 Protein Percolation 60 

CHAPTER 5: PDF ESTIMATOR APPLIED TO MOLECULAR DYNAMICS 61 

5.1 Probability Density Analysis Applied to Molecular Dynamics Trajectories 62 



vi 
 

5.2 Principal Component Analysis 71 

CHAPTER 6:  PACKING AND SOLVATION 80 

CHAPTER 7:  CONCLUSIONS AND FUTURE WORK 90 

7.1 Summary of Conclusions 90 

7.2 Peer Reviewed Publications 93 

7.3 Additional Contributions 93 

7.4 Future and Ongoing Related Work 94 

7.4.1 Publications in Progress 95 

7.4.2 Enhancements to PVA 95 

7.4.3 Decoy Detection and Structure Prediction 96 

7.3.4 PCA Applied to Protein Volume Fluctuations 97 

7.4.4. Hydrophobicity 97 

7.4.5 FAST 100 

REFERENCES 101 

 

 

  



vii 
 

LIST OF TABLES 

 

 

TABLE 1: Expected and estimated critical exponents ..................................................... 54 

TABLE 2: Beta-lactamase proteins simulated for test data .............................................. 72 

TABLE 3: Preliminary hydrophobic tendencies based on partial volumes ...................... 99 

TABLE 4: Hydrophobicity scale comparison by pairwise correlation coefficients (R2)100 

  



viii 
 

LIST OF FIGURES 

 

 

FIGURE 1: Two-dimensional representation of system constraints .................................. 7 

FIGURE 2: Protein volume definitions ............................................................................ 18 

FIGURE 3: Cavity grid point located very near a protein atom ....................................... 19 

FIGURE 4: Spring model for cavity detection ................................................................. 20 

FIGURE 5: Flow chart for assigning void space to either cavity or microvoid ............... 22 

FIGURE 6: Overlapping Cavity Cluster ........................................................................... 23 

FIGURE 7: Rotational convergence for fixed and variable volume types ....................... 25 

FIGURE 8: Time complexities for Protein Void Analyzer .............................................. 27 

FIGURE 9: Volume characteristics as a function of protein length ................................. 28 

FIGURE 10: Volume fractions as a function of probe radius .......................................... 30 

FIGURE 11: Cavity volume as a function of probe radius ............................................... 31 

FIGURE 12: Cartoon representation of cavities with increasing probe size .................... 31 

FIGURE 13: Correlation between SASA and partial volumes ......................................... 33 

FIGURE 14: Flow chart for MEM.................................................................................... 36 

FIGURE 15: Distribution of likelihood function for SURD ............................................ 37 

FIGURE 16: Convergence of double Gaussian distribution with increasing sample size 38 

FIGURE 17: Comparison between KDE and PDF Estimator for large sample sizes ...... 40 

FIGURE 18: P-value distribution of PDF Estimator results using the 1-sample KS test . 43 

FIGURE 19: Visualization of the largest microvoid cluster near the threshold ............... 47 

FIGURE 20: Microvoid percolation characteristics by probe and grid size ..................... 49 

FIGURE 21: Linear relationship between volume and area for (a) cavity (b) microvoid 52 

FIGURE 22: Sphericity for (a) cavity and (b) microvoid ................................................. 53 

file:///C:/Users/jenny/Documents/projects/binf%208991/PhD%20Dissertation%20Jenny%20v4.docx%23_Toc529040568
file:///C:/Users/jenny/Documents/projects/binf%208991/PhD%20Dissertation%20Jenny%20v4.docx%23_Toc529040571


ix 
 

FIGURE 23: Fitted finite size scaling exponent ............................................................... 56 

FIGURE 24: Percolation threshold constants ................................................................... 58 

FIGURE 25: Log-log plot of protein volume as a function of protein length .................. 60 

FIGURE 26: Correlations between distribution measurements ........................................ 67 

FIGURE 27: Comparison between RMSF and KL for a specific residue ........................ 67 

FIGURE 28: Convergence of wild type and mutations in beta-lactamase structures....... 69 

FIGURE 29: Statistical significance of residue fluctuations using distributions ............. 71 

FIGURE 30: Statistical differences in 1ERM mutations for PCA ................................... 74 

FIGURE 31: Comparison of p-values for all structures ................................................... 76 

FIGURE 32: Statistical differences in 1ERM mutations for displacement PCA ............. 77 

FIGURE 33: P-value comparison for displacement PCA................................................. 78 

FIGURE 34: Packing density distributions ...................................................................... 86 

FIGURE 35: Normalized partial volumes distributions for protein and microvoid. ........ 87 

FIGURE 36: Packing densities as a function of number of protein residues ................... 88 



x 
 

LIST OF ABBREVIATIONS 

 

 

NMR  Nuclear Magnetic Resonance 

PDB  Protein Data Bank  

MD  Molecular Dynamics 

mDCM Minimal Distance Constraint Model 

FAST  Flexibility And Stability Test  

PVA  Protein Void Analyzer  

HK   Hoshen-Kopelmann  

SASA  Solvent Accessible Surface Area  

PDF  Probability Density Function  

KDE  Kernel Density Estimation 

MEM  Maximum Entropy Method 

CDF  Cumulative Density Function 

SURD  Sampled Uniform Random Data  

CRAN  Comprehensive R Archive Network 

FSS  Finite Size Scaling 

KL   Kullback-Leibler  

KS   Kolmogorov-Smirnov  

RSM  Reduced Second Moment  

RMSF  Root Mean Square Fluctuations 

JS   Jensen-Shannon 

PCA  Principal Component Analysis 

dPCA  displacement Principal Component Analysis 



xi 
 

RMSF  Root Mean Square Fluctuation 

OSP  Occluded Surface Packing 

BMPG  Bio-Molecular Physics Group



 
 

 

 

 

 

CHAPTER 1: BACKGROUND 

 

 

1.1 Introduction:  History of Protein Dynamics 

 Named in 1938 after the Greek work protos, meaning first, proteins have long been 

recognized as essential to all of known life [1].  In the early 1900’s, a few pioneering 

scientists proposed that the primary structure of proteins is comprised of linearly 

connected amino acids, and this theory became generally accepted over the following 

decades. The way in which amino acid sequences fold themselves, however, has proven 

to be a more elusive mystery. Over a century ago, even before the importance of protein 

structure was imagined, it was first observed that proteins exhibit the tendency to 

coagulate when heated, an early demonstration of the response of protein shape according 

to environment [2]. The fascination with protein folding began with these important 

discoveries and has continued to this day. In the late 1950’s, the structure of 

myoglobin was published, marking the first complete look at the three-dimensional shape 

of a folded protein, and the beginnings of an explosion of new information in structural 

biology [3, 4].  In the years since, crystallography and Nuclear Magnetic Resonance 

(NMR) technology have provided invaluable insight into the complexity and variety of 

folding patterns found in all forms of life.  To date, over 100,000 structures have been 

resolved and made available in the Protein Data Bank (PDB), and existing entries are 

being continuously replaced by structures with improved resolution [5]. In addition to the 

PDB, other collaborations have established repositories and classification systems for 

common folds and motifs to organize proteins by shape, function, and evolution [6-8].   
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 While there are many different types of proteins, such as membrane bound, fibril, and 

intrinsically disordered, globular proteins make up a large class of proteins. Globular 

proteins span a diverse collection of molecular environments when viewed across all 

living species on Earth.  Despite the immense number of possible sequences and diverse 

environments, a ballpark number for known distinct globular protein folds recorded to 

date is only about 1500.  Through these classification efforts, it has become clear that the 

three-dimensional shapes of proteins are not random, but rather intricately evolved 

systems fine-tuned to satisfy biological function and support life [4, 9-13].    

 Advances in structure resolution and protein structure classification continue and 

contribute to the success of the field of structural biology.  However, beyond the 

technical difficulties with experimental methods [14, 15], there are inherent restrictions 

surrounding the approach of studying proteins as static structures.  Proteins are highly 

dynamic and flexible, with motions ranging from local fluctuations to large-scale 

conformational transitions that are functionally critical.  Differences between protein 

structures sometimes provide evidence for functionally relevant alternate confirmations, 

often called ‘hidden states’, but are difficult to sample using experimental methods.  

Hidden states largely remain elusive because these conformations have relatively high 

energy and are thus rare and/or transient in nature. These states often may be excluded by 

the environmental conditions required to conduct the experiment. Recent advances in 

experimental methods are helping to address these issues [16-19]. 

1.2 Molecular Dynamics 

 In parallel with experimental advances, extensive computational methods have been 

developed to capture the motions found in proteins.  The application of Molecular 



3 
 

Dynamics (MD) to proteins is generally considered to have begun in 1977, when the 

dynamics of bovine pancreatic trypsin were simulated by solving the equations of motion 

for each of the protein atoms [20].  Although MD simulations have become far more 

advanced in the years since, the premise remains essentially unchanged:  given initial 

positions and velocities for each atom in the system, all subsequent positions and 

velocities are calculated at some time interval later, based on known intermolecular 

forces. Key features of protein stability and packing characteristics are determined by van 

der Waals interactions, electrostatic interactions, hydrogen bonds, hydrophobic 

interactions, and torsion angles [4].   

 Despite the simplicity of the model, the complexity and volume of calculations are 

overwhelming, even with modern computing power.  In principle, an accurate force field 

would entail a quantum mechanical approach, solving Schrödinger’s equation for the 

entire multi-particle system, at each timestep.  Although modern MD algorithms can 

incorporate some degree of quantum mechanics in highly sensitive areas of the protein, 

the reality of computational demands forces simulations to remain heavily dependent 

upon less accurate Newtonian Mechanics for calculating motions.  Many different and 

increasingly complicated force fields have been implemented, but all remain 

approximations, often crude ones, and are subject to errors and criticisms. 

 Even with such approximations, it is estimated that for a 100,000-atom system, nearly 

a billion calculations are required per time step [21].  The greater the elapsed time 

between position and velocity calculations, the more cumulative error is introduced, so 

each time step must remain very small, typically no more than a few femtoseconds [21, 

22].  Recent MD simulations reported in the literature commonly reach a microsecond of 
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elapsed time for proteins [22, 23].  This translates to trillions of calculations, and years of 

simulation time on a single processor.  Furthermore, a single MD trajectory represents 

only one sample out of an incalculable number of combinations. The impracticality of 

running these simulations has inspired MD developers to become creative in terms of 

parallel processing, simplifying models, and improved sampling algorithms. 

 Beyond the many technical challenges with MD, there also remains the more 

fundamental question of biological relevance.  Interesting biological events, such as 

unfolding, binding, and conformational changes, tend to happen in the relatively long 

time-scales of microseconds to seconds.  Analogous to the problem of repeated 

experiments with static crystal structures, rare events and conformations are difficult to 

detect with limited MD simulation times.  Despite this well-documented concern, which 

has become known as the “sampling problem”, MD simulations that make use of massive 

parallel distributed computing on high performance clusters are just now beginning to 

allow us to sample biological events. 

 An intrinsic problem with MD simulations is in determining the convergence time. 

Convergence refers to the initial equilibrium period of the simulation, often starting from 

a static structure resolved by experimental methods.  As computing speed increases and 

simulations are run for longer time intervals, it is found that this equilibrium state often 

lasts much longer than initially expected, thus invalidating past conclusions [24, 25].  The 

problem of convergence is well understood by MD critics and advocates alike, and there 

have been many methods developed to quantify the problem statistically to increase 

confidence that a trajectory is in equilibrium [26-28].  Furthermore, there are many new 

and developing methods for improved sampling that include meta-dynamics, umbrella 
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sampling, steered MD, and many others, that consider known behaviors of proteins as a 

means of biasing the potential of the simulation to increase the likelihood of sampling 

specific states [29-31].   

 However, as longer time scales are reached on larger systems, the collective results 

suggest that the natural aging process of many proteins may exclude the prospect of true 

convergence on a theoretical level, meaning proteins can never reach a true state of 

thermodynamic equilibrium [32].  Notwithstanding many formidable obstacles, MD 

simulations have demonstrated predictive power beyond any other approach for studying 

protein dynamics thus far. The field of computational biology will doubtlessly succeed in 

obtaining faster and more accurate MD software, furthering the popularity of MD 

simulation as the primary computational method to glean new insights into protein 

function.  

1.3 Distance Constraint Model 

 The Distance Constraint Model (DCM) introduced by Jacobs and Dallakayan in 2003, 

and subsequently applied to proteins in the form of a minimal DCM (mDCM) in 2004  

[33-36], is a free energy decomposition method for calculating thermodynamic properties 

of molecular systems. Fluctuating interactions between atoms, such as hydrogen bonds, 

are represented as a set of distance constraints. When an interaction forms, there is an 

associated enthalpy contribution. In addition, depending on the details of the rigidity 

within the constraint network, an entropy contribution may also be added.  Traditional 

free energy decomposition methods rely on the assumption that there is additivity in both 

enthalpy and entropy components, but it is known that this assumption is only true for 

systems that can be divided into independent subsystems [37, 38].  The additivity 
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assumption yields good approximate estimates for changes in entropy and free energy in 

small molecular systems that undergo limited conformational changes. However, large 

errors appear for flexible macromolecules that are stabilized by weak interactions such as 

hydrogen bonds and atomic packing, like those found in proteins [39-41].  Additivity 

holds for enthalpy in proteins, but entropy cannot be additive due to the presence of 

cooperative phenomena such as two-state folding, allostery, and large changes in stability 

caused by single point mutations [40, 42, 43]. 

 The hallmark of the DCM is to account for non-additivity in entropy during the free 

energy reconstitution process, thus restoring the utility of the free energy decomposition 

paradigm for proteins. Molecular interactions are modeled as a distance constraint, or a 

set of distance constraints, and network rigidity is invoked to identify constraints that are 

effective in reducing entropy. A graph-algorithm called the pebble game [44] is 

employed to identify the distance constraints that alter the degrees of freedom of a 

molecular system, and to distinguish these from those that are redundant [45-47].   

 A simple two-dimensional representation of this concept is shown in Figure 1, where 

bonds are modeled as single distance constraints connecting four atoms. The first panel 

on the left shows the atoms with four bonds between them, represented as points and 

lines respectively, that have the flexibility to adopt alternative conformations in the two-

dimensional plane without breaking any bonds.  Notice that changes in conformation 

imply geometric changes, yet topology is conserved in all these cases. The middle panel 

shows the same four atoms with an additional fifth constraint, forming a rigid structure.  

The rightmost panel depicts the addition of a sixth bond which is redundant, in that if any 

one bond breaks, the cluster remains rigid and entropy does not change.  The pebble 
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game identifies all rigid regions and all redundant constraints such that entropy can be 

weighted appropriately for each bond, thus allowing the free energy to be summed 

correctly.   

   

 

FIGURE 1: Two-dimensional representation of system constraints 

 

 The mDCM calculates the free energy landscape of a protein as a function of number 

of hydrogen bonds, number of constrained torsion angles, and temperature.  The 

hydrogen bonds are identified from the initial input protein structure.  Among various 

molecular interactions, the hydrogen bonds and torsion angle constraints can fluctuate, 

whereas covalent bonds are fixed. Monte Carlo sampling is used to explore 

thermodynamic properties such as constraint topologies and free energy, and to calculate 

characteristics of each constraint topology. The ensemble of topologies reflects 

fluctuating native contacts (e.g. hydrogen bonds) according to the geometry of the input 

structure, yet a given topology is associated with multiple geometries wherever there is 

flexibility. The advantage of the mDCM is that it samples constraint topologies directly 

without simulating atomic motion. Using relatively little computational time, the mDCM 

samples a large ensemble of topologies, resulting in accurate estimates of entropy and 

free energy. Consequently, the mDCM can identify many low-energy states that are 

separated by high-energy barriers. The disadvantage of the mDCM is that non-native 
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contacts are not accessible. In contrast, MD simulations explore non-native contacts, but 

cannot sample long enough to extract thermodynamic properties.  

 As its name suggests, the mDCM was created as a prototype to demonstrate that 

constraint theory, facilitated by the pebble game, would be able to reproduce heat 

capacity as measured by differential scanning calorimetry [35]. The mDCM incorporates 

three fitting parameters into the free energy decomposition. Although no other 

computational method has been able to reproduce experimental heat capacity curves in 

proteins, heat capacity curves have been matched to experimental ones with high 

accuracy in the mDCM by allowing these fitting parameters to vary.  It has been found 

that these parameters are similar across many sizes and families of proteins, allowing for 

good predictions of protein thermodynamics even when heat capacity data is not 

available.  Furthermore, it has been shown that by deliberately constructing incorrect heat 

capacity curves, the mDCM will not match arbitrary data, further indicating that the 

empirically derived fitting parameters are quasi-transferable and physically significant. 

 The mDCM has overachieved the original goal of proof-of-concept and has 

demonstrated unexpected predictive power in the study of protein dynamics [34, 48-51].  

However, it remains a crude approximation of its original vision of a complete and 

accurate free energy decomposition method for the study of protein dynamics.  It has 

long been recognized that understanding of protein behavior cannot be gained without 

considering the natural environment in which they function.  Solvent, temperature, 

pressure, and chemical environment all effect stability, and thus functionality, and any 

complete model should address each of these factors.   
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1.4 FAST 

 Soon after the mDCM became operational, a much larger scale development project 

was undertaken [52-56] resulting in the Flexibility and Stability Test (FAST).  FAST is 

designed to account for additional details in the free energy decomposition, such as 

solvent interactions and atomic packing, to achieve more accurate predictions.  To 

capture a wide range of effects, differences in residue types must be accounted for, 

necessitating additional parameters and a generalized functional form for the 

parameterization. This more sophisticated model unfortunately requires estimation and 

extensive testing to determine the range and degree of transferability of these additional 

parameters.  

 Although these improvements are important upgrades to the current mDCM, the high-

level design goals for FAST go beyond one-time model refinements.  Important software 

considerations for the future success of FAST are usability and accessibility.  The mDCM 

was originally written mostly in Fortran, a language known for its high performance in 

computationally intense applications, if not for its readability.  However, applications 

involving large-scale software projects must seek to balance performance with long-term 

applicability, reusability, error detection, and fast development times.  A major design 

purpose of FAST is to bridge this gap and produce a distributable and adaptable DCM 

implementation for end-users and experienced developers alike.  To pursue the best of all 

worlds, FAST is written as a C++ class library of highly configurable individual 

components, which together can be combined to implement a customized DCM.  There 

are over 2,000 classes, and 100,000 lines of code currently in the FAST library, all of 

which is mostly well-tested at the class level. 
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 The FAST library contains many of the necessary components to develop a next-

generation DCM application.  Specifically, there are three significant upgrades that are 

planned for the next version: upgrading the solvation model, refining the model for 

packing entropy, and accommodating multiple conformations.  The latter has already 

been researched and tested at a prototype level, demonstrating viability as an improved 

alternative to exploring only native contacts. This was accomplished through a hybrid 

method that combines the speed and sampling of topologies with geometric methods that 

efficiently generate new geometries using Monte Carlo moves [57, 58], holding 

constraint topology fixed. This is called a free energy driven simulation, and an 

unpublished prototype implementation essentially performs the rigidity analysis in 

mDCM on consecutive geometric possibilities to allow for very fast calculations 

sampling alternate conformations. 

 The upgrades envisioned to solvation and packing entropy are not as well developed 

and will require in-depth research and simulation before they can be implemented 

successfully.  The mDCM crudely accounts for solvation using a mean field theory, 

adjusting the free energy according to the average energy of hydrogen bonds that are 

removed as constraints, and thus allowed to bond with solvent.  This has proven to be a 

good first approximation with results fitting very well to experimental data.  For the new 

upgrade based on the FAST library, a novel implicit solvation model will be based on 

known properties of water, parameterized from experimental data.  In this model, there 

will be differentiation between free energy contributions from bulk water within the 

system, versus water molecules that interact directly with residues on or near the surface 
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of the protein.  Bulk water properties are well defined, but surface affects must be 

parameterized. 

 Further refinements are also planned for the packing entropy calculations for residues.  

Conceptually, it is easy to imagine that the residues tightly packed together in the protein 

interior will have a relatively small contribution to conformational entropy.  Conversely, 

when there is loose packing, either because a residue is on the surface or because it is 

immediately surrounded by void space, there will be a relatively large contribution to 

conformational entropy.  The correlation between conformational entropy for a residue 

and its surrounding geometry seems obvious, but the relationship must be quantified to 

become a direct input to the free energy calculation.  A first step towards this end is to 

study the spatial distributions of the void space surrounding residues in globular proteins. 

Quantitative insight can be obtained as to how local geometry affects conformational 

entropy, as well as hydrophobicity, in a more detailed way than previously considered. 

1.5 New Contributions 

 With model extensions and integration of a few key computational methods, it is 

envisioned that the extensible FAST platform will support a powerful alternative to MD 

simulation.  The contributions presented here are expected to further the development of 

a distributable generalized DCM using the FAST class library. With this unifying theme, 

under the umbrella of computational biology and structural bioinformatics, this thesis 

focuses on algorithm design, implementation, and data analysis needed to investigate 

spatial characteristics important to the stability of globular proteins. 

 The next two chapters describe methods implemented in C++ and integrated into the 

FAST library, following the object-oriented conventions previously established.  Chapter 
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2 introduces the Protein Void Analyzer (PVA) that categorizes various types, quantities, 

and distributions of void space within a protein structure based on a PDB input structure.  

Chapter 3 introduces the PDF Estimator that employs a novel nonparametric method of 

estimating a probability density function for a sample dataset of independent and 

identically distributed continuous random variables. These algorithms were designed to 

be applicable to a variety of structural biology problems, and they have been utilized in 

multiple projects. The opportunity to test and refine these algorithms for practical 

applications has greatly enhanced their flexibility and robustness and demonstrated their 

value as stand-alone distributable software. 

 Chapters 4 through 6 describe three applications of the PVA and PDF Estimator, 

forming significant contributions independently.  In the first application, Chapter 4, 

percolation theory is applied to globular proteins in a more detailed and complete way 

than has been done previously. The PVA is used to perform these calculations, 

employing a grid-based methodology that offers computational advantages over several 

popular protein volume calculation approaches. The second application, Chapter 5, is a 

new methodology developed to analyze MD trajectories. The PDF Estimator classes are 

incorporated into a customized tool, combining MD and Principal Component Analysis 

(PCA) to study Beta-Lactamase proteins.  Finally, the functionality of the PVA and PDF 

Estimator capabilities are combined to investigate the distribution of void space 

throughout proteins in Chapter 6, providing high level statistics concerning the entropic 

nature of residue types.    
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CHAPTER 2: PROTEIN VOID ANALYZER 

 

 

2.1 Introduction 

 The volume of space occupied by and surrounding a protein is an important property 

that offers insight into normal functionality and behavior.  Although computing the van 

der Waals volume occupied by a collection of atoms is trivial, of practical interest is the 

volume of a protein in various conformational states.  Proteins are known to be densely 

packed when in their native state [59-61], but even the most well-packed system will 

include small interior void spaces due to imperfect packing that contribute to the total 

internal volume. The size and distribution of these empty spaces are known to affect the 

stability of the protein and can account for pressure unfolding [62-64].   Additionally, 

small clefts and pockets along the surface are important distinguishing characteristics that 

often predict catalytic areas and binding sites, and identifying these properties is of 

interest in areas such as structure prediction and drug design [65-69].  Finally, quantities 

including protein volume and accessible surface area have been shown to directly 

correlate with hydrophobic energy transfer energies, which are a driving force in 

conformational changes [70-72]. 

 Given the importance of these concepts, there have been many computer algorithms 

developed and implemented over the years to calculate protein volume, surface area, and 

void space, as well as to identify clefts and channels [65-67, 73-79].  These approaches 

differ widely in functionality, method, availability, and applicability to a variety of 

problems and analyses.  General analytical methods for computing the volume of 
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intersecting spheres have been derived using alpha shapes, a term defined by 

Edelsbrunner in 1983 [80], that is closely related to Delaunay triangulation [81]. This 

approach is based on the Voronoi diagram, first introduced in 1908 by Georges Voronoi 

[82], and applied to protein packing by Richards and Finney in the 1970s [60, 83].  The 

alpha shape theory uses computational geometric methods to assign a volume to each 

point, or atom, in space, based on its proximity to neighboring atoms.  Algorithms 

employing these basic principles continue to be developed and creatively applied towards 

applications in molecular biology [59, 61, 79, 84-86].  Although analytical methods in 

theory can provide highly accurate results for densely packed spheres, problems arise in 

applications to proteins, specifically in calculations near the surface where solvent 

interactions occur.  To obtain realistic results, Voronoi implementations must make 

corrections for these surface effects, as well as account for the relative weighting of the 

bond lengths due to atomic differences.  Many of the analytical methods for volumes, 

surface areas, and cavity areas are based, at least in part, on a Voronoi procedure, 

however other derivations have been shown to have some advantages in terms of speed 

and simplicity [87-90].   

 In contrast, an alternative class of algorithms, collectively referred to as grid-based 

methods, takes a strictly numerical approach to evaluating protein volume [65, 66, 73, 76, 

91].  This is a rather large category that encompasses a variety of methods, the defining 

characteristic being that the protein is mapped onto a three-dimensional grid of very 

small discrete cubes that are traversed in some systematic way to evaluate the space 

interior to and surrounding the protein.  Due to the discrete nature of this approach, the 

volumes calculated are approximations, and generally considered inexact compared to 
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analytic methods.  Furthermore, the somewhat arbitrary decision on the size of the grids 

in the cube requires a judgment in the tradeoff between computational speed and 

accuracy. Grid-based algorithms are sensitive to this resolution, as well as the orientation 

in which the protein is mapped onto the grid [77, 79].  Nevertheless, grid-based 

implementations have reported competitive accuracy and speed, scaling linearly with 

protein size even for very large proteins [66, 67, 77, 86].  This is becoming important for 

the analysis of larger macromolecular structures that can be difficult using analytical 

methods [73, 86].   

 Numerical methods, not unlike those using Voronoi-type procedures, offer a great 

deal of flexibility in implementation.  The new method developed and described in this 

chapter is a grid-based method that uses many traditional concepts for calculating and 

classifying protein volume but has several key advantages over existing algorithms.  

Scalability and performance are optimized using a clustering technique that minimizes 

memory requirements while keeping an accurate tally of void space volume and its 

distribution throughout the protein.  Accuracy is further refined by incorporating a 

physics-based model of the inter-atomic forces in the protein, averaged over multiple 

rotations and probe sizes.  This statistical approach creates a more realistic representation 

of protein properties, allowing for the natural flexibility of protein dynamics.  Perhaps 

most importantly, however, is the detailed analysis of the solvent accessible boundary 

surrounding the protein atoms.  The clustering algorithm provides a quantitative means 

for describing the boundary layer in terms of the local environment that will become 

important to the future solvation model.   
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2.2 Definitions of Volume Space  

 Among the significant advantages of the new method presented here is its ability to 

define and quantify all aspects of the space a protein encompasses.  Although precise 

definitions vary, common important quantities generally include, at the least, protein 

volume, enclosed cavity volume, and solvent accessible volume.  The distinction between 

these volumes is clarified by Richards’ concept of the molecular surface, described 

simply as the surface accessible to a probe of some radius R, and has become a standard 

way of defining protein volume since it was introduced in 1971 [92].  This definition of 

molecular surface has been incorporated into many algorithms using a technique known 

as the rolling probe method of volume calculation and has enhanced both analytical and 

numerical calculations for various types of volume [65, 73, 75]. As the name suggests, 

the volume of a protein is delineated by a simulated spherical probe rolling around the 

surface of the protein.  This model represents a water molecule surrounding the protein 

and is a means of determining the solvent-accessible molecular surface.   

 Richards pointed out several important concepts.  First, note that the volume defined 

by the molecular surface is a function of the probe size, and will approach the van der 

Waals volume as the probe becomes very small.  Second, as the probe becomes infinitely 

large, the molecular surface will approach a finite limiting value.  Richards suggested the 

diameter of a water molecule, approximately 1.4 Å, as a reasonable probe size, and many 

have followed this convention when calculating protein volumes [77, 93-97]. 

 With this model, it is easy to see that the volume enclosed by the molecular surface 

defines solvent accessibility.  If there is empty space not occupied by the protein, but 

within the molecular surface, this is called void space, and can be divided into two 
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distinct categories:  void space that is at least large enough to accommodate a spherically 

shaped probe (typically called cavity volume), and void space smaller than the probe.  In 

this work, the latter type of space is referred to as microvoid.  This is volume due to 

imperfect packing and is typically not directly calculated as a separate quantity of 

interest.  In Voronoi methods, microvoid is generally included as part of the protein 

volume.  However, analyzing microvoid in isolation, distinct from the van der Waals 

volume, can provide insight into characteristics common to many known proteins.  

Furthermore, the distribution of clusters of microvoid throughout the protein may have 

important implications in the dynamics of its function and the entropy allowed by 

residues in their native states.  Figure 2 provides a visual overview of these concepts.  

Note that van der Waals, cavity, and microvoid volumes together are equal to the volume 

delineated by the molecular surface area defined by Richards. 

 An inherent conceptual problem occurs when attempting to identify solvent 

accessible channels that run through the interior of the protein.  According to Richards’ 

definition, solvent accessible volume is not included in the molecular surface area, 

therefore it becomes difficult to distinguish between an internal channel and the exterior 

of the protein. This ambiguity is avoided here by defining and calculating a separate 

category of volume that encompasses all the solvent accessible volume.  As a practical 

matter of convenience, this solvent volume includes a shell four times the length of the 

radius of the probe size surrounding the protein.  This is a default value, chosen to 

approximate the estimated chemical range of influence of the protein on the solvent, but 

can be overridden to any value.  Any void space that has a path connecting to this shell is 

added to the solvent accessible volume.  The coordinates of the four types of volume 
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defined (protein, cavity, microvoid, solvent accessible) are stored and summed 

separately, allowing for analysis and visualization of the locations of each. 

 

 

FIGURE 2: Protein volume definitions 

 

2.3 Method 

 The PVA employs an implementation of the Hoshen-Kopelman (HK) algorithm to 

traverse through the protein in search of void space [98].  This method is based on a well-

known algorithm called the union-find search and was originally developed to study 

percolation theory.  Hoshen and Kopelman devised a computational method for finding 

the percolation threshold for finite systems by defining a quantity called the reduced 

average cluster size [98].  In their work, the authors also described the algorithm for 

cluster labeling that has been extended and used in many applications [99-102].  

Percolation will be discussed in detail in Chapter 4. 
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 The PVA is a three-dimensional adaptation of the HK algorithm for proteins 

beginning with the x-ray crystal structure. The three-dimensional spatial coordinates of 

all the atoms are mapped onto a hash grid and then traversed as consecutive two-

dimensional slices, examining each grid point and its surrounding neighbors. The protein 

volume is calculated, and contiguous clusters of void space are identified and uniquely 

labeled.  Only two slices of the grid and the associated cumulative quantities are stored in 

memory at any given time, thus greatly minimizing memory requirements.  During a 

single pass thru the entire grid, all void space is detected and classified, and all four 

relevant volumes are calculated. 

 Determining whether a grid point is occupied within the van der Waals radius of a 

protein atom is trivial but classifying void space requires additional analysis.  An empty 

grid point near a protein atom is potentially 

microvoid, but alternatively may be adjoined to a 

cavity (Figure 3). Thus, it becomes difficult to 

determine how to classify a single isolated grid 

point by strictly geometric means. To solve this 

problem, a novel spring model is employed 

which attempts to push a test probe centered at the grid point into a connected region of 

space which is probe accessible. Figure 4 provides a conceptual visualization of the 

spring model, where circles within dashed lines represent the probe. 

 

FIGURE 3: Cavity grid point located 

very near a protein atom 
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FIGURE 4: Spring model for cavity detection 

 

 For each grid point that is a potential microvoid, a surrounding network is constructed 

by placing springs between a test particle and all nearby atoms.  Each spring has a natural 

length of 𝑅𝑣𝑑𝑤 + 𝑅𝑝𝑟𝑜𝑏𝑒, where 𝑅𝑝𝑟𝑜𝑏𝑒 is the radius of the probe and 𝑅𝑣𝑑𝑤 corresponds 

to the van der Waals radius of the protein atom.  The net force on the test particle 

imposed by the springs is calculated based on an assigned spring constant, but is only 

applied when the spring is compressed, not when it is stretched.  The location of the test 

particle is then updated randomly in small increments through a series of iterations to 

explore the surrounding space.  For each iteration, the potential energy of the spring 

network on the test particle is recalculated as estimated location of minimal energy is 

improved. If the resulting minimum energy is greater than a predefined threshold, then 

some spring compression remains.  This means that the test particle could not be pushed 
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to a region where a spherical probe can fit, thus the grid point is microvoid.  If the spring 

potential is less than this threshold but the final location of the test particle is farther than 

𝑅𝑝𝑟𝑜𝑏𝑒 from the original grid point location, then the grid point is spatially connected to a 

cavity but lies within a microvoid pocket not accessible to the probe.  Otherwise, the grid 

point is counted as part of the adjoining cavity volume.  The flowchart in Figure 5 

outlines the major decision points for the determination of void type. 

 Although the algorithm is efficient and conceptually simple, the implementation 

requires many practical decisions, including the spring constant, energy threshold, and 

number of iterations.  These quantities have been extensively tested to determine 

reasonable approximations, and deviations from these choices have minimal impact on 

the accuracy of the results.  Perhaps the most fundamental impact, however, is the 

ambiguity in the definition of the van der Walls radii for the atoms in the protein itself.  

Although modeling the atoms as hard spheres is a common method for obtaining realistic 

results, it remains a crude approximation, and methods for these approximations vary.  

Unfortunately, the quantitative results for the volume of a protein are dependent on and 

sensitive to the values used for the van der Waals radii.  Bondi van der Waals radii [103] 

have been chose for this work, and although different definitions yield different protein 

volumes, the results were shown to be qualitatively the same.  The algorithm maintains 

the flexibility to use any set of radii definitions the user wishes to incorporate. 

 As with all grid-based methods, the choices for grid and probe sizes also have 

significant impact on the performance and accuracy of the calculations.  Although a 

probe size of 1.4 Å is nearly optimal for evaluating solvent accessibility in an aqueous 

environment, this definition is too restrictive for general analysis.  Of critical interest in 
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FIGURE 5: Flow chart for assigning void space to either cavity or microvoid 

 

understanding protein-binding behavior are the interactions with other molecules across a 

range of sizes.  Clefts and tunnels that restrict water can be ideal for filtering out larger 

molecules and enhancing specificity. Therefore, to maximize the applicability of the 

method, probe size can be set to any arbitrary value, according to the needs of the user.  

Similarly, grid size is best left as a user-defined value to be adjusted depending upon the 

desired level of resolution.  Smaller grid sizes will produce increasingly accurate results, 

at the cost of longer compute times.  These tradeoffs will be discussed in greater detail in 

the following sections. 

2.4 Probe Averaging 

 Figure 6 shows a potentially problematic situation that can occur with clustering 

cavity volume.  In this case, there are two adjoining cavities that will be incorrectly 

assigned to the same cluster despite the passageway that would restrict the probe from 

entering.  This scenario appears to be only of theoretical concern because it is rare in 
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practice for static protein structures.  However, due to dynamic fluctuations in proteins, it 

is likely that the probe will wiggle through the constriction, in which case considering the 

two void space partitions as a single cavity is correct. 

 To model the statistical possibility, in this specific 

example, of two distinct cavities versus one 

continuous cavity, a rotational averaging method is 

applied. This is achieved in two ways.  To generate 

results for analysis, the volume calculator is run 300 

times.  The protein is randomly rotated along all 

three axes such that its orientation on the three-

dimensional grid is changed.  For each orientation, the probe size is also allowed to 

fluctuate slightly to explore subtle variations in cavity clusters.  Specifically, a Gaussian 

distribution is centered at the probe size with a standard deviation of 0.05 relative to the 

average probe radius.  In this way, dynamic fluctuations of the protein are captured as 

probe radius fluctuations.  All quantities calculated are averaged over rotations at various 

probe sizes to determine robust likely behavior. 

2.5 Results 

 For initial testing of the protein volume calculations, a dataset of 108 globular 

proteins were selected.  These structures were taken from the Top 500 proteins, originally 

published by Hobohm and Sander, selected for non-redundancy and structure quality 

[104].  This list has been continuously updated over the years, and currently contains 

8000 structures downloadable from the Richardson Lab website.  For the purposes of 

initial testing, the Top 500 list is further refined to eliminate those with missing residues, 

FIGURE 6: Overlapping Cavity 

Cluster 
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missing chains, incomplete biological units, and fewer than 50 residues.  Hydrogen atoms 

are computationally added to residues. Some preliminary testing was done on all 500 

proteins, revealing that missing information at times has a significant effect on the 

results. This discovery underscores the sensitivity of these calculations.  The subset of 

108 complete proteins provides adequate representation of structures for testing the 

volume calculations and highlighting typical characteristics of void distribution. 

2.5.1 Accuracy and Convergence 

 Protein volume and packing have been studied extensively, therefore the first step is 

to ensure that the results from the new method agree with known measurements.  The 

generally accepted radius of a water molecule is 1.4 Å, therefore most physical and 

simulated experiments report volumes based on this probe size [77, 93-97].  Values for 

protein volume are generally qualitatively similar between different methods and 

software packages and comparing these to our measurements with a probe radius of 1.4 Å 

has shown good agreement, although exact quantitative comparisons will always be 

dependent upon the atomic van der Waals radii.  Void volumes are much more 

challenging to compare, mostly due to differences in definitions, but there is qualitative 

agreement in most cases.  A careful analysis of the reasons for many differences in 

volume calculations will be discussed within the context of packing density in Chapter 6.  

 To test for internal consistency, calculations were performed across multiple rotations 

and probes, and across different resolution scales by changing the grid size.  In Figures 

7(a) and 7(b), the coefficient of variation, defined as the ratio of the standard deviation to 

the mean, expressed as a percentage, is plotted as a function of grid size for van der 

Waals, microvoid, and boundary volumes.  Figure 7(a) shows the convergence for each 
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volume type with 300 rotations for a fixed probe size of 1.4 Å. The coefficient of 

variation decreases as grid resolution increases, demonstrating virtually negligible error 

with rotation, even for relatively large grid sizes. The convergence of the same quantities 

using the probe averaging method with a mean radius of 1.4 Å is shown in Figure 7(b). 

The grid size dependence for the van der Waals coefficient of variation is essentially the 

same regardless of whether the probe radius is fixed or exhibits variation, indicating van 

der Waals volume is independent of probe size. Interestingly, microvoid and boundary 

volumes have nearly constant coefficients of variation across all grid sizes, indicating that 

the random variation on the test probe radius introduces much more variation than grid 

size. However, the reason for placing variation on the test probe radius is to better model 

atomic fluctuations that are present in protein structure. Because the large variations 

derive from probe size variation, averaging over multiple rotations is not necessary. 

Nevertheless, while averaging over probe size, randomizing over protein orientation is 

also performed due to its negligible computational cost.  

 

 

FIGURE 7: Rotational convergence for fixed and variable volume types 

 

 The variation of cavity volume due to random protein orientations for fixed and 

varying probe size is shown in Figure 7(c). As with microvoid and boundary volumes, for 
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fixed probe size, the variations in cavity volume decrease with decreasing grid size. 

However, the coefficient of variation is considerably larger than that for other volume 

types, possibly because cavities can connect to channels that extend to the protein 

surface. For a sufficiently small probe radius, the channel is open, allowing solvent to 

penetrate the cavity. In this case, cavity volume transforms into boundary volume. 

Similarly, two microvoid clusters may merge together to form a larger cavity.  As such, 

when a probe radius is close to the critical threshold for a cavity to dramatically change 

size, this creates a high degree of sensitivity to protein orientation. These effects are 

enhanced by varying the probe radius, as shown in Figure 7(c). Again, the variation in 

probe radius increases the coefficient of variation and appears independent of grid size.   

2.5.2 Time Complexities 

 Figure 8 summarizes how CPU times vary as a function of grid size, probe radius, 

and protein length.  The results shown in Figure 8(a) are for the case of varying grid size, 

𝑎, with a fixed probe radius, 𝑅, of 1.4 Å plotted on a log-log plot with a slope of -2.95, 

indicating an inverse cubic relationship.  The dependence on test probe radius is more 

complicated.  Figure 8(b) shows results for a varying test probe radius and a lattice 

constant of 0.1 Å.  The probe radius is plotted against the log of the CPU times, for an 

approximately exponential relationship. For both cases, CPU times for each of the 108 

proteins were averaged and normalized by the protein’s sequence length (e.g. number of 

residues, 𝑁𝑅). 

 A linear scaling of CPU time with protein length is seen in Figure 8(c), which shows 

that the method will remain a viable approach for large molecular systems.  Points are 

plotted for all 108 proteins for a grid size of 0.1 Å and probe radius of 1.4 Å. The 
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performance of our algorithm has been empirically confirmed by observing the same 

trends across many different combinations of probe and grid sizes. This performance 

benchmark reveals that the CPU time to process a protein is given by 

 

𝑇𝐶𝑃𝑈~𝑁𝑅

𝑒𝑐𝑅

𝑎3
. (1) 

 

 

 

FIGURE 8: Time complexities for Protein Void Analyzer 

 

 

2.5.3. Linear Scaling by Protein Length 

 The results thus far have demonstrated good performance and accuracy of the method 

as a function of grid size, averaged across all proteins of varying lengths.  However, for 

all grid and probe sizes considered, it is observed that some quantities depend strongly on 

protein length. In Figure 9 the results are summarized for the case that grid size and probe 

radius are 0.1 Å and 1.4 Å, respectively. In addition, qualitatively similar correlations 

appear (not shown) when the number of residues (i.e. protein length) is replaced by 

number of atoms.  
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 In Figure 9(a), it is seen that van der Waals volume and microvoid volume are 

proportional to protein length. In contrast, cavity volume, Figure 9(b), is shown to have 

only a general tendency to increase with protein length. These trends have been 

previously established for cavity and van der Waals volumes using a variety of methods 

and datasets [59, 77]. However, to the best of our knowledge, microvoid as a separate 

quantity has not been considered.  Figures 9(c) and 9(d), show that the total number of 

distinct microvoid clusters is proportional to protein length, and the number of distinct 

cavities (e.g. cavity volume clusters) is approximately linearly correlated.  Although it is 

intuitive to expect various volume type totals to be extensive, it is interesting that the  

 

 

FIGURE 9: Volume characteristics as a function of protein length  
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extensive property holds for microvoid and cavity clusters.  These plots show which 

quantities scale with protein length, and the scaling behavior of cavities versus microvoid 

is differentiated. In particular, the microvoid volume dominates the total void space 

quantitatively.  Cavity volume, on the other hand, is more of the exception in void space 

and its characteristics are erratic by comparison.  

2.5.4 Volumes as a Function of Probe Size 

 Figure 10(a) shows the packing density as a function of probe size.  Packing density 

is defined as the protein volume divided by the total volume, including cavity and 

microvoid. These results indicate that atomic packing in globular proteins do not vary 

much from one protein to the next.  At a probe radius of 1.4 Å, the packing density is 

around 75% for all proteins tested, which is consistent with other reports, and is 

comparable to optimal packing of random spheres confined in a box [59].   

 Figure 10(b) shows the relative relationships between cavity, boundary, and 

microvoid volumes as a function of probe size.  Specifically, the curves plotted represent 

the fraction of each volume type over the total molecular volume.  The absolute protein 

volume remains fixed over all probe sizes, but as the size of the probe approaches zero, 

the volume of the protein defines the entire molecular volume, with no microvoid 

volume.  In this extreme case, the packing density approaches 1, and solvent can access 

all areas around the protein atoms.  This is consistent with Richards’ definition of 

molecular surface area.  Richard also noted that for infinitely large probe sizes, these 

relative fractions should theoretically approach a constant value, and the shape of the 

curves in Figure 10(b) is suggestive of this behavior as probe size increases. 
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FIGURE 10: Volume fractions as a function of probe radius 

  

 Another feature to note in this graph is the very small contribution of cavity volume 

to the total.  At the size of a water molecule, there are typically almost no cavities in the 

average protein.  However, focusing in on the details of cavity volumes highlights the 

interesting features of individual proteins.  Figure 11(a) represents the total cavity 

volume, as a function of probe size, for 107 of the 108 proteins tested.  There is a clear 

signature of peak cavity volume at a probe radius size of around 0.9 Å, significantly 

smaller than a water molecule.  The remaining 11 proteins, with peaks well above typical 

probe sizes, are shown in Figure 11(b), and are far more erratic.  To understand this 

behavior, consider the example protein shown in Figure 12, at probe sizes 0.1, 0.8, 1.1, 

and 2.0 Å from left to right.  Spherically shaped clusters are represented by various 

distinct colors to highlight separate cavities.  At very small probe sizes, there are small 

pockets of cavities that do not amount to a large collective volume, because most of the 

void space is solvent accessible.  As the probe increases, it cannot access these smaller 

areas in the interior of the protein, so the cavity volume increases.   
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FIGURE 11: Cavity volume as a function of probe radius 

  

 However, past a radius of 0.9 Å, fewer clusters of voids are found simply because the 

proteins themselves are so densely packed.  In a small percentage of proteins, such as 

those found in the example of Figure 12, there can be additional peaks in cavity volume 

for probe sizes much greater than 0.9 Å.  An example is shown in the final panel of 

Figure 12, where a large cluster of cavity volume appears that was previously solvent 

accessible.  In these situations, there is a large tunnel through part of the protein that will 

allow water molecules or other smaller particles to pass into but will restrict larger 

probes.  Given the high energy cost and potential instability of a lower packing density, 

these tunnels often have a critical biological function [62, 105-111]. 

 

 

FIGURE 12: Cartoon representation of cavities with increasing probe size, colored by 

cluster 
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2.5.5 Partial Volumes 

 For each of the void types calculated, the total volume is calculated for the entire 

protein.  It is also quite useful to know how these void volumes are spatially distributed.  

For example, residues with disproportionately larger volumes of boundary solvent 

volume in their immediate vicinity are likely to be found near the surface of the protein.  

As the probe size increases, residues buried in the center of the protein will be surrounded 

by virtually no solvent.  To quantify these concepts within the PVA, partial volumes are 

tracked and recorded for each atom and residue. 

 Operationally, partial volumes have a simple definition.  For each grid point of a 

given type of void volume, the closest atom is identified, and an associated counter is 

incremented.  After the entire protein has been processed, these counters are tallied per 

atom to determine the respective number of associated void grid points.  Partial volumes 

of various void types will be used in future DCM enhancements to entropy and solvation 

free energy calculations.  These partial volumes are conceptually similar to solvent 

accessible surface areas (SASA) computed by popular software packages such as DSSP 

[112] and NACCESS [113] and have good correlation. Figure 13 shows this correlation 

for all residues in 108 proteins at a grid size of 0.3 Å and probe radius 1.4 Å. 

2.6 Summary of Protein Volume Calculator 

 This chapter has introduced the method for the Protein Void Analyzer and 

demonstrated its consistency with other software and known properties of proteins.  The 

speed, low memory requirements, accuracy, and user versatility make the PVA a 
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competitive alternative to existing methods as a standalone software and will eventually 

be available for download to the public.  The detailed, atomic-level information captured 

 

 

FIGURE 13: Correlation between SASA and partial volumes 

 

provides a powerful analytical tool in the study of protein characteristics and behavior.   

The combination of features encompasses many other popular packages, including some 

basic visualization capabilities.  Future enhancements, not in the scope of this 

dissertation, would include a user interface and more comprehensive visualizations, 

perhaps with a tie-in to another graphics package such as Pymol [114].  
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CHAPTER 3: PROBABILITY DISTRIBUTION FUNCTION ESTIMATOR 

 

 

3.1 Introduction 

 Determining the probability density function (PDF) of a set of sample data is an 

important and long sought-after goal in the field of statistics, with applications in all 

disciplines of science, mathematics, economics, or virtually any situation in which 

predictions are made based on past observations.  The problem becomes more 

challenging when nothing is known about the original mechanism or distribution of the 

data, and worse still when the sample size is very small.  For distributions with long tails 

or rare events, many observations are needed to adequately sample the population. 

 For nonparametric density estimation (ie, the form of the distribution is not known) a 

common approach is kernel density estimation (KDE), available in many mathematical 

software packages such as MATLAB and R.  The premise of KDE is similar 

conceptually to that of a histogram.  However, instead of simple bin counts, the method 

employs a kernel function, usually a Gaussian, to represent each collection of points in a 

bin, thus smoothing the distribution.  Primary difficulties for KDE include choosing a bin 

width, and appropriately defining the distribution at the boundaries. 

 Presented here is a novel nonparametric density estimator that begins with a 

maximum entropy method (MEM), based on an algorithm first introduced in 2009 [115].  

The PDF Estimator deviates from standard methods and forms a unique hybrid algorithm.  

Specifically, the PDF Estimator combines maximum entropy, maximum likelihood, and 

order statistics in a new way.  Each of these concepts and how they are combined to form 
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the new algorithm will be briefly explained in the remainder of this chapter.  For more 

detailed descriptions of the method and further examples, see prior publications [116, 

117]. A brief overview given here highlights the important features. 

3.2 Maximum Entropy 

 The MEM is a known theoretical parametric method for estimating a PDF [118-120].  

Calculus of variations is used to determine the form of the PDF that maximizes entropy, 

subject to restraints, resulting in the following form [115]: 

 

𝑝(𝑣) = 𝑒𝑥𝑝 [(𝜆0 − 1) + ∑ 𝜆𝑗𝑔𝑗(𝑣)

𝐷

𝑗=1

] (2) 

 

The coefficients, λ, represent D Lagrange multipliers, and 𝑔𝑗(𝑣) are any set of bounded 

orthogonal functions, in this case chosen to be Chebyshev polynomials.  Although the 

concept is not new, the Lagrange multipliers cannot be determined analytically beyond 

the first few moments, and numerical solutions become unstable due to errors in 

statistical measurements for dimensions greater than about six [121, 122].  Furthermore, 

even when solutions are found, the number of moments is predetermined, thus marking 

this as a parametric method. 

 The PDF Estimator takes a different approach to the MEM, using an iterative method 

to guess the Lagrange multipliers and create a trial PDF using Equation 2.  The PDF is 

then numerically integrated using a second order approximation (Simpson method) with 

an adaptive, data-driven resolution, dx. Then the CDF is evaluated for each of the sample 



36 
 

data points, resulting in a corresponding data set on the interval [0, 1].    If the CDF is the 

correct representation of the initial data, this transformed data will be sampled uniform 

random data (SURD).  Methods for evaluating SURD characteristics will be discussed in 

the next section. 

 Initially, only a single Lagrange multiplier is used, assuming a uniform distribution.  

If the uniform CDF produces a mapped set of SURD, then the PDF is accepted, 

otherwise, a new Lagrange multiplier is added.  Trial PDF solutions are iteratively tested 

using a random search method to perturb the Lagrange multipliers, until either a solution 

is found, or a set amount of trials have occurred without improvement.  Additional 

Lagrange multipliers continue to be added at an accelerated rate until an acceptable 

solution is found.  The user may determine the maximum number of Lagrange multipliers 

added until giving up.  Figure 14 shows the high-level process for the algorithm. 

 

 

FIGURE 14: Flow chart for MEM 
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3.3 Order Statistics and Maximum Likelihood 

 According to order statistics [123], the probability of the finding u at position s for N 

random samples on the interval [0, 1] can be given by,  

 

𝑝𝑠(𝑢|𝑁) =
𝑁! (1 − 𝑢)𝑁𝑢𝑠−1

(𝑁 − 𝑠)! (𝑠 − 1)!
. (3) 

 

Taking the product of all N of these probabilities forms a likelihood function, L, that will 

be used to assign a score to the likelihood of a random sample having the characteristics 

of SURD. Extensive numerical tests were performed on actual SURD across a range of 

sample sizes using a random number generator [124], and the distribution of the natural 

log of L is shown in Figure 15.  The distribution is scaled by the square root of N; thus it 

 

FIGURE 15: Distribution of likelihood function for SURD 
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is sample-size invariant.  By integrating the area under this curve, a confidence level is 

assigned indicating the likelihood of SURD.  This confidence level is assigned to 40% by 

default but is user-customizable. 

3.4 Results 

 A more in-depth description of the user-options and challenges of the PDF Estimator, 

as well as many examples, have been published previously [116, 117], but a few results 

will be highlighted here to demonstrate the advantages of this method, particularly as 

compared to KDE.  Figure 16 is an example demonstrating convergence to the true PDF 

as sample size increases.  This sample data for this distribution was created 

 

 

FIGURE 16: Convergence of double Gaussian distribution with increasing sample size 
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as a weighted sum of two Gaussian distributions.  Although detecting the smaller peak is 

challenging, this is relatively simple for most methods at higher sample sizes, and MEM 

and KDE perform similarly.  For more rigorous testing, a collection of difficult 

distributions was selected, containing features that are problematic for estimators.  These 

distributions include those with discontinuities, heavy tails, and multi-resolution scales. A 

brief description of four of these challenging test cases will be summarized here.  Figure 

17 shows each these distributions for large sample sizes (216), comparing MEM and KDE 

performance against the true PDF, using the default settings for both methods.  The 

MATLAB 2014a ksdensity() function was used for KDE results.  

3.4.1 Uniform distribution 

 Although seemingly the simplest distribution of all, the uniform distribution is 

surprisingly difficult for KDE-based estimators to detect.  The results shown in Figure 

17(a) demonstrate this difficulty with KDE.  Setting appropriate boundary values 

minimizes the dips at the endpoints somewhat but does not eliminate this problem.  The 

PDF Estimator can fit a uniform distribution near-perfectly in most cases because of the 

iterative nature of the method.  The first iteration begins with a single Lagrange 

multiplier, reducing Equation 2 to a constant, therefore resulting in a high chance of an 

immediately successful score. 

3.4.2 Cauchy distribution 

 Heavy tails, representing rare events, present a problem for density estimators, 

particularly for small sample sizes.  A somewhat extreme example of this is the Cauchy 

distribution, described by the following equation. 
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𝑝(𝑥) =  
𝑏

𝜋(𝑥2 +  𝑏2)
(4) 

 

For these examples, b was chosen to be 0.5.  In the Cauchy distribution, the second 

moment does not converge, but increases infinitely with sample size, causing it to be 

nearly impossible to estimate based on a finite sample.  The PDF Estimator handles these 

 

 

FIGURE 17: Comparison between KDE and PDF Estimator for large sample sizes 

 

situations by automatically detecting extreme outliers.  This detection is data-driven, with 

no intervention from the user.  Future versions of the method include a proposal to create 
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a semiparametric MEM to alter the form of the PDF expansion but will not be addressed 

here.   

 Another feature of the PDF Estimator that this distribution demonstrates is the 

adaptive integration scheme.  This is also an automatic data-driven feature that occurs in 

all cases but is designed specifically for detecting sharp features.  The program integrates 

the PDF using multiple resolution dx values, to accommodate precise integration where 

needed, but will not waste memory and computation time in areas where the data is 

sparse. Figure 17(b) shows that the KDE method cannot fit to the true distribution using 

the default settings, for the very reason that the range is too great compared to the 

sharpness of the peak.  Additional tests were done (not shown), demonstrating that 

ksdensity() can perform similarly to MEM by increasing the discrete points to one 

million, rather than the default value of one hundred. 

3.4.3 Gamma distribution 

 The gamma distribution is defined as 

 

𝑝(𝑥) =  
𝑒−|𝑥|

√𝑥
. (5) 

 

This distribution is included in the results as an example of a discontinuity at x=0.  The 

KDE has difficulties at the boundary, as with the uniform case, and misses completely the 

divergence at x=0, shown in Figure 17(c).  Defining boundaries manually and increasing 

the number of points on the x-axis does not significantly improve KDE performance for 

the gamma distribution. 
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3.4.4 Five weighted Gaussian distributions 

 This is an artificially constructed distribution designed specifically to test the limits of 

sensitivity of the PDF Estimator.  Five equally spaced Gaussians with a small standard 

deviation are added to a uniform distribution to create the sharp peaks shown in Figure 

17(d).  The PDF Estimator does a much better job of fitting to the peaks but does not 

produce a smooth curve as does KDE.  The attempt to flatten the lines between peaks 

results in small fluctuations, but overall represents the true distribution reasonably well. 

3.4.5 Independent assessment of results 

 Many metrics were employed as a means of testing the validity of the log-likelihood 

scores, including Kullback-Leibler (KL), Kolmogorov-Smirnov (KS), and a least squares 

method of comparing distributions that was developed and named the Figure of Merit.  

The results of the p-values using the 1-sample KS test are shown in Figure 18.  The PDF 

Estimator creates an analytical solution for the estimated PDF, using the empirically 

determined set of Lagrange multipliers, and this solution is used to generate an 

independent data sample according to this distribution.  This sample is compared to the 

original known distribution using the KS test, which produces a p-value for the null 

hypothesis that the distribution does not match the data.  P-values were generated and 

collected for a range of sample sizes, and include additional distributions, most of which 

were constructed to be difficult to estimate.  The histogram in Figure 18 shows a 

somewhat uniform range of p-values, indicating good estimates. 

3.5 Summary of PDF Estimator 

 The PDF Estimator was initially motivated as an extension of the original MEM 

version almost ten years ago [125].  However, the program has undergone significant 
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conceptual improvements, two major rewrites, and extensive testing against known 

distributions with generated data.  Distributable versions are currently available in both 

Java and C++, and the two implementations continue to be tested in parallel as 

opportunities arise, providing an extraordinarily high level of confidence that 

 

 

FIGURE 18: P-value distribution of PDF Estimator results using the 1-sample KS test 

 

programming bugs do not exist.  The C++ version has been added to the FAST library, 

and was implemented with computational speed as a priority, as this will become 

important for the new DCM.  Additionally, the C++ code has been uploaded to the 

Comprehensive R Archive Network (CRAN) and packaged to interface as a function with 

the R statistical software. 

 One reason for its importance is when calculating potential of mean force from 

sampled data. It was noticed about 10 years ago that KDE is simply an untrustworthy 
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approach for such calculations.  When the exact answer is known KDE may be sufficient, 

provided the correct kernel is selected.  However, from a big data, high-throughput 

analysis point of view, a fully automated robust method is needed, without subjective 

human intervention for choices of kernel characteristics such as bin width.  

 In addition to its primary motivating purpose within FAST, the program has been 

utilized for multiple projects in the lab using real data with unknown distributions.  The 

following chapters provide examples of specific applications for this algorithm, and it has 

been used throughout this work for data analysis.  The class component design and its 

implementation provide an interface allowing for customizable future development 

without the need of rewriting or retesting code; the ultimate goal in object-oriented code 

design. 
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CHAPTER 4:  PERCOLATION 

 

 

 The Hoshen-Kopelman clustering algorithm used to calculate void volumes also 

provides a means tracking the size, shape, and number of contiguous clusters and study 

their distributions throughout the protein.  As previously mentioned, the HK algorithm 

was originally developed to study percolating systems.  A porous material is said to 

percolate if a liquid can find a path from one end of the material to the other, such as 

water percolating thru coffee grounds. If the material is too densely packed, the 

percolating substance will form isolated clusters throughout, but will not form a pathway 

through the material.  Of particular interest is the percolation threshold, defined as the 

minimum probability of site occupation that allows for percolation.  Percolation theory 

has remained a topic of theoretical interest for many decades and continues to be applied 

to a range of practical problems [47, 126-131].  Many of the characteristics of the clusters 

of any percolating system are shown to be universal, regardless of the application.    

 Percolation has previously been applied to proteins from various perspectives.  

Mostly commonly, the protein atoms themselves are viewed as the percolating clusters 

when folded into their native states [59, 132].  Additionally, cavities have been studied 

for their percolation characteristics [59].  Cavities can never percolate, since they cannot 

form a pathway through a protein, whereas protein atoms in their native state behave as if 

they are a percolating system very near the threshold.  There are many challenges specific 

to this application.  Most notably, proteins are unique dynamic biological systems with a 

great range of variability in behavior, relying on a single x-ray crystal structure to capture 
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their shape.  Protein studies therefore cannot hope to obtain the fine-tuned precision of 

computational experiments where the parameters are well-defined and controlled.  For 

example, the molecular surface defining the internal protein volume is variable and 

irregular in shape, whereas the most well-studied three-dimensional percolation systems 

have precise shapes, typical cubic. 

 Furthermore, percolation theory in its simplest form considers systems with random 

site probabilities.  That is, each site or grid point on the grid lattice has an equal 

probability of being occupied.  Clearly this cannot be the case with proteins, as grid 

points within the van der Waals radii of atoms will always be occupied by protein 

volume.  Percolation with non-random and correlated probabilities have also been studied 

[130, 133, 134], but none of these models accurately reflects the unique combination of 

challenges found in the application to proteins.  This chapter will apply percolation 

theory to proteins in a way not previously considered, by analyzing microvoid clusters 

and how they merge and connect through the protein with varying probe size. Despite the 

difficulties mentioned, microvoid has been demonstrated to behave as a percolation 

system, sharing many common traits among the proteins in the 108-protein dataset. 

 4.1 Microvoid Percolation Threshold 

 Figure 10(b) in Chapter 2 shows the fraction of microvoid volume increasing as a 

function of probe size.  Rephrased in the language of percolation theory, it can be said 

that as molecular surface increases, the probability of a given grid point to be counted as 

microvoid volume increases with probe size.  As this probability increases, there will be a 

theoretical threshold at which the microvoid volume will percolate.  That is, there will 

exist a continuous pathway of microvoid through the protein.  Figure 19 demonstrates 
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this visually.  The gray shading represents the microvoid in the system, with the largest 

microvoid cluster shown in black, for probe sizes 0.3 Å, 0.4 Å, and 0.5 Å.  Prior to 

percolation, the largest cluster is a very small fraction of the microvoid, but these small 

clusters merge together until they span the system in at least one dimension. This 

transition often happens quite suddenly. By the time the probe radius is only 0.5 Å, the 

largest contiguous cluster represents virtually the entire microvoid volume.  

 

 

FIGURE 19: Visualization of the largest microvoid cluster near the threshold 

 

  Formally quantifying microvoid within the context of percolation theory required 

specific user-defined parameters to the PVA. First, consider the probability of microvoid 

volume within a fixed system size.  Therefore, it is convenient to keep a constant shell 

distance surrounding the protein as the probe size increases.  Additionally, to obtain 

precise results to study percolation, the probe radius is not allowed to fluctuate within the 

300 rotations for each probe size definition. Neither of these restrictions are necessary to 

demonstrate percolation but they allow for a clearer mapping to definitions of probability. 

 The site probability is formally defined as 
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𝑝 =
𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑

 𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑 + 𝑐𝑎𝑣𝑖𝑡𝑦 + 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
, (6) 

 

where the fixed shell layer for the boundary is set to 0.55 Å for all probe sizes, and the 

van der Waals volume is omitted from consideration since it can never be occupied by 

microvoid.  The choice of 0.55 Å is somewhat arbitrary and the exact value is not 

important.  However, allowing a much larger boundary shell causes the site probabilities 

to shrink to zero, making the outcome computationally intractable.  

 Several other volume sums in the denominator of Equation 6 were considered, 

including, but not limited to, microvoid as a fraction of total volume and of molecular 

volume.  There was some consistency in overall results for all definitions but this one was 

chosen primarily as the one with the most reasonable physical interpretation. The site 

probability, therefore, is defined as the probability of microvoid as a fraction of all void 

space.  This definition maps well to probe size for all proteins, as shown in Figure 20(a). 

 For finite systems, a good operational definition for the effective percolation 

threshold, pc, is the site probability associated with the peak value of the reduced second 

moment (RSM), defined as [98] 

 

𝑅𝑆𝑀 = ( ∑ 𝑛𝑠𝑠2

# 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑠=1

) 𝑁⁄ −  𝑛𝑚𝑎𝑥
2 𝑁⁄ , (7) 

 

where s is the cluster size, 𝑛𝑠 is the number of clusters of size s, and N is the total number 

of microvoid volume units (grid points). The percolation threshold for each of the 108 

proteins was calculated individually and found to be very similar for all proteins.  The 
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dark circles in Figure 20(a) mark the probe size and site probability of the threshold for 

each individual protein, and Figure 20(b) shows the RSM as a function of site probability.  

Although pc occurs at a range of probe sizes, the associated percolating site probabilities 

are within a relatively narrow range for all proteins.   

 The RSM in Figure 20(b) was calculated from the collective cluster size statistics 

across all 300 rotations, therefore defining average behavior per protein.  Figure 20(c) 

demonstrates more clearly the percolation transition.  In this case, the RSM was 

calculated for each rotation separately, for the same range of site probabilities.  The 

fraction of percolated realizations out of 300 is plotted as a function of the site probability  

 

 

FIGURE 20: Microvoid percolation characteristics by probe and grid size 
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for each protein.  In most cases, the result is the expect sigmoidal shaped curve indicating  

a sharp transition.  Two exceptions, shown in black, are cases where the transition does 

not occur smoothly.  Interestingly, these exceptions represent the largest protein in our 

dataset (839 residues) and one of the smallest (61 residues).  A third exception, the 

rightmost black line, is an example of a highly non-spherical protein with an unusually 

long transition.  These cases, along with the noise and scatter surrounding the RSM in 

Figure 20(b) highlight the challenge of applying percolation theory to biological systems.  

Nonetheless, the percolation characteristics are remarkably similar across a very diverse 

collection of proteins. 

 The plots discussed thus far in Figure 20 were all produced using a lattice constant of 

0.3Å.  Figure 20(d) shows the probability density for the percolation thresholds for three 

different lattice constants, which highlights a few interesting characteristics.  The pc shifts 

to the left with decreasing grid size as the spread in the distributions narrow, such that the 

coefficient of variation is constant. Additional small narrow passageways that can be 

traversed by the probe as the resolution of the grid is increased are the cause of this shift 

to smaller percolation thresholds. This shift is therefore an artifact of using a discrete 

grid. Note that grid sizes greater than 0.4 cannot accurately determine the microvoid 

percolation threshold because the grid spacing cannot be greater than the probe radius, 

otherwise the probe size will be smaller than the grid resolution.    

 The site probabilities in general are significantly smaller than that of a random cubic 

lattice. Although the percolation threshold for systems between 2 and 6 dimensions are 

not known exactly, three-dimension cubic lattices have been well-studied 

computationally with a confirmed pc of approximately 0.311 [131, 135].  There are 
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several likely explanations for low microvoid threshold probabilities.  Unlike the cubic 

grid with equal random site probabilities, microvoid can never occupy protein or bulk 

water grid points, thus it remains a small percentage of the total volume. Furthermore, it 

is intuitive to expect that the microvoid naturally clusters together in a non-random 

manner, and the high connectivity represented at relatively small site probabilities 

confirms this intuition.  Non-random correlated probabilities and non-spherical cluster 

shapes have both independently been shown experimentally to lower the percolation 

threshold [133, 134, 136-138]. 

4.2 Microvoid Cluster Dimensionality 

 A system in a state very near the percolation threshold has certain known theoretical 

characteristics.  Among these traits is the relationship between the volume and surface 

area of the clusters.  Somewhat counter-intuitively, this relationship is expected to be 

linear in theory, and has verified experimentally for many systems  [59, 126, 131, 139].  

This relationship holds for probabilities above and below the threshold as well.  Figure 21 

shows surface area as a function of volume for both cavity and microvoid, at the 

approximate microvoid percolation threshold.  These figures plot every cluster for all 108 

proteins.  For microvoid, this includes over 500,000 data points, which all fall closely in 

line with one another.  Interestingly, cavity also follows a linear fit moderately well, even 

though these clusters do not percolate.  Similar results were seen for other probe sizes. 
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FIGURE 21: Linear relationship between volume and area for (a) cavity (b) microvoid 

 

 Another interesting geometric characteristic to consider is sphericity, defined by 

[140] 

 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
𝜋1/3(6 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒)2/3

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
, (8) 

 

where a perfect sphere would give sphericity equal to 1.   Plotting sphericity as a function 

of cluster volume (Figure 22) for cavity and microvoid shows that, while small clusters 

tend to be somewhat spherical, this trend decreases notably for large clusters, particularly 

microvoid clusters.  Microvoid clusters larger than a handful of grid points are highly 

non-spherical, confirming the visual trends seen (Figure 19) as microvoid spreading in 

long narrow channels throughout the protein as the threshold is approached.  Cavities by 

comparison tend to be much more spherical, but become somewhat less so as volume 

increases, in agreement with other studies of cavity shape [141]. 
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FIGURE 22: Sphericity for (a) cavity and (b) microvoid 

 

 The surface area calculations for clusters are not currently part of the PVA 

implementation.  For these results, the surface area was calculated in MATLAB as a post-

processing step.  A user option in the PVA, previously mentioned as a means of 

generating PYMOL images such as those shown in Figure 19, is to save the visualization 

information for void clusters.  This produces cluster volume coordinates both in the 

original coordinate system of the crystal structure, as well as grid points.  The latter was 

traversed in the MATLAB script to determine the number of exposed faces of each grid 

point, thus calculating the surface area.  Incorporating these surface area calculations as a 

part of the PVA would be a valuable future enhancement, providing much greater 

efficiency with C++. 

4.3 Finite Size Scaling and Standard Percolation Exponents 

 According to ordinary percolation theory, a set of universal scaling laws describe 

many characteristics of cluster size and distribution.  These laws are defined by scaling 

exponents, called critical exponents, which are dependent only upon the dimensionality 

of the system.  For dimensions less than three or greater than 7, analytical solutions for 

critical exponents exist and have been experimentally verified [129-131].  Although these 
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exponents have been computationally determined for three-dimensional systems with 

high accuracy, percolation problems involving experimental data from real systems often 

deviate from the expected values [126, 128, 135, 136, 142, 143].  These scaling laws 

have been applied to protein microvoid percolation with somewhat better success than 

expected, given the variability of properties of globular proteins and the limited sample 

size.  Table 1 summarizes the critical exponents that will be discussed throughout this 

section. 

 

TABLE 1: Expected and estimated critical exponents 

Exponent Description Expected Estimated 

    

ν Finite size scaling 0.87 0.722 ± 0.061 

β/ν Strength of percolating cluster 0.49 0.353 ± 0.061 

𝑑𝑓 Fractal dimension 2.52 2.651 ± 0.061 

τ Cluster size distribution 2.19 2.134 ± 0.033 

 

 The results discussed up to this point have calculated 𝑝𝑐 as an empirical value based 

on the cluster statistics.  According to percolation theory, however, the threshold is a 

function of the linear size of the system [131].  It is intuitive to expect that a small system 

will percolate with a much lower site probability than that of a larger system.   For 

ordinary percolation problems, the threshold in the theoretical limit can be extracted from 

the effective probability, 𝑝𝑐(𝐿), determined by the peak RSM, according to the following 

scaling with the linear dimension of the system as 

 

𝑝𝑐(𝐿) = 𝐿
1

𝜐⁄ + 𝑝𝑐(∞). (9) 
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where 𝜈 is a critical exponent universally dependent upon dimensionality.  

 To accurately estimate the theoretical 𝑝𝑐 in the limit of an infinite-sized protein 

system, corrections must be made for finite-size scaling (FSS) effects.  The linear 

dimension of a protein can be calculated as the average of the maximum range of each 

coordinate axis as follows [59, 139], 

 

𝐿 =
1

6
∑(𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)

3

𝑗=1

. (10) 

 

Figure 23 shows the probability according to Equation 6 at the peak RSM for each 

protein as a function of 𝐿
1

𝜈⁄  for a best linear least square fit. The large amount of scatter 

across the proteins reflects, in part, the inadequate sampling possible with a finite set of 

protein sizes, as typical globular proteins occur within a somewhat narrow range of sizes.  

Ideally, thousands of random realizations for sizes ranging at least several orders of 

magnitude are employed to precisely extrapolate an accurate threshold [130, 135, 136, 

143, 144].  Nonetheless, from this plot, the slope and y-intercept can be found, giving 

values for ν and 𝑝𝑐(∞) respectively. 

 Typically, the next step is to estimate the critical exponent beta. Beta is the scaling 

exponent associated with the strength of the infinite cluster according to the equation 

 

𝑃∞ ~ |𝑝 − 𝑝𝑐|𝛽 , (11) 
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FIGURE 23: Fitted finite size scaling exponent 

 

 

where 𝑃∞ is the probability that a random site belongs to the infinite cluster.  Applying 

FSS to Equation 11 yields the following equation, which is somewhat less critically 

sensitive to an exact estimate of 𝑝𝑐 [144]. 

 

𝑃∞(𝐿)~ 𝐿
−𝛽

𝜈⁄ , (12) 

 

The scaling exponent  
𝛽

𝜈⁄  is calculated by finding the slope of the double log plot of 

𝑃∞(𝐿) against 𝐿
−𝛽

𝜈⁄
 , then beta is calculated based on the estimated value of 𝜐 from 

Equation 9.  Corresponding values of the fractal dimension 𝑑𝑓 and the critical exponent 

𝑡𝑎𝑢 are then calculated according to the following universal scaling relations. 
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𝑑𝑓 = 𝑑 −
𝛽

𝜐⁄ (13) 

𝜏 = 𝑑
𝑑𝑓⁄ + 1 (14) 

 

 

 This procedure for systematically deriving the exponents 𝛽, 𝑑𝑓, and 𝜏 are all 

dependent upon a good estimate of 𝜈.  Given the wide scatter in Figure 23, and the 

subsequent large margin of error in estimating 𝑝𝑐, the rest of the exponents cannot be 

estimated with high accuracy.  Therefore, for this percolation problem, a slightly different 

approach is taken by reversing the procedure.  This is a somewhat novel strategy not 

previously considered in ordinary percolation problems but applies well to this unique 

system of diverse proteins.  First, Figure 24(a) shows fitted values for  
𝛽

𝜈⁄   as a function 

of 𝑝𝑐 within the margin of error estimated from the y-intercept in Figure 23.  This curve 

is calculated by applying Equation 12 to a range 𝑝𝑐 by taking the log of both sides and 

estimating the slope of the linear fit.  The curves for 𝑑𝑓 and 𝜏 are then calculated from 

Equations 13 and 14 for each estimated value of  
𝛽

𝜈⁄  . 

 The precise values for exponents 𝑑𝑓, 𝜏,  and 
𝛽

𝜈⁄  𝑎re quite sensitive to the value of 

𝑝𝑐, demonstrating why an accurate estimate of 𝜈 is essential.  However, the fractal 

dimension can also be derived independently, providing additional information for the 

appropriate scaling constraints.  Figure 24(b) shows the volume of the largest microvoid 

cluster as a function of the maximum length of this cluster, expected to scale as 

 

𝑡𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 ~ 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑓 . (15) 
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The slope of the double log plot is 2.6510 ± 0.0606, in close agreement with the value 

of 2.52 expected for three-dimensional percolation systems.  More importantly, 𝑑𝑓 

calculated in this manner substantially narrows the range of 𝑝𝑐 as shown in Figure 24(a).  

The three vertical lines in this figure show the mean (center line) and margin of error 

(flanking lines) of 𝑑𝑓 as calculated from Figure 24(b).  These lines mark the 

corresponding estimates and error margins for the other exponents plotted and are noted 

in Table 1. 

 

 

FIGURE 24: Percolation threshold constants 
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 Furthermore, the mean value of 𝑝𝑐 can be estimated with this technique as well, and 

is reported as 0.135 ± 0.002.  Again, although this agrees very well with the 

extrapolated value of 𝑝𝑐 from the y-intercept of Figure 23, the more important point is 

that the error is significantly reduced by accurately determining the fractal dimension 

first.  This, in turn, allows for a more accurate estimation of nu, shown in Figure 24(c).  

In this case, the y-intercept is fixed for the mean value of 𝑝𝑐, and a least squares fit is 

computed to estimate the best value of 𝜐, estimated, also reported in Table 1.  

 Finally, Figure 24(d) shows the cluster size distribution for all microvoid clusters for 

each protein, at the mean 𝑝𝑐 calculated from Figure 24(a).  Statistics were collected on all 

cluster sizes for each of the 300 rotations, binned logarithmically, and plotted on a 

double-log scale.  The circles represent the binned averages, and the gray dots include all 

the cluster sizes.  The cluster size distribution at 𝑝𝑐 is known to follow the power law 

 

𝑛𝑠 ∝ 𝑠−𝜏, (16) 

 

where 𝑛𝑠 is the number of clusters of size 𝑠.  Following FSS, data collapse is achieved 

with the following length scale corrections, 

   

𝐿
𝜏

𝜈⁄ ∗ 𝑛𝑠 ∝ 𝐿
−1

𝜐⁄ ∗ 𝑠−𝜏, (17) 

 

according the exponent values estimated for this data, and the straight-line fit was forced 

to have a slope of -𝜏.  The power law in Equations 16 and 17 are valid for large cluster 

sizes only, and the linear fit shown in Figure 24(d) works very well for finite cluster 
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volumes greater than 1 Å.  The characteristic leveling off at the tail reflects poor 

sampling in the largest cluster sizes, with only one or two per bin [128, 142, 143].   

 In summary, the results in this section demonstrate that microvoid clustering can be 

modeled as a 3-dimensional percolation problem, based on a set of diverse proteins.  The 

critical exponents fall closely in line with expected values and have been confirmed self-

consistently.  The problems of limited sampling of a narrow range of finite sizes are 

overcome by working through the normal methods in reverse, starting with the fractal 

dimension, which is estimated with high accuracy. 

4.4 Protein Percolation 

 A different way of viewing percolation is by looking at the protein residues 

themselves. The length, according to Equation 10, is plotted for all proteins against the 

van der Waals volume of the protein on a log-log scale (Figure 25).  The slope of the 

linear fit is 2.56, indicating that proteins are packed similarly to random spheres at the 

percolation threshold.  Similar results have been reported using different protein volume 

calculators [59]. 

 

FIGURE 25: Log-log plot of protein volume as a function of protein length 
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CHAPTER 5: PDF ESTIMATOR APPLIED TO MOLECULAR DYNAMICS 

 

 

 A common method employed when analyzing MD trajectories is to calculate the root 

mean square fluctuation (RMSF) for each residue in the protein.  The RMSF is defined as 

follows, for each x, y, and z coordinate in the trajectory: 

 

𝑅𝑀𝑆𝐹 =
1

# 𝑓𝑟𝑎𝑚𝑒𝑠
∑ √(〈𝑥〉 − 𝑥𝑖)2 + (〈𝑦〉 − 𝑦𝑖)2 + (〈𝑧〉 − 𝑧𝑖)2

#𝑓𝑟𝑎𝑚𝑒𝑠

𝑖=1

(18) 

 

Plotting the RMSF per residue provides a quick and easy method to spot which areas of 

the protein are most prone to movement during the simulation.  RMSF values can also be 

compared between different simulations, such as mutations of the same protein, to detect 

differences in protein dynamics. 

 Although efficient and effective, RMSF has some limitations in detecting statistically 

significant dynamics in a MD simulation.  RMSF is attractive in its simplicity, in that it 

provides a single number per residue, reflecting the average fluctuations from an average 

position.  There is some ambiguity in the method for determining the average position, 

particularly when comparing two or more different simulations, and an appropriate 

structural superposition is crucial.  Furthermore, relevant information can be lost in the 
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averaging process.  The RMSF does not provide details on the distribution of movement 

around the average position.  Perhaps most importantly, however, is the difficulty in 

discerning between differences in dynamics of functional relevance to those of random 

fluctuations caused by under sampling. 

 An alternative to comparing RMSF values is to instead calculate differences in 

distributions between proteins or simulations.  If the exact distribution of the distances 

from the average position of a residue were known, the impact of fluctuations from a 

single random sample would be minimized and the noise reduced.  Of course, the reality 

is that these distributions are not known and must be estimated from a single sample.  

The PDF Estimator introduced in Chapter 3 has been shown to be a valuable tool for this 

application. As already demonstrated, this approach has advantages over other density 

estimation methods in that it will not tend to over-fit to a single sample, but instead will 

produce sample-size appropriate estimates.  Additionally, the construction of an 

analytical solution allows for a powerful means of comparing distributions. 

5.1 Probability Density Analysis Applied to Molecular Dynamics Trajectories 

 There are many known methods for comparing either two distributions or comparing 

a random sample to a single distribution.  Three popular methods will be briefly 

introduced and investigated to test the comparison of MD trajectories.  Additionally, 

several non-standard adaptations of existing metrics for distribution comparisons will be 

considered.  In all cases, these measurements are applied to two sets of data per residue 

for comparison.  For each sample set, a corresponding distribution is created using the 

PDF Estimator.  These two distributions can then be compared with one another, or with 

the opposing data sample, to estimate the similarity between the two trajectories.  For 
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demonstration of these techniques, simulations for three TEM-1 and TEM52 Beta-

Lactamase wild type structures and corresponding mutations are used as examples: 1erm, 

1htz, and 1li9.  These initial 100ns simulations were provided by Matthew B. Tsilimigras. 

 Two commonly used methods for quantifying how two distributions diverge from one 

another are the Kullback-Liebler (KL) and Jensen-Shannon (JS) methods.  The KL 

divergence is defined as 

 

𝐾𝐿[𝑞(𝑧), 𝑝(𝑧)] =  ∫ 𝑙𝑛 [
𝑞(𝑧)

𝑝(𝑧)
] 𝑞(𝑧) 𝑑𝑧 (19) 

 

and interpreted as the divergence of p from q.  The probability density q is the expected 

distribution; therefore, the equation is biased towards q when comparing the two.  A 

symmetrized measure, comparing two distributions equally when neither is known to be 

correct, is the Jensen-Shannon (JS) divergence, defined in terms of the KL divergence as 

 

𝐽𝑆(𝑞(𝑧), 𝑝(𝑧)) =
𝐾𝐿[𝑤(𝑧), 𝑝(𝑧)] +  𝐾𝐿[𝑞(𝑧), 𝑞(𝑧)]

2
, (20) 

 

where w(z) is defined as the arithmetic average between p(z) and q(z).  As an alternate 

symmetrized KL adaptation, the geometric mean was also explored, as well as minimum 

and maximum boundaries, each defined respectively as 
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𝐾𝐿𝑎𝑣𝑔(𝑞(𝑧), 𝑝(𝑧)) =  ∫ |𝑙𝑛 [
𝑝(𝑧)

𝑞(𝑧)
]| √𝑝(𝑧)𝑞(𝑧) 𝑑𝑧, (21) 

𝐾𝐿𝑚𝑖𝑛(𝑞(𝑧), 𝑝(𝑧)) = ∫ |𝑙𝑛 [
𝑝(𝑧)

𝑞(𝑧)
]| min[𝑝(𝑧), 𝑞(𝑧)]  𝑑𝑧, (22) 

and 

 

𝐾𝐿𝑚𝑎𝑥(𝑞(𝑧), 𝑝(𝑧)) = ∫ |𝑙𝑛 [
𝑝(𝑧)

𝑞(𝑧)
]| max[𝑝(𝑧), 𝑞(𝑧)]  𝑑𝑧. (23) 

 

 The JS divergence and all versions of the KL divergence are measures of the 

differences between two distributions.  Another commonly used metric, called the one 

sample Kolmogorov-Smirnov (KS) test, measures the probability that a random sample 

follows a given distribution.  The KS test is defined as 

 

𝐾𝑆 = 𝑠𝑢𝑝𝑧|𝐹𝑛(𝑧) − 𝐹(𝑧)| (24) 

 

where 𝐹𝑛(𝑧) is the cumulative distribution function of the known distribution, 𝐹(𝑧) is the 

empirical distribution created from the data sample, and 𝑠𝑢𝑝𝑧 is the supremum function, 

measuring the greatest distance. Two adaptations of the KS metric are constructed for this 

application, which are referred to as KS1 and KS0.   

 Similar to KLavg, KS1 is the geometric average between two KS tests:  the 

comparison between the distribution of data from one trajectory to the sample data of the 
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other, and vice versa.  In this way, neither trajectory is biased over the other.  KS0 uses 

the definition of KS to compare the two distributions directly.  Specifically, 

 

𝐾𝑆0 = 𝑠𝑢𝑝𝑧|𝐹1(𝑧) − 𝐹2(𝑧)|, (25) 

 

where F1 and F2 refer to the two estimated cumulative distribution functions.  Neither 

KS1 nor KS0 are typical applications of the KS test, but additional insight into the 

differences between the distributions can be gained by these comparisons.  In all versions 

of the KS test, the test statistic can be converted into a p-value, providing quantitative 

measures on the probability of the two samples representing the same distribution.  

Finally, one additional measure is calculated, which is simply the integrated sum of 

pointwise differences in the distribution functions as follows: 

 

Δ𝑝(𝑞(𝑧), 𝑝(𝑧)) =  ∫|𝑝(𝑧) − 𝑞(𝑧)|  𝑑𝑧. (26) 

  

 For a qualitative comparison between these measurements, see Figure 26.  The plot in 

Figure 26(a) shows each of the measurements, with the exception of KLmin and KLmax, 

as function of KS1.  The key feature of this plot is the wide scatter of RMSF compared to 

the other methods of comparison, indicating that RMSF does not correlate strongly with 

any other method.  Conversely, the integral sum and KS0 methods are strongly correlated 

with KS1, Figure 26(c), thus indicating they are somewhat redundant measures.  JS, KS, 
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and KLavg, however, show a more interesting non-linear relationship, seen more clearly 

in Figure 26(d).  KLavg is bounded by KLmax and KLmin, as expected, in Figure 26(b).  

Measurements that correlate well do not provide new quantitative information, but these 

figures demonstrate potentially useful orthogonality between RMSF, KLavg, KS1, and 

JS. These measurements will be used moving forward for the analysis of Beta-lactamase 

proteins, whereas redundant measurements will be dropped.  

 Of practical interest is the question of whether comparisons involving the 

distributions provide specific details about the differences in two trajectories that cannot 

be detected with the much simpler and easier to calculate RMSF difference.  Figure 27(a) 

provides evidence of one example where comparing two distributions can highlight 

differences that are hidden from RMSF.  Figure shows RMSF difference and KLavg for a 

small range of residues, comparing 1erm wild type to a single point mutation.  Although 

the two measures show qualitatively similar information, the dotted black line at residue 

197 indicates an area where KL shows a relatively large spike compared to RMSF.  A 

visual explanation of this difference can be seen in Figure 27(b), comparing the 

distributions between the wild type and mutant at residue 197.  In this case, the mutant 

has a slight bimodal nature not seen in the wild type.  Although the deviations from the 

average, captured in a single value with RMSF, are similar, the highly sensitive KL value 

is detecting the fact that the distributions of these deviations are notably different. 
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FIGURE 26: Correlations between distribution measurements 

  

 

 

FIGURE 27: Comparison between RMSF and KL for a specific residue 
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 Although these figures provide a valuable visualization of differences along 

trajectories per residue, it would be helpful to establish a means of defining when a 

residue or, even more importantly, an entire trajectory, diverges from another in a 

statistically significant way.  Attempts to quantify this significance, using a limited set of 

trajectories, have been frustrated by the noise of fluctuations and the apparent lack of 

convergence.  To demonstrate the convergence issues for the initial test case, Root Mean 

Square Deviations (RMSF) for all residues by frame are shown for wild type and mutant 

trajectories in Figures 28(a) and 28(b) for all three structures for a 100ns simulation.  The 

corresponding distributions of the RMSF for each of these simulations are shown in 

Figures 28(c) and 28(d).  The proteins were equilibrated prior to this production run, and 

the plots are arguably leveled off visually for the six trajectories, shown in yellow, 

orange, and blue. The 1erm mutation in figure 28(b) is a striking example of a simulation 

that appears somewhat converged, but then shows dramatically different behavior as the 

simulation continues. The fourth purple line, named 1erm2, represents the last 100ns of a 

500ns simulation for comparison.  Even with the longer 500ns simulation the timescale of 

biological relevance is not achieved.  This conclusion is not atypical, and remains a 

significant challenge concerning MD analysis [145-147].   

 Aside from the convergence issues, the other challenge is to determine meaningful 

differences in residue distributions between two trajectories.  The KS1 test defined in this 

section can be converted to a p-value, making this an ideal candidate for hypothesis 
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testing.  To accomplish this, however, normal fluctuations from one simulation to the 

next must be benchmarked.  Figures 29(a) and 29(c) show examples of 

 

 

FIGURE 28: Convergence of wild type and mutations in beta-lactamase structures 

 

comparing different wild type structures using RMSF and p-values, respectively, for each 

residue.  There are some qualitative similarities between the measurements, but the p-
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values are disproportionately extremely small, indicating a high level of confidence that 

the simulations for the structures are very different. 

 For a clear example, see the histogram of p-values in Figure 29(b).  All trajectories 

were first split in two halves in order of simulation time and compared to one another 

according to the KS1 definition.  These test statistics were converted into p-values for 

each residue and plotted as a histogram for all self-comparisons.  The result was a 

collection of p-values indicating high confidence in rejecting the null hypothesis that 

these sets of data represent the same distribution.  As a control, the same trajectories were 

then shuffled randomly, and the test repeated.  In this case, the resulting p-values failed to 

reject the null hypothesis, concluding there was no difference in the shuffled trajectories.  

This, again, provides strong evidence for lack of convergence in the simulations.  The 

final figure, 29(d), plots the average KL values as the blue curve, per residue, for self-

comparisons of the first 100ns between the wild type and mutant of 1erm.  The orange 

curve represents the averages, per residue, of all four cross-comparison between the 2 

halves of each simulation.  The visual difference between self-comparisons and cross-

comparisons does not appear strikingly significant.  The results of these tests on a very 

limited data set suggest that the statistical significance of mutation differences is 

inconclusive, other than to note that the simulations appear not to be converged on these 

timescales. 
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FIGURE 29: Statistical significance of residue fluctuations using distributions 

 

 

 

5.2 Principal Component Analysis  

 One obvious solution for improving convergence is to run longer simulations.  

However, as Figures 28(a) and (b) demonstrate, there is no guarantee that a longer 

simulation will reach convergence.  Nor is it ever possible to know for certain what may 

occur just beyond the current simulation time.  An alternate explanation for the apparent 

lack of convergence is the presence of irrelevant noise caused by random fluctuations.  

Although these small fluctuations may continue to change as the simulation progresses, 

they do not necessarily represent important functional dynamics.  A common approach to 

filtering out this random noise is through principal component analysis (PCA) [148, 149]. 
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 A full description of the method will not be discussed here but, briefly, PCA reduces 

dimensionality of a system through the diagonalization of a covariance matrix.  The 

statistical technique essentially extracts the collective motions with the highest 

variability, thus is often referred to as essential dynamics.  For proteins specifically, the 

number of degrees of freedom is at least equal to the number of residues, represented by 

the motions of each carbon alpha atom.  As was readily seen in examples with beta-

lactamase proteins in the previous section, the large number of degrees of freedom for 

even a moderately sized protein becomes intractable for statistical analysis. PCA can 

reduce this dimensionality from 263 residues to just a few components representing the 

largest sets of correlated motions.  The work presented here combines the well-

established methods of PCA with the PDF Estimator using the statistical measurements 

developed in the previous section, demonstrating that the noise can be significantly 

reduced. 

 Beta-lactamase proteins remain the focus of this study, with additional structures 

included for comparison.  Furthermore, all trajectories were run for 500ns simulations 

instead of 100ns, to increase the likelihood of convergence.  MD trajectories for this data, 

as well as PCA analyses, were provided by Chris Avery and the test data is summarized 

in Table 2.  The beta-lactamase TEM1 protein is three residue mutations away from 

TEM52, and four mutations away from TEM30. There are six representative crystal 

structures for TEM1, and one each for TEM52 and TEM30.  Mutations are all performed 

computationally and minimized prior to simulation. 

 

TABLE 2: Beta-lactamase proteins simulated for test data 

PDB code Sequence  Protein Point mutations from Tem1 
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1erm Wild type Tem1  

1erm Mutation Tem52 (GLU079LYS) (MET157THR) (GLY213SER) 

1ero Wild type Tem1  

1ero Mutation Tem52 (GLU079LYS) (MET157THR) (GLY213SER) 

1erq Wild type Tem1  

1erq Mutation Tem52 (GLU079LYS) (MET157THR) (GLY213SER) 

1xpb Wild type Tem1  

1xpb Mutation Tem52 (GLU079LYS) (MET157THR) (GLY213SER) 

1jwp Wild type Tem1  

1jwp Mutation Tem52 (GLU079LYS) (MET157THR) (GLY213SER) 

3jyi Wild type  Tem1  

3jyi Mutation Tem52 (GLU079LYS) (MET157THR) (GLY213SER) 

1htz Wild type  Tem52 (LYS079GLU) (THR157MET) (SER213GLY) 

1htz Mutation Tem1  

1lhy Wild type Tem30 (ARG244SER) 

1lyh Mutation Tem1 (ARG244SER) (GLU079LYS) (MET157THR)   
(GLY213SER) 

 

 In ordinary PCA, the collective motions are expressed as eigenvectors that are sort 

ordered such that the largest variations are represented by the first eigenvectors.  A subset 

of eigenvectors is chosen which, cumulatively, represent a significant reduction in 

degrees of freedom, while still maintaining a high percentage of the original data. The 

assumption, although not necessarily accurate, is that the largest motions will represent 

the functioning essence of the protein dynamics.  It is important to remember that PCA 

will accurately extract the largest correlated conformational fluctuations, which 

correspond to slow motions, but there is no guarantee that these large-scale motions 

correspond to biological function.  However, as this is often the case, PCA is often 

successful in extracting relevant information. 

 Addition of increasing eigenvectors typically follows a law of diminishing returns, 

and is often visualized with a scree plot, as in Figure 30(a).  Scree plots are a valuable 

tool for choosing an appropriate subspace to work with. Oftentimes, only the first two 
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eigenvectors are evaluated, reducing the problem to only the very most significant 

motions.  To quickly assess the differences between two proteins, a two-dimensional plot 

of the first two eigenvectors can provide a visual interpretation of the essential 

differences.  Figure 30(b) shows an example of such a plot for the 1erm structure.  Not 

only are the motions clustered differently between TEM1 and TEM52, but there are 

several distinct clusters from within the same trajectories.  Figures 30(c) and (d) show the 

associated distributions for eigenvectors 1 and 2, respectively.  The solid lines represent 

the first half of the trajectory and the dotted lines represent the second half.  The 

differences in the scatter plot for Figure 30(b) match the separated peaks in Figures 30(c) 

and (d), but the distributions will provide a more convenient means of assessing the 

statistical differences. 

 

 

FIGURE 30: Statistical differences in 1ERM mutations for PCA 
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 Unfortunately, traditional PCA analysis has not been able to settle the 

convergence/noise issues with these trajectories that were seen with the distributions per 

residue in the previous section.  Highly significant differences are seen between wild 

types and mutations for all eight beta-lactamase structures.  However, as can be 

determined easily by eye in the example shown in Figure 30, the first and second halves 

of each trajectory are also very different.  As with the previous analysis, differences 

within a single trajectory are as significant as those between structures.  Figure 31 more 

clearly demonstrates the problem.  The average p-values were calculated, based on the 

KS test, for comparisons between wild type and mutated sequence distributions for all 

eight structures listed in Table 2 and plotted on a log scale including 60 eigenvectors.  

The cross comparisons are shown in cyan, and the self-comparisons are in black.  Even 

with five times the simulation time, the PCA method is unable to distinguish between 

sequence mutations and the random fluctuations within a single trajectory.  

 As a further effort to isolate important differences in mutated beta-lactamase protein 

motions, more innovative PCA methods have been considered.  The method yielding the 

most success to date is called displacement PCA.  Traditional PCA is based on the 

variations of cartesian coordinates from the crystal structure, typically using the carbon-

alpha atom as the reference point for a residue.  A critical step in this process is structural 

superposition of the trajectories onto a common coordinate system.  If two frames are 

misaligned, PCA will determine that their coordinates differ even if they are structurally 

identical.  In displacement PCA, rather than correlating the positions, the displacements 

of a residues from one timeframe to the next are measured. This is analogous to 

measuring changes in velocity instead of changes in position. 
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FIGURE 31: Comparison of p-values for all structures 

  

 The results from displacement PCA are dramatically different, as shown in Figure 31.  

First, the scree plot shows a smoother, more gradual significance in eigenvector coverage 

for all structures.  This may be interpreted as being less sensitive to sudden random 

fluctuations in position.  Although more eigenvectors are required to describe the same 

amount of data, it is likely that this provides a more realistic representation of the 

important motions rather than just noisy fluctuations.  Figure 32(b) depicts the first two 

eigenvectors, forming single well-defined clusters, with a clear distinction in the mutated 

structure.  More importantly, however, are the distributions of the first two eigenvectors, 

shown in Figures 32(c) and (d).  Unlike the traditional coordinate PCA, the displacement 
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PCA produces highly similar self-comparisons, indicating the differences in the mutated 

and wild type distributions are true differences in the dynamics between the two 

structures. 

 

 

FIGURE 32: Statistical differences in 1ERM mutations for displacement PCA 

 

 When all eight structures and 60 eigenvectors are considered, a stark contrast is seen 

between the two methods.  Comparing Figure 31 with Figure 33(a) reveals the  

significance of this difference.  With the exception of three outliers in black, the 

distributions for eigenvector in the wild type differ from the mutation with the highest 

possible significance.  The self-comparisons, however, indicate that the distributions of 

motions throughout a single trajectory over time are highly uniform.   Figure 33(b) shows 

only the self-comparisons without the logarithmic scaling.  The horizontal vertical line is 
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the threshold of significance at the 5% level.  Points above this line are those that clearly 

fail to reject the null hypothesis that the motions originate from the same distribution.  

Although more points fall below the line than above, indicating either some residual 

noise or lack of convergence, this is not unexpected with any finite MD simulation.  The 

important point is the contrast between self-comparisons and cross-comparisons in Figure 

32(a). 

 

 

FIGURE 33: P-value comparison for displacement PCA 

 

 In summary, with the combination of a novel application of PCA, a high throughput 

density estimation implementation, and benchmarked statistical measures to quantify 

differences between distributions, the problems revealed in the previous section have 

been solved, or at least substantially mitigated. Using this strategy, the known functional 

differences between mutations of beta-lactamase proteins are clearly demonstrated and 

quantified in terms of significantly different dynamics.  Most importantly, these 

differences are measured against a control by incorporating a self-comparison component 

into this procedure.  The primary goal for developing this methodology was for the study 
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of beta-lactamase proteins. However, the technique has been successfully established and 

generalized, such that it can be applied to any future study involving protein dynamics. 
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CHAPTER 6:  PACKING AND SOLVATION 

 

 

 One of the major design goals for the new DCM using the FAST library is to create a 

residue-specific set of entropy parameters based on local packing.  Specifically, the 

entropy for a given residue would ideally be a function only of the surrounding quantity 

of microvoid and boundary solvent.  The first step in parameterizing entropy is to 

evaluate the distributions of void space surrounding each residue type in native crystal 

structures.  This has been accomplished by an automated process of running the PVA 

against the 108 proteins in the original test data set to calculate the partial void volumes 

for all residues, then invoking the PDF Estimator to find distributions for each residue 

type across all structures.  By evaluating the location relative to the protein surface of 

each residue, local packing trends have been established.  Before discussing these results, 

it is useful to briefly consider other approaches for defining and calculating packing, and 

the challenges involved.  

 A survey of the literature shows that a variety of methods that calculate local packing 

density yield inconsistent results, although most methods report at least somewhat higher 

packing in the core [61, 84, 97, 150-152]. The nature of packing density remains an open 

problem, in large part due to operational definitions. Conceptually, packing density is a 

measure of the percentage of the protein volume that is comprised of the van der Waals 

volume, not including the void volume.  Richards originally estimated a mean protein 

core packing density of near 0.75, and others have verified this estimate across most 

globular proteins [59, 96, 153].  However, these calculations are critically dependent 
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upon the definition of the van der Waals radii. In one recent study focused on a careful 

analysis of appropriately modeling the hydrogen atoms, the packing density restricted to 

the core of globular proteins was found to be 0.56 [154, 155], substantially lower than 

expected. These unexpected results highlight the sensitivity of model parameters and 

variation in definitions. This work uses the Bondi radii[103], and all hydrogen atoms are 

included explicitly in the calculations. 

 Voronoi tessellation is the most common method for computing packing density 

because a local Voronoi cell will quantify the volume immediately surrounding each 

atom, analogous to the partial volume assigned to each atom in the PVA. Unfortunately,  

the Voronoi method has difficulties near the surface of a protein when the solvent is not 

modeled explicitly. In past works on packing density these types of technical problems 

were avoided by limiting analysis to buried residues within the protein core. Further 

attempts to overcome limited applicability to surface residues have been handled in a 

variety of ways, such as imposing boundary conditions to model a solvation shell 

surrounding the protein [59, 156], excluding certain intractable surface volumes from the 

calculations [61, 157, 158], or strategically placing water molecules around the protein 

[159, 160].  

 A different approach,  called occluded surface packing (OSP) [97], computes packing 

density by extending lines from each atom perpendicular to its atomic surface, until the 

lines either intersect with another atomic surface or reach a length equal to the diameter 

of a water molecule. The lengths of these lines are used to determine the packing density. 

On average, OSP values are considerably smaller than typical Voronoi packing estimates 

[97].  This difference arises because OSP includes a boundary layer of solvent 
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surrounding the protein atoms, which lowers the relative density of the protein atoms near 

interfaces. Yet another approach, by Liang et. al., is to apply a separate definition for 

surface packing density that considers pockets along the protein surface [59].  

 Regardless of the method of density calculation, For Voronoi methods, the packing 

density is generally defined as 

 

𝑉𝐷𝑊 𝑉𝑜𝑙𝑢𝑚𝑒

𝑉𝑜𝑟𝑜𝑛𝑜𝑖 𝑉𝑜𝑙𝑢𝑚𝑒
, (27) 

 

where the Voronoi volume encompasses the van der Waals volume of each atom as well 

as the void space in immediate proximity.  Again, the details of the model can critically 

affect the accuracy of the density calculations.  Another recent study [150] improved 

upon previous calculations in two important ways.  First, water molecules were added 

explicitly by running a molecular dynamics simulation, thus creating a realistic boundary 

for the protein surface residues.  Second, the Voronoi method was improved through 

empirically derived weighting parameters to partition space between atoms.  Although 

weighting the atoms unevenly introduces small errors in the Voronoi method, these errors 

are generally considered to be of little significance, whereas the weighting is critical to a 

realistic tessellation when dealing with the range of atom sizes found in proteins [60, 

150] .  With these improvements, residues buried in the core of the protein are found to 

be approximately the same volume as those on the surface.  This result is counter to other 

research that suggests proteins are packed more densely in the core [59, 84, 97]. 

 Considering this recent work, local packing density will be characterized in terms of 

microvoid and boundary volume characteristics and elucidate why variations in local 
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packing occur.  Partial volume calculations provide a means for studying the intrinsic 

packing densities of core residues and surface residues separately.  The explicit 

calculation of microvoid as a separate quantity allows for a consistent definition of 

packing that ignores the existence of solvent molecules altogether.  The following 

definition of packing density is expressed in terms of previously defined partial volumes. 

 

𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑣𝑑𝑊

 𝑣𝑑𝑊 + 𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑 + 𝑐𝑎𝑣𝑖𝑡𝑦
. (28) 

  

Although boundary volume is not included in the packing density formula here, the 

partial boundary volume is used to rank order how deeply buried a residue is within the 

protein according the following criteria. 

 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑢𝑟𝑖𝑒𝑑 =
𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑

𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑 + 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
. (29) 

 

 For completely buried residues with no associated boundary volume the fraction will be 

1, whereas residues very near the surface with have a fraction approaching 0, as the 

boundary will dominate the partial volume.  All residues are ranked for each protein and 

split into two equal groups for comparison.  

 Figure 34 shows distributions for the proteins in the dataset for a probe radius of 

1.4Å, a grid size of 0.5Å, and Ls set to 5.6Å, according to this equation, packing 

distribution among core residues agrees well with Voronoi and OSP estimates. The 

packing of residues near the surface, however, is slightly higher (c.f. Figure 11a), 
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contrary to the predictions of many other methods [97, 158].  OSP surface packing 

densities, are predicted as much lower than core densities, with ranges as low as 0.2 to 

0.4.  Voronoi method estimates vary depending on how the surface is bounded, but 

generally find the surface residues to be slightly less packed.  To gain insight into the 

reason for these differences, alternative definitions including boundary volume are 

considered. 

 As an opposing extreme to the solvent-excluded density calculation, consider the 

following definition of packing density, 

 

𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑣𝑑𝑊

 𝑣𝑑𝑊 + 𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑 + 𝑐𝑎𝑣𝑖𝑡𝑦 + 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
, (30) 

 

shown in Figure 34(b).  The most buried residues have the same average packing density, 

but a dramatic shift occurs in the residues near the surface when boundary volume is 

included.  This is unsurprising, due to the 5.6Å layer of boundary surrounding the 

protein.  The dashed line in Figure 34(b) adheres to the definition of Equation 30 as well, 

but with slightly different parameters.  For comparison with OSP, Ls was set to 2.8Å and 

the distribution shown includes all residues in which each atom has some exposure to 

solvent.  This set of criteria produces surface packing densities in general agreement with 

OSP calculations, which extend out from the surface to the estimated diameter of a water 

molecule. 

 Equation 30 and Figure 34(b) imply an implicit solvent model, where this boundary 

layer is included in the packing calculation.  If water is included explicitly, either as a 

solvation layer or throughout a simulation box based on molecular dynamics simulation, 
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the water molecules themselves would not be considered void space, and therefore not be 

a part of the protein packing density.  The question then becomes whether Equation 30 

can be modified to account for the microvoid in the boundary layer that should be 

assigned as partial volume to the surface residues.  An empirical approach to this 

question is to consider a third definition for packing, as follows. 

 

𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑉𝐷𝑊

 𝑉𝐷𝑊 + 𝑚𝑖𝑐𝑟𝑜𝑣𝑜𝑖𝑑 + 𝑐𝑎𝑣𝑖𝑡𝑦 + (𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 < 𝑐𝑢𝑡𝑜𝑓𝑓)
. (31) 

 

In this calculation, only those boundary grid points within some cutoff distance from the 

closest atom are counted, as a means of modelling only the microvoid and not the solvent 

atom.  Figure 34(c) demonstrates the relative densities of atoms for a probe radius of 

1.4Å, and a cutoff distance of 0.35Å.  These parameters result in very similar 

distributions with equal average densities, such as has been demonstrated with molecular 

dynamics simulations with a finely-tuned Voronoi tessellation [150].     

 It is also interesting to plot the cutoff value that produces uniform densities, as a 

function of probe radius (Figure 34(d)).  The peak cutoff values occur very near, and 

slightly above, the approximate size of a water molecule.  The lower cutoff values for 

smaller probe sizes is somewhat intuitive, as less microvoid is expected for smaller 

probes. The decreasing cutoff for higher probes is less obvious but suggests a geometric 

relationship between the relative sizes of the protein residues and the solvent molecules at 

the surface. Additional simulations were performed with a different definition of vdW 

radii, as well as fixed atom radii, and similarly-shaped cutoff curves were found in all 
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cases, albeit with different peak radii.  This investigation supports the idea that this cutoff 

value is a function of geometry, the details dependent upon the model parameters.   

 

 

FIGURE 34: Packing density distributions 

 

 Related to packing density, Figure 35 shows the relative distributions for van der 

Waals volumes and microvoid volumes based on their location within the protein.  They 

are both normalized by the average recorded volume per residue, thus ensuring the range 

of residue volumes are equitably considered.  It is important to note that the partial 

protein volume is different from either molecular volume or van der Waals volume.  For 

bonded or tightly packed atoms, a single grid point may be within the van der Waals 
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radius of more than one atom but will be only assigned once.  Therefore, the distributions 

in Figure 35(a) are a measurement of the compressibility of the protein, which is shown 

to be very slightly higher for buried residues.  The microvoid volume in Figure 35(b), 

however, can be much more clearly separated between core and surface residues.  

Recognizing that some of the microvoid near the surface would be assigned towards 

solvent molecules if the solvent were modeled explicitly, microvoid along the boundary 

is somewhat inflated. This is precisely the quantity that is counter-balanced by including 

a small amount of boundary volume in Equation 31. A larger dataset would be necessary 

to increase the statistics to determine if these trends hold, but this analysis demonstrates 

the advantage of the grid-based partial volume method in discerning precise volumes in 

space. 

  

 

FIGURE 35: Normalized partial volumes distributions for protein and microvoid. 

 

 The protein length is another factor affecting packing density that has been 

demonstrated numerous times in the literature [59, 97, 154, 161].  Interestingly, there 

remains disagreement as to the nature of this dependence. Applying Equation 28 to the 
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average total protein volumes for all structures in our data set, packing density is found to 

be smaller for larger proteins (Figure 36), in agreement with densities reported using 

Voronoi methods. If the definition includes the boundary volume as in Equation 30, the 

length dependence reverses, in agreement with OSP.  Finally, by applying Equation 31 

with a cutoff of 0.35Å, uniform packing density is found across all protein lengths. This 

difference can be explained by considering the relative increased impact of surface area, 

where solvent is most prevalent, for small proteins.  The packing densities in Figure 36 

are averages calculated across 300 rotations per protein using a probe size of 1.4A.  All 

comparisons are qualitative, as exact results are dependent upon the test data set (ie, 

protein length) and the van der Waals radii for each protein atom.   

 

 

FIGURE 36: Packing densities as a function of number of protein residues 
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 The power of the partial volume calculations in the PVA is that all volume space is 

mapped out explicitly, providing accuracy and flexibility.  This chapter has demonstrated 

agreement with prominent and conflicting results in the literature, showing that the 

differences are caused by the ambiguity in the definition of packing density.  The 

parameterization of the cutoff parameter in Equation 31 can be tuned to mimic time-

consuming MD simulations extremely quickly. The PVA therefore provides detailed 

volume information that allows packing to be evaluated according to changing criteria for 

a better understanding of how void space is distributed.   
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CHAPTER 7:  CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Summary of Conclusions 

 The PDF Estimator and the Protein Void Analyzer have been independently designed, 

implemented, and applied to a variety of applications in the field of structural 

bioinformatics.  Both applications demonstrate novel approaches to existing problems 

and possess unique benefits over alternative solutions.  The PDF Estimator out-performs 

the standard KDE method for many known distributions and does so without requiring 

advanced user techniques or expertise.  The method is computationally efficient and has 

been optimized in C++ for performance competitive with other density estimators.  The 

code is written in a modern object-oriented style, allowing for customized flexibility 

while maintaining a single class library.  The PDF Estimator has been distributed as a 

stand-alone product upon request to researchers outside the group and used extensively 

within the Bio-Molecular Physics Group (BMPG) for many projects. The class library 

has also been integrated into the popular statistics software, R, and submitted to CRAN as 

a downloadable package for R users. For a more platform-independent option, an 

identical Java code is also maintained and distributed. 

 The Protein Void Analyzer, also written as a C++ class library, is a highly optimized, 

memory-efficient method for calculating protein volume based on the Hoshen-Kopelman 

algorithm.  In addition to efficiency, several key features of the PVA set it apart from 

other volume calculation methods. First, the method is easily customizable across a range 
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of parameters, including van der Waals definitions, boundary layer, probe size, and 

resolution, allowing seamless comparison to other published results.  Second, the 

averaging over imposed systematic fluctuations of the probe size coupled with grid 

orientations represents the inherent dynamic nature of proteins as they naturally function.  

Additionally, the spring model employed to distinguish void types intentionally 

introduces further ambiguity in the precise positions and boundaries of the protein atoms.  

The combination of these features models the dynamic motion of a protein without the 

computational cost of a molecular dynamics simulation. 

 A third important feature of the PVA, not found in other programs, is the careful 

mapping of all types of protein volume, including the novel definition of microvoid as a 

separate calculation.  Microvoid volumes are specifically important in the applications of 

percolation and packing density.  The percolation of microvoid through a protein as a 

function of probe size has been shown to have approximately universal characteristics, 

consistent with three-dimension percolation experiments.  The probability of percolation, 

which is not strictly dependent on dimensionality according to percolation theory, is the 

same across a diverse set of 108 globular proteins within a very narrow tolerance, 

suggesting common packing distributions for all proteins.  Exceptions outside these 

tolerances are found in highly atypical proteins. 

 Microvoid distribution is also instrumental in the closely related analysis of packing 

density.  Proteins are highly compact systems within their functional native state, and the 

nature and distribution of this packing has long been considered an important area of 

study in the field of structural biology.  Quantitatively, density calculations are highly 

dependent on van der Waals radii and probe size.  Qualitatively, these same calculations 
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are also dependent upon definitions of packing.  Definitions vary according to how 

solvation is considered, but an exact calculation requires an explicit solvation model with 

a molecular dynamics simulation. In most models, including the PVA, solvation is 

implicit and therefore inexact.  However, the precise partial volume calculations in the 

all-atom model allow the PVA to be parameterized according to the results of careful 

simulations of explicit solvent.  This parameterization has been completed for a probe 

size of 1.4Å, such that a single cutoff value can model the solvent without the time 

investment of a long simulation. 

 Despite the high cost, molecular dynamics remains the most effective way to study 

protein dynamics.  MD is often employed to demonstrate markedly different dynamics 

between small mutations that control functionality.  Two ongoing challenges in the field 

of molecular dynamics are convergence and statistical significance.  In the former, it is 

extremely difficult, in fact likely impossible, to determine if a protein system has been 

equilibrated into the low energy state.  In the latter, methods are needed to quantify the 

important differences between two simulations.  Both challenges are frustrated by the 

presence of noise within the fluctuations. 

 The PDF Estimator, together with principal component analysis, are applied towards 

both problems in new ways.  The class library comprising the PDF Estimator was 

incorporated into a tool to analyze a pair of trajectories by comparing distributions at a 

residue level.  Distributions were compared using a variety of known statistical methods 

and applied to beta-lactamase proteins as a test case.  These attempts demonstrated that 

the statistical difference between mutations was indistinguishable from differences within 

a single trajectory, indicating the simulations may not have reached convergence.  A 
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similar analysis using traditional PCA to isolate important large-scale dynamics 

confirmed these results.  However, a newly developed variation of PCA, called 

displacement PCA, captured the essential dynamics of the differences in mutations, while 

reducing the noise characterized by irrelevant fluctuations. 

7.2 Peer Reviewed Publications  

• Farmer, J., Fareeha Kanwal, Nikita Nikulsin, Matthew C. B. Tsilimigras, and 

Donald J. Jacobs (2017). "Statistical Measures to Quantify Similarity between 

Molecular Dynamics Simulation Trajectories". entropy 19(12): 646. 

• Farmer, J. and D. Jacobs (2018). "High throughput nonparametric probability 

density estimation". PloS one 13(5): e0196937. 

• Farmer, J., S. Green, and D. Jacobs (2018). “Distribution of volume, microvoid 

percolation, and packing density in globular proteins”. (Submitted October 

22nd to Physics Review E.) 

• Avery, C., J. Farmer, M. Tsilimigras, C. David, D. Livesay, D. Jacobs (2018).  

“Characterizing dynamical differences between TEM-1 and TEM-52 beta-

lactamases” (Manuscript in preparation, planned submission to Proteins, 

December, 2018). 

7.3 Additional Contributions 

• Green, Sheridan B., Jenny Farmer, and Donald J. Jacobs . “Universal Scaling of 

Cavity Volume Pathways in Globular Proteins”.  Biophysical Society Annual 

Meeting, Los Angeles, CA, February 7-11-2016.  Presented by Jenny Farmer 
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• Green, Sheridan B., Jenny Farmer, and Donald J. Jacobs .  “Analysis of Cavity 

Volumes in Proteins Using Percolation Theory”.  American Physical Society, 

March Meeting, Baltimore, MD, March 9-14-2016.  Presented by Sheridan Green. 

• Farmer, J. and D. J. Jacobs (2016). "Nonparametric Maximum Entropy 

Probability Density Estimation". arXiv.org: 1606.08861. 

• Farmer, J. and D. Jacobs (2018). PDF Estimator as an integrated package for 

R statistical software. Submitted to CRAN October 2018. 

PDFEstimator::estimatePDF() 

• Farmer, J. Sheridan Green, and Donald Jacobs (2016). "Distribution of volume, 

microvoid percolation, and packing density in globular proteins". arXiv.org: 

1810.08745 

• Avery, C., J. Farmer, M. Tsilimigras, C. David, D. Livesay, D. Jacobs (2019).  

“Characterizing dynamical differences between TEM-1 and TEM-52 beta-

lactamases”.   Biophysical Society Annual Meeting, Baltimore, MD March 2-6, 

(2016).  To be presented by Chris Avery. 

7.4 Future and Ongoing Related Work 

 Tangential to the primary focus on methods and direct applications presented in this 

thesis, multiple relevant side-projects have been investigated by current and past 

members in the research lab.  Additionally, discussions amongst the group have inspired 

exciting possibilities in terms of both extensions and improvements to the computational 

techniques, as well as new opportunities to apply them.  This section aims to briefly 

outline some of the more promising avenues of research pursuit, both future and in 

progress. 
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7.4.1 Publications in Progress 

• Rigorous comparison of PDF Estimator with other nonparametric methods, with 

Layton Hall, Layton, Micheal Grabchack, and Donald Jacobs.  The comparative 

methods for this publication, currently in preparation, are kernel density and 

Akaike/Bayesian criteria.  A series of bimodal distributions have been generated 

and estimated using existing methods, and a protocol of systematic comparison 

has been developed. 

• PDF Estimator parallelization, with Zach Merino, Micheal Grabchack, and 

Donald Jacobs.  This potential publication will include a much broader range of 

density estimators and distributions for comparison, along with piloted 

enhancements for parallelization of the PDF Estimator.  The R-packaged plugin 

for the PDF Estimator will be instrumental in this research initially, and the new 

parallelized version will also be packaged and uploaded as an R plugin. 

7.4.2 Enhancements to PVA 

 The following list is a brief summary, in order of importance, of a few significant 

improvements that can be made immediately to the PVA for improved performance, 

functionality, and usability. 

• Publication of software method as it currently exists, alongside distributing PVA 

on public forum such as GitHub. 

• Integrated surface area calculations through an extended application of the HK 

clustering algorithm. 

• Spring model enhancements and optimizations for greater accuracy and 

performance. 
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• Modify code to handle periodic boundary conditions within a cubic box, 

applicable to any molecular system.  The generalization to other nonprotein 

materials, including the features of percolation and altering probe radius, is 

needed for specific ongoing research projects and would have extensive 

applications in materials science.  The required modifications would be relatively 

simple to accommodate. 

7.4.3 Decoy Detection and Structure Prediction 

 The analysis of 108 proteins with the PVA has highlighted many characteristics that 

are very closely similar across this data set.  Specifically, peak cavity volumes and 

percolation thresholds as a function of probe size, packing density distribution throughout 

the protein, and percolation scaling exponents.  These results suggest such measurements 

may be common to most globular proteins and could provide a benchmark for successful 

structure prediction and protein design.   If the basis for these similarities is a function 

simply of geometry and packing, this is interesting.  However, if there is a biological 

basis dictating these traits, this may be of greater impact in detecting amino acid 

sequences capable of forming stable structures.  If the PVA can distinguish between 

stable, functional proteins found in nature, and those that have been improperly 

constructed through protein structure prediction software, then this method could be used 

as a tool to filter out structures that are considered unviable.  

 Testing this hypothesis requires a much greater test set against many more known 

crystal structures to determine if the packing and percolation characteristics found thus 

far continue to hold for a large data set, and to quantify outliers and exceptions.  A test 

data set has been created by Dr. Azhagiya Singam using a the decoy detection program 
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3D-Robot [162] containing thousands of know structures for the protein data bank with 

corresponding decoy structures containing improper folds with the same sequence.  

Running the PVA against both sets should provide sufficient test for comparison. 

7.3.4 PCA Applied to Protein Volume Fluctuations 

 The same techniques from Chapter 5 can be applied to partial volume changes in an 

MD trajectory.  A preliminary study was conducted by running the PVA against the 

frames of a 100ns trajectory in the beta-lactamase protein data set and performing PCA 

analysis on the results.  Initially, this did not produce interesting results in terms of 

extracting meaningful or practical information from this data.  However, at the time of 

this analysis, extensive MD simulation data was not available and only a single structure 

and its mutant were considered. Currently, 500ms trajectories for eight structures with 

corresponding mutant structures are available.  A similar comparison using displacement 

PCA will be conducted for all simulations, instead analyzing changes in volume as 

calculated by the PVA.  If results prove interesting, this will be published separately. 

7.4.4. Hydrophobicity  

 The tendency for hydrophobic residues to aggregate in the core of a protein while 

hydrophilic residues form bonds with solvent on the surface, collectively called the 

hydrophobic effect, has long been considered the major driving force in protein folding, 

which occurs in previously unexplained timescales.  Ever since this mechanism was 

proposed, there have been many increasingly refined experimental efforts to quantify this 

effect by defining a hydrophobicity scale [71, 151, 163-168].  These experiments attempt 

to measure the transfer free energy change of moving representative molecules from 

polar to non-polar environments.  Computational statistical mechanics approaches for 
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determining each residues tendency towards water have also been developed by 

calculating the SASA of residues typical in folded proteins [95, 169-171].   

 In these computational methods, the transfer free energy from buried to exposed is 

described as follows: 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 =  −𝑅𝑇𝑙𝑛 [
𝑝(𝑏)

𝑝(𝑠)
] (20) 

Where p(b) and p(s) are the probabilities for a given residue to be buried or exposed, 

respectively, and are empirically determined by calculating the solvent accessible surface 

area in crystal structures.  The choice for determining whether a residue is buried is 

somewhat arbitrary but is often defined as residues with 5% or less surface area exposed.  

Several such scales have been defined, and correlate well with physical experiments, but 

subtle differences remain between all hydrophobicity scales, regardless of how they were 

derived (experimentally and/or computationally).  Discrepancies may be due to 

insufficient sampling, local environmental variations, temperature dependence, and 

residue length dependence [95, 165, 171] . 

 Following the statistical mechanical approach for SASA, a similar method can be 

implemented for the partial volume calculations described in section 2.5.4.  Table 1 is a 

preliminary example from the 120-protein test data set, ranking each residue type 

according to its associated partial boundary solvent.  This table was generated by 

counting the boundary solvent grid points surrounding each residue for all 120 proteins, 

as explained in the previous section, and calculating the sum by residue type.  The sums 

were then normalized by the total counts of each residue type found and listed in 

decreasing order.  The result is a relative boundary volume scale that can be used as an 

alternative to relative accessible surface area. 
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TABLE 3: Preliminary hydrophobic tendencies based on partial volumes 

Residue 

Type 

Calculated 

Hydrophobicity 

 Residue 

Type 

Calculated 

Hydrophobicity 

Isoleucine 0.502972652  Threonine 0.193612774 

Leucine 0.466221852  Tyrosine 0.192604006 

Methionine 0.460264901  Serine 0.15426009 

Valine 0.455882353  Proline 0.13018598 

Phenylalanine 0.420979021  Asparagine 0.097643098 

Cysteine 0.41091954  Aspartate 0.092870544 

Alanine 0.331130205  Glutamine 0.072780204 

Tryptophan 0.277777778  Arginine 0.057755776 

Glycine 0.248666667  Glutamate 0.057432432 

Histidine 0.195266272  Lysine 0.012727273 

 

  

 A recent review article on hydrophobicity scales reported correlations between five 

experimental scales and three different computational scales derived using SASA [95].  

Table 2 reports the R2 values comparing all the experimental scales with one another, and 

with each of the computational scales.  Some correlate quite well, others very poorly.  

The column and row labeled PVA lists the correlations between all these scales, and the 

partial boundary volume values from Table 1, showing comparable R2 values, suggesting 

that partial volumes are a good indicator of hydrophobicity.  It is not known if the partial 

volume technique will produce a hydrophobicity scale of transfer free energies that is 

superior to that of SASA calculations, but there has been recent evidence arguing that 

surface area is not an ideal indicator of hydrophobic free energies [172].  Thus, this 

alternative method is worth investigation. 
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TABLE 4: Hydrophobicity scale comparison by pairwise correlation coefficients (R2) 

 PVA EXP1 EXP2 EXP3 EXP4 EXP5 SASA1 SASA2 SASA3 

PVA 
 0.694 0.7767 0.7095 0.561 0.6861 0.3984 0.8823 0.8463 

EXP1 0.694  0.8816 0.4664 0.3796 0.9388 0.6078 0.7597 0.5026 

EXP2 
0.7767 0.8816  0.7393 0.5955 0.9576 0.4397 0.8081 0.7071 

EXP3 0.7095 0.4664 0.7393  0.9015 0.5419 0.2289 0.7233 0.8708 

EXP4 
0.561 0.3796 0.5955 0.9015  0.4092 0.2313 0.6276 0.7624 

EXP5 0.6861 0.9388 0.9576 0.5419 0.4092  0.4704 0.7197 0.5448 

SASA1 0.3984 0.6078 0.4397 0.2289 0.2313 0.4704  0.4828 0.2704 

SASA2 0.8823 0.7597 0.8081 0.7233 0.6276 0.7197 0.4828  0.8733 

SASA3 0.8463 0.5026 0.7071 0.8708 0.7624 0.5448 0.2704 0.8733  
 

         
average 0.694 0.6538 0.7382 0.6477 0.5585 0.6585 0.3912 0.7346 0.6722 

 

 

7.4.5 FAST 

 The inspiration driving the development of the PDF Estimator and the PVA 

originated from the design goals for a next-generation DCM.  The unanticipated 

applications for these programs, outside of this original vision, have proven to be 

valuable contributions on their own, and have spawned their own tangential research 

goals that are currently being actively pursued.  However, the initial requirements for 

accurate density information and the mechanism for entropy parameterization based on 

microvoid have been completed and added to FAST library code, allowing for the next 

step in development.  The design and research committed to the FAST library has 

continued as well and aspire towards even broader impact in the future.  
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