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ABSTRACT

YI LIU. Modeling vector time series data.
(Under the direction of DR. JIANCHENG JIANG)

In this dissertation, firstly, I study spatial quantile regression estimation of mul-

tivariate threshold time series models. Asymptotic normality of the proposed spatial

quantile regression estimator is established. Simulations and a real example are used

to evaluate the performance of the proposed estimator. Secondly, I study the multi-

variate time-varying coefficient models for time series data. An explicit solution of

the coefficient estimators is given in the paper. Furthermore, I propose generalized

likelihood ratio test for the multivariate time-varying coefficient models, my aim is

to construct some test statistics to test whether the coefficients are constants or

of some specific parametric functional for the time-varying coefficient model. The

asymptotic null distribution of the proposed test statistics is presented and shown

to be independent of the nuisance parameters. Simulation results for the power of

the test and a real example are reported at the end of this dissertation.
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CHAPTER 1: INTRODUCTION

Vector time series data are frequently observed in practice. A real example was

given in Tsay(1998) for analysis of two daily river flow series of Iceland, where a

bivariate thresholding AR(15) model was successfully used. In financial markets,

multiple time series are usually correlated. For instance, the yields of three-month,

six-month and twelve-month treasury bills (see Example 1.3 in Fan and Yao, 2003),

they are highly correlated. When analyzing several interdependent time series, it is

natural to consider them as a single vector time series, for example, using the linear

or thresholding vector autoregressive model where the current value of the vector

time series depends on its past.

As nonlinear features widely exist in time series(Tong and Lim,1980;Tong,1983,

1990;Chen and Tsay,1993;Chen,Liu and Tsay, 1995;Yao and Tong, 1994,1995; Tsay

1989,1998;Fan and Yao,2003), it is important to model the nonlinear features us-

ing nonparametric vector time series models, which requires little prior informa-

tion on the model structure and give some insights into further parametric fit-

ting. However, a full nonparametric method suffers from ”curse of dimensional-

ity” in multivariate cases when the dimension is high. These motivate us to pro-

pose a multivariate time-varying coefficient regression model for modeling vector

time series data. The newly proposed model releases some restrictions on the

model structure while avoiding the ”curse of dimensionality”. Many works have

been contributed to modeling nonlinearity in univariate time series using paramet-

ric methods(Tong,1990,1995). Successful examples include, but are not limited to,

the threshold AR models(Tong,1983;Tsay,1989), the ARCH/GARCH models (En-
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gle,1982; Bollerslev, 1986),and their variants such as the double threshold ARCH

model(Li and Li,1996; Hui and Jiang,2005). For parametric modeling of vector

time series data, there are many extensions to the above univariate models as well,

which gives the well-known vector AR, ARCH and GARCH models(for overview, see

Bauwens et al.,2006). Nevertheless, there are infinitely many nonlinear parametric

forms needing to explore. Nonparametric techniques give an alternative and some

useful insights to nonlinear parametric modeling(Fan and Yao,2003). Therefore, its

better for us to model nonlinearity through the nonparametric method for vector

time series data.

There is relatively much less work available in the literature for vector time

series data since existing nonparametric regression techniques mainly focus on uni-

variate response models. This is partially due to the ”curse of dimensionality” and

the complexity of smoothing vector time series data. Generally, for modeling vec-

tor time series data,we prefer multivariate models than univariate models because

univariate models for each time series can not capture the correlation structure of

different time series, so they may be inefficient. Moreover, multivariate models pro-

vide a convenient tool for modeling interdependencies among multiple time series

and hence for simultaneously analyzing feedback effects. Recently Li and Genton

(2009) proposed a single-index additive VAR model with constant conditional vari-

ance of the error. Motivated by analyzing the aforementioned interest rates, we fit

the vector time series with exogenous variables by using multivariate time-varying

coefficient models.

1.1 Multivariate Threshold Time Series Model

We begin with the well-known multivariate threshold model(Tsay,1998) to in-

troduce our multivariate nonparametric time series model. Consider at first a k-

dimensional time series yi = (y1i, y2i, ..., yki)
′ and v-dimensional exogenous time
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series xi = (x1i, x2i, ..., xvi)
′, where i = 1, 2, ..., n. Let −∞ = r0 < r1 < r2 < ... <

rs = ∞. The multivariate threshold model with threshold variable zi and delay d

formulates yi by

yi = cj +

p∑
t=1

α
(j)
t yi−t +

q∑
t=1

β
(j)
t xi−t + e

(j)
i , if rj−1 < zi−d < rj, (1.1)

where j = 1, 2...s, p and q are nonnegative integers (see Tsay 1998). The innovations

satisfy e
(j)
i = γ

1/2
j ai, where γ

1/2
j are symmetric positive definite matrices and ai is a

sequence of serially uncorrelated random vectors with mean 0 and identity covari-

ance matrix Ik. The threshold variable zi and exogenous time series xi are assumed

to be strictly stationary with continuous distributions. Model (1.1) is piecewise lin-

ear in the threshold space zi−d, but it is nonlinear when s > 1(Tsay,1998). These

motivate us to work on the spatial QR estimation for the multivariate threshold time

series model proposed by Tsay(1998). This model has nice features: It characterizes

different regression relationships at different regions of the lagged variable, a non-

linear regression relationship. As a natural extension to Tong’s threshold model(see

Tong and Lim,1980), the double-threshold structure allow us to capture nonlinear

phenomena such as asymmetric cycles, jump resonance and amplitude frequency

dependence. No restriction on the form of the error distribution enables robust in-

ference for the model. To the best of my knowledge, there is little solid work about

the spatial QR for vector time series data in the literature. The proposed spatial QR

methodology is vary useful in detecting the nonlinear dependence on the covariates

in the lower and upper tails, as well as in the central, of the vector time series.

1.2 Multivariate Time-varying Coefficient Time Series Model

In practice, there are many successful examples applying multivariate paramet-

ric models such as (1.1). See Tsay(1998) and the references therein. However, the

assumption for the threshold model (1.1) that the coefficients are usually evolving
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or changing slowly through time and the coefficient functions may vary smoothly.

This reveals that the coefficients might be functions of time. As a matter of fact,

model (1.1) is a special case when the coefficients are piecewise constant functions

of zt−d. This motivates us to propose the multivariate time-varying coefficient model:

yt = c(t/T ) +

p∑
i=1

αi(t/T )yt−i +

q∑
j=1

βj(t/T )xt−j + εt, t = 1, ..., T. (1.2)

where yt is k× 1 vector, xt is v× 1 vector. c(�) is a k× 1 vector, αi is k× k smooth

matrix and βj is k × v smooth matrix. The innovations satisfy εt = γ∗t at, where

γ∗t are symmetric positive definite matrices and at is a sequence of uncorrelated

random vectors with mean zero and convariance matrix Ik. For model (1.2), we

are interested in estimating the regression part. In addition, I develop a new test

procedure and propose new test statistics to perform simultaneous inference about

the parameters.

1.3 Generalized Likelihood Ratios

It is well known that likelihood ratio theory is one of the most important statistic

results and it develops a useful principle that generally applicable to most parametric

hypothesis problems. A key fundamental property that contributes very significantly

to the success of the maximum likelihood ratio tests is that their asymptotic null

distribution are independent of nuisance parameters. Many computationally inten-

sive nonparametric techniques and theories have been rapidly developed to exploit

hidden structures and to reduce modelling biases of traditional parametric methods.

Methods such as local linear fitting, local polynomial fitting, orthogonal series ex-

pansions and spline approximations, also dimensionality reduction techniques have

been studied in great details in many statistical contexts. Yet, there are no gener-

ally applicable methods available for the inferences in multivariate nonparametric

models. Owen(1988) extending the scope of the likelihood inferences through the



5

empirical likelihood which is applicable to a class of nonparametric functionals. Usu-

ally, these functionals are smooth that they can be estimated at root-n rate. See also

Owen (1990), Hall and Owen (1993),Chen and Qin (1993), Li, Hollander, Mckeague

and Yang(1996) for applications of the empirical likelihood. A further extension of

the empirical likelihood, called ”random-sieve likelihood”, can be found in Shen, Shi

and Wong(1999). The random-sieve likelihood allows one to handle the situations

where observable variables and stochastic errors are not necessarily one-on-one. In

addition, various efforts have been put on nonparametric hypothesis testing. For

instance, see, Bickel and Ritov (1992),Fan(1996), Fan and Li(1996), Kallenberg and

Ledwina (1997). However, most of the studies focus only on the one-dimensional

nonparametric regression problem. It is difficult to extend them to multivariate

semiparametric and nonparametric models. In order to derive a generally applica-

ble testing procedure for multivariate semiparametric and nonparametric models.

Fan, Zhang and Zhang (2001) proposed generalized likelihood ratio tests. The work

is motivated by the fact that the nonparametric maximum likelihood ratio test may

not exist in many nonparametric problems. Generalized likelihood ratio statistics,

obtained by replacing unknown functions by reasonable nonparametric estimators

have several nice properties. For instance additive models (Fan and Jiang 2005):

Y = m1(X1) + � � �+mp(Xp) + ε (1.3)

or time-varying coefficient models(Dr Hoover 1998):

Y = a1(t/T )X1 + � � �+ ap(t/T )Xp + ε (1.4)

where X1, � � �,Xp are covariates. One would ask if certain parametric forms such as

linear models fit the data adequately, after fitting the model. This means testing
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if each additive component is linear in the additive model (1.3) or if the coefficient

functions in (1.4) are really time-varying or not.

Let us begin with a simple nonparametric regression model to motivate the gen-

eralized likelihood ratio statistics. Suppose we have n sample data {Xi, Yi} from

the nonparametric regression model, for i = 1, ...n,

Yi = m(Xi) + εi (1.5)

where {εi} are a sequence of i.i.d. random variables from N(0, σ2) and Xi has a

density f with support [0, 1]. Denote the parameter space is

Fk = {m ∈ L2[0, 1] :

∫
m(k)(x)2dx 6 C} (1.6)

for a given C. Consider the testing problem:

H0 : m(x) = α0 + α1x←→ H1 : m(x) 6= α0 + α1x (1.7)

Hence, the conditional log-likelihood function is: ln(m) = −nlog(
√

2πσ)− 1

2σ2

∑n
i=1(Yi−

m(Xi))
2. Let (α̂0, α̂1) be the maximum likelihood estimator (MLE) under H0, and

m̂MLE(�) be the MLE under the full model: min
∑n

i=1(Yi − m(Xi))
2, subject to∫

m(k)(x)2dx 6 C. The resulting estimator m̂MLE is a smoothing spline. Define the

residual sum of squares RSS0 and RSS1 as follows:

RSS0 =
n∑
i=1

(Yi − α̂0 − α̂1Xi)
2, RSS1 =

n∑
i=1

(Yi − m̂MLE(Xi))
2. (1.8)

So it is easy to see that the logarithm of the conditional maximum likelihood ratio

statistic for the problem (1.7) is given by:
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λn = ln(m̂MLE)− ln(H0) =
n

2
log

RSS0

RSS1

≈ n

2

RSS0 −RSS1

RSS1

Technically, the maximum likelihood ratio test is not convenient to manipulate

and is either not optimal due to restriction of choosing smoothing parameters. In

general, MLEs under nonparametric regression models are hard to obtain. There-

fore, we replace the maximum likelihood estimator under the alternative nonpara-

metric model by any reasonable nonparametric estimator, giving the generalized

likelihood ratio

λn = ln(H1)− ln(H0) (1.9)

Here ln(H1) is the likelihood with unknown regression function replaced by a reason-

able nonparametric regression estimator. We can find similar ideas in Severini and

Wong (1992) for construction of semi-parametric efficient estimators. We notice that

the nonparametric estimator does not have to belong to Fk. Thus the assumption

that the constant C in (1.6) is given can be removed. The above generalized likeli-

hood method can be readily be applied to other statistical methods such as additive

models, varying-coefficient models, and any nonparametric regression model with

a parametric regression model with a parametric error distribution. Using suitable

nonparametric estimators, we need to compute the likelihood function under null

and alternative models. The generalized likelihood ratio tests are expected to be

powerful with appropriate choice of smoothing parameters.

1.4 Outline of the Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, consistency and asymptotic normality of our estimator are es-

tablished, and an algorithm is suggested to compute the proposed estimates. The

performance of our estimator is evaluated via finite sample simulations. A real ex-

ample is presented to illustrate the use of the proposed methodology.
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In Chapter 3, I discuss the estimation of coefficients in a time-varying coeffi-

cient multivariate regression model by using local linear technique and then derive

the explicit expression of the proposed estimator. Then, I derive the asymptotic

theory for the nonparametric estimator. At last, I propose the new GLR test for

the multivariate time-varying coefficient model to test if varying coefficients for the

time-varying nonparametric regression model are some known constants or of some

specific time-varying functional forms. The test statistics are constructed based on

the comparison of the likelihood under null and alternative hypotheses respectively.

I derive the asymptotic distributions of the test statistic under null and alternative

hypotheses. In addition, Monte Carlo simulation is done to show the finite sample

performance of the proposed methods, power curves are presented for different error

distributions and different sample sizes. Finally an real example of monthly US

interest rate is given for the application of the methodology.

Chapter 4 concludes the dissertation. The detailed proofs of the main results

in each chapter are relegated to the last section of the corresponding chapter.



CHAPTER 2: MULTIVARIATE THRESHOLD TIME SERIES MODEL

There is a rich literature on quantile regression (QR) in the analysis of time

series, examples include but not limit to Koul and Saleh (1995), Davis and Dunsmuir

(1997), Jiang, Zhao and Hui (2001), Peng and Yao (2003), etc. However, all of them

are restricted to univariate cases. For vector time series, to the best of our knowledge,

there is little solid mathematical theory on QR in the literature, although much work

has been contributed using the maximum likelihood or least squares estimation. See

for example Bollerslev (1990), Engle and Kroner (1995), Chen and Tsay (1993), Pan

and Yao (2008), and the references therein. A main difficulty with the multivariate

QR is about how to define a multivariate quantile, and an additional difficulty is to

deal with the aurocorrelation in vector time series in the QR setting.

Based on the L1-norm, Chaudhuri (1996) and Koltchinskii (1997) proposed a

compelling form of multivariate quantiles, the spatial quantiles, as a certain form

of generalization of the univariate case.This kind of multivariate quantile provides

an appealing multivariate extension of univariate quantiles and generates a useful

volume functional based on spatial central regions of increasing size. As stressed in

Sering (2004), it also has some appealing features: the equivariance and outlyingness

with respect to shift, orthogonal, and homogeneous scale transformations. These

motivate us to work on the spatial QR estimation for the multivariate threshold

time series model proposed by Tsay (1998).

2.1 Spatial QR for Multivariate Threshold Time Series Model

Recall for model (1.1), consider at first a k-dimensional time series yi = (y1i, y2i,

..., yki)
′ and v-dimensional exogenous time series xi = (x1i, x2i, ..., xvi)

′, where i =
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1, 2, ..., n. Let −∞ = r0 < r1 < r2 < ... < rs = ∞. The multivariate threshold

model with threshold variable zi and delay d formulates yi by

yi = cj +

p∑
t=1

α
(j)
t yi−t +

q∑
t=1

β
(j)
t xi−t + e

(j)
i (2.1)

if rj−1 < zi−d < rj, where j = 1, 2...s, p and q are nonnegative integers (see Tsay

1998). The innovations satisfy e
(j)
i = γ

1/2
j ai, where γ

1/2
j are symmetric positive

definite matrices and ai is a sequence of serially uncorrelated random vectors with

mean 0 and identity covariance matrix Ik. The threshold variable zi and exogenous

time series xi are assumed to be strictly stationary with continuous distributions.

Let Ii,j = I(rj−1 < zi−d ≤ rj), Xi = vec(1,yi−1, ...,yi−p,xi−1, ...,xi−q), Zi =

(Ii1, Ii2, ..., Iis)
′ ⊗ Xi, ei =

∑s
j=1 Ii,je

(j)
i , Φj = (cj, α

(j)
1 , ..., α

(j)
p , β

(j)
1 , ..., β

(j)
q ), and

Φ = (Φ1,Φ2, ...,Φs). Then Φ is a k×s(1+kp+vq) matrix, and model (2.1) becomes

yi = ΦZi + ei (2.2)

Following Chaudhuri (1996), for any u in the unit ball Bk centered at zero in Rk,

we define the u-th spatial QR estimators of the parameters by

(Φ̂n(u), êu) = arg min
Φ,eu

n∑
i=s∗+1

ρu(yi −ΦZi − eu), (2.3)

where s∗ = max(p, q), ρu(t) = ‖t‖ + uT t, and eu is the u-th quantile of e. Then

Φ̂n(u)Zi + êu is the spatial QR estimate of the u-th quantile of yi conditional on

Zi, and Φ̂n(u) is the spatial QR estimate of Φ.

2.2 Asymptotic Normality

Let us begin with introducing some notations and definitions. For any t ∈ Rk,

define ϕu(t) = t/‖t‖ + u for t 6= 0 and ϕu(0) = u. Let Ψ(t) denote the k × k
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Hessian matrix, so for t 6= 0,

Ψ(t) = ‖t‖−1(Ik − ttT‖t‖−2),

where Ik is the k× k identity matrix. We will adopt the convention that Ψ(0) = 0,

the zero matrix.

Let the marginal density of the error vectors ei’s be h(·). Define Q(u) =

arg minQ∈Rk E[ρu(e1−Q)−ρu(e1)], the u-th quantile of the error vector e1. Denote

by D1(u) = E[Ψ(e1−Q(u))], and D2(u) = E[ϕu(e1−Q(u)){ϕu(e1−Q(u))}T ]. To

derive asymptotic distributions of the spatial QR estimators, we need the following

assumptions:

Assumption A:

(A1) limn→∞ n
−1∑n

i=1 ZiZ
T
i = S, where S is a positive definite matrix.

(A2) The processes {xt,yt} are strictly stationary with α-mixing coefficients α(k)

such that
∑

k k
c[α(k)]1−2/δ <∞ for some δ > 2 and c > 1− 2/δ.

(A3) There exists a positive γ > 0 such that E‖et‖2+γ <∞.

Theorem 2.1 Assume that the Assumptions (A1)-(A3) hold. Then

√
n(Φ̂n(u)− Φ̃(u))

D−→ N(0,Σ),

where Σ = {[D1(u)]−1[D2(u)][D1(u)]−1}⊗S−1 and Φ̃(u) = Φ+[Q(u), 0, ..., 0]k×s(1+kp+vq)

Proof: See section 2.5.

By the definition of Φ̃(u), we can partition it as Φ̃(u) = (Φ̃1(u), Φ̃2(u)), where

Φ̃1(u) is the first column, and Φ̃2(u) are the remaining columns which do not

depend on u. We also partition Φ̂n(u) as Φ̂n(u) = (Φ̂1n(u), Φ̂2n(u) in the same way

as that for Φ̃(u). Then, by Theorem 2.1, Φ̂2n(u) are always consistent estimators

of Φ̃2 for different u. Since averaging can reduce the variance of estimator, one may



12

use the following weighted estimator

Φ̂2ω =
K∑
k=1

ωkΦ̂2n(uk),

where
∑K

k=1 ωk = 1. In practice, given a specific value of K, one may use equally-

spaced {uk} in the unit ball centered at zero in Rk. For simplicity, one may also

employ ωk = 1/K. Let D3(uk,uk′) = E[ϕuk
(e1 − Q(uk)){ϕuk′

(e1 − Q(uk′))}T ].

Then:

Theorem 2.2 Assume that the Assumptions (A1)-(A3) hold. Then

√
n(Φ̂2ω − Φ̃2)

D−→ N(0,Ω(ω)),

where Ω(ω) =
∑K

k,k′=1 ωkωk′{[D1(uk)]
−1D3(uk,uk′)[D1(uk′)]

−1} ⊗ S−1. Proof: See

section 2.5.

LetD be a k×k matrix with the (k, k′)th entry beingDkk′ = tr[D1(uk)]
−1D3(uk,

uk′)[D1(uk′)]
−1. Then, under the constraint

∑K
k=1 ωk = 1, minimizing tr[Ω(ω)]

over ω is equivalent to minimizing
∑K

k,k′=1 ωkωk′Dkk′ over ω. The minimizer is

ωopt = (1TD−21)−1/2D−11, and the corresponding minimum is (1TD−11)−1, where

1 = (1, . . . , 1)T is a K × 1 vector of all entries being ones.

2.3 Simulations

We conduct a 500 Monte Carlo time simulation study to demonstrate the per-

formance of our QR estimator: Φ̂2n(u) (QR). We set the dimension of y, k=2, the

dimension of x, v=1. we set two different sample sizes n=1800 and n=3600. We

chose u = [0.0, 0.0] for the Φ̂2n(u). In model (2.1): yi = cj +
∑p

t=1 α
(j)
t yi−t +∑q

t=1 β
(j)
t xi−t + e

(j)
i , we have taken s = 2, p = 2, q = 1. We set c = (c1, c2) = (0, 0),

the first two lagged y1 = (0.15, 0.2), y2 = (−0.25,−0.04). We let xi be a stationary

AR(1) time series such that xi = 0.5xi−1 + εi with E(εi) = 0 and the threshold
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variable zi−1 = xi−1 We set the threshold point r0 = 0.5, we have generated two

different errors as e = I(z<r0)e1 + I(z≥r0)e2 with e1 ∼ N(0,V1), e2 ∼ N(0,V2).

Here V1 =
(

1 0.5
0.5 1

)
, V2 =

(
1 0.25

0.25 1

)
for the two-dimensional normal error; V1 =(

3 0.25
0.25 3

)
, V2 =

(
3 0.75

0.75 3

)
for the two-dimensional t-distribution error with degrees

of freedom 3. Also, we included additive outliers with an artificial magnitude of

15 added to the values of y at three time points in the middle using 2-dimensional

standard normal error. Finally, we let α
(1)
1 = 0.075, α

(2)
1 = 0.15, α

(1)
2 = −0.1,

α
(2)
2 = −0.075 and β

(1)
1 = 0.025, β

(2)
1 = 0.1. Then we have ks(kp + vq) = 20 com-

ponents of the parameter estimates,using these ei, x1, y1 and y2 we have generated

the observations (Zi,yi) for i = 1, 2, ..., n. Our estimate is initiated by the ordinary

least square estimate (LSE).

Figure 2.1 to Figure 2.3 are Box-plots showing the comparison between Φ̂
j

2n(u)−

Φ̃
j

and LSE−Φ̃
j
, j = 1, 2..., 20. Figure 2.4 represents the 95% coverage probability

of the estimates with the corresponding different error distributions calculated from

sample mean of {Φ̂
j

2n} − 1.96 · std(Φ̂
j

2n)/
√
n to sample mean of {Φ̂

j

2n} + 1.96 ·

std(Φ̂
j

2n)/
√
n. Here, std(Φ̂

j

2n) are the square roots of the diagonal elements of the

estimate matrix of Σ, i.e. the estimator of {[D1(u)]−1D2(u)[D1(u)]−1} ⊗ S−1. i =

1, 2, ..., n, the estimator of D1(u) is calculated as the sample mean of Ψ(ei−Q(u)),

D2(u) is estimated by the sample mean of ϕu(ei −Q(u)){ϕu(ei −Q(u))}T .
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Figure 2.1 : Comparison between LSE − Φ̃(left) and QR − Φ̃(right) for Normal
error when sample size n=1800 and n=3600 .
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Figure 2.2 : Comparison between LSE − Φ̃(left) and QR − Φ̃(right) for t(3) error
when sample size n=1800 and n=3600.
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Figure 2.3 : Comparison between LSE − Φ̃(left) and QR − Φ̃(right) for additive
error when sample size n=1800 and n=3600.
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Figure 2.4 : 95%-Coverage probability of QR for Normal, t(3) errors and additive
outliers with different sample sizes.
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2.4 A real example

To illustrate the use of spatial QR, we use Iceland river flow dataset (Tong,

1990). The data are daily observations from January 1, 1972 to December 31, 1974

on 4 variables. The dependent variables are yt = (y1t, y2t)
′, where y1t is the daily flow

of Vatnsdalsá river and y2t is the daily flow of Jökulsá Eystri river. The exogeneous

variables are daily precipitation (xt) and temperature (zt) observed in Hveravellir.

The threshold variable is zt. We aim to investigate how the daily mean flow of both

rivers change over time using a bivariate two regime TAR(15) model selected from

Tsay (1998). Hence we focus on the effect from the first 15 lags of response variables

and the first 3 lags of the exogenous variables. So in this case, n=1095, k=v=2,

the number of the lags of yt; p=15, the number of the lags of (xt, zt); q=3, and

the number of regions s=2. We set threshold temperature r0 = 0 and c = (0, 0).

Similarly as model (2.1), we have: yt =
∑15

i=1 α
(j)
i yt−i +

∑3
i=1 β

(j)
i xt−i + e

(j)
t , for

j = 1, 2.

Our estimators are computed in order to minimize
∑n

t=16 ρu(yt−ΦZt) at a given

u with Zt = (It1, It2)
′ ⊗ [vec(xt, zt)], indicator vector (It1, It2) = (I(zt < r0), I(zt ≥

r0)) using the proposed algorithm and compare with the least square estimates. Fig-

ure 2.5 shows that the mean flow of the two rivers are highly correlated so we have

to employ a bivariate threshold model to perform the estimations of the coefficients

instead of one-dimensional estimation. Figure 2.6 shows the conditional quantiles

of the daily flows of both rivers at different times. It occurs to both rivers that the

daily flow changed over time and they change in the same pattern even at different

quantiles. Table 2.1 to Table 2.3 show our QR estimators and their estimated stan-

dard deviations using a bivariate two regime TAR(15) model selected from Tsay

(1998) at three given different quantiles.
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Figure 2.5 : The scatter plots showing the mean flow of Jokulsa river versus the
mean flow of Vatnsdalsa river.
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Figure 2.6 : The time series of mean daily flows of Vatnsdalsa and Jokulsa river at
different quantiles.(u = [0.0, 0.0] (green), u = [−0.9,−0.9] (purple),u = [−0.5, 0.5]
(black),u = [0.5,−0.5] (red) and u = [0.9, 0.9] (blue).
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Table 2.1 : QR estimates and their estimated standard deviations for a selected
bivariate two-regime TAR(15) model for the Iceland river flow data at quantile
u = (0, 0). The threshold value is 0oC, and the numbers of observations in each
regime are 479 and 601, respectively.

Regime 1 Regime 2
y1t y2t y1t y2t

Coef. Std Coef. Std Coef. Std Coef. Std
y1,t−1 0.94 0.04 0.98 0.02 0.98 0.11 1.17 0.06
y1,t−2 0.47 0.05 0.46 0.01 0.35 0.13 0.59 0.08
y1,t−3 -0.48 0.05 -0.56 0.02 -0.22 0.16 -0.40 0.07
y1,t−4 -0.33 0.04 -0.32 0.01 -0.09 0.06 0.54 0.08
y1,t−5 0.13 0.05 0.22 0.02 0.28 0.14 0.25 0.02
y1,t−6 0.06 0.02 -0.41 0.03 0.08 0.06 -0.45 0.04
y1,t−7 -0.02 0.04 -0.55 0.03 -0.09 0.13 -0.38 0.03
y1,t−8 -0.02 0.02 0.05 0.01 0.22 0.06 -0.13 0.01
y1,t−9 0.21 0.05 0.80 0.02 0.06 0.02
y1,t−10 -0.03 0.01 0.62 0.03
y1,t−11 0.05 0.01 -0.12 0.01
y1,t−12 -0.02 0.02 0.15 0.01
y1,t−13 -0.07 0.04
y1,t−14 0.02 0.01
y1,t−15 -0.03 0.01
y2,t−1 0.16 0.04 0.78 0.03 1.87 0.08 0.66 0.07
y2,t−2 0.10 0.04 -0.52 0.03 -1.12 0.09 -0.49 0.08
y2,t−3 0.08 0.03 0.08 0.01 -0.11 0.13 0.25 0.04
y2,t−4 0.15 0.04 0.11 0.01 -0.21 0.12 -0.37 0.08
y2,t−5 -0.03 0.01 -0.40 0.02 0.04 0.04 -0.42 0.04
y2,t−6 -0.05 0.04 0.13 0.01 0.17 0.13 -0.51 0.08
y2,t−7 0.08 0.02 0.18 0.01 0.43 0.04 -0.42 0.08
y2,t−8 0.07 0.04 -0.12 0.03 -0.20 0.02 0.04 0.01
y2,t−9 0.02 0.02 0.14 0.01 0.13 0.02 0.10 0.03
y2,t−10 0.05 0.04 -0.02 0.03
y2,t−11 -0.02 0.01 -0.07 0.01
y2,t−12 0.04 0.02 -0.12 0.03
y2,t−13 -0.04 0.01
y2,t−14 0.21 0.02
y2,t−15 0.11 0.01
xt−1 0.05 0.02 0.30 0.04 0.10 0.06 0.19 0.03
xt−2 -0.02 0.01 0.06 0.03 0.01 0.04 0.17 0.11
xt−3 -0.03 0.01 0.03 0.01 -0.03 0.03 0.05 0.03
zt−1 0.07 0.02 0.30 0.04 -0.10 0.06 -0.18 0.06
zt−2 -0.03 0.01 -0.25 0.01 0.03 0.03 -0.05 0.03
zt−3 0.19 0.03 -0.06 0.01
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Table 2.2 : QR estimates and their estimated standard deviations for a selected
bivariate two-regime TAR(15) model for the Iceland river flow data at quantile
u = (−0.9,−0.9). The threshold value is 0oC, and the numbers of observations in
each regime are 479 and 601, respectively.

Regime 1 Regime 2
y1t y2t y1t y2t

Coef. Std Coef. Std Coef. Std Coef. Std
y1,t−1 0.59 0.22 -1.56 0.27 0.57 0.36 -1.28 0.16
y1,t−2 -0.84 0.38 -1.19 0.30 0.37 0.19 -0.79 0.18
y1,t−3 -0.83 0.39 1.00 0.28 -0.56 0.21 -0.60 0.16
y1,t−4 -0.02 0.23 0.42 0.09 -0.11 0.03 0.64 0.27
y1,t−5 0.23 012 0.47 0.28 0.41 0.08 0.48 0.28
y1,t−6 0.14 0.22 0.36 0.13 0.15 0.46 0.76 0.29
y1,t−7 0.16 0.09 -0.48 0.29 -0.11 0.02 -0.28 0.11
y1,t−8 -0.08 0.01 -0.08 0.14 0.08 0.03
y1,t−9 0.32 0.16 0.22 0.13
y1,t−10 -0.11 0.22 0.35 0.13
y1,t−11 0.30 0.53 0.38 0.19
y1,t−12 0.07 0.22
y1,t−13 0.29 0.49
y1,t−14 0.19 0.06
y1,t−15
y2,t−1 0.46 0.18 -1.32 0.20 0.90 0.16 3.41 0.61
y2,t−2 0.35 0.19 0.95 0.26 0.49 0.11 -2.54 0.66
y2,t−3 0.36 0.16 0.91 0.15 -0.46 0.26 0.27 0.31
y2,t−4 0.32 0.23 0.65 0.31 -0.43 0.13 -1.64 0.33
y2,t−5 -0.49 0.16 0.05 0.34 0.59 0.24
y2,t−6 0.38 0.10 0.45 0.26
y2,t−7 0.21 0.04 0.37 0.30
y2,t−8 0.38 0.11
y2,t−9 0.44 0.06
y2,t−10 0.25 0.02
y2,t−11 -0.39 0.12
y2,t−12 -0.51 0.26
y2,t−13 0.20 0.03
y2,t−14 0.15 0.09
y2,t−15 0.10 0.02
xt−1 0.08 0.15 0.18 0.23 0.15 0.20 0.45 0.25
xt−2 -0.07 0.22 -0.06 0.13 0.05 0.10 0.31 0.18
xt−3 -0.05 0.12 0.08 0.09
zt−1 0.32 0.22 0.43 0.18 -0.31 0.28 -0.88 0.43
zt−1 -0.04 0.12 -0.15 0.11 0.09 0.25 0.57 0.36
zt−3 -0.12 0.18 -0.11 0.13
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Table 2.3 : QR estimates and their estimated standard deviations for a selected
bivariate two-regime TAR(15) model for the Iceland river flow data at quantile
u = (0.9, 0.9). The threshold value is 0oC, and the numbers of observations in each
regime are 479 and 601, respectively.

Regime 1 Regime 2
y1t y2t y1t y2t

Coef. Std Coef. Std Coef. Std Coef. Std
y1,t−1 1.30 0.41 1.54 0.43 1.91 0.74 1.69 0.38
y1,t−2 0.86 0.22 1.47 0.13 1.80 0.72 1.61 0.30
y1,t−3 0.81 0.19 0.85 0.22 1.79 0.66 0.97 0.29
y1,t−4 0.64 0.27 -0.62 0.24 1.68 0.56 0.96 0.33
y1,t−5 0.69 0.18 0.75 0.14 1.63 0.69 0.98 0.39
y1,t−6 -0.43 0.17 0.61 0.20 1.43 0.33
y1,t−7 -0.19 0.12 -0.51 0.19 0.99 0.46
y1,t−8 0.18 0.09 0.39 0.06 0.72 0.24
y1,t−9 -0.33 0.14
y1,t−10 0.32 0.10
y1,t−11 0.28 0.04
y1,t−12 0.22 0.11
y1,t−13 -0.18 0.07
y1,t−14 0.31 0.04
y1,t−15 0.10 0.03
y2,t−1 -0.71 0.37 -1.19 0.43 1.59 0.50 1.66 0.73
y2,t−2 -0.67 0.27 0.67 0.44 1.58 0.49 -1.43 0.66
y2,t−3 -0.64 0.09 -0.55 0.23 1.51 0.44 1.14 0.49
y2,t−4 0.69 0.15 0.53 0.21 1.08 0.16 1.21 0.48
y2,t−5 -0.44 0.39 0.65 0.12 1.05 0.44
y2,t−6 0.49 0.14 0.57 0.08 -1.02 0.56
y2,t−7 -0.50 0.28 0.45 0.08 0.33 0.06
y2,t−8 0.27 0.12 0.27 0.02
y2,t−9 0.45 0.18 0.45 0.18
y2,t−10 0.21 0.13 0.27 0.02
y2,t−11 0.22 0.12
y2,t−12 0.21 0.01
y2,t−13
y2,t−14
y2,t−15
xt−1 0.32 0.05 0.57 0.19 0.74 0.08 1.35 0.16
xt−2 0.21 0.03 0.43 0.18 0.50 0.04 0.42 0.04
xt−3 -0.05 0.01 -0.04 0.40 -0.34 0.04
zt−1 0.41 0.11 -0.36 0.16 -0.41 0.13 0.54 0.02
zt−2 0.31 0.18 -0.15 0.07 0.19 0.03 0.39 0.02
zt−3 -0.18 0.02 -0.15 0.05 -0.46 0.04
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2.5 Proofs

In this section, we give the proofs of our theorems in detail. For convenience

we first introduce a lemma, which is from Chakraborty (2003), then we prove the

theorems.

Lemma 2.1 Let φn(β), n=1,2,... be a sequence of random functions on Rk and convex

in β. Let φ(β) be a random function such that, for each fixed β, φn(β)→ φ(β) in

probability. Then for each M > 0,

sup
‖β‖≤M

| φn(β)− φ(β) |→ 0

in probability.

Proof of Theorem 2.1: Following the same arguments as for Theorem 4.1 of Chakraborty

(2003), we obtain that

√
n(Φ̂n(u)− Φ̃(u)) = n−1/2[D1(u)]−1[

n∑
i=1

ϕu(ei −Q(u))ZT
i ]S−1 + op(1). (2.4)

Define Vi = ϕu(ei − Q(u))ZT
i . Since function ϕ is bounded and smooth, Zi =

{yi−1, yi−2, ...yi−p, xi−1, ...xi−q} has mean zero. Hence, we know {Vi}; i = 1, 2...n, is

also a strictly stationary and α-mixing process. Since ei and Zi are uncorrelated,

we have E(Vi) = E(E[Vi|Zi]) = 0.

In the following we show the asymptotic normality of Tn =
∑n

i=1 Vi. Since

{Vi, i = 1, ...n} are dependent, we employ the standard small-block and large-block

arguments to complete this task. To this end, we partition the set {1, 2..., n} into

2kn + 1 subsets with large blocks of size ln and small blocks of size sn. A large block

is followed by a small block, and the last remaining set has size n−kn(ln+sn), where

ln and sn are selected such that sn −→∞, sn/ln −→ 0, ln/n −→ 0, and the number

of the blocks kn = [n/(ln + sn)] = O(sn). Let ln = O(n(r−1)/r) and sn = O(n1/r) for
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any r > 2, then kn = O(n1/r) = O(sn). For j = 1, 2...kn, define

ξj =

jln+(j−1)sn∑
i=(j−1)(ln+sn)+1

Vi, ηj =

j(ln+sn)∑
i=jln+(j−1)sn+1

Vi, ζ =
n∑

i=kn(ln+sn)+1

Vi.

Note that α(n) = o(n−1) and knsn/n −→ 0. It follows from Proposition 2.7 of Fan

and Yao (2003) that

1

n
E(

kn∑
j=1

ηj)
2 −→ 0 and

1

n
E(ζ2) −→ 0.

This means that the summations over the small blocks and the residual block are

asymptotically negligible. Thus,

1√
n

Tn =
1√
n

(
kn∑
j=1

ξj +
kn∑
j=1

ηj + ζ) =
1√
n

kn∑
j=1

ξj + op(1).

It follows from Proposition 2.6 of Fan and Yao (2003) that, as n −→∞,

|E{exp( it√
n

kn∑
j=1

ξj)} −
kn∏
j=1

E{exp(itξj/
√
n)}| ≤ 16(kn − 1)α(sn) −→ 0,

which implies the summations over the large blocks {ξj} are asymptotically inde-

pendent. Now, by stationary, we have

1

n
V ar(Tn) =

1

n

n∑
j=1

V ar(Vj) +
2

n

∑
1≤i<j≤n

Cov(Vi,Vj) = γ(0) + 2
n−1∑
l=1

(1− l

n
)γ(l),

where γ(k) = Cov(Vi+k,Vi) is the autocovariance function of Vi. Define Σ1 =

D2(u)S. It is straightforward to show that Σ1 = D2(u)S = γ(0) + 2
∑∞

j=1 γ(j).

Applying Theorem 2.20 of Fan and Yao (2003), we have l−1n E(ξ21) −→ Σ1, which
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implies the Feller condition

1

n

kn∑
j=1

E(ξ2j) =
knln
n

1

ln
E(ξ21) −→ Σ1.

Note that for any ε > 0,

E[ξ21I(|ξ1| >
√
nε|Σ1|1/2)] ≤ E(ξ41)

1/2
P [|ξ1| >

√
nε|Σ1|1/2]

≤ Cln
1

nε2
|Σ1|−1E(ξ21) = O(l2n/n).

It follows that

1

n

kn∑
j=1

E[ξ2jI(|ξj| ≥
√
nε|Σ1|1/2)] = O(knl

2
n/n

2) = O(ln/n) −→ 0,

which is the Lindberg condition. Under the Lindberg and Feller conditions, by the

central limit theorem, we have

kn∏
j=1

E[exp(itξj/
√
n)] −→ exp{−tΣ1t

T/2},

for any t. That is, 1√
n
Tn −→ N(0,Σ1) in distribution as n −→ ∞. This combined

with equation (2.4) leads to

√
n(Φ̂n(u)− Φ̃(u)) = n−1/2[D1(u)]−1TnS

−1 + o(1)
D−→ N(0,Σ). (2.5)

Proof of Theorem 2.2: The result follows from equation (2.5).



CHAPTER 3: MULTIVARIATE TIME-VARYING COEFFICIENT MODEL

3.1 Local Linear Smoother for Multivatiate Time-varying Coefficient Model

This section mainly discusses the local linear estimation of the time-varying

coefficient and asymptotic distribution of the nonparametric estimator.

3.1.1 Estimation

Recall for model (1.2), I propose the multivariate time-varying coefficient model:

yt = c(t/T ) +

p∑
i=1

αi(t/T )yt−i +

q∑
j=1

βj(t/T )xt−j + εt, t = 1, ..., T. (3.1)

where yt is k × 1 vector, xt is v × 1 vector. c(�) is a k × 1 vector, αi is k ×

k smooth matrix and βj is k × v smooth matrix. The innovations satisfy εt =

γ∗t at, where γ∗t are symmetric positive definite matrices and at is a sequence of

uncorrelated random vectors with mean zero and convariance matrix Ik. Let Xt =

vec(1,yt−1, ...,yt−p,xt−1, ...,xt−q) be a d×1 vector with d = 1+kp+vq, and Φ(t/T ) =

(c(t/T ),α1(t/T ), ...αp(t/T ),β1(t/T ), ...βq(t/T ), Then model (3.1) becomes:

yt = Φ(t/T )Xt + εt, t = 1, ...T. (3.2)

where Φ(�) is k × d matrix and Xt is d× 1 vector.

For any t in the neighborhood of t0 ∈ (0, T ), i.e | t− t0
T
|≤ h, using the Taylor

expansion, we obtain:

Φ(t/T ) ≈ Φ(t0/T ) + Φ′(t0/T )(
t− t0
T

)
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≡ P + Q(
t− t0
T

)

Running the local linear smoother for model (3.2), we minimize:

T∑
t=s+1

‖ yt −PXt −QXt(
t− t0
T

) ‖2 Kh(t− t0) (3.3)

over P and Q, where ‖ � ‖ denotes the Euclidean norm, s = max(p, q) and

Kh(x) =
1

h
K(

x

hT
) for a kernel function K(�) and a bandwidth h controlling the

amount of smoothing. Let the resulting minimizers for (P,Q) be (P̂, Q̂).

Let µi =
∫
uiK(u)du, νi =

∫
uiK2(u)du, ω = (µ2, µ3)

T ,

U =

µ0 µ1

µ1 µ2

 , V =

ν0 ν1

ν1 ν2


Define M = E[(X tX

T
t )⊗ Ik] and N = E[(X tX

T
t )⊗ (γ∗t )

2]. Next, I derive the

explicit representation of the estimator by using local linear fitting .

Theorem 3.1 The solution (P̂, Q̂) for (3.3) admits the following closed form:

 vec(P̂)

vec(hQ̂)

 =

ST0 ST1

ST1 ST2


−1  ∑T

t=s+1(Xt ⊗ Ik)ytKh(t− t0)∑T
t=s+1(Xt ⊗ Ik)ytK

(1)
h (t− t0)

 (3.4)

where ⊗ denotes the kronecker product. Ik is the k × k indentity matrix, ST i =∑T
t=s+1(XtX

T
t ) ⊗ IkK(i)

h (t − t0) and K
(i)
h (t − t0) = (Th)(−i)(t − t0)iKh(t − t0), for

i = 0, 1, 2.

Proof: See Section 3.5. �.

3.1.2 Asymptotic Distribution

To derive the asymptotic distribution of the above estimators, we need the

following assumptions.
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Assumption B:

(B1) For any u = t0/T ∈ (0, 1), the second derivative of Φ(�) exists and is continuous

at u.

(B2) The kernel function K(v) is symmetrical with a bounded support s.t µ0(K) = 1

and µ1(K) = 0 i.e.
∫
K(v)dv = 1 and

∫
vK(v)dv = 0. Further, the functions v3K(v)

and v3K ′(v) are bounded with v4K(v) <∞.

(B3) There exists a positive ρ > 0 such that E ‖ at ‖1+ρ<∞.

(B4) Assume that γ∗t is measurable with respect to the σ-field generated by historical

information Ft−1 = {ws; s ≤ t−1} , where wt−1 = (yt−1,yt−2, ...yt−p,xt−1, ...,xt−q).

(B5) M and N are both invertible positive definite matrices.

(B6) The processes {Xt, at} are strictly stationary with α-mixing coefficients α(s)

such that
∑

s s
c[α(s)]1−2/δ <∞ for some δ > 2 and c > 1− 2/δ.

(B7) h −→ 0 in such a way that hT −→ 0. There exists a sequence of positive

integers {rT} s.t. rT −→∞, rT = o(
√
hT ) and

√
T/hα(rT ) −→ 0 as T −→∞.

Theorem 3.2 Suppose the assumptions (B1)-(B7) hold. Then, for any u = t0/T ∈

(0, 1), we have:

√
Th{

 vec(P̂−Φ(u))

vec(h(Q̂−Φ′(u)))

−BT (u)} D−→ N (0,Σ)

where BT (u) =
h2

2
(U−1ω)⊗vec(Φ”(u))(1+op(1)) and Σ = (U−1V U−1)⊗(M−1NM−1).

Proof: See Section 3.5. �.

3.2 Generalized Likelihood Ratio for Multivariate Time-varying Coefficient Model

This section briefly discussed the testing hypotheses about whether the coeffi-

cients of the time-varying regression models are of some specific functional forms or

constants.
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3.2.1 Generalized Likelihood Ratios

The likelihood ratio type test was proposed by Fan, Zhang and Zhang (2001)

and studied extensively by Fan and Jiang (2005). For the varying coefficient re-

gression model: Y = A(U)TX + ε, ε ∼ N (0, σ2) with X = (x1, ..., xp)
T and

A(U) = (a1(U), ...ap)
T . After fitting the regression models via local linear technique.

Fan, Zhang and Zhang(2001) raises one interesting problem to check whether the

varying coefficients are of some specific functional forms. This is equivalent to the

following hypotheses:

H0 : A(U) = A0(U)←→ Ha : A(U) 6= A0(U) (3.5)

where A0(U) is a vector of known functionals. One special case of (3.5) is when

A0(U) is a vector of constants. Then the test hypothesis becomes to checking

whether the varying coefficients are indeed varying. That is equivalent to:

H0 : A(U) = A0 ←→ Ha : A(U) 6= A0 (3.6)

where A0 is a vector of known or unknown constants.

The test statistic is defined as:

λn = Ln(Ha)− Ln(H0) =
n

2
log(

RSS0

RSSa
) ≈ n

2
(
RSS0 −RRSa

RSSa
)

where Ln(Ha) and Ln(H0) are the log-likelihood under Ha and H0, respectively.

RSSa =
∑n

k=1(Yk − ÂT (Uk)Xk)
2 and RSS0 =

∑n
k=1(Yk − ÂT0 (Uk)Xk)

2. Here Â(U)

is the corresponding nonparametric estimator of A(U) and Â0(U) is the true or

estimated value of coefficients under H0.
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3.2.2 Test Statistics

Motivated by Fan, Zhang and Zhang (2001) and Fan and Jiang(2005). Suppose

{yt,xt}Tt=1 are a random sample from the multivariate time-varying coefficient model

(3.2). Namely,

yt = Φ(t/T )Xt + εt (3.7)

Now, we assume Σ
−1/2
0 εt has mean zero and covariance Ik. where Σ0 is a symmetric

positive definite constant matrix. Xt = vec(1,yt−1, ...,yt−p,xt−1, ...,xt−q) is a d× 1

vector with d = 1 + kp+ vq and Φ(t/T ) = (c(t/T ),α1(t/T ), ...αp(t/T ),β1(t/T ), ...

βq(t/T )) is a k × d matrix.

I consider the simple null hypothesis testing problem:

H0 : Φ(t/T ) ∈ Θ0(t/T )←→ Ha : Φ(t/T ) /∈ Θ0(t/T ) (3.8)

where Θ0(t/T ) is a set of functionals of matrix . Denote Φ̂(t/T ) as the corresponding

nonparametric estimator of Φ. Φ̂0(t/T ) is the true or estimated value of coefficients

under H0. I propose the similar test statistic for the testing problem in (3.8) as:

λT = L(Ha)− L(H0) =
T

2
log(

˜RSS0

˜RSSa
) ≈ T

2
(

˜RSS0 − ˜RSSa
˜RSSa

)

where L(Ha) and L(H0) are the log-likelihood under Ha and H0, respectively.
∼

RSSa=
∑T

t=1(yt−Φ̂(t/T )Xt)
TΣ−1(yt−Φ̂(t/T )Xt) and

∼
RSS0=

∑T
t=1(yt−Φ̂0(t/T )Xt)

T

Σ−1(yt−Φ̂0(t/T )Xt). Where Σ is a positive definite matrix as a working covariance

of εt. So Σ−1 can be written in terms of spectral decomposition as:



29

Σ−1 = QT



λ1 0 · · · 0

0 λ2 · · · 0

...
. . .

...

0 0 · · · λk


Q

where λ1 > λ2 · · · > λk > 0 are the eigenvalues of Σ−1 and Q is the orthogonal

matrix having rows q1, ...qk which are normalized eigen-vectors corresponding to

λ1, ..., λk. With this spectral decomposition of Σ−1, model (3.7) becomes equiva-

lently to:

Qyt = QΦ(t/T )Xt + Qεt

Denote y∗t = Qyt, Φ∗(t/T ) = QΦ(t/T ), ε∗t = Qεt. Hence, from now on, we focus

on the model:

y∗t = Φ∗(t/T ) + ε∗t (3.9)

where ε∗t has mean zero and covariance matrix QΣ0Q
T .

Accordingly, the testing hypothesis problem (3.8) becomes:

H0 : Φ∗(t/T ) ∈ Θ∗0(t/T )←→ Ha : Φ∗(t/T ) /∈ Θ∗0(t/T ) (3.10)

3.2.3 Asymptotic Null Distribution

To derive the asymptotic distribution of λT (Φ∗0) under H0, we need the following

assumptions.

Assumption C

(C1) Φ∗(u) has the continuous second derivative at any u = t0/T ∈ (0, 1).

(C2) The kernel function K(v) is symmetrical with a bounded support s.t µ0(K) = 1

and µ1(K) = 0 i.e.
∫
K(v)dv = 1 and

∫
vK(v)dv = 0. Further, the functions v3K(v)
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and v3K ′(v) are bounded with v4K(v) <∞.

(C3) E|ε∗t |4 <∞.

(C4) Xt is bounded. The d × d matrix E[XtX
T
t ] is invertible. (E[XtX

T
t ])−1 and

E[(XtX
T
t )⊗Σ0] are both Lipschitz continuous.

We define: Γ = E[XtX
T
t ] and ω0 =

∫∫
t2(s+ t)2K(t/T )K((s+ t)/T )dtds.

Denote D = k × d, Ω ≡ QΣ0Q
T = (σ2

ij)
k
i,j=1 i.e, it has (i, j)-th element as σ2

ij,

i, j = 1, ...k. For j = 1, 2...k, Let ε∗tj = y∗tj −Φ∗0j(t/T )Xt,

Rj
T10 =

1√
T

[
∑T

t=1 ε
∗
tjΦ

”∗
0jXt

∫
t2K(t/T )dt](1 +O(h) +O(T−1/2)),

Rj
T20 =

1

2
√
T

∑T
t=1 ε

∗
tjX

T
t Γ−1(Φ∗”0j(t/T )Xt)E(Xt)ω0,

Rj
T30 =

1

8
E[Φ∗”0j(t/T )XtX

T
t Φ∗”0j(t/T )T ]ω0(1 +O(T−1/2)),

d1Tj = σ−2jj [Th4Rj
T30 − T 1/2h2(Rj

T10 −R
j
T20)] = Op(Th

4 +
√
Th2),

µT =
D

h
(K(0)− 1

2

∫
K2(x)dx), σ2

T =
D

2h

∫
(2K(x)−K ∗K(x))2dx,

d∗1T =
1

k

∑k
j=1 λjσ

2
jjd1Tj, µ

∗
T =

µT
k

∑k
j=1 λjσ

2
jj,

σ∗2 =
σ2
T

k2
(
∑k

j=1 λ
2
jσ

4
jj + 2

∑k
i<j λiλjσ

4
ij), where K ∗K denotes the convolution prod-

uct of K, note that both Rj
T10 and Rj

T20 are asymptotically normal and hence are

stochastically bounded.

Then, we have the following theorem.

Theorem 3.3 Suppose Assumptions (C1)-(C4) hold. Then under H0, as h −→ 0 and

Th3/2 −→∞,

σ∗−1(λT (Φ0)− µ∗T − d∗1T )
D−→ N (0, 1).

Proof: See Section 3.5. �

One special case of the hypothesis in (3.10) is to check whether the coefficient

functions are actually varying. This means when Θ∗0(t/T ) is some known constant

matrix Φ∗0. In this case, we have the following asymptotic result.

Theorem 3.4 Suppose Assumption (C1)-(C4) hold. Then under H0, as h −→ 0 and
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Th3/2 −→∞,

σ∗−1(λT (Φ0)− µ∗T )
D−→ N (0, 1)

Proof: See Section 3.5. �

3.2.4 Power of Test

In this section, we consider the power of the quasi-likelihood ratio test based on

local linear fitting. For simplicity, we fix the null hypothesis in (3.10) with a known

matrix.

For any u = t/T ∈ (0, 1), if we rewrite matrix Φ∗(u) as a vector:

∆(u) ≡ vec(Φ∗1(u),Φ∗2(u), ...Φ∗D(u))

Denote: ∆0(u) ≡ vec(Φ∗01(u),Φ∗02(u), ...Φ∗0D(u)), then the power of the test is con-

sidered under the local alternatives as follows:

Ha : ∆(u) = ∆0(u) + GT (u)

where GT (u) =
1√
Th

(g1(u), g2(u), ..., gD(u))T is a D×1 vector of functions. So, the

power of the test under Ha can be approximated by using the following theorem.

Theorem 3.5 Suppose that Assumptions (C1)-(C4) hold and ∆(u) is linear in u or

Th5 −→ 0. If ThE{GT
T (u)[(XtX

T
t )⊗Ik]GT (u)} −→ C(G) and E{(GT

T (u)[(XtX
T
t )⊗

Ik]GT (u))εT∗t ε
∗
t}2 = O((Th)−3/2) for some constant C(G), then under Ha:

σ∗−11 (λT (Φ0)− µ∗T − d∗2T + ν∗T )
D−→ N (0, 1)

where σ2∗
1 = σ2∗ +

T

k2
E{GT

T (u)[(XtX
T
t )⊗ Ik]GT (u)}(

∑k
j=1 λ

2
jσ

2
jj + 2

∑k
i<j λiλjσ

2
ij),
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d∗2T =
T

2k
E{GT

T (u)[(XtX
T
t )⊗Ik]GT (u)}(

∑k
j=1 λjσ

2
jj), ν

∗
T =

Th4

8k
E{∆”T (u)[(XtX

T
t )⊗

Ik]∆
”(u)}ω0(

∑k
j=1 λj) and µ∗T is given in Theorem 3.1.

Proof: See Section 3.5. �.

3.3 Simulations

In this section, I conduct Monte Carlo simulation to demonstrate the power of

the proposed GLR. The effect of the error distribution on the performance of the

proposed test is also investigated. Throughout this section, the Gaussian Kernel

K(u) =
1√
2π
e−u

2/2 is used. Simulation procedures and results are given below.

3.3.1 Simulation Procedures: Conditional Bootstrap

To implement the GLR tests, we need to obtain the null distribution of the test

statistic. In Section 3.2.2, we give the theoretical asymptotic distribution of the

statistic. For a finite sample, the null distribution can be approximated by simu-

lation via fixing nuisance parameters/functions at their reasonable estimates. This

simulation method is referred to as the conditional bootstrap, which is detailed as

follows:

1) Fix the optimal bandwidth at its estimated value ĥopt and then obtain the esti-

mators of the coefficient Φ̂(t/T ) under both null and alternative models.

2) Compute the GLR test statistic λT (H0) by definition and the residuals et (for

t = 1, 2, ...T ) from the unrestricted model under Ha.

3) For each Xt, draw a bootstrap residual e∗t from the centered empirical distri-

bution of et and compute y∗t = Φ̂(t/T )Xt + e∗t . where Φ̂(t/T ) is the estimated

regression coefficients under Ha in step 1). This forms a conditional bootstrap sam-

ple {Xt,y
∗
t}Tt=1.

4) Using the bootstrap sample in step 3) with the bandwidth ĥopt, obtain the GLR

λ∗T (H0) in the same manner as λT (H0).

5) Repeat steps 3) and 4) many times, say 1000 times to get a sample of statistic
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λ∗T (H0). The critical value at significant level α is given by the (1− α)th quantile.

3.3.2 Simulation Results

In this section, I consider the following data generating model:

yt = Φ(t/T )Xt + et, t = 1, ...T. (3.11)

where k = 2, v = p = q = 1, D = k×d = 6, ∆ = vec(Φ1, ..,Φ6) = (0.5, 0.0075, 0.08,

0.65, 0.25, 0.75)T , set the initial value y1 = (0.15, 0.2) and x1 = 0. In this case,

Xt = vec(y1,t−1, y2,t−1, xt−1), for t = 2, ...T . et ∼ N (0,Σ). where Σ =
(

1 0.5
0.5 1

)
.

For the power assessment, we evaluate the power for a sequence of alternative mod-

els indexed by θ:

Hθ : ∆θ = (0.5, 0.0075, 0.08, 0.65, 0.25, 0.75)T +
θ√
Th

G(t/T ) (3.12)

where G(t/T ) = (sin(
√

2πt/T ),−0.09cos(πt/T ), 0.16sin(
√

3πt/T ), 0.8sin(
√

2πt/T ),

0.3sin(πt/T ), cos(
√

1.5πt/T ))T . The simulation is repeated 600 times for each sam-

ple size n = 200, n = 400 and n = 800 and for each θ = 0, θ = 0.2, θ = 0.4,

θ = 0.6 θ = 0.8 and θ = 1.0. For each given value of θ, I use 1000 Monte Carlo

replications for the calculation of the critical values via the conditional bootstrap

method (see section 3.3.1). Given the significance of level 5% and 10%, the power

function ρ(θ) is estimated based on the relative frequency of λT (Φ) over 600 sim-

ulations. In addition to the bivariate normal distribution, the bivariate t(5) and

bivariate lognormal(0,Σ) distribution.where Σ is the same variance matrix as of the

bivariate normal distribution. I plot the power curves in Figure 3.1 and Figure 3.2

at significance levels 10% and 5% for all settings.
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3.4 Real Example

In previous section, I conducted Monte Carlo simulation to illustrate the effec-

tiveness and the validity of the proposed test statistics. In this section, I consider the

application of these methodologies to a real example. Here I analyze a subset of the

interest rates of the Federal Reserve Bank of St.Louis (http://research.stlouisfed.org

/fred2/). They are monthly 1-year and 10-year Treasury constant maturity rates,

which represent short-term and long-term series, respectively. The data consist of

571 monthly observations from January 1984 to October 2000.

Let Y1t and Y2t be the interest rate series of the 1-year and 10-year Treasury,

respectively. Denote s1t = ln(Y1t) and s2t = ln(Y2t). I use the logarithm return

yt = (y1t, y2t)
T , where yit = sit − si,t−1, i = 1, 2. I fit the data using the following

bivariate AR(2) model:

yt = ayt−1 + byt−2 + εt (3.13)

where a =
(
a11 a12
a21 a22

)
and b =

(
b11 b12
b21 b22

)
. We are interested in using the proposed GLR

test statistic to test:

H0 : yt = ayt−1 + byt−2 + εt ←→ Ha : yt = a(t/T )yt−1 + b(t/T )yt−2 + εt (3.14)

If we rewrite the coefficient matrices into vectors, denote:

∆0 = (â11, â21, â12, â22, b̂11, b̂21, b̂12, b̂22)
T , ∆a = (a11(t/T ), a21(t/T ), a12(t/T ), a22(t/T ),

b11(t/T ), b21(t/T ), b12(t/T ), b22(t/T ))T = (â11, â21, â12, â22, b̂11, b̂21, b̂12, b̂22)
T +

1√
Th

G(t/T ), where (â11, â21, â12, â22, b̂11, b̂21, b̂12, b̂22)
T = (0.230,−0.032, 0.334, 0.398, 0.024,

0.008,−0.184,−0.152)T is the estimated coefficients using software R for model

(3.13). G(t/T ) = (0.08sin(
√

2πt/T ), 0.3sin(πt/T ), 0.16sin(
√

3πt/T ), cos(
√

1.5πt/T ),

−0.09cos(πt/T ), 0.3sin(πt/T ), 0.8sin(
√

2πt/T ), cos(
√

1.5πt/T ))T . Then, it is equiv-

alent to test:

H0 : ∆ = ∆0 ←→ Ha : ∆ = ∆a (3.15)
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To compute the p-value of the test statistic, I need to find the null distribution

of the GLR statistic λT (H0). This can be estimated by the conditional bootstrap

method mentioned in section 3.3.1. The p-values are computed from 500 bootstrap

replicates for using different bandwidths. The corresponding p values are reported

in Table 3.1. Therefore, one can see all the p-values are greater than significant level

0.05, which implies that the varying coefficients are indeed time-varying.

Table 3.1 : The p-values for testing constancy in hypothesis (3.15)

h h =
1

2
ĥopt h = ĥopt h =

3

2
ĥopt

p− value 0.032 0.006 0.019

3.5 Proofs

In this section, we give the derivation of the main results presented in previous

sections of this chapter.

Proof of Theorem 3.1: We can prove it by following the similar steps in the proof

of Lemma 1 in Jiang (2013): The proof involves taking the derivative of a generic

matrix-valued function F(X) with respect to a matrix X. Taking derivative over P

and Q for (3.3), we obtain the score equations:

{
∑T

t=s+1(Xt ⊗ Ik)[yt − P̂Xt − Q̂(
t− t0
T

)]Kh(t− t0) = 0∑T
t=s+1(Xt ⊗ Ik)[yt − P̂Xt − Q̂(

t− t0
T

)]K
(1)
h (t− t0) = 0

(3.16)

For conforming matrices, we have the identity:

vec(AXB) = (BT ⊗A)vec(X) (3.17)

This combined with the identity:

(A⊗B)⊗C = A⊗ (B⊗C) (3.18)
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yields that

(Xt ⊗ Ik)P̂Xt = vec((Xt ⊗ Ik)P̂X t)

= ((XT
t ⊗Xt)⊗ Ik)vec(P̂)

= ((XtX
T
t )⊗ Ik)vec(P̂)

(3.19)

it follows from (3.16) that:

{
ST0vec(P̂) + ST1vec(hQ̂) =

∑T
t=s+1(Xt ⊗ Ik)ytKh(t− t0)

ST1vec(P̂) + ST2vec(hQ̂) =
∑T

t=s+1(Xt ⊗ Ik)ytK
(1)
h (t− t0)

(3.20)

�.

Proof of Theorem 3.2: By taking iterative expectation, we get that:

E(T−1STi) =
1

T
E(

T∑
t=s+1

(XtX
T
t )⊗ IkK(i)

h (t− t0))

=
1

T

T∑
t=s+1

E[(XtX
T
t )⊗ Ik]K(i)

h (t− t0)
M

T

∫
K

(i)
h (t− t0)dt(1 + o(1))

= µiM(1 + o(1)).

Note that T−1vec(ST i) = T−1
∑T−s

t=1 Zt, where Zt = vec[(Xs+tX
T
s+t)⊗Ik]K

(i)
h (s+ t−

t0). It follows from stationarity that

V ar(T−1vec(ST i)) =
T − s
T 2

V ar(Z1) +
2(T − s)
T 2

T−s−1∑
l=1

(1− l

T − s
)cov(Z1,Zl+1)

(3.21)

Let dT −→ ∞ be a sequence of integers such that dTh −→ 0. Define J1 =
∑dT−1

l=1 |

cov(Z1,Zl+1) | and J2 =
∑T−s−1

l=dT
| cov(Z1,Zl+1) |. Using the mixing condition (B6)

and Davydov’s lemma (see Hall and Heyde 1980, cor.A.2), we have: for components
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of Z1 and Zl+1,

| cov(Z1,j,Zl+1,m) |≤ C[α(l)]1−2/δ[E|Z1,j|δ]1/δ[E|Zl+1,m|δ]1/δ.

where C is a generic constant. Directly calculating the mean and covariance, we

establish that: E|Z1|δ = O(h−δ+1) and |cov(Z1,Zl+1)| = O(1), componentwise.

Then J1 = O(dT ) = o(h−1) and J2 = O(h2/δ−2)
∑∞

l=dT
[α(l)]1−2/δ = O(h2/δ−2)

d−cT
∑∞

l=dT
l−c[α(l)]1−2/δ = o(h−1), if we set h1−2/δdcT = 1, so that dTh −→ 0 is

satisfied. Thus,
T−s−1∑
l=1

|cov(Z1,Zl+1)| = J1 + J2 = o(h−1) (3.22)

Note that var(Z1) = h−1ν2iE[vec(XtX
T
t ) ⊗ Ik]⊗2(1 + o(1)). It follows from (3.21)

and (3.22) that

V ar(T−1vec(ST i)) =
1

Th
ν2iE[vec(XtX

T
t )⊗ Ik]⊗2(1 + o(1)) (3.23)

By the Chebyshev inequality, we know:

T−1ST i = µiM(1 + op(1)) (3.24)

Hence,

T−1

ST0 ST1

ST1 ST2

 = U ⊗M(1 + op(1)) (3.25)

By (3.2) and (3.16), we have

 vec(P̂−Φ(u))

vec(h(Q̂−Φ′(u)))

 = BT (u) + VT (u) (3.26)

where
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BT (u) =

ST0 ST1

ST1 ST2


−1  ∑T

t=s+1(Xt ⊗ Ik)Φ(t/T )XtKh(t− t0)∑T
t=s+1(Xt ⊗ Ik)Φ(t/T )XtK

(1)
h (t− t0)

−
 vec(Φ(u))

vec(hΦ′(u))

,

VT (u) =

ST0 ST1

ST1 ST2


−1  ∑T

t=s+1(Xt ⊗ Ik)εtKh(t− t0)∑T
t=s+1(Xt ⊗ Ik)εtK(1)

h (t− t0)

 ≡
ST0 ST1

ST1 ST2


−1 V∗T0

V∗T1

.

Thus BT (u) and VT (u) contribute to the bias and variance of the estimators, re-

spectively. By the definition of ST i and (3.18), we have:

ST0vec(Φ(u)) =
T∑

t=s+1

(XT
t Xt)⊗ Ikvec(Φ(u))Kh(t− t0)

=
T∑

t=s+1

XT
t ⊗ (Xt ⊗ Ik)vec(Φ(u))Kh(t− t0)

using (3.17), we obtain:

ST0vec(Φ(u)) =
T∑

t=s+1

vec((Xt ⊗ Ik)Φ(u)Xt)Kh(t− t0)

=
T∑

t=s+1

(Xt ⊗ Ik)Φ(u)XtKh(t− t0)

Similarly,

ST1vec(Φ(u) =
∑T

t=s+1 vec((Xt ⊗ Ik)Φ(u)Xt)K
(1)
h (t− t0)

ST1vec(hΦ′(u) =
∑T

t=s+1 vec((Xt ⊗ Ik)hΦ′(u)Xt)K
(1)
h (t− t0)

ST2vec(hΦ′(u) =
∑T

t=s+1 vec((Xt ⊗ Ik)hΦ′(u)Xt)K
(2)
h (t− t0)

which gives that:
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ST0 ST1

ST1 ST2

BT (u) ≡

B∗T0

B∗T1

 (3.27)

where B∗Tj =
∑T

t=s+1(Xt ⊗ Ik)[Φ(t/T ) − Φ(u) − Φ′(u)
(t− t0)
T

]XtK
(j)
h (t − t0), for

j = 0, 1. By the Taylor expansion, it can be shown that:

T−1B∗T0 =
h2

2T

T∑
t=s+1

(Xt ⊗ Ik)Φ”(u)XtK
(2)
h (t− t0) + op(h

2)

=
h2

2T

T∑
t=s+1

[(XT
t ⊗Xt)⊗ Ik]vec(Φ”(u))K

(2)
h (t− t0) + op(h

2)

=
h2

2
µ2Mvec(Φ”(u)) + op(h

2)

Similarly, T−1B∗T1 =
h2

2
µ3Mvec(Φ”(u)) + op(h

2). This combined with (3.25) leads

to:

BT (u) =
h2

2
(U−1⊗M−1)[ω⊗(Mvec(Φ”(u)))](1+op(1))

h2

2
(U−1ω)⊗vec(Φ”(u))(1+op(1))

(3.28)

where the second equation comes from the identity:

(A⊗B)(C⊗D) = (AC)⊗ (BD) (3.29)

Let V∗T = (VT∗
T0,V

T∗
T1)

T . Using the same argument as for (3.23), we obtain:

V ar(
√
T−1hV∗T ) = V⊗ E[(Xt ⊗ Ik)γ∗2t (Xt ⊗ Ik)T ](1 + o(1)) (3.30)

For any unit vector d = (dT1 ,d
T
2 )T ∈ R2d, where d1 and d2 are d × 1 vectors, we

get:
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√
h/TdTV∗T =

1√
T

T−s∑
t=1

√
h[dT1 (Xs+t ⊗ Ik)Kh(t+ s− t0)

+ dT2 (Xs+t ⊗ Ik)K(1)
h (t+ s− t0)]εs+t

≡ 1√
T

T−s∑
t=1

RT,t

By (3.30), we get: V ar(
√
h/TdTV∗T ) = dT [V⊗N]d(1 + o(1)) ≡ θ2(1 + o(1)).

where N is defined earlier. Applying the ”big-block” and ”small-block” argument

(see the proof of Theorem 6.3, Fan and Yao 2003), we have:
√
h/TdTV∗T

D−→

N (0,θ2). Therefore, by (3.25) and the Cramér−Wold device,
√
ThVT (u) is asymp-

totically normal with mean zero and variance-covariance matrix Σ = (U⊗M)−1(V ⊗

N)(U ⊗M)−1, using the identity (3.29), we have: Σ = (U−1V U−1)⊗ (M−1NM−1).

Then the result of the theorem follows. �.

Before moving forward to the detailed proofs of Theorem 3.3, we need the

following definitions and lemmas.

Let hT = 1/
√
Th, for each j = 1, 2..., k,

βj(t0)
T = (Φ∗j(t0/T ), hΦ∗

′
(t0/T )) and Zt(t0) = (XT

t ,
t− t0
hT

XT
t )T . Define:

αTj(t0) = h2TΓ−1
∑T

t=1 ε
∗
tjXtK(

t− t0
hT

),

RTj(t0) = h2T
∑T

t=1 Γ−1[Φ∗0jXt − βj(t0)TZt(t0)]XtK(
t− t0
hT

),

Rj
T1 =

∑T
t=1 ε

∗
tjRTj(t)

TXt,

Rj
T2 =

∑T
t=1αTj(t)

TXtX
T
t RTj(t),

Rj
T3 =

1

2

∑T
t=1 RT

Tj(t)XtX
T
t RTj(t).

Definition 3.1: (Definition 1 in de Jong(1987)). For each j = 1, ...k, W j
T is called

clean if the conditional expectations of Wstj vanish:
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E(Wstj|Xs) = 0, a.s.

for all s, t ≤ T .

Lemma 3.1: (Lemma 7.2 in Fan, Zhang and Zhang(2001)). Under Assumption (C),

for each j = 1, 2, ...k, as h −→ 0, Th −→∞. We have:

Rj
T1 =

√
Th2Rj

T10 +O(hT−1/2),

Rj
T2 =

√
Th2Rj

T20 +O(hT−1/2),

Rj
T3 = Th4Rj

T30 +O(h3).

Furthermore, for any δ > 0, for j = 1, 2...k, there exists Mj > 0, s.t:

P (| R
j
T i√
Th2
| > Mj) ≤ δ, for i = 1, 2 and P (|R

j
T3

Th4
| > Mj) ≤ δ.

Using Lemma 3.1, we can easily show the following lemma.

Lemma 3.2: (Lemma 7.3 in Fan, Zhang and Zhang(2001)). Let Φ̂(t/T ) be the

local linear estimator P̂ we derived from Lemma 3.1. Let Φ̂∗(t/T ) ≡ QΦ̂(t/T ) =

(Φ̂T∗
1 (t/T ), ..., Φ̂T∗

k (t/T ))T , then under the Assumption (C), uniformly for t0 ∈ (0, T ),

for each j = 1, 2...k, we have:

Φ̂∗j(t0/T )− Φj(t0/T ) = (αTj(t0) +RTj(t0))(1 + op(1)),

where αTj(t0) and RTj(t0) are defined earlier. Again, we define:

UTj = h2T
∑T

t,s=1 ε
∗
tjε
∗
sjX

T
s Γ−1XtK(

t− s
hT

),

VTj = h4T
∑T

t,s=1 ε
∗
tjε
∗
sjX

T
t [
∑T

l=1 Γ−1XlX
T
l Γ−1K(

t− l
Th

)K(
s− l
Th

)]Xs.

Lemma 3.3: (Lemma 7.4 in Fan ,Zhang and Zhang(2001)). Under Assumption (C),
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assume εt ∼ N (0,Σ0), where QΣ0Q
T ≡ (σ2

ij)
k
i,j=1. As h −→ 0, Th3/2 −→ ∞, for

j = 1...k, we have:

UTj =
D

h
K(0)σ2

jj +
1

T

∑T
s 6=t ε

∗
sjε
∗
tjX

T
t Γ−1XsKh(s− t) + op(h

−1/2),

VTj =
D

h
ν0σ

2
jj +

2

Th

∑T
s<t ε

∗
sjε
∗
tjX

T
s Γ−1K ∗K(

s− t
hT

)Xt + op(h
−1/2)

with Kh(·) =
1

h
K
( ·
hT

)
.

Proof of Theorem 3.3: Firstly, we show that:

∼
RSSa
T

=
1

T

T∑
t=1

eTt1Σ
−1et1

= trace(

∑T
t=1 e

T
t1Σ
−1et1

T
)

=
1

T

T∑
t=1

trace(eTt1e
T
t1Σ
−1)

=
1

T
trace([

T∑
t=1

et1e
T
t1]Σ

−1)

=
1

T
trace([T − 1]Σ̂0Σ

−1) + op(1)

=
T − 1

T
trace(Σ̂0Σ

−1) + op(1)

= trace(Σ̂0Σ
−1) + op(1).

Knowing that Σ̂0 =
1

T − 1

∑T
t=1 et1e

T
t1.

Secondly, by the definition, we obtain: for each j = 1...k,

−λTj(Φ0)σ
2
jj = −h2T

T∑
l=1

ε∗lj[
T∑
t=1

ε∗tjX
T
t Γ−1XlK(

t− t0
hT

)]

+
1

2
h4T

T∑
l=1

T∑
t=1

T∑
s=1

ε∗tjε
∗
sjX

T
t Γ−1XlX

T
l XsΓ

−1K(
t− l
hT

)K(
s− l
hT

)
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−Rj
T1 +Rj

T2 +Rj
T3 +Op(

1

Th2
).

Thus, we apply Lemma 3.1, Lemma 3.2 and Lemma 3.3. We find out:

−λTj(Φ0) = µT + d1Tj −
1

2
√
h
W j
T + op(h

−1/2). (3.31)

where W j
T =

√
h

Tσ2
jj

∑T
s 6=t ε

∗
tjε
∗
sj[2Kh(s− t)−Kh ∗Kh(s− t)]XT

s Γ−1Xt.

Now, we need to show that for all j = 1, ...k,

W j
T

L−→ N(0, w)

where w = 2D‖2K −K ∗K‖22. Define:

Wstj =

√
h

T
cT (s, t)ε∗sjε

∗
tj/σ

2
jj,

for 1 ≤ s < t ≤ T with cT (s, t) can be written as:

cT (s, t) = b1(s, t) + b2(s, t)− b3(s, t)− b4(s, t)

where b1(s, t) = 2Kh(s− t)XT
s Γ−1Xt, b2(s, t) = b1(t, s);

b3(s, t) = Kh ∗Kh(s− t)XT
s Γ−1Xt, b4(s, t) = b3(t, s).

Hence W j
T =

∑T
s<tWstj, for j = 1...k.

In order to employ Proposition 3.2 in de Jong(1987), we need to check the following

conditions:

(1) W j
T is clean.

(2) var(W j
T ) −→ w. as T −→∞.

(3) Gj
I is of smaller order than var(W j

T ).

(4) Gj
II is of smaller order than var(W j

T ).
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(5) Gj
IV is of smaller order than var(W j

T ).

where

Gj
I =

∑
1≤s<t≤T E(W 4

stj),

Gj
II =

∑
1≤s<t<l≤T [E(W 2

stjW
2
slj) + E(W 2

tsjW
2
tlj) + E(W 2

lsjW
2
ltj)],

Gj
IV =

∑
1≤s<t<l<u≤T [E(WstjWsljWutjWulj) + E(WstjWsujWltjWluj) + E(WsljWsuj

WtljWtuj)].

Now we check each of the conditions above.

Condition (1) follows straightforwardly from the definition.

To verify (2), we notice that: var(W j
T ) =

∑T
s<tE(W 2

stj). Denote:

K(v,m) = K ∗ · · · ∗ K(v) as the m-th convolution of K(·) at v for m = 1, 2....

Therefore it follows that:

E[c2T (s, t)ε∗2sjε
∗2
tj ] =

Dσ4
jj

h
[16K(0, 2)− 16K(0, 3) + 4K(0, 4)](1 +O(h))

which leads to: w = 2D
∫

[2K(x)−K ∗K(x)]2dx = 2D‖2K −K ∗K‖22.

Condition (3) is satisfied by noting that for each j = 1, 2...k,

E[b1(1, 2)ε∗1jε
∗
2j]

4 = O(h−3)b3(1, 2)ε∗1jε
∗
2j]

4 = O(h−2).

which implies that E(W 4
12j) =

h2

T 4
O(h−3). Thus, Gj

I = O(T−2h−1) = o(1).

Condition (4) is verified by the following calculation:

E(W 2
12jW

2
13j) = O(E(W 4

12j)) = O(T−4h−1)

which gives that: Gj
II = O(T−1h−1) = o(1) for all j = 1, 2...k.

To prove condition (5), it suffices to compute the term E(W12jW23jW34jW41j).

By direct calculations:
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E[b1(1, 2)b1(2, 3)b1(3, 4)b1(4, 1)ε∗21jε
∗2
2jε
∗2
3jε
∗2
4j ] = O(h−1)

E[b1(1, 2)b1(2, 3)b1(3, 4)b3(4, 1)ε∗21jε
∗2
2jε
∗2
3jε
∗2
4j ] = O(h−1)

E[b1(1, 2)b1(2, 3)b3(3, 4)b3(4, 1)ε∗21jε
∗2
2jε
∗2
3jε
∗2
4j ] = O(h−1)

E[b1(1, 2)b3(2, 3)b3(3, 4)b3(4, 1)ε∗21jε
∗2
2jε
∗2
3jε
∗2
4j ] = O(h−1)

E[b3(1, 2)b3(2, 3)b3(3, 4)b3(4, 1)ε∗21jε
∗2
2jε
∗2
3jε
∗2
4j ] = O(h−1)

and similarly for the other terms. Hence,

E(W12jW23jW34jW41j) = T−4h2O(h−1) = O(T−4h)

which leads to: Gj
IV = O(T 4T−4h) = O(h) = o(1).

By now, we have shown for each j = 1, 2...k, we have, under H0:

σ−1T (λTj(Φ0)− µT + d1Tj)
L−→ N (0, 1)

where σ2
T =

D

2h

∫
(2K(x)−K ∗K(x))2dx,

µT =
D

2h
(2K(0)−

∫
K2(x)dx),

d1Tj = σ−2[Th4Rj
T30 − T 1/2h2(Rj

T10 −R
j
T20)] = Op(Th

4 +
√
Th2).

From the definition, we get our GLR test statistic, under H0:

λT (Φ0) ≈
T

2

∼
RSS0 −

∼
RSSa

∼
RSSa

≈
∼

RSS0 −
∼

RSSa

2trace(Σ̂0Σ−1)

=
1

2trace(Σ̂0Σ−1)

k∑
j=1

λj(RSS0 −RSSa)(j)

=
1

trace(Σ̂0Σ−1)

k∑
j=1

λjσ
2
jjλTj(Φ0)
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We already shown that var(λTj(Φ0)) = σ2
T (1 +O(1)).

Let

µ∗T =
µT

trace(Σ̂0Σ−1)

k∑
j=1

λjσ
2
jj,

d∗1T =
1

trace(Σ̂0Σ−1)

k∑
j=1

λjσ
2
jjd1Tj

Now, we focus on the variance of λT (Φ0), we have:

var[λT (Φ0)] = var[
1

trace(Σ̂0Σ−1)

k∑
j=1

λjσ
2
jjλTj(Φ0)] =

σ2
T

trace(Σ̂0Σ−1)2

k∑
j=1

λ2jσ
4
jj

+
2

trace(Σ̂0Σ−1)2

∑
1≤i<j≤k

cov(λjσ
2
jjλTj(Φ0), λiσ

2
iiλT i(Φ0))

Since −λTj(Φ0) = µT + d1Tj −
1

2
√
h
W j
T + op(h

−1/2), for i < j, we obtain:

cov(λiσ
2
iiλT i(Φ0), λjσ

2
jjλTj(Φ0)) =

λiλjσ
2
iiλ

2
jj

4h
cov(W i

T ,W
j
T )

=
λijσ

2
iiλ

2
jj

4h
E(W i

TW
j
T ),

Similar with the calculation of var(W j
T ), we obtain:

E(W i
TW

j
T ) = E[(

∑
s<t

Wti)(
∑
s<t

Wstj)]

=
∑

1≤s<t≤T

E(WstiWstj)
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=
∑

1≤s<t≤T

E[
hc2T (s, t)

T 2σ2
iiσ

2
jj

ε∗siε
∗
tiε
∗
sjε
∗
tj]

We note that:

E(c2T (s, t)ε∗siε
∗
tiε
∗
sjε
∗
tj) =

Dσ4
ij

h
[16K(0, 2)− 16K(0, 3) + 4K(0, 4)](1 +O(h)).

Therefore, we have:

var(λT (Φ0) =
σ2
T

trace(Σ̂0Σ−1)2
[
k∑
j=1

2
jσ

4
jj + 2

k∑
i<j

λiλjσ
4
ij](1 +O(1)).

Denote: σ∗2 ≡ σ2
T

trace(Σ̂0Σ−1)2
[
∑k

j=1 λ
2
jσ

4
jj + 2

∑k
i<j λijσ

4
ij] . Then:

var(λT (Φ0)) −→ σ∗2.

where σ2
T =

2D

h

∫
(K(x)− 1

2
K ∗K(x))2dx.

Notice that, λT (Φ0) − µ∗T + d∗1T is clean. In order to apply Proposition 3.2 in de

Jong (1987) again, it remains to check:

(1’) F ij
I is of smaller order than E(W i

TW
j
T )

(2’) F ij
II is of smaller order than E(W i

TW
j
T )

(3’) F ij
IV is of smaller order than E(W i

TW
j
T )

where

F ij
I =

∑
1≤s<t≤T E(W 2

stiW
2
stj),

F ij
II =

∑
1≤s<t<l≤T [E(WstiWsliWstjWslj)+E(WtsiWtliWtsjWtlj)+E(WlsiWltiWlsjWltj)],

F ij
IV =

∑
1≤s<t<l<u≤T [E(WstiWsljWutjWuli) + E(WstiWsujWltjWlui) + E(WsliWsuj

WltjWlui) + E(WsliWsujWtljWtui)].

Condition (1’) holds because E(W 2
12iW

2
12j) = O(E(W 4

12i)) = O(T−4h−1), Hence,
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F ij
I = O(T−2h−1) = o(1).

To prove (2’), note that:

E(W12iW13iW12jW13j) = O(E(W 2
12iW

2
13i))

= O(E(W 4
12i)) = O(T−4h−1)

Thus, F ij
II = O(T−1h−1) = O(1).

To prove (3’), it suffices to calculate the term E(W12iW23jW34iW41j). By straight-

forward calculations:

E[b1(1, 2)b1(2, 3)b1(3, 4)b1(4, 1)ε∗1iε
∗
2iε
∗
3iε
∗
4iε
∗
1jε
∗
2jε
∗
3jε
∗
4j] = O(h−1),

E[b1(1, 2)b1(2, 3)b1(3, 4)b3(4, 1)ε∗1iε
∗
2iε
∗
3iε
∗
4iε
∗
1jε
∗
2jε
∗
3jε
∗
4j] = O(h−1),

E[b1(1, 2)b1(2, 3)b3(3, 4)b3(4, 1)ε∗1iε
∗
2iε
∗
3iε
∗
4iε
∗
1jε
∗
2jε
∗
3jε
∗
4j] = O(h−1),

E[b1(1, 2)b3(2, 3)b3(3, 4)b3(4, 1)ε∗1iε
∗
2iε
∗
3iε
∗
4iε
∗
1jε
∗
2jε
∗
3jε
∗
4j] = O(h−1),

E[b3(1, 2)b3(2, 3)b3(3, 4)b3(4, 1)ε∗1iε
∗
2iε
∗
3iε
∗
4iε
∗
1jε
∗
2jε
∗
3jε
∗
4j] = O(h−1)

Then, E(W12iW23jW34iW41j) =
h2

T 4
O(h−1) = O(T−4h). yielding

F ij
IV = O(h) = o(1),

Therefore, we have shown that var(λT (Φ0)) has been dominated by σ∗2. Hence,

σ∗−1(λT (Φ0)− µ∗T + d∗1T )
D−→ N (0, 1)

This finishes the proof. �.

Proof of Theorem 3.4: Theorem 3.4 is one special case of Theorem 3.3 when Φ∗0

under H0 is a vector of constants. So, with the same notation as in the proof of

Theorem 3.3, we have for each j = 1, ...k, Φ∗”0 = 0. Hence, Rj
T10 = Rj

T20 = Rj
T30 = 0
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which leads to each d1Tj = 0 and d∗1T = 0. The rest of the proof is the same as the

proof Theorem 3.3. �.

Proof of Theorem 3.5: Under Ha and Assumption C, applying Theorem 3.3, we

have: for each j = 1, ...k,

−λTj(Φ0) = −µT +νTj−d2T − [
1

2
√
h
W j
T +
∑T

t=1G
T (u)(Ik⊗Xt)εt/(σ

2
jj)]+op(h

−1/2).

where νTj =
Th4

8σ2
jj

E{∆”T (u)[(XtX
T
t ) ⊗ Ik]∆”(u)}ω0, d2T =

T

2
E{GT (u)[(XtX

T
t ) ⊗

Ik]G(u)} with µT and W j
T defined in the proof of Theorem 3.3. The rest of the proof

is similar to the proof of Theorem 3.3. The details are omitted. �.



CHAPTER 4: CONCLUSION

In this dissertation, first of all,I define the spatial QR and study spatial quantile

regression estimation of multivariate threshold time series models. I derive asymp-

totic normality of the proposed estimator. I conduct simulations and analyze a real

example to show the performance of the proposed estimator.

Furthermore, I extend the multivariate threshold time series model to multi-

variate time-varying coefficient model. I also get an explicit representation of the

estimator of the time-varying coefficient using local linear technique. Asymptotic

normality is established as well.

Last but not the least, I propose the new test statistic which is built based on

the comparison of the likelihood under between null and alternative hypotheses. I

give the theoretical asymptotic null and alternative distributions. Monte Carlo sim-

ulations are conducted to illustrate the power of the proposed test procedure and

an application to a real data set is presented too.

There are still many interesting research topics related to this dissertation which

deserve further investigation. First, one may release the stationary or mixing con-

ditions. I only focus on the asymptotic result under stationary time series data

setting. Secondly, the generalized quasi-likelihood ratio test statistic can be ex-

tended to other models. For example, additive models, predictive regression models

and so on. Last but not the least,few paper available in literature about multivariate

time-varying coefficient models under nonstationary time series setting due to the

difficulty of deriving explicit representation for the nonstationary data. All of the

above issues can should be given a lot of attention as a future research topic.
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