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ABSTRACT

WENHUA ZOU. A unified treatment of derivative pricing and forward decision
problems within HJM framework. (Under direction of DR. MINGXIN XU.)

We study the HJM approach which was originally introduced in the fixed income

market by David Heath, Robert Jarrow and Andrew Morton and later was implemented

in the case of European option market by Martin Schweizer, Johannes Wissel, Rene

Carmona and Sergey Nadtochiy. The main contribution of this thesis is to apply HJM

philosophy to the American option market. We derive the absence of arbitrage by a drift

condition and compatibility between long and short rate by a spot consistency condition.

In addition, we introduce a forward stopping rule which is significantly different from

the classical stopping rule which requires backward induction. When Itô stochastic

differential equation are used to model the dynamics of underlying asset, we discover

that the drift part instead of the volatility part will determine the value function and

stopping rule. As counterpart to the forward rate for the fixed income market and implied

forward volatility and local volatility for the European option market, we introduce the

forward drift for the American option market.
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CHAPTER 1: HJM PHILOSOPHY

Modeling is a very important issue for the derivative market. Given a model, we can

do the pricing and hedging. Because the initial values of the bond and option price for

different maturities are observable from the market, the first requirement for a model is to

be consistent with the initial observations. Since many spot rate models have some strong

assumptions for their coefficients, for example Vasicek Model for interest rate market and

Black Scholes Model for option market, values generated by these models can not match

the initial observations. Even those models which let coefficients depend on time requires

frequent recalibration. In addition, there is no theoretical solution to when to do the

recalibration. Heath, Jarrow and Morton proposed to solve the problem by modelling

directly the dynamics of the entire structure of the interest rate curve. Because the initial

prices of European option for different maturities are also observable from the market,

HJM philosophy was extended to model the dynamics of forward implied volatility by

M. Schwerizer and J. Wissel (2008), R. Carmona, S. Nadtochiy (2009, 2011).

In this chapter, we will summarize how HJM philosophy is applied to the fixed income

and the European option market. In section one, we will introduce the forward rate model

for fixed income market. In section two, we will summarize the implied volatility model

and local volatility model for European option market. The goal of this chapter is to

introduce the main concepts for HJM model such as spot condition, drift condition and

how they are related to the spot rate models.
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1.1 Fixed Income Market

Given filtered probability space (Ω, (F)t≥0,F , P ), where (Ft≥0) satisfies the usual

condition and P is the risk-neutral probability measure.

Definition 1.1 Given continuous-time Markov process (short rate) {rt}t≥0, define:

1. P (t, T ) = Ete−
∫ T
t rsds.

P (t, T ) is the price of zero coupon bond at t with maturity T.

Note: P (0, T ) can be observed for different maturities T .

2. Bt = e
∫ t
0 rsds.

Bt is the bank account.

Definition 1.2 Suppose P (t, T ) is smooth in the maturity variable T , then define the

forward rate as

ft(T ) =
∂

∂T
logP (t, T ).

Lemma 1.3 [Spot Consistency Condition]

For all t ≥ 0, ft(t) = rt.

Proof. Taking derivative with respect to T , we can get

∂P (t, T )

∂T
= Et

∂e−
∫ T
t rsds

∂T
= Et[−rT · e−

∫ T
t rsds].

On the other hand

P (t, T ) = e−
∫ T
t ft(u)du
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which is equivalent to

ft(T ) = − ∂

∂T
logP (t, T )

∂e−
∫ T
t ft(u)du

∂T
= −ft(T )e−

∫ T
t ft(u)du

Set T = t, we can get: for t ≥ 0,

ft(t) = rt

�

1.1.1 Forward Rate Model

Recall the relationship between Bt and rt:

(1) dBt = rtBtdt

with initial value B0 = 1.

Forward rate model is formed as following:

dBt =



rtBtdt, B0 = 1

ft(t) = rt, for t ≥ 0

dft(u) = αt(u)dt+ βt(u)dWt, f0(u)

(2)

where αt(u) and βt(u) satisfy that ft(u) has a unique strong solution. The above model

should be built to satisfy:

1. Initial observation of the bond price P (0, T ) for all T ≥ 0 from the market can be

reproduced by the model.
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2. The model should be arbitrage free.

The first requirement can be included in the initial value of forward rate f0(T ) such

that f0(T ) = − ∂
∂T

logP (0, T ). The second requirement will give us the famous HJM

“drift condition”. We explain below that it is the consequence of enforcing the martingale

property. Since P (t, T ) is a martingale under the risk neutral measure P , this martingale

property leads to a constraint which is known under name of “drift condition”.

Theorem 1.4 Recall the definition of βt(u) and αt(u).

For all 0 ≤ t ≤ T .

αt(T ) = βt(T ) ·
∫ T

t

βt(s)ds

Proof of this theorem can be found in Heath, Jarrow and Morton [4].

The above formula shows that drift is completely determined by volatility.

The procedure to apply this HJM is: First we model the volatility of the forward rate.

Second, we calculate the drift of this forward rate.

Example 1.5:

Suppose βt(T ) = σft(T ), then according to the theorem above, we can have αt(T ) =

βt(T ) ·
∫ T
t
βt(u)du = σ2ft(T )

∫ T
t
ft(u)du. Heath, Jarrow and Morton [5] shows that this

drift condition causes forward rates to explode.

Example 1.6 Shreve [28] gives the following example:

Suppose βt(T ) = s(t)σ(T − t) min {M, ft(T )}, where s(t), σ(T − t) are deterministic

function and M is a constant number.
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Then they got:

αt(T ) = βt(T ) ·
∫ T

t

βt(u)du

= s(t)2σ(T − t) min {M, ft(T )}
∫ T

t

σ(u− t) min {M, fu(T )} du

Given forward rate model ft(u), we can get rt = ft(t). On the other hand, given

spot rate model rt, calculating the ft(T ) is not easy. We will need to calculate P (0, T ) =

Ee−
∫ T
0 rsds first and then f0(T ) = − ∂

∂T
logP (0, T ). In most cases, we can have the analytic

solution of f0(T ) only if analytic solution of P (0, T ) is available. The following is an

example of Affine models.

Example 1.7 Vasicek model:

drt = (α− βrt)dt+ σdWt

where α and σ are constants. Then

(3) P (0, T ) = eA(T )+B(T )r0

where

A(T ) =
4αβ − 3σ2

4β2
+
σ2 − 2αβ

2β2
T +

σ2 − αβ
β3

e−βT − σ2

4β3
e−2βT

and

B(T ) = − 1

β
(1− e−βT )

In addition, we can get:

(4) ft(T ) = rte
−β(T−t) +

α

β
(1− e−β(T−t))− (1− e−β(T−t))

σ2

2β2
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In practice, factor models are very popular. we discuss factor models using Nelson

and Siegel model as an example. We quote the description from the summary in R.

Carmona [2005].

Just like HJM approach, martingale property is used to give the no-arbitrage

condition. “A Factor model starts from a function G from Θ× [0,∞) into [0,∞) where

Θ is an open set in Rd which we interpret as the set of possible values of a vector of

parameters θ1, θ2, ...θd. Then G(θ, .) : τ → G(θ, τ) can be viewed as a possible candidate

for the forward curve. Nelson and Siegel has three parameters as

G(θ, τ) = θ1 + (θ2 + θ3τ)e−θ
4τ , τ ≥ 0

and

dθit = bit · dt+
D∑
j=1

σ · dW j
t

with initial value θi0.

Here θi0 is F0−measurable, and b and σ are progressively measurable process with values

in R4 and R4∗D respectively, such that
∫ t

0
(|bs| + |σs|)2ds < ∞, P−almost surely for all

finite t. Assuming further that G is twice continuously differentiable in the variables θj

, we can use Ito’s formula and derive the dynamics of f t(τ). The parameters θ1and θ4

are assumed to be positive. θ1 represents the asymptotic (long) forward rate, θ1 +θ2 gives

the left end point of the curve, namely the short rate, while θ4 gives an asymptotic rate

of decay. The set Θ of parameters is the subset of R4 determined by θ1 > 0, θ4 > 0 and

θ1 + θ2 > 0 since the short rate should not be negative. The parameter θ3 is responsible

for a hump when θ3 > 0 or a dip with θ3 < 0.”
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1.2 European Option Market

As is well known, the Black Scholes model is used to model the underlying asset to

price the European option. However, volatility is assumed to be a constant number in the

model which is totally different from the observation from the market. In fact, implied

volatility is a function of both time to maturity and strike price. Many approaches

have been created to solve this problem, for example implied volatility model and local

volatility model. In this part, we summarize two recent developments that apply the

HJM philosophy to those models: implied forward volatility model by Schweizer, Wissel

(2008) and local volatility dynamic model by Carmona, Nadtochiy (2009).

1.2.1 Implied Forward Volatility

Given Probability space (Ω, (F)t≥0,F , P ) where (Ft≥0) satisfies the usual condition

and P is the risk-neutral measure. The spot volatility model is

(5) dSt = µtStdt+ σtStdWt

where {µt}t≥0 and {σt}t≥0 are adapted stochastic processes to be specified. In addition,

W = {Wt}t≥0 is a d−dimensional Wiener process.

Schweizer, Wissel (2008) introduced forward implied volatilities X(t, T ) defined by

(6) X(t, T ) =
∂

∂T
((T − t)Σt(T )2),

where Σt(T ) is the implied volatility.

The implied forward volatility model is:
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dSt =



µtStdt+ σtStdWt, S0

Xt(t) = σt, for t ≥ 0

dXt(u) = αt(u)dt+ βt(u)dWt, X0(u)

(7)

Then they proved the Spot Consistency Condition Xt(t) = σt for t ≥ 0 and Drift

Condition in proposition 2.2 and theorem 2.1 in their paper.

1.2.2 Local Volatility Model

The spot volatility model is

(8) dSt = σtStdWt

where {µt}t≥0 and {σt}t≥0 are adapted stochastic processes to be specified. In addition,

W = {Wt}t≥0 is d−dimensional Wiener process.

Carmona, Nadtochiy (2009) used local volatility which was introduced by Dupire

(1994):

a2
t (τ,K) =

2∂Ct(τ,K)

K2∂2
KKCt(τ,K)

,

for τ > 0 and K > 0. Here Ct(τ,K) is the value of call option at time t with the maturity

t+ τ .

The local volatility model is:

dSt =



σtStdWt, S0

at(0) = σt, for t ≥ 0

da2
t (τ, x) = a2

t (u)[αt(τ, x)dt+ βt(τ, x)dWt], a2
0(τ, x)

(9)
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Carmona, Nadtochiy (2009) gave the drift condition in theorem 4.1 in their paper.

The following are two examples among those given in the paper that demonstrate the

computation between the short rate and the forward rate model.

Example 1.8 Suppose βt(τ, x) = 0 for all τ > 0 and x > 0.

According to the drift condition, we can get: at(τ, x) = a0(τ + t, x). Therefore

σt = a0(t, logSt).

Example 1.9

dSt =


Strdt+ Stσt(

√
1− ρ2dB1

t + ρdB2
t ), S0

dσt = f(t, σt)dt+ g(t, σt)dB
2
t , σ0

where B1
t and B2

t are independent Brownian motions, ρ ∈ [−1, 1]. f(t, x) and g(t, x)

satisfy the usual conditions which guarantee the existence and uniqueness of a positive

solution to the above system.

Carmona, Nadtochiy (2009) proved that the local volatility surface is given at time t = 0

by the formula

a2(T,K) =
[σ2
T
ST
σT
e−

d21(T,K)

2 ]

E[ST
σT
e−

d21(T,K)

2 ]
.

As in the fixed income market, factor models are very popular in practice for the

equity market. Brigo and Mercurio in [7, 8] introduced the following factor model. You

can also find following summary in Carmona [2008]:

“Θ = (σ, η1, η2, θ1, θ2, p1, p2, s, u)
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satisfying condition: p1, p2 > 0,p1 + p2 ≤ 1, θ1, θ2 ≥ 0, σ > 0, µ ≥ 0 Let

vi(τ) =

√
θi + (σ2 − θi)

1− e−ηiτ
ηiτ

and

di(τ, x) =
s− x+ (µ+ 1

2
v2
i (τ))τ

√
τvi(τ)

and η0 = 0,p0 = 1− p1 − p2, v0(τ) = σ,d0(τ, x) =
s−x+(µ+ 1

2
σ2)τ√

τσ
Then

a2(Θ, τ, x) =

∑2
i=0 pi(θi + (σ2 − θi)e−ηiτ )exp(−d2i (τ,x)

2
)/vi(τ)∑2

i=0 piexp(−
d2i (τ,x)

2
)/vi(τ)

The meaning of each of the parameters is as follows:

s is the logarithm of the current stock price.

σ is the spot volatility.

µ is the drift of the stock process (most likely, the difference between interest rate and

the dividend payment rate).

{ηi, θi}2
1 define scenarios for the volatility process.

pi are the respective probabilities of these scenarios.”



CHAPTER 2: OPTIMAL STOPPING PROBLEM

Classic optimal stopping problem is well-studied with nice results using martingale or

Markovian approach. We refer to Oksendal (2004), Peskir, Shiryaev(2006), Villenenve

(2007) and Dayanik, Karatzas (2008) for classical accounts of the theory. For the classical

problem, the philosophy of backward induction is used to solve the optimal stopping time.

For discrete-time case, Wald-Bellman equation is used to find the optimal solution. For

continuous-time case, Wald-Bellman equation changes to Snell Envelope.

There is vast number of literature on the application of optimal stopping problem: for

example optimal stock selling time by Zhang(2001), Guo and Liu (2005); option pricing

problem by Guo and Shepp (2001), Carmona and Touzi (2008); search problems by

Nishimura and Ozaki (2004); optimal stopping problem with multiple priors by Riedel

(2009).

The contribution for this chapter is to extend two verification theorems to two optimal

stopping times problems. In addition, they are extended to two optimal stopping times

problems. We begin with the introduction of the discrete and continuous optimal

stopping time problem in section one. In section two, we will prove two verification

theorems for optimal stopping time problems. In section three, we will extend the ver-

ification theorems from classic one optimal to two optimal stopping time problems. In

section four, examples are given based on the drifted Brownian motion and geometric

Brownian motion.
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2.1 Discrete And Continuous Results

Discrete Case:

Let G = (Gn)n≥0 be a sequence of random variables defined on a filtered probability

space (Ω,F , (Fn)n≥0, P ). G is adapted to the filtration (Fn)n≥0, in the sense that each

Gn is Fn-measurable. Recall that each Fn is σ-algebra if subsets of Ω such that F0 ⊂

F1 ⊂ ... ⊂ F . Typically (Fn)n≥0 coincides with the natural filtration (FGn )n≥0

Definition 2.1 A random variable τ : Ω→ {0, 1, ...,∞} is called Markov time if

{τ ≤ n} ∈ Fn for all 0 ≤ n ≤ N . A Markov time is called a stopping time if τ <∞

P.a.s. The family of all stopping times will be denoted by M .

Definition 2.2 MN
n = {τ ∈M : n ≤ τ ≤ N}

Assumption 2.3

E( sup
0≤k≤N

|Gk|) <∞

for all N > 0 with GN ≡ 0 when N =∞.

Consider the optimal stopping time:

(10) VN = sup
0≤τ≤N

EGτ

where 0 ≤ N and τ is a stopping time.
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Definition 2.4

SNn =


GN , for n = N

max
[
Gn,E

[
SNn+1 |Fn]], for n = N − 1, ..., 0.

Definition 2.5

τNn = inf
{
n ≤ k ≤ N : SNk = Gk

}
for 0 ≤ n ≤ N . Note that the infimum above is always attainedimum above is always

attained

Theorem 2.6 Finite horizon

Consider the optimal stopping problem [10] with N <∞ upon assuming that [2.3]

holds. Then for 0 ≤ n ≤ N we have:

(11) SNn ≥ E(Gτ |Fn)

for each τ ∈ mN
n .

(12) SNn ≥ E(GτNn
|Fn)

Moreover, we can have

1. The stopping time τN0 is optimal in[10]

2. If τ ∗ is an optimal stopping time in [10], then τN0 ≤ τ ∗ P.a.s

3. The sequence (SNk )0≤k≤N is the smallest super martingale which dominates (Gk)n≤k≤N .

4. The stopped sequence (SNk∧τNn ) is a martingale.
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Detail proof can be found in [22].
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Binomial Tree Example:

Suppose we have a binomial tree for Gi for 0 ≤ i ≤ 3
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Then we can use the Bellman equation to get the value of Vi for 0 ≤ i ≤ 3, which starts

i = 3 and let V3 = G3. For 0 ≤ i ≤ 2, Vi = max [Gi,EiVi+1] .
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After this, we can have the optimal stopping time:

inf {0 ≤ i ≤ 3 |Vi = Gi}
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The decision tree is as follows:

Continue

Continue

Stop

Continue

Stop

Stop

Stop

1
2

1
2

1
2

Continuous Case:

Suppose X = (X)0≤t<∞ is a strong Markov process with continuous paths in the

probability space (Ω, (F)t≥0,F , Px). In addition, we assume X takes values in a measur-

able space (Rd,B(Rd)), which starts at x under Px for x ∈ Rd. Moreover, (Ft≥0) satisfies

the usual condition.

Definition 2.7 A random variable τ : Ω→ [0,∞] is called Markov time if {τ ≤ t} ∈ Ft

for all t ≥ 0. A Markov time is called a stopping time if τ <∞ P.a.s.The family of all

stopping times will be denoted by M .

Definition 2.8 For 0 ≤ t ≤ T <∞, Define MT
t = {τ ∈M : t ≤ τ ≤ T}

Assumption 2.9 Gain function G : Rd → R is Borel measurable function satisfying:

Ex(sup0≤t≤T |G(Xt)|) <∞ and G(X∞) = 0 P.a.s. for all x ∈ Rd.

where, T is a fixed number in R+.
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Based on this assumption, we can get that Ex |G(Xτ )| <∞ and

lim inft→∞ExI(τ > t) |G(Xτ )| <∞ for all x ∈ Rd and stopping times τ . However, this

assumption does not hold for some functions and processes. If this assumption does not

hold, we can prove all theories are still true as long as the optimal stopping time in the

set: Ψ =
{
τ : ∀x ∈ Rd,ExG(Xτ ) <∞, lim inft→∞ ExI(τ > t) |G(Xτ )| <∞

}
(time independent)optimal stopping problem is:

(13) V (x) = sup
0≤τ≤T

ExG(Xτ )

where τ is a stopping time with respect to (Ft≥0) and T ∈ R+.

(time dependent)optimal stopping problem:

(14) V (t, x) = ess supt≤τ≤T E(t,x)G(τ,Xτ )

where τ is a stopping time with respect to (Ft≥0) and T ∈ R+.It is well know that the

above equation is called snell envelope.

There are a few natural questions that arise at this point before we are going to

solve the main problem:

1. Which decision we should make? Stop or continue?

2. If we choose to continue, how to find the optimal stopping time?

Let’s try to solve the first question. If current value G(x) ≥ ExG(Xτ ) for all stopping

time τ , then we should choose to stop. Otherwise we will tend to lose value. On the

other hand, if there exists a stopping time α such that G(x) < ExG(Xα), then we

should choose to continue because we can find at least one strategy to get more value.
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Now, let’s think of the second question. It’s not difficult to get the following results.

If X is time-homogeneous Markov process and optimal stopping problem is infinite

case, then the continuation and stop region if exists does not change over time and is

independent with the state variable. This is simply because we are actually facing a

same question as time goes. Hence, we just need to find the optimal constant boundary

in this case. For example, the boundary of the perpetual American put is constant if

we assume the underlying asset follows geometric Brownian motion. However, if X is

time-inhomogeneous Markov process or optimal stopping problem is finite case, then

the continuation and stop region change over time or depend on the state variable. For

example, the boundary of the finite American put is a function of time if we assume the

underlying asset follows geometric Brownian motion. If the underlying asset does not

follow geometric Brownian motion, then the boundary may be a function of both time

and state variable.

Following trivial cases are easy to get by using optional sampling theorem. If

{G(Xt)}0≤t≤T is sub martingale under Px, then τ = T . If {G(Xt)}0≤t≤T is super

martingale under Px, then τ = 0. However, what’s the optimal stopping time if

{G(Xt)}0≤t≤T is neither sub martingale nor supermartingale? Generally, the optimal

stopping time should be τ = inf {t ≥ 0 : Xt ∈ D}, where D = {x : V (x) = G(x)} .

V (x) represents the maximum possible value given time and state variable x. (Note:

here x includes the time dimension.) Then the key thing is to find V (x).

Let me use the following example to show the importance of the assumption of

uniformly integrability.
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Example 2.8 Consider the following optimal stopping problem:

V (x) = sup
0≤τ≤∞

Ex(Bτ − arctan(τ))

It’s easy to see the gain function is supermartingale, then optimal stopping time

τ = 0. Therefore, we can get V (x) = x. However, define

τ ∗ = inf {t ≥ 0 : Bt = 2x+ 1}, then Ex(Bτ∗ − arctan(τ ∗)) ≥ 2x. This means

Ex(Bτ∗ − arctan(τ ∗)) > V (x). Contradict with the theorem.

Theorem 2.9 Suppose V̂ is the smallest super harmonic function which dominates the

gain function G on Rd. In addition assuming that V̂ is lsc and G is usc. Set

D =
{
x ∈ Rd : V̂ (x) = G(x)

}
and τD = inf {t ≥ 0 : Xt ∈ D}.

Then:

If Px(τD <∞) = 1 for all x ∈ Rd, then V̂ = V and τD is optimal.

If Px(τD <∞) < 1 for some x ∈ Rd, then there is no optimal stopping time.

Detail proof can be found in[22].

2.2 Verification Theorem

Theorem 2.10 Value Function Independent on Time

Suppose there exists a measurable function V̂ (x) : Rd → R satisfying

1. V̂ (x) ≥ G(x) for all x ∈ Rd.

2. V̂ (x) is super harmonic function w.r.t (X)t≥0.
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3. There exists a stopping time ς ∈MT
0 such that

V̂ (x) = ExG(Xς)

for all x ∈ Rd.

Then we can have:

1. V̂ (x) = V (x) for any x ∈ Rd.

2. If V̂ is lsc and G(x) is usc, then τ ∗ = inf
{
t ≥ 0 : V̂ (Xt) = G(Xt)

}
is the smallest

optimal stopping time.

Proof: Because V̂ (x) ≥ G(x) for all x ∈ Rd,it’s easy to see that ExG(Xτ ) ≤ ExV̂ (Xτ ).

By the definition of super harmonic function in the continuous time, we can conclude

that ExG(Xτ ) ≤ V̂ (x) for any stopping time τ and x ∈ Rd. Therefore

sup0≤τ<∞ExG(Xτ ) ≤ V̂ (x) for any x ∈ Rd. Because of the third property, we can

conclude that V̂ (x) = V (x). In order to prove τ ∗ is the smallest optimal time, we first

claim that For any optimal stopping time τ , V̂ (Xτ ) = G(Xτ ) P.a.s. This is true

otherwise there exists an optimal stopping time such that Px(V̂ (Xτ ) > G(Xτ )) > 0.

Hence, ExG(Xτ ) < ExV̂ (Xτ ) ≤ V̂ (x) which contradicts with the assumption that τ is

optimal. Moreover, because V̂ (x) is lsc and G(x) is usc, τ ∗ is a stopping. Hence, τ ∗ is

the smallest optimal stopping time.

From the theorem above, we can get the following result: Suppose Xt be a

d-dimensional process satisfying the setup and does not include time dimension.(For

example, d-dimensional Ito diffusion process). In addition, let the gain function G(x)

satisfy assumption 2.9 w.r.t X = (Xt)0≤t<∞ and x=L is the global maximum point of
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G(x). Then V̂ (x) = G(L) and τ = inf {t ≥ 0 : Xt = L} is an optimal stopping time if

τ <∞ P-a.s.

Theorem 2.11 Value Function Dependent on Time

Suppose there exists a measurable function V̂ (t, x) : R+ ⊗Rd → R satisfying

1. V̂ (t, x) ≥ G(t, x) for all (t, x) ∈ R+⊗ ∈ Rd.

2. V̂ (t, x) is super harmonic function w.r.t (t,Xt)t≥0.

3. For any t ≥ 0, there exists stopping times ςt ∈MT
t such that

V̂ (t, x) = E(t,x)G(ςt, Xςt)

for all (t, x) ∈ R+ ⊗Rd.

Then we can have:

1. V̂ (t, x) = V (t, x) for (t, x) ∈ R+ ⊗Rd.

2. If V̂ (t, x) is lsc and G(t, x) is usc, then τ ∗ = inf
{
t ≥ 0 : V̂ (t,Xt) = G(t,Xt)

}
is the

smallest optimal stopping time.

Proof: Because V̂ (t, x) ≥ G(t, x) for all (t, x) ∈ R+⊗ ∈ Rd, it’s easy to see that

E(t, x)G(τ,Xτ ) ≤ E(t,x)V̂ (τ,Xτ ). By the definition of superharmonic function in the

continuous time, we can conclude that E(t,x)G(τ,Xτ ) ≤ V̂ (t, x) for any stopping time

τ ∈MT
t and (t, x) ∈ R+⊗ ∈ Rd. Therefore supt≤τ≤T E(t,x)G(τ,Xτ ) ≤ V̂ (t, x) for any

(t, x) ∈ R+⊗ ∈ Rd. Because of the third property, we can conclude that

V̂ (t, x) = V (t, x) for all (t, x) ∈ R+⊗ ∈ Rd. In order to prove τ ∗ is the smallest optimal

time, we first claim that V̂ (τ,Xτ ) = G(τ,Xτ ) P − a.s. for any optimal stopping time τ .
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If it’s not true, then Px(V̂ (τ,Xτ ) > G(τ,Xτ )) > 0. Hence,

ExG(τ,Xτ ) < ExV̂ (τ,Xτ ) ≤ V̂ (t, x) which contradicts with the assumption that τ is an

optimal stopping time. Moreover, because V̂ (t, x) is lsc and G(t, x) is usc, τ ∗ is a

stopping. Hence, τ ∗ is the smallest optimal stopping time.

The procedure to apply this theorem is first to guess the stopping time ςt (For

example, the first hitting time to the constant bound). Then calculate

V̂ (t, x) = E(t, x)G(ςt, Xςt). If the function V̂ (t, x) satisfies the first two properties in the

above theorem , then we can conclude that ςt are optimal stopping times for the snell

envelope and V̂ (t, x) = V (t, x) for all (t, x) ∈ R+ ⊗Rd. As we said before, bound is

constant for infinite time horizon and time-homogeneous Markov process but it will

depend on time for finite time horizon and time-homogeneous Markov process .

Therefore, we will assume bound is b(t, x) instead of constant b. The first thing is to

calculate V̂ (x) = ExG(Xς) for a very complexed function G(x). In order to calculate

the expected value, one way is to use Laplace transformation. We will give some

examples in section 5. Another way is to transform the problem to the boundary value

problems. Examples will be in the appendix.

2.3 Two Stopping Times

In this section, we remain the assumption of X and G from the previous section.

Consider the (time independent) optimal stopping problem:

(15) V (x) = sup
0≤ξ≤ς≤T

Ex[G1(Xξ) +G2(Xς)]

where ξ and ς are stopping times with respect to (Ft≥0) and T ∈ R+. Consider the
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(time dependent) optimal stopping problem:

(16) V (t, x) = ess supt≤ξ≤ς≤T E(t,x)[G1(ξ,Xξ) +G2(ςt, Xςt)]

where ξ and ς are stopping times with respect to (Ft≥0) and T ∈ R+.

Theorem 2.12 Value Function Independent on Time

Suppose G1(x) and G2(x) : Rd → R are continuous functions. If there exists

measurable functions Û(x) and V̂ (x) : Rd → R satisfying:

1. Û(x) ≥ G2(x) for all x ∈ Rd.

2. Û(x) is super harmonic function w.r.t (X)t≥0.

3. There exists a stopping time ς such that

Û(x) = ExG2(Xς)

for all x ∈ Rd.

4. V̂ (x) ≥ G1(x) + Û(x) for all x ∈ Rd.

5. V̂ (x) is a superharmonic function w.r.t (X)t≥0.

6. There exists a stopping time ξ such that

V̂ (x) = Ex[G1(Xξ) + Û(Xξ)]

for all x ∈ Rd.

Then
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1. V̂ (x) = V (x).

2. If V̂ (x) and Û(x) are continuous functions, then

ξ∗ = inf
{
t ≥ 0 : V̂ (Xt) = (G1 + Û)(Xt)

}

and

ς∗ = inf
{
t ≥ ξ∗ : Û(Xt) = G2(Xt)

}
are a pair of the stopping time (ξ∗, ς∗)

According to the theorem 2.12, we can get for any t ≤ τ1 ≤ τ2 ≤ T ,

Û(Xτ1) ≥ EXτ1G2(Xτ 2)

and

V̂ (x) ≥ Ex[G1(Xτ 1) + Û(Xτ1)]

Therefore we can get:

V̂ (x) ≥ Ex[G1(Xτ 1) + Û(Xτ1)]

≥ Ex[G1(Xτ 1) + EXτ 1G2(Xτ 2)]

≥ Ex[G1(Xτ 1) +G2(Xτ 2)]

On the other hand, because

V̂ (x) = Ex[G1(Xξ) +G2(Xς)] = Ex[G1(Xξ∗) +G2(Xς∗)]
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Therefore

V̂ (x) = V (x)

Moreover, if V̂ (x) and Û(x) are continuous functions, then (ξ∗, ς∗) are a pair of optimal

stopping times. �

Let Xt be a d-dimensional process satisfying the setup and does not include time

dimension.(For example, d-dimensional Ito diffusion process). In addition, let the gain

function G1(x) and G2(x) satisfy assumption 2.9 w.r.t X = (Xt)0≤t<∞ and x = L1 is

the global maximum point of G1(x) and x = L2 is the global maximum point of G2(x).

Then V̂ (x) = G1(L1) +G2(L2), ξ∗ = inf {t ≥ 0 : Xt = L1} and

τ ∗ = inf {t ≥ ξ : Xt = L2} are a pair of optimal stopping time if τ ∗, ξ∗ <∞ P-a.s.

Theorem 2.13 Value Function Dependent on Time

Suppose G1(t, x) and G2(t, x) : R+ ⊗Rd → R are continuous functions. If there exists

measurable functions V̂ (t, x),Û(t, x) : R+ ⊗Rd → R satisfying

1. Û(t, x) ≥ G2(t, x) for all (t, x) ∈ R+ ⊗Rd.

2. Û(t, x) is a superharmonic function w.r.t (t,Xt)t≥0.

3. There exists stopping times ςt ∈Tt such that

Û(t, x) = E(t,x)G2(ςt, Xςt)

for all (t, x) ∈ R+ ⊗Rd.

4. V̂ (t, x) ≥ G1(t, x) + Û(t, x) for all (t, x) ∈ R+ ⊗Rd.

5. V̂ (t, x) is superharmonic function w.r.t (t,Xt)t≥0.
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6. There exists stopping times ξt ∈MT
t such that

V̂ (t, x) = E(t,x)(G1 + Û)(ξt, Xξt)

for all (t, x) ∈ R+ ⊗Rd.

1. V̂ (t, x) = V (t, x).

2. If V̂ and Û are continuous functions, then

ξ∗t = inf
{
s ≥ t : V̂ (t,Xt) = (G1 + Û)(t,Xt)

}

and

ς∗t = inf
{
t ≥ ξ∗t : Û(t,Xt) = G2(t,Xt)

}
are a pair of the optimal stopping times.

According to the theorem 2.12, we can get for any t ≤ τ1 ≤ τ2 ≤ T ,

Û(τ1, Xτ1) ≥ E(τ1,Xτ1 )G2(τ2, Xτ 2)

and

V̂ (t, x) ≥ E(t,x)[G1(τ1, Xτ 1) + Û(τ1, Xτ1)]
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Therefore we can get:

V̂ (t, x) ≥ E(t,x)[G1(τ1, Xτ 1) + Û(τ1, Xτ1)]

≥ E(t,x)[G1(τ1, Xτ 1) + E(τ1,Xτ 1)G2(τ2, Xτ 2)]

≥ E(t,x)[G1(τ1, Xτ 1) +G2(τ2, Xτ 2)]

On the other hand, because

V̂ (t, x) = E(t,x)[G1(ξt, Xξt) +G2(ςt, Xςt)] = E(t,x)[G1(ξ∗t , Xξ∗t
) +G2(ς∗t , Xς∗t

)]

Therefore

V̂ (t, x) = V (t, x)

Moreover, if V̂ (t, x) and Û(t, x) are continuous functions, then (ξ∗t , ς
∗
t ) are a pair of

optimal stopping times. �

2.4 Examples

Drifted Brownian Motion:

In this section, we assume the process (Xt)0≤t<∞ satisfying:

dXt = µt+ dWt

with nonrandom initial value X0 where (Wt)0≤t<∞ is 1-dimensional Brownian motion

and µ is a constant.
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The optimal stopping problem is:

V (t, x) = ess supt≤τ<∞ E(t,x)e
−rτ G̃(Xτ )

where e−rtG̃(x) satisfies assumption 2.9 w.r.t (Xt)0≤t<∞.

In the case of µ ≥ 0, let stopping times ςt be the first hitting time to a constant bound

L > max(x, 0), i.e ςt = inf {s ≥ t : Xs = L} and Then we have:

g(t, x) = E(t,x)e
−rςtG̃(Xςt)

= G̃(L)E(t,x)e
−rςt

= G̃(L)e−rtE(0,x)e
−rς0

By using the Laplace transform for the first passage time of drifted Brownian motion,

we can get:

(17) g(t, x) = G̃(L)e−rte(x−L)(−µ+
√
µ2+2r)

In the case of µ < 0, let stopping times ςt be the first hitting time to a constant bound

L < min(x, 0), i.e ςt = inf {s ≥ t : Xs = L} and Then we have:

g(t, x) = E(t,x)e
−rςtG̃(Xςt)

= G̃(L)E(t,x)e
−rςt

= G̃(L)e−rtE(0,x)e
−rς0

By using the Laplace transform for the first passage time of drifted Brownian motion,
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we can get:

(18) g(t, x) = G̃(L)e−rte(L−x)(µ+
√
µ2+2r)

According to the theorem in the optimal stopping chapter, we can get the following

propositions.

Proposition 2.15 For µ ≥ 0, Suppose G̃ ∈ C2(R) satisfies following conditions for some

L.

1. G̃
′
(L+) = G̃(L)(−µ+

√
µ2 + 2r).(Smooth Pasting Condition)

2. (−r + µ ∂
∂x

+ 1
2
∂2

∂x2
)G̃(x) ≤ 0 for x > L.(Super harmonic Condition)

3. G̃(L)eL(µ−
√
µ2+2r) ≥ G̃(x)ex(µ−

√
µ2+2r), for all x < L.(Dominating Condition)

then:

V (t, x) =


G̃(L)e−rte(x−L)(−µ+

√
µ2+2r), for x < L

e−rtG̃(x), for x ≥ L

and τ = inf {t ≥ 0 : Xt ∈ [L,∞)} is an optimal stopping time. Define:

V̂ (t, x) =


G̃(L)e−rte(x−L)(−µ+

√
µ2+2r), for x < L

e−rtG̃(x), for x ≥ L

and

τt = inf {s ≥ t : Xs ∈ [L,∞)}

Since µ ≥ 0, then we can see τ is a stopping time. According to equation (19), we can
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have:

(19) V̂ (t, x) = E(t,x)e
−rτt

Because of the dominating condition, we get for x < L:

(20) G̃(L)e−rte(x−L)(−µ+
√
µ2+2r) ≥ e−rtG̃(x)

Because for x < L, we have

(21) (−r + µ
∂

∂x
+

1

2

∂2

∂x2
)[G̃(L)e(x−L)(−µ+

√
µ2+2r)] = 0

According to superharmonic property, we can have for x > L:

(22) (−r + µ
∂

∂x
+

1

2

∂2

∂x2
)G̃(x) ≤ 0

Because of the smooth pasting condition, we can see ∂V (t,x)
∂x

exists at for all

(t, x) ∈ (R+ ⊗R). Therefore, we have

V (t, x) =


G̃(L)e−rte(x−L)(−µ+

√
µ2+2r), for x < L

e−rtG̃(x), for x ≥ L

and τ = inf {t ≥ 0 : Xt ∈ [L,∞)} is an optimal stopping time. �

Proposition 2.16 For µ ≤ 0, suppose G̃ ∈ C2(R) except for finite number of points

satisfies following conditions :

1. G̃
′
(L−) = G̃(L)(−µ−

√
µ2 + 2r). (Smooth Pasting Condition)
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2. (−r + µ ∂
∂x

+ 1
2
∂2

∂x2
)G̃(x) ≤ 0 for x < L.(Super harmonic Condition)

3. G̃(L)eL(µ+
√
µ2+2r) ≥ G̃(x)ex(µ+

√
µ2+2r), for all x > L.(Dominating Condition)

then

V (t, x) =


e−rtG̃(x), for x ≤ L

G̃(L)e−rte(L−x)(µ+
√
µ2+2r), for x > L

and τ = inf {t ≥ 0 : Xt ∈ (−∞, L]} is an optimal stopping time.

proof will be very similar with the previous one.

Example

Recall drift Brownian motion Xt with µ = 0, X0 = x. G(x) = bx, where b is a negative

constant.

V (x) = sup
0≤τ<∞

Ex[e
−rτbXτ ]

Because

d[e−rtbXt] = (−rbXt)e
−rtdt+ be−rtdWt

then if Xt > 0, drift part is greater than 0 and we should chose to continue. Let’s guess

the stopping region is:

τ = inf {t ≥ 0 : Xt ∈ (−∞, L]}

Using the smooth pasting, we can get:

L = − 1√
2r

After checking the dominating property and superharmonic property, we can conclude
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τ = inf
{
t ≥ 0 : Xt ∈ (−∞,− 1√

2r
]
}

is the optimal stopping time and

V (x) =


e−rtbx, for x ≤ − 1√

2r

− e−rt b√
2r
e

(− 1√
2r
−x)
√

2r
, for x > − 1√

2r

Geometric Brownian Motion:

In this part, we assume the process (Xt)0≤t<∞ satisfying:

dXt = µXtdt+ σXtdWt

where, (Wt)0≤t<∞ is 1-dimensional Brownian motion and µ and σ are constants.

The optimal stopping problem is:

V (x) = sup
0≤τ<∞

Exe
−rτ G̃(Xτ )

where,e−rtG̃(x) satisfies assumption 1.1 w.r.t (Xt)0≤t<∞.

Let’s first think of a special stopping time which is the first hitting time to a constant

bound L, i.e τL = inf {t ≥ 0 : Xt = L} and τ tL = inf {s ≥ t : Xt = L}Then we have:

(23)

g(t, x) = E(t,x)e
−r(τ tL)G̃(Xτ tL

)

= G̃(L)E(t,x)e
−rτ tL

= G̃(L)e−rtE(0,x)e
−rτL

By using the Laplace transform for the first passage time of geometric Brownian
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motion, we can get:

(24) g(t, x) =


G̃(L)e−rt(

L

x
)
µ1−
√

µ21+2r

σ , for x < L

G̃(L)e−rt(
L

x
)
µ1+
√

µ21+2r

σ , for x ≥ L

where µ1 = µ
σ
− 1

2
σ. According to the theorem 1.5, we can get the following

propositions.

Proposition 2.18 Suppose µ− 1
2
σ2 ≥ 0.If G ∈ C2(R) satisfies following condition for

some L:

1. G̃
′
(L+) = G̃(L)

−µ1+
√
µ21+2r

σL
.(Smooth Pasting Condition)

2. (−r + µx ∂
∂x

+ 1
2
σ2x2 ∂2

∂x2
)G̃(x) ≤ 0 for x > L.(Super harmonic Condition)

3. G̃(L)L
µ1−
√

µ21+2r

σ ≥ G̃(x)x
µ1−
√

µ21+2r

σ , for all x < L.(Dominating Condition)

then

V̂ (t, x) =


G̃(L)e−rt(

L

x
)
µ1−
√

µ21+2r

σ , for x < L

e−rtG̃(x), for x ≥ L

and τ = inf {t ≥ 0 : Xt ∈ [L,∞)} is an optimal stopping time. The proof will be same

as before.

Proposition 2.19 Suppose µ− 1
2
σ2 ≤ 0. If G ∈ C2(R) satisfies following condition for

some L:

1. G̃
′
(L−) = G̃(L)

µ1+
√
µ21+2r

σL
. (Smooth Pasting Condition)

2. (−r + µx ∂
∂x

+ 1
2
σ2x2 ∂2

∂x2
)G̃(x) ≤ 0 for x < L.(Super harmonic Condition)

3. G̃(L)L
µ1+
√

µ21+2r

σ ≥ G̃(x)x
µ1+
√

µ21+2r

σ , for all x > L.(Dominating Condition)
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then

V (t, x) =


e−rtG̃(x), for x ≤ L

G̃(L)e−rt(
L

x
)
µ1+
√

µ21+2r

σ , for x > L

and τ = inf {t ≥ 0 : Xt ∈ (−∞, L]} is an optimal stopping time.



CHAPTER 3: AMERICAN OPTION MARKET

In this chapter, we will extend HJM approach to American option market by using

theorems in the optimal stopping problems. As we will see later, there are a number of

differences between European options and American options. First, there is no optimal

stopping time in European option market but it is a very important concept for American

options. Second, how to model volatility is the key issue for European options. However,

we will show how to model drift is the key issue for American options. Our focus will be

about how to build an arbitrage free model for the drift.

In this chapter, we will give the HJM drift condition. In addition, as counterpart to

the forward rate for bond market, the forward implied volatilities for European option

market, here we introduce the forward drift for American option. Also, we introduce

forward optimal stopping rule as counterpart to the classic stopping rule.

We will start with model setup in section one. In section two, we will give the

necessary drift condition. We will introduce the forward stopping rule in section three.

In section four, we will give the sufficient drift condition. In section five, we will discuss

the relationship between spot model and forward model.

Given probability space (Ω, P, (Ft)t≥0,F), where Ft is the natural filtration for the

multi-dimensional Brownian motion Wt. Fix a finite time horizon T .

Let us consider the following problem. We define Gt:

dGt = µtdt+ σtdWt
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with initial value G(0). µt and σt are adapted processes satisfying the condition that Gt

has unique strong solution.

Assumption 3.1

E( sup
0≤t≤T

|Gt|) <∞

Recall from the previous chapter, if we can find stopping times τt ∈ MT
t for t ≥ 0

such that V̂t = EtGτt satisfying it is a super martingale dominating Gt, then V̂t is the

snell envelop for Gt.

For any stopping times {τt}0≤t≤T such that τt ∈ MT
t , according to Hunt’s stopping

time theorem, we can get:

EtGτt = Gt + Et
∫ τt

t

µudu+ Et
∫ τt

t

σudWu

= Gt + Et
∫ τt

t

µudu

= Gt + Et
∫ T

t

µu1(τt ≥ u)du

= Gt +

∫ T

t

Et[µu1(τt ≥ u)]du.

Here, we can see that the value EtGτt does not depend on the volatility of the underlying

asset. In order to find EtGτt , we can assume that σu = 0 for 0 ≤ u ≤ T , and thus G(t)

satisfies:

(25) dGt = µtdt

with initial value G0. As we can see from the result above, from the point of view of the

optimal stopping problem, µt plays a very important role.



37

3.1 Model Setup

Definition 3.2 Recall the definition of Gt with no volatility part:

(26) dGt = µtdt

with initial value G0.

Notation:

1. V (0, T ) = sup0≤τ≤T EGτ

2. V (t, T ) = ess supt≤τ≤T EtGτ

3. τt = inf {t ≤ s ≤ T |V (s, T ) = G(s)}

With the above notation, we have

V (t, T ) = EtGτt = Gt +

∫ T

t

Et[µu1(τt ≥ u)]du.

As counterpart to the forward rate or forward implied volatility, here we introduce

forward drift:

(27) ft(u) = Et[µu1(τt ≥ u)].

Then for all 0 ≤ t ≤ T ,

(28) ft(t) = µt.

This is the Spot Consistency Condition for forward drift. Recall the spot rate for forward
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rate is short rate for the fixed income market, and for implied forward volatility is spot

volatility for European option market. Here we can see the spot rate for forward drift is

spot drift for American option market. In addition, recall the definition of τ0, we have

τ0 = inf
{

0 ≤ t ≤ T |
∫ T
t
ft(u)du ≤ 0

}
. Here the forward problem for American option

market is:

dGt =



µtdt, G0

ft(t) = µt, for 0≤ t ≤ T

dft(u) = αt(u)dt+ βt(u)dWt, f0(u)

Then the question is “what is the Drift Condition given the initial value G(0) and

f0(u) for all 0 ≤ u ≤ T”? We will show later that the Drift Condition here is described

by admissible drift surface αβt (u) given the volatility surface βt(u).

In order that the model above is arbitrage free, we have

(29) V (0, T ) = G0 +

∫ T

0

f0(u)du

Otherwise, the market will have arbitrage opportunity.

3.2 Necessary Drift Condition

As we know V (t, T ) is a martingale in the continuous region t ≤ τ0, we will use this

property to derive the relation between αt and βt.

Theorem 3.3 Given initial value f0(u). Recall the definition τ0, we can prove: for

0 ≤ t ≤ τ0, ∫ T

t

αt(u)du = 0.
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Proof:

Let z(t, T ) =
∫ T
t
ft(u)du

dz(t, T ) =

∫ T

t

dft(u)du− ft(t)dt

=

∫ T

t

[αt(u)dt+ βt(u)dWt]du− ft(t)dt

=

∫ T

t

[αt(u)du− ft(t)]dt+

∫ T

t

βt(u)dudWt

Therefore

dV (t, T ) = dGt + dz(t, T )

= [µt +

∫ T

t

αt(u)du− ft(t)]dt+

∫ T

t

βt(u)dudWt

=

∫ T

t

αt(u)dudt+

∫ T

t

βt(u)dudWt

Thus for 0 ≤ t ≤ τ0, we have ∫ T

t

αt(u)du = 0.

The above theorem gives us the necessary condition for αt(u) for 0 ≤ t ≤ τ0. There

are still two problems we have not solved here. First τ0 is so far still unknown. The

second problem is that we have not given any condition for the volatility surface βt(u)

for t ≤ u ≤ T . We will give those results in the following subsection.

3.3 Forward Stopping Rule

In this section, we will introduce a forward approach to solve the classic optimal

stopping problem. We will use this approach to find the optimal stopping time τ0 and

the value V (t, T ) before the stopping time τ0 for the American option. We will not focus

on the value function after the optimal stopping time.
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Definition 3.4 Recall f0(u). Given adapted stochastic process αt(u) and βt(u) for

t ≤ u ≤ T , define

f t(u) = f0(u) +

∫ t

0

αs(u)ds+

∫ t

0

βs(u)dWs

where αt(u) and βt(u) satisfy the regular condition so that f t(u) has a unique strong

solution.

Definition 3.5

τ̃ ∗ = inf

{
0 ≤ t ≤ T |

∫ T

t

f t(u)du ≤ 0

}

In order to explain the forward stopping rule more clearly, we use the following

binomial tree as an example to compare with the classic approach using backward in-

duction.
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Binomial Tree Example: Suppose T = 3.

In stead of modeling Gt, we model f t(u). Note that f0(u) is observable in the market.

f0(1)

f0(2)

f 1T (2)

f 1H(2)

f0(3)

f 1T (3)

f 1H(3)

f 2TT (3)

f 2TH(3)

f 2HT (3)

f 2HH(3)

Then they will calculate the value of U(i) for 0 ≤ i ≤ 3, which starts at i = 0. Let

U(0) =
∑3

i=1 f0(i). If U(0) ≤ 0, we stop. Otherwise, we will continue and calculate

U(1) =
∑3

i=2 f 1(i). If U(1) ≤ 0, we stop. Otherwise, we will continue and calculate

U(2) = f 2(3). The will have the decision tree
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U(0)

UT (1)

UH(1)

UTT (2)

UTH(2)

UHT (2)

UHH(2)

Continue

Stop

Continue

Continue

Stop

Stop

Stop
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Now we give a numerical example to illustrate the concept presented above.

Example 3.6

Suppose initial value f0(u) and the modeled values f t(u) are

2

−1

0

−2

1
2

3

3

0

1

−1

5

2

1
2

1
2

1
2
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4

3

−2

1

−1

5

2

1
2

1
2

1
2

Continue

Continue

Stop

Continue

Stop

Stop

Stop

1
2

1
2

1
2

Using the backward induction approach, one has to model the whole tree for Gt and

calculate the value function V (t, T ) starting from the end period to decide the optimal

stopping time. However, using forward decision approach, one does not need to sum over

the whole tree. Consequently, the decision one makes on the optimal stopping time will

depend on the more recent data and not the data far away.
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Definition 3.7 Recall the definition of τ̃ ∗.

Given adapted process (volatility surface) {βt(u)}0≤t≤u≤T , we call {αt(u)}0≤t≤u≤T

admissible drift surface if for 0 ≤ t ≤ τ̃ ∗,

∫ T

t

αt(u)du = 0.

We use the notation
{
αβt (u)

}
0≤t≤u≤T

to represent {βt(u)}0≤t≤u≤T admissible drift

surface.

It is easy to see that αt(u) ≡ 0 for all 0 ≤ t ≤ u ≤ T is admissible drift surface for any

volatility surface βt(u). For the discrete-time case, it is not difficult to check whether

the drift surface is admissible given the volatility surface. For the continuous-time case,

it is easy to see that constant drift αt(u) ≡ α is not admissible for any volatility surface

as long as α 6= 0. We now give an example of constant volatility surface.

Given βt(u) ≡ σ, we will check whether αt(u) is βt(u) admissible or not. First, we

need to calculate f t(u). According to the definition,

f t(u) = f0(u) +

∫ t

0

αs(u)ds+ σWt.

Then we have

∫ T

t

f t(u)du =

∫ T

t

f0(u)du+

∫ T

t

∫ t

0

αs(u)dsdu+ σWt(T − t)



46

and

τ̃ ∗ = inf

{
0 ≤ t ≤ T |

∫ T

t

f t(u)du ≤ 0

}
= inf

{
0 ≤ t ≤ T |

∫ T

t

f0(u)du+

∫ T

t

∫ t

0

αs(u)dsdu+ σWt(T − t) ≤ 0

}
= inf

{
0 ≤ t ≤ T |Wt ≤ −

∫ T
t
f0(u)du

σ(T − t)
−
∫ T
t

∫ t
0
αs(u)dsdu

σ(T − t)

}

Then we need to check the drift condition:

∫ T

t

αt(u)du = 0 for 0 ≤ t ≤ τ̃ ∗.

3.4 Sufficient Drift Condition

Definition 3.9

Suppose dXt = µxt dt+ σxt dWt. If there exists a stopping time τ ≥ 0 such that

µxt ≤ 0, P ⊗ dt− a.s.,

for t ≥ τ . Then we call process Xt a forward starting supermartingale and τ is called

the changing point for this process.

For any initial value G0 and f0(u) for 0 ≤ u ≤ T , we can always construct infinitely

many forward starting supermartingales such that they are consistent with the initial

values. These forward starting supermartingale will give us arbitrage free models.

Theorem 3.10 Given G0and f0(u). Recall the definition of V (0, T ).

Recall the definition of (volatility surface) βt(u), its admissible (drift surface) αβt (u) ,
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f t(u) and τ̃ ∗. For the given (volatility surface) βt(u), construct a forward supermartingale

dXt = µxt dt+ σxt dWt

satisfying:

1. X0 = G0.

2. The changing point for Xt satisfies τ = τ̃ ∗.

3. µxt = f t(t) for 0 ≤ t ≤ τ .

Recall the definition of τ ∗ as the optimal stopping time for Xt i.e sup0≤τ≤T EXτ = EXτ∗ .

Then

1. τ ∗ = τ̃ ∗.

2. For 0 ≤ t ≤ τ̃ ∗, ess supt≤τ≤T EtXτ = Xt +
∫ T
t
f t(u)du.

3. V (0, T ) = sup0≤τ≤T EXτ = EXτ̃∗ .

Proof. Define

V̂ (t, T ) = Xt +

∫ T

t

f t(u)du

and

U(t, T ) = ess supt≤τ≤T EtXτ .

According to the definition of f t(u) and admissible drift surface, we have for 0 ≤ t ≤ τ̃ ∗:

(30) dV̂ (t, T ) = [σxt +

∫ T

t

βt(u)du]dWt
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and

(31) V̂ (t, T ) ≥ Xt.

Because the changing point τ of Xt satisfies τ = τ̃ ∗, we have τ ∗ ≤ τ̃ ∗. Therefore for

0 ≤ t ≤ τ ∗,

U(t, T ) = EtXτ∗

≤ EtV̂ (τ ∗, T )

= V̂ (t, T ).

On the other hand, since for 0 ≤ t ≤ τ ∗,

(32) V̂ (t, T ) = EtV̂ (τ̃ ∗, T ) = EtXτ̃∗ ≤ U(t, T ).

According to equation above, we will get for 0 ≤ t ≤ τ ∗,

(33) U(t, T ) = V̂ (t, T ).

Moreover, because Xt is continuous process, we will have

(34) U(τ ∗, T ) = Xτ∗ .

Then we have

(35) V̂ (τ ∗, T ) = Xτ∗ .
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Thus

(36) τ ∗ = τ̃ ∗

and

(37) sup
0≤τ≤T

EXτ = EXτ̃∗

By V̂ (0, T ) = U(0, T ) and V̂ (0, T ) = V (0, T ), we have

(38) EXτ̃∗ = X(0) +

∫ T

t

f0(u)du = V (0, T ).

�

As we have seen from the previous subsection, αt(u) ≡ 0 for all 0 ≤ t ≤ u ≤ T is

an admissible drift surface for any volatility surface βt(u), we can have the following

corollary.

Corollary 3.11

Given adapted process (volatility surface) βt(u), define:

f t(u) = f0(u) +

∫ t

0

βs(u)dWs

Construct a forward supermartingale dXt = µxt dt+ σxt dWt satisfying:

1. X0 = G0.

2. τ̃ ∗ is the changing point for Xt.
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3. µxt = f t(t) for 0 ≤ t ≤ τ̃ ∗.

Then

V (0, T ) = sup
0≤τ≤T

EX(τ) = EX(τ̃ ∗).

Example 3.12

Given initial value G0 and f0(u) for 0 ≤ u ≤ T and recall the definition V0(T ).

According to above corollary, given any volatility surface βt(u), we can find a class of

forward starting supermartingale Xt with X0 = G(0) which satisfies:

V (0, T ) = sup
0≤τ≤T

EX(τ).

Here we choose βt(u) = σ · e−rt and αt(u) = 0. Then we can get:

ft(u) = f0(u) + σ ·
∫ t

0

e−rsdWs

and

τ ∗ = inf

{
0 ≤ t ≤ T |

∫ T

t

[f0(u) + σ ·
∫ t

0

e−rsdWs]du ≤ 0

}
,

which is equivalent to

τ ∗ = inf

{
0 ≤ t ≤ T |

∫ t

0

e−rsdWs ≤ −
∫ T
t
f0(u)du

σ(T − t)

}
.
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Then we can construct dXt = µxt dt+ σxt dWt wg satisfies:

µxt =


f0(t) + σ ·

∫ t

0

e−rsdWs, for t ≤ τ ∗

≤ 0, for t>τ ∗

In this case, the stopping time can be also written as:

τ ∗ = inf

{
0 ≤ t ≤ T |µxt ≤ f0(t)−

∫ T
t
f0(u)du

T − t

}

3.5 From Spot Drift To Forward Drift

In this subsection, given dGt = µtdt + σtdWt with G(0). Let us consider the optimal

stopping problem:

(39) V (0) = sup
0≤τ≤T

EGτ

For the bond market and European option market, given the spot rate model, one can

first calculate V (t, T ) by taking expectation, and then use it to get the value of forward

rate. For the American option market, it is difficult to compute the value of V (t, T )

given Gt by taking expectation over stopping times. An example where it is trivial to

calculate is the American Call option, when the optimal stopping time is known to be

the expiration time. Let us consider the stock selling problem in the following example.

Example 3.13

Stock process follows dSt = ρStdt + σStdWt with initial value S(0). Then the optimal
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stopping problem is

V (0) = sup
τ≥0

EGτ

with

Gt = e−rt(St − a)

where a, r, ρ and σ are constants.

Then we can get:

dGt = e−rt[(ρ− r)St + ar]dt+ e−rtσStdWt.

For this infinite horizon problem, there usually exists constant boundary. In this case,

the optimal time to sell stock is τ ∗ = inf {t ≥ 0|S(t) ≥ b∗}. Then

ft(t) = e−rt[(ρ− r)St + ar]

and for u > t,

ft(u) = Et
{
e−ru[(ρ− r)Su + ar]1(max

t≤s≤u
Ss < b∗)

}
.

For the finite-time horizon stock selling problem, it is not easy to calculate the above

expectation as the boundary is no longer a constant.

Normally there are more than one pair of volatility surface βt(u) and its admissible

drift surface αβt (u) such that Spot Consistency Condition is satisfied:

µt = ft(t).

Definition 3.14 Recall Definition 3.4 for f t(u). Define
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Σ =
{

(βt(u), αβt (u)) : 0 ≤ t ≤ u ≤ T |µt = f t(t)
}

and

F =
{
f t(u)|(βt(u), αβt (u)) ∈ Σ

}
.

Definition 3.15 Recall Definition 3.5 for τ̃ ∗ associated to f t(u). Define

Γ =
{
τ̃ ∗|f t(u) ∈ F

}
.

Theorem 3.16

Suppose |µt| ≤ B for all 0 ≤ t ≤ T and for some constant B.

Then τ ∗ = ess supτ̃∗∈Γ τ̃
∗ is the largest optimal stopping time of the problem:

(40) sup
0≤τ≤T

EGτ = EGτ∗

Proof: Define

(41) Yt = EtGτ∗ .

Then Yt is a martingale and Yτ∗ = Gτ∗ .

There is a countable sequence τi ∈ Γ such that

τ ∗ = ess supi≥1 τi.

Define: Zn = τ1 ∨ τ2 ∨ ... ∨ τn, then it is easy to see Zn ↗ τ ∗.
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For a given f
i

t(u) ∈ F with associated τi, define

(42) V̂ i(t, T ) = Gt +

∫ T

t

f
i

t(u)du.

Recall the property of V̂ i(t, T ), we have

(43) V̂ i(τi, T ) = Gτi

and by Theorem 3.10, for 0 ≤ t ≤ τi,

(44) V (t, T ) = V̂ i(t, T ).

Therefore,

EtGτi ≥ Gt.

Define

Y n
t = EtGZn .

Then

Y 1
t = EtGτ1 ≥ Gt.
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Suppose Y k
t ≥ Gt. Then

Y k+1
t = Et[GZk1(Zk = Zk+1) +Gτk+1

1(Zk < Zk+1)]

= Et[YZk1(τk+1 ≤ Zk) +Gτk+1
1(τk+1 > Zk)]

= Et[Yτk+1
1(τk+1 ≤ Zk) +Gτk+1

1(τk+1 > Zk)]

= EtGτk+1

≥ Gt.

We conclude Y n
t ≥ Gt for all n. For 0 ≤ t ≤ Zn,

Yt = EtGτ∗ = EtGZn + Et
∫ τ∗

Zn

µudu

≥ EtGZn −BEt[τ ∗ − Zn]

≥ Gt −BEt[τ ∗ − Zn]

Therefore we can get for 0 ≤ t ≤ τ ∗,

(45) Yt ≥ Gt.

Since τ ∗ ≤ τ ∗, we will have

(46) sup
0≤τ≤T

EGτ = EGτ∗ .

�

Example 3.17 Let us take another look of the example in the last subsection.
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Suppose

µt = f0(t) + σ ·
∫ t

0

e−rsdWs

Then according to theorem above, we can get: the optimal stopping for this process

satisfies:

τ ∗ ≥ inf

{
0 ≤ t ≤ T |µt ≤ f0(t)−

∫ T
t
f0(u)du

T − t

}
.
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APPENDIX A: BOUNDARY VALUE PROBLEMS

Suppose X = (X)0≤t<∞ is a strong Markov process with continuous paths in the

probability space (Ω, (F)t≥0,F , Px). Moreover, we assume X takes values in a measurable

space (Rd,B(Rd)) and (Ft≥0) satisfies the usual condition.

For the boundary value problem, we refer Oksendal [23].Our goal in this subsection

is to calculate V (x) = ExG(Xτ ) by using PDE method. We will first give the the PDE,

which V (x) should satisfy. Then we give the uniqueness theorems to prove the solution

of the PDE w(x) is also the solution of this expectation, i.e w(x) = V (x). Now we

assume D is a Borel set, τD is the first hitting time to D, i.e τD = inf {t ≥ 0 : Xt ∈ D},

G : Rd → R is a measurable function and λ = (λt)t≥0 is given by λt =
∫ t

0
λ(Xs)ds for a

measurable continuous function λ : Rd → R and L : Rd → R is a continuous function.

Then we have the following results:

1. Dirichlet Problem: If V (x) = ExG(XτD) for x ∈ Rd, then the function V satisfies:

AXV = 0

for all x ∈ C.

2. Killed Dirichlet Problem: If V(x)=Exe
−λτDG(XτD) for x ∈ Rd, then the function V

satisfies:

AXV = λV

for all x ∈ C.

3. Poisson Problem: If V (x) = Ex
∫ τD

0
L(Xt)dt for x ∈ Rd, then the function V satis-
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fies:

AXV = −L

for all x ∈ C.

4. Killed Poisson Problem: If V (x) = Ex
∫ τD

0
e−λtL(Xt)dt for x ∈ Rd, then the function

V satisfies:

AXV = λV − L

for all x ∈ C.

Lemma 2.14 Define:

V (x) = Ex[

∫ τD

0

e−rtL(Xt)dt+ e−rτDM(XτD)]

where τD is the first hitting time to a Borel set D, X satisfies the setup. L is a continuous

measurable function and M is measurable function. Then if characteristic operator exists

for V (x), then the following is true.

(AX − r)V (x) = −L(x)

for x ∈ C.

Proof: For any x ∈ C, which is the complement of set D, let U be an open set such

that x ∈ U ⊂ C and τUc be the first hitting time to set U c. Then it’s easy to see that
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τUc ≤ τD P-a.s.

ExV (XτUc ) = ExEXτUc [

∫ τD

0

e−rtL(Xt)dt+ e−rτDM(XτD)]

= ExEx
{

[

∫ τD

0

e−rtL(Xt)dt+ e−rτDM(XτD)] ◦ θτUc |FτUc
}

= Ex[
∫ τD◦θτUc

0

e−rtL(Xt ◦ θτUc )dt+ e−rτD◦θτUcM(XτD ◦ θτUc )]

= Ex[
∫ τD−τUc

0

e−rtL(Xt+τUc )dt+ e−r(τD−τUc )M(XτD)]

= Ex[
∫ τD

τUc

e−r(t−τUc )L(Xt)dt+ e−r(τD−τUc )M(XτD)]

= Ex[
∫ τD

0

e−r(t−τUc )L(Xt)dt−
∫ τUc

0

e−r(t−τUc )L(Xt)dt+ e−r(τD−τUc )M(XτD)]

According to the definition of characteristics operator, we can get:

(47)
AXV (x) = lim

Uc↓x

ExV (XτUc )− V (x)

ExτUc

= rV (x)− L(x)

Therefore, we can conclude that:

(48) (AX − r)V (x) = −L(x)

for all x ∈ C.Let V ∈ C2, then we can prove AXV (x) exists for Ito diffusion process

and

(49) AXV (x) =
d∑
i=1

bi
∂V

∂xi
+

1

2

d∑
i=1

d∑
j=1

(σσT )ij
∂2V

∂xi∂xj

for d dimension Ito diffusion process.
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In fact, the Dirichlet problem already gives the PDE which the value function should

satisfy if there exists an optimal stopping time. In general, if X is d dimension Markov

process, we will get a d dimension PDE. However, if G(x) has some special form, we

may have PDE with lower dimensions because of the property of the function. For

example, if Yt = (t,Xt), the PDE should have form LY = ∂
∂t

+ LX . This is true for all

V (t, x) satisfying V (0, x) = E(0,x)G(τD, XτD). If we consider G(t, x) = e−rtG(x), then

LY = LX − λ.

We will give the unique theorem below. Let C be a open connected set in Rd, M ∈

C(∂C) and L ∈ C(C). LX is the generator of Ito diffusion process. i.e dXt = µ(Xt)dt+

σ(Xt)dBt, where Bt is d dimensional Brownian motion. Moreover, we assume µ(x) and

σ(x) are continuous functions satisfying the existence of the SDE. Then the combined

Dirichlet-Poisson problem is:

(50) LXw = −L

for x ∈ C and

(51) lim
x→y,x∈C

w(x) = M(x)

for y ∈ ∂C. LX is the generator of Ito diffusion process. i.e dXt = µ(Xt)dt+ σ(Xt)dBt,

where Bt is d dimensional Brownian motion. Moreover, we assume µ(x) and σ(x) are

continuous functions satisfying the existence of the SDE.

Theorem 2.15 (Uniqueness theorem)

Suppose the following statements are true:
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1. M is bounded.

2. L satisfies Ex[
∫ τD

0
|L(Xt)| dt] <∞.

3. τD <∞ P xa.s. for all x.

Then if w ∈ C2(C) is a bounded solution of the combined Dirichlet-Poisson problem

above, we have

w(x) = Ex[M(XτD)] + Ex[

∫ τD

0

L(Xt)dt]

Proof can be found in [22].

Discounted and Integral Value Function

In this section, we assume the process (Xt)0≤t<∞ satisfying:

dXt = µt+ dBt

where, (Bt)0≤t<∞ is 1-dimensional Brownian motion and µ is a constant.

Discounted and Integral Gain Function with One Stopping Time

The optimal stopping problem is:

(52) V (x) = sup
0≤τ<∞

Ex[

∫ τ

0

e−rtL(Xt)dt+ e−rτM(Xτ )]

where Xt is 1-d drifted Brownian motion. In addition, L is continuous function and M

is measurable function.

Let us first think of a special kind of stopping time. i.e. τ ba = inf {t ≥ 0 : Xt ∈ (−∞, a] ∪ [b,∞)}
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for some a < b. According to the theorem in the first chapter, we know V (x) =

Ex[
∫ τba

0
e−rtL(Xt)dt+ e−rτ

b
aM(Xτba

)] must satisfy the following PDE:

(53) (µ
∂

∂x
+

1

2

∂2

∂x2
− r)V (x) = −L(x)

for x ∈ (a, b). We assume the following boundary conditions:

(54)
V (a) = M(a)

V (b) = M(b)

The general solution of this PDE is:

(55) V (x) = C1e
r1x + C2e

r2x + q(x)

where ri is the solution of the following equation:

(56)
1

2
r2
i + µri − r = 0

and r1 < 0 < r2. And

(57) C1 =
(M(a)− q(a))er2b − (M(b)− q(b))er2a

er2b+r1a − er1b+r2a

(58) C2 =
(M(a)− q(a))er1b − (M(b)− q(b))er1a

er2a+r1b − er2b+r1a

Lemma Suppose the following statements are true:

1. M(x) and q(x) are finite for any x ∈ R.
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2. lima→−∞
M(a)−q(a)

er1a
= 0.

3. limb→∞
M(b)−q(b)

er2b
= 0.

Then if a→ −∞

C1 → 0 and C2 → [M(b)− q(b)]e−r2b

If b→∞, then

C1 → [M(a)− q(a)]e−r1a and C2 → 0

Proposition Let τb = inf {t ≥ 0 : Xt ∈ [b,∞)}, consider the following problem:

Vb(x) = Ex[

∫ τb

0

e−rtL(Xt)dt+ e−rτbM(Xτ b)]

where Xt is 1-d drifted Brownian motion with µ > 0.L is continuous function and M is

measurable function. In addition M(x) and q(x) is finite for all x ∈ R. Moreover

lima→−∞
M(a)−q(a)

er1a
= 0. Then

Vb(x) = [M(b)− q(b)]er2(x−b) + q(x)

for x ∈ (−∞, b).

Proposition Let τa = inf {t ≥ 0 : Xt ∈ (−∞, a]}, consider the following problem:

Va(x) = Ex[

∫ τa

0

e−rtL(Xt)dt+ e−rτaM(Xτ a)]

where Xt is 1-d drifted Brownian motion with µ < 0.L is continuous function and M is

measurable function. In addition M(x) and q(x) is finite for all x ∈ R. Moreover,
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lima→−∞
M(a)−q(a)

er1a
= 0. Then

Va(x) = [M(a)− q(a)]er1(x−a) + q(x)

for x ∈ (a,∞).

Now, let’s define τ ta = inf {s ≥ t : Xs ∈ (−∞, a]} and

(59)

 dZ1t

dZ2t

 =

 e−rtL(Xt)

µ

 dt+

 0

1

 dBt

Moreover, if we define Va(t, z1, z2) as the following:

(60)

Va(t, z1, z2) = E(t,z1,z2)[
∫ τ ta

0
e−rtL(Xt)dt+ e−rτ

t
aM(X t

τ a)]

= E(t,z1,z2)[
∫ t

0
e−rsL(Xs)ds+

∫ τ ta
t
e−rsL(Xs)ds+ e−rte−r(τ

t
a−t)M(X t

τ a)]

= z1 + e−rt[
∫ τa

0
e−rsL(Xs)ds+ e−r(τa)M(Xτ a)]

= z1 + e−rtVa(z2)

According to the sufficient theorem in the first chapter and lemma above, we can get the

following theorems.
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Proposition 4.1 Suppose µ ≥ 0, if M(x) ∈ C2(R) has the following properties for some

b:

1. M
′
(b+) = [M(b)− q(b)]r2 + q

′
(b). (Smooth Pasting)

2. (−r + µ ∂
∂x

+ 1
2
∂2

∂x2
)M(x) + L(x) ≤ 0 for x ≥ b. (Superharmonic Property)

3. [M(b)− q(b)]e−r2b ≥ [M(x)− q(x)]e−r2x, for all x ∈ (−∞, b).(Dominating Property)

then

V̂ (t, z1, z2) =


z1(t) + e−rt[M(b)− q(b)]er2(z2(t)−b) + e−rtq(z2(t)), for z2(t) ∈ (−∞, b)

z1(t) + e−rtM(z2(t)), for z2(t) ∈ [b,∞)

and τ = inf {t ≥ 0 : Xt ∈ [b,∞)} is an optimal stopping time.

Proposition 4.2 Suppose µ ≤ 0, if M(x) ∈ C2(R) has the following properties for some

b:

1. M
′
(a−) = [M(a)− q(a)]r1 + q

′
(a). (Smooth Pasting)

2. (−r + µ ∂
∂x

+ 1
2
∂2

∂x2
)M(x) + L(x) ≤ 0 for x ≤ a. (Superharmonic Property)

3. [M(a)− q(a)]e−r1a ≥ [M(x)− q(x)]e−r1x, for all x ∈ (a,∞).(Dominating Property)

then

V̂ (t, x) =


e−rtM(x), for x ∈ (−∞, a]

e−rt[M(a)− q(a)]er1(x−a) + e−rtq(x), for x ∈ (a,∞)
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and τ = inf {t ≥ 0 : Xt ∈ (−∞, a]} is an optimal stopping time.


