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ABSTRACT 
 

 
MICHAEL JAMES DYE. A methodology for the development of performance and 
distress models for a PMS using automated data. (Under the direction of DR. DON 

CHEN) 
 
 
Automated pavement data collection technologies have gained momentum due to 

the fact that the automated data have more detail, greater quantity, better quality, and better 

repeatability. A systematic method of developing performance and distress models; 

however, is lacking. This study was conducted to address this issue. Maximum Allowable 

Extent (MAE) values and the Analytical Hierarchy Process (AHP) were used to calculate 

composite distress and performance indices. Non-linear sigmoidal distress and 

performance models were then developed. A visual comparison of the automated model 

curves and the corresponding windshield model curves indicated that the automated models 

are robust. In addition, trigger points on the North Carolina Department of Transportation 

(NCDOT) Pavement Management System (PMS) decision tress were determined, which 

allow NCDOT engineers to select appropriate maintenance actions.  
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CHAPTER 1: INTRODUCTION 
 
 
1.1Background and Significance  
  

Roadways allow for the transportation of goods and equipment; therefore, it is 

important to have an established evaluation and maintenance plan for roadways. A 

common tool used by state highway agencies to evaluate and monitor roadway networks 

is the Pavement Management System (PMS). A PMS is defined as a set of tools and 

methods that assist pavement engineers in the decision making process of finding the 

optimal strategies for evaluating and maintaining pavements to a serviceable condition 

(Chowdhury, 2010).  The PMS concept took root in the United States during the 1970’s 

when state agencies began to understand that performances of the roadways were linked to 

the maintenance of the pavements (Finn, 1979). PMS has continued to grow ever since its 

beginning, and received a major upgrade in the 1980’s that allowed pavement managers to 

include decision making techniques as a part of the process for analyzing roadways. This 

provided the pavement engineers the ability to find the most cost effective alternative for 

the project (Ferreira et. al., 2002). 

Many counties, states, and cities have developed or adapted a PMS to aid in the 

maintenance of their roadways. This was no different for the state of North Carolina who 

developed their PMS in 1982 with the passing of the Executive Organization Act of 1971 

(Greene, 2011). The state of North Carolina notices that there was a rising need to properly 

evaluate and maintain the 79,000 miles of roadway pavements throughout the state of 
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North Carolina, the nation’s second largest state-maintained roadways system (Greene, 

2011). The North Carolina Department of Transportation (NCDOT) utilizes its PMS to 

manage data on current roadway conditions which has assisted in the maintenance and the 

repair of roadway surfaces for an accelerated, efficient process (Mastin, 2011).  

There are currently two methods for collecting the distress data, windshield surveys 

and automated data collection (McQueen and Timm, 2005). Once the distress data have 

been collected, they are rated through a pavement performance index which reveals the 

current condition of the pavement.   

 A windshield survey is a method used by state DOT’s to manually collect pavement 

distress data. In North Carolina, windshield surveys are performed by highly trained 

personnel who travel at 10-15 mph along predetermined travel paths or along the shoulders 

of pavement (Kim et. al, 2009). The trained personnel observe distresses on pavements and 

fill out a standard survey form developed by the NCDOT. Using these forms the personnel 

make qualitative judgments of pavement performance based on the surface of the roadway 

for both asphalt concrete and portland cement concrete (Underwood, 2011). The personnel 

rate the surface of the roadway based on the amount and severity of roadway distresses. 

The NCDOT has implemented the automated data collection method as a new tool 

to their PMS toolbox. This method is performed by using a high speed profiler that is used 

to collect the distresses from the pavement. The vehicles are equipped with high speed 

profiling equipment that include state of the art cameras, lasers, and GPS positioning 

sensors that collect the necessary data (Bertucci, 2009). Previous studies have shown 

automated data collection can improve data quality, increase safety, and reduce resources 

(McGhee, 2004).  
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1.2 Problem Statement 

According to the NCDOT High Speed Distress Manual (2011), the NCDOT have 

started collecting automated data since 2011. The purpose of this research is to establish a 

methodology for the development of distress and performance models for automated 

collected data. This research will help NCDOT engineers predict pavement performance, 

and will ensure that appropriate maintenance action is taken. Currently, performance and 

distress models used by the NCDOT were developed from windshield collected data. The 

automated data collection method has shown more consistency among the data verses data 

collected by windshield surveys (McGhee, 2004). The automated data method records the 

data numerically, whereas, the windshield method records the data manually. This will lead 

to different statistical analysis methods to analyze the data, which will lead to different 

performance and distress models. Therefore, a new set of performance and distress models 

need to be developed for the automated collected data. 

1.3 Purpose and Objectives 

The purpose of this research was to develop the distress and performance indices, 

distress and performance models, and triggers points on the decision trees. The objective 

of this research was to normalize data, develop distress and performance models, compare 

automated distress and performance models against windshield distress and performance 

models, and determine trigger points on the NCDOT PMS decision tress.  
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1.4 Scope and Limitations 
 
 In order to complete the objectives for this project, the researchers needed to clean 

the data in order to remove outliers, determine the initial distress indices, and compare 

automated performance curves with the windshield performance curves.  

 The limitation associated with this project was the models were developed using 

data collected for North Carolina roadways, and therefore the models might not be 

applicable to be used in other states. The methodology, however, is flexible enough that 

any other state DOTs can follow the steps to develop models that will work with roadways.   

 

 
 



 
 

 

 
 

CHAPTER 2: LITERATURE REVIEW 
 
 
In order for a PMS to be successful, it must have the ability to accurately predict 

pavement performance (Lewis et. al, 2013). According to Applied Pavement Technology, 

pavement prediction models help DOT engineers estimate future pavement conditions; 

identify the appropriate time for maintenance and rehabilitation action; identify cost 

effective treatment strategies; estimate statewide pavement goals, objectives, and 

constraints; and demonstrate the consequences of various pavement investment strategies 

(2010).  

2.1 Windshield Collection Method 
 

The windshield data collection method was the NCDOT’s primary method for 

collecting roadway distress data; and the NCDOT has been using this method since 1982 

(Mastin, 2011). The windshield surveys are performed by a team of highly trained 

personnel who drive vehicles along the right hand lane or along the shoulder of the road, 

and this is typically done below average highway speeds (Mastin, 2011). The personnel 

are responsible for determining the condition of the road’s surface, as well as to record the 

current condition of the roadway. This data is recorded on pre-developed survey forms 

(Sivaneswaran et. al, 2004). An example survey form from the NCDOT High Speed 

Distress Manual can be seen in the Appendix A (Mastin, 2011). The severity rating is based 

on a rating of none (N), light (L), moderate (M), and severe (S) for each distress; however, 

the rating of pavement distress is subjected to the personnel’s perception (Kim, 2009). The 
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typical distance covered by a windshield survey crew for one day is between 125-200 

miles. This is directly dependent on the weather, number of sections, and the variation in 

the condition of the roadway (Hartgen, 1983).  

The intrinsic problem with the windshield surveys is the quality of the data 

recorded. Due to the fact that the data is collected by human personnel, the rating of the 

pavement condition is subjective to the rater. This can lead to the data lacking in credibility, 

which is a hindrance for a PMS when analyzing the data (Wu, 2001).  Another problem 

with windshield data collection is the ability to repeat the same results between the different 

raters. This can create variability within the data that can lead to false results when 

analyzing the data (Mastin, 2011). For example, the windshield collected data has shown 

that the asphalt rating is recorded more consistently than the data recorded for concrete 

roadway sections. This has created a large variance between the two types of pavements 

(Mastin, 2008). 

Safety is a concern for the personnel who perform the roadway surveys, as well as, 

for the travelling motorist (Sivaneswaran et. al, 2004); however, there are no crash test 

statistics from accidents caused by the windshield surveys. Windshield surveys require a 

large amount of capital due to the fact that the windshield surveys are heavily labor 

intensive operations that require staff members for an extensive amount of time (Wu, 

2001). 

The manually collected data is processed by taking the raw data for each type of 

distress and determining the deduction value that corresponds to its specific roadway 

section. The deductions are then combined for each of the distresses to develop a final 
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performance index for the roadway section.  These performance index values are used to 

determine the appropriate action that is needed for the roadway section.   

2.2 Automated Data Collection Method 
 

Automated data is defined as data collected by photography or by the use of non-

contact sensor equipment. The data collected for automated distress differs from the data 

that is collected by windshield surveys in detail, quantity, and quality. The automated data 

tends to have more detail, greater quantity, better quality, and better repeatability (McGhee, 

2004). The automated data is collected using high speed profilers, as seen in Figure 1.  

 

 

FIGURE 1: High speed profiler (International Cybernetics, 2014) 
 
 
The high speed profiler vehicles are equipped with state of the art cameras, lasers, 

and GPS positioning sensors (Bertucci, 2009). When compared to manual survey methods 

the automated survey methods can collect more data, with improved quality, while 

increasing safety, and with minimal resources (McGhee, 2004). The profilers can vary in 

make or model of vehicles, and the profilers do not require a DOT identification to be 
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mounted on the vehicle. This is because private vendors are often used to collect the data. 

The data is recorded as the vehicle travels in the most right hand lane while the profiler 

records the condition of the roadway. The most right hand lane was been deemed the travel 

lane by the NCDOT.  The automated collection method severity rating is based on a rating 

of none (N), light (L), moderate (M), and severe (S) for each distress. This is for asphalt 

concrete and the portland cement concrete. 

The automated method has achieved breakthroughs in PMS by implementing some 

of the latest technology available. Since the 1980’s, video imagery has been used by state 

DOTs as a tool for pavement management. Video imagery is the act of recording the 

roadway surface through means of video tape while the profiler records the data when the 

vehicle is driven down the roadways. The information is then analyzed frame by frame 

against a reference measurement (Baker et. al, 1987). The problem with video is its 

inability to record 3D data. Video imagery cannot discern between all distresses in the 

pavement caused by load and non-load related sources (Sun, 2011). Digital cameras were 

also implemented as the technology increased. The digital cameras used have a high 

resolution to ensure that high quality photographs are taken. According to Wang (2002), 

high resolution digital cameras can capture cracks on the roadway surface with a width that 

is less than two millimeters. However, perhaps the greatest breakthrough in technology 

came from the implementation of lasers. These lasers recently have become quite popular 

in PMS because of their ability to produce 3D data.  Lasers overcome the problems that 

occur with the limitation of 2D data recording systems by being able to differentiate 

between pavement distresses and debris on the roadway surface (Sun, 2011). The lasers 

work by using a triangulation technique, which is where a signal is sent out that measures 
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the vertical distance to the pavement surface at several points (Al-Quadi, 1992). The 

implementation of new advances in computer data processing gives the NCDOT engineers 

the ability to process real time data as the high speed profilers collect the images (Wang, 

2002). With the advancement of laser technology, data can be collected at highway speeds; 

the data captured by these lasers can be recorded at 1 inch intervals or less (McGhee, 2004).  

However, the automated data method has not yet been perfected, as there are still 

minor issues that can occur after the data is collected. Since private vendors can hold state 

PMS contracts to collect the data, there can be slight differences in the way the data is 

processed through their developed algorithms. This can lead to slight variations between 

different vendor’s distress ratings.  

Certain distresses are challenging for the automated collection to gather and 

process. The Wyoming Department of Transportation (WDOT) stated that they it is 

challenging for patching and bleeding to be fully handled by the automated process 

(McGhee, 2004).  Shadows also make it difficult to distinguishing distresses in shadowy 

areas. This can affect the extent and severity of the distresses on the roadways. There are 

also problems with identifying fixes to different pavement treatments such as chip-sealed, 

tined, and sealed crack surfaces. However, with the introduction of 3D data collection 

capabilities researchers are optimistic that these problems can be solved (McGhee, 2004). 

The differences between the windshield surveys and the automated surveys can be seen in 

Table 1. 
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TABLE 1: Windshield data compared to automated data 

 
 
 
2.3 Types of Distress 
 

Pavement distress is used by the NCDOT to develop the Pavement Condition 

Rating (PCR) values which are used to make pavement management, maintenance, 

rehabilitation estimations (Mastin, 2011). The PCR values are a point based deduction 

matrix that removes points depending on the distresses on the roadway, for more 

information on PCR values refer to Section 2.4. The data for pavement distresses can be 

collected through the manual or automated collection methods. The distresses that were 

collected for this study can be seen in Table 2; as well as a description of the distress 

Type of Data: Categorical Type of Data: Quantitative 
Benefits: Well known process, 

personnel trained, 
collects data, and 
established decision 
trees

Benefits: Quicker data 
collection, consistent 
data collection, and 
safer for personnel

Issues: Variability between 
raters, safety issues, 
and a time consuming 
process 

Issues: Variability in 
interpretation of the 
data cleaning by the 
independent 
contractor, identifying 
all distress types

Processing: Converts categorical 
data into quantitative 
data to determine 
pavement distress 
levels

Processing: Uses quantitate data to 
determine pavement 
distress levels

Procedure: Uses MAE values to 
determine a PCR value 

Procedure: This study will develop 
a methodology for the 
procedure

Windshield Survey Data Automated Data
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severity levels, units, and description are in the remaining portion of this section.  The units 

for the distresses in Table 2 are the NCDOT’s method of recording the distresses.  

 
TABLE 2: Pavement distresses 

Distress Units 

Alligator Square Feet 
Patching Square Feet 

Delamination Square Feet 
Rutting Average Length in Inches 

Bleeding Square Feet 
Transverse Cracking Linear Feet 

Non-Wheel Path Longitudinal Cracking Linear Feet 
Longitudinal Lane Join Cracking Linear Feet 

Raveling Square Feet 
 
 

2.3.1 Alligator Cracking 
 

Alligator cracking occurs in areas subjected to repetitive wheel loads; for rating 

purposes they are only found in the wheel path. Alligator cracking typically starts as 

longitudinal cracking within the wheel path which develops into a series of interconnected 

cracks having an "alligator hide" pattern (Mastin, 2011). Alligator cracking is measured in 

square feet. Low severity alligator cracking is defined as a single sealed or unsealed 

longitudinal crack in the wheel path or an area of cracks with no or few interconnecting 

cracks with no spalling; these cracks are less than 0.125 inch in width. Moderate severity 

for alligator cracking is defined as an area of interconnecting cracks that forms an alligator 

pattern and may have some slight spalling; these cracks are generally 0.25 inch wide. High 

severity alligator cracking is defined as an area that consist of moderately or severely 
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spalled cracks forming an alligator pattern; these cracks are generally greater than 0.325 

inch wide (Mastin, 2011). 

2.3.2 Patching Wheel Path 
 

Patching is an area of a pavement surface that has been removed and replaced or 

where additional material has been placed on the pavement surface to cover cracking or 

other distresses. There are two types of patching that are recorded, the patching that is 

within the wheel path and patching that is not in the wheel path. Wheel path and non-wheel 

path patching is counted separately and is measured in square feet. Patching does not have 

severity levels associated with the distress, but only an amount of patching is recorded 

(Mastin, 2011). 

2.3.3 Delamination 
 

Delamination is an area of pavement that is missing due to the loss of adhesion between 

the surface and the under-laying layers. Traditionally delamination is only one layer thick 

and is usually associated with the surface course. Delamination is recorded in square foot 

and does not have severity levels associated with the distress; it is recorded in the amount 

of delamination that occurs (Mastin, 2011). 

2.3.4 Rutting 
 

Rutting is a longitudinal surface depression in the wheel path. Rutting data is 

collected using 3D laser sensors which provide a cross section of the pavement surface. A 

minimum of a dozen points are required to calculate the rut depths; rutting is measured in 

vertical inches. Rutting receives no severity rating when the vertical deformation is less 

than 0.25 inch; a low severity rating when the vertical deformation is between 0.25 inch to 

0.5 inch; a moderate severity rating when the vertical deformation is between 0.5 inch to.1 
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inch; high severity rating when the vertical deformation is greater than 1 inch (Mastin, 

2011). 

2.3.5 Bleeding 
 

Bleeding is the presence of too much liquid bituminous material on the pavement 

surface. The result is the surface having a shiny, glass-like, or reflective surface, and it may 

also be tacky to the touch. This is more noticeable in warm weather and is usually found 

within the wheel paths. Bleeding is recorded in square feet. There are only two severity 

levels for bleeding, low severity and high severity. The bleeding distress receives a low 

severity rating when the pavement surface is discolored compared to the surrounding 

asphalt which is caused by excessive liquid asphalt. Bleeding receives a high severity rating 

when excessive liquid asphalt gives the pavement surface a shiny appearance which can 

cause tire marks to be evident in warm weather (Mastin, 2011). 

2.3.6 Transverse Cracking 
 

Transverse cracking occurs when random cracks run primarily across the roadway 

surface, but not over the joints in the jointed concrete pavement that resides underneath 

and is recorded in linear feet (Mastin, 2011). A low severity transverse crack is defined as 

a sealed crack in good condition or an unsealed crack with a width less than 0.25 inch; 

moderate severity cracking applies to any unsealed cracks that range between 0.25 inch to 

0.5 inch or any crack that is adjacent to transverse cracking with 5-10 feet, sealed or 

unsealed; high severity rating applies to any unsealed crack that is greater than 0.5 inch in 

its width and any crack that is within 5 feet, sealed or unsealed. It is important to note that 

the severity of transverse cracking is defined by the highest level of severity within 

roadway section being evaluated (Mastin, 2011). 
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2.3.7 Non-Wheel Path Longitudinal Cracking 
 

Non-wheel path (NWP) longitudinal cracking is when there are cracks that run parallel 

with the center of the roadway. However, it is important to note that only cracking outside 

the wheel path meets the NWP requirement of longitudinal cracking. Cracking fitting this 

description is commonly found on the inside of the wheel path and is known as low severity 

alligator cracking (Mastin, 2011). NWP longitudinal cracking is recorded in linear feet and 

the minimum length counted is 1 foot. There are only two severity levels for NWP 

longitudinal cracking, low severity and high severity. NWP longitudinal crack receives a 

low severity rating when the crack seal is in good condition and the width cannot be 

estimated or when the crack is unsealed but is less than 0.25 inch in width. A NWP 

longitudinal crack receives a high severity rating when the crack is unsealed or when the 

crack is adjacent to other cracking (Mastin, 2011). 

2.3.8 Longitudinal Lane Joint Cracking 
 

Longitudinal lane joint cracking occurs when the joint is able to be penetrated by water. 

There are two distress levels for longitudinal lane joint cracking, low severity and high 

severity (Mastin, 2011). Longitudinal lane join cracking receives a low severity rating 

when the sealant is in good condition and the width cannot be estimated or when the joint 

is unsealed. A longitudinal lane joint cracking receives a high severity rating when the 

paving is cracked with severe spalling or adjacent cracking (Mastin, 2011). 

2.3.9 Raveling 
 

Raveling is the result of the roadway surface layer dislodging aggregate particles or 

loss of asphalt binder. This distress is more prevalent with chip seal or slurry surfaces than 

with plant mix surface. Raveling is a sign of hardening or poor application of asphalt binder 
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(Mastin, 2011). The raveling distress receives a low severity rating when aggregate loss 

within the pavement lanes is minimal and the stripping is beginning to be detected and 

some aggregate is starting to wear away. Pavement Interactive (2007) describe stripping as 

the displacement of the asphalt binder from the aggregates when the hydrophobic aggregate 

has been introduced to water. The raveling distress receives a moderate severity rating 

when stripping becomes evident, or where there are small areas less than one square foot, 

where strips of aggregate are broken away. A raveling distress receives a high severity 

rating when the stripping becomes very evident, and aggregate accumulation begins to 

propose a problem along the shoulders of the roadway and large areas or greater than one 

square foot, of the aggregate is stripped away (Mastin, 2011). 

2.4 Pavement Condition Rating (PCR) 
 
 To properly determine the condition of the roadway pavements, a PMS must have 

the ability to produce a repeatable rating system (Shahin, 1994). One indicator pavement 

engineers can use to determine roadway condition is Pavement Condition Rating (PCR). 

This is an index that helps PMS engineers have a repeatable rating system to evaluate 

roadway condition.  

The PCR rating system is a point based deduction matrix that removes points 

depending upon the amount of distresses on the roadway. The PCR matrix starts with a 

value of 100 for a perfect roadway without any distress. Deduction values are assigned for 

each distress based on the severity levels and the frequency of the distress. The PCR rating 

can be seen in Equation 1 (Reza et. al, 2005). It is important to note that not all distresses 

are weighted the same. This is because some distresses like alligator cracking, transverse 
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cracking, and rutting have a greater impact to the pavement deterioration than other 

distresses.  

 
PCR = 100 – Sum of Deductions                                    EQ (1)  

 
 
 The NCDOT uses the PCR as the dependent variable for the distress and 

performance models. It is important to understand that not all DOTs use PCR as the 

performance index for evaluating pavement performance. For example, performance 

indices that are used by other DOTs are: pavement quality index (PQI), international 

roughness index (IRI), pavement condition index (PCI), overall pavement index (OPI), ride 

quality index (RQI), present serviceability rating (PSR), and overall combined index 

(OCI). This is not an exhaustive list of performance indices use by other DOTs, and the 

performance index vary from state to state (Reza et. al., 2005).  

2.5 Regression Analysis  
 

Regression analysis is a statistical tool that gives the user the ability to measure the 

difference between two given phenomena (Dizikes, 2012). Regression analysis testing is 

performed to establish a link between the performance index and the effective age of the 

roadway surface. In this research, regression analysis was used to reveal a relationship 

between the performance of the roadway surface and the age of the pavement.    

The first step in developing a regression curve is to determine if the data supports 

a section model or a family model. A section model applies to a specific pavement section, 

whereas, a family model represents a group of pavement with similar surface type, 

underlying pavement layers and traffic volumes (Lewis et. all, 2013). Since the NCDOT 
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currently uses family models for the windshield data, it was determined that family models 

would be acceptable for the automated data.  

The second step was to develop a regression model that predicts only a single 

performance index based on the age of the pavement. There are two types of deterministic 

regression forms that could be used to model the performance curves: the linear and the 

non-linear equations (Lewis et. all, 2013). Linear regression is the simpler of the two and 

can be seen in Equation 2.  

                                                              Y=b0 + b1x                                                          (2)      

Where:  

y = dependent variable 

x = independent variable 

b0 and b1 = coefficients  

 The polynomial model in another linear equation that can have a curved shape to 

model the data. This is due to the fact that polynomial regression creates a curvilinear 

relationship between the dependent and the independent variable, as seen in Equation 3 

(Lewis et. all, 2013).  

                                                    Y=b0 + b1x + … + bnxn                                                 (3)      

Where:  

y = dependent variable 

x = independent variable 

b0, b1, bn = coefficients  
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 One of the non-linear functions that produces deterministic results is shown in 

Equation 4. The equation is known as a power curve. This has been proven to be useful in 

the field of pavement management (Lewis et. all, 2013).  

                                                             Y=b0 + b1xb2                                                          (4)      

Where:  

y = dependent variable 

x = independent variable 

b0, b1, b2 = coefficients  

 A graph with all three deterministic models overlaid can be seen in Figure 2. All 

three models were tested to visually compare the fit to the data between all three 

deterministic models in order to select the model that best fit the data. The NCDOT PMS 

currently uses distress and performance models developed using sigmoidal functions. 

Therefore, the sigmoidal model form was used to develop distress and performance models 

in this study.   

 

 

FIGURE 2: Regression analysis curves (Lewis et. all 2013) 
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The development of the performance models using the automated collected data 

was crucial step for the NCDOT engineers to be able to properly manage the roadway 

network. Understanding how the windshield and automated data collection methods 

worked was critical to understanding the differences and similarities between the two data 

collection methods. Many of the model development techniques using windshield data 

were applied to the development of the automated collected data performance indices and 

models. 

  

 
 



 
 

 

CHAPTER 3: DEVELOPMENT OF DISTESS AND PERFORMANCE MODELS 
 
 
 This chapter is a summary of the methodologies used in the development of the 

distress and performance models. The development of the distress models are important 

because they are used to show the relationship between the distress index values and the 

pavement age (Chen, 2014). The performance models are used to predict future pavements 

conditions (Alkire, 2009). This chapter includes the work flow, programs, and processes 

that were used throughout the model development process.   

3.1 Work Flow 
 

This section is an introduction to the steps used to develop the distress and 

performance models. The development of the distress and performance models began upon 

receiving the raw automated data from the NCDOT.  

• Step 1:  Create a central database which combined the age, distress indices, and Annual 

Average Daily Traffic (AADT) files into one usable database, shown in Figure 3. 

• Step 2: Create scatter plots to inspect for outliers and to remove any outliers using the 

percentile method, shown in Figure 4.  

• Step 3: Develop linear regression methods to establish critical input initial estimates of 

the model variables that were used to develop sigmoidal models, as seen in Figure 5.  

• Step 4: Use the initial input values from Step 3 as starter values for Table Curved 2D 

to develop the sigmoidal models, shown in Figure 6.  
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• Step 5: Evaluate the compatibility between the two data collection methods, seen in 

Figure 7.  

• Step 6: Develop trigger points to be used to indicate maintenance action for a section 

of roadway, shown in Figure 8. 

This completed the work flow for the development of the distress and performance 

models. There are more details about the steps discussed in the following sections. 

 

FIGURE 3: Work flow - data combination 
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FIGURE 4: Work flow - developing indices 
 
 

 

FIGURE 5: Work flow - developing performance 
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FIGURE 6: Work flow - creating performance curves 
 
 

 

FIGURE 7: Work flow – compatibility test 
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FIGURE 8: Work flow - trigger points 
 
 

3.2 Programs Used for Model Development 
 
 The development of the distress and performance models from the automated data 

required the use of several software applications. Each software aided the researchers to 

combine multiple databases, batch process statistical analyses, create graphs, and compare 

model curves with greater reliability and consistency. The different software applications 

used in creating the distress and performance models are covered in the following sections.  

3.2.1 Excel® 
 
 Microsoft Excel was selected because it allows the researcher to create and 

manipulate spreadsheets. Excel allows the user to input numerical values into columns and 

rows of the spreadsheet, and the Excel program allows the user to create calculations, 

graphs, and statistical analysis (Microsoft, 2014). Excel was used to format, tabulate, and 

Step 6

Manipulate PCR 
Equations

Average 
Composite 

Distress Index

Set as Threshold 
Values
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store the raw data. This spreadsheet was used as the base for other programs that will be 

used to develop the performance curves.  

3.2.2 SAS ® 

SAS is a linear and non-linear regression modeling software, and it was selected 

because it allows researchers, project managers, and application developers the ability to 

batch process many data entry and mathematical commands (SAS, 2014). Batch processing 

is the ability to run the same equation with different input values simultaneously. In this 

research, SAS was used to perform batch processing for each of the distresses for the 

different AADT families they represent, because the SAS software has the ability to use 

macros which saved time while repeating the same process for all the AADT families. It 

was also used to create the scatter plots, percentile data cleaning, and linear regression 

graphs for each roadway family.  

3.2.3 TableCurve ®  

TableCurve 2D is a data fitting software produced by Systat Software and it was 

selected because it allows engineers and researchers to efficiently develop different types 

of models that have one independent variable (Systat Software, 2014). In this study, 

TableCurve 2D was used to develop the final non-linear regression distress and 

performance curve models for each of the roadway families, because the software allowed 

users to define the model form.  

3.2.4 Maple® 
 
 Maple (Version 17) was selected because it is a powerful mathematic equation 

solver for engineering, mathematics, and the sciences (Maplesoft, 2014). In this study, 

Maple was used to visually compare the difference between the automated performance 
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models against the windshield survey performance models. In addition, Maple was used to 

plot all the final distress and performance models. 

3.3 Roadway Families 
 
 The NCDOT has four established classifications of roadways that make up the 

North Carolina roadway network. The roadway network contains Interstate, United States 

Highway (US), North Carolina Highway (NC), and Secondary Roads (SR). The roadways 

families are classified based on the Average Annual Daily Traffic (AADT) of the roadway. 

The roadways family that experiences the highest levels of AADT value is the Interstate 

system, and the AADT for the interstate system can range from 0 to more than 50,000 

AADT. The US routes received the second highest traffic volume based on AADT levels 

which ranged from 0 to more than 15,000 AADT. The NC routes family are roadways that 

receive an AADT between 0 to more than 5,000 AADT.  

Three of the four aforementioned classifications (Interstate, US, NC) had distress 

and performance models developed as a part of this study; however, the last classification 

(SR) did not have distress and performance models developed for it because no automated 

data were collected for SR roadways. However, the NCDOT has shown interest in 

developing the performance curves for the SR routes in a future study. The classifications 

for US and NC routes were further divided based on AADT to create models that better 

reflected patterns for those AADT levels. The US classification was split into three separate 

sections, the new AADT ranges for US classification were from 0 to 5,000, from 5,000 to 

15,000, and to more than 15,000. These ranges for the classifications were selected based 

on recommendations by the NCDOT engineers. Similarly, the NC classification was split 

into three separate sections, the AADT ranges for NC classification were from 0 to 1,000, 
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from 1,000 to 5,000, and to more than 5,000. These ranges were also selected based on 

recommendations by the NCDOT engineers. The complete breakdown of all four 

classifications can be seen in Table 3.  

 
TABLE 3: Roadway families 

Classification AADT 
Interstate All 

US 0-5k 
  5-15k 
  more than 15k 

NC  0-1k 
  1-5k 
  more than 5k 

SR All 
 
 
3.4 Data Collection 
 

The data for this project was collected using the automated data collection process. 

This was done throughout the 14 districts in North Carolina. The NCDOT contracted 

private vendors to collect the raw automated data. Once the data was collected, the NCDOT 

sent the 2012 and 2013 year survey data to the University of North Carolina at Civil 

Engineering Technology and Construction Management department. This data was 

delivered electronically in the form of Excel files. However, it is important to note that not 

all data from the 14 districts were available in the 2012 and 2013 survey years. Figure 9 

shows the NCDOT’s 14 districts, and Table 4 shows a list of all the districts where survey 

data were available.  
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FIGURE 9: North Carolina DOT 14 districts (NCDOT, 2014) 

 

TABLE 4: List of data by division 

Division Asphalt Data JCP Data 
2012 2013 2012 2013 

1       

2       
3       
4     

5     

6       
7     

8     

9      

10       
11      

12      

13      

14      
 
 

The automated surveys collected a large amount of data entries. However, only 

selected data entries, known as key entries, were used in the development of the distress 

and performance models. The key entries that were used in this study are listed below.    

• Route Number: identifies the roadway section 

• County: identifies the roadway’s county 
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• Distress Severity Levels: None (N)/Light (L)/ Moderate (M)/Severe (S) 

• Offset Begin: beginning milepost of the roadway section surveyed 

• Offset End: end of milepost of the roadway section surveyed 

• AADT: annual average daily traffic 

• Year of Rehabilitation: last time the roadway was rehabilitated   

3.5 Model Form Selection 
 

Selecting an appropriate distress and performance equation to model the data was 

essential to developing accurate final models. The selected model had to be compatible 

with the NCDOT’s computer software package Agile-Assets. The software can accept 

seven model forms which are shown in Figure 10. The model selected was the sigmoidal 

equation. As described in the previous section, this model was selected because among the 

seven forms the sigmoidal curves fit the data best.  

 

 

FIGURE 10: List of NCDOT approved performance index curves 
 
 

There are five subcategories of sigmoidal equations. Carrillo and Gonzalez (2002) 

discussed all five variants of the sigmoidal models. These models are the Logistic, 

Gompretz, Richards, Weibull, and Morgan-Mercer-Flodin equations. In this study, after 

testing all these five model forms, the equation that best fit data was a variant of the logistic 

sigmoidal equation which can be seen in Equation 5. It is important to note that this 
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equation was manipulated to the form seen in Equation 6, because it was necessary to find 

initial values that would be used to better fit the sigmoidal model to the data. That process 

is discussed in the next section of this report.  

In Equation 5, the “a” coefficient is the initial starting point for the distress and 

performance values, and it was determined that the “a” coefficient would go through 

(0,100) point. Thus making the “a” coefficient equal to 100 for the initial input. This was 

because it is assumed the pavement have a perfect distress rating right after a new 

construction or a maintenance action. The “b” coefficient denotes the horizontal shift in 

the curve, and movement in the curve. The “c” variable denotes the slope of the curve, 

which represents the deterioration rate of the pavement. Equation 6 allows for the initial 

estimates for the “b/c” coefficients to be determined. The reason only the initial “b/c” 

coefficients were to be determined was because the “a” coefficient was set to 100. 

                                                              --
  

1
x b
c

ay
e

=
+

                                                          (5) 

From (5) the following was obtained:  

Let  

a = 100 

ln y = ln 100 − ln(1 + e−
x−b
C )  

Then, 

ln �1 + e−
x−b
C � = ln 100 − ln y 

Then, the exponential was taken on both sides. 

�1 + e−
x−b
C � = eln 100−lny 
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Then, 

e−
x−b
C =  eln 100−lny − 1 

Then, the natural logarithm was taken on both sides of the equation. 

−
x − b

c
= ln�eln100−lny − 1� 

Let 

Y =  ln( eln 100−lny − 1)  , then 

                                                        Y =  −1
c

x +  b
c
                                                           (6)               

Where: 

x = Age 

a, b, c = Coefficients 

y = Distress Index 

Y = Performance Index 

Divergence is the phenomenon that allow the output results to vary when entered 

into a non-linear equation. Sigmoidal curves experience this trait and this caused the 

coefficients to vary with each trail run. Therefore, to make the non-linear models to 

converge, the optimum initial a/b/c coefficients should be estimated and used in non-linear 

sigmoidal analyses. This reduced the amount of iterations required before convergence is 

achieved.  

3.6 Development of Distress Indices and Models 
 
 The distress indices and distress models were developed to predict the deterioration 

for asphalt and Jointed Concrete Pavement (JCP) pavements based on a particular distress. 
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The process began by developing the distress indices, and those indices were used to 

develop the distress models.  

3.6.1 Normalizing the Data 
 
 The distress and performance models were developed using normalized data. The 

data was normalized because the distresses were recorded in different units, as shown in 

Table 2. The resulting normalized data became unitless, and allowed for the distress models 

to be compared against one another. The data was normalized using the NCDOT High 

Speed Distress Manual (2011). The equations used to normalize each distress can be seen 

in Table 5 and Table 6. 

 The alligator distress data was normalized using the process in the following 

example. Since alligator cracking was recorded in square feet, the distress needed to be 

divided by length, the factor 7, and 5,280 to make the distress unitless. The length is the 

distance of the roadway section for which the distress was surveyed. The factor 7 represents 

the width of the wheel paths. The 5,280 is a conversion factor to covert the length from 

miles into feet. A similar process was used to normalize the remaining asphalt pavement 

distresses, and for all the JCP distresses. 
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TABLE 5: Asphalt pavement condition data normalization 

Distress Normalization Equation  
Alligator Cracking  Alligator Cracking / (Length * 7 * 5280) 

Patching Area - WP Patching Area / (Length * 7 * 5280) 
Maximum Average 

Rut Depth 100 - 100 (Maximum Average Rut Depth)^2 

Transverse/Reflective 
Transverse Cracking 

(Transverse Cracking + Reflection Transverse Cracking) / 
Length * 5280) 

Patching Area - NWP Patching Area / (Length * (Section Width / Number of Lanes) * 
5280) 

Longitudinal 
Cracking Longitudinal Cracking / (Length * 5280) 

Longitudinal Lane 
Joint Cracking Longitudinal Lane Joint Cracking / (Length * 5280) 

Raveling  Raveling / (Length * 5280 * Section Width /Number of Lanes) 
 
 

TABLE 6: JCP pavement condition data normalization 

Distress Normalization Equation  
Asphalt Patch  Asphalt Patch / Length  
Corner Break Corner Break / Length  

Joint Fault Joint Fault / Length  
Longitudinal 

Cracking Longitudinal Cracking  / Length  

Longitudinal Joint 
Spalled Longitudinal Joint Spalled / Length  

PCC Patch PCC Patch / Length  
Transverse 
Cracking Transverse Cracking / Length  

Transverse Joint 
Spalled Transverse Joint Spalled / Length  

 
 
3.6.2 Developing Maximized Allowable Extent (MAE) Values 
 

The MAE values are weights that are built into the distress index calculator, and 

the MAE values are based on four levels of threshold values: N = None, L = Light, M = 
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Moderate, and S = Severe (N/L/M/S) (NCDOT PCSM, 2012). The MAE values are used 

to rate the importance of the amount of N/L/M/S that occurs for a distress, and this is done 

to make sure that distress severity levels are rated appropriately.  

3.6.2.1 Existing Windshield MAE Process 

The existing MAE threshold values worked well to determine the distress indices 

for the windshield data, and it was determined that new MAE threshold values for the 

automated collected data could be developed using the same process developed for the 

windshield data. The windshield method was studied and the following example describes 

how MAE values are used to calculate the existing distress indices, as shown in Figure 11. 

The low_sev_in = 0, med_sev_in = 20, and high_sev_in = 40 in the orange box 

represent the normalized amount of distress that is recorded for each severity. In this 

example, it is demonstrating for this section of roadway that 0% low severity occurred, 

20% moderate severity occurred, and 40% high severity occurred.  

 Figure 11 also shows the existing MAE amounts that were used for the alligator 

cracking distress for the windshield data. They can be seen under the line labeled MAE 

Amounts. These MAE values are used to weight the normalized distress in the orange box 

to develop the overall distress index for the windshield alligator cracking. In this example, 

low_sev_mae_in is 100, med_sev_ mae_in is 80, and high_sev_ mae_in is 50. This means 

to up to 100% of the low severity, up to 80% of the moderate severity, and up to 50% of 

the high severity of alligator cracking will be counted.  

 Figure 11 also shows the existing Threshold Amount. The Threshold value is the 

lowest score possible when the severity occurs for a distress by itself (NCDOT PCSM 

2012). For example, if only the low severity level occurred for alligator cracking and 100% 
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low severity was recorded, the alligator cracking index value is 75. Similarly, if only the 

moderate severity level occurred for alligator cracking and 80% moderate severity was 

recorded, the alligator cracking index value is 40, and if only the high severity level 

occurred for alligator cracking and 50% high severity was recorded, the alligator cracking 

index value is 0. 

 The final distress index value was calculated using the embedded equations built 

into d2c and d23 shown in Figure 11. The d2c calculation is the summation of the previous 

step and d3c is built on the results of d2c. The final distress index value for alligator 

cracking which was 100 minus d3c which resulted in a distress index value of 17, as shown 

in yellow in Figure 11.  
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FIGURE 11: Existing distress index calculator using MAE 
 

3.6.2.2 Automated MAE development 

Once the process for calculating the distress index was understood the next step 

was to develop the MAE values for each distress using the automated data. This was done 

to replace the MAE values used by the windshield collected data. The process of 

developing MAE values for the automated collected data began by developing scatter plots 

in order to remove outliers. An example of the scatter plot for alligator cracking can be 

seen in Figure 12. It can be observed that the scatter plots revealed the existence of outliers. 
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To develop accurate distress models, it was important to identify and remove outliers from 

the data set.  

 

 

FIGURE 12: SAS ® generated scatter plots 
 
 
Percentiles were used to remove the outliers from the data. Predetermined 

percentiles limits as cut off points for acceptable and unacceptable data were established 

using a three step process. The first step was to determine the level at which the percentile 

would be set. During the course of the research SAS was used to test several percentile 

levels. This was done to make a comparison between different percentile levels, for 

example, thresholds of 90th, 95th, 98th, and 99th percentiles were used to see which level 

removed only the extreme outliers. The threshold for every distress at low, moderate, and 

high severity was determined to the 98th percentile.  
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The second step was to average the distress ratings at the 98th percentile. The 

average were taking for every family on the same distress level. The third step was to assign 

the averages as the new automated collected data MAE values. An example of the 

percentiles for alligator cracking at low, moderate, and high severity levels for the Interstate 

family can be seen in Figure 13.  

 

 

FIGURE 13: SAS output of percentiles 
 
 

 Figure 14 shows the distress index calculation for alligator cracking for the 

Interstate family using the input values from Figure 13. The process that was used in the 

windshield method to calculate the distress index is the same method used to calculate the 

distress index for the automated method. An example using alligator cracking is shown in 

Figure 14. The low_sev_in = 10, med_sev_in = 5, and high_sev_in = 1 in the orange box 

represent the normalized amount of distress that is recorded for each severity. In this 
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example, for this section of roadway 10% low severity, 5% moderate severity, and 1% 

high severity of alligator cracking were observed.  

 The lines under MAE Amounts in Figure 14 show the new MAE amounts for the 

alligator cracking distress for the automated collected data. These are the new MAE values 

that were determined using the percentiles. They are low_sev_mae_in = 34.42, med_sev_ 

mae_in = 9.08, and high_sev_ mae_in = 1.63. In this example 10% low severity (up to 

34.42%) was observed, 5% moderate severity (up to 9.80%) was observed, and 1% severity 

(up to 1.63%) was observed. The corresponding alligator cracking index value is 24. 

 

FIGURE 14: Distress index calculator using MAE 

f_mae(a.ALGTR_LOW_PCT,a.ALGTR_MDRT_PCT, a.ALGTR_HGH_PCT,null,100, 80, 50,75,40,0,0,0,0)

INPUTS
OUTPUT

low_sev_in 10
med_sev_in 5 *OK* - Sum distress total is 100 or less
high_sev_in 1

The normalizing factor will normalize absolute distress amounts null indicates no normailzation requir
normalizing_in null

MAE Amounts (Low Med and High) are the Extent amounts that maximize deduction for that severity
low_sev_mae_in 34.42
med_sev_mae_in 9.08
high_sev_mae_in 1.63

Threshold Amounts are lowest possible score for that severity when it occurs alone
low_sev_threshold_in 75
med_sev_threshold_in 40
high_sev_threshold_in 0

Begin deduct scores are the extent value when point deductions begin for each severity level
low_sev_begin 0 distr_low 10
med_sev_begin 0 distr_med 5
high_sev_begin 0 distr_high 1

d1 7.263219
d2 33.03965 d2c 37.90312
d3 61.34969 d3c 75.99937

Alligator Cracking Index Value 24.00

Distress Values passed into the function.  Distresses with less than three severities should pass null to 
low then med in that order. Function return MAE index with 100 as good 0 as bad
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3.6.3 Developing Distress Models 
 
 The development of the distress models began after determining the MAE values 

so the composite indices could be calculated for the automated data. Those values they 

were entered into TabelCurve 2.0 to develop the distress models. The first prompt to begin 

TableCurve was to define the X (age) axis and Y (distress) axis, and an example of this 

prompt can be seen in Figure 15. Once the axis was defined, the next step was to define the 

User Define Function (UDF), as shown in Figure 16.  

 

 

FIGURE 15: TableCurve x axis and y axis prompt 
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FIGURE 16: TableCurve UDF interface 
 
 

In order to use the UDF function, one dependent variable and one or more 

independent variables had to be assigned to the equation. The same sigmoidal equation 

from Equation 5 was used for the UDF. The pavement age was the independent variable 

and distress indices were the dependent variable. To best optimize the performance curves 

the a/c coefficients were locked, forcing the values constant. The b variable was allowed 

to change. The a coefficient was fixed in this equation and was set to the value that allowed 

the distress curve cross at (0, 100). The c variable was fixed based on the results of the 

initial a/b/c coefficients. Therefore, the b coefficient was the one unlocked. The reason the 

b coefficient was allowed to change was to optimize the horizontal shift of the curve, 

therefore, allowing the curve to better reflect the data. The final equations and graphs 

A CB
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produced can be seen in the results section of this report.  An example of a TableCurve 

graph can be seen in Figure 17. 

 

 

FIGURE 17: Performance curve from TableCurve 2D 
 
 

The graphs produced in TableCurve are color coded. The different colors on the 

graph represent the standard error in the deviation of the data points. The blue represents 

the data points that are within one standard errors of the fitted curve, green represents the 

data points that are within two standard errors of the fitted curve, and red represents the 

data points that are within three standard errors of the fitted curve. The curve is influenced 

by all data points, the standard errors were determined after the curve was developed.  

3.7 Development of Performance Indices and Models 
 

The development of the performance models was a multi-step process that resulted 

in models that could be used by the NCDOT personnel to predict the behavior of the 
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pavement, as well as, determine the appropriate maintenance action of the roadway. The 

dependent variable used for developing the performance curve was PCR. The process used 

to develop the performance models is described in the following sections of this chapter.  

3.7.1 Development of Performance Indices 
  

As discussed in section 2.3, a PCR rating system is a point based deduction matrix 

that removes points depending on the amount of distresses on the roadway. PCR starts from 

a value of 100 for a perfect roadway without any distress, and deduction values are assigned 

based on the severity levels and the frequency of the distresses (Reza et. all, 2005). In the 

past, the PCR values were developed for the NCDOT windshield survey data. However, 

the method for collecting and analyzing the automated data is different in that the 

windshield data is categorical, while the automated data is numerical. Therefore, a new set 

of composite indices needed to be developed so that proper weights for each of the 

distresses could be assigned. This would ensure the new PCR models would properly fit 

the automated data.  

The composite index was developed using a Multiple-Criteria Decision Making 

(MCDM) method developed by Thomas Saaty (2008), known as the Analytical Hierarchy 

Process (AHP). The AHP method was chosen because it is a powerful tool that can solve 

complex problems, such as determining weight factors, and it removes user subjectivity 

from the selection process (Triantaphyllou, 1995). The AHP process described by Thomas 

Saaty can be seen below in Table 7 (Saaty, 2008).  

The first step was to calculate the weights for the automated data, and the new 

composite index was developed using the existing NCDOT windshield deduction 

algorithm for the PCR calculations. An example of the existing deduction algorithm can 
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be seen in Table 8, using the alligator cracking distress. The next step was to average results 

from the low, moderate, and severe calculations, as shown in Table 8. The same process 

was used for the remaining distresses, and the results are in Table 9. Once the averages 

were calculated, they were used to create the matrix shown in Table 10. The values from 

Table 10 were inserted in an AHP calculator in order to determine the eigenvectors, which 

can be seen in Table 11. The eigenvectors were weight of different distresses and used to 

develop the PCR values, which can be seen in Equation 7. 

 
TABLE 7: AHP process 

Step Action 
1 Define the problem 
2 Structure hierarchy 
3 Construct pairwise comparison matrices 

4 
Weight each element and add the weighed 

values to obtain its overall  priority 
(eigenvectors) 

 
 

TABLE 8: Example of PCR calculation for asphalt pavements 

Distress Severity Level Deduction Average 

Alligator 
Cracking 

L- Light 3.3 points - 10% to 90%: 1 point 
>90% (3.3*9+1*0.1=29.8 points) 

42 = 
average 

of L/M/S 
M - Moderate 7.5 points - 10% t0 40%: 2 points 

>40% (7.5*4+2*6=42 points) 

S - Severe 15 points - 10% to 20%: 3 points 
>20% (15*2+3*8=54 points) 
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TABLE 9: The average PCR values for asphalt pavement 

Distress Average 
Alligator Cracking 42 
Transverse/Reflective Transverse Cracking 17 
Longitudinal Cracking 9 
Longitudinal Lane Joint 7* 
Raveling 7 
Patching Area - WP 12 
Patching Area - NWP 7* 
Rutting - Max Avg. Depth 18 
* Use the smallest value because its non-load related 

 
 

TABLE 10: Pairwise matrix for asphalt PCR calculation 

 
 

 
 
 
 
 
 
 
 
 
 

Distress ALGTR TRA LNG LNG JNT RVL WP NWP RUT
Alligator Cracking 
(ALGTR)

42/42 = 
1.00

42/17 = 
2.47

42/9 = 
4.67

42/7 = 
6.00

42/7 = 
6.00

42/12 = 
3.50

42/7 = 
6.00

42/18 = 
2.33

Transverse/Reflective 
Transverse Cracking 
(TRA)

17/42 = 
0.40

17/17 = 
1.00

17/9 = 
1.89

17/7 = 
2.43

17/7 = 
2.43

17/12 = 
1.42

17/7 = 
2.43

17/18 = 
0.94

Longitudinal Cracking 
(LNG)

9/42 = 
0.40

9/17 = 
0.53

9/9 = 
1.00

9/7 = 
1.29

9/7 = 
1.29

9/12 = 
0.75

9/7 = 
1.29

9/18 = 
0.50

Longitudinal Lane 
Joint (LNG JNT)

7/42 = 
0.17

7/17 = 
0.41

7/9 = 
0.78

7/7 = 
1.00

7/7 = 
1.00

7/12 = 
0.58

7/7 = 
1.00

7/18 = 
0.39

Raveling (RVL) 7/42 = 
0.17

7/17 = 
0.41

7/9 = 
0.78

7/7 = 
1.00

7/7 = 
1.00

7/12 = 
0.58

7/7 = 
1.00

7/18 = 
0.39

Patching Area - WP 
(WP)

12/42 = 
0.29

12/17 = 
0.71

12/9 = 
1.33

12/7 = 
1.71

12/7 = 
1.71

12/12 = 
1.00

12/7 = 
1.71

12/18 = 
0.67

Patching Area - 
NWP (NWP)

7/42 = 
0.17

7/17 = 
0.41

7/9 = 
0.78

7/7 = 
1.00

7/7 = 
1.00

7/12 = 
0.58

7/7 = 
1.00

7/18 = 
0.39

Rutting - Max Avg. 
Depth (RUT)

18/42 = 
0.43

18/17 = 
1.06

18/9 = 
2.00

18/7 = 
2.57

18/7 = 
2.57

18/12 = 
1.50

18/7 = 
2.57

18/18 = 
1.00

 
 



47 
 

TABLE 11: AHP eigenvector for asphalt pavement 

Distress Eigenvectors 
Alligator Cracking  0.354 

Transverse/Reflective 
Transverse Cracking  

0.141 

Longitudinal 
Cracking  0.077 

Longitudinal Lane 
Joint  

0.059 

Raveling  0.059 
Patching Area - WP  0.1 
Patching Area - NWP  0.059 
Rutting - Max Avg. 
Depth 

0.015 

 

PCR = 0.354*ALGTR + 0.141*TRA + 0.077*LNG + 0.059*LNG JNT 

                              + 0.059*RVL + 0.10*WP + 0.059*NWP + 0.015*RUT                   (7) 

Where:  

PCR = Pavement Condition Rating 

ALGTR = Alligator Cracking Index 

TRA= Transverse Cracking Index 

LNG= Longitudinal Index 

LNG JNT = Longitudinal Lane Joint Index 

RVL = Raveling Index 

WP = Wheel Path Patching 

NWP = Non Wheel Path Patching 

RUT = Rutting Index 

 The JCP composite indices were developed in the same manner as the asphalt 

composite index. The main difference, however, was with the NCDOT’s previous 
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pavement deduction values. An example of the existing windshield JCP deduction value 

can be seen in Table 12. The summary of the new deduction values for JCP automated data 

can be seen in Table 13. The JCP AHP matrix, Table 14, was used to calculate the 

eigenvectors, which are summarized in Table 15. The final JCP PCR equation can be seen 

in Equation 8.  

 
TABLE 12: Example of deduction values for PCR calculation for JCP pavements 

Distress 
Severity 

Level Deduction Average 

Corner 
Breaks 

L- Light 0.1 points / 1% (0.1*10 = 1.0) 

5.7 
M - Moderate 0.15 points / 1% (0.15*10 = 1.5) 

S - Severe 
0.375 points / 1% to 80%: 0.1 

points / 1% >80% 
(0.375*8+0.1*2=3.2) 

 
 

TABLE 13: Average deduction PCR values for JCP pavement 

Distress Average 
PCC Patch 18 
Transverse Cracking 9.6 
Longitudinal Cracking 9.6 
Asphalt Patch 18 
Transvers Joint Spalled 8.5 
Longitudinal Joint Spalled 8.5 
Corner Break 5.7 
Joint Fault 8.5 
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TABLE 14: AHP matrix for JCP pavement 

 
 
 

TABLE 15: Final eigenvector weights for JCP PCR calculation 

Distress Eigenvectors 
Transverse Cracking 0.111 
Longitudinal Cracking 0.111 
PCC Patch 0.208 
Asphalt Patch 0.208 
Transverse Joint 
Spalled 0.098 
Longitudinal Join 
Spalled 0.098 
Corner Break 0.066 
Joint Fault 0.098 

 
 
 

PCR = 0.111* TRNSVRS CRK + 0.111* LNGTDNL CRK + 0.208* CON PATCH + 

0.208* ASPHLT PTCH + 0.098* TRNSVRS SPLL + 0.098* LNGTDNL JNT SPLL + 

                                                  0.066* CRNR + 0.098* FALUT                                     (8) 

Distress
TRNSVRS 

CRK
LNGTDNL 

CRK
CON 

PATCH
ASPHLT 
PATCH

TRNSVRS 
SPLL

LNGTDNL 
JNT SPLL CRNR FAULT

Transverse Cracking 
(TRNSVRS CRK)

9.6/9.6 = 
1.0

9.6/9.6 = 
1.0

9.6/18 = 
0.53

9.6/18 = 
0.53

9.6/8.5 = 
1.13

9.6/8.5 = 
1.13

9.6/5.7 = 
1.68

9.6/8.5 = 
1.13

Longitudinal Cracking 
(LNGTDNL CRK)

9.6/9.6 = 
1.0

9.6/9.6 = 
1.0

9.6/18 = 
0.53

9.6/18 = 
0.53

9.6/8.5 = 
1.13

9.6/8.5 = 
1.13

9.6/5.7 = 
1.68

9.6/8.5 = 
1.13

PCC Patch (CON 
PATCH)

18/9.6 = 
1.88

18/9.6 = 
1.88

18/18 = 
1.0

18/18 = 
1.0

18/8.5 = 
2.12

18/8.5 = 
2.12

18/5.7 = 
3.16

18/8.5 = 
2.12

Asphalt Patch 
(ASPHLT PTCH)

18/9.6 = 
1.88

18/9.6 = 
1.88

18/18 = 
1.0

18/18 = 
1.0

18/8.5 = 
2.12

18/8.5 = 
2.12

18/5.7 = 
3.16

18/8.5 = 
2.12

Transvers Joint 
Spalled (TRNSVRS 
SPLL)

8.5/9.6 = 
0.89

8.5/9.6 = 
0.89

8.5/18 = 
0.47

8.5/18 = 
0.47

8.5/8.5 = 
1.0

8.5/8.5 = 
1.0

8.5/5.7 = 
1.49

8.5/8.5 = 
1.0

Longitudinal Joint 
Spalled (LNGTDNL 
JNT SPLL)

8.5/9.6 = 
0.89

8.5/9.6 = 
0.89

8.5/18 = 
0.47

8.5/18 = 
0.47

8.5/8.5 = 
1.0

8.5/8.5 = 
1.0

8.5/5.7 = 
1.49

8.5/8.5 = 
1.0

Corner Break 
(CRNR)

5.7/9.6 = 
0.59

5.7/9.6 = 
0.59

5.7/18 = 
0.32

5.7/18 = 
0.32

5.7/8.5 = 
0.67

5.7/8.5 = 
0.67

5.7/5.7 = 
1.0 

5.7/8.5 = 
0.67

Joint Fault     
(FALUT)

8.5/9.6 = 
0.89

8.5/9.6 = 
0.89

8.5/18 = 
0.47

8.5/18 = 
0.47

8.5/8.5 = 
1.0

8.5/8.5 = 
1.0

8.5/5.7 = 
1.49

8.5/8.5 = 
1.0
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Where:  

PCR = Pavement Condition Rating 

TRNSVRS CRK = Transverse Cracking 

LNGTDNL CRK = Longitudinal Cracking 

CON PATCH = PCC Patch 

ASPHLT PTCH = Asphalt Patch 

TRNSVRS SPLL = Transvers Joint Spalled 

LNGTDNL JNT SPLL = Longitudinal Joint Spalled 

CRNR = Corner Break 

FALUT = Joint Fault 

3.7.2 Development of Performance Models 
  
 The development of the asphalt and JCP pavements performance curves followed 

a similar process as the distress curves. Similarly, the UDF function required the input of 

one dependent variable and one or more independent variables. Using the same sigmoidal 

equation from Equation 5, the age input was the independent variable and the PCR was the 

dependent variables. The sigmoidal equation was entered into the UDF interface using the 

initial a/b/c coefficients for each roadway family. Once the equations were loaded into the 

UDF interface, TableCurve allowed the variables to be locked or unlocked. To best 

optimize the performance curves, the a/c coefficients were lock, forcing the values 

constant, and the b coefficient was allowed to fluctuate. The final a/b/c coefficients and a 

sample graph can be seen in Section 4.2 of this report, while a complete list of all the 

performance curves can be seen in Appendix B - K.   
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3.8 Model Validation 
 
3.8.1 Verifying Performance Curve Fit 

 
 Verifying the model fits to the data is as important as developing the models itself, 

and the goodness of fit (GoF) was used to verify how well the model fit. GoF indicators 

are usually used to explain how well a developed model fits a data set, and represent the 

discrepancy between the observed values and the expected vales under a statistical model 

(Maydeu-Olivares and Garcia-Forero, 2010).  There are two common methods that can be 

used to test the goodness of fit (GoF) for a non-linear regression models. The first is to use 

the R2 statistic, and the second is to use the standard error of the regression.  

 R2 is commonly used GoF indicator. Often times it is used to prove the fit quality 

of a linear regression curve. It has been proven that by adding predictors to a model it will 

always increase the R2; therefore, by adding more terms it will appear that the new model 

is a better fit (Frost 2014). Venugopalan and Shamasundaran (2003) strongly suggest the 

use of residuals analysis to overcome that problem. However, one major limitation is that 

the R2 statistic is not compatible with non-linear regressions models, and that is why the 

R2 statistic was not used. 

 The more appropriate statistic to choose is the standard error of the regression (S). 

The S statistic is the average distance that the observed values fall from the regression line, 

this can be seen in Figure 19 (Frost 2014). The S value indicates how accurate the model 

is based on the average units of the response variable. The lower the S value the better the 

model fits the data.  
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FIGURE 18: S observation residual plot (Frost 2014) 
 
 

However, it was decided that a visual comparison would provide a better validation 

than the Standard Error of the Regression because for each roadway family there was only 

one mode. Since there was only one model per family the comparison for the Standard 

Error of the Regression cannot be performed. Therefore, the distress and performance 

automated data models were plot against their equivalent families from the windshield data 

to investigate if there were similarities between the models. The graph overlays should be 

similar because the data they represent should be the same except for the data collection 

method. The visual inspection indicated that the models are robust because the overall 

trends in the windshield and automated models are similar, as described in the next section.  

3.8.2 Windshield Data Models vs Automated Data Models 
 

Once the performances models were created, Maple software was then used to 

compare the automated data models to windshield models by overlaying the two types of 

models. Comparing the models can show the compatibility between the windshield 

performance curves and the automated performance curves (Sivaneswaran et. al, 2004). 

Comparing the curves will also reveal if the decision trees used by the windshield surveys 

will be compatible with the automated surveys or if new decision trees will need to be 

developed. As an example, a representative graph overlay of an alligator automated 

performance curve and an alligator windshield data performance curve can be seen below 

Model 
Value

Observed 
Values

S
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for Interstate, US, and NC routes in Figures 18, 19, and 20 respectively. It can be concluded 

that automated models are compatible to the windshield models.  

In these figures, the red line represents the windshield data curve and the blue line 

represents the automated data curve. It is visually noticeable that windshield and automated 

data curves are similar. Therefore, the existing decisions trees used by the NCDOT are still 

compatible. However, new trigger points need to be developed for the automated data 

which is discussed in the following section.  

There are two windshield data models for the interstate family, as seen in Figure 

19. However, for the automated data model there was only one model for the interstate 

family, because the two interstate families from the windshield data were combined into 

one family for the automated data model. This was done because of the amount automated 

collected data available. 

 

 

FIGURE 19: Interstate route - windshield vs automated curve 
 

Automated Windshield Windshield 
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FIGURE 20: US route - windshield vs automated curve 
 
 

 

FIGURE 21: NC route - windshield vs automated curve 
 
 

Automated Windshield 

Automated Windshield 

 
 



 
 

 
 

 
CHAPTER 4: DEVELOPMENT OF TRIGGER POINTS FOR AUTOMATED DATA 

 
 

According to Merriam-Webster Dictionary (2014), a trigger point is a condition or 

state that causes an event to take place. The NCDOT has been using trigger points to initiate 

a maintenance plan based on pavement performance, which is evaluated based on four 

treatment zones: preventative maintenance, light rehabilitation, heavy rehabilitation, and 

complete reconstruction. As shown in Figure 22, the Y axis is the PCR value of the 

pavement, and the X axis is the AGE of the pavement. The dashed lines represent the 

boundaries of the treatment zone, which are where the trigger points occur.  

4.1 Threshold Values 

The PCR value between 100 and Threshold 1 will fall into the preventative 

maintenance zone, the PCR value between Threshold 1 and Threshold 2 will fall into the 

light rehabilitation zone, the PCR value between Threshold 2 and Threshold 3 will fall into 

the heavy rehabilitation zone, and the PCR value between Threshold 3 and 0 will fall into 

the reconstruction zone of the roadway. The PCR threshold values of 80, 60, and 30 were 

used in this research. The curve in Figure 22 show the location of the threshold values and 

the treatment zones. 
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FIGURE 22: Generic PCR trigger point graph 
 
 

4.2 Developing Trigger Points 

The asphalt and JCP trigger points were determined using Equation 7 and Equation 

8. The equations were set equal to the 80/60/30 threshold levels. Then the equations were 

manipulated until the individual distress trigger values for Threshold 1, Threshold 2, and 

Threshold 3 could be determined.  

4.2.1 Trigger Points for Asphalt Pavements 

To determine trigger points for asphalt pavements, the first step was to take 

Equation 7 and solve for a single distress. For this example alligator cracking was used. 

The relative importance for alligator cracking (Table 16) were entered into equation 7. 

Then the trigger point equation for alligator cracking can be written as shown in Equation 

9. 

100

Threshold 1

Threshold 2

Threshold 3

0

Preventive Maintenance

Heavy Rehabilitation

Reconstruction

PC
R

Age

Light Rehabilitation

Trigger Points
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The next step was to set Equation 9 equal to the 80/60/30 threshold values, and then 

the trigger values for alligator cracking were solved. The resulting trigger values for asphalt 

are shown in Table 18. 

PCR = 0.354*ALGTR + 0.141*(.4* ALGTR) + 0.077*(.21* ALGTR) + 0.059*(.17* 

ALGTR) + 0.059*(.17* ALGTR) + 0.10*(.29* ALGTR) + 0.059*(.17* ALGTR) +                

0.150*(.43* ALGTR)                                                                                                       (9) 

Where:  

PCR = Pavement Condition Rating 

ALGTR = Normalized Alligator Cracking Index 

 
TABLE 16: Eigenvectors used to develop asphalt trigger points 

 
 

 
4.2.2 Trigger Points for JCP Pavements 

To determine trigger points for JCP pavements, the first step was to take Equation 

8 and solve for a single distress, for this example transverse cracking was used. The relative 
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importance for transverse cracking (Table 17) were entered into Equation 8. Then the 

trigger point equation for transverse cracking can be written as shown in Equation 10. 

The next step was to set Equation 10 equal to 80/60/30 threshold values, and then 

the trigger values for the transverse cracking were solved. The resulting trigger values for 

JCP are shown in Table 19.  

PCR = 0.111* TRNSVRS CRK + 0.111* (1.0* TRNSVRS CRK) + 0.208* (1.88* 

TRNSVRS CRK) + 0.208* (1.88* TRNSVRS CRK) + 0.098* (.89* TRNSVRS CRK) + 

0.098* (.89* TRNSVRS CRK) + 0.066* (.59* TRNSVRS CRK) + 0.098* (.89* 

TRNSVRS CRK)                                                                                                            (10) 

Where:  

PCR = Pavement Condition Rating 

TRNSVRS CRK = Normalized Transverse Cracking 
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TABLE 17: Eigenvectors used to develop JCP trigger points 

 
 
 
4.2.3 Final Threshold and Composite Index Values 
 
 The composite index was the last step in developing the trigger points for the 

automated collected data. This was performed by taking an average of all the individual 

distress index calculated in sections 4.2.1 and 4.2.2. The averages were taken because some 

of the asphalt and JCP individual distress indices had a value greater than 100 which is not 

reasonable. This is possibly because some relative importance values used by the NCDOT 

are too high.  

 The averages for asphalt pavements can be seen in Table 18. The composite distress 

trigger values with a threshold level at 80 was calculated to be 52. This means when each 

distress index reaches 52 its PCR value will reach 80, and a maintenance action will be 

triggered.  
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TABLE 18: Asphalt trigger point values 

 
 
 

The averages for JCP can be seen in Table 19. The composite distress trigger value 

with a threshold level at 80 was calculated to be 70. This means when each distress index 

value reaches 70, its PCR value will reach 80, and a maintenance action will be triggered.  

 
TABLE 19: JCP trigger point values 

 
 
 

PCR 
Threshold ALGTR TRA LNG 

LNG 
JNT RVL WP NWP RUT

Average Composite 
Distress Index

80 145.4 58.9 32.7 24.2 24.2 41.6 24.2 62.4 52
60 109.1 44.2 24.5 18.2 18.2 31.2 18.2 46.8 39
30 54.5 22.1 12.3 9.1 9.1 15.6 9.1 23.4 19

PCR 
Threshold

TRNSVRS 
CRK

LNGTDNL 
CRK

CON 
PATCH

ASPHLT 
PATCH

TRNSVRS 
SPLL

LNGTDNL 
JNT SPLL CRNR FAULT

Average 
Composite 

Distress Index
80 61.32 61.32 115.45 115.45 54.38 54.38 36.50 54.38 70
60 45.99 45.99 86.59 86.59 40.79 40.79 27.38 40.79 52
30 22.99 22.99 43.29 43.29 20.39 20.39 13.69 20.39 26

 
 



 
 

 

 
CHAPTER 5: RESULTS 

 
 
5.1 Distress Models 
 

All distress models consist of the dependent variable which is the distress index for 

each of the respective distresses and the independent variable which is the age of the 

pavement.  

It is also important to note that the “a” coefficient may not always be 100 for all 

distress models. This is because after determining the optimized b and c coefficients the 

starting point on the graph was not always at (0,100). In order to correct this issue, the “a” 

coefficient was adjusted until all distress models curves started at (0,100).  

It is important to note that the MAE values were developed based on the L/M/S 

severity levels; however, not every distress model contains low, moderate, or severe data. 

This is because not all distresses are recorded in low, moderate, and severe severities. For 

example, longitudinal lane joint cracking was only recorded when the distress was severe. 

That is why in Table 21 only the MAE severe value is available.  

5.1.1 Alligator Cracking 
 

The complete set of distress curves for alligator cracking can be seen in Appendix 

B. The a/b/c coefficients used to create the sigmoidal distress curves for alligator cracking 

are included in Table 20. An example of the alligator cracking distress curve can be seen 

in Figure 23.  
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TABLE 20: Sigmoidal distress models parameters for alligator cracking 

Distress Family a b c 

Low 
Severity 

MAE 
In 

Med 
Severity 

MAE 
In 

High 
Severity 

MAE 
In 

A
lli

ga
to

r  
C

ra
ck

in
g 

Interstate 101.8 13.44 -3.35 

41.68 7.29 3.35 

US 0-5k 104.5 13.72 -4.46 
US 5-15k 109.5 11.35 -4.79 
US 15k+ 111.3 8.59 -3.90 
NC 0-1k 102.0 11.00 -2.91 
NC 1-5k 107.0 12.13 -4.63 
NC 5k+ 108.0 11.48 -4.54 

 

 

FIGURE 23: Alligator cracking distress model 
 
 

5.1.2 Transverse Cracking 
 

The complete set of distress curves for transverse cracking can be seen in Appendix 

C. The a/b/c coefficients used to create the sigmoidal distress curves for transverse cracking 
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are included in Table 21. An example of the transverse cracking distress curve can be seen 

in Figure 24. 

 
TABLE 21: Sigmoidal distress models parameters for transverse cracking 

Distress Family a b c 

Low 
Severity 

MAE 
In 

Med 
Severity 

MAE 
In 

High 
Severity 

MAE 
In 

Tr
an

sv
er

se
   

   
 

C
ra

ck
in

g 
 

Interstate 103.0 16.39 -4.82 

5.96 3.62 1.36 

US 0-5k 101.1 10.91 -2.48 
US 5-15k 101.5 12.58 -3.04 
US 15k+ 102.1 11.33 -3.01 
NC 0-1k 101.0 9.54 -2.13 
NC 1-5k 101.0 11.13 -2.54 
NC 5k+ 101.8 10.75 -2.67 

 

 

FIGURE 24: Transverse cracking distress model 
 
 

5.1.3 Longitudinal Models 
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 The complete set of distress curves for longitudinal cracking can be seen in Appendix D. 

The a/b/c coefficients used to create the sigmoidal distress curves for longitudinal 

cracking are included in Table 22. An example of the longitudinal cracking distress curve 

can be seen in Figure 25. 

 
TABLE 22: Sigmoidal distress models parameters for longitudinal cracking 

Distress Family a b c 
Low 

Severity 
MAE In 

Med 
Severity 
MAE In 

High 
Severity 
MAE In 

Lo
ng

itu
di

na
l  

   
C

ra
ck

in
g 

 

Interstate 100.0 16.57 -2.28 

4.58 0 7.04 

US 0-5k 100.0 14.47 -1.91 
US 5-
15k 100.0 15.32 -2.09 

US 15k+ 100.0 12.18 -1.34 
NC 0-1k 100.0 12.36 -1.28 
NC 1-5k 100.0 13.76 -1.65 
NC 5k+ 100.0 13.97 -1.59 

 
 

 

FIGURE 25: Longitudinal cracking distress model 
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5.1.4 Longitudinal Lane Joint Models 
 

The complete set of distress curves for longitudinal lane joint cracking can be seen 

in Appendix E. The a/b/c coefficients used to create the sigmoidal distress curves for 

longitudinal lane joint cracking are included in Table 23. An example of this distress curve 

can be seen in Figure 26. 

 
TABLE 23: Sigmoidal distress models parameters for longitudinal lane joint cracking 

Distress Family a b c 
Low 

Severity 
MAE In 

Med 
Severity 
MAE In 

High 
Severity 
MAE In 

Lo
ng

itu
di

na
l L

an
e 

 
Jo

in
t C

ra
ck

in
g 

 Interstate 100.0 18.76 -2.62 

1.57 0 0 

US 0-5k 100.0 13.50 -1.80 
US 5-15k 100.0 15.93 -2.24 
US 15k+ 100.0 21.51 -3.06 
NC 0-1k 100.0 16.71 -2.29 
NC 1-5k 100.0 17.46 -2.39 
NC 5k+ 100.0 13.87 -1.86 
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FIGURE 26: Longitudinal lane joint cracking distress model 

 
5.1.5 Raveling 
 

The complete set of distress curves for raveling can be seen in Appendix F. The 

a/b/c coefficients used to create the sigmoidal distress curves for raveling are included in 

Table 24. An example of the raveling distress curve can be seen in Figure 27. 

 
TABLE 24: Sigmoidal distress models parameters for raveling 

Distress Family a b c 
Low 

Severity 
MAE In 

Med 
Severity 
MAE In 

High 
Severity 
MAE In 

R
av

el
in

g 
 

Interstate 100.0 17.10 -2.78 

34.92 34.54 31.35 

US 0-5k 100.3 30.41 -5.26 
US 5-15k 101.8 22.59 -5.66 
US 15k+ 105.0 20.95 -6.99 
NC 0-1k 100.8 16.45 -3.48 
NC 1-5k 100.5 22.64 -4.35 
NC 5k+ 100.5 21.18 -4.07 
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FIGURE 27: Raveling distress model 
 
 

5.1.6 Wheel Path Patching Models 
  

The complete set of distress curves for wheel path patching can be seen in Appendix 

G. The a/b/c values used to create the sigmoidal distress curves for wheel path patching are 

included in Table 25.  An example of the wheel path patching distress curve can be seen in 

Figure 28. 
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TABLE 25: Sigmoidal distress models parameters for WP patching 

Distress Family a b c 
Low 

Severity 
MAE In 

Med 
Severity 
MAE In 

High 
Severity 
MAE In 

Pa
tc

hi
ng

 A
re

a 
   

   
   

   
 

W
P 

Interstate 100.0 14.67 -1.96 

13.11 0 0 

US 0-5k 100.0 18.14 -2.76 
US 5-15k 100.0 18.81 -2.92 
US 15k+ 100.0 20.50 -3.38 
NC 0-1k 100.0 20.07 -3.11 
NC 1-5k 100.0 18.00 -2.68 
NC 5k+ 100.0 18.39 -3.01 

 
 

 

FIGURE 28: WP patching distress model 
 

5.1.7 Non-Wheel Path Patching Models 
  

The complete set of distress curves for non-wheel path patching can be seen in 

Appendix H. The a/b/c values coefficients to create the sigmoidal distress curves for non-

wheel path patching are included in Table 26. An example of the non-wheel path patching 

distress curve can be seen in Figure 29. 
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TABLE 26: Sigmoidal distress models parameters for NWP patching 

Distress Family a b c 

Low 
Severity 

MAE 
In 

Med 
Severity 

MAE 
In 

High 
Severity 

MAE 
In 

Pa
tc

hi
ng

 A
re

a 
   

   
 

N
W

P 

Interstate 100.0 18.77 -2.59 

17.72 0 0 

US 0-5k 100.0 21.86 -3.26 
US 5-15k 100.0 24.41 -3.70 
US 15k+ 100.0 22.45 -3.63 
NC 0-1k 100.0 24.24 -3.73 
NC 1-5k 100.0 21.04 -3.10 
NC 5k+ 100.0 21.31 -3.39 

 
 

 

FIGURE 29: NWP patching distress model 
 

5.1.8 Rutting 
 

Rutting was a unique distress because its depth is collected whereas area or length 

is collected for other types of distresses. Tests showed that a power function fits the rutting 

data better than the sigmoidal equation. The power function used is as follows: Rutting 

Index = 100 – a*Age1.5. The rutting distress models using the power curve function can be 

 
 



70 
 

seen in Appendix I. The coefficient used to create the power distress curves for rutting is 

included in Table 27. An example of the rutting distress model can be seen in Figure 30.  

 
TABLE 27: Distress models parameters for rutting 

Distress Family a 

Low 
Severity 

MAE 
In 

Med 
Severity 

MAE 
In 

High 
Severity 

MAE 
In 

R
ut

tin
g 

 

Interstate 0.99 

Rutting Index = 100 - 
a*Age^1.5 

US 0-5k 0.94 
US 5-15k 1.02 
US 15k+ 0.95 
NC 0-1k 1.00 
NC 1-5k 0.94 
NC 5k+ 0.94 

 
 

 

FIGURE 30: Rutting distress curve 
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5.1.9 JCP 
 

The complete set of distress curves for JCP pavements can be seen in Appendix F. 

The a/b/c coefficients used to create the sigmoidal distress curves for JCP are included in 

Table 28. An example of the JCP distress curve can be seen in Figure 31. 

 
 

TABLE 28: Sigmoidal distress models parameters for JCP 

Pavement Distress a b c 

Low 
Severity 

MAE 
In 

Med 
Severity 

MAE 
In 

High 
Severity 

MAE 
In 

JC
P 

Asphalt 
Patch 

100.0 15.05 -2.20 20.24 0.00 0.00 

Corner 
Break 

100.2 17.55 -2.95 6.01 0.00 0.00 

Joint Fault  100.3 25.70 -4.49 60.21 10.03 1.40 
Longitudinal 

Cracking 
102.5 14.36 -3.87 43.28 0.00 26.60 

Longitudinal 
Joint 

Spalled 
100.0 17.82 -5.31 86.09 0.00 0.00 

PCC Patch 100.0 19.97 -3.20 15.76 0.00 0.00 
Transverse 
Cracking  

102.0 19.42 -5.11 37.81 0.00 27.61 

Transverse 
Joint 

Spalled  
100.0 14.94 -3.39 91.27 28.66 22.92 
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FIGURE 31: JCP performance curve 
 
5.2 Performance Models 
 
5.2.1 Asphalt Models  
 

The complete performance curves for asphalt pavements can be seen in Appendix 

J. The complete set of a/b/c coefficients for asphalt pavements used with the sigmoidal 

equation are included in Table 29. An example of the asphalt performance curve can be 

seen in Figure 32. 

 
TABLES 29: Sigmoidal distress models parameters for ASP 

Pavement Distress a b c 

A
SP

 

Interstate 103.4 12.68 -3.83 
US 0-5k 110.0 14.57 -6.29 
US 5-15k 112.0 14.23 -6.73 
US 15k+ 112.0 14.23 -6.73 
NC 0-1k 110.0 12.30 -5.33 
NC 1-5k 112.0 13.58 -6.52 
NC 5k+ 112.0 13.51 -6.39 
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FIGURE 32: ASP performance model 
 
5.2.2 Joint Concrete Pavement 

 
The performance curve for joint concrete pavements (JCP) can be seen in Appendix 

K. The a/b/c coefficients for JCP used with the sigmoidal equation are included in Table 

30. An example of the JCP performance curve can be seen in Figure 33. 

 
TABLE 30: Sigmoidal distress models parameters for JCP 

Pavement Distress a b c 
JCP Interstate 100.3 20.49 -3.48 

 
 

 
 



74 
 

 

FIGURE 33: JCP performance model 
 
 
5.3 Trigger Points 
 
 The triggers points on the decision trees can be used by the NCDOT for selecting 

appropriate maintenance action for a pavement based on the thresholds set for each distress. 

The threshold levels where set at 80, 60, and 30, which are corresponding to the preventive 

maintenance, light rehabilitation, heavy rehabilitation, and reconstruction treatment zones. 

The following sections show the final trigger points for asphalt and JCP pavements.  

 
5.3.1 Asphalt Models 
 

The trigger points for asphalt pavements can be seen in Table 31. As an example, 

the composite distress value with a threshold level at 80 was calculated to be 52. This 

means when each distress has a value equal to 52 the PCR value of 80 will be reached, and 

this will trigger a maintenance action. For example, if each individual distress index is 53, 
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preventative maintenance will be triggered; and if each individual distress index is 51, light 

rehabilitation maintenance will be triggered. 

 
TABLE 31: Trigger points for asphalt pavements 

 
 
 
5.3.2 JCP 
 

The trigger points for JCP pavements can be seen in Table 32. As an example, the 

composite distress value with a threshold level at 80 was calculated to be 70. This means 

when each distress has a value equal to 70 the PCR value of 80 will be reached, and this 

will trigger a maintenance action. For example if each individual distress index is 71, 

preventative maintenance will be triggered; and if each individual distress index is 69, light 

rehabilitation maintenance will be triggered. 

 
TABLE 32: Trigger points for JCP pavements 

 

 

 

 

Threshold Rating Maintenance 
80 52 100-80: Preventative Maintenance 
60 39 80-60: Light Rehabilitation 
30 19 60-30: Heavy Rehabilitation
0 0 30-0: Reconstruction

Asphalt Trigger Points

Threshold Rating Maintenance 
80 70 100-80: Preventative Maintenance 
60 52 80-60: Light Rehabilitation 
30 26 60-30: Heavy Rehabilitation
0 0 30-0: Reconstruction

JCP Trigger Points

 
 



 
 

 

 
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 
 

 In this research, a systematic way to develop distress and performance models and 

determine trigger points on decision trees for a PMS was proposed and verified. Composite 

indices were developed using the MAE function and AHP process. The distress and 

performance models were developed using sigmoidal equations. The resulting models were 

used to determine the trigger point values so threshold levels could be used to initiate a 

maintenance action.  

6.1 Conclusion  
 

6.1.1 Developing Composite Indices  
 

A systematic method of determine composite indices has been developed in this 

study. The distress and performance composite indices needed to be developed because the 

automated data consisted up to four severity levels for each distress. The severity levels are 

none (N), low (L), moderate (M), and severe (S). In order to predict pavement distresses, 

all of the severity levels needed to be combined into one index for the purpose of having 

one dependent variable that could be used to build the distress models.  

The first step was to determine the MAE values that can be used to calculate the 

composite index. The automated data MAE values were determined by finding the 

appropriate percentiles of the raw data for each of the distresses. Once the appropriate 

percentile was determined, the corresponding distress values were averaged and entered 

into the MAE function. This allowed for the composite distress indices for asphalt and JCP 
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pavements to be calculated. The results were used to successfully develop the distress 

models.  

The second step was to develop the composite performance index, PCR. This 

involved the use of the AHP to determine a weight factor for each type of the distresses. 

Then PCR values were used to develop the asphalt and JCP performance models.  

6.1.2 Developing Distress and Performance Models 
 

A comprehensive method of developing distress and performance models was 

proposed in this study. The non-linear sigmoidal model form was chosen to develop these 

models. The initial estimates of model parameters were obtained using regression analysis. 

The final estimates of model parameters were determined using TableCurve. The distress 

and performance automated models were then plot against their equivalent family curves 

developed from the windshield data to investigate if there were similarities between the 

models. A visual comparison was decided to be an appropriate inspection method for this 

study. Based on the results of the asphalt pavements, and as discussed in section 3.8, the 

windshield and the automated performance curves are comparable. However, it is 

important to note that the JCP pavements did not share these similarities. This is probably 

due to the small sample sizes of the automated data for JCP pavements.  

The graphs for asphalt and JCP reveal one more trend. The automated data distress 

models show strong decreasing trends in the graphs between the 10th and 13th year of the 

pavement life cycle. This was to be expected when referenced with the NCDOT’s 

“Proposed Life Cycle Cost Analysis Procedure Summary” (2013) document. Therefore, it 

is concluded that the performance models are robust. 

6.1.3 Trigger Points 
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The trigger points were developed as a way to quantify the thresholds for each 

distress that can trigger a maintenance action. The trigger values provide NCDOT 

engineers with the ability to select the appropriate action for each of the distress ratings, 

and remove user subjectivity when selecting the maintenance action whether it be 

preventative maintenance, light rehabilitation, heavy rehabilitation, or complete 

reconstruction. The trigger points were developed using the manipulation of the asphalt 

and JCP PCR equations. This was done by taking the PCR equation and replacing the 

substituted distress with the relative importance from the substituting distress. The 

threshold values of different types of distress were then averaged and used as trigger point 

values.  

6.2 Recommendations 
 

There are a total of four recommendations based on the results of this study. It is 

recommended that an update of all of the newly developed models is needed when at least 

three years’ worth of data is available. The distress and performance curves developed in 

this study were developed using only 2012 and 2013 automated data. Models developed 

using more data can better predict pavement performance and assist PMS engineers to 

make more appropriate maintenance decisions.   

It is recommended to further divide the 18 roadway families into sub groups based 

on regions. The state of North Carolina has three main regions which are Mountains, 

Piedmont, and Coastal. Since it is intuitive, for example, that the Interstate roadways in the 

Mountain region would not be expected to perform the same as the ones in the Piedmont 

and the Coastal regions. Therefore, it is advised that separate families be developed to 

account for these geographically different regions.  
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It is recommended to develop distress and performance models for composite 

pavements. During the course of this study, the composite pavements were treated as a part 

of the asphalt pavements; however, composite pavements tend to deteriorate differently 

than asphalt pavements. Therefore, composite pavement models would help NCDOT 

engineers to better manage composite pavements.  

It is recommended to develop the distress and performance models for the SR 

routes. These models were not developed during this study because currently the SR routes 

were not surveyed using the automated data collection system. This was due to the high 

cost of data collection. This is a recommended future update when the NCDOT has the 

ability to collect SR route distress data using the automated method.  
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APPENDIX A: SAMPLE WINDSHIELD SURVEY FORM 

 
 
Asphalt Concrete Pavement Deliverable Table (1/2) 
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Asphalt Concrete Pavement Deliverable Table (2/2) 
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APPENDIX B: ALLIGATOR CRACKING 
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APPENDIX C: TRANSVERSE/REFLECTIVE TRANSVERSE CRACKING 
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APPENDIX D: LONGITUDINAL CRACKING 
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APPENDIX E: LONGITUDINAL LANE JOINT CRACKING 
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APPENDIX F: RAVELING 
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APPENDIX G: PATCHING AREA - WP 
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APPENDIX H: PATCHING AREA - NWP 
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APPENDIX I: RUTTING 
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APPENDIX J: ASPHALT MODELS 
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APPENDIX K: JCP MODELS 
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