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ABSTRACT

AUSTIN MICHAEL WILLOUGHBY.  Surface complexation modeling of coal
combustion residuals constituents on natural hydrous ferric oxide. (Under the direction of

DR. WILLIAM G. LANGLEY)

Coal ash impoundments, along with other industrial and natural processes, can be

sources of constituents of concern (COCs) to human health including arsenic (As),

chromium (Cr), selenium (Se), and vanadium (V).  Attempts to model the fate and

transport of these COCs within subsurface aqueous environments often rely on extensive

laboratory batch experiments to develop distribution coefficients (Kd values) for model

input.  Surface complexation theory can also explain the partitioning of constituents

between the liquid and solid phases, with hydrous ferric oxide (HFO) often acting as a

dominant solid phase adsorbent.  While useful, such model descriptions generally apply

to pure mineral phases and do not investigate natural adsorbents.  This study applies

surface complexation theory in the form of the generalized two-layer model (GTLM) to

natural soils from coal ash sites by modeling the laboratory batch experiments used to

generate soil isotherms and soil Kd values.

Laboratory batch experiments equilibrated different ratios of soil solid phase with

a synthetic groundwater solution liquid phase containing As, Cr, Se, and V, allowing for

solution equilibrium and isotherm generation.  Modeled batch solid phases were

represented by surface concentrations of hydrous ferric oxide derived from two

sequential extraction procedures: one utilizing a modified Citrate-Bicarbonate-Dithionite

(CBD) method, and another using an acidified hydroxylamine (Chao) solution.  Model

liquid phases were input by creating representative synthetic groundwater solutions
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within the model.  The defined phases were then equilibrated within the model so that

isotherms and Kd values could be generated for all COCs.

Experimental and modeled results were statistically analyzed and the relative

error (RE) of the modeled Kd values to their experimental counterparts was calculated.

Overall Chao extraction method showed little to no correlation with experimental results,

shifting the focus of discussion to CBD method.  Modeled CBD method As and Se

results showed moderate correlations with experimental results; however, model Kd

values tended to trend lower than experimental making them conservative.  CBD method

V results showed slight correlation with experimental data; however Kd values trended

higher than experimental and were not conservative.  CBD method Cr results indicated

no correlation, with little apparent connection to experimental results and Kd values

which were far larger and thus not conservative.

Probable reasons for inconsistencies between model and experimental data

include discrepancies between actual HFO content in soils and HFO calculated from

sequential extraction, the exclusion of adsorptive mineral phases from the component

additivity model, PHREEQC database equilibrium constants derived from pure mineral

phase isotherms rather than natural soils, and the potential introduction of unknown

constituents into solution from soil samples.  While the Cr and V models used are likely

too inaccurate for practical use, As and Se models show potential.  With reasonable

modification, As and Se models can return conservative Kd value estimates representative

of natural soils.

The main body of this work is supplemented with additional files including model

and experimental isotherms, PHREEQC inputs and outputs, and the PHREEQC database
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utilized herein.  Model and experimental isotherms are presented in the form of a

spreadsheet with a .xlsx file type.  PHREEQC files include both the .pqi and .pqo file

types, and require the PHREEQC software provided by the United States Geological

Survey (USGS).  The database is included as a .txt file and must be designated as the

default database within PHREEQC.  Additional supplemental file information can be

found in Appendix C.
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CHAPTER 1: INTRODUCTION

1.1. Background

Over the past century, energy production in the United States has been dominated

by the burning of fossil fuels like coal, natural gas, and petroleum.  Coal has been the

largest source of electricity with a 30% share of production attributed to it in 2017 (EIA

2018).  This production occurs by combusting coal at a coal-fired steam station where the

heat energy boils steam which in turn rotates turbines.  Coal combustion inevitably leaves

residuals in the forms of fly ash, bottom ash, boiler slag, and flue gas desulfurization

(FGD) waste.  These individual material streams are managed differently and are

collectively described as coal combustion residuals (CCR).  In 2014 it is estimated that

129,684,142 short tons of CCR were produced in the US (ACAA 2015).  This enormous

quantity of CCR has generally been stored in onsite unlined landfills or impoundments.

In December, 2014 CCR storage practices changed when the EPA implemented

legislation requiring coal ash waste be classified under Subtitle D of the Resource

Conservation and Recovery Act (RCRA).  This legislation classifies CCR as a non-

hazardous industrial solid waste (EPA 2015).

While the new legislation requires the storage of CCR in lined enclosures, the pre-

existing unlined ponds and landfills have contributed to environmental issues including

impoundment dam stability, leachate generation, and groundwater contamination.

Groundwater contamination is the primary focus of this study, and results from the

leaching of COCs present in CCR impoundments or landfills.

Leached COCs have the capacity to enter aquifers and create groundwater

concentrations above those standards set by the EPA and local agencies like the North
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Carolina Division of Environmental Quality (NCDEQ).  Once in the aquifer these COCs

are transported through the subsurface environment by means of groundwater flow.  The

mobility of COCs is dependent on their solubility in groundwater which is controlled by

the geochemistry of the subsurface system, as well as the properties of the COC.  The

four COCs examined within this study include As, Cr, Se, and V, and the main mobility

factor of these COCs is adsorption through surface complexation.  Adsorption occurs

when a constituent has an affinity for the surrounding porous media and adsorbs onto the

soil particle’s surface.  A constituent’s affinity for a surface, and thus its mobility, will

vary according to the surrounding system’s geochemical properties, particularly pH and

Eh. (Berkowitz et al. 2014)

COCs within an aquifer can be transported towards vulnerable areas like potable

wells and areas of groundwater discharges into surface waters.  COCs consumed at

elevated concentrations can harm humans and natural organisms alike (Berkowitz et al.

2014).  To avoid these deleterious effects, an understanding of constituent transport and

the controls thereof is necessary.  Specifically, accurate modeling of constituent transport

within subsurface systems can be useful to those making CCR related decisions.  This

study is intended to expand on constituent transport models through exploration of

practical uses for geochemical surface complexation models.

1.2. Scope of Research

The primary objective of this study was to describe the relationship between coal

ash related COC Kd values obtained through laboratory experiments, and those obtained

through surface complexation modeling of extracted HFO.  Upon comparison, the

modeled Kd values were evaluated for use in practical applications.  Two HFO extraction
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procedures were utilized to provide multiple independent concentrations as seen in Table

1.  The first utilized an acidified hydroxylamine solution developed by Chao and

Theobald to extract HFO from soil samples (Chao and Zhou 1983).  The second HFO

extraction procedure utilized a CBD extraction solution developed by M.L. Jackson

which was modified slightly for project needs (Mehra and Jackson 1960).  The

modification entailed using 5 extra ml of sodium citrate solution and excluded the use of

acetone.  Surface complexation modeling was used to generate theoretical isotherms

using the geochemical modeling software PHREEQC, and laboratory isotherms using the

batch and analytical techniques in accordance with EPA Technical Resource Document

EPA/530/SW-87/006-F.  PHREEQC is a text based software developed by the US

Geological Survey to computationally model aqueous systems.

Generated model isotherms were compared with experimental isotherms primarily

through the correlation of their corresponding Kd values, but also through comparison of

Kd value trends relative to sample HFO concentration.  Model and experimental

correlations were determined through use of the RE function, which shows the percent

error of modeled values compared to those of experiments.  Further statistical analysis

was completed and resulting data was quantified and visualized to assist in the derivation

of any trends.
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CHAPTER 2: LITERATURE REVIEW

2.1. Adsorption

Adsorption plays a dominant role in subsurface trace element transport.  The

process can occur in any system which has both a liquid and solid interface and is a

particularly important mechanism when considering the subsurface environment due to

the high surface area of porous mediums.  Adsorption is defined as the net accumulation

of constituents on the solid phase at the aqueous or gaseous interface.  When adsorption

occurs, the solid phase is considered the adsorbent and the aqueous particle is the

adsorbate (Berkowitz et al. 2014).  This attraction or bond can occur between electrically

charged particles, as well as nonionized surface sites and constituents. This is due to

electrical and chemical interactions between the adsorbent and adsorbates (Dzombak and

Morel 1990).

It is this attraction which causes a constituent to adsorb and thus become removed

from the aqueous solution.  The removal from the bulk phase is what makes adsorption

significant to subsurface transport.  Upon adsorption, a COC will either become part of

the solid phase, or more likely desorb back into the bulk solution after a time.  While

adsorption is not necessarily a constituent sink, this time spent adsorbed to the solid

phase will serve to attenuate the mobility of the constituent.  This attenuation is known as

retardation, and is a useful phenomenon to quantify when modeling groundwater systems

(Berkowitz et al. 2014).

To quantify this retardation, one must first measure adsorption.  This is done by

carrying out lab experiments in which porous media and aqueous solutions can reach

equilibrium.  Upon equilibrium, the measured adsorption onto the solid phase is plotted
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as a solid concentration against the concentration of adsorbate in the aqueous phase.  The

graph that results from this process is known as an adsorption isotherm and has been

described mathematically by multiple adsorption models.  These models include the

simple Kd model, as well as the Langmuir and Freundlich models(Berkowitz et al. 2014).

The GTLM of David Dzombak and François Morel is a more modern computational

based adsorption model and is the basis for the modeling performed in this study.  The

GTLM and is described in depth within section 0.

2.1.1. Distribution Coefficient

The distribution coefficient (Kd value) is a simple but useful model used to

describe the partitioning of COCs between the solid and liquid phases.  It is the most

common description of a COCs solid phase affinity within fate and transport models.

Within a batch procedure, it is empirically derived by plotting the measured solution

COC concentration versus the calculated adsorbed solid phase COC concentration for all

liquid to solid batch ratios (i.e. an isotherm), and then determining the slope of the linear

line of best fit (EPA 2004).

While useful, concerns have been raised that the intricate nature of COC-soil

adsorption is too complex to be modeled with a Kd approach.  Robust models that can

further describe the dynamic interactions occurring between adsorbents and adsorbates

can be useful; however situations favorable for Kd can still occur.  Such circumstances

include batch experiments entailing reversible reactions and linear isotherms.

Evaluations of Kd based approaches to evaluate the transport of trace metals have in the

past successfully held up against computational, laboratory, and field data.  Due to this



6

ease of use and reasonable accuracy, Kd values are viable and practical means of

describing trace metal mobility (Daniels and Das 2014).

2.1.2. Langmuir Isotherm

The Langmuir equation was originally derived from gas to solid interfaces and

consequently has some strict assumptions.  It assumes that the adsorbate bonds to the

solid phase at a specific, homogeneous, localized site, creating a monolayer (one

molecule thick layer).  It also assumes there are no cross interactions between adsorbed

molecules, equilibrium within the system is attained, the heat of adsorption is constant,

and that temperature does not affect the energy of adsorption.  The equation is as follows:

ݔ
݉ =

ܾܥܭ
1 + ܥܭ =

ܾܭ
1
ܥ + ܭ

x = amount of adsorbed chemical
m = mass of adsorbent
C = equilibrium concentration
K = bonding strength constant
b = maximum possible adsorbent that can be adsorbed

These parameter values are determined by plotting the Kd value, which is the ratio

between the amount of adsorbed constituent at equilibrium per mass of adsorbent (x/m)

and the concentration of constituent in solution (C):

ௗܭ =
ݔ ݉⁄

ܥ

The Langmuir equation is applicable when plotting Kd values against x/m at a

relatively low C yields a straight line; however the restrictive assumptions of the equation

may make such a task difficult.  When dealing with the heterogeneous materials present

in a natural subsurface environment, one may find a large discrepancy between models

and results.  These can be resolved through corrections supplemented into the equations
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which account for coupled adsorption-desorption reactions, and adsorption of trace

elements on geosorbents.  Other models may also be used in place of the Langmuir

equation such as the Freundlich isorherm(Berkowitz et al. 2014).

2.1.3. Freundlich Isotherm

The Freundlich isotherm accounts for the decrease in adsorption energy due to the

decrease in available adsorption sites over time.  Unlike the Langmuir equation, the

model was derived empirically and assumes multilayer adsorption.  The model uses the

equation

ݔ
݉ = ଵܥܭ ௡ൗ

to fit adsorption data from low concentrate solutions where n and K are constants.  The

Freundlich equation is limited in that it doesn’t predict a maximum adsorption capacity.

It instead models adsorption interactions of dilute solutions with low solute

concentrations and low sorbent loading which appear to be linear.  Despite this limitation

the Freundlich equation is broadly used to describe constituent adsorption, especially on

geosorbents.  However, the model will require modifications when at least one of the

component variables causes the isotherm to depart from linearity (Berkowitz et al. 2014).

2.2. Constituents of Concern

There are countless COCs within the realms of groundwater science.  These

constituents can range from complex organic pharmaceuticals, to heavy metals, to

hydrocarbons.  When in relation to coal ash waste, the primary COCs are metals with the

potential to leach from the ash pond or landfill.  The COCs discussed in this study can be

classified as either heavy metals, metalloid, or nonmetal due to their placement on the

periodic table.  They are dense and are often toxic at relatively low concentrations.  All of
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the COCs are naturally occurring components of the Earth’s crust which can neither be

degraded nor eliminated, but can affect humans and wildlife alike through ingestion of

contaminated food and water (Berkowitz et al. 2014).

While many of these COCs, (e.g. Se and copper) are used in biological processes

such as catalytic functions, higher concentrations can harm biological organisms.

Specifically, they can disrupt the metabolism through their ability to act as redox

catalysts.  This ability causes oxidative damage to cellular structure, DNA, and enzyme

processes.  As evident by these effects many heavy metals can result in both acute and

chronic issues (Berkowitz et al. 2014).

While CCR is composed of and may leach many constituents, this study only

considers a limited number of the most common.  Laboratory experiments yielded

isotherms for As, boron, cadmium, Cr, molybdenum, Se, thallium, and V; however  the

model only created isotherms for As, Cr, Se, and V due to their environmental

significance and potential impact to humans and natural organisms alike.  For these

reasons it is useful to understand the health risks a constituent poses to humans, as well as

their behavior within natural systems.

2.2.1. Arsenic

As is a heavy metaloid and natural trace element commonly found in subsurface

environments.  It is harmful to both human and animal health and has been a well-known

poison for centuries.  Large doses of As over 60,000ppb in water can result in death,

while levels as low as 300ppb can lead to intestinal irritation and decreased production of

blood cells.  These health issues can lead to side effects such as nausea, vomiting, fatigue,

and impaired nerve function.  Aside from acute issues, As is also a well known
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carcinogen, and can increase the risk of cancer throughout the body with extended

contact (U.S. Department Of Health And Human Services 2007).  Ingestions of As

containing drinking water has affected the wellbeing of millions globally and caused

thousands of deaths (Miller 2001).  It is evident from these consequences, that As is a

public health risk.  It is thus useful to further understand As within the subsurface

environment (U.S. Department Of Health And Human Services 2007).

Concentrations of As in the environment can increase due to natural and

anthropogenic causes.  These include mineral dissolution, pesticides, fly ash disposal, and

geothermal discharge.  When in natural conditions, As generally exists as inorganic

species with redox states of arsenite (As(3)), or arsenate (As(5)).  Of the two states, As(3)

is significantly more toxic.  Water quality standards in the United States establish that

concentrations of As over 50ppb can be harmful to the public (Goldberg and Johnston

2001).

Depending on the pH, As(3) and As(5) will either exist as a neutral or anionic

species.  Both of these natural redox states can exist within a groundwater system due to

the slow kinetics of the redox reactions involved.  Regardless of the redox state, As

species have been shown to have a strong affinity for metal oxides in soils.  It is well

documented in the literature that iron oxide, specifically ferrihydrite, surface

complexation is the controlling factor for As transport (Miller 2001).  It is also shown

that reducing conditions may cause As to become more soluble, causing elevated

concentrations of As and demonstrating the difference between adsorption capacity of the

two redox states.  Adsorption capacity variances occur in part because As(5) is suggested

to bond to the solid phase through inner sphere complexes, allowing for a stronger bond
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than As(3).  This also explains why As(III) is more sensitive to ionic strength than As(5)

(Goldberg and Johnston 2001).

Models of As behavior are currently useful in simple systems; however systems

with excess geochemical variables have proven difficult to describe.  Further research

into As geochemistry is needed before accurate evaluation of natural As behavior can be

understood (Miller 2001).

2.2.2. Chromium

Cr is another heavy metal which can occur naturally or through artificial means.

High levels of Cr in the environment are usually a result of industrial activities.  In

natural groundwater conditions Cr will exist in two different oxidation states, Cr(6) and

Cr(3).  While composed of the same elements, these two oxidation states act very

differently.  When in contact with humans, Cr(6) is considered roughly 1000 times more

toxic than Cr(3).  It can cause symptoms like nausea, vomiting, diarrhea, internal

hemorrhage, and liver and kidney damage (Kalhori et al. 2013).  Due to Cr(6)’s high

level of toxicity, it has become strictly regulated; however some of its inherent properties

make regulatory control difficult.

In a groundwater system Cr(6) will exist in higher concentrations due to high

solubility.  This high affinity for the liquid phase makes Cr(6) much more mobile than its

reduced state (Kalhori et al. 2013).   Cr(3) on the other hand is the most stable of the two

species under typical environmental conditions.  This form of Cr has very low solubility

and is considered highly adsorptive.  Cr(3) thus has a low environmental mobility and is

of concern only when conditions are favorable for oxidizing the constituent (Kent et al.
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1994).  Due to the geochemical controls involved in Cr toxicity it is deemed valuable to

further understand subsurface systems containing Cr.

2.2.3. Selenium

Se is a relatively heavy metalloid which is found naturally in soil at trace

amounts.  It is an important element within human nutrition, with an adult daily

recommended intake of 55 µg/day.  While Se may be helpful to the body at low doses,

daily levels above 400 µg/day are not recommended.  Research has indicated that higher

doses between 1.5 and 6 mg/kg of body mass can stunt developmental growth and prove

mortally toxic to laboratory animals.  Cases of excess Se consumption in humans have

resulted in side effects including hair loss, weak nails, gastrointestinal problems, and

neurological issues.  Routes of human exposure generally include most foods, especially

protein rich ones, and groundwater.  Due to its deleterious effects on human health and its

presence in groundwater, interest in Se’s behavior within aquatic environments has risen

(WHO 2011).

Within natural conditions Se will exist in the redox states Se(2-), Se(0), Se(4), and

Se(6).  Selenite (Se(4)) and selenate (Se(6)) are the most common redox states of Se in

groundwater due to their relatively high solubility, aversion to redox speciation, and slow

kinetics.  Depending on the treatment process, it can be challenging to remove these

constituents from solution.  Selenate tends to be the more difficult of the two, with

coagulation, lime clarifications, and filtration through activated carbon proving

ineffective in the removal process.  Instead, adsorption onto iron and aluminum coated

particles proves to be more useful in the removal of both forms of Se (WHO 2011).
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Within subsurface aquatic environments, Se(6) is generally the more mobile state

of the two, with Se(4) exhibiting a higher affinity for the solid phase.  Se speciation

between the two is mostly a function of redox potential, with Se(4) existing as the

dominant species in moderate groundwater redox conditions and Se(6) predominantly

existing in high Eh conditions.  It is thus evident that Se will increase its mobility within

highly alkaline aquifers, creating a need to understand the geochemical processes relevant

to Se (Fernández-Martínez and Charlet 2009).

2.2.4. Vanadium

V is another example of a naturally occurring element which is essential to life;

however, it is chronically toxic at aqueous concentrations as low as 20ppb.  At nominal

levels, V plays a part in regulating sugar levels in the body, and is a part of enzyme

systems (Baǧda 2014).  At higher levels of ingestion the metal can cause issues within the

gastrointestinal tract and hematological system.  Symptoms of these issues include

nausea, diarrhea, stomach cramps, decrease in blood cells, and decrease in hemoglobin.

V is generally released into the environment at excess levels through the burning of fossil

fuels (U.S. Department of Health And Human Services 2012).

It is because of these adverse effects that V is listed on the EPA’s Contaminant

Candidate List 3.  It is a complex constituent due to the large multitude of different

molecular arrangements and chemical reactions which occur in subsurface environments.

V has a high affinity for oxygen which allows it to chemically speciate into both

oxycations and oxyanions.  Within natural systems, V will exist in three oxidation states:

V(5), V(4), and V(3).  In a natural groundwater with oxygenated conditions, V(5) is the

prevailing oxidative state, and will exist in the form of H2VO4
- or HVO4

2-. V(4) can exist
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under slightly reducing conditions, and has a high affinity for surface oxides relative to

V(5).  In relatively extreme natural reducing conditions, V(3) will occur at many pH

values; however according to studies it may not be as important in groundwater as the

other two species (Wright et al. 2014).

Previous models have shown that V(5) species will not precipitate when in an

oxic environment.  This behavior points towards adsorption and desorption at surface

oxide sites as the primary mechanism governing V solubility.  With adsorption as the

primary mechanism, it is expected that V concentrations will increase as pH increases.

This is because the surface sites will deprotonate at higher pH’s, thus gaining a negative

charge.  At high pH’s it has been shown that V is mostly in the V(5) redox state, which

will exist as an oxycation.  The oxycation will in turn avoid adsorption with the

negatively charged surface sites, causing the elevated concentration of V.  At lower pH’s

V is expected to adsorb to the solid phase as the surface sites become protonated and

more positive, like the anion adsorption described in the General Two Layer Model

described by Dzombak.  This adsorption is believed to be an inner sphere complexation

(Wright et al. 2014).

V likely has a higher affinity for amorphous or poorly crystalized oxides.  Once

sorbed to Fe or Mn oxides, it can desorb through dissolution processes such as proton

promoted, ligand-promoted, and reductive dissolution processes.  Of these mechanisms,

reductive dissolution is the most common; however the conditions required for reductive

dissolution will generally make V precipitate.  It has thus been hypothesized that V does

not mobilize when oxic conditions become anoxic (Wright et al. 2014).  Previous V

adsorption isotherms have yielded no significant effect of pH on V adsorption.  This



14

leads one to believe that the adsorption capability of the solid media is more important

than small changes of pH (Wright et al. 2014).

2.3. Hydrous Oxides

Hydrous oxides are useful indicators of adsorption due to their prevalence within

natural soils, their propensity to coat particles, and their affinity for trace metals.  The

combination of these factors generally makes hydrous oxides the dominant control, or at

least a significant influence, of trace metal adsorption.  In nature there are several

common hydrous oxides, the most abundant of which include iron, aluminum,

manganese, and silicon oxides.  These oxides generally exist as a solid mixture rather

than in their pure mineral phases and are amphoteric in nature   (Dzombak ad Morel

1990).  While adsorption data is often described through means of isotherm equations and

partitioning coefficients, the adsorption of inorganic ions onto hydrous oxides relies

heavily on factors such as pH, Eh, ionic strength, and competing ions (Berkowitz et al.

2014). With large quantities of thermodynamic data available, prevalent hydrous oxides

can be used to model adsorption within a range of geochemical conditions rather than

conducting laboratory experiments to quantify adsorption (Dzombak ad Morel 1990).

Surface complexation reactions which occur on similar hydroxyl groups such as

gibbsite (HAO), goethite, and HFO generally demonstrate comparable surface

complexation constants and reactivity for the same adsorbing ions.  This similarity occurs

because the reactive surface hydroxyl group determines the reactivity of the hydrous

metal oxide surface.  Hydrous manganese oxide (HMO) reactions and surface

complexation constants have been more difficult to measure due to the many redox states

at which HMO exists in nature.  These multiple redox states make it difficult to
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synthesize an HMO coated solid phase with consistent geochemistry in the lab, thus

making HMO experimental data vary more widely than its mineral cousins.  The end

results are HMO complexation constants and reactions that are less consistent with those

of HFO and HAO; however the modeling data is valuable nonetheless due to their similar

order of affinity with HAO and HMO constants (Dzombak and Morel 1990).

2.3.1. HMO

Soils generally contain a much higher concentration of iron oxides than

manganese oxides; however manganese oxides are still considered significant in

contaminant transport due to their higher chemical reactivity, as well as their large

multitude of mineralogical species.  Mn oxides consist of over 30 different mineral

species, while Fe oxides consist of about half a dozen.  Mn oxides are typically more

reactive than Fe oxides because they can exist in multiple oxidation states, form

nonstoichiometric oxides with different valence states, exist in multiple crystalline and

amorphous forms, and can form solid solutions with Fe oxides (Tonkin et al. 2004).  Due

to the complex nature of HMO and the desire for a simplistic model, HMO was not

utilized in the development of this model.

2.3.2. HFO

Hydrous ferric oxide (HFO) is an abundant amorphous solid which commonly

coats soil particles.  It is formed by rapid hydrolysis of ferric iron solutions at common

environmental temperatures and is denoted as ferrihydrite when found in nature.  HFO

gets its amorphous characteristic from the highly porous nature of its aggregated

particles.  The porosity allows for increased water content which in turn gives HFO a gel-

like consistency rather than a solid structure (Dzombak and Morel 1990).
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The actual bulk structure of the HFO solution is unclear; however its chemical

composition is represented by the stoichiometric formula Fe2O3·nH2O where n varies

from 0 to 3.  Its surface area is large due to high porosity, and is estimated to be 600m2/g.

It is upon the HFO surface that adsorption occurs between constituents and adsorption

sites.  These sites can be segregated in to two different types.  Type 1 sites are less

common and are considered high-affinity cation binding sites.  These sites are not utilized

in this study due to the anionic nature of COC.  Type 2 sites are far more abundant than

type 1 and represent the total reactive sites available for adsorption of protons, cations,

and anions (Dzombak and Morel 1990).

Estimates of the density of type 1 and 2 sites vary from 0.001 to 0.01mol/mol, and

0.1 to 0.3mol/mol respectively.  These ranges are adequately close to allow for the use of

only one defined site density for each site type.  Type 1 site density is defined as

0.005mol/mol Fe, while type 2 sites are defined as 0.2mol/mol Fe.  Since these defined

values lie within a range of estimated values it is acceptable to adjust site densities to

describe a particular sample of HFO (Dzombak and Morel 1990).

2.3.3. HAO

Aluminum (Al) is the most common element in the lithosphere and generally

makes up about 7% of soils.  In natural systems Al is mostly present in the form of oxides

and aluminosilicates due to elemental Al’s reactivity.  These aluminum oxides and

hydroxides, or HAOs, can both influence the chemistry of soil, sediment, groundwater,

and surface water systems due to their sorptive properties.  Similar to other hydrous metal

oxides, HAO will adsorb ions and anions and plays a role in subsurface transport
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(Karamalidis and Dzombak 2010).  While HAO is important in surface complexation

modeling, it is not considered within this model for simplicity.

2.3.4. Hydrous Oxide Extraction

To accurately model surface complexation onto hydrous oxides, one must have an

accurate measurement of the hydrous oxide.  These concentrations can be determined

through different extraction procedures.  The procedures used in this study include a

modified version of the dithionite-citrate with sodium bicarbonate buffer (CBD) methods

(Mehra and Jackson 1960), and the acidified hydroxylamine (Chao) method (Chao and

Zhou 1983).  These two procedures offer different ways of dissociating HFO from soil

particles.

2.4. Generalized Two Layer Model

There are a multitude of different models which describe constituent

complexation with hydrous oxides; however they all have a few things in common.  Each

model assumes that constituent adsorption on oxides occurs at particular coordination

sites, uses mass law equations to quantitatively define adsorption reactions on oxides,

considers surface charge a possible product of adsorption reactions, and uses the electric

double-layer (EDL) theory to account for the effect of surface charge on adsorption by

applying a correction factor to mass law constants for surface reactions (Dzombak and

Morel 1990).

The EDL theory states that a charged surface, such as a clay particle, is composed

of a charged solid layer with an adjacent layer of counter charged ions present due to the

electrostatic attraction.  In cases of solutes with high concentrations, these counter ion
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layers can precipitate onto the surface, creating a solid solution on the surface layer

(Dzombak and Morel 1990).

Of all the modern computer-based surface complexation models, the simplest is

the GTLM developed by David Dzombak and Morel.  This model defines adsorption as a

chemical reaction between solutes and clearly defined oxide surface sites.  It differs from

the EDL theory in that the number of binding sites on a surface limit the surface charge

of the solid phase to a finite value.  This limited surface charge is an improvement to the

Gouy-Chapman model because it accounts for sensible amounts of counterions in

solution instead of EDL’s elevated concentrations.  This improvement was initially done

by Stern and Grahame’s modified EDL theory, the Double Layer Model.  Double Layer

Model took the initial steps of considering specific adsorption sites, thus paving the way

for the GTLM (Dzombak and Morel 1990).

These surface site chemical reactions consist of acid/base proton exchange, cation

binding, and anion binding by means of ligand exchange between solute and hydroxyl

site.  These adsorption reactions must also follow a mass law equation with the sorbent,

sorbate, and surface site concentrations acting as the variables.  The equilibrium constant

which will result from this mass law equation is composed of two individual terms, the

chemical free energy of binding, and coulombic free energy of binding.  These terms are

coined “intrinsic” and “coulombic” respectively.  The intrinsic term represents the

chemical free energy involved in binding to a specific site, while the coulombic term

represents the binding energy present due to the electrostatic charge on the surface phase.

Materials which are bonded due to the intrinsic term are dubbed specifically sorbed, and

have the ability to give an uncharged surface a charge (Dzombak and Morel 1990).
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It is impossible to experimentally separate the chemical and electrostatic forces

involved in adsorption; however it is useful to separate them in theoretical terms.  This

allows the model to account for a chemical reaction that does not vary with surface

charge.  The electrostatic force is then added to this chemical force, allowing for a more

accurate model which fits experimental data (Dzombak and Morel 1990).

The coulombic term is considered an activity coefficient, and is a result of the

EDL concept theorized by Gouy-Chapman.  A columbic correction factor must be

applied to model the constant variation in the acidity constant at diverse pH values.  It

must also be applied to the mass law constants for surface complexation reactions.  When

applied to the mass law equation it will describe the effect of pH and ionic strength on

adsorption (Dzombak and Morel 1990).

2.4.1. Surface Acidity

Within the model, a diprotic acid depiction of surface sites is generally used to

explain surface charge.  The depiction is also useful since it simple and easily describes

zero proton charge at the surface.  These oxide surfaces will act as both an acid and a

base due to the following surface ionization reactions

≡XOH2
+ = ≡XOH0 + H+   Ka1

≡XOH0   = ≡XO-    + H+   Ka2

where ≡XOH2
+, ≡XOH0, and ≡XO- represent positive, neutral, and negative surface

hydroxyl groups, and Ka1 and Ka2 represent their relevant acidity constants.  It is thus

intuitive that the magnitude of surface charge is variable with pH, making pH a

significant factor when modeling surface complexation (Dzombak and Morel 1990).

2.4.2. Anion Surface Complexation
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As mentioned previously, the GTLM describes anions as adsorbing to a surface

through ligand exchange processes which involve the exchange of surface hydroxyl

groups with the sorbing ion.  This interaction can be described with complexation

reactions like the following

≡XOH0 + A3- + H+ = ≡XA2- + H2O     K1A

and,

≡XOH0 + A3- + 2H+ = ≡XHA- + H2O  K2A

where A3- is a trivalent anion.  Anion complexation models generally require between

one and three such complexation reactions to remain accurate.  The ligand exchange

reaction shown has the propensity to create a relatively negative surface charge on the

solid phase.  Since many anions of concern are di- or triprotic weak acids that have the

capability to become fully deprotonated within a relatively small pH range, more

information is required regarding surface site types.  Usually two or three surface species

must be known to model anion adsorption, whereas cations only require one (Dzombak

and Morel 1990).

The GTLM considers all proton exchange sites as viable adsorption sites for

anions.  This anion adsorption exhibits Langmuirian properties, such as surface

concentrations proportional to solution concentrations, within a wide array of pH’s.

These properties indicate that there is often one type of binding site.  Thus, the ionizable

proton site density should be equal to the maximum adsorption density of an anion

(Dzombak and Morel 1990).

The model also takes anion surface precipitation into account.  These precipitation

processes will occur at high anion concentrations, while complexation is associated with
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lower concentrations.  When precipitation occurs, a solid solution with a composition

between that of the original surface and pure precipitate is formed on the solid surface.

The chemical model reaction of precipitation for a trivalent anion on a hypothetical oxide

is as follows

≡XHA- + X3+ + A3- = XA(s) + ≡XHA- ଵ
௄ೞ೛೉ಲ

Where Ksp represents the surface precipitation coefficient.  Precipitation models such as

these are necessary in addition to complexation models to fully describe anion transport

(Dzombak and Morel 1990).

2.4.3. Cation Surface Complexation

Cation species in solution also have an affinity to complex with surface sites.

During this process the cation will deprotonate a hydroxyl site and bond with surface

oxygen.  Example models include,

≡XOH0 + M2+ = ≡XOM+ + H+     KM

or,

≡XOH0 + M2+ + H2O = ≡XOMOH2
+ + H+     KM

Where M2+ signifies a divalent cation.  The first equation above is the equation used to

define cation complexation, while the second equation is used only in precipitation.

Surface complexation reactions such as these, along with acid/base reactions, comprise

the equilibrium model used in the General Two Layer Model (Dzombak and Morel

1990).

Due to the apparent movement of protons seen in the model reactions, the cation

complexation reaction is very sensitive to pH.  Cations have a much higher affinity for

complexation when there is a higher pH due to the ease of surface site deprotonation that
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will occur in such conditions.  Similar to anions, cations will also change the net charge

of a surface; however the resulting charge will be more positive than that of anion

complexation.  When modeling, cations require two site types; however the same surface

stoichiometry can be used for both.  The ≡XOH0 site species is thus usually the only site

type considered when modeling cation complexation.  The sum of all possible cation

surface binding sites will, as with anions, add up to equal the number of proton binding

sites (Dzombak and Morel 1990).

Cation precipitation will occur at higher concentrations of cations in solution, and

can be considered a continuation of complexation.  Once a cation is complexed, a new

hydroxide group is formed that in turn can react with more cations.  Once the old cations

are no longer in contact with the liquid phase, the cation is considered part of the solid

solution.  In other words, once the surface sites are saturated precipitation becomes the

dominant process (Dzombak and Morel 1990).

2.4.4. Other Factors Affecting Surface Complexation

There are numerous other factors which can affect complexation.  The GTLM

considers solution complexation, where cations and anions can complex while in the

liquid phase.  These complexes may have different affinities for surface sites than their

parent ions and may cause different adsorption reactions.  Another factor is the activity

coefficient of a given solution.  The double layer model’s coulombic term is effectively

an activity term which is designed to correct for long range surface charge effects.  Other

non-ideal properties in the liquid phase, such as ionic strength, are accounted for with the

solution activity coefficient (Dzombak and Morel 1990).

2.4.5. Generalized Two Layer Model Overview
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The GTLM utilizes the Gouy-Chapman diffuse layer model to create an

equilibrium adsorption model.  The model accomplishes the task of successfully fitting

experimental acid-base titration and cation and anion adsorption data for oxide surface

sites.  All specific adsorption is assumed to occur on the surface layer in the diffuse layer

model, while the liquid phase contains the diffuse layer of ions.  While the Gouy-

Chapman model is an integral part of the GTLM, it expands this understanding of surface

interactions by including two site types for cation binding, and surface precipitation for

anions and cations.  The model can thus be considered a combination of the surface

precipitation model, the diffuse layer model, and the multisite model (Dzombak and

Morel 1990).

2.5. Redox Disequilibrium

During the course of this study, it was noted that As adsorption in laboratory

experiments yielded isotherms considerably different than those generated in the

computational models.  Upon further exploration, it was discovered that model output

was substantially more accurate when As existed in As(3) form.  After additional

research into the literature, it was noted that As can exist in a state of redox

disequilibrium for extended periods of time.

Substantial redox disequilibrium between As species is associated with

biologically controlled redox transformation, dynamic systems with rapid change and

large energy flux, and redox pairs in low concentrations where equilibrium calculations

are sensitive to analytical and sampling errors(U.S. Department of the Interior Bureau of

Land Management 1991).  Due to the nature of the laboratory batch experiments, where
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rapid changes in water chemistry were induced by researchers, it is likely that any redox

disequilibrium was a result of the dynamic laboratory system.

When in equilibrium As(3) is the dominant species in strongly reducing aquifers

and will undergo oxidation to As(5) in mildly reducing waters.  In contrast, a dynamic

system’s proportion of As(3) and As(5) can differ greatly due to large redox gradients,

large redox variations, and variations in past redox history.  Due to the different

behaviors of As(3) and As(5), redox speciation becomes important when considering

chemical transport (Smedley and Kinniburgh 2001).  Geochemical models such as

PHREEQC rely on equilibrium calculations to describe geochemistry; however the

kinetics of a redox reaction may not allow for field and laboratory data to support

equilibrium.  This is evident in other studies where As(5)/As(3) ratios were found outside

of  their theoretical thermodynamic equilibrium.

In particular, oxygenation of As(3) to As(5) by dissolved oxygen is believed to be

a kinetically slow reaction, with some As(3) half-life estimates lasting up to a year.

Other research found that As(5)/As(3) ratios were stable for days to weeks when anti-

oxidation methods were not employed and that oxygenation is slowest when slightly

acidic conditions (near pH 5) are present.  There is also contradiction in the literature as

to whether or not As redox couple ratios can be used as redox indicators, leading one to

acknowledge that using As couples in Eh calculations may be an unreliable method

(Smedley and Kinniburgh 2001).

The experimental conditions of this study appear consistent with many of the

qualities associated with dynamic systems in disequilibrium.  As was moved from a

highly acidic stock solution with water quality parameters favorable to As(3) into the
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synthetic groundwater solution, representing a fairly drastic change in aquatic chemistry

for As molecules.  Once created, synthetic groundwater generally had a pH of about 6,

which is close to the slightly acidic conditions favorable to disequilibrium.  Synthetic

groundwater was also fully utilized in a batch experiment within one week of its

synthesis, only allowing As a small timeframe to reach redox equilibrium.  While it is

unknown how exactly As(3) would have undergone redox speciation, it is possible that

the kinetically slow route of DO oxygenation could have been the dominant pathway and

required long equilibrium times.  Due to these experimental similarities, as well as model

results compatible with As(3) adsorption, As redox disequilibrium is hypothesized to

describe the behavior of As adsorption within the laboratory batch experiments.

2.6. PHREEQC

PHREEQC is a hydrogeochemical modeling program developed by the USGS

capable of performing various aqueous geochemical computations.  It is used to simulate

processes and reactions which occur within industrial activities, natural or contaminated

water systems, and laboratory experiments.  The software bases its simulations on ion-

association aqueous models which allow for (1) speciation and saturation-index

calculations; (2) batch-reaction and one-dimensional (1D) transport calculations with

both reversible and irreversible reactions, which include equilibria of gas, mineral, solid-

solution, aqueous, surface-complexation, and ion-exchange processes; (3) inverse

modeling (Parkhurst and Appelo 2013).

Batch reactions are the primary focus of this study.  When simulating batch

reactions, PHREEQC will account for total system equilibrium instead of just aqueous

equilibrium.  The simulation thus has a multiphase equilibrium that distributes all moles
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of constituents between the gas phase, aqueous phase, pure phases, solid solutions,

exchange sites, and surface sites.  Mole balances on oxygen and hydrogen are employed

to account for pe and water mass changes.  This accounts for any water-consuming or –

producing reactions in the system.  Temperature effects can also be accounted for through

the Van’t Hoff equation, while pressure, gas solubility, specific volume, and adsorption

can be considered as well (Parkhurst and Appelo 2013).

Adsorption and desorption are either modeled as neutral ion exchange reactions,

or surface complexation reactions.  Ion exchange reactions can be modeled using the

Gaines-Thomas or Gapcon conventions; however are not implemented in this study.

Surface complexation can be modeled using two individual models.  The first is

Dzombak & Morel’s double layer model mentioned above.  The second is the Charge

Distribution MUltiSIte Complexation (CD-MUSIC) model.  CD-MUSIC is a triple layer

model that also allows for multiple binding sites.  The double layer model is the only

model used in this study, and supplies PHREEQC with surface complexation constants.

These constants are input into two databases which the program utilizes in its

simulations.  These databases are phreeqc and wateq4f.  A third database is also viable

for use in surface complexation calculations.  This database is minteq which was taken

from MINTEQA2, an EPA model for geochemists (Parkhurst and Appelo 2013).

The batch simulation allows for the definition of any quantity of solution

compositions, gas phases, pure-phases, solid-solutions, exchanges, or surface-

complexation groups.  It also allows for any of the aforementioned assemblages to be

brought together and reacted in a closed system until equilibrium is reached.  This

equilibrium will have the lowest possible Gibbs energy for the system (Parkhurst and
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Appelo 2013).  The batch simulation within the PHREEQC model can offer insight to lab

experiments such as those conducted in this study.
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CHAPTER 3: EXPERIMENTAL METHODS AND PROCEDURES

The methods of this study can be categorized into two main parts, laboratory

experiments and computational modeling.  Both experimental and computational aspects

of the study performed identical processes independently of each other in order to assess

the feasibility of computational strategies in comparison to experimental ones.  A

computational sensitivity analysis was also completed in an effort to more thoroughly

understand the effects of pH and Eh on model output.

3.1. Laboratory Experiments

All laboratory investigations occurred at the University of North Carolina at

Charlotte’s state of the art environmental laboratory located within the Energy Production

and Infrastructure Center.  Experimental methods were generally identical to, or modified

versions of the authoritative standards of which they were derived.  Laboratory and

modeling activities and methods are as follows:

3.1.1. Sample Storage and Preparation

In accordance with the groundwater assessment plan requested by the North

Carolina Department of Environmental and Natural Resources (NCDEQ), Duke Energy

provided soil samples from 14 NC coal ash sites to UNC Charlotte for Kd values

determination.  Between 8 and 14 samples were chosen for analysis for each site.

Samples were meant to provide a suitable representation of the saturated zone

surrounding and downgradient of the ash basin.  Samples taken from the field were

preserved in sealed plastic bags and stored on ice until they could be stored in a cold

storage refrigeration unit at 4° C.  Prior to testing the samples were disaggregated,

homogenized, and air-dried at room temperature in aluminum pans.  Once dried, samples
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were sieved through a #10 U.S. standard mesh to attain a maximum grain size of 2 mm

(Langley et al. 2015).

Samples were then weighed and placed in 250 mL wide-mouth high density

polyethylene (HDPE) bottles with polypropylene screw tops (in accordance with U.S.

Environmental Protection Agency (EPA) Technical Resource Document EPA/530/SW-

87/006-F).  Each individual sample was weighed out in five masses of 10, 25, 50, 75, and

100 grams, all of which were added into separate HDPE bottles (Langley et al. 2015).

3.1.2. Selective Extraction of Metal Oxy-hydroxide Phases

Selective extraction was necessary to determine concentrations of HFO present in

soil samples without interference from other Fe containing minerals.  HFO concentrations

were determined through two different analytical methods adapted from the Chao (Chao

and Zhou 1983) and CBD (Mehra and Jackson 1960) methods.

The Chao method for selective extraction of HFO called for shaking the soil

sample with a 0.25M NH2OH·HCl-0.25M HCl combined solution as the extractant at 50°

C for 30 minutes at a soil/liquid ratio of 0.1g/25mL.  Extraction samples were shaken in a

heated deionized (DI) water bath and run through a centrifuge.  All samples were

decanted and filtered through a 0.45-µm filter, as shown in Figure 1, and stored in 15mL

centrifuge tubes at 4° C until analyzed.  Extraction samples were analyzed using atomic

adsorption spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy

(ICP-MS) to determine concentrations of extracted metals in solution (Langley et al.

2015).

The CBD method for selective HFO extraction called for the stirring of the soil

sample with a combined 22.5 mL 0.3 M C6H5Na3O4•2H2O (sodium citrate) and 2.5 mL 1
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M NaHCO3 (sodium bicarbonate) solution at 75° C with a soil/liquid ratio of 0.1g/50mL.

During the heated stirring 0.2g of Na2S2O4 (sodium dithionite) powder was added once

the solution reached the desired temperature.  After 15 minutes of periodic stirring,

another 0.2g dose of sodium dithionite powder was added with periodic stirring occurring

for 10 additional minutes.  The addition and stirring of sodium dithionite powder

continued until the soil samples turned gray.  Upon completion, samples are cooled and

centrifuged before they were removed by pipette, filtered through a 0.45-µm vacuum

filter, and stored in 50mL centrifuge tubes at 4° C until analyzed.  Extraction samples

were analyzed using ICP-MS to determine concentrations of extracted metals in solution.

3.1.3. Batch Synthetic Groundwater Solution

To conduct the batch experiments, a synthetic groundwater, with chemical

composition shown in

Table 2, was prepared using reagent grade chemicals and 18 MΩ water.  Target

COC concentrations were attained through dilution of a concentrated reference standard

to their desired levels.  Actual synthetic groundwater COC concentrations used in

calculations were derived from analytical measurements of synthetic groundwater.

Consequently,

Table 2 only represents the theoretical concentrations produced in the lab, while

actual concentrations varied for each synthetic groundwater.  Upon the addition of COCs

synthetic groundwater pH was increased to levels between 6.5-7.5 by means of titrating

with 0.1N sodium hydroxide solution.  These synthetic groundwater solutions were

prepared and stored in 10 liter LDPE carboys (Langley et al. 2015).

3.1.4. Batch Experiment
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For each batch experiment, 200 mL of synthetic groundwater solution were added

into five 250 mL HDPE bottles containing soil masses of either 100, 75, 50, 20, or 10g.

This addition yielded soil mass to solution ratios of 50, 125, 250, 375, and 500g/L, as

well as a HDPE bottle filled with synthetic groundwater solution which acted as a blank.

Two sets of these soil mass to solution ratios were created for each sample so that two

trials could be run.  The soil-solution mixtures were then equilibrated through end over

end mixing using a rotary mixer operating as 30 rpm for 24 hours.  The experimental

batch set-up and filtration method are shown in Figure 2 and Figure 3.  After

equilibration, water samples were taken, filtered, acidified with two drops of concentrated

nitric acid, and stored at 4° C in a refrigeration unit.  Samples were later analyzed for

constituent concentration using ICP-MS for the four COC’s studied in this study, as well

as others according to the requirements of the specific coal ash site (Langley et al. 2015).

3.1.5. Experimental Batch Isotherms

After the batch experiments reached equilibrium, the COC concentration in

solution were reduced due to adsorption onto the soil surface.  This reduction can be

shown with the equation

ݔ
݉ = ݋ܥ)]  − [݉/(ܥ ∗ ܸ

where, x/m is the soil concentration (μg/g), Co is the initial solution concentration (μg/L),

C is the final solution concentration, m is the soil sample mass, and V is the volume of

solution.  Once the measured solution concentration and calculated soil concentration

were known, they were plotted against each other to create an isotherm for each

individual sample.  Each isotherm has five data points representing the five different

ratios equilibrated for each sample (Langley et al. 2015).
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3.2. Geochemical Modeling

Geochemical modeling was conducted to evaluate (1) its utility in predicting

experimentally observed behavior, (2) its ability to predict sorption behavior under a

wider set of Eh and pH conditions and (3) the role of specific minerals in the sorption of

specific contaminants.  In order to accurately model the adsorption reactions, the GTLM

created by Dzombak and Morel was chosen to model surface complexation.  The model

was implemented using the geochemical modeling software, PHREEQC.  Modeling

procedures were generally inferred from similar studies, the PHREEQC User’s Manual,

and limited collaboration with one of the PHREEQC creator, Dr. David Parkhurst.  The

entire model input and output can be found in APPENDIX C.

3.2.1. Model Database

The GTLM requires inputs in the form of reaction constants which have been

defined through acid-base titrations, pH edges, and isotherm data found in literature

(Dzombak and Morel 1990).  These reaction constants have been compiled from

literature into multiple databases by the USGS, and are included with the PHREEQC

software package.  To account for all COC reactions the database utilized in this study

was a combination of the phreeqc, wateq4f, and minteq databases, as well as arsenic

reaction constants from literature (Gustafsson and Bhattacharya 2007).  The collective

databases included HFO complexation reactions from Dzombak and Morel and represent

the most reputable equilibrium constants found in literature to date.

3.2.2. Model Solid Phase

Soil samples were selected for geochemical batch modeling from samples used in

the laboratory batch experiments; however modeled samples were limited to seven coal
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ash sites (e.i. Allen, Belews Creek, Buck, Cliffside, Dan River, Marshall, and Riverbend

steam stations).  The roster of samples designated for geochemical modeling was as

extensive as possible and only excluded samples if they either did not have valid

synthetic groundwater data, or did not have valid HFO concentration data.  A total of 79

samples were used in the modeling of samples with HFO data derived from the CBD

method, and a total of 80 when modeling samples with HFO values derived from the

Chao method.

Input parameters were needed for the model solid phase to accurately represent

the chosen soil samples.  To define the surface phase, the total moles of strong and weak

HFO surface sites within a sample, HFO surface areas, and total sample HFO masses

were all input into the model, as seen in Appendix C.  HFO surface areas were taken

from literature and were set constant at 600m2/g, for all samples (Dzombak and Morel

1990).  The moles of strong and weak HFO surface sites, as well as total HFO mass were

unknown and had to be determined on a sample by sample basis.  This could be done

since weak HFO adsorption sites can be estimated as 4% of its extractible iron (HDR

Engineering 2016), and sample HFO mass was determined during sequential extraction

analysis as shown in Table 1.  The extracted iron values derived from the HFO extraction

procedure were thus used in this calculation.  The derived value was converted into moles

of Fe per gram of solid.  4% of the total molar iron concentration was then assumed to be

iron adsorption sites.  The equation can be written as follows:

 [≡ [ܪܱ݁ܨ   = [݈݀݅݋ܵ] ∗ [ܱܨܪ] ∗
1݃

1000݉݃ ∗
ܱܨܪ ݈݋݉
55.845݃ ∗

݈݋݉ 0.04 ≡ ܪܱ݁ܨ 
ܱܨܪ ݈݋݉

and was utilized to compute the total moles of weak adsorption sites (HDR Engineering

2016).  Once the moles of weak HFO sites were determined, total moles of strong sites
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could be determined due to the 1:40 strong to weak HFO site ratio (Dzombak and Morel

1990).  An example of model solid phase input is noted in Figure 4.

3.2.3. Model Liquid Phase

Once all the PHREEQC surface parameters were defined and input, the model

surface phase was considered fully defined.  The next step in modeling a batch

experiment was to define a liquid phase.  A liquid phase for each sample was generated

within the model by defining model solutions with identical quantitative water quality

parameters to those of the synthetic groundwater used in the laboratory batch

experiments.  Solution parameters such as total solution mass, chemical concentration

and water quality parameters like pH, pe, and temperature were input into the model.  An

example of model solution input is noted in Figure 4.

3.2.4. Mixing Model Batches

Once the solid and liquid phases were defined within the model, a batch mixing

process was defined.  This was done by using the MIX command within PHREEQC to

mix specified amounts of the solid and liquid phases for each sample.  Unlike the

experimental batches, the amount of solution was varied within the model to achieve the

desired liquid to solid ratio, rather than varying the amount of solid.  This modification

was done to allow for simpler inputs, and was determined to output identical results to

models that varied the solid phase mass instead.

Five liquid to solid ratios identical to those used in the laboratory batch

experiments were used in the model batch mixing in order to develop comparable batch

isotherms.  In addition to the isotherm points, a model curve was developed by means of
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mixing eleven additional liquid to solid ratios of the solid and liquid phases.  These

eleven points were later developed into a model curve within excel.

3.2.5. Model Constraints

With the phases and batch mixing defined, the model would generally be ready to

run; however due to PHREEQC’s assumption of redox equilibrium, and the redox

disequilibrium assertion described in section 2.5, model constraints were input as well.

Model constraints included the restriction of both As and V to their respective As(3) and

V(5) redox states in order to account for the hypothesized redox equilibrium.  This

restriction was accomplished by means of the SOLUTION_SPECIES command in

PHREEQC, which allows one to define the properties of a constituent within PHREEQC.

The As(3) to As(5) and V(4) to V(5) redox reactions were defined with a log_k of 100

and -100 respectively.  This definition effectively caused the speciation of As(3) to As(5)

and V(5) to V(4) to cease entirely.  Since the initial solution input only included As(3)

and V(5), the constraints effectively made these two redox states the only possible states

for As and V within the model.  Model surface complexation reactions were thus able to

occur in a simulated redox disequilibrium state.

In addition to disequilibrium constraints, the model was adjusted to account for

the saturation of Cr on HFO.  Such adjustments were necessary due to the Cr saturation

displayed in 34 of the 159 models created in for study.  While consistent with the GTLM,

experimental results did not show any sign of reaching maximum Cr adsorption capacity.

In order to account for this disparity the amount of strong sites were increased until Cr no

longer displayed saturated behavior.

3.2.6. Model Batch Isotherms
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Once solid phases, liquid phases, batch mixing processes, and model constraints

were all input, the model was run and an output dataset was generated.  Output

constituent data was then used to create isotherms in the same manner as the laboratory

batch isotherms described in section 3.1.5.  In addition to the steps taken in experimental

isotherm generation, model isotherms required the additional model curve points to be

processed in the same manner as the five isotherm points.  Experimental and model

isotherms are found in Appendix C.

3.3. Data Analysis

Once both experimental and model isotherms were generated, Kd values were

calculated by defining a line of best fit through the five isotherm points using the least

square method with a y intercept of zero.  The resulting line represents a linear line of

best fit, with the slope of the line representing the Kd value.  Experimental and model Kd

values of the same sample were then compared by determining the RE of the model Kd

value with respect to the experimental.  The relative error function is written as:

ܧܴ =
ௗ(௠௢ௗ௘௟)ܭ − ௗ(௘௫௣௘௥௜௠௘௡௧௔௟)ܭ

ௗ(௘௫௣௘௥௜௠௘௡௧௔௟)ܭ
× 100

where RE represents relative error and Kd represents the adsorption coefficient of the

respective model or experimental isotherm.  With relative error acting as a quantifiable

metric of model accuracy, a histogram of all sample relative error values was created to

gauge model accuracy with a large sample size.  Relative error histograms for each

constituent and each extraction method are displayed between Figure 5 - Figure 12.

As an additional means of visualizing model accuracy, model and experimental

Kd values were plotted directly against each other to visualize their correlation.  A 1:1
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line is included to visualize the actual trends compared to a perfect correlation.  Model vs

experimental plots are shown between Figure 13 - Figure 20.

In addition to visualizations of model accuracy, the Kd versus HFO concentration

correlation was observed.  Kd values of both modeled and experimental data were plotted

against each soil sample’s corresponding HFO concentration.  These plots allow for the

visualization of the correlation between HFO concentrations and Kd values, as well as

correlations between model and experimental results.  Linear regression lines with R2

values were created on these plots to observe the strength of HFO vs Kd correlations as

seen in Figure 21 - Figure 28.

Lastly, HFO versus Kd value graphs for each COC were developed on a site by

site basis for all COCs, as seen in Figure 29 through Figure 42.  This effort was

conducted after the main body of this study was completed, in response to insight gained

from additional literature review used to supplement the discussion section.  As a result,

the trend was not investigated as thoroughly as its significance deserves.  The author has

instead described the general trends observed herein, and leaves further in depth analysis

to future research.

3.4. Sensitivity Analysis

To better understand geochemical controls within the model, multiple sensitivity

analyses were completed.  The first analysis further develops the understanding of the

effect of water parameters on trace metal adsorption through the variation of pH and

redox conditions; while the second analysis observes the effect of ion competition on

COC adsorption.

3.4.1. pH and Redox Analysis
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In order to create pH and redox sensitivity models, input constituents and HFO

concentrations from every CBD model were averaged together and used as inputs for the

sensitivity model so as to represent the entire population of batch experiments.  Within

PHREEQC, the PHASES and EQUILIBRIUM PHASES commands were used to enable

solution pH and pe manipulation.  Solutions were varied by inputting identical solution

constituent concentrations, but with varying water quality parameters.  Parameter values

were maintained during solid and liquid phase equilibrium by adding either HCl or

NaOH to fix pH, or O2 to fix pe.

To understand the full scope of sensitivity, the effects of changing water quality

parameters were observed throughout the entire natural pH & pe range.  pH was varied

between 5 and 9, while pe was varied between -1.69 and 6.76.  pe values corresponded

with an Eh range of -100mV to 400mV.  Constituent isotherms were generated for every

individual pH and pe pair as seen in Figure 43 - Figure 86.

3.4.2. Competition Analysis

The effect competing ions and trace metals have on an adsorbing COC is valuable

when modeling natural and laboratory conditions that contain a variety of background

constituents.  In order to measure the effects of competition on COCs a base batch model

was created and compared with multiple single COC batch models.  Base model inputs

included an average of constituent and HFO concentrations from every CBD model so as

to represent the entire population of batch experiments.  The single COC models included

the same average HFO value; however the solution input only contained average values

of either As, Cr, Se, and V respectively.  Model batch isotherms were created using these
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inputs in the same manner as previously mentioned model batches, with base and single

COC isotherms contrasted in Figure 87 through Figure 90.

In addition to the observing the differences between batch experiments with no

competition and average competition, the effects of ionic strength were also observed.  In

order to do so, 8 model batches were created with the background constituents CaSO4·

2H2O, MgSO4, and Na(HCO3) all varied in concentration from their respective 20ppm,

5ppm, and 10ppm base model concentrations.  These 8 batches each consisted of initial

solutions with ionic strengths either  0, 0.001, 0.01, 0.1, 1, 10, 100, or 1000 times the

concentration of the base model, but with identical concentrations of As, boron,

cadmium, Cr, molybdenum, Se, thallium, and V to the base model.  The results allowed

for the visualization of a solution’s ionic strength on the adsorption of the relevant COCs,

as seen in Figure 91 through Figure 94.

3.5. Adsorption Capacity Analysis

In an effort to further understand COC interactions with HFO, a model was

created to observe HFOs adsorption capacity with regards to the four COCs observed in

the study.  Input HFO concentrations from every CBD model were averaged together and

used as surface inputs so as to represent the entire population of batch experiments.  The

liquid phase solution input into the model consisted of only a single COC for each

analysis, so as to get a clear understanding of maximum adsorption without constituent

competition.  To determine the input COC concentration, the model was run with

different concentrations, until the proper magnitude required for breakthrough was found.

Once all of the input variables were determined the model was run and an isotherm was

generated in excel for each COC as seen in Figure 95 through Figure 98.
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3.6. Diffuse Double Layer vs No Electrostatics Models

Further exploration of the GTLM was conducted by comparing isotherms

developed using a PHREEQC model incorporating the Diffuse Double Layer (DDL)

model and a PHREEQC model that did not utilize the DDL.  The DDL model was the

base model with HFO and COC averages used section 3.4.2, while the non-DDL model

was the same model, but with no DDL option implemented.  Isotherms were generated

and compared for both models, as seen in Figure 99 through Figure 102.
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CHAPTER 4: RESULTS

4.1. CBD Extraction Method Isotherms

Models generated with HFO concentrations derived from the CBD extraction

method showed medium to no correlation with experimental results; however correlations

varied considerably between COCs.  A summary of data analysis results comparing

model and experimental data is presented in Table 3.

4.1.1. Arsenic

Of the four COCs and two extraction methods studied, modeled As concentrations

derived from CBD extraction data showed the best overall correlation with experimental

results.  As visualized in the RE histogram shown in Figure 5 and data analysis results

summarized in Table 3, analysis shows that 26.6% of CBD method As Kd values were

within a factor of 2 of experimental Kd values (i.e. between an RE of -50% to 100%),

while 86.1% were within an order of magnitude (i.e. between an RE of -90% and 900%).

While not perfectly accurate, the As model with CBD extraction techniques displayed the

least amount of error out of all other constituent and extraction method combinations, as

shown in Figure 103 and Figure 104.

In addition to describing model and experimental correlation, the GTLM’s

premise that a soil’s HFO concentration has a causal effect on its adsorptive capacity was

investigated.  Figure 21 demonstrates the relationship between a sample’s HFO

concentration and its corresponding As Kd value for both modeled and experimental

isotherms.  Out of all the COCs and extraction methods, experimental As Kd values and

CBD HFO concentrations exhibited the best correlation, with a linear regression R2 value
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of 0.34.  Model Kd values naturally showed a strong correlation to HFO, with an R2 of

0.98, due to the use of HFO as a model input.

Along with quantifying accuracy, adsorption trends between model and

experimental results could be observed.  The relative error histogram in Figure 5 exhibits

that the large majority of As batch Kd values are below zero.  With a median Kd RE value

of -63.6%, approximately 81% of modeled As Kd values were below those of

experimental values. These results signify that the modeled As isotherms represented

conservative estimates of Kd values.  This study considers higher liquid COC

concentrations, and thus lower Kd values to be conservative due to the general

undesirability of COCs in groundwater.

Model conservatism is also evident in Figure 21 where the two plots, as well as

their linear regression lines, depict model and experimental HFO’s effect on adsorption.

Regression slopes indicate that a unit of HFO displays about 3.5x more adsorptive effect

in experimental isotherms than modeled isotherms do.  While this higher experimental

affinity may indicate a model that underestimates As’s affinity for HFO, additional

explanations are explored in the discussion below.

4.1.2. Chromium

When considering RE, modeled Cr concentrations showed little to no correlation

with model results, with no Cr Kd values falling within an order of magnitude of

experimental Cr results as seen in Figure 103 and Figure 104.  The overall accuracy of

the CBD Cr model can be visualized through the relative error histogram shown in Figure

6.  Upon a more qualitative evaluation, one will observe that the strong majority of model

Cr isotherm concentrations fell well below the lower detectable limits (LDL) of the ICP-
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MS equipment used to determine experimental isotherm concentrations.  In addition,

most experimental Cr isotherms contained concentrations below the LDL, which were

rounded up to 1ppb as shown in Figure 105.  Due to these laboratory precision

limitations, experimental Kd values of Cr are lower than true values.  Had experimental

Cr concentrations been measured with greater precision, the correlation between modeled

and experimental isotherms would have been stronger.

Modeled Kd results for Cr also did not appear to be conservative, with 97% of

modeled Kd values exceeding experimental values and a median RE of 217,603% as

noted in Figure 6.  Figure 22 further demonstrates inflated model Kd values through the

model and experimental HFO vs Kd plots and linear regression lines.  Regression slopes

indicate that a unit of HFO displays drastically more adsorptive effect in model isotherms

than in experimental.  The extremely high RE values can again be partially attributed to

laboratory measurement limitations; however experimental Cr isotherms with

concentrations above LDL still yield drastically lower Kd values, as seen in Figure 106,

suggesting that the model still greatly underrepresents Cr in groundwater regardless of

analytical limitations.

Cr concentrations did not appear to be correlated to input HFO concentration.

Figure 22 also demonstrates the relationship between a sample’s HFO concentration and

its corresponding Cr Kd value for both modeled and experimental isotherms.  Of the four

COCs, experimental Cr Kd values exhibited the least correlation with HFO concentrations

of all CBD models, as seen in Table 3, with an R2 value of -0.185.  As with As, model Kd

values showed a strong correlation to HFO, with an R2 of 0.89, due to the use of HFO as

a model input.
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4.1.3. Selenium

After As, modeled Se concentrations showed the second strongest correlation to

laboratory generated isotherms out of the 4 COCs studied, including all Chao method

isotherms.  Figure 7 illustrates the accuracy of the modeled Se isotherms relative to the

experimental isotherms.  Data analysis demonstrates that 23.1% of Se Kd values were

within a factor of 2 from experimental Kd values, while 79.5% were within an order of

magnitude as seen in Figure 103 and Figure 104.  While still not perfectly accurate, the

CBD derived Se and As results indicate the two most promising constituent models.

Experimental Se concentrations were moderately correlated to input CBD HFO

concentrations.  Figure 23 demonstrates the relationship between a sample’s HFO

concentration and its corresponding Se Kd value for both modeled and experimental

isotherms.  Out of all the COCs and extraction methods, experimental Se Kd values with

CBD HFO concentrations exhibited the second best correlation, as tabulated in Table 3,

with an R2 value of 0.23.  Model Kd values showed a strong correlation with an R2 of

0.90.

Modeled Se isotherms generally represented conservative estimates of Kd values,

similar to As.  As visualized in Figure 7, approximately 63% of modeled Se Kd values

were below those of experimental values, with a median RE of -52.2%.  Model

conservatism is also apparent in Figure 23 where the two plots, as well as their linear

regression lines, depict HFO’s effect on adsorption.  Se regression slopes indicate that

one unit of HFO displays about 3.5x more adsorptive effect in experimental isotherms

than in modeled isotherms, similar to As.  While this higher experimental affinity may
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indicate a model that underestimates As’s affinity for HFO, additional explanations are

discussed below.

4.1.4. Vanadium

V model isotherms did not show as strong of a correlation with experimental

results as As and Se; however they contained significantly less error than Cr isotherms.

Figure 8 illustrates the accuracy of the modeled V isotherms relative to experimental

isotherms through a relative error histogram.  In total, 15.4% of V Kd values were within

a factor of 2 from experimental Kd values, while 52.6% were within an order of

magnitude, as tabulated in Table 3.  With barely half of the modeled Kd values falling

within an order of magnitude, the V model is not considered to be well correlated with

experimental results.

Experimental V concentrations showed minimal to no correlation with input CBD

HFO concentrations, while model concentrations exhibited a nonlinear quadratic trend as

seen in Figure 24.  The poor correlation of V Kd values with CBD HFO concentrations

only had an R2 value of 0.0036.  Model Kd values showed a strong correlation with an R2

of 0.80.

Further data analysis revealed that V isotherms were generally not conservative.

With a median RE of 410%, as seen in Figure 8, and approximately 29% of modeled V

Kd values below those of experimental values, it is evident that model computations tend

to favor more V in the liquid phase than real world data suggests.  This trend is further

observed in Figure 24 where the two plots, as well as their linear regression lines, depict

HFO’s effect on adsorption.  V regression slopes indicate that one unit of HFO displays
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about 0.073x  the adsorptive effect in experimental isotherms than in modeled isotherms,

similar to Cr.

4.2. Chao Extraction Method Isotherms

Models generated with HFO concentrations derived from the Chao extraction

method (Chao model) did not show as strong of a correlation with experimental results as

CBD method results did, as seen in Figure 103 and Figure 104.  Chao method HFO

concentrations also showed little to no observable trend when plotted against

experimental Kd values as exhibited in Figure 25 through Figure 28.

4.2.1. Arsenic

As isotherms generated from models using HFO concentrations derived from

Chao method extraction data did not show as strong of a correlation with experimental

isotherms as those created with CBD data; however they showed the best correlation with

experimental results with regards to other constituents modeled which Chao extraction

data, as seen in Figure 103 and Figure 104.  The overall accuracy of the Chao As model

can be visualized through the relative error histogram shown in Figure 9.  The analysis

results tabulated in Table 3 show that 16.3% of CBD method As Kd values were within a

factor of 2 from experimental Kd values, while 48.8% were within an order of magnitude.

Similar to CBD method concentrations, COC concentration correlations with

Chao derived HFO measurements were evaluated.  Figure 25 demonstrates the

relationship between a sample’s HFO concentration and its corresponding As Kd value

for both modeled and experimental isotherms.  No COC Kd vs Chao HFO plots showed

any significant correlation, with the As regression returning an R2 value of -0.55.  As

expected, model Kd values still showed a strong correlation to HFO, with an R2 of 0.97.
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Similar to CBD derived As isotherms, As isotherms derived from Chao method

data represented conservative estimates of Kd values with a median RE of -85.4% as seen

in Figure 9.  Approximately 83% of modeled As Kd values were below those of

experimental values, indicating that Chao method isotherms were slightly more

conservative than their CBD counterparts. Model conservatism is also evident in Figure

25 where the two plots, as well as their linear regression lines, depict HFO’s effect on

adsorption.  While regression slopes are not very useful due to poor correlation, it is still

visually evident that experimental Kd values are higher than model generated Kd.

4.2.2. Chromium

Similar to CBD model results, Chao model Cr concentrations showed little to no

correlation with model results.  Again, no Cr Kd values fell within an order of magnitude

of real world results, as inferred from Figure 103 and Figure 104.  The overall accuracy

of the Chao Cr model is visualized through the relative error histogram shown in Figure

10.  Just as with the CBD model and exemplified in Figure 107, most Chao model Cr

isotherm concentrations fell well below laboratory LDL.  In addition, most experimental

Cr isotherms required their concentrations be rounded up to meet the 1ppb LDL.  These

limitations once again caused inherent inaccuracies when comparing modeled and real

world results, causing less correlation than would have occurred had exact precision been

employed.  Despite experimental flaws it is believed that the GTLM exhibits more

adsorptive Cr behavior than experimental results suggest, as evident by comparisons of

model isotherms with real world isotherms that have concentrations about the LDL, as

seen in Figure 108.
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Chao model Cr results similarly did not appear to be conservative, with 99% of

modeled Kd values exceeding experimental values and a median RE of 85,467% as seen

in Figure 10.  Figure 26 demonstrates inflated model Kd values through model and

experimental HFO vs Kd plots.  Unlike CBD models, regression lines were poor metrics

due to the lack of correlation between Chao HFO and Chao model Kd values.  The

extremely high RE values can again be partly attributed to laboratory measurement

limitations; however Cr isotherms with concentrations above LDL suggest that the model

still greatly underrepresents Cr in groundwater regardless of experimental limitations.

Cr concentrations did not appear to be correlated to Chao HFO concentrations.

Figure 26 demonstrates the relationship between Chao HFO and experimental Cr Kd.

The two parameters don’t appear to show any meaningful correlation, with Table 3

showing an R2 value of -0.185; however the data still makes it apparent that Cr model Kd

values are calculated well above experimental values.  Model Kd values showed a strong

correlation to HFO, with an R2 of 0.89, due to the use of HFO as a model input.

4.2.3. Selenium

Modeled Chao Se concentrations showed less correlated yet comparable trends to

those of As.  Figure 103 and Figure 104 reveal that 11.4% of CBD method Se Kd values

were within a factor of 2 from experimental Kd values, while 41.8% were within an order

of magnitude.  The histogram of Se RE values shown in Figure 11 offers a visualization

of the overall accuracy of the Chao Se model.

The relationship between a sample’s HFO concentration and its corresponding As

Kd value for both modeled and experimental isotherms is demonstrated in Figure 27.  Se

Kd vs Chao HFO plots did not reveal any significant correlation, with the Se regression
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returning an R2 value of -0.55.  Model Kd values still showed a strong correlation to

HFO, with an R2 of 0.97.

Similar to CBD derived Se isotherms, Se isotherms derived from Chao method

data represented conservative estimates of Kd values with a median RE of -87.7% as seen

in Figure 11.  Approximately 71% of modeled Se Kd values were below those of

experimental values, indicating that Chao method isotherms were slightly more

conservative than their CBD counterparts.  Model conservatism is also evident in Figure

27 where the two plots, as well as their linear regression lines, depict HFO’s effect on

adsorption.  While regression slopes are not very useful due to poor correlation, it is still

visually evident that experimental Kd values are higher than model generated Kd.

4.2.4. Vanadium

V model results derived from Chao method exhibited little correlation with

experimental results, as inferred from Table 3.  The resulting data revealed that 16.4% of

V Kd values were within a factor of 2 from experimental Kd values, while 43.0% were

within an order of magnitude as seen in Figure 103 and Figure 104.  The model and

experimental correlation is further visualized in Figure 12 as a histogram of RE values.

Experimental V concentrations showed minimal to no correlation with input Chao

HFO concentrations, while model concentrations exhibited a nonlinear quadratic trend as

seen in Figure 28.  The poor correlation of V Kd values with Chao HFO concentrations

only had an R2 value of -0.086.  Model Kd values showed a strong correlation with an R2

of 0.63.

Similar to CBD model Se results and evident in Figure 12, Chao model

concentrations were not consistently conservative, with approximately 52% of modeled
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V Kd values falling below those of experimental values.  The median RE was

conservative at -46.0; however the histogram displayed exhibits high RE variation,

making the consideration of the median rather impractical.  Results were conservative

only at relatively low HFO solid concentrations as seen in Figure 28 where the two plots,

as well as their linear regression lines, depict HFO’s effect on adsorption.  Similar to Cr,

V regression slopes indicate that one unit of HFO displays about 0.054x  the adsorptive

effect in experimental isotherms than in modeled isotherms.

4.3. Site Specific Trends

The comparison of HFO to Kd values on a site by site basis revealed significant

trends in both As and Se isotherms, as seen in Figure 29 through Figure 42.  Site specific

Cr and V trends are not included due to the lack of any trend.  As Kd values show high

correlation with the extracted HFO values measured in the laboratory, with an average

regression line R2 value of 0.805.  These As site by site correlations are significantly

higher than the combined site HFO versus Kd value R2 value of 0.343, as seen in Figure

21.   Se showed less of a site specific correlation than As, with an average R2 value of

0.294; however, the site by site average was still higher than the combined site HFO

versus Kd value R2 value of 0.229 seen in Figure 23.

4.4. Sensitivity Analysis

4.4.1. pH and Redox Analysis

The pH and redox sensitivity analysis yielded the isotherms shown in Figure 43

through Figure 86, which enhanced the conceptual understanding of model COC trends

within PHREEQC.  Changes in pH with constant Eh generally resulted in incrementally

different isotherms, while isotherms generally remained static after changes in Eh.  With
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pH held constant, Eh changes often tended to yield identical isotherms throughout a large

range of values, with large changes occasionally occurring on the outer bounds of the pH

range.

4.4.1.1. Arsenic

The sensitivity analysis of As was carried out similar to other COCs, but included

the additional redox disequilibrium limitations mentioned in section 2.5.  Due to the lack

of any model As(5) redox speciation, it is likely that As concentrations were not as

sensitive to Eh as one would expect.  Instead, As(3) was shown to respond to changes in

pH, as seen in Figure 50.  As generally became more soluble at lower pH, with As(3)

generally existing as the neutral species H3AsO3 between a pH range of 5 to 8.  At pH 9

As concentrations became more dominated by anionic species.  Anions generally have

less affinity for the solid phase at higher pH, and pH 9 results were in line with such

trends (Dzombak and Morel 1990).  At low Eh and pH, such as the pH 5 & Eh -100

isotherm seen in Figure 48, it appeared that solution complexation may have made As(3)

less adsorptive.  In these conditions the As(3) species H2As3S6
- was dominant and

appeared to have a different adsorption affinity than other As(3) species.

The lack of As(3) Eh sensitivity became evident when step changes were

performed for Eh at constant pH.  As seen in Figure 43 through Figure 47, As did not

display significant sensitivity to changes in Eh, except in the singular case mentioned

above, where the solution with an Eh of -100 and pH of 5 yielded large concentrations of

H2As3S6
- in the liquid phase.

4.4.1.2. Chromium
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Unlike As, the sensitivity analysis of Cr did not include any model limitations to

Cr redox speciation.  The pH step change in Figure 60 shows how Cr complexation

increased between pH 5 and 7, but began to steadily decrease at higher pH between 7 and

9.  The increase from pH 5 to 7 occurs when Cr(3) cations are dominant in solution.  This

increase is to be expected since cation complexation generally increases as pH increases

(Dzombak and Morel 1990).  The decrease in complexation at pH higher than 7 is likely

attributed to the neutral and negative Cr species which form in higher pH conditions.

Anions adsorption is typically greatest at lower pH (Dzombak and Morel 1990).  Overall

Cr was highly adsorptive due to Cr(3)’s affinity for strong binding sites.

Similar to As, Cr was fairly unresponsive to Eh, likely due to the fact that Cr(3)

exists in a wide range of natural groundwater chemistries, as seen in Figure 61.  The only

solution conditions where Cr isotherm concentrations significantly diverged occurred at

pH 9 and Eh 400 where the more soluble Cr(6) was the dominant species as seen in

Figure 58.  Cr(6) was shown to be much less adsorptive than Cr(3) within the model,

which is also what is expected in natural conditions.  Cr(6) however, does not play much

of a role in model results, due to Cr(3) favorable solution conditions within the laboratory

experiment.

4.4.1.3. Selenium

Just as with Cr, Se was also modeled without any constraints to redox speciation

and was responsive to incremental changes in pH as seen in Figure 70 through Figure 75.

Se(4) (e.i. H2SeO3, HSeO3
- , and SeO3

2-) was the dominant species throughout most of

the pH and redox conditions; however, deprotonation of Se(4) appeared to affect

adsorption throughout different pH values.  Se appears to be the most adsorptive around



53

pH 6, while consistently losing affinity for the solid phase the farther away from pH 6 a

solution became.

Se was more responsive in regards to changes in Eh relative to the other COCs

examined.  As seen in Figure 69, Se(6) became dominant over Se(4) at pH 9 and Eh 400,

while lower pH isotherms allowed Se(-2) to become dominant as seen in Figure 65.  In

situations where either Se(-2) or Se(6) were dominant, Se displayed much lower affinity

for the solid phase; however Se(4) was the most common dominant redox state

throughout the analysis.  While these effects are apparent in the sensitivity analysis, it is

unlikely that Eh played much of a role in modeled batch isotherms due to experimental

solution parameters generally falling within ranges of Se(4) dominance.  Isotherms with

dominant Se(4) redox states displayed more sorptive characteristics and are seen in

Figure 65 through Figure 69.

4.4.1.4. Vanadium

Similar to As, V was limited within the model in order to constrain V redox states

to account for the hypothesized redox disequilibrium.  While V naturally speciates

between V(2), V(3), V(4), & V(5) in common groundwater Eh & pH conditions, model

constraints only allowed for V(5) to exist in solution.  When modeled with constant Eh,

V was shown to be responsive to changes in pH as seen in Figure 83.  While the lack of

redox speciation likely reduced more dramatic changes in isotherm concentrations,

speciation within redox states still allowed for nuances.  In particular, speciation of V(5)

between H3V2O7
- and H2VO4

- seemed to influence V(5) adsorption.  The less sorptive

H3V2O7
- was prevalent in lower pH isotherms, as can be seen in the pH 5 and Eh 300

isotherm in Figure 85.  Aside from the occurrence of H3V2O7
- at low pH, model analysis
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showed V as otherwise very adsorptive, with trends indicating that higher pH yielded

higher adsorption.

V was not very sensitive to changes in Eh, with isotherms that only significantly

diverged at low pH and low Eh (e.i. pH 5 & Eh -100), as seen in Figure 76.  Aside from

the single extreme, all V isotherms had similar concentrations despite Eh changes as seen

in Figure 77 through Figure 80.  This lack of sensitivity to changing redox conditions is

to be expected due to the V redox speciation constraints implemented into the model.

4.4.2. Competition Analysis

The competition analysis yielded the isotherms shown in Figure 87 through

Figure 94, which help demonstrate the role competition played in the generation of model

batch isotherms.  With the exception of Cr, COCs experienced higher adsorption affinity

when in solution by themselves than compared to the base solution with average

concentrations.  General ionic strength also played a role, with increasing concentrations

of CaSO4· 2H2O, MgSO4, and Na(HCO3) causing COC adsorption to decrease

incrementally, as seen in Figure 91 through Figure 94.

4.4.2.1. Arsenic

As displayed a higher affinity for HFO when present as the only constituent

within the liquid phase.  As seen in Figure 87, a solution phase composed of only 400ppb

As resulted in a Kd value of 0.46L/g, while the base model solution resulted in 0.25L/g.

Similar results were displayed when ionic strength was varied up and down by multiple

orders of magnitude, as depicted in Figure 91.  When background concentrations fell

below those of the base model As adsorption increased, but only slightly.  Ionic strengths

lower than base levels by one order of magnitude or less tended to exhibit little to no
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effect on As adsorption.  This is evident by the overlap of isotherms yielded from the

0.1x, 0.01x, 0.001x, and 0x background concentration runs.  More significant competitive

effects occurred once ionic strength was increased by orders of magnitude.  Figure 91

visualizes a moderate decrease in adsorption with an order of magnitude increase to

background constituent concentrations (i.e. 10x Ions isotherm), with more significant

decreases in isotherm Kd values as concentrations approach a 3 order of magnitude

increase (i.e. 1000x Ions isotherm).

4.4.2.2. Chromium

Cr was the only COC which did not display a higher affinity for HFO when

isolated from competing ions, with adsorption magnitude mostly unchanged.  As seen in

Figure 88, a solution phase composed of only 59ppb Cr resulted in a Kd value of 497L/g,

while the base model solution resulted in 493L/g.  Similar results were displayed when

ionic strength was varied up and down by multiple orders of magnitude, as depicted in

Figure 92.  Cr adsorption was largely unimpeded until ionic strengths were increased by a

factor of 100 (i.e. 100x Ions isotherm) or more.  Ionic strengths lower than 100 times the

strength of the base model allowed Cr to remain highly adsorptive, with little change in

total adsorption.  Even with a 1000 fold increase (i.e. 1000x Ions isotherm) Cr remained

highly adsorptive, as seen by the relatively low dissolved Cr remaining in solution after

equilibrium.

4.4.2.3. Selenium

Similar to As, Se displayed a higher affinity for HFO once isolated from

competing constituents in the liquid phase.  As seen in Figure 89, a solution phase

composed of only 519ppb Se resulted in a Kd value of 2.5L/g, while the base model
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solution resulted in 0.21L/g.  Similar results occurred when solution ionic strength was

varied, as depicted in Figure 93.  When background concentrations fell below those of the

base model Se adsorption increased; however ion competition became negligible once

background concentrations decreased by an order of magnitude or more.  This is evident

by the overlap of the 0.1x, 0.01x, 0.001x, and 0x Ions isotherms.  More significant

competitive effects occurred once ionic strength was increased.  Figure 93 displays

significant decreases in Se adsorption once ionic strength was increased tenfold, with

little to no adsorption occurring at higher concentrations.

4.4.2.4. Vanadium

Similar to As and Se, V displayed a higher affinity for HFO once isolated from

competing constituents in the liquid phase.  Figure 90 displays a solution phase composed

of only 211ppb V resulted in a Kd value of 148L/g, while the base model solution

resulted in 2.3L/g.  Similar results occurred when solution ionic strength was varied, as

depicted in Figure 94.  When background concentrations fell below those of the base

model V adsorption increased; however ion competition became negligible once

background concentrations decreased by an order of magnitude or more.  This is evident

by the overlap of the 0.1x, 0.01x, 0.001x, and 0x Ions isotherms.  More significant

competitive effects occurred once ionic strength was increased.  Figure 94 displays

significant decreases in V adsorption once ionic strength was increased tenfold, with little

to no adsorption occurring at higher concentrations.

4.5. Adsorption Capacity Analysis
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The adsorption capacity analysis yielded the isotherms shown in Figure 95

through Figure 98.  These isotherms all exhibit the asymptotic behavior expected from

batches with COC concentrations high enough to saturate HFO binding sites.

4.5.1. Arsenic

In order to generate a saturation exhibiting As isotherm, a 30ppm As solution was

used as the solution input.  The generated isotherm, as seen in Figure 95, exhibits a

lowercase r-like curve, with a horizontal asymptote occurring near 243ug/g.  This

asymptote represents the maximum adsorption density of modeled As for an average soil

sample utilized in this study.

4.5.2. Chromium

Cr only required a 200ppb solution in order to generate a saturation isotherm, as

seen in Figure 96.  As with As, Cr also displayed the lowercase r-like isotherm indicative

of a saturation asymptote.  HFO’s Cr maximum adsorption capacity thus appears to be

about 4ug/g; notably lower than the adsorption capacity of the other COCs.

4.5.3. Selenium

Se required the highest solution concentration in order to recreate saturation

conditions, with a 500ppm solution utilized within the model as seen in Figure 97.  The

saturation isotherm did not exhibit the smooth lowercase r asymptote-like isotherm like

other COCs, and instead displayed varying slopes until an asymptote was reached.  Se

saturation was reached near 126ug/g, with notably more Se present in the liquid phase

than required for As, Cr, and V.

4.5.4. Vanadium
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V saturation was reached using an initial groundwater solution of 10ppm, as seen

in Figure 98.  It did not transition as suddenly from unsaturated to saturated conditions,

exhibiting a subtler transformation from unsaturated to saturated conditions.  V saturation

was reached around 35ug/g.

4.6. Diffuse Double Layer vs No Electrostatics Model

The comparison of the DDL and no electrostatics models yielded the results

shown in Figure 99 through Figure 102.  As was least affected by the lack of the DDL

model, with Cr, Se, and V becoming increasingly more sensitive respectively.  All COCs

displayed high affinity for the solid phase when the DDL was incorporated into the

model.
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CHAPTER 5: DISCUSSION

5.1. General Model Error

All models attempting to predict the results of complex systems will have a

certain amount of error associated with their results.  The GTLM is no exception, as seen

by the lack of correlation presented in this study.  While results will likely never be

perfect, the error associated with them can be attributed to certain criteria, and potentially

mitigated in the future.  Model error is likely a result of: model simplicity not reflecting

the complexity of real world processes, incorrect assumptions regarding HFO

stoichiometry, large type 2 surface site density ranges, an imperfect database, low

precision extraction techniques, and measurement precision.

With regards to model simplicity, the PHREEQC model used can be considered

an incomplete component additivity model which only utilizes one surface site mineral

phase.  A component additivity model is a model that predicts adsorption by quantifying

surface mineral phases such as HFO and modeling their interactions with ions using

stability constants and stoichiometries developed in prior studies.  While the model used

in this study only contains the surface mineral phase HFO, other mineral phases such as

HAO, HMO, and goethite could have also been implemented into the surface phase of the

model.  Any surface complexation that would have occurred with additional mineral

phases would then have affected to total adsorption (Davis et al. 1998).  Since the chosen

model only uses HFO, it is possible that the implementation of these additional mineral

phases would have resulted in different adsorption rates.

Additional simplicity error arises due to the use of linear Kd values to describe the

entire population of isotherms.  While a majority of experimental isotherms were linear in
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nature, modeled isotherms tended to express nonlinear qualities.  Some nonlinear

modeled isotherms were subtle enough to be accurately described by a Kd value, as seen

in Figure 109; while others displaying stronger nonlinear qualities were less accurately

described, as seen in

Figure 110.  While Kd values will not describe these nonlinear isotherms

perfectly, they do provide a practical and meaningful quantification of a COC’s

adsorption affinity.  They also provide quantitative consistency between the mostly linear

experimental isotherms, and the less linear modeled isotherms.  Due to their practicality

and the need for consistent means of quantifying adsorption affinity between

experimental and model isotherms, Kd values were utilized for all isotherms.

Further error can arise from assumptions made within the GTLM itself.  Dzombak

and Morel assume HFO stoichiometry of Fe2O3 · H2O which is in turn used when

calculating total HFO sites from the iron extracted in Chao and CBD methods.  While

useful for consistency, the stoichiometry can vary between Fe2O3 and Fe2O3 · 3H2O.

Further assumptions are made when attempting to define the site density of surface sites.

Previous studies showed that type 2 surface sites represent anywhere between 0.1 and

0.3mol/mol Fe, while type 1 sites represent between 0.001 and 0.01 mol/mol Fe.  These

assumptions are acknowledged by Dzombak and Morel, and are considered necessary in

order to develop practical and consistent models.  While justified, such assumptions

nonetheless have the potential to contribute to model error (Dzombak and Morel 1990).

Aside from assumptions within the model, issues also arise when contemplating

how the equilibrium constants within the database are derived.  Equilibrium constants are

often derived in laboratory experiments which utilize an assortment of pure mineral
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phases to study ion adsorption.  These experiments occur in controlled environments and

have the advantage of utilizing homogeneous solid phases with far fewer variables than

present in natural soils.  Natural solid phases offer complications such as determining the

composition of surface mineral phases, as well as the potential introduction of a multitude

of unknown constituents into solution during equilibrium.  With such complications

introduced in models containing natural soils, it is likely that database equilibrium

constants will have amplified amounts of error relative to those describing pure mineral

phases (Davis et al. 1998).

While error was present within the model input in the form of the equilibrium

constants, it was also present in input data derived from laboratory experiments.

Laboratory data and procedures were developed with great diligence; however equipment

precision and the complexities of describing sample heterogeneity can cause error.  Of

note are the concentration disparities between the results of the two HFO extraction

procedures.  It is evident by the differences in HFO extraction concentrations between the

CBD and Chao methods, seen in Figure 111, that there is considerable room for error

between such procedures.  While the CBD method was assumed more accurate due to

favorable results, the quantity of error within either method’s results is unknown.  Thus

CBD method results could still contain enough inaccuracies to affect results.  Further

exploration of sequential extraction error is explored in section 5.2.

While never completely removed, all the aforementioned error sources can be

mitigated through further research and understanding of their respective causes.  While

the results in this study did not achieve perfection, the data was nonetheless gathered

using best practices and informed by large quantities of literature review.  The author
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considers the data adequate to describe the trends in surface complexation modeling

defined herein.

5.2. Extraction Method Comparison

When considering extracted HFO concentrations it becomes evident that

inaccuracies are present, as inferred from the differences in concentrations displayed in

Figure 111.    When considering entire COC datasets, CBD selective extraction method

showed stronger correlation between extracted HFO and experimental Kd values than the

Chao method did, as seen in Figure 103 and Figure 104, as well as in Table 3.  R2 values

for Kd vs HFO linear regression lines were more favorable for CBD method than Chao

method for As, Se, and V, as seen in Figure 21 through Figure 28.  V regression lines

displayed poor correlation in both methods that comparing the accuracy of the two trends

becomes arbitrary.  Similarly, while Chao method R2 values were slightly better for Cr,

results were poorly correlated in both instances that any comparison between correlations

was meaningless.  Further Chao method inadequacies become evident when comparing

model Kd values with experimental ones.  In all cases but Cr, CBD method yielded

significantly more Kd values within an order of magnitude of experimental results than

Chao did, with Cr models returned no Kd values within this range for either method.  Due

to the more favorable accuracy of its results, CBD method was chosen as the preferred

HFO extraction procedure and is the focus of discussion in this section.

The Chao method may not have correlated as well with experimental results due

to the complexities inherent to sequential extraction in natural soils.  Prior research has

indicated that different sequential extraction methods may not yield comparable results to

each other.  In addition, mineralogical differences between samples, such as the
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dissimilarities prevalent between separate sites, can affect the resulting Fe measurements.

Further evidence suggests that even the geochemical conditions in which a sample

originally resided in can affect extracted Fe (MacDonald 2013).

These difficulties in accounting for natural heterogeneity can be caused by the

extraction of multiple mineral phases during the sequential extraction process.  Prior

examinations of different mineral phases dissociated by a variety of common sequential

extraction techniques showed that none of the methods consistently target a single

individual mineral phase.  Instead, the Chao method was found to dissociate HFO,

siderite, and lepidocrocite, while CBD method dissociates significant amounts of HFO,

lepidocrocite, goethite, hematite, and magnetite (MacDonald 2013).

The extraction of Fe from non-HFO mineral phases during the Chao and CBD

methods has the potential to affect the calculated HFO concentrations, and in turn model

results.  In addition, the heterogeneity between natural samples makes any potential trend

in error difficult to quantify.  Such difficulties appear to be inherent in most common

extraction methods utilized today (MacDonald 2013).  Error due to natural complexity

was expected within this study due to the use of natural soils.  While future refinement of

extraction procedures will be helpful, this study’s goal of quantifying the utility of the

CBD and Chao methods paired with HFO surface complexation modeling is nonetheless

useful in assessing today’s techniques.

5.3. CBD Method Modeling

While the CBD method proved to yield more favorable model results, the

different COCs within the model yielded a variety of different trends.  As mentioned in

section 5.2 and seen in Figure 22 and Figure 24, Cr and V Kd values showed little to no
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correlation with HFO values as evident by their low R2 values.  Thus when considering

all HFO vs Kd trends, only CBD extraction with As and Se displayed any statistically

significant inclinations, as seen in Figure 21 and Figure 23.  In addition, comparison of

model and experimental Cr and V Kd values indicated a significant divergence of model

values from experimental ones, as seen in Figure 6 and Figure 8.  Due to these

divergences, and low correlation to HFO levels, As and Se CBD method models

described herein are likely the only models with the potential for practical application.

5.3.1. Arsenic

As had the strongest correlation to experimental values, with 86.1% of respective

modeled As Kd values falling within an order of magnitude of experimental values, as

seen in Figure 104.  With reasonably high accuracy, As modeling has the most potential

for real world application out of all four COCs examined in this study.  Higher As model

correlation is likely the result of higher experimental Kd correlation with extracted HFO,

as well as the abundance of research on the topic of As adsorption.  Of all the COCs

described in this study, As is generally considered to be the most thoroughly researched,

likely leading to more accurate surface complexation constants in the database.

Along with higher levels of accuracy, 81% of modeled Kd values fell below

experimental values, making the model conservative.  While conservative results are

generally favorable in real world modeling, experimental results tended to have higher Kd

values than model results did.  The model’s skew towards lower Kd values may be a

result of the aforementioned exclusion of non-HFO mineral phase adsorption sites from

model inputs, or the built in model limitation which only allowed for the As(3) redox

state due to hypothesized redox disequilibrium.  While disequilibrium implies that the
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ratio of As(3) and As(5) redox states is different than what the theoretical equilibrium

calls for, it does not necessarily imply negligible As(5) concentrations.  It is possible that

disequilibrium within the batch experiments was more subtle (e.i. had higher

concentrations of As(5)) than the extreme disequilibrium allowed in the model.  A

disequilibrium with meaningful concentrations of As(5) would cause higher Kd values

similar to the experimental data; however such a disequilibrium was not practical to

implement into the model.  Thus due to the conservatism and practicality of only using

As in the As(3) redox state, the lower Kd skew of the model results is deemed acceptable

from a theoretical standpoint.

While the results seem to make sense when accounting for redox state and

mineral phase limitations, a model which is only conservative for 81% of soils may not

be desirable in a real world project where higher confidence is required.   For further

certainty, model generated Kd values may be decreased by a factor of 5 (e.i. Kd * 0.2) to

become more conservative than 96% of all experimental Kd values.  A 96% confidence

rate may fall within the acceptable range of confidence for a project; however further

decrease can occur for even more confidence.  With the correct confidence level, As Kd

values for input into fate and transport models can potentially be generated through HFO

sampling and geochemical modeling rather than expensive and time consuming

experimental batch experiments.

5.3.2. Chromium

Cr modeling showed the worst correlation out of any COC.  With little to no

correlation and only 3% of modeled Kd values falling below experimental values,

modeled Cr Kd values are likely not viable for real world application in their raw form.
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While As and Se Kd values could be reasonably modified to achieve desired levels of

conservatism, Cr results require much more modification.  In order to modify Cr Kd

values so that 95% of modeled Kd values are more conservative than experimental

values, modeled values would need to be decreased by more than 4 orders of magnitude

(e.i. Kd * 0.0001).  This level of modification is likely too high to justify; therefore this

Cr model does not appear viable for real world application.

While the laboratory precision issues described in section 4.1.2 can explain some

of the error seen in Cr modeling, it is possible that the GTLM predicts more sorptive Cr

behavior than evident in experimental results.  This overestimation trend becomes evident

when comparing the model isotherms with real world isotherms that have their

concentrations above the LDL, as seen in the isotherms in Figure 106.  These

experimental Cr isotherms allow for the visualization of experimental results without the

limitation of the ICP-MS’s LDL due to the higher concentrations of Cr in the liquid

phase, and support the conclusion that the model overestimate Cr adsorption.

Reasons for the model’s overestimation of Cr adsorption affinity are unknown;

however there are a multitude of potential reasons, of which many are described in

section 5.2.  Of interest is Cr’s exclusive binding with type 1 adsorption sites.  As

mentioned previously, type 1 sites are calculated as 0.005 mol HFO/mol Fe; however this

value ranges in literature from 0.001 to 0.01 mol HFO/mol Fe (Dzombak and Morel

1990).  This is a large range which could greatly affect the quantity of type 1 sites used to

model Cr adsorption.  In addition to adsorption site calculation issues, it is possible that

Cr equilibrium constants are inaccurate.  Further research is likely needed to determine

accurate Cr equilibrium constants, especially as they relate to HFO in natural soils.
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Pending more accurate constants, it is concluded that Cr modeling is not viable using the

methods described in this study.

5.3.3. Selenium

Se modeling resulted in the second-best correlation with experimental results after

As, with 79.5% of respective modeled Se Kd values falling within an order of magnitude

of experimental values, as seen in Figure 104.  Just as with As, relatively high model

correlation is likely somewhat a consequence of Se’s higher experimental Kd correlation

with extracted HFO as seen in Figure 23.  With moderate correlation and 63% of

modeled Kd values falling below experimental values, the Se model is slightly

conservative.  Just as with As, the model’s skew towards lower Kd values is potentially a

result of the exclusion of the HAO, HMO, and goethite mineral phase adsorption sites

from the model, on top of the other sources of error mentioned in section 5.1.

The exact reason for the Se model’s conservative results is unknown and requires

further research to understand; however, the model may have enough correlation with

experimental results to be considered for real world application after some modification.

Just as with As, Se Kd values would likely need to be adjusted lower to obtain a

conservative enough confidence level for real world application.  For further certainty,

model generated Kd values can be decreased by an order of magnitude (e.i. Kd * 0.1) thus

becoming more conservative than 94% of all experimental Kd values.  A 94% confidence

rate may fall within the acceptable range of confidence for a project; however further

decrease can occur if even more confidence is desired.  With the correct confidence level,

Se Kd values for input into fate and transport models can potentially be generated through

HFO sampling and geochemical modeling.
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5.3.4. Vanadium

V showed some correlation to experimental results relative to other COCs, with

53% of modeled Kd values falling within an order of magnitude of experimental results as

seen in Figure 104.  With less correlation with HFO, as seen in Figure 24, and only 29%

of modeled Kd values falling below experimental values, modeled V Kd values are not

considered particularly accurate or conservative in their raw form.  While As and Se Kd

values could be reasonably modified to achieve desired levels of conservatism, V results

require much more modification.  To modify V Kd values so that 95% of modeled Kd

values are more conservative than experimental values, modeled values would need to be

decreased by 2 orders of magnitude (e.i. Kd * 0.01).  This level of decrease in Kd will

greatly increase V’s affinity for the liquid phase within a fate and transport model.  While

these two order of magnitude decrease in Kd is small compared to the required Cr

modification, it still greatly exceeds the Kd adjustments required for As and Se models.

This level of modification is likely too high to justify, therefore this V model does not

appear viable for real world application.

Reasons for V model inaccuracies include all those discussed in section 5.1;

however it is also possible that the hypothesized redox disequilibrium played less of a

role in V than it did in As.  Due to poor model results, it was hypothesized that the

solution was displaying V redox disequilibrium, with V(5) existing as the dominant redox

state due to improved fit.  While the V(5) redox state appeared to exhibit the best fit and

was consistent with water quality conditions present in its stock solution, it may be

possible that disequilibrium was skewed towards other redox states, or was not present at

all.  While initial investigations provided enough evidence to suggest that V(5) had the
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highest correlation with experimental results, further investigation into modeling with V

may prove useful in developing practical models.  Pending more accurate V models, it is

concluded that V modeling is not viable using the methods described in this study.

5.4. Site Specific Trends

The site specific analysis was conducted after this paper was completed in order

to explore the site specific correlations discussed in section 5.2.  The resulting site by site

correlations seen in Figure 29 through Figure 42 proved to be very significant for As, and

somewhat significant for Se.  The As correlation was particularly strong, showing that As

modeling can likely be calibrated on a site by site basis in order to achieve fairly accurate

results.  Se was less correlated; however, site by site analysis still revealed a better

average HFO versus Kd R2 value than those generated when all site data was lumped

together.  Cr and V results did not display an increase in correlation when controlling for

sample sites, and are not included.  The author considers the high site specific As and

slightly higher Se correlations to have significant implications in regards to the modeling

of these COCs, and recommends further investigation into such trends.

5.5. Sensitivity Analysis

5.5.1. pH and Redox Analysis

The pH and redox sensitivity analysis was enlightening with regard to small

changes within model solution that effect adsorption.  The big takeaway from the analysis

was that model adsorption was affected by small changes in pH, but would not be

affected by Eh until conditions became favorable for redox speciation to change the

dominant species.  Other trends in COC behavior were also observed such as solution

complexation.
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The common occurrences of adsorption change with respect to pH are partially

the result of changes in surface charge on the solid phase due to the protonation and

deprotonation of surface sites, and due to non-redox speciation or protonation which

affected molecular charge.  The surface charge theoretically affects the electrostatic

columbic binding force which, along with the intrinsic chemical binding force, comprises

the adsorptive activity of a COC and surface site (Dzombak and Morel 1990).

It is difficult to determine general trends for each metal due to their inclination to

speciate or protonate and deprotonate, causing different dominant species in different

conditions.  While cations and anions should generally show defined trends, COCs will

often speciate into a new form with a different charge before a large and definable trend

arises.  While all metals showed moderate sensitivity to pH, occasional changes in

dominant species, both redox and non-redox speciation, could lead to larger sensitivity.

COCs in the GTLM were shown to be less sensitive to Eh than they were to pH,

with little to no change in isotherm concentration when Eh changed and pH was held

constant.  While Eh indifference was usually the case, occasional but more drastic

changes occurred when water quality conditions were favorable for redox speciation.

These redox changes are generally observed within the Eh sensitivity analysis isotherms

as big jumps, instead of small incremental changes like in the pH sensitivity isotherms.

These jumps indicate that an isotherm curve is more sensitive to Eh when it is near a

point of equal redox species distribution (e.g. the conditions at which a solution is

composed of 50% As(3) and 50% As(5)); however these areas of sensitivity generally

exist within a relatively small range of Eh conditions, and would require a smaller

observational step change than were considered in this analysis.
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As one would expect, COCs which were locked into a particular redox state (i.e.

As(3) and V(5)) did not exhibit high levels of isotherm variability due to Eh and

displayed low levels of isotherm variation during Eh step changes.  In contrast, Se display

more elevated levels of sensitivity to Eh, as seen in Figure 67 and Figure 69, which is

unsurprising with a COC with so many redox states.  Unlike Se, Cr was generally not as

sensitive to Eh even though it was not constrained to an individual redox state.  This was

likely the case due to Cr’s limited number of naturally occurring redox states, Cr(3) and

Cr(6).  While Cr(6) did make an appearance within the sensitivity analysis at pH 9 and

Eh 400, as seen in Figure 58, Cr(3) is generally dominant throughout a wide range of

natural conditions, making it by far the most prevalent Cr redox species in the sensitivity

analysis.

Most of the changes observed in the sensitivity analysis can be explained by

changes in surface charge, adsorbate charge, and adsorbate redox state; however another

phenomenon was prevalent in one instance.  At the lower pH and Eh levels of pH 5 and

Eh -100, as seen in Figure 43, As experienced solution complexation with sulfur.    In

these conditions the As(3) species H2As3S6- was dominant, and appeared to have a

different adsorption affinity than other As(3) species.  This complexation with another

solution constituent likely caused As to have a lower affinity for the solid phase, largely

changing its adsorption characteristics.

The trends seen in the sensitivity analysis give insight into what type of water

quality conditions are favorable or unfavorable to COC adsorption.  Such insight can be

useful in understanding potential COC mobility changes brought about by future changes

in the geochemistry near or within CCR sources.  Anthropogenic activities significant
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enough to affect site-wide geochemistry may include impoundment closure activities

such as capping and excavation; however geochemical variation may also naturally occur

within a site.  In capping or removal situations, the flow of CCR leachate is expected to

either attenuate or cease altogether.  With decreased leachate flow, the pH within the

impoundment’s area of influence is expected to slowly converge with background levels.

Since CCR leachate may exhibit a pH as acidic as 4, or as alkaline as 12, there exists the

potential for nearby groundwater to exhibit dynamic geochemical behavior as it reaches

equilibrium with background levels.  Such a situation may also occur before capping or

excavation, when geochemical conditions near a CCR source slowly change as

groundwater flows outwards and parameters equilibrate back to background conditions

(Roy and Berger 2011).

As inferred from Figure 48 through Figure 53 and Figure 81 through Figure 86,

As(3) and V(5) will likely become less mobile if site pH trends toward more common

background pH levels (i.e. pH 6-8) from both initially acidic and alkaline conditions.

While the acidic trend is realistic, the existence of As(3) is unlikely in alkaline leachates

and will likely exist in the As(5) state not considered in this study.  Similarly, V(5) will

likely not exist in real world acidic conditions, with the V(4) and V(3) species not

considered here being more likely.  Similar to As and V, both Cr and Se would also

become less mobile as both acidic and alkaline site conditions become more neutral, as

seen in Figure 59 through Figure 64 and Figure 70 through Figure 75, with some

exceptions depending on Eh conditions.

Redox conditions in subsurface areas near CCR sources may also experience

gradients near CCR sources, as well as changes during closure.  Reducing conditions can
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occur near CCR in situations where enough sulfate is released from the source to

stimulate microbial driven reduction.  Additionally, there is concern that redox conditions

can be affected when a site is caped in place (Schwartz et al. 2016).  In such instances

when a redox gradient exists in either time or space, Eh becomes important parameter to

consider.  The effects of redox on As and V were difficult to observe in this study due to

the assumption of redox disequilibrium and the fixed redox states used within the model;

however insight can be found in relevant literature.  Evidence suggests that the more

adsorptive As(5) will exist in more aerobic states; however soluble As(3) will exist in

elevated levels within groundwater in reducing conditions.  This trend suggests that extra

consideration of redox effects should be taken when capping a CCR in place or when

working with high sulfate CCR (Schwartz et al. 2016).  On the other hand, the more

soluble V(5) species exists in aerobic conditions, while the more adsorptive V(4) exists in

reducing conditions (Wright et al. 2014).  This trend would suggest that V concentrations

in groundwater will decrease if reducing conditions occur due to capping source material

of elevated sulfate concentrations.

Cr and Se redox effects were much easier to describe due the redox speciation

freedom allotted to them within the model.  As seen in Figure 54 through Figure 58, Cr

displays a high affinity for HFO in most geochemical conditions.  Only when Cr(6)

becomes the dominant species in relatively high aerobic and alkaline conditions do Cr

concentrations in groundwater become elevated.  This trend suggests that CCR sources

high in Cr content may need to avoid highly oxidative treatments.  Se was shown to exist

in the highly soluble S(-2) form at low pH and Eh levels, as seen in Figure 65 through

Figure 69.  Once redox conditions became more aerobic the more adsorptive Se(4)
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became dominant; however in relatively high alkaline and oxidizing conditions, Se(6)

would become dominant and cause elevated Se concentrations.  These results suggest that

CCR sites with Se concerns will find moderate redox conditions more favorable, with Se

concentrations in groundwater increasing should reducing conditions occur due to

capping source material of elevated sulfate concentrations

While the geochemical effects of pH and redox are significant and useful when

considering changes to a CCR source, they are not the only geochemical controls.

Further expansion of the analysis could be conducted by varying additional variables

other than Eh and pH.  Additional investigations could vary parameters like solution ion

composition to explore the effects of ion adsorption site competition, HFO concentrations

to as to observe the effects of adsorption site availability, and COC concentrations to

evaluate the behaviors of high and low concentration solutions.

5.5.2. Competition Analysis

The competition sensitivity analysis was informative with regards to the

significance of ion competition with COC adsorption; however the investigation was only

limited to average pH and pe conditions observed in the CBD and Chao experiments.

The main trend observed in Figure 87 through Figure 94 was that higher background

constituent concentrations in solution led to a decrease in COC adsorption to HFO.  This

behavior is expected since the dominant control with relation to an adsorbent is the

availability of adsorption sites, making decreased site availability due to the addition of

competing ions significant.  In addition to adsorbent effects, higher concentrations of ions

can also affect the activity of adsorbates through either ion pairing or electrostatic

interactions.  These interactions will generally make activity coefficients smaller and can
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decrease a COCs adsorption affinity; however activity can occasionally be raised, causing

the opposite effect (Zhang et al. 2019).

When observing the effect of competition on COCs in the base model by

comparing it to the single COC batch runs, it becomes evident that competition affects

each COC differently.  For instance, the effect of competition in the base model appeared

to be negligible in regards to Cr adsorption, somewhat significant in regards to As, and

very significant in regards to Se and V, as seen in Figure 87 through Figure 90.  These

differences indicate that trace metals such as Se and V are relatively sensitive to

background constituents and other trace metals, while As is moderately, and Cr only

negligibly sensitive.

With regards to ionic strength differences caused by increases in Na+, Ca2+, and

Mg2+, and SO4
2-, all COCs became less adsorptive as background concentrations

increased.  While this trend held steady for all COCs, individual COCs again displayed

different sensitivities to changes in ionic strength.  As seen in Figure 92, Cr was still able

to strongly adsorb to the solid state due to its existence as Cr(3) in such conditions.  This

high level of adsorption in the face of very high ionic strengths is evidence of Cr(3)’s

ability to outcompete common background ions for HFO adsorption sites.  While the

case, it is evident that these increases in concentration still have an effect on Cr(3),

making it slightly mobile, rather than immobile.

The rest of the COCs observed exhibited sensitivities to ionic strength changes

more similar to each other rather than to Cr.  Model conditions and assumptions caused

As, Se, and V to exist in the redox states As(3), Se(4), and V(5) respectively.  As with the

base model vs single COC solution comparison, As was moderately affected by the
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increases in ionic strength, while Se and V were more significantly affected, as seen in

Figure 91, Figure 93, and Figure 94 respectively.  This is evident since all three COCs

were effectively fully dissolved in the liquid phase when ionic concentrations were 1000

times larger than base model concentrations; however only Se and V were fully dissolved

at 100x concentrations.

These sensitivities can have implications in both experimental and natural

systems, where a wide range of groundwater chemistries and trace metal concentrations

can exist.  When considering competition’s effects on trace metals derived from CCR, a

multitude of potential consequences arise.  In particular, brine solutions associated with

CCR wastewater have the potential to affect COC adsorption through ion competition.

Should these brines enter into natural systems the large concentrations of dissolved ions

within these solutions would cause higher trace metal mobility.  While such solutions will

likely decrease in ionic strength as dilution occurs through mixing, higher concentrations

near source materials likely should be taken into account when considering the transport

of COCs.

Additional implications arise when considering the competition of other trace

metals on COCs.  Se and V in particular may be fairly sensitive to the existence of other

trace metals, as inferred from the results displayed in Figure 89 and Figure 90.  Such

sensitivities could make the trace metal composition of CCR leachate significant with

respect to the adsorptive affinity and mobility of these COCs.  For instance, CCR sources

which leach relatively high concentrations of trace metals may not only experience high

COC levels within groundwater, but may also experience higher levels due to COC
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competition.  With implications as such, special note should be given to adsorption site

competition when considering groundwater quality associated with CCR sources.

5.6. Adsorption Capacity Analysis

The adsorption capacity analysis gave insight into the quantity of COC which can

be adsorbed by the solid phase, and the relevancy of such a limit to the concentrations

utilized in this study.  In all cases except Cr, the magnitude of solution concentration

required to cause COC saturation on the solid phase was significantly higher than the

concentrations used in the study, as seen in Figure 95, Figure 97, and Figure 98.  This

sizable concentration variation provides confidence that the lower concentrations

modeled in this study could not approach the theoretical maximum adsorption capacity

due to As, Se, and V adsorption alone.  Instead, saturation would only be able to occur

due to the occupation of adsorption sites by background constituents such as calcium,

magnegsium, sodium, and sulfur.

Unlike the other COCs, the HFO’s adsorption capacity for Cr was much lower,

and occurred at the far lower solution concentration of 200ppb, as seen in Figure 96.

This lower capacity is the result of Cr’s adsorption to HFO’s strong sites, rather than the

weak sites favored by As, Se, and V.  Due to the smaller availability of strong sites in the

GTLM, as described in section 3.2.2, it is expected that Cr would reach its saturation

capacity at lower solution concentrations than those COCs binding with weak sites.  With

such low Cr solution concentrations causing solid phase saturation, HFO’s adsorption

capacity for Cr becomes relevant within the model, with such saturation events occurring

within 34 of the 159 models created in this study, as corrected for and discussed in

section 3.2.5.
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5.7. Diffuse Double Layer vs No Electrostatics Models

As displayed in Figure 99 through Figure 102, the use of DDL within a model can

have a wide range of impact on COC adsorption depending on the COC.  The main

difference between a model with a DDL and one without is that the consideration of the

change to electrostatic surface charge due to constituent complexation on the surface

phase is only considered when the DDL is modeled.  In addition, a charged surface will

cause an equal amount of opposite charges to build up in the solution, instead of existing

as a part of the DDL.  This solution charge buildup is likely what causes the difference in

the models, as models without a DDL require more ions in solution to balance the charge

of the surface (Parkhurst and Appelo 2013).  As such, the use of the DDL model is

recommended when modeling surface complexation.
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APPENDIX A: TABLES

Table 1: HFO concentrations derived from Chao and CBD extraction methods

HFO Extraction Concentrations
Site Sample Name CBD Chao

(mg/Kg) (mg/Kg)

Allen

AB-20S 2546 3934
AB-20D 450 2204
AB - 28D 2398 1889
AB - 29D 543 3691
AB - 31D 3613 2014
AB - 33S 2979 1209
AB - 34S 1803 161
AB - 35S 1955 1785
AB - 35R 257 2129
GWA - 3BR 883 4698
GWA - 7S 1595 1016
GWA - 9S 472 1490

Belews
Creek

AB - 2D 486 1257
AB - 9S 939 1246
BG - 3S 2060 NA
GWA - 2D 224 1085
GWA - 3D 1235 2156
GWA - 5S 450 2005
GWA - 8S NA 4060
GWA - 11D 1888 2446
GWA - 12 1857 412
MW - 200BR 191 3830

Buck

AB – 2BR 3149 384
AB – 5D 313 306
AS – 2D 3595 353
BG – 3D 3334 338
GWA – 3D 1563 884
GWA – 4D 822 559
GWA – 6D 1205 2695
GWA – 9D 3873 513
GWA – 10D 580 1190
GWA – 12D 436 364

Cliffside AB − 1D 3148 153
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AB − 2D 1838 225
AS − 3BR 58 231
GWA − 55 640 283
GWA − 1BRU 440 1535
GWA − 2D 578 809
GWA − 10D 1135 600
GWA − 23D 1953 302
GWA − 20S 1503 266
GWA − 24S 930 509
IB − 3SB 1618 531
MW − 22BR 2735 697
US − 3D 2540 176

Dan River

AB – 30 BR (32-
34) 3534 232
AB – 30 BR (43-
44) 2683 383
AB – 105 L 3076 360
AS – 2D 1696 269
AS – 10D 3811 461
GWA – 10 NA 676
GWA – 5BR 1878 322
GWA – 4D 2295 689
GWA – 11D 2444 488
GWA – 12D 2002 992
GWA – 1S 3405 351
GWA – 3S 3168 257

Marshall

AB – 1 BR 699 353
AB – 1 S 103 666
AB – 2 S 445 127
AB – 4 D 182 466
AB – 6 BR 501 685
AB – 8 D 860 682
AB – 11 D 674 358
AB – 16 D 1105 601
AS – 1 D 43 148
GWA – 1 S 504 243
GWA – 2D 156 254

Riverbend
AB - 4D 741 268
AB - 6S 3973 774
AB - 7S 1356 558
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GWA - 1BRU 43 438
GWA - 7D 96 501
GWA - 8D 5880 419
GWA - 1S 1389 611
GWA - 2S 916 651
GWA - 4S 274 107
GWA - 5S 1652 271
GWA - 6S 2044 365
GWA - 7S 1033 568
GWA - 10S 2080 266

Table 2: Synthetic groundwater constituents and trace metals concentrations

Chemical Concentration Units
CaSO4·2H2O 20 ppm
MgSO4 5 ppm
Na(HCO3) 10 ppm
Arsenic 500 ppb
Boron 500 ppb
Cadmium 500 ppb
Chromium 500 ppb
Molybdenum 500 ppb
Selenium 500 ppb
Thallium 500 ppb
Vanadium 500 ppb
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Table 3: Overall data analysis result summary
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APPENDIX B: FIGURES

Figure 1: Syringe filtration for both Chao and CBD HFO extraction methods

Figure 2: Tumbler for batch Kd
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Figure 3: Batch filtration set-up

Figure 4: PHREEQC solid and liquid phase input
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Figure 5: Histogram of Modeled CBD Method As Kd RE

Figure 6: Histogram of Modeled CBD Method Cr Kd RE
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Figure 7: Histogram of Modeled CBD Method Se Kd RE

Figure 8: Histogram of Modeled CBD Method V Kd RE
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Figure 9: Histogram of Modeled Chao Method As Kd RE

Figure 10: Histogram of Modeled Chao Method Cr Kd RE
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Figure 11: Histogram of Modeled Chao Method Se Kd RE

Figure 12: Histogram of Modeled Chao Method V Kd RE
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Figure 13: Experimental vs CBD method Model As Kd with 1/1 line

Figure 14: Experimental vs CBD method Model Cr Kd with 1/1 line
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Figure 15: Experimental vs CBD method Model Se Kd with 1/1 line

Figure 16: Experimental vs CBD method Model V Kd with 1/1 line
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Figure 17: Experimental vs Chao method Model As Kd with 1/1 line

Figure 18: Experimental vs Chao method Model Cr Kd with 1/1 line
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Figure 19: Experimental vs Chao method Model Se Kd with 1/1 line

Figure 20: Experimental vs Chao method Model V Kd with 1/1 line
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Figure 21: Experimental and model CBD method HFO vs As Kd plot

Figure 22: Experimental and model CBD method HFO vs Cr Kd plot
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Figure 23: Experimental and model CBD method HFO vs Se Kd plot

Figure 24: Experimental and model CBD method HFO vs V Kd plot
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Figure 25: Experimental and model Chao method HFO vs As Kd plot

Figure 26: Experimental and model Chao method HFO vs Cr Kd plot
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Figure 27: Experimental and model Chao method HFO vs Se Kd plot

Figure 28: Experimental and model Chao method HFO vs V Kd plot
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Figure 29: Experimental and model CBD method HFO vs As Kd plot - Allen

Figure 30: Experimental and model CBD method HFO vs As Kd plot - Belews Creek



102

Figure 31: Experimental and model CBD method HFO vs As Kd plot - Buck

Figure 32: Experimental and model CBD method HFO vs As Kd plot - Cliffside
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Figure 33: Experimental and model CBD method HFO vs As Kd plot - Dan River

Figure 34: Experimental and model CBD method HFO vs As Kd plot - Marshall
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Figure 35: Experimental and model CBD method HFO vs As Kd plot - Riverbend

Figure 36: Experimental and model CBD method HFO vs Se Kd plot - Allen
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Figure 37: Experimental and model CBD method HFO vs Se Kd plot - Belews Creek

Figure 38: Experimental and model CBD method HFO vs Se Kd plot - Buck
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Figure 39: Experimental and model CBD method HFO vs Se Kd plot - Cliffside

Figure 40: Experimental and model CBD method HFO vs Se Kd plot - Dan River
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Figure 41: Experimental and model CBD method HFO vs Se Kd plot - Marshall

Figure 42: Experimental and model CBD method HFO vs Se Kd plot - Riverbend
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Figure 43: As sensitivity model with varied Eh and pH 5

Figure 44: As sensitivity model with varied Eh and pH 6
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Figure 45: As sensitivity model with varied Eh and pH 7

Figure 46: As sensitivity model with varied Eh and pH 8
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Figure 47: As sensitivity model with varied Eh and pH 9

Figure 48: As sensitivity model with varied pH and Eh -100
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Figure 49: As sensitivity model with varied pH and Eh 0

Figure 50: As sensitivity model with varied pH and Eh 100
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Figure 51: As sensitivity model with varied pH and Eh 200

Figure 52: As sensitivity model with varied pH and Eh 300
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Figure 53: As sensitivity model with varied pH and Eh 400

Figure 54: Cr sensitivity model with varied Eh and pH 5
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Figure 55: Cr sensitivity model with varied Eh and pH 6

Figure 56: Cr sensitivity model with varied Eh and pH 7
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Figure 57: Cr sensitivity model with varied Eh and pH 8

Figure 58: Cr sensitivity model with varied Eh and pH 9
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Figure 59: Cr sensitivity model with varied pH and Eh -100

Figure 60: Cr sensitivity model with varied pH and Eh 0
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Figure 61: Cr sensitivity model with varied pH and Eh 100

Figure 62: Cr sensitivity model with varied pH and Eh 200
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Figure 63: Cr sensitivity model with varied pH and Eh 300

Figure 64: Cr sensitivity model with varied pH and Eh 400
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Figure 65: Se sensitivity model with varied Eh and pH 5

Figure 66: Se sensitivity model with varied Eh and pH 6
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Figure 67: Se sensitivity model with varied Eh and pH 7

Figure 68: Se sensitivity model with varied Eh and pH 8
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Figure 69: Se sensitivity model with varied Eh and pH 9

Figure 70: Se sensitivity model with varied pH and Eh -100
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Figure 71: Se sensitivity model with varied pH and Eh 0

Figure 72: Se sensitivity model with varied pH and Eh 100
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Figure 73: Se sensitivity model with varied pH and Eh 200

Figure 74: Se sensitivity model with varied pH and Eh 300
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Figure 75: Se sensitivity model with varied pH and Eh 400

Figure 76: V sensitivity model with varied Eh and pH 5
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Figure 77: V sensitivity model with varied Eh and pH 6

Figure 78: V sensitivity model with varied Eh and pH 7
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Figure 79: V sensitivity model with varied Eh and pH 8

Figure 80: V sensitivity model with varied Eh and pH 9
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Figure 81: V sensitivity model with varied pH and Eh -100

Figure 82: V sensitivity model with varied pH and Eh 0
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Figure 83: V sensitivity model with varied pH and Eh 100

Figure 84: V sensitivity model with varied pH and Eh 200
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Figure 85: V sensitivity model with varied pH and Eh 300

Figure 86: V sensitivity model with varied pH and Eh 400
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Figure 87: As adsorption competition sensitivity

Figure 88: Cr adsorption competition sensitivity
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Figure 89: Se adsorption competition sensitivity

Figure 90: V adsorption competition sensitivity
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Figure 91: As adsorption sensitivity to variations in background constituents

Figure 92: Cr adsorption sensitivity to variations in background constituents
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Figure 93: Se adsorption sensitivity to variations in background constituents

Figure 94: V adsorption sensitivity to variations in background constituents
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Figure 95: Adsorption capacity of As on HFO

Figure 96: Adsorption capacity of Cr on HFO
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Figure 97: Adsorption capacity of Se on HFO

Figure 98: Adsorption capacity of V on HFO
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Figure 99: Base model with DDL vs base model without DDL – As

Figure 100: Base model with DDL vs base model without DDL - Cr
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Figure 101: Base model with DDL vs base model without DDL – Se

Figure 102: Base model with DDL vs base model without DDL - V
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Figure 103: Percent model Kd values within a factor of 2 of experimental Kd values

Figure 104: Percent model Kd values within a factor of 10 of experimental Kd values
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Figure 105: Allen AB-20S CBD model and experimental isotherms

Figure 106: Allen AB-20D CBD model and experimental isotherms
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Figure 107: Allen AB-20S Chao model and experimental isotherms

Figure 108: Allen AB-20D Chao model and experimental isotherms
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Figure 109: Allen AB-35R CBD method isotherm – As

Figure 110: Allen AB-35R CBD method isotherm – V
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Figure 111: CBD vs Chao method HFO concentrations
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APPENDIX C: PHREEQC SUPPLEMENTAL FILES AND ISOTHERMS

PHREEQC input, output, and database files are included in this work and are

available through ProQuest at https://www.proquest.com/, and through the University of

North Carolina at Charlotte J. Murrey Atkins Library.  Supplemental files contained

within in this submission include:

Name File Type Size Software
CBD Batch Model .pqi 111KB PHREEQC
CBD Batch Model .pqo 43.3MB PHREEQC
CBD Batch Model-Cr .pqi 111KB PHREEQC
CBD Batch Model-Cr .pqo 43.3MB PHREEQC
Chao Batch Model .pqi 112KB PHREEQC
Chao Batch Model .pqo 43.8MB PHREEQC
Chao Batch Model-Cr .pqi 122KB PHREEQC
Chao Batch Model-Cr .pqo 43.8MB PHREEQC
Sensitivity Analysis-pH & Eh .pqi 112KB PHREEQC
Sensitivity Analysis-pH & Eh .pqo 14.7MB PHREEQC
Phreeqcmaster_2016 .txt 140KB Notepad
Allen PHREEQC Batch Isotherms(CBD) .xlsx 966KB Excel
Allen PHREEQC Batch Isotherms(Chao) .xlsx 969KB Excel
Belews Creek PHREEQC Batch
Isotherms(CBD) .xlsx 731KB Excel

Belews Creek PHREEQC Batch
Isotherms(Chao) .xlsx 679KB Excel

Buck PHREEQC Batch Isotherms(CBD) .xlsx 738KB Excel
Buck PHREEQC Batch Isotherms(Chao) .xlsx 737KB Excel
Cliffside PHREEQC Batch Isotherms(CBD) .xlsx 965KB Excel
Cliffside PHREEQC Batch Isotherms(Chao) .xlsx 964KB Excel
Dan River PHREEQC Batch Isotherms(CBD) .xlsx 795KB Excel
Dan River PHREEQC Batch Isotherms(Chao) .xlsx 852KB Excel
Marshall PHREEQC Batch Isotherms(CBD) .xlsx 795KB Excel
Marshall PHREEQC Batch Isotherms(Chao) .xlsx 795KB Excel
Riverbend PHREEQC Batch Isotherms(CBD) .xlsx 909KB Excel
Riverbend PHREEQC Batch Isotherms(Chao) .xlsx 908KB Excel


