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ABSTRACT 
 
 

MOHAMMAD MAINUDDIN.  Precision polishing dynamics: the influence of process 
vibrations on polishing results.  (Under the direction of DR. BRIGID MULLANY) 

 
 

The optical pitch polishing process has been used over 300 years to obtain high 

quality optical surface finish with little subsurface damage. A pitch tool consists of a 

metal platen coated with a layer of polishing pitch whereby pitch is a highly viscoelastic 

material. In polishing the workpiece is rubbed against the tool while abrasive slurry is 

supplied in between them. During polishing the workpiece is subjected to process 

vibrations, whereby be these vibrations are generated by the machine itself due to moving 

parts, or that are transmitted from the shop floor through the machine to the workpiece. 

To date, little is available in the public domain regarding the role of process induced 

vibrations on polishing outcomes. This research investigates such vibrations, how they 

transfer through the pitch layer on the tool, and ultimately how they affect the material 

removal rates and surface finishes obtainable on fused silica workpieces. Fundamental 

understandings with respect to the process vibration will reduce the heuristic nature of 

pitch polishing and generate deterministic polishing outcomes. 

Key findings include the following. The pitch selection has little influence on the 

magnitude or range of process vibrations transmitted through the tool to the workpiece in 

the 1 Hz to 16 kHz range.  Within the same frequency bandwidth the recorded process 

vibrations are in the range of 0.2 to 10 nm and the main factors found to affect their 

magnitude include; the polishing machine itself, process speeds, and the use of passive 

damping materials in the tool construction.  Material removal rates and surface finishes 

obtained on fused silica workpieces were found to be sensitive to the extent of the 
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process vibrations. Up to 30% changes in the material removal rates were observed with 

increasing vibrational magnitudes. The higher level vibrations were also found to have a 

negative impact on the finishes obtained in the lower spatial domains. Additional testing 

on a specifically made test-bed demonstrated a linear correlation between the material 

removal rates and the vibrational power input. This relationship was further explored by 

adding external vibrational sources to an existing machine, and as expected the increased 

vibrational power resulted in 80% higher material removal rates. The results from this 

experimental work facilitated Dr. Keanini’s development of a vibrational based material 

removal model. Additional polishing tests combined with surface topography analysis of 

both hard and soft pitch tools demonstrated the robustness of the proposed model to 

accommodate the influence of different pitch grades. 

The summary in general is that in pitch polishing the process vibrations are 

important to monitor and control for process optimization.  
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Introduction and Motivation for Current Work 

The overall goal of this work is to determine if the vibrations in polishing 

processes have a significant influence on polishing outcomes such as material removal 

rates and surface finish and thereby better understand the process fundamentals to 

optimize the polishing process. 

Optical pitch polishing process has been used for more than 300 years to obtain 

high quality optical surface finishes with little subsurface damage [1]. A pitch tool 

consists of a metal platen coated with a layer of polishing pitch whereby pitch is a highly 

viscoelastic material derived from tree resin [2]. Synthetic versions are also produced [3]. 

At room temperature the pitch is a stiff, brittle material with Shore D hardness values 

ranging between 70 and 83 [2]. Polishing with pitch was first introduced by Sir Isaac 

Newton in the 1700’s and has since been used to produce high quality optical surfaces 

[1]. Pitch polishing can generate surfaces with roughness and flatness values less than 1 

Å RMS and λ/20 respectively (where λ = 632 nm) [5]. However the polishing processes 

using these tools has not received the same level of scientific investigation as other 

precision processes such as milling, grinding, etc. [6]. Pitch polishing researchers have 

done extensive work on investigating polishing process aspects such as pitch properties, 

tool parameters, slurry composition (chemical and mechanical properties), tool-slurry-

workpiece interaction, workpiece material, and basic process parameters such as 
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polishing load and relative velocity. To date, little is available in the public domain on the 

dynamic aspects of pitch polishing processes, i.e. how do process vibrations impact 

material removal rates and surface finishes? 

Process vibrations are considered to be the vibrations generated by the machine 

itself, due to moving parts, or that transmitted from the shop floor through the machine to 

the workpiece. The role of process vibrations did not receive much attention until 

recently in 2010 when Mullany et al. investigated the dynamic response of different 

polishing pitches [7]. The investigation revealed that each grade and type of pitch has 

unique dynamic properties (dynamic stiffness, damping ratio, natural frequency) and that 

pitch types, which have the same long term response, have different short term dynamic 

responses. This leads to the question; can these differences account for the different 

polishing results obtained when using different types of pitch? A key component of 

answering this is to understand the extent and magnitude of vibrations existing in 

polishing processes, how they interact with the pitch tooling, and what impact, if any, do 

they have on polishing mechanisms. 

1.2 Application of the Research 

The dynamic properties of pitch and their impact on polishing processes have 

never been fully evaluated. The measurements of process vibrations and the evaluation of 

their impact on process outcomes will enhance the fundamental understanding of 

polishing material removal mechanisms and provide opportunities for process monitoring 

and statistical process control. The ability to monitor and control the process will 

facilitate process automation and undoubtedly process automation is the key to generate 

repeatable polishing outcomes. This research will reduce the dependency on worker 
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experience and heuristic nature of pitch polishing outcomes and thereby enhance the 

deterministic outcomes. Optimization of the polishing process will significantly reduce 

polishing time and cost associated with high quality optical surface generation. Better 

optical components could be generated at a lower cost for a wide range of applications 

that include metrology instruments, astronomical lenses and other high quality laser 

equipment. The knowledge could be implemented in other machining process such as 

grinding, ultrasonic finishing etc. Innovative explanations of the correlation between 

process vibrations and the process outcomes in pitch polishing will also help better 

understanding the chemical mechanical planarization (CMP) process in IC industries. 

1.3 Structure of the Dissertation 

The dissertation starts with a literature survey that reviews the history of pitch 

polishing, its application, the existing knowledge and the gaps in our knowledge. The 

physical and dynamic properties of pitch are explained. An overview of the polishing 

process, the key parameters for characterizing polishing outputs and the existing material 

removal mechanisms are provided. The dynamic aspects of the polishing process are 

scrutinized and tabulated, particularly focusing on the material removal rate (MRR) and 

surface finish (roughness).   

Chapter 3 investigates the dynamic response of different pitch grades, types and 

tools to different vibrational inputs. Factors considered include; pitch grade, pitch type, 

and tool geometry. The tests are subcategorized in to two sections, frequency sweep tests 

and impact frequency tests. The frequency sweep tests investigate how vibrations 

transmit through pitch while the impact tests evaluate the dynamic response of pitch to 
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transient vibrations. This chapter also provides details on tests conducted to evaluate the 

ability of a wide range of passive damping materials to attenuate process vibrations. 

Chapter 4 is concerned with quantifying the vibrations existing during actual 

polishing processes, and how they affect the material removal rates (MRRs) and surface 

finishes obtained on fused silica samples. The vibration measurement system and analysis 

approach are described. The impact of tool selection, machine, and process parameters on 

the vibrations are considered. The chapter concludes by presenting the polishing tests 

results and by offering insights into how the process vibrations affect the MRRs and 

surface finish. 

Chapter 5 outlines a test-platform specifically designed, and fabricated to analyze 

the effect of vibration frequency and amplitude on polishing outcomes in a controlled 

manner not possible on actual polishing machines. Fused silica samples were polished on 

the test bed and the results analyzed. The results from these tests provide the basis for a 

new material removal model developed by Dr. Keanini, which combines both mechanical 

and fluid dynamics aspects. The chapter ends with a summary of the model and explains 

the results with respect to the experimental results. 

In chapter 6 SEM and AFM evaluations of both a hard and soft tool are presented. 

The differences in the tool topographies and the polishing results obtained on fused silica 

are considered with respect to the material removal model developed by Dr. Keanini (see 

chapter 5).  

Chapter 7 investigates the possibility of applying external vibrational sources to 

the polishing machine so as to induce higher removal rates. Small, low cost, battery 
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operated unbalanced motors running at speeds between 10 and 15 krpm were used to 

generate additional vibrations. 

Chapter 8 summarizes the overall findings from the previous chapters, discusses 

the results, and provides recommendations for future work. Finally the appendices 

contain relevant programming codes and additional supporting information. 



2 CHAPTER 2: LITERATURE REVIEW 
 
 

2.1 Pitch Polishing Process 

There are a number of polishing techniques available to generate high quality 

optical surfaces. Chemical mechanical planarization (CMP) [13], magneto-rheological 

finishing (MRF) [14], laser polishing [15], float polishing [16], Jet Polishing [180, 22], 

ion-beam polishing [17], and traditional polishing [8, 11] are some examples of them. 

Traditional polishing can be categorized into two sub-divisions: 1) continuous polishing, 

also known as a full-aperture technique, where the tool diameter is larger than workpiece 

diameter [18], and 2) sub-aperture techniques where the tool is smaller than the 

workpiece [19]. Polishing with pitch tooling primarily corresponds to the full-aperture 

continuous process though it has applications in sub-aperture polishing too [181, 21]. 

Figure 2-1 classifies the different polishing processes. 

 

Figure 2-1 : Classification of basic glass polishing processes [20]. 

Glass 
Polishing

Full-aperture 
(Conventional)

Sub-aperture 
(Non-Conventional)

Pitch 
Polishing

Polyurethane 
Polishing

Teflon 
Polishing

Float 
Polishing

Fixed-abrasive 
Polishing

Ion-beam 
Polishing

Plasma 
Polishing

MRF 
Polishing

Elastic-emission 
Polishing



7 

 

Figure 2-2: Schematic of full aperture and sub-aperture polishing process. 
 

Figure 2-2 presents schematics of full and sub-aperture polishing process setups. 

In full-aperture pitch polishing, the tool consists of a layer of pitch on a metal platen that 

has a diameter larger than the workpiece. Pitch is a viscoelastic material that slowly 

deforms under pressure [11]. During polishing the workpiece surface (glass) is pressed 

against the pitch tool surface, and slurry consisting of abrasive particles mixed with liquid 

(usually water) is added to the system throughout polishing. Before polishing the tool is 

conditioned so as to create a layer of embedded abrasive particles in its top most layer, 

without this crust little material removal is expected. Material is removed by the relative 

motion between the tool and the workpiece in the presence of slurry. To aid slurry 

delivery to the workpiece surface grooves are cut into the tool surface. These grooves 

promote better slurry circulation and the transfer of polishing debris away from the 

workpiece. Pitch tooling has the ability to produce surfaces with sub-nanometer level of 

finishes and very little sub-surface damage [5]. Its ability to achieve these results is 

partially due to its ability to deform slowly under loading thus facilitating good contact 

between it and the workpiece. 

Tool 

Workpiece 

Tool 

Workpiece 

Full aperture Sub-aperture
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2.2 Pitch Polishing Components 

The basic elements used in pitch polishing processes are the pitch tool, the slurry, 

and the workpiece. This section briefly highlights the basics associated with each 

element. 

2.2.1 Pitch Tool 

A pitch tool consists of a layer of pitch on a metal substrate. The layer thickness 

varies from user to user and could be from a few millimeters to several centimeters. The 

life span of such tooling ranges from a few days for smaller tools to over a year for the 

larger tools [7].  

In a basic tool making process the pitch is first softened by controlled heating to 

make it pourable, it is then poured onto the platen [70 - 73] and allowed to cool for 

several hours (often overnight). Before use grooves are cut into the top surface of the 

pitch layer whereby these groves will assist in slurry supply and debris removal. 

Attention should be given to both grooving depths and patterns as they can affect the 

overall compliance and performance of the pitch tool [11]. Pitch grooving dimensions, 

when represented in a dimensionless form (ratio of depth to thickness), range from 0.01 

to 1[11]. Figure 2-3 illustrates a typical pitch tool with grooving. The common facet 

shapes are square, equilateral triangle or a combination of both [11]. 

 

Figure 2-3: pitch tool with grooving [24]. 

Metal substrate
Pitch layer
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2.2.2 Polishing Pitch 

Pitch is primarily derived from either pine tree (natural) or petroleum based 

products. The petroleum-based pitch is commercially named as Cycad™, and the most 

common wood based pitch is sold as Gugolz™. The synthetic versions are also available 

[3] and are sold under the trade name Acculap™. For natural pitch the basic properties 

slightly vary from batch to batch and with preservation time. The reason for possible 

variations includes the evaporation of the solvents added to the natural pitches to control 

its hardness values. The synthetic versions developed in the laboratory are more stable, 

consistent, and resistant to chemical attack, including high temperature oxidation or 

degradation. The AcculapTM range of pitches were designed to perform just as natural 

pitches of comparable hardness [56]. The softening temperatures and handling 

procedures are similar for both. Pictures of natural and synthetic pitches are illustrated in 

Figure 2-4 [58].  

 

Figure 2-4: Synthetic and Natural pitch [58]. 
 

At room temperature the pitch is a stiff, highly viscous and brittle material (see 

Figure 2-5)with Shore D hardness values ranging between 70 and 83 [2]. As it has the 

ability to flow under pressure, which enables different removal rates between high and 

low contact points on the optical surface which reduce mid and high spatial frequency 

Natural pitch
Trade name: GugolzTM

Synthetic pitch
Trade name: AcculapTM
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errors [21]. Therefore, pitch polishing is considered for many high end optical 

components such as lithography, laser, military or astronomy based optics. Despite its 

advantages pitch has some limitations. Natural pitch contains solvents which with time 

dry out, making the pitch harder. All types of pitch are temperature sensitive, a 5 °C 

change in temperature can change the pitch grade (hardness) [11]. Besides these points, 

pitch polishing is a very slow material removal process, it relies highly on operator 

experience [23] and can have consistency issues. 

 

Figure 2-5: a. Pitch a very high viscous liquid, b. Brittle fracture resulted from an impact 
hit [7]. 

 

2.2.3 Pitch Properties 

2.2.3.1 Hardness 

According to Norman J Brown [11] “Pitch flow affects lapping in at least two 

ways 1) allowing polishing agent particles of polishing agent to seat into the pitch surface 

and 2) enabling the lap to mate with the surface being polished.” According to his 

observation the ability of pitch to alter its form depends on the grade (hardness) of pitch. 

Hardness values are very temperature dependent. For a good polishing outcome, selection 

of the correct pitch hardness is important. Soft pitches allow more slurry particles to 

embed in tool surface and this will have a great influence on polishing outcomes [11]. 

Before impact After impact

Day 1 Day 239 Day 267

a b
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Harder pitches are more difficult to condition (i.e. embed particles within its surface). 

Harder pitches generate higher surface roughness values [2]. Proper combination of pitch 

and glass hardness can improve removal by a factor of two [10]. Twyman recommended 

softer pitch for softer materials while Izumitani [10] found harder pitches produce finer 

surfaces on soft glass. Several methods are proposed to measure hardness of pitch [2, 59, 

60]. Gillman [2] and DeGroot [60] describe two different tests capable of assessing the 

hardness of pitch; the indentation test (see Figure 2-6), and the durometer test.  

 

Figure 2-6: Schematic of an indentation test setup. 
 

Table 2-1: Comparable hardness between natural and synthetic pitches [2, 56]. 

Synthetic Pitch Natural Pitch Shear Viscosity 
(GPa-s)* 

Shore D 
Hardness 

Softening point 
(°C) 

AcculpTM Very Soft -- 0.05 -- -- 

AcculapTM Soft Gugolz 55 0.1 60 63-64 

AcculapTM Standard Gugolz 64 0.8 72 65-68 

AcculapTM 
Intermediate -- 1.1 -- 68-70 

AcculapTM Very Firm Gugolz 73 8.0 80 71-74 

AcculapTM Very Hard Gugolz 82 70 85 75-77 
* For T = 20 °C 

Dial Micrometer

Applied
weight, w

Pitch sample

Ball Indenter
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Gillman also determined softening points for different pitch grades and found that 

harder pitches have higher softening point temperature. The comparable hardness 

between GugolzTM and AcculapTM are provided in Table 2-1 [2, 56]. 

2.2.3.2 Viscosity 

Polishing pitch is a viscoelastic material, similar in nature to road pitch or asphalt. 

Various materials exhibit viscoelasticity, where the deformation depends on the applied 

load, time, and temperature. Viscoelastic materials have a mix of material properties. 

When they undergo deformation they exhibit both viscous and elastic behavior. Viscosity 

is the resistance of fluid to shear loading under a shear load. Elasticity is the ability of a 

material to return to its original shape after the removal of the applied load that deformed 

it [66]. In the case of pitch, its viscous component is more dominant than its elastic 

component [2]. 

According to Newton’s laws of viscosity the shear stress is directly proportional 

to the rate of deformation [65], i.e. the shear stress τ can be defined as, τ = μ×dε/dy (Pa or 

N/m²) where dε/dy is the rate of deformation due to the shear load. The proportional 

constant μ (N/m) is called the viscosity. Higher viscosity fluids require higher shear loads 

to flow. Viscosity is temperature dependent. At room temperature pitch appears solid 

with very high viscosity values (Table 2-1) while at higher temperatures (>60 °C) it is 

more fluid. Brown [11] found pitch viscosity changes by a factor of two for every 2 to 3 

°C change in temperature while Twyman [59] found the exponential dependency of pitch 

viscosity with temperature. Harder pitches have a higher viscosity value, i.e. a greater 

resistance to flow. 
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2.2.3.3 Dynamic Behavior 

The dynamic behavior of pitch has not received much attention even though pitch 

polishing tools have been used for more than three centuries. Until recent publications by 

Mullany et al. [63, 64] no literature was found that dealt with the dynamic properties of 

pitch. Mullany and Corcoran [61 - 63] showed a correlation between pitch hardness and 

dynamic properties such as damping ratios and the natural frequencies. 

2.2.3.3.1 Impact Frequency Response: Evaluation of Natural Frequency 

Mullany et al. [7, 61-64] used impact tests as a method of characterizing pitch and 

pitch tools. Impact testing was used to determine the damping ratio and natural frequency 

of different pitch grades and types. The measured natural frequency and damping ratio of 

some common pitch types are presented in Figure 2-7. The figures illustrates that each 

pitch type has unique natural frequency and unique damping ratio. Harder pitches have 

higher natural frequencies and lower damping ratios, which implies that a pitch with a 

higher natural frequency is more resistant to deformation. Indent and impact testing on 

pitch samples of different ages indicated that over time natural pitches become harder and 

the dynamic stiffness also increases [7]. They also evaluated the effect of temperature on 

pitch hardness and its dynamic properties. Higher temperatures soften the pitch and 

thereby reduce their natural frequency values [61]. 

Mullany’s [7] analysis provides some insights into why natural and synthetic 

pitches with comparable hardness values give different polishing outcomes. They 

analyzed two types of pitches (Gugolz or Acculap) and for each of the series they found a 

separate linear relationship between the natural frequency values and the hardness of 

material. 



14 

 

Figure 2-7: The natural frequency and damping ratio measurements of different pitches 
from reference [7]. 
 

Figure 2-8 represents the plots of hardness versus natural frequency for the two 

series. The hardness was evaluated by indentation test. They found different dynamic 

characteristics associated with the two types of pitches evaluated.  They concluded that 

two different types of pitches may have similar hardness but can have different dynamic 

properties, and that this may result in different polishing outcomes. 

 

Figure 2-8: Mullany’s findings, hardness versus natural frequency for Gugolz and 
Acculap series [7 (modified from the paper)]. 
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2.2.4 Workpiece/Glass 

Optical grade glass is characterized by well-defined optical properties, optical 

homogeneous performance and the absence of bubbles, strains and inclusions. The 

majority of the polishing tests conducted in this work were done on fused silica samples. 

Fused silica is the purest form of silicon dioxide (99.99%) in amorphous form i.e. a non-

crystalline form of silicon dioxide (SiO2) [75]. Single constituent in fused silica makes 

chemical reaction more straight forward when compare to other glasses with multiple 

constituents [77, 78]. In this work the experimental tests concerned with tool conditioning 

utilized Bk7 glass for economic reasons (significantly cheaper than fused silica [76]). 

Bk7 is a barium borosilicate glass which has very good optical properties.  

2.2.5 Abrasive Polishing Slurry 

A polishing slurry consists of an abrasive - liquid mixture. Water is typically the 

base liquid used. Different abrasive particles are used in pitch polishing process 

depending on workpiece material and required surface finish. Cerium Oxide (ceria), 

Aluminum Oxide (alumina), Iron oxides, Zirconium oxide, Silicon Carbide, Cubic Boron 

Nitride (CBN), and diamond are the most common abrasives used in polishing process 

[22, 81]. Ceria is a very popular polishing compound for a variety of optical materials 

[81, 82]. For a workpiece material like fused silica, ceria based slurries can provide the 

best removal rate when compared to other abrasive types [11, 12, 81]. Ceria is a rare 

earth oxide that can be acquired, purified and processed for commercial use. As abrasives 

chemically react with workpiece material, their chemical composition can have a 

profound influence on the polishing process and process outcomes [83]. Some basic 

properties of CeO2 are provided in Table 2-2 [85, 86]. 
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Table 2-2: Some physical properties of pure CeO2. 

Property Value (unit) 

Density 7.22 g/cm3 

Melting Point 2477 °C 

Youngs’ Modulus 1.65×1011 N/m2 

Hardness Mohs Hardness 6 

Crystallography Cubic, face centered 

Solubility in Water Non-soluble 
 

While CeO2 hardness is lower than that of fused silica, the chemical interaction 

between the slurry (abrasive and water) and the workpiece create a hydrated layer on the 

silica surface which is softer that CeO2 [121]. The mixing ratio (water: ceria) has a 

broader impact on the removal rate. The most common ratio that used in pitch polishing 

process is, H2O:CeO2 = 10: 1 [11, 25, 84, 125]. 

2.2.6 Polishing Metrics 

The polishing metrics typical encountered include; material removal rate (MRR), 

surface finish (roughness), and subsurface damage (SSD). A brief review of the literature 

for each of the metrics is reported in following sections. 

2.2.6.1 Material Removal Rate (MRR) 

Material removal rate is the loss of material over time. In the polishing world the 

typical approaches to determining the removal rate are to measure the mass loss of the 

workpiece per unit area, or to measure the change in physical dimension, i.e. height 

reduction [9, 11, and 12]. In the mass measurement method the sample is weighed before 

and after polishing. This method is subject to some potential errors such as cleanliness of 

the part after exposure to the slurry and water absorption by the workpiece (which can 
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also be a function of humidity [24]). While in the latter approach, the change in physical 

dimension, the material removal rate is determined based on the change of physical 

height of a workpiece before and after polishing. In the reviewed literature most of the 

authors utilized the change of physical height to evaluate the material removal rates 

although the mass loss method was importantly considered by some researchers. Some 

used both to cross check the variation [9, 24, and 25]. Table 2-3 presents the removal 

methods used in the published polishing related papers. 

Table 2-3: Pitch Polishing removal rate of SiO2 and BK7 glasses in reported work. 

References Glass 
Type 

Slurry 

(size ~1 
µm) 

Mass Loss 
(g/cm2.s) 

Height 
Loss 

(µm/min) 

Preston 
coefficient Cp, 

(cm2/dyne) 

Izumitani[9] 

SiO2 CeO2 3×10-6 0.02 2×10-14 

SiO2 SiO2 7.3×10-8 0.00005 - - 

BK7 CeO2 - - 0.12 1.2×10-13 

A. A. Tesar [25] 
SiO2 CeO2 2.2×10-7 0.06~0.16 6-16×10-14 

Zerodur CeO2 2.6×10-7 0.07 7×10-14 

Landis [24] 

SiO2 CeO2 - - 0.007 2.8×10-14 

Quatz CeO2 - - 0.0003 0.14×10-14 

Zerodur CeO2 - - 0.006 7.3×10-14 

W. Silvernail [26] SiO2 CeO2 - - 0.1 - - 

A. Kaller [27] SiO2 CeO2 - - 0.03~0.05 - - 

M. J. Cumbo [31] SiO2 CeO2 - - 0.013 - - 

 BK7 CeO2 - - 0.04 - - 

Note: In some of the references the removal rates are available for various pH, while in this table 
the removal rate only presented for slurry pH=7. 
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2.2.6.2 Surface Quality 

The ultimate performance of fine polishing processes can be determined by their 

achievable surface quality. The roughness, waviness and the form error of the resulting 

surface are considered in high-end glass polishing process.  

Surface roughness is the closely spaced irregularities which measure the texture 

of a surface, waviness is more widely spaced surface textures when compared to that 

considered as roughness, and the flatness is the long spaced deviation, see Figure 2-9.  

 

Figure 2-9: Schematic of surface roughness, waviness and flatness (form). 
 

For 2D measurements (line profile) the arithmetic mean of all the roughness 

heights is denoted by Ra, the average roughness, while the root mean square (RMS) 

roughness is denoted as Rq. If the roughness is calculated over an area (3D), for example 

by using optical interferometry measurements, then the average and RMS roughnesses 

are denoted by Sa and Sq respectively. In addition to the roughness, an additional term Rsk 

(2D) or Ssk (3D) the skewness, is considered. This term indicates the deviation of height 

distribution from normal curve, i.e. if the surface contains more peaks (positive 

skewness) or valleys (negative skewness). Many other parameters are available to 

Actual surface

Flatness height

Waviness height

Roughness height

Roughness
Waviness

Flatness
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describe surfaces and readers should refer to the following sources for additional 

information [183]. 

In the optics industry surfaces features are often characterized with respect to their 

spatial frequency domain [28]. Spatial frequency demonstrates the lateral distance 

between cyclic irregularities, where the total spatial distance is split in to three categories, 

low, mid, and high spatial frequency domains, see Figure 2-11. The lower spatial 

frequency domain is associated with the form of the surface, the mid-spatial frequency 

domain is associated with surface waviness, and the high spatial frequency domain 

corresponds to surface roughness. 

 

Figure 2-10: the low, mid and high spatial frequency regions are indicated [29]. 
 

To evaluate the surface roughness various instruments can be utilized. The 

selected instrument type and the implementation technique depend on the ultimate 

requirements of the sample. Several research papers describing the techniques and 

limitations are available, including the paper by Vorburger [36], Lonardo et al. [37] and 

Komanduri [38], paper by Sakata et al. [39], De Chiffre et al. [40], and Whitehouse [41, 

42] are few of them. There are two types of instruments used to quantify surfaces; contact 

type and noncontact type. For example the mechanical stylus systems (Talysurf, 
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Mitutoyo), AFM, and Talystep systems are contact types, while optical interferometers 

are of the noncontact type. The noncontact type has advantage over contact type in that 

this method is quick and it can measure without touching the surface. But in optical 

systems the measurement resolution is limited by the wavelength of optical light and the 

system’s numerical aperture. Contact type measurements are typically slower, however in 

the case of AFM systems, the achievable lateral resolution can surpass that of optical 

systems. The lateral resolution of contact systems can be limited by the geometry of the 

contact probe. Lateral resolution refers to the smallest lateral/horizontal spatial distance 

measurable, while vertical resolution refers to the minimum vertical feature height 

distinguishable. A brief summary of the lateral and vertical resolutions, and ranges of 

some of the instruments used to examine surfaces are presented in Table 2-4. 

Table 2-4: Resolution and range of some instruments that used to evaluate polished 
surfaces [38, 182, 183]. 

Instrument 
Resolution (nm) Range (mm) 

Lateral Vertical Lateral Vertical 

Profilometer: Mitutoyo Surftest SJ-400 2000 5 12 0.35 

Profilometer: Taylor Hobson Talysurf  250 16 > 100 1.0* 

White Light 
Interferometer (SWLI) 

2.5× 
Michelson 26000** 0.1 2-3 0.1 

50× Mirau 1280** 0.1 0.1-0.15 0.1 

Atomic Force Microscopy (AFM) 2 <0.1 0.1 0.005 
*For a standard stylus arm length of 57.5 mm. 
**Based on Nyquist sampling limit (objective dependent). 
 

2.2.6.3 Subsurface Damage (SSD) 

In form generation processes, such as grinding and high volume lapping etc., the 

material is removed primarily by brittle fracture methods, which results in cracks forming 



21 

beneath the surface. These subsurface cracks are often not visible on a polished surface 

and are referred to as subsurface damage (SSD) [13, 38, 43 - 50], see Figure 2-11.  SSD 

can reduce the strength of a material, promote the laser induced damage [46, 47], and 

reduce the life time of the component. P. P. Hed analyzed the relationship between 

surface roughness and the remaining SSD [51]. The use of finer abrasives during the 

form generation processes can reduce the depth of the resulting SSD [45]. During a 

sequence of finishing processes, the abrasive sizes are reduced at each step so that current 

step can remove the SSD layer left by previous step. Although the ultimate goal is to 

generate SSD free surfaces traditional polishing processes are not able to eliminate SSD 

completely. The goal is to reduce the level of SSD under certain limit depending on the 

application of the glass and the required specification. 

 

Figure 2-11: Schematic of Subsurface damage [53]. 
 

The topmost layers on a polished glass surface can conceal the damage generated 

by polishing or previous lapping and grinding processes. Chemical etching can reveal the 

scratches and pits beneath the surface [52, 53].  A number of methods can be utilized to 

measure the extent of SSD [28 - 32], the methods are classified as either destructive or 

nondestructive. Destructive methods can measure SSD more precisely but it destroys the 
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polished surface (chemical etching) while the nondestructive methods are complex and 

the equipment expensive (Optical tomography, Quantum dots, Laser scattering and 

confocal microscopy) [54, 55]. 

2.3 Process Kinematics: Polishing Mechanism 

Over 300 years ago, when the optics industry began in earnest, polishing was 

thought of as a wear process. During last century numerous researchers have attempted to 

better explain the mechanisms and have proposed several theories [4-12], however none 

of them fully explain every aspect of abrasive polishing. The proposed theories can be 

broadly classified into three main categories: 1) mechanical removal theories, 2) chemical 

removal theories, and 3) chemical-mechanical removal theories. CIRP keynotes papers 

by Komandari et al. [38] and Evans, et al. [13] summarize the prevalent theories 

available. A brief review of each main category is presented in the following sections. 

2.3.1 Mechanical Removal Theories 

The material removal that is based on the purely mechanical interaction between 

the workpiece, tool, and abrasive particles contained within the slurry is denoted as 

mechanical removal. Removal takes place due to the relative motion between the two 

surfaces and interaction with the abrasive slurry. According to Rayleigh [87] the particles 

induce mechanical fracture and removal take places on the molecular scale. While Beilby 

[88] said the interaction between particles and workpiece generates frictional energy. The 

local heat generated from the frictional energy reduces the viscosity at the contact point 

and removal takes place by local flow of material. Yoshikawa [89] added, mechanical 

removal takes place due to the combined actions of material flow and brittle fracture. 

According to Yoshikawa, material flow creates initial cracks and the cracks propagate to 
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dominant brittle fractures. 

Preston [8] defined mechanical removal by an empirically based mathematical 

model. According to his model the removal depends on the applied load and the relative 

motion between the workpiece and the tool. Preston’s equation for material removal rate 

is given by: 

MRR = Cp × P × V    (2-1) 

Where P stands for polishing pressure and V is the relative velocity between the 

tool and the workpiece. Cp is a proportional constant termed as Preston coefficient, which 

accounts of all the other factors (aside from pressure and relative velocity) that contribute 

to material removal [90]. Still today Cp is importantly considered to evaluate polishing 

efficiency. Some values of Cp are provided in Table 2-3. The values were determined 

from experimental tests and published in the references literature. Preston [8] also 

developed a model for polishing work, which considered the coefficient of friction, the 

contact area, and the polishing time along with pressure and velocity, see references [8, 

11] for details.  

In mechanical removal theories the removal results from ultimate contact between 

workpiece and abrasive particles. The tool and workpiece properties, the size and shape 

of the particles all have significant influence on removal rates. For example, the removal 

rate is proportional to the square root of the mean particle size [91]. Guanghui Fu [92] 

explained that the shape of the abrasive, whether sharp or spherical (blunt), has 

distinctive influences on the MRR. He found that the MRR depends on the yield strength 

of the work-surface and that the nature of dependency changes with particle shape. For 

either sharp or blunt particles, if tool and workpiece do not touch the MRR is independent 
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of tool properties, while when they touch each other, higher tool stiffness leads to higher 

removal rates, which indicates the influence of mechanical contact. Leistner et al. [30] 

analyzed the impact of tool textures. His analysis found that for a coarser tool the 

pressure between surface and lap is higher at contact zones and produces faster removal. 

In contrast, for a fine tool contact points are uniform and removal rate is slower. 

Although, regardless of the tool condition, i.e. coarser or smoother, Leistner found that a 

higher contact velocity produces higher mechanical action and resulted in higher removal 

rates. 

2.3.2 Chemical Removal Theories 

 The material removal that based on the chemical reaction between the workpiece 

and the slurry is termed as chemical removal. According to this hypothesis the slurry 

particles chemically react with workpiece material and forms complex molecules.  As the 

particles move along the workpiece surface the bonds between the workpiece and its 

surface atoms, now attached to the abrasives, are broken and thus workpiece material is 

removed. The removal take places on an atomic or molecular scale [88]. Temperature 

may play an important role in enhancing the chemical reactions [88]. For cerium oxide 

the reaction rate depends on the presence of hydroxyl ions i.e. slurry pH. The polishing 

rate is much lower with an oil based slurry when compared to a water based slurry [98, 

10]. In case of silica glass polishing with cerium oxide mixed with water, chemical 

removal reactions take place in four different stages [12, 13].The reactions and the 

schematic of the removal mechanism are presented in Figure 2-12. 
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Figure 2-12: Chemical reaction and schematic of chemical removal. 
 

2.3.3 Mechanical + Chemical Removal Theories 

Izumitani and Harada [95] proposed that in glass polishing with abrasive slurry 

the removal mechanism take place with the attributes of both the mechanical and 

chemical aspects. They hypothesized that when in contact with an aqueous based slurry a 

softer hydrated layer (sub-nano meter thickness) develops on the glass surface and that 

this softer layer is then mechanically removed by abrasives particles. Their analysis 

found that the polishing rate is proportional to the rate at which the hydrated layer 

formed. The mechanism was further analyzed and modeled by Lee Cook [12]. He 

proposed that the particles embedded in the tool remove the chemically modified layer 

though a ploughing (mechanical) or plucking (chemical tooth) mechanism. As outlined 

by Cook [12], the chemical reactions presented in Figure 2-12 have several possible 

outcomes. If the Ce-O bond is weaker than the Si-O bond then the silica particles are 

retained on the glass surface (reposition) while if the Ce-O bond is stronger, the silica 

will be removed from the glass surface. Accordion to Cook, CeO2 possess a strong 
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chemical tooth that transports the reaction products away from the surface faster than 

their rate of re-deposition. 

 In the chemical-mechanical hypothesis, the glass polishing rate is critically 

dependent upon the presence of water. The rates were observed to be nearly zero for 

hydrocarbons such as kerosene, paraffin, or oil. Cornish and Watt [96] reviewed cerium 

polishing rates relative to water for a series of alcohols and the rates were found to 

increase directly with increasing hydroxyl components. Similarly, Silvernail and 

Goetzinger [97] studied cerium polishing rates in a series of ethylene glycol and water 

mixtures and the rates were extremely low in pure ethylene glycol, increasing 

logarithmically with the molar concentration of water. Nogami et al. [93] explained how 

the water mechanically diffused into the glass surface. As the abrasive particle moves 

across the surface, a compressive stress field develops in front of the particle, while a 

tensile stress field develops behind the particle and the diffusion of water into the glass 

increases exponentially with tensile strain. 

 

Figure 2-13: Nogami’s model, water diffusion by tensile and compressive stress around a 
traveling abrasive [93, 53]. 

 

In chemical-mechanical theory the polishing rate is dependent on the slurry pH. 

M. J. Cumbo [31, 98] performed numerous polishing tests on different glasses using 

different polishing agents. Test outcomes suggested that the polishing rate moderately 
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depends on slurry pH. He found that for CeO2 mixed with water, pH = 7 resulted in 

maximum removal rates. 

2.4 Vibrations in Lapping and Polishing Processes 

The sensitivity of pitch polishing process outcomes to process vibrations has not 

received much attention, although the importance of vibrations has been recognized in 

many other removal processes [155 - 167]. At best, for high quality finishes Leistner 

[108] recommended that the machine (using a Teflon lap) has to run very slowly, so as to 

generate minimum vibrations. No details on threshold vibration levels are available for 

pitch polishing operations. When vibrations have been considered in polishing they 

focused mostly on vibrations induced by external sources, i.e. high frequency (>20 kHz) 

ultrasonic-vibration assisted polishing. In ultrasonic assisted polishing the vibrational 

frequencies are above 20 kHz and the amplitude of the vibrations are in the range of 1 µm 

to 40 µm [126-135]. The noisy vibration in ultrasonic polishing machine can be heard 

(some frequencies are below 20 kHz) or felt by touching the machine parts, while on a 

typical, smooth running polishing machine the process vibrations are harder to hear and 

more difficult to. It is worth noting that the human’s ability to feel vibrations is limited to 

particular bandwidths. Robotic scientist Masashi Konyo’s [154] simulation determined 

the human detection thresholds for up to 1 kHz, see Figure 2-14. 
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Figure 2-14: Thresholds amplitudes of human detection level [154]. 
 

As there is little data available regarding vibrations in pitch polishing processes, 

the literature outlined in this section considers the consequences of vibrations in polishing 

process other than pitch polishing. Table 2-5 lists the vibrational frequency and amplitude 

ranges along with tool and workpiece information found in the literature for different 

polishing processes. Considering the vibration analysis conducted for other removal 

process should facilitate a better understanding of the possible impacts of process 

vibrations in pitch polishing processes.  
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Table 2-5: Range of frequency and amplitude of vibration in different abrasive polishing 
process that considered impact of vibration. 

Reference Tool Workpiece Slurry Frequency 
(kHz) 

Amplitude 
(µm) 

H. Shan [109] Polishing pad 
Nd-doped 
Metaphosph-
ate Glasses 

Simulated 
particles ~0.002 0 - 400 

S. Yin [110] Magnetic pole 
Brass, 
Stainless 
Steel 

80 µm dry 
magnetic 
abrasive 

0.006 1000 - 
3000 

E. 
Brinksmeier 
[111] 

Synthetic Felt Hardened 
Steel 

1 µm 
diamond 0.05-0.15 ±150 

W. Lin et al. 
[113] Phenol Die Steel 

HPM75 

4 µm WA 
diamond 
slurry 

0.5 100 

F. Jung [114] Felt polishing 
Ball 

Stainless 
Steel 

0.5 µm 
Al2O3 0.8 80 

S.K. Chee 
[115-117] 

Polyurethane 
or Nylon, sub 
aperture 

Titanium 
Alloy 

0.5 µm 
diamond 0.9 80 

J. Guo [118, 
119] 

polyurethane 
tool with a 
radius of 
curvature 1 
mm 

Tungsten 
Carbide 

0.25 µm 
diamond  9.2 30 

Y. Li [120 - 
123] 

Resin Matrix 
Pellets Fused Silica Dry CeO2 15.3 1 

M. P. 
Mandina 
[124] 

Pad/Fabric 
coated with 
pitch 

Silica glass 0.05-10 
µm CeO2 0.25-50 ±1.5 mm 

N. Kobayashi 
[125] 

Composite 
polymeric pad 

Silicon 
Wafer 

0.12 µm 
silica 21.9 - - 

H. Suzuki 
[126] 

Polyurethane, 
sub-aperture 

Tungsten 
Carbide 

0.5 µm 
diamond 22.4-28.9 30-40 

H. Wang 
[127] Spherical head K9 Optical 

Glass CeO2 20 - - 
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Table 2-5(continued) 

W. Xu [128, 
129, 134] 

Polyurethane 
Pad 

Sapphire 
Wafer 

80 nm 
Silica 
abrasive 

20 ± 4.5 

M. Y. Tsai 
[131] 

Polyurethane 
Pad 

Copper 
Substrate 

Aluminum 
Oxide, 
C7092 

20 5-15 

H. Suzuki 
[132] Polyurethane Tungsten 

Carbide 
0.5 µm 
Diamond 25 10 

U. S. Kim 
[133] Electrode Stainless 

Steel 

H2SO4 
and 
H3PO4 
mixed 
with water 

28 - - 

J. Xu [136] 

No tool used, 
abrasive 
vibrates around 
the fiber 

Fiber MPO 
Connector 

3 µm 
Diamond 20 - - 

G. Amza 
[141] Steel Optical Glass 80 µm 

SiC 21.9-35.7 10 

Y.S. Liao 
[142] 

Carbon Steel 
Horn 

Silicon 
Carbide 

1 µm 
Fe2O3 20-34 - - 

H. Hocheng 
[143] Steel Rod Mold Steel 8-150 µm  

SiC 25.6 35 - 60 

M. T. Cuberes 
[144] 

Rectangular Si 
Cantilever 
(AFM tip). 

Highly 
Oriented 
Pyrolitic 
Graphite 
(HOPG) 

 1.5-2.15 
MHz  

A.R. Jones 
[146] 

End face tool 
with non-
contact flow 
polishing 

Aluminum 

Boron 
Carbide 
F120-
F600 

40 4.5 

Z. G. Huang 
[147] Flow polishing Silicon 

Carbide 

0.05-0.5 
µm 
Simulated 
particles 

44 kHz - - 
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Most of the literature listed above assessed the impact of vibrations on material 

removal rate and surface finish, two major outcomes of interest when considering 

polishing processes. The main findings are briefly highlighted below. 

2.4.1 Impact of Vibration on Removal Rates 

As polishing is a time intensive process, all process parameters and consumables 

must be optimized to enhance the material removal rates. Addition of external vibrations 

(into the tool or workpiece) is one such way to enhance the removal rate. In the vibration 

assisted polishing literature, listed in Table 2-5 [128-147], the basic mechanisms 

identified  as promoting material removal rates include: enhanced mechanical abrasive-

workpiece indentation, local micro-pumping, breaking-up of agglomerated particles, tool 

surface re-dressing, cavitation erosion, and weakening of the binding force of the ions. 

Y. Li et al. [120 -123] polished fused silica samples using a fixed abrasive (CeO2) 

pellet (sub-aperture)in both the presence and absence of ultrasonic vibrations. The results 

showed that ultrasonic vibrations can result in an increased material removal rate while 

maintaining comparable surface roughness to that obtained in conventional, non-

vibrational assisted polishing. They proposed a mathematical model [120] that dealt with 

the indentation of abrasive particles into the workpiece. They found the indentation 

significantly increased due to the ultrasonic vibrations which resulted higher removal 

rate. According to the model the removal rate can be increased by a factor of two by 

increasing vibrational amplitude in vertical direction while the horizontal vibrations 

contribute little to the overall removal rate. S. Yin [110] found that vibrations from 

vertical direction generate a pulsating pressure on the workpiece, and that vibrations in 

horizontal direction promote cross-cutting effects, stirring action and increase relative 
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motion of abrasive particles. Wenhu Xu et al. [128, 129] polished a sapphire workpiece 

using Al2O3abrasives. He also induced ultrasonic vibrations in a vertical direction and 

found that the removal rate also doubled. The schematic of his polishing system is given 

in Figure 2-15. 

 

Figure 2-15: Schematic of Wenhu Xu polishing system. 
 

N. Kobayashi [125] polished silicon wafers using a silica abrasive under 

ultrasonic vibrational conditions. He proposed that abrasive particles under ultrasonic 

vibration conditions impact the work piece surface with extremely high accelerations and 

that the vibrating abrasives create localized slurry pumping action. The pumping action 

prevents the agglomeration of micro-particles and the impact load allows abrasive 

particles to penetrate more easily into the polishing zone, both contribute to the higher 

removal rate. 

M. P. Mandina [124] developed a polishing apparatus that utilizes ultrasonic 

vibration for rapid removal rate, see Figure 2-16. He observed that in conventional 

polishing the smaller particles tend to aggregate into bigger particles while during 

vibrational assisted polishing the vibrations help to prevent particle agglomeration, which 

is preferable for better polishing. Vibrations are also thought to assist in tool cleaning, 

conditioning/dressing thus promoting higher removal rates [124].G. Amza et al. [141] 

used finite element analysis techniques to study the effects of ultrasonic finishing process 

Induced 
vibration

Tool
SapphirePolishing pad
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on optical devices. According to his analysis, ultrasonic vibrations enable slippery 

contact (low friction) between the tool and the abrasives, this is thought to enable rolling 

contact between the abrasives and the workpiece providing enhanced removal rates. 

Huang et al. [147] applied molecular dynamics method to study the interaction between 

the abrasive particles under ultrasonic vibrations and a silicon carbide workpiece. Both 

the simulation and experimental investigations suggested that the particles vibrate and 

roll viscously on the substrate.  The cyclic loading of the rolling particles induce 

compressive stresses in the substrate promoting brittle fracture. 

 

Figure 2-16: Schematic of one of the test configurations used in Mandina’s patent [124] 
 

A. R. Jones’s [146] study on ultrasonic flow polishing used boron carbide 

abrasives on an aluminum workpiece. By analyzing the surface after polishing he realized 

that in the ultrasonic process the work piece material is removed by high frequency 

hammering of abrasive particles into the surface. However he also commented that more 

research is necessary to identify the optimum gap between tool and workpiece (i.e. 

vibration amplitude) for optimal hammering action. 

Induced 
vibration

Tool

workpiece
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W. J. Tomlinson et al. [137] examined the role of cavitation erosion when using 

aluminum oxide abrasives mixed with distilled water. Cavitation-erosion is a particular 

form of erosion caused by the implosion of bubbles on a workpiece surface [138, 139]. 

The bubble formation is often associated with sudden variations in pressure related to the 

hydrodynamic parameters of the fluid. Tomlinson results show that the linear erosion 

rates could be up to 10% of total removal (at 50µm peak to peak vibration amplitude with 

a frequency of 20 kHz).M. Y. Tsai [131] commented that ultrasonic vibration assisted 

polishing can enhance chemical action due to cavitation erosion. 

R. Shen [140] explained the impact of ultrasonic vibration on the binding force of 

the ions. Ultrasonic vibrations transport energy between ions which weakens the binding 

forces and thus the ions can break away from the surface easily. 

2.4.2 Impact of vibration on Surface Finish 

Surface finishes are compellingly related to the vibration frequency and the 

relative speed between tool and workpiece. Y. Li et al. [120] performed both simulations 

and experiments (fused silica polished with CeO2) in both the presence and absence of 

ultrasonic vibrations. In presence of vibrations they found periodic structures on the 

machined surface, while no periodic scratches were observed after polishing without 

vibrations. This implies that the structure was induced by the externally induced 

vibrations. Their analysis indicated that the spatial wavelength of the periodic structures 

were regulated by the frequency of the induced vibrations and the relative velocity 

between the workpiece and the tool.  

Vibration assisted processes have also been shown to induce mid-spatial 

frequency (MSF) errors [29, 153] on the finished surface. However these errors can be 
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reduced by giving careful consideration to the tool motion. The fast, high material 

removal VIBETM finishing introduced by M. P. Mandina [124, 149, 150] incorporated a 

short stroke, high-frequency random vibratory motion that can eliminate these MSF 

errors [26]. Chee [116, 117] utilized two a directional, low frequency vibration (2DLFV) 

assisted polishing system to reduce MSF surface error. Suzuki [132] and Liang [151] also 

observed vibration induced lateral tool marks and proposed two-axis vibration polishing 

that reduces the tool marks and improves the surface roughness. 

2.5 Vibrations in Grinding Processes 

While grinding is a higher material removal process than polishing, and its 

removal mechanism is predominately mechanical in nature (brittle fracture), is it still 

worth evaluating  how vibrations affect the grinding process outcomes and considering if 

the information can be applied to the pitch polishing processes  

It is no surprise that both externally induced and machine generated process 

vibrations have a significant impact on grinding outcomes [155-165]. Table 2-6 lists the 

range of vibrational frequencies and amplitudes reported in the grinding literature. 

Vibrations are considered to affect the removal rates and finishes by the following 

mechanisms; inducing reductions in the grinding force, promoting wheel dressing, 

reduction in process temperatures and altering the abrasive–workpiece contact mode 

(continuous to discontinuous contact). 
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Table 2-6: Range of frequency and amplitude in vibration assisted grinding process. 

Reference Workpiece Grinding 
Wheel 

Frequency 
(kHz) 

Amplitude 
(µm) 

J. Akbari et al. [160] Al2O3 Ceramic Diamond 17.5 - 28 2.5 

Y. Wu et al. [161] Fine-crystalline 
ZrO2 Ceramics Diamond 20 12 

J. kim [155] Sintered carbide SD12000N10
0M 0.01 - 0.06 0.5 - 10 

M. Alfares et al. 
[158] 

Steel, 
Molybdenum, 
Niobium, Titanium 

Silicon 
carbide 0.5 - 1.5 30 - 150 

P. Chen et al. [159] Mild Steel Carborundum 0 - 3 7.5 
 

J. Akbari et al. [160] studied ultrasonic vibration effects on the grinding process 

by utilizing finite-element (FE) analysis and he found that the machining rate increases 

with increases in the vibrational amplitude. The FE analysis showed that vibrations could 

reduce the grinding force up to 22% with 8% improvements in surface roughness. 

Vibrations are thought to promote further indentation of the abrasives into workpiece 

surface, causing more brittle fracture and thereby reducing the grinding force. He also 

thought that the vibrations enhance the self-sharpening action of the grinding wheel, i.e. 

self-dressing. 

Y. Wu et al. [161] determined that the presence of ultrasonic vibrations in 

grinding promoted ductile mode abrasive-workpiece interactions. Due to the oscillations 

discontinuous contact between the workpiece and abrasive reduces both the grinding 

force and temperature. This results in improvements (factor of 2 improvements) in the 

grinding efficiency. In conventional grinding higher depths of removal typically re-higher 

surface roughness values, in contrast, during vibration assisted grinding the discontinuous 

contacts alters the chip formation mechanism and reduces the roughness while producing 
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higher removal rates. G. Bi et al. [165] performed grinding tests on an axisymmetric lens 

and found that the interference between the grinding wheel and the lens creates vibrations 

and that this interference vibration varies over the lens diameter. The vibrations at the 

center were lower than at the edge of the lens and that the surface quality was better in 

the regions of lower vibrations (i.e. better surface quality at the center of the lens than at 

the edge). 

2.6 Conclusions 

From the literature review it is clear that no paper is available in the public 

domain that considers the effect of process vibrations occurring during pitch polishing on 

process metrics. As listed in Table 2-5 and 2-6, researchers have considered the impact of 

vibrations in other finishing systems (CMP, vibration assisted abrasive polishing and 

grinding, etc.) where in most of the cases external vibrations (in the ultrasonic range) 

were imposed on the tool [126 - 135]. From the literature the vibrations are thought to 

affect the material removal and surface finish by the following mechanisms: enhanced 

mechanical abrasive-workpiece indentation, local micro-pumping, breaking-up of 

agglomerated particles, tool surface re-dressing, cavitation erosion, and weakening of the 

binding force of the ions. 

It is reasonable to assume that the level (amplitude and frequency) of process 

vibration in pitch polishing machines will be lower than that in vibration assisted 

polishing systems (Figure 2-17), however as the material removal rates and surface 

roughness values are also lower than those produced by ultrasonic assisted processes the 

lower magnitude vibrations may still have an effect.  This work will measure the level of 
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process vibrations occurring during pitch polishing and evaluate if they have any impact 

on material removal rates and surface finishes. 

 

Figure 2-17 : Level of vibration in vibration assisted polishing process (see Table 2-5). 
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3 CHAPTER 3: DYNAMIC RESPONSE OF PITCH AND PITCH TOOLING 
 
 

3.1 Introduction 

Pitch is viscoelastic material and its dynamic behavior with respect to typical 

polishing vibrations is of interest, i.e. how does the pitch behave when subjected to 

process vibrations (up to 10 kHz). Are process vibrations amplified or attenuated when 

transmitted through the pitch? How do changes in pitch grade, type or tool geometry alter 

its response? Is it possible to completely attenuate the vibrational transmission? This 

chapter outlines both the procedures used to investigate the dynamic response of pitch 

and the main findings. 

3.2 Frequency Sweep Test 

The test involves using a signal generator to create a sine wave with continuously 

increasing frequency values (50 Hz-16 kHz) and using this varied output to drive a shaker 

table thus creating a vibrational input that varies across the frequency bandwidth over 

time (typically few second). The test is performed by transmitting the vibration from the 

shaker table to a pitch sample attached to the aforementioned. Two accelerometers, one 

attached to the bottom and other attached to the top of the pitch sample record the 

vibrations entering (Y) and exiting (X) the sample. The X/Y ratio describes how the 

output vibration magnitude varies to that entering the sample. X/Y values greater than 

one implies vibration amplification occurs, while values less than one implies attenuation 

takes place. 
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3.2.1 Experimental Setup and Test Procedure 

The test setup consists of a shaker table (BK Vibration Exciter Type 4809) driven 

by a HP35639A dynamic signal analyzer (DSA) and a BK power amplifier (Type 2706).  

Two PCB accelerometers (352B10) that operate up 17 kHz record the system’s 

vibrational input and output. The shaker table can vibrate up to 20 kHz with a maximum 

displacement of 8 mm, and it has first axial resonance at 20 kHz [174] which is out of the 

accelerometer range. The pitch sample under investigation is screwed onto the shaker 

table. The vibrations entering and exiting the sample are monitored by the two 

accelerometers (A1 and A2). See Figure 3-1 for a schematic of the set-up, Figure 3-2 

illustrates photos of the shaker table and mounted sample. 

 

Figure 3-1: Block diagram of the test setup. 

 

Figure 3-2: Close up of sample mounted on shaker table. 
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During testing the samples were subjected to a swept sine wave input (50 Hz to 

16 kHz). Step increments were 39.875 Hz. Typical vibrational amplitudes range from 50 

µm at 50 Hz to less than 1 nm above 10 kHz. The accelerometer marked ‘A1’ in Figure 

3-2captures the values of Y, while accelerometer ‘A2’ captures the values of X. The ratio 

(X/Y) is plotted versus the input frequency. The initial focus is to determine if pitch grade 

(hardness) and type (natural or synthetic) have a significant impact on the vibrational 

transmission. 

3.2.2 Vibrational transmission through Pitch and Pitch Tooling 

Two pitch grades (hard and soft), and two pitch types (synthetic and natural) were 

evaluated. The geometry of the sample was also considered. 

3.2.2.1 Sample preparation 

Typically the pitch samples were generated by first heating the pitch over a water 

bath and then pouring a defined mass of pitch into silicon molds (diameter ≈ 50 mm) 

which contained 6mm thick aluminum base plates. All samples were allowed to cool for 

at least 24 hours before any testing took place. All samples were stored and tested in the 

temperature controlled lab with temperature range 21 °C ± 1 °C. Figure 3-3 depicts some 

sample tools.  

 
Figure 3-3: Sample tools (Ø = 50 mm) a. thick pitch, b. Thin pitch; 

Pitch type: synthetic in a. & b., and natural in c. 
 

a b c

10 mm
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Table 3-1 summarizes the properties of selected pitches and Table 3-2 describes 

the different samples tested. Two types of pitch are considered, Gugolz™, a natural pitch 

extracted from tree resin, and Acculap™, a synthetic polymer based pitch. Two different 

hardness grades are examined, Acculap™Soft (Asoft) and Gugolz55 (Gsoft) are soft 

pitch grades while Acculap™VeryFirm (Avf) and Gugolz73 (Gvf) are the harder pitch 

grades. These two grades have hardness values representing the lower and higher end 

respectively of commonly used pitches. The sensitivity of the results to the pitch layer 

thickness is also evaluated, this is achieved by doubling the mass of pitch used; 50 g of 

pitch produces a 22 mm thick layer, while 25 g produces an 11 mm thick sample. 

Table 3-1: Material properties of the pitches that used in the test [7, 56].  

Pitch Grade 
Shore D 
Hardness 

Approximate Shear 
Viscosity(GPa-s) 

Natural Frequency, 
kHz 

AcculapTMSoft 
60 0.1 

7.3 
Gugolz 55 5.7 

AcculapTMVeryFirm 
80 8 

8 
Gugolz 73 6.4 

 

Table 3-2: samples that used to evaluate the impact of pitch type and grade.  

Sample Name 
(Ø = 50 mm) Pitch Grade 

Pitch Type: 
Synthetic: Acculap 

Natural: Gugolz 
Pitch Layer Thickness 

Asoft_22mm Acculap Soft 
Synthetic 

Thick pitch layer = 22 
mm (50 g weight) 

Avf _22mm AcculapVery Firm 

Gsoft _22mm Gugolz 55 
Natural 

Gvf _22mm Gugolz 73 

Asoft_11mm Acculap Soft 
Synthetic 

Thin pitch layer = 11 
mm (25 g weight) 

Avf_11mm Acculap Very Firm 
Gsoft_11mm Gugolz 55 

Natural 
Gvf_11mm Gugolz 73 
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3.2.2.2 Test Results and Analysis 

Initially a frequency sweep tests was performed on one of the aluminum base 

plates that had no pitch adhered to its surface. The response curve is presented in Figure 

3-4, where the spikes at 7.8, 12.3, 12.8 and 14.7 kHz are assumed as the resonances of the 

test setup. 

 

Figure 3-4 : Sample-platen response to swept sine wave. 
 

Impact of pitch grade (soft versus hard pitch): 

A total of twelve, 22mm thick pitch samples were tested. Six were composed of 

natural pitch (3 hard, 3 soft), and six used synthetic pitch (3 hard, 3 soft). The test results 

for all the samples are plotted in Appendix A. For simplification, only two typical 

response curves for the synthetic (Acculap) pitch grades are presented in Figure 3-5where 

the black and gray lines represent the Acculap soft and Acculap hard pitches respectively. 

From the response curves it is clear that up to 6 kHz both hard and soft pitches 

transmitted vibration in similar fashion with no attenuation but somewhat amplification 

(less than 2×). The spike at 8 kHz is due to system resonance [64]. Two synthetic pitch 

grades with similar tool geometry generated resonances at two distinctly different 

frequencies and the resonance peak for softer grade occurs at a lower frequency, but is 
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larger in magnitude than that obtained with this harder pitch (comparing three sets of test, 

see Appendix A for more results). This is reasonable as it is mentioned in the literature 

that the harder pitch has higher natural frequency and lower damping ratio, and is more 

resistant to deformation [7].  

 

Figure 3-5: Vibration transmission in different pitch grades (hardness). 
 

Impact of pitch types (natural versus synthetic pitch): 

Figure 3-6(a) and (b) illustrate how different types of pitch, i.e. natural or 

synthetic, with the same hardness levels have differing responses to the vibrational input. 

Different pitch series with similar hardness has different dynamic stiffness [7]. That’s 

why similar to that reported in section 2.3.3 of the lit review, each type of pitch has its 

own resonance characteristics. 
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(a) 

 
(b) 

Figure 3-6:Impacts of pitch type, (a) soft grade, (b) hard grade; see Appendix A for more 
detail test results. 

 

Impact of pitch geometry (thick versus thin pitch layer): 

Additional tests were performed to evaluate the role of pitch thickness on the 

vibrational response. Two pitch layer thicknesses, 22 mm and 11 mm, are considered and 

the results are presented in Figure 3-7.When a thin layer of pitch is on the base plate, the 

response is quite different from that obtained with the thicker pitch layer. The response 

with the thinner pitch layer is very similar to the response obtained when testing with the 

aluminum base plate alone (Figure 3-4). The dynamic response of tool depends on its 
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stiffness [7] and the thicker pitch layer reduces the stiffness more than a thinner layer. 

This suggests that the dynamic response of polishing tools will be affected by both platen 

and pitch geometrical contributions 

 

Figure 3-7:  Impacts of pitch layer thickness. 
 

3.3 Vibration Attenuation through Passive Damping Materials 

This section determines if passive damping materials can be utilized in the tool 

construction to attenuate process vibrations. Nine different damping materials that are 

commercially available in the market are evaluated using the same frequency sweep test 

outlined above. The following sections provide more details about the damping materials, 

the experimental set up, and the test results.  

3.3.1 Sample Preparation 

The materials evaluated include: vinyl, gum, neoprene, viton, polyurethane, nitrile 

(Buna N), rubber, cork, and lead. Two different sample configurations are tested. The 

first configuration, Type-A, identifies the damping quality of different passive damping 

materials. It consists of the passive damping material adhered to an aluminum platen (6 

mm thick and 50 mm in diameter), see Figure 3-8a. The second configuration, Type-B, 
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consists of Type-A samples with 50g of pitch poured on the damping material, see Figure 

3-8b. 

 

Figure 3-8:a. Type-A, and b. Type –B Sample. 
 

Some of Type-A samples are listed in Table 3-3. While more materials than listed 

in Table were tested, the preliminary testing eliminated them from full testing. A 

parameter termed as Inverse Quality Factor, Q-1 [106] is used to identify the damping 

quality of different materials. Higher Q-1 value means higher damping ability. Appendix 

describes the method to quantify the Q-1 value. 

Table 3-3: Evaluated Type-A samples. 
Name Damping material 

A1 3.18 mm Vinyl Extra Soft  

A2 3.18 mm Vinyl Soft  

A3 3.18 mm Gum Extra Soft  

A4 3.18 mm Cork 

A5 3.18 mm Viton Extra Soft 
 

3.3.1.1 Results and Analysis 

In most cases multiple samples of each material were evaluated. Each curve in the 

graphs represents a samples’ typical response.  Samples were evaluated with respect to 
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the Q-1 factor, maximum vibration amplification, and the frequency at which X/Y< 0.5 

(50% attenuation).  

Figure 3-9depicts the response curves for samples A1 to A5. Calculation of the Q-

1 factor from the experimental data revealed that sample A1 (Vinyl Extra Soft) has the 

highest Q-1 value (1.45), and 50% attenuation was attained at the lowest input frequency 

(540 Hz).  While the Q-1 value for A2 (Vinyl Soft) was not as high (0.52), it did provide 

50% attenuation at a similar frequency to A1 and from an application point of view A2 is 

preferred over A1 as it is considered more mechanically robust and not as compressive as 

A1.The robustness is very important so as to withstand the cyclic loading and unloading 

that will occur during an actual polishing process and thus the cork sample (A4), the most 

robust material among the tested sample, has higher interest. Though the Q-1 value for A4 

(cork) is not as high (0.49) as vinyl foam, and the 50% attenuation occurs at 4 kHz, it 

damped out all the higher frequency ( > 8 kHz) vibrations as plotted in Figure 3-6. The 

amplitude of resonance peak for A4 is also comparable to A2.  

 
Figure 3-9: Vibrational transmission for different damping materials. 
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Sample A6 has a high Q-1 factor but is not considered further at this point for two 

reasons, firstly, 50% attenuation doesn’t occur until 925 Hz and secondly, like Vinyl 

Extra Soft it is also considered too soft to withstand the cyclic polishing loading, i.e. the 

pitch layer will crack due to the lack of foundational support. Considering the robustness 

and evaluating other factors cork is used as a passive damper on an actual polishing tool, 

see chapter 4. 

3.4 Impact Test: The Transient Response 

The frequency swept tests detailed in section 3.2 evaluated vibrational 

transmission through sample tools and not an actual polishing tool as the latter are too 

heavy (16kg) to attach to the shaker table. To evaluate the dynamic response of an actual 

tool, impact tests were considered. An impact test measures the dynamic response of a 

system to transient vibrations. The measurement is accomplished in two steps. The 

system is excited by an impact force of known magnitude, and the system’s response to 

the impact, i.e. the resulting vibrations sent through the sample, is measured by an 

accelerometer.  

A mild-steel (MS) platen (Ø300 mm) and a pitch tool that made using the same 

platen are evaluated in this section. The pitch tool is prepared with a layer of soft 

synthetic pitch (22 mm) molded to the MS platen. 

3.4.1 Impact Test: Evaluation of Tool Natural Frequency 

The MetalMax test kit from Manufacturing Lab Inc. was used to conduct the 

impact testing.  The accelerometer that used to measure the vibration operates in the 10 

Hz to 10 kHz regime. The samples tested were on a foam bed to reduce the influence of 

any supporting structures during the impact test. Each sample was hit by a MetalMax 
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hammer (GK 3100) and the resulting vibrations were recorded by the accelerometer. 

Figure 3-10illustrates the pitch tool, the hammer hit site, accelerometer location. Figure 

3-11presents a typical response. The red response curve is for hitting the MS platen, and 

the blue curve is for hitting the pitch tool that uses the same platen. The corresponding 

frequencies of the spikes (1, 2, 3 etc.) are the natural frequencies of the platen. Detailed 

of the test procedure and the measurement of the damping ratio are provided in the 

reference [61]. 

 

Figure 3-10: Pitch tool and accelerometer and hit locations. 
 

 

Figure 3-11: Test results (frequency response) for MS platen (blue) and the tool (red) 
made from MS platen. 
 

Hammer hit  sites

Accelerometer 
locations

50 mm

Tool: 22mm pitch layer on 
Ø300mm metal platen

180˚

0˚



51 

3.4.2 Results and Analysis 

The impact test results for MS platen and the pitch tool (pitch layer on MS platen) 

are presented in Table 3-4 (See Appendix A for detail).  

Table 3-4: The resonance frequencies and spikes amplitudes for MS platen and pitch tool 
with MS platen. 

MS Platen MS Platen with Pitch 

MS Platen MS Platen with 
Pitch MS Platen MS Platen with 

Pitch 

Natural Frequency, 
Hz 

Spikes Amplitude, 
nm 

Natural Frequency, 
Hz 

Spikes Amplitude, 
nm 

1258 890 1258 890 

1872 65 1872 65 

2635 413 2635 413 

4459 85 4459 85 

6581 7 6581 7 
 

The response of the polishing tool is dominated by the metal substrate, the pitch 

layer on platen slightly reduces the values of resonance frequency and reduces the 

corresponding peak values. Similar trend was observed in a previous test by Mullany [61] 

where a relatively thinner (10 mm) layer of pitch was applied.  This is reasonable as 

because of applying pitch layer (1.8 kg) increased the overall total mass (m) and reduced 

the stiffness (k) and thereby reduced the natural frequency (ωn = �k m⁄ ). 

3.5 Conclusions 

The frequency sweep test results indicated that during polishing the machine 

process vibrations are transmitted through the pitch to the tool-workpiece interface 

without any attenuation. The tests demonstrated that the pitch type, grade and tool 

geometry can significantly affect the vibration transmission characteristics of small test 
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samples. Impact testing and frequency sweep tests also indicate that the metal substrates 

used in polishing tool fabrication will contribute more significantly to the dynamic 

characteristics of the finished tool than the choice of pitch used to coat the tool. The 

addition of additional damping material to the tool can effectively alter vibration 

transmittance. The damping material can damp out (transmittance ratio < 1) all the higher 

frequency (> 4 kHz) vibrations that amplified due to the pitch layer on the metal platen. 

Effect of damping material is further evaluated in chapter 4. 



4 CHAPTER 4: POLISHING SYSTEM DYNAMICS AND POLISHING TEST 
 
 

With the overall goal of determining if process vibrations have significant 

influence on polishing outcomes such as material removal rates and surface finish, the 

initial work focused on quantifying the amplitude and frequency content of vibrations 

generated by two typical over-arm polishing machines under typical operating conditions. 

Tests were conducted with different platens on two different polishing machines at two 

different platen speeds. Typical process vibrations were measured and the influence of 

platen, polishing parameters (platen speed), tool construction (damping materials) and the 

machine choices on the vibrations are presented. Numerous polishing tests are performed 

on two separate polishing machines under ‘identical’ polishing conditions and the 

resulting outcomes analyzed to understand the role of vibrations on polishing outcomes. 

4.1 Quantifying Amplitude and Frequency Content 

The vibration content (amplitude and frequency) associated with typical polishing 

processes were measured and evaluated in both the time and frequency domains. Tests 

were conducted with different tool constructions on two different polishing machines at 

different platen speeds.  The amplitude and frequency content obtained on two different 

machines were compared and the differences are further analyzed for polishing test on 

both the machines. 
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4.1.1 Equipment 

4.1.1.1 Strasbaugh Over-arm Polishing machine 

Two machines evaluated in this work, both are Strasbaugh over-arm polishing 

machines (see Figure 4-1), and they are denoted as Machine 1 and Machine 2.  Machine 1 

is a Strasbaugh nFocus over-arm polishing machine featuring a variable speed drive and 

digital readouts for both the spindle rotation and the eccentric sweep. This machine has 

static and pneumatic features that allow for polishing pressure adjustment. Machine 2 is 

an older Strasbaugh polishing machine (model 6UR1) that has mechanical speed meter. 

The over-arm utilizes static loads to control the polishing pressure. Both machines can 

accommodate the same polishing tools. A separate pumping system is used to deliver 

polishing slurry to the tool.    

 

Figure 4-1: Two Strasbaugh over-arm pitch polishing machines. 
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A pitch tool consists of a soft layer of pitch on a metal substrate called the platen. 
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different materials.  Initially the influence of platen choice was evaluated. Three platens, 

each of similar geometry (diameter, Ø = 300 mm and thickness, T = 25 mm), but made 

from different materials, steel (ST), aluminum (AL), and cast iron (CI), were evaluated 

on the same machine while running at set speeds. Three pitch tools all using the same 

steel substrate, were also prepared. While details of how to fabricate pitch tools are 

provided in reference [70], two were made by pouring a 22 mm thick layer of 

Acculap™Soft pitch onto the steel substrate edged with a silicon band to contain pitch 

while it hardens, Tools A1 and A2.  In the case of third, Tool B, a 6 mm thick layer of 

cork was adhered to the substrate prior to pouring a 22 mm thick layer of pitch. After 

pouring the pitch on the platen, the tool was placed on flat surface to allow the pitch layer 

to cool while keep the upper surface level. The pitch was allowed to cool overnight. After 

removing the silicon edging, the sharp edges of pitch layer were carefully chamfered to 

prevent further edge chipping. Substrate and tool names are presented in Table 4-1 and 

are illustrated in Figure 4-2. These tools were evaluated on both the machines. 

Table 4-1: Platen and Tool notations and their approximate mass. 
Platen Mass (kg) 

ST Platen Steel platen 14.0 

AL Platen Aluminum platen 5.50 

CI Platen Cast-iron platen 15.0 

Tool  

Tool A1 & A2 22 mm Acculap™Soft pitch on steel substrate 15.8 

Tool B 6 mm cork in between Acculap™Soft pitch and 
steel substrate 16.0 
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Figure 4-2: a. Steel substrate (Ø=300 mm), and b. Tool A (22 mm pitch layer on steel 
substrate), c. Tool B (steel substrate, 6 mm cork layer and 22 mm of pitch). 

 

4.1.2 Vibration Measurements and Analysis 

4.1.2.1 Instrumentation 

A PCB accelerometer (352B10) that operates up to 17 kHz is used to measure the 

vibration. The accelerometer is connected to a computer through a PCB signal 

conditioner (Model 482C), an analog to digital converter (ADC), and a National 

Instruments data acquisition card (DAQ card model 6036E). The location of the 

accelerometer on the polishing machine is illustrated in Figure 4-3(a). The schematic 

diagram of the instrumentation is given in Figure 4-3(b). The DAQ card has maximum 

sampling rate up to 200 kS/s. LabVIEW is use to record the accelerometer’s response and 

to convert the recorded data from the time into the frequency domain producing a FT 

(Fourier Transform) plot. The LabVIEW diagram is presented in Figure 4-4. A typical 

measurement and the FT conversion are provided in Figure 4-5. 

 
Figure 4-3: (a). An over-arm polishing machine, (b) Schematic of the instrumentation. 
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Figure 4-4: LabVIEW to process the accelerometer readings. 

 
       (a)      (b) 

Figure 4-5: (a) A typical process vibrations resulted with a PCB accelerometer, (b) 
LabVIEW generated Fourier transform (FT plot). 

 

4.1.2.2 Vibration measurements 

The measurement of machine vibrations was performed at the same time of day, 

i.e. when the workshop was quiet. Prior to assessing polishing vibrations, two initial sets 

of measurements were performed, (1) the accelerometer was attached to the polishing 

room floor to quantify background/building vibrations, and (2) the accelerometer is 

Electrical
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attached to the machine spindle with the power switch turned on, but the platen not 

rotating. These tests were done to evaluate the vibrational response due to background 

environment. That said, the environmental vibrations are not significant. The only notable 

spikes were at 60 Hz, this one undoubtedly related to electrical noise. 

As stated in section 4.1.1.2 the three different platens were tested on Machine 1, 

and the three different pitch tools were tested on both Machine 1 and 2. To investigate the 

influence of machine parameters on vibrations two platen speeds were investigated, 10 

rpm and 20 rpm, while the over-arm was kept constant at 5 rpm. The accelerometer was 

placed on the center of the platen. The sampling rate was 100 kHz, and each test lasted 

five seconds. 

4.1.3 Results Analysis 

The vibrational characteristics obtained with different platens, tool constructions, 

and process speeds are presented and analyzed. In each case the vibrational signals were 

measured for more than once, however in the figures the FT plots represent only one 

typical measurement. 

4.1.3.1 Platen Type: AL vs CI vs ST 

Figure 4-6 provides sample FTs for the three platens running at 10 rpm on 

Machine 1. The peaks indicate the dominant frequency in the recorded vibrations. All the 

platens generated dominant peaks at approximately 53 Hz, harmonics are presents at 106 

Hz for the AL platen. The peaks at 60 Hz, and subsequent integer multiples of it (120, 

180 and so on), are undoubtedly related to electrical noise. Figure 4-6demonstrated that 

the vibrational responses recorded when using different platens do not significantly differ 

from each other. 
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Figure 4-6: FTs of vibrations for three different platens at 10 rpm (g = 9.81 m/s2, AL-> 
aluminum, CI-> cast iron, and ST-> Steel). 
 
4.1.3.2 Pitch Tooling 

Figure 4-7 illustrates the FTs of vibrational data obtained for a steel platen and the 

same steel platen coated with a 22 mm thick layer of pitch. The pitch layer did not 

significantly attenuate the vibrational transmission over the frequency bandwidth, though 

minor attenuation (≈ 5%) observed in higher frequency range. The transmission 

characteristics also support the previous sample test in Chapter 3 where pitch layer 

provided no attenuation over a wide range of frequencies. 

 
Figure 4-7: FTs of vibrations for a steel platen and pitch tools from the same platen. 
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Figure 4-8 compares the responses obtained when using Tools A1 and Tool B on 

Machine 1. Tool B has a 6 mm layer of cork between the pitch and the platen. As 

expected, Tool B attenuates the higher frequency vibrations up to 40%. 

 
Figure 4-8: Tool B damped out the vibrational transmission. 

 

4.1.3.3 Machine Parameter (platen speed) 

Figure 4-9illustrated the vibration FTs obtained while operating at two speeds on 

Machine 1, 10rpm and 20rpm. At 20 rpm the response is dominated by vibration at 80 Hz 

while the dominant frequency while operating at 10 rpm is approximately at 55 Hz.  

Across all frequencies the response of the system when running at 10 rpm are lower in 

magnitude than when running at 20 rpm.  That says the same machine running with 

different speeds can have different dynamic characteristics. 
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Figure 4-9: FTs for the pitch tool (ST + Pitch) platen at two speeds (log scale in x axis). 

 

4.1.3.4 Different Polishing Machines 

Two different Strasbaugh™ over-arm polishing machines, mentioned previously 

as Machine 1 and Machine 2, were equipped with Tool A1. The operating conditions 

were kept consistent while the tool swapped over between the machines (platen speed = 

20 rpm and over-arm speed= 5rpm). It was recognised that these parameters may not 

provide the best polishing outcomes (removal and surface finish) however the main focus 

was to differentiate between the vibration signatures generated by the machines. 

Figure 4-10 illustrates the FTs of measured vibrations obtained when Tool A1 

was used on Machine 1 and Machine 2. The broken line on the graph depicts the 

frequency response of the Machine 1 when it is powered on but stationary, i.e. the base 

line accelerometer readings. Dividing the acceleration by square of corresponding 

frequency provides the associated displacement. Here the measured displacements are 

very small. For example, Machine 1 with Tool A1 has the displacements are on the order 

of 10 nm at lower frequencies (250 Hz) and are negligible (<1 Å) above 10 kHz. The 

diminutiveness of these magnitudes is even more noticeable when compared to the 
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vibrations in ultrasonic polishing. In ultrasonic polishing the typical vibrational 

amplitudes are in the range of several hundred nanometres up to 40 µm [126-135].  

 
Figure 4-10: FT of the polishing vibrations for Machine 1 and Machine 2 with Tool A1 (g 
= 9.8 m/s2, log in x axis). 

 

In this test the difference in vibrations is of most interest, not the source of the 

differences. In Figure 4-10at higher frequencies (>500 Hz) the vibrational amplitudes are 

up to five times greater for Machine 1 than Machine 2, i.e. there is a significant 

difference in vibration signatures at higher frequencies between the two machines. 

4.1.4 Vibration Quantification Summary 

The previous test results (sections 4.1.3.1, 4.1.3.2 and 4.1.3.3) demonstrated that 

the machine running conditions and the tool construction can have an influence on the 

process vibrations. The presence of pitch on the platen slightly reduced (≈ 5%) the 

magnitude of variation. Further reduction in magnitude (≈ 30%) was obtained by using a 

cork layer in between pitch and platen. Different polishing machines operating under 

‘identical’ conditions have significantly different vibrational characteristics. Process 

induced vibrations are in the nanometer range; this is far less than that in traditional 

ultrasonic polishing processes. 
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4.2 Polishing Tests 

Fused silica samples were polished on both Machine 1 and 2 to evaluate the 

impact of process vibrations on pitch polishing outcomes. To analyze the polishing 

outcomes the following metrics were evaluated; material removal rate (MRR), surface 

finish (roughness), and sub-surface damage (SSD). The MRRs were evaluated by mass 

loss, the roughness values were measured using SWLI and AFM techniques, while 

chemical etching was used to evaluate the SSD. The details of tool, workpiece, slurry and 

polishing condition are presented in the following sections. 

4.2.1 Pitch Tool 

Before polishing the tools were conditioned and the final conditioned surfaces 

were evaluated using Talysurf profilometer and an AFM system. 

4.2.1.1 Tool Preparation and Conditioning 

Pitch tool requires conditioning to make it suitable for material removal. For 

better slurry circulation it is necessary to scribe grooves into the surface of the tool. 

Grooving also helps to removal polishing debris. Different possible grooving shapes are 

described in reference [11], while in this test a single sided razor blade was used to create 

“V” shape grooves. The grooves were approximately 5mm in depth and 20mm apart. 

Similar grooves were cut at right angles to first set making a square mesh pattern, as 

illustrated in Figure 4-12. 

The slurry, 1 µm cerium oxide mixed with water (1:10) was used to condition the 

grooved tool. A magnetic stirrer continuously agitates the slurry to prevent the abrasive 

particles separating out from the water. A dummy glass workpiece (Ø = 200mm) is 

polished on the tool to embed the slurry particles into the pitch tool surface. The 
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embedded particles create a crust that makes it possible for the tool to remove material. 

More conditioning allows more particles to embed themselves thus providing higher 

removal rates. After conditioning for several hours the tool becomes saturated with ceria 

particles and the removal rate becomes consistent.  To evaluate the saturation level of the 

crust, a number of polishing tests were performed after certain amount of conditioning 

work. Primarily the tool was visually observed and conditioning continued until a white 

crust of abrasives is visible on the tool surface. At this point, one hour polishing tests 

were performed between each hour of conditioning until a consistent removal is 

achieved. Relatively cheaper BK7 glass samples were used for these polishing tests. For 

Tool A1 eighteen hours of conditioning work were required to form a visually observable 

crust layer on the tool, and after that, hour long polishing tests started and continued until 

a consistent removal rate was obtained. Figure 4-11 presents the MRR obtained on BK7 

workpieces during tool conditioning, error bars are the standard deviation of the material 

removal rates obtained on three samples.  After approximately 30 hours of conditioning, 

the tool produced consistent removal rates. Figure 4-12illustrates a tool with such a crust.  

 
Figure 4-11: MRR obtained on BK7 during the tool conditioning period. 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

18 19 20 21 22 23 24 25 26 27 28 29 30

M
RR

, m
g/

hr

Conditining Time, hrs



65 

 

Figure 4-12: A grooved tool after 30 hours of conditioning work. 
 

4.2.1.2 Tool Surface Evaluation 

A closer examination of the tool surface topography was done for better 

understanding the possible contact mechanisms between tool and workpiece. The surface 

profile (topography), roughness and skewness of a conditioned tool that was used for 

polishing tests were evaluated. Directly after the final polishing test, approximately 45 

hrs of conditioning and polishing, five 20 mm line profile scans were taken with a Taylor 

Hobson Talysurf profilometer (tip radius = 2 μm). For higher resolution analysis the crust 

was evaluated by an AFM machine. Immediately after Talysurf test suitably sized 

sections of crust samples were chipped off from the tool to fit within the DI 3100 AFM 

machine. Four 20 μm × 5 μm regions were examined. The resulting RMS roughness and 

skewness values are given in Table 4-2. 
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Table 4-2: Pitch tooling surface measurements. 

Measurements 20 mm line scan 
(Talysurf) 

5 µm × 20 µm area scan 
(AFM) 

Average Roughness Rq= 0.54 µm Sq= 66.1 nm 

Skewness±Stdev -0.64 ± 1.54 -0.67 ± 0.16 

Form removed / filters 
applied Best fit line/ none 3rd order surface/ none 

 

While Figure 4-13a shows three typical Talysurf profiles, Figure 4-13b shows 

three typical AFM line scans. To highlight the smoothness of the surfaces a 1 micron 

spherical particle is superimposed on the AFM measurements. The particle is distorted to 

reflect the different scales on the x (micron) and y (nanometer) axes. The scans and 

roughness data strongly support common place assumptions that during polishing the 

workpiece were primarily supported by the embedded abrasives and an intermittent fluid 

film. 
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(a) 

 
(b) 

Figure 4-13: (a) Three Talysurf scans of the tool, (b) three AFM measurement of the tool. 
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4.2.2 Glass Workpiece 

Fused silica glass samples were used in the polishing tests (Edmund Optics Glass 

Code: 7990 and Stock No: NT32-632-000, see Figure 4-12). The supplied samples 

consist of 99% of silica. Each sample came in the cylindrical form with a diameter of Ø 

=25 mm, and a flatness of 1/4 λ (λ = 632.8 nm). The physical properties of the samples 

are listed in the Table 4-3. 

 

Figure 4-14: Fused Silica samples (Ø= 25 mm) used in the polishing tests. 
 

Table 4-3: Properties of fused silica samples used in the polishing tests. 

Parameter Value and unit 

Sample Diameter 25 mm 

Sample Thickness 12.5 mm 

Considered Surface Single surface 

Surface Flatness (PVrms, λ = 632.8 nm) 1/4 λ 

Density 2.2 g/cm3 

Coefficient of Expansion 5.5×10-7/°C 

Young's Modulus 72.7 GPa 

Knoop Hardness  522 kg/mm2 

Poisson's Ratio  0.16 
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4.2.3 Polishing Slurry 

Fused silica samples were polished with a ceria slurry (Opaline). It consists of 

1µm particles mixed with distilled water. The volumetric mixing ratio was 10 parts water, 

1 parts ceria; water: ceria = 10:1 (in weight the ratio is ~ 7:1). Before each polishing test 

a half an hour conditioning was performed to allow the slurry to fully wet the tool. The 

slurry was delivered and recirculated with a variable speed peristaltic pump (Simon 

Manostate® 72-310-000). A magnetic stirrer used to stir the slurry and prevent settling of 

the slurry particles. Slurry pH was monitored using pH strips with four color points over 

a pH range of 1-14 where the slurry pH was 7. 

 

Figure 4-15: Peristaltic pumping and slurry recirculation system. 
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4.2.4 Test Conditions 

To reveal the sensitivity of polishing outcomes to process vibrations a total of 

eighteen fused silica samples (Ø = 25 mm, t = 12.5 mm) were polished on the three tools 

(Tool A1, Tool A2 and Tool B, see Table 4-1). Each tool polished six samples, three on 

Machine 1, and three on Machine 2. For each tool the polishing tests alternated between 

machines, i.e. the 1st sample was polished on Machine 1 with Tool A1, the 2nd on 

Machine 2 with Tool A1, the 3rd sample on Machine 1 with Tool A1 etc. Similarly for 

the other two tools. An aluminum workpiece holder (Ø = 100 mm) with a 15 mm layer of 

Teflon/high density polyethylene (HDPE) on its one face was specifically machined to 

hold three samples simultaneously. The HDPE holder mounts a workpiece without the 

use of optical wax or adhesives. In the Teflon/HDPE layer the three glass pieces 

(workpiece) distributed equally with 120˚ apart and at mid radius from the center. In each 

test among the three samples one was fused silica and the other two were BK7. The 

polishing outcomes were evaluated only for the fused silica sample. The holder with the 

workpiece samples is illustrated in Figure 4-16a. Additional weight was attached to the 

holder so as to make it 3kg, see Figure 4-16b, so that each samples observed 

approximately 10N load on it. 

 
Figure 4-16: (a) Workpiece holder and (b) additional load (steel ring) attached to the 
holder. 
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The polishing process parameters and consumables are listed in Table 4-4. Both 

the MRRs and the surface finishes were evaluated after polishing. The mass of the glass 

was measured before and after polishing with an Ohaus-Adventurer analytical balance 

(Model AR0640) with a 250g capacity and a resolution of 0.1 mg. The weight loss 

method is subject to some potential errors such as cleanliness of the part after exposure to 

the slurry and water absorption by the workpiece and can fluctuate as a function of air 

humidity [24]. To address that concern, several steps were considered. After thoroughly 

rinsing the workpiece with soap and water and a final clean with an acetone soaked wipe, 

the sample was kept inside a low heat oven for several minutes to completely dry out the 

workpiece. The sample mass was recorded directly after removing it from the oven. A 

second set of measurements were performed to determine material removal rates based 

on the height difference of the workpiece before and after the polishing test. A 

micrometer with resolution of 0.1 µm was used to measure the height difference. Material 

removal rates obtained by both the methods were resulted in comparable values. The 

surface roughness values were measured by a scanning white light interferometer (Zygo 

NewViewTM5000 2.5× and 50× objectives), and by an AFM (Digital Instruments DI 

3100). The range of instruments enabled comprehensive coverage of a wide spatial 

frequency range. Table 4-5 provides details on the measurement sizes, associated 

resolution. The same table also reported the bandwidth of machine vibrations that could 

be captured by the different measurement methods. The physical significance of these 

values are annotated below the Table 4-5. 
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Table 4-4: Process parameters used for vibration and polishing tests.  

Machine kinematics 

Platen rpm 20 rpm 

Over-arm swing rate 5 rpm 

Additional details for the polishing tests 

Load 10N 

Slurry composition 1 µm ceria: H20 (1:10)  

Slurry flow rate 6ml/min 

Polishing time 60 min 

Workpiece material ∅25 mm fused silica 
 

Table 4-5: Surface roughness measurement methods, measurement sizes, and resolution. 
 2.5× SWLI 50× SWLI AFM 

Measurement size 2.2mm×2.4mm 140 µm×110 µm 10 µm×10 µm 

Approx. lateral Resolution ≈ 26 µm** ≈ 1.2 µm ≈ 0.16 µm 

Form removed/filters Cylindrical 
surface/ none 

Cylindrical 
surface/ none 

3rd order surface/ 
none 

Machine 
vibrational 
frequency 

bandwidth* 
captured by 
instrument  

Minimum 
Frequency 60 Hz 1 kHz 15 kHz 

Maximum 
Frequency 11 kHz 150 kHz 1 MHz 

*The average velocity between tool and work piece, v = 150 mm/s. (evaluated in Appendix C). For this 
speed the minimum frequency corresponding to the average velocity (v) is the frequency which produce 
wavelength (λ) less than the length of field of view of the instrument (f = v/λ). The maximum frequency 
corresponding to the velocity is the frequency that produces wavelength greater than the minimum 
resolution of the instrument. That says, within the frequency bandwidth the corresponding wavelengths (λ) 
will be in within the range of minimum resolution and the length of maximum field of view. 
** Based on Nyquist sampling theory (objective dependent) 
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4.3 Polishing Outcomes 

4.3.1 Material Removal Rate (MRR) 

Figure 4-17 shows how the MRRs varied between Machine 1 and 2 for the three 

tools. For each tool the ratio of the material removal rates obtained on the two machines 

is also reported. For all the tools the MRR is clearly higher on Machine 1.Though the 

removal rates vary for Tools A1, A2 and B, Tools A1 and A2 produced similar removal 

ratios between Machine 1 and Machine 2. The difference in MRRs between A1 and A2 

could be attributed due to the quality of the crust formed on the tool. It was also noted 

that Tool A2 did not run as smoothly as Tool A1, there was additional workpiece 

chattering which was not present with Tool A1. 

 
Figure 4-17: Variations in material removal rates between the machines for different 
tools. 

 

The data in Figure 4-17 and Figure 4-10clearly demonstrate that differences in 

vibrational characteristics do have an impact on the removal rates. The question is how 

this difference in vibrational signatures affects the MRRs. The possible reasons are 

discussed in a later section, while Chapter 5 further analyzes the impacts of vibration on 

MRRs. 
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4.3.2 Surface Finish 

Figure 4-18 depicts the averaged surface roughness values for all samples 

polished with Tools A1 and B on both machines. The error bars represents the standard 

deviations of nine measurements. For each of the tools, Machine 1 produced rougher 

surface than produced by Machine 2, though the observable differences are not 

significant for both the SWLI 50× and AFM measurements. The differences are only 

accountable for SWLI 2.5× measurements. That says the vibration has less impact on 

higher spatial frequency surface roughness values but has significant impact on lower 

spatial frequency roughness values. It is thought that high spatial roughness results from 

individual particle workpiece interactions while lower spatial roughness results from 

macro scale instabilities within the tool workpiece contact.  

 
Figure 4-18: Fused Silica RMS roughness values obtained on two different machines. 
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4.3.2.1 PSD Analysis of Surface Finish 

Power Spectral Density (PSD) of surface profile isolates periodic signals from the 

profile. The PSD transform generates a graph that plots periodic wavelength frequency 

(inverse of spatial distance) versus the strength of the signal at corresponding frequency. 

The PSD isolates the periodic marks on the surface corresponding to different spatial 

wavelengths.  The bar chart in Figure 4-18 shows the distinctive differences in lower 

spatial surface roughness i.e. SWLI 2.5×. It is worth to looking at the corresponding 

PSDs to see if additional information can be extracted. According to the data presented in 

Table 4-5, the SWLI 2.5× and 50× can capture events resulting from machine vibrations 

in the 1 Hz – 16 kHz frequency ranges, the AFM cannot capture below 15 kHz. In this 

section the PSD analysis is only performed on the SWLI 2.5× measurements. The PSD 

analysis of the SWLI 50× measurements is recommended for future consideration. 

Twenty separate line profiles were extracted from the SWLI 2.5× images, ten 

from samples polished on Machine 1, and ten from samples polished on Machine 2. The 

PSDs were generated using MATLAB code (see Appendix B) and the average PSD 

curves for both the machines are reported in Figure 4-19. The figure illustrates that for 

spatial frequencies >10 mm-1 the average PSD curves are not significantly different, 

while for spatial frequencies <10 mm-1 minute differences are evident. The PSD curves 

are zoomed in, in the lower spatial range (0 - 10 mm-1) and presented in Figure 4-20. 
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Figure 4-19: Average PSDs of glass surface between Machine 1 and Machine 2 (log in y 
axis). 
 

 

Figure 4-20: The lower spatial region is zoomed in from Figure 4-19(both axes linear). 
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noticeable spikes are at 0.39, 1.39 and 2.42 mm-1. Each of the spikes corresponds to a 

spatial distance (λ, the inverse of the spike value) and for this λ there is a synchronous 

frequency (f) which correlates λ to the relative velocity (v) between tool and workpiece, 

see schematic in Figure 4-21a. 

 
Figure 4-21: a. Synchronous frequency for spatial distance, b. Over-arm travel distance. 

 

For a fixed polishing speed (tool speed = 20 rpm, over-arm speed = 5 rpm) the 

relative speed between tool and workpiece varies as the workpiece travels over the tool 

radius, see Figure 4-21b. In this polishing test the workpiece was set to travel back and 

forth between 40 mm and 120 mm of tool radius. The corresponding relative velocities 

between tool and workpiece over the radius are modeled in Appendix C and the 

approximate values range from 0.08 m/s to 0.2 m/s while the average velocity is 0.15 

m/s. Table 4-6presents the synchronous frequencies for each of the spikes at these three 

velocities. The last column of Table 4-6 presents the dominant spikes in the FT of the 

process vibrations (Figure 4-10) within the synchronous frequency range. Defining the 

dominant spikes are the spikes which have amplitude not less than 60% of the largest 

spikes amplitude. Considering process vibrational peaks of 60, 120 and 180 Hz are due to 

the electrical noise, the largest spikes for Machine 1 and Machine 2 are 82.2 Hz and 215 

Hz respectively. 
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Surface crest, macro-scale 
tool workpiece contact
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Table 4-6:  PSD spikes and corresponding synchronous frequency. 

Machine PSD 
spikes 

Spatial 
distance, 
λ (mm) 

Synchronous frequency, f = v/ λ 
(Hz) 

Dominant 
spikes in the 

FT* 
(Hz) v = 0.08m/s v = 0.15 m/s v = 0.2 m/s 

Mc 1 
0.35 2.86 28 51.45 73.5 38, 82.2, 

158 and202 1.04 0.96 83.2 152.88 218.4 

Mc 2 

0.39 2.56 31.2 57.33 81.9 58 
and 
215 

1.39 0.72 111.2 204.33 291.9 

2.42 0.41 193.6 355.74 508.2 
*FTs in Figure 4-10,the synchronous frequency bands are 28Hz – 218Hz for Machine 1 and 55Hz -508 Hz 
for Machine 2. 

 

For the average velocity (v = 0.15 m/s) in Table 4-6, the synchronous frequency 

bands are 51.45 Hz - 152.88 Hz and 57.33- 355.74 Hz for Machine 1 and 2respectively. 

More generally the vibrational frequency band, 50 Hz - 350 Hz, is the bandwidth of 

interest for machine vibrational frequency in Figure 4-10. According to the PSD curves 

the process vibrations within this bandwidth could be expected to have an impact on the 

2.5× surface roughness measurements. Moreover the area under the FT curve, represents 

vibrational energy, in this bandwidth is twice for Machine 1 compare to that of Machine 

2. 

From this PSD analysis, the general understanding is that the lower frequency 

response of the machines is responsible for the difference in the lower spatial frequency 

roughness values in Figure 4-18. However the PSD analysis performed above are based 

on sub-aperture measurements with a field of view of 2.2 mm × 2.4 mm (see Table 4-5), 

while the spatial distances in Table 4-6are in the range of 0.4 – 2.86 mm, which is close 

to the length of measurement area. That said, further measurements are required to 
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capture a larger area i.e. full-aperture measurements for better comments on the impact of 

vibration on very low spatial roughness. 

4.3.3 Vibration-Induced Subsurface Damage 

Dr. Wesley William performed etching tests to evaluate the impact of process 

vibrations on subsurface damage (SSD) levels. No significant difference was noticed 

between samples polished in Machine 1 and 2. Details of his evaluation techniques are 

presented in Appendix D. 

4.4 Results Analysis and Discussion 

While the exact reason why Machine 1 delivers higher MMRs is difficult to 

isolate from a limited number polishing tests, the most likely cause is the higher 

vibrational amplitudes for Machine 1 above 500 Hz, see Figure 4-10. The possible 

consequences of higher vibrational amplitudes include enhanced localized slurry 

circulation, higher cyclic loads, tool workpiece contact, and localized temperature 

increases due to the higher vibrational energy. Higher frequency vibrations could 

introduce enhanced micro pumping action of the slurry and therefore promote higher 

delivery rates of fresh slurry to the workpiece surface. Fresh slurry increases the surface 

modification rate and thus increases the MRRs. From mechanical point of view the cyclic 

loading could increase indentation depths by abrasive particles. In that case the removal 

increments should be closely proportional to the indentation depth [11] and thereby the 

higher removal rate would generate higher high-spatial surface roughness. However the 

resulted higher spatial roughness values are comparable between the machines. The 

conversion of vibrational energy in to temperature could change the viscoelasticity and 

hardness of pitch and consequently it’s expected polishing behavior [61]. The energy 
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conversion could result in localized heating at the particle scale and could reduce pitch 

stiffness locally. The particles could more easily embed in a locally softer pitch and this 

could enable easier crust formation and enhance the removal rates. While the evaluation 

of thin film slurry volume in between the tool and workpiece (calculated from Talysurf 

surface profile and 30% bearing contact) indicated that if the vibrational energy converts 

to heat the slurry temperature rise would be more than 100 ˚C which was undoubtedly not 

observed during polishing operation. In general the overall temperature was not increased 

significantly that could change the pitch grade. That says the increased MRR is more 

likely due to enhanced micro pumping of the slurry between the embedded particles on 

the pitch which accelerates the chemical activities. 

In Figure 4-10 the ratios of vibrational amplitude above 500 Hz are over five 

times greater in Machine 1 than Machine 2. However none of the MMRs ratios in Figure 

4-17 are even close to five, all are less than two. This suggests that the increased in 

removal is not due to the increase in mechanical indentation, if so the removal increments 

would be in the order of five times. This hypothesis is also supported by the AFM 

roughness measurements discussed below. However, to figure out the fundamental 

impact of vibration on removal rate it is necessary to isolate the impact of frequency and 

amplitude separately. This task would be difficult to perform on an actual polishing 

machine as there is no option to control the vibrations in a polishing machine.  Thereby a 

separate test apparatus (test-bed) was built which facilitates testing at specified frequency 

and amplitude. A description of the test-bed, the experimental systems and the test results 

obtained are detailed in chapter 5. 
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The AFM surface roughness measurements in Figure 4-18 also supports the 

material removal mechanism. The similar roughness values in AFM measurements 

suggest that the increased MRRs is not due to an increase in the mechanical indentation 

depths that could result from higher amplitude vibrations, if this was true higher 

roughness values should be detected in the AFM measurements. Thus supports the 

argument that the increase in vibrations promotes localized micro pumping of the slurry 

and there by MRRs increase by increase in chemical activities. The arguments will 

further analyze in chapter 5. 

4.5 Summary 

Polishing machines operating under ‘identical’ workshop floor conditions have 

different vibrational characteristics. The amplitudes of the process induced vibrations are 

in the nanometer range. Fused silica samples polished with pitch tools on two different 

machines experienced different material removal rates and final surface roughness 

values. The machine with the greater vibrational amplitudes induced higher material 

removal rates and surface roughness values in the SWLI 2.5×. The most likely cause for 

higher MMRs is enhanced localized micro pumping of the slurry. Higher surface 

roughness values, which were most obvious in the lower spatial domain (SWLI 2.5×), are 

more likely caused by the difference in process vibrations in lower frequency range (50 

Hz – 350 Hz).Further PSD analysis on a larger measurement area are suggested. The 

vibration analysis and the evaluation of polishing outcomes clarify that even minute 

levels of vibration can significantly increase achievable MRRs, while producing little to 

no effect on high-spatial surface roughness (i.e. AFM) and subsurface quality. 



5 CHAPTER 5: TEST BED POLISHING 
 
 

Analysis in previous chapters concluded that for polishing systems the magnitude 

of the process vibrations and their frequency content varied from machine to machine, 

and with process parameters such as platen speed and over-arm swing rates. 

Experimental test confirm that the different vibration signatures impact the process 

outcomes such as material removal rates (MRR) and surface finish. The question is how 

the process vibrations do impact on polishing outcomes, is it frequency or vibrational 

amplitude or combine of both? To get at the fundamentals it is necessary to isolate 

vibrations of different frequencies and amplitudes and directly measure their impact on 

the process outcomes. The task would be difficult to perform on an actual polishing 

machine as there has no control on its vibrations. This requires building a test-platform 

which can facilitate polishing with vibrations of distinct frequency and amplitude. First 

part of this chapter details the test-platform design, manufacturing and characterization. 

The later sections explain the test plans and polishing tests, presents the test results, and 

finally the results are explained with respect to the fluid and contact based models that 

developed by Professor Keanini. Comparisons of theoretical and experimental material 

removal rates show that the models proposed provide reasonable predictions of observed 

removal rates. 
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5.1 Platform Design and Fabrication 

The set-up has two main components, a shaker table to excite the pitch tool, and a 

translation stage to provide relative motion between the sample and the tooling, see 

Figure 5-1. The stage is driven by a low friction, low vibration and precision ball screw 

mechanism. Two chrome-plated precision shafts and four self-aligning linear bearings 

support the stage. The translation distance is controlled by two SPDT push button 

switches on either side of the stage.  

 

Figure 5-1: Photograph of (a) top and (b) side view of the test platform. 
 

The stage is driven by a 12V DC motor with a maximum speed of 190 rpm. 

Motor power is supplied by a BK PRECISION DC voltage generator. The stage speed 

can be changed by changing the DC voltage to the motor. The maximum travel of the 

stage is 300 mm with a maximum velocity of 15 mm/sec. The stage changes its direction 

of movement when it hits the SPDT switch, see schematic in Figure 5-2 for clarity. When 

the stage hits the SPDT, the mechanical relay connections change the direction of the 

stage movement.  The cycle continues until power supply turned off. 
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Figure 5-2: Mechanical Relay circuit that control the speed and travel distance of 
translational stage, relay coil circuit in closed position (SPDT = single point double 
through, NO = node open, NC = node close). 

 
The workpiece attached to the stage using a specifically design workpiece holder. 

The workpiece holder consists of an aluminum block which is connected to the horizontal 

moving stage by two precision shafts, via linear bearings. The bearing allows smooth 

motion in the vertical direction while minimizing the tilt and tip of the sample as it moves 

across the pitch tool. The weight of the aluminum block (≈ 2kg) is selected such that the 

applied load on the workpiece is representative of polishing loads. Additional mass can 

be added if needed. A vinyl gasket between workpiece and holder (not shown in the 

picture) reduces any higher frequency vibrations being transmitted to the workpiece from 

the stage. 

The pitch tool, a 22 mm thick layer of pitch on a 50 mm diameter aluminum 

platen, is screwed onto a shaker table (BK Vibration Exciter Type 4809). The shaker 

table, connected to a frequency generator and a vibration amplifier, can vibrate up to 20 

kHz and at lower frequency the maximum possible displacement is 8 mm. The shaker 

table has resonance at 20 kHz. The shaker table shaft has maximum force rating 45N, 
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which is approximately 4.5Kg.  For better understanding the stage movement and the 

polishing operation, a schematic of the test-platform is given in Figure 5-3. Polishing 

slurry is supplied to the polishing region by a separate delivery system. The delivery 

system is details in the tool preparation section. 

 

Figure 5-3: Schematic of the test platform. 
 

5.2 Characterization of the Platform 

The vibrations in the platform due to the stage movement are characterized for 

different running conditions. A PCB accelerometer (352B10) that operates up to 17 kHz 

is used to measure the vibration. The accelerometer attached to the workpiece is 

connected to a computer through a signal conditioner, an ADC converter, and a National 

Instruments DAQ card (6036E), which has a maximum sampling rate up to 200 kS/s. 

LabVIEW is used to record the accelerometer’s response and to convert from the time 

into the frequency domain producing a FT plot. Ideally the vibration magnitude generated 

by the translation stage must be significantly less than that generated by a typical 
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polishing process. An initial goal was set at 80% less than that produced by the process. 

To assess the level of vibrations input into the workpiece by the mechanical translation of 

a glass workpiece over a pitch tool the vibrations were measured over 5 seconds while 

the stage ran at 0.5 m/min. The shaker table was not vibrating. Figure 5-4 shows the FT 

of the vibrations. The 60, 120 and 180 Hz spikes represent the electric noise of system 

power supply frequencies. Figure 5-4b. compares the results to the vibration signatures 

obtained from the Machine 1 and Machine 2. At frequencies above 500 Hz the platform 

and the Machine 2 have comparable signatures. These amplitudes are less than 20% of 

that generated by the Machine 1.  

 
Figure 5-4: a. Platform vibration with no shaker table excitation, b. comparison with 
Machine 1 and 2 (g = 9.81 m/s2, log in x axis). 

 

The calculated peak displacement magnitudes for the Machine 2 at 250 Hz, 500 

Hz and 1.2 kHz are 10 nm, 5 nm and 0.5 nm respectively. To generate these low levels of 

input vibrations using any mechanical system (here shaker table) is challenging. Of 

interest is to determine the best performance of the system at set frequency levels. To 

achieve this, the magnitude of the vibrations experienced by the workpiece as it translates 

over the vibrating pitch tool was recorded at tool frequencies of 250 Hz, 500 Hz, 1 kHz 

and 10 kHz. Figure 5-5 illustrates the accelerometer output over 0.04 s when the tool was 

vibrating at 250 Hz. This level of vibration corresponds to a peak to peak displacement 

(b)(a)

1 10 100 1,000 10k
0.00

0.01

0.02

Frequency, Hz

g,
m

/s
2

 

 

Machine 1
Machine 2
Test Platform

1 10 100 1,000 10k
0.00

0.01

0.02

Frequency, Hz

g,
m

/s
2

 

 

Test Platform



87 

on the order of 500 nm. Figure 5-5 was obtained with the lowest shaker table drive 

voltage that produced a discernible sine wave. The peak displacements at 500 Hz and 1 

kHz were 90 nm and 20 nm respectively. At 10 kHz displacements are in the order of 1 

nm. As these values are all higher than the actual polishing process the test platform will 

not be able to directly replicate the polishing process. That said the achievable 

displacement with the test platform are still many orders of magnitude lower that those 

used in vibration assisted polishing processes and thus the test platform will enable an 

investigation into what affects the process outcomes more; amplitude of vibration, or 

frequency of vibration. 

 
Figure 5-5: Vibrations measured on the workpiece as it translated over a vibrating pitch 
tool (250 Hz). 

 

5.3 Special Tooling for Platform Test 

The tools (Ø = 50 mm) specifically prepared for the platform testing were similar 

to the samples that used for dynamic test in chapter 3. Primarily Acculap™Soft pitch was 

considered for platform test which is denoted as soft tools. 
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5.3.1 Tool preparation 

While the details of sample pitch tool making are provided in chapter 3, here the 

preparation of special tooling for the platform test are briefly described. As this is a non-

conventional polishing configuration, the pitch tool required additional consideration 

with respect to slurry delivery. For stable operation the workpiece diameter (Ø=75 mm) 

was chosen greater than the tool diameter (Ø=50 mm), which hamper usual slurry 

delivery operation. A final design resulted in a silicon tube placed in the middle of the 

mold prior to pouring the pitch. After removing from the mold the final tool has the tube 

molded in the pitch layer, see Figure 5-6. The edge of pitch layer was carefully chipped 

off to create smooth and round edge which is less susceptive to tool chipping. The duct 

tape along the periphery prevents the pitch from long term flow and keeps the tool shape 

consistent over time. The top surface grooved in an ‘H’ shaped patterned to prevent 

hydroplaning of the workpiece over the tool. The grooving directly channeled the 

pumped slurry to the workpiece environment that allows slurry circulation with no 

pressure buildup in between the tool and workpiece. Prior to polishing, the tool was 

conditioned to develop a uniform abrasive crust on its topmost surface.  The details of 

conditioning are presented in next section.  

 
Figure 5-6: A conditioned tool, and the schematic of tool grooving and slurry circulation. 
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5.3.2 Tool Conditioning 

In conditioning process the tool was slowly rubbed against a ground glass surface 

in presence of thick slurry solution (cerium: water = 1:1). The ground surface assists in 

embedding slurry particles into the tool more so than a smooth glass and therefore 

reduced the conditioning time. During conditioning the glass surface was kept lukewarm 

by supplying heated air to the substrate that used to hold the glass piece. That reduced 

pitch viscosity which resulted in flat tool surface and enabled more particles to embed in 

pitch. Flat tool allows better surface contact, reduces tip and tilted motion of workpiece, 

and provides smoother polishing operation. The embedded particles create a layer of 

slurry crust that is essential for polishing. The more conditioning allows more particles to 

embed and provides higher removal rates. Several hours of conditioning made the tool 

surface saturated with embedded particles and the removal rate became consistent.  To 

evaluate the saturation in crust formation numbers of polishing tests were performed. 

Primarily the tool was visually observed and conditioning work continues until visible a 

crust layer covered the entire tool surface. Afterwards, hourly long polishing test were 

performed between conditioning periods. The test continued until a consistent removal 

rate was achieved. MRRs versus conditioning time are presented in Figure 5-7. The 

consistency in removal indicates the saturation in crust formation. The soft tool took six 

hours of conditioning to ensure saturation in crust formation. After conditioning the tools 

were characterized before the polishing test. Next section detailed the tool 

characterization techniques. 
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Figure 5-7: Soft tool conditioning and MRR stability check. 

 

5.4 Tool Characterization 

To characterize the topography of the conditioned tool surface roughness were 

evaluated. Visual observations clearly showed the white abrasive crust that built up its 

surface over time, see Figure 5-6. Directly after the final conditioning hours, three 20 mm 

line profile scans were taken with a Taylor Hobson Talysurf profilometer (tip radius = 2 

μm). The RMS roughness and skewness values are given in Table 5-1. 

Table 5-1: Pitch tooling surface measurements. 

20 mm Talysurf scan 

Average Rq ± Stdev 0.18 ± 0.04 

Skewness ± Stdev -2.46 ± 0.48 

Form removed/filters applies Best fit line/ none 

5.5 Testing Condition 

In the frequency range of interest, 0-10k Hz, initially two distinctively different 

frequencies, 500 Hz as lower level and 8 kHz as higher level, were selected for the shaker 

table polishing test. For each of the selected frequency two amplitudes, higher and lower 

range, were considered. The subsequent sections described the factors considered for 

frequencies and amplitude selections. 
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5.5.1 Frequency Consideration 

The frequency selections for the platform test are primarily based on the recorded 

vibration during actual polishing (Figure 4-10).The first attempt was to select two 

frequencies where one should be at lower and the other one at higher frequency regime in 

the specific frequency bandwidth of 0 to 10 kHz to identify the impact of low or high 

frequency on polishing outcomes. Initially the 80 Hz was thought as the lowest frequency 

for the platform test. However at reasonable platform speed, 7 mm/sec, the tool vibrating 

at 80 Hz cyclically hit the workpiece approximately at 88 µm apart. The cyclic hitting 

distance is defined here as the ripple wavelength [153], as illustrated in Figure 5-8.  

 
Figure 5-8: Schematic of ripple wavelength. 

 

However, the field of views for SWLI 50× is 140 µm × 110 µm. That said the 88 

µm ripple wavelength would be too long to visible in 50× objective, the best resolution 

objective available in the lab. The frequency 500 Hz which has ripple wavelength ≈ 15 

µm, which is reasonable to observe under 50× interferometer and hence considered as 

lower frequency for the polishing test. The 8 kHz which is 100 times the initial lowest 

selection (80 Hz) was arbitrarily considered as a higher frequency. In final polishing test 

three additional frequencies in between the max and min were selected (1.5 kHz, 3 kHz 

and 5.5 kHz) for better understand the impact of vibrational frequency, see Table 5-3. 

 

                          Ripple wavelength:                                 

   λ = v
f

=  7mm
80

= 88µm 

Workpiece

Tool

λ



92 

5.5.2 Amplitude Selection 

At each frequency there is an amplitude limit to the minimum discernible sine 

wave that the shaker table can produce. Similarly at each frequency there is maximum 

amplitude limit that the shaker table can produce without mechanical failure. For shaker 

table the limiting displacements corresponding frequencies are provided in Table 5-2.  

Table 5-2: Shaker table limiting frequency and amplitude. 

Frequency 
Minimum possible 

amplitude 
Maximum possible 

amplitude 

500 Hz 100 nm 35 µm 

8000 kHz 4 nm 500 nm 
 

The minimum amplitude considered for 500 Hz was 100 nm. To make possible 

comparison between frequencies with constant amplitude the 100 nm was also selected as 

the lower amplitude for 8 kHz. For actual polishing machine the ratio of vibrational 

amplitudes between the machines (Machine 1/Machine 2) was approximately 5 and 

hence 0.5 µm which is five times the 100 nm was considered as the higher amplitude for 

both of 500 Hz and 8 kHz. In final polishing test four additional amplitudes were selected 

(5 µm, 10 µm, 15 µm, 25 µm) for better understand the impact of vibrational amplitude at 

a set frequency, see Table 5-3. 

5.5.3 Vibrational power Calculation 

In addition to considering selected frequencies and amplitudes, the combined 

power of the input vibrations was also examined. Under single frequency input vibration 

the nominal vibrational power input can be approximated from a simplified schematic of 

power transmission (from the tool to workpiece) as illustrated in Figure 5-9.  
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Figure 5-9: Schematic of vibrational power transmission from tool to workpiece 
 

Since the forcing frequency is not near the natural frequency of the system the 

phase lag can be approximated to zero [168] and so the workpiece and tool have identical 

cyclic displacements. In a complete cycle the energy transmits in the first half of the 

cycle where the workpiece is forced to move upward against its weight (mg). For the 

second half of the cycle due to gravity the workpiece fall back along with the tool. 

According to the laws of motion, the transmitted power for the upward displacement 

against the work load is mgA. If the frequency of vibration is f, the total displacement in 

unit time is fA and the power transmission ismgfA, as provided in equation 5-1. 

Pin = m × g × f × A    (5-1) 

At 500 Hz the vibrational amplitude 1.6 µm generates power input which is equivalent to 

the power generated at 8 kHz with amplitude 100 nm. To evaluate the impact of 

equivalent power, the amplitude 1.6 µm was considered at 500 Hz. The equivalent 

powers were calculated from the relation P=mgf1 A1= mgf2 A2.  

5.5.4 Polishing Test Conditions 

Table 5-3 details the test conditions and process parameters selected for testing. 

Fused silica samples were polished with cerium oxide water-based slurry. An 

accelerometer attached to the workpiece confirmed the vibrational amplitudes and 

frequencies experienced by the workpiece during polishing tests. The right half of Table 

5-3 provided the process parameters that used for the platform polishing test. 

Tool
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Displacement
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Table 5-3: Test conditions and process parameters. 

Test conditions  
Process parameters  

Frequency Amplitude 

500 Hz, 8 kHz  100 nm  Tool speed 7 mm/sec  

500 Hz, 8 kHz  500 nm  Load 10 kPa 

500 Hz  1.6 µm  Slurry composition 0.2 µm ceria: H2O = 1:10 

1.5 kHz, 3 kHz, 
5.5 kHz 500 nm  

Slurry pH 7 

Polishing time 60 min  

500 Hz  5 µm, 10 µm, 15 
µm, 25 µm, 35 µm  

Workpiece material Ø75 mm fused silica  

Tool Ø50 mm AcculapTMSoft 
 

5.6 Experimental Results and Discussion 

The results from the test plan presented in Table 5-3 are utilized to evaluate the 

impacts of frequency, the impact of amplitude and the combine effect of both, the power 

of input vibration. 

5.6.1 Impact of Vibrational frequency and Amplitude 

All the test results with vibrational amplitudes of 500 nm and 100 nm are 

presented in Figure 5-10. At each condition three sets of test were performed and the 

values represent the average of three removals where the error bars represent the standard 

deviations. The frequency versus removal plots shows that for both of the frequency, 500 

Hz and 8 kHz, the increases in vibrational amplitude (100 nm to 500 nm, i.e. five times) 

increases the MRRs. While at 500 Hz the five times increase in amplitude resulted in 

27% higher removal rates, at 8kHz the same level of amplitude increments resulted in 

75% higher removal rates. That says the higher frequency vibrations have more impacts 

compare to lower frequency. From the figure another visible difference is the removal 

rates versus frequency slope is higher (3.7×10-4 versus 1.4×10-4) for 500 nm. The results 
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in Figure 5-10 clearly demonstrated that the removal rates depend on both frequency and 

amplitude of inputs vibrations i.e. the vibrational power. Although in this graph only two 

sets of amplitudes are considered, more analysis on higher amplitude input vibrations are 

provided in a later section.  

 
Figure 5-10: MRR versus vibrational frequency and amplitude. 

 

5.6.2 Impact of Vibrational power 

The same sets of test results that presented in Figure 5-10 are presented in Figure 

5-11 where the removals are plotted against the vibrational power inputs, as calculated 

using equation 5-1. In addition two more data points are added. The first one denoted by 

the solid triangle, is the removal obtained when the input frequency and amplitude are 

500 Hz and 1.6 µm, respectively. This testing condition provides the same power input 

(0.016 W) as testing at 8 kHz and 100 nm and consequently they have very similar 

MRRs. The second data point, denoted by the solid diamond, is obtained by polishing at a 

lower load, 1kg instead of 2kg, with vibrational conditions of 8 kHz and 500 nm. The 

reduction in load reduced the associated power by 50% while resulted in a 32% lower in 

removal rates and the resulting MRR falls along the same trend line as the other test 
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results. That says the MRRs follow the power of the input vibrations rather than 

individual amplitude and frequency. It is also noted that in Figure 5-11there is a linear 

relationship appears between the MRR and the vibrational powers. The question is how 

increasing in vibrational power increases removal rates? Does it enhance the chemical 

activity or increase the mechanical interaction? 

 
Figure 5-11: MRR versus input power. 

 

5.6.3 Impact of Slurry pH 

To verify the questions mentioned in previous sections number of polishing tests 

were performed with a chemically unfavorable slurry composition where slurry pH was 

reduced from 7 to 4 by the addition of HCl acid. The HCl chemically suppresses the 

chemical-mechanical removal, 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 , see literature review for detail (section 2.4.2).  

Figure 5-12 compares the material removal rates obtained by polishing with slurries of 

pH 7 and pH 4 at higher (8 kHz, 500 nm) and lower (500 Hz, 500 nm) power input levels. 
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Figure 5-12: Impact of altering the slurry pH on the MRR. 
 

As expected the MRR is lower with the pH 4, the slurry with acidic nature 

significantly reduces the formation of the hydrated layer [12], but most noticeably the 

MRR achieved with the lower pH slurry is independent to the vibrational input. These 

results confirmed that the increased in MRRs generates from the enhanced chemical 

activity produced by increased micro-pumping of the slurry or increased chemical 

reaction rates.  

5.6.4 Results for Higher Vibrational Power Input 

The interest of higher power input was to investigate if additional MRR could be 

achievable. As increase in input frequency was limited by the shaker table itself, the 

power input was increased by increase in vibrational amplitude while frequency was 

fixed at 500 Hz. Figure 5-13 depicts all the results performed under the condition of 

500Hz input frequency while the amplitude varies from 0.1 µm to 35µm.  
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Figure 5-13: Vibrational amplitude at 500 Hz versus MRR 

 

The plot shows, the MRR drops off sharply with vibrational amplitudes, A> 10 

µm. To investigate the sharp drop off, accelerometers were attached to both the 

workpiece and tool to monitor the phase difference between tool and workpiece. Both 

accelerometers signals were measure simultaneously (sampling frequency 50 kHz) and 

the phase differences between the two signals were evaluated using xcorr function in 

MATLAB, see Appendix E. A zero phase lag indicates that both the workpiece and tool 

are synchronized thus are remaining in contact or a maintaining a constant fluid layer 

thickness. The existence of a phase lag indicates that the workpiece and tool are moving 

out of synchronization resulting in variation in the contact mode or fluid layer thickness. 

Table 5-4 details the recorded phase difference between the workpiece and tool 

accelerometer signals, and the corresponding maximum theoretical gap variation, Gtheory, 

that could result from the phase difference. The latter is determined by subtracting two 

500 Hz sine waves of the relevant amplitude separated by the corresponding measured 

phase lag from each other. 
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Table 5-4: Phase angle and maximum fluctuation in the fluid film thickness. 

Input amplitude at 500 Hz, µm Measured* phase lag,° Gtheory, µm 

0.5 0 0 

5 3.60 0.32 

10 3.60 0.63 

15 7.20 1.88 

25 10.80 4.71 
* Sampling frequency 50 kHz and shaker table frequency 500, i.e. sampling resolution 3.6 °, which 
indicates the phase lag in between is not possible to determine from this measurements. 
 

The vibrational amplitude increases also increases the phase difference. A feasible 

consequence of this is thought to be intermittent contact between the workpiece and tool, 

or actual separation. Both scenarios will result in reduced contact between the abrasives 

and the workpiece surface resulting in lower material removal rates. The possibility of 

tool workpiece separation is supported by AFM roughness of tool surface. The AFM 

measurement found the root mean squared roughness, Rq, of a soft pitch tool crust to be 

approximately 66 nm. A general assumption, 3×Rq value is approximately equivalent to 

the distance from the surface mean line to its highest peak, therefore when Gtheory 

approaches 3Rq, as it does when the input vibrations are ≥ 5 µm, results in complete 

separation of the workpiece from the tool. Under this condition the workpiece is 

supported by a slurry film that fills the gap. It is reasonable to assume that the complete 

separation will induce hydroplaning between tool and workpiece and allows only flow 

induced removals (MRRflow). Based on the experimental results presented in this chapter, 

Professor Keanini proposed an analytical modeling that explained the influence of 

frequency and amplitude of process vibration in polishing mechanism. The full models 



100 

are provided in Appendix F while a short summary and model performance are presented 

in the next section. 

5.7 Summary of Professor Keanini’s Observations 

According to the model, the total material removal in a polishing process, MRRtot 

has two parts, the chemical-mechanical removal MRRcm and the slurry flow-mediated 

removal, MRRflow, as presented in equation 5-2. The chemical-mechanical removal 

mechanism assumes material removal takes place by a chemical tooth mechanism as 

outlined in Chapter 2.  While the material removal by local shear and pressure gradient of 

local flow of the slurry is denoted as flow-mediated removal. 

MRRtot = MRRcm + MRRflow    (5-2) 

Analysis of the slurry fluid dynamics between the tool and workpiece and the 

characterization of micro-topography of a conditioned tool led to a flow-mediated 

material removal model whereby the vibrations promote vertical and lateral accelerations 

of the fluid within the film. The pressure gradient and the shear forces associated with 

these accelerations and the flow-mediated material removals are considered as  

MRRflow ∝ � A
do

ω    (5-3) 

The model argued that for small amplitude input vibration (A ≤ 1.6 μm), the 

slurry film in between the workpiece and the tool is thin enough that the abrasives 

embedded in tool remain in contact with the workpiece. This is supported by AFM 

measurements of tool topography. In this condition the material removal takes place by 

both MRRcm and MRRflow, where the MRRcm component is insensitive to small cyclic 

vibrations. The MRRflow is sensitive to the vibrational frequency (f), amplitude (A), and 
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the thin gap between the tool and workpiece (do). Under this condition the removal 

model become 

MRRtot = MRRcm + C1�
A
do
ω (forA ≤ 1.6 µm)  (5-4) 

where ω = 2πf. Considering approximate proportionality between vibrational power (see 

eqn. 5-1) and removal rates the model proposed an alternative of equation 5-4 which is 

MRRtot = MRRcm + C2mgAω (forA ≤ 1.6 µm)  (5-5) 

For higher amplitude input vibration (A ≥ 5 µm) the model argued that due to the 

larger gap in between tool and workpiece (do ≥ Gtheory in Table 5-4), the workpiece 

loses contact and remain separated from the tool by a thin continuous film of slurry. This 

is supported by the gap measurement in Table 5-4 and the AFM roughness of tool 

topography. In this condition the MRRcm being absent and the total removal become  

MRRtot = MRRflow =  C3�
A
do
ω (forA ≥ 5 µm) (5-6) 

Equation 5-4, 5-5 and 5-6 dictates the removals presented in Figure 5-10, Figure 

5-11 and Figure 5-13 respectively. The comparison between the experimental results and 

the theoretical model predictions are presented in Figure 5-14 a, b, and c. Considering  

MRRcm = 2.1 mg h-1, the removal at no input condition in Figure 5-10, constantC1in 

equations 5-4 was calculated from the least square fit of data for A = 500 nm in Figure 

5-10 and also used it to fit data for A = 100 nm. ConstantC2in equation 5-5 were 

calculated from correlating equations 5-4 and 5-5, where C2mgAω =  C1�
A
do
ω,while 

putting the values of C1 from equation 5-4. The model predictions were determined by 

applying equation 5-4 where do= 200 nm (3×AFM roughness) is fixed, ω and A varies 
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accordingly. Constants C1and C2that calculated for A = 500 nm were also applied to A = 

100 nm. In Figure 5-14 for A ≤ 1.6 µmthe theoretical material removals were calculated 

by applying equation 5-4 where bothω and doarefixed (500 Hz and 200 nm respectively) 

and A varies (0-1.6 µm). Constant C3 of equation 5-6 was calculated from the least 

square fit of four data points for A ≥ 5 µmin Figure 5-13. For these four points the 

theoretical prediction were calculated from ω = 500 Hz while do and A varies 

accordingly as presented in Table 5-4. As illustrated in Figure 5-14 a, b, and c, for both 

small and large amplitude limits, the model provides reasonable predictions of 

experimental removal rates. 

 

 
Figure 5-14: Comparison between the theoretical model predictions and the experimental 
results. a. between equation 5-4 and Figure 5-10, b. between equation 5-5 and Figure 
5-11, and c. between equation 5-6 and Figure 5-13. 

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

M
RR

 , 
m

g/
hr

Frequency, Hz

Experimental data Equation 5-4

a

0

1

2

3

4

5

6

7

0 0.02 0.04 0.06 0.08 0.1

M
RR

, m
g/

hr

Power, Nm/s

Experimental data Equation 5-5

b

0

1

2

3

4

5

6

0 10 20 30 40

M
RR

, m
g/

hr

Vibration amplitude, microns

Experimental data Equations 5-4 & 5-6

c



103 

5.8 Conclusions 

A test-bed was designed, fabricated and characterized to facilitate polishing under 

better defined vibrational amplitudes and frequencies. Polishing of fused silica samples 

demonstrated again that small amplitude vibrations affect polishing outcomes. Significant 

correlations are observed between the vibrational power and the material removal rates. 

For small amplitude input vibrations (A <1.6 µm), higher vibrational powers resulted in 

higher removal rates. The large amplitude input vibrations (A > 5 µm) generated a phase 

difference between the tool and the workpiece and is thought to lead to a separation 

between the tool and the workpiece (Table 5-4). This separation resulted in lower 

removal rates. The separation gap limits the effectiveness of increasing the amplitude 

past 5 µm. Keanini’s model which considers both mechanical and fluid dynamics 

demonstrated that at small amplitudes the total material removal is determined by both a 

chemical-mechanical removal component, MRRcm, and vibration driven flow induced 

removal component, MRRflow, i.e.MRRtot = MRRcm+MRRflow. While at large 

amplitudes the proposed separation of tool and workpiece by a fluid layer eliminates the 

MRRcm component and under these condition, MRRtot = MRRflow. Comparison between 

theoretical and experimental removal rates demonstrated that the model can provide 

reasonable predictions for a wide range of input frequencies and amplitudes. 

 



6 CHAPTER 6: PITCH GRADE (HARDNESS) AND MODEL PERFORMANCE 
 
 

To evaluate how pitch grade (hardness) affects material removal rates and surface 

finish, tests similar to those conducted in chapter 5 are repeated with a tool fabricated 

from a harder pitch grade. Detailed physical and geometrical analysis of the tool surfaces 

are presented. The results are discussed with respect to those obtained for a soft tool and 

the MRRs predicted by Dr. Keanini’s model.  

6.1 Pitch Grades Evaluated 

The tool in chapter 5 was made from AcculapTMSoft pitch, while in this chapter 

AcculapTMVeryFirm pitch was used to make a harder tool. The physical properties of the 

two pitch grades are summarized in Table 6-1.  

Table 6-1: Basic comparison between hard and soft tool [2, 56]. 
Property Soft Tool Hard Tool 

Pitch grade AcculapTMSoft pitch AcculapTMVeryFirm pitch 

Shore D Hardness 60 80 

Softening point °C 63 74 

Approximate Shear Viscosity 
(GPa-s = 1010 poise) 

0.1 8 

Impact Test Natural Frequency 
(kHz) [7] 7.3 8 

 

6.2 Tool Preparation 

The preparation and conditioning process for hard a tool is similar to that used for 

the soft tool in Chapter 5. However in order for the hard tool to achieve a consistent crust 

of embedded abrasives the conditioning time was much longer, approximately 35 hours 



105 

versus only six hours for the soft tool. To check the consistency of the crust formation, 

polishing tests were performed during the conditioning period. MRRs versus 

conditioning time are presented in Figure 6-1 which shows after 35 hours of conditioning 

the material removal rate was reasonably consistent. 

 
Figure 6-1: Hard tool conditioning and MRR stability check. 

 

6.3 Tool Characterization 

Results presented in chapter 3 suggest that the pitch grade does not have a 

significant influence on the magnitude of the vibrations transmitted through the pitch 

layer within the tested frequency range (1 Hz - 16 kHz), see Figure 3-5, and therefore the 

pitch’s bulk properties are not considered to significantly affect the material removal 

rates. That said the interaction between the tool and workpiece depends on the formation 

of an abrasive crust on the tool’s surface, a difference in crust formation could be 

expected to result in significantly different MRRs. To investigate this further both tool 

surfaces underwent fundamental analysis to quantify their basic surface topography. 

Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Energy 

Dispersive Spectroscopy (EDS) analysis were performed to create concrete blue prints of 

0.0

0.5

1.0

1.5

2.0

2.5

18 20 22 24 26 28 30 32 34 36

M
RR

, m
g/

hr

Conditioning Time, hrs



106 

the different tool surfaces, enabling tool quantification. These analyses provide required 

parameters mentioned in section 6.5.1, that utilized to verify the Keanini’s model 

performance with respect to the pitch hardness. 

The tools used in the polishing tests were approximately 30mm in thickness and 

were not thin enough to fit in either the SEM or AFM machine. To overcome this 

constraint, dummy hard and soft tools, which have thickness as of less than 10mm, were 

prepared and conditioned. The conditioning times for the dummy tools were similar to 

that performed on actual tools. Figure 6-2illustrates an actual tool used in the polishing 

test and a dummy tool. Though the dummy tool surfaces were not exactly the same as the 

actual tool surfaces, it is assumed that the dummy surfaces are sufficiently representative 

to facilitate comparison. 

 

Figure 6-2: a. Actual tool and b. Dummy tool that used for AFM and SEM evaluation. 
 

6.3.1 SEM and EDS Analysis 

The SEM and EDS analysis were performed on both tools coated with 5 nm layer 

of gold (Au). Sample SEM images are presented in Figure 6-3. The images clearly show 

that abrasive particles are embedded in the pitch surface. The EDS analysis, presented in 

Figure 6-4, reinforces the visual impression that the topmost layer consists primarily of 

a b

50 mm
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cerium oxide particles (Ce and O peaks). Figure 6-4 represents the EDS results of a tool 

(AcculapTMSoft) (a) before and (b) after conditioning. Top most surface of the 

conditioned tool is rich in cerium and oxygen where, no cerium or oxygen is present on 

the unconditioned tool’s surface.  

 
    (a)           (b) 

Figure 6-3: SEM images of two conditioned tools, (a) Acculap™Soft (b) Acculap™ 
VeryFirm (bright areas are embedded ceria particles). 

 

 
Figure 6-4: (a) EDS of an unconditioned, and (b) a conditioned tool (soft tool). 

 

To evaluate and quantify the SEM images of the tool surfaces, MATLAB was 

used to process the images and identify the size and population of embedded particles in 

each tool type. The code utilizes a built in MATLAB function, the ‘Strel’ function, for 

disc counting and the program is available as ‘Snowflakes Granulometry’ [169].The 

details of how the code proceeds are provided in Appendix G. The program performance 
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was evaluated by applying it to analyze a number of control images generated in 

Microsoft Paint [170], which contain a known number of ‘particles’ of known size, see 

Figure 6-5. In the images the white circles represent the particles and the black region 

represents the pitch. The particles sizes are different in the two images, one has particles 

with a diameter of 0.25 µm while the other depicts particles with a diameter of 0.5 µm. 

Each image has 130 particles, i.e. the population is 2.65 particles/µm2.A color gradient at 

the particle edge was selected to better replicate the SEM images in Figure 6-3, where it 

was observed that the edge of a particle has 50%lower grayscale values than at the center. 

In the control image the outer 30% of the particle radius contains a color gradient, i.e. for 

a particles with Ø = 0.25µm the diameter without color gradient is approximately 0.175 

µm, (70%, as illustrated in Figure 6-5). For these two control images the program 

estimates the particles diameter to be 0.233 µm and 0.488 µm respectively and the 

associate populations were calculated to be 2.57/µm2 are 2.61/µm2. It is worth 

mentioning that for a control image, with particles Ø = 0.25µm and without any color 

gradient, the program particle diameter prediction was 0.24µm.The program predict 

values, with and without color gradient, which are reasonably close to the actual values 

(<10% error). Further analysis was performed with control images containing particles (Ø 

= 0.25 µm) that overlapped by 60% of their diameter, see reference [171] for images with 

overlapped particles. For these images the program’s estimation of particle diameter was 

0.252 µm. As a final verification two SEM images, one of a soft tool and the other of 

hard tool were processed by hand. The numbers of particles in the images were manually 

counted. The results evaluated by manual and MATLAB approaches were comparable. It 
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found that the MATLAB calculated populations had true errors on the order of 10% 

error. 

 

Figure 6-5: Sample images with known particle size and density, the zoomed in image of 
the particle. 

 

Another MATLAB code (see Appendix H) was written to calculate the 

percentage of bright area in the SEM images based on threshold gray scale values. The 

threshold point was selected to be 128 (gray scale value) and grayscale values below this 

threshold value were considered as dark area. The bright areas represents the slurry crust 

formed by embedded slurry particles, while the dark areas represents the pitch with no 

embedded particles, see Figure 6-3. The performance of this code was verified by using 

the control images in Figure 6-5(known % of bright area) and found that the code can 

exactly predict the percentage of bright area.  

Using the two MATLAB programs described above, the population of particles 

and the percentage of bright area were calculated for several SEM images. For each tool, 

twenty SEM images of the surface were evaluated and the results are reported in Table 

6-2. The values in Table 6-2 represent the average values and the standard deviations of 

the measurements from the SEM images. Further analysis utilized the percentage of 
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bright area and the population values to calculate the lateral spacing between two 

particles, see Figure 6-6. 

6.3.1.1 Lateral Spacing 

One important parameter considered in Keanini’s model is the lateral spacing 

between two embedded particles; this plays a role when determining the flow mediated 

component of the overall material removal. To estimate the lateral spacing between 

particles, lp, see Figure 6-6, it is assumed that the embedded particles are uniformly 

distributed and the over the tool surface. The schematics of particle distribution and cross 

section of the soft tool surface are illustrated in Figure 6-6.  

 

Figure 6-6: Schematic of embedded particles and lateral spacing (lp) for uniformly 
distributed particles. 

 

From SEM analysis, the number of embedded particles per unit area on a soft tool 

is estimated at (17±3)/µm2, i.e. there are approximately 4 ± 0.5 particles uniformly 

distributed along a 1µm length as illustrated in Figure 6-6. While the percentage of bright 

area (slurry crust) for soft tool is 82 ±8.6%. Which means, if the diameter of the particles 

image for soft tool is Øs then 17(π/4)Øs
2 = 0.82 µm2 =>Øs = 0.24 µm. Thereby in a 1 µm 

length, as illustrated in the Figure 6-6, 4Øs + 4lps= 1 µm where lps is the lateral spacing 

between two embedded particles. Thereby approximately the lateral spacing for soft 
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tool, lps~ 1−4×0.24 µm
4

 ~ 10nm. Similar analysis for the hard tool provided, 

lph~ 1−3.5×0.26 µm
3.5

 ~ 26 nm. 

The approximate lateral spacing for hard and soft tools are reported in Table 6-2. 

The estimated values are also supported by the visual observation whereby it was 

observed that the soft tool has more area covered by embedded particles and thereby a 

higher number of particles per unit area compared to that of hard tool. For further 

verification two SEM images were printed out and the numbers of particles were 

manually counted and comparable values are noticed as reported in Table 6-2. 

Table 6-2: Measurements from SEM image analysis, standard deviations (Stdev) are for 
twenty separate images of each tool. 

Parameters AcculapTM Soft Tool AcculapTMVeryFirm Tool 

Number of embedded particles per 
unit area, Particles density ±Stdev 17 ±3 /µm2 13 ± 2 /µm2 

% of bright area, the area covered 
by slurry crust 82 ±8.6 69 ±6.6 

Approximate lateral spacing 
between embedded particles, (nm) 10 26 

 

6.3.2 AFM Analysis 

The AFM roughness for the soft tool was presented in chapter 5. For hard tool 

four 20 µm × 5 µm AFM scans were taken using a DI 3100 AFM instrument. The RMS 

roughness and skewness values for both the tools are presented in Table 6-3. 
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Table 6-3: AFM roughness and skewness values for soft and hard tools. 
5 µm × 20 µm scan (AFM) 

Parameters AcculapTMSoft Tool AcculapTMVeryFirm Tool 

Average Sq 
66.1± 11.98 nm 

(This is for tool A1) 
112± 55.47 nm 

Skewness ± Stdev -0.67 ± 0.16 -0.23 ± 0.28 

Form removed / filters applied 3rd order surface/ none 3rd order surface/ none 
 

6.4 Polishing Test and Results Analysis 

Polishing tests with the hard tool were performed on the same test-bed that was 

described in chapter 5. In addition to the initial base line test with no input vibration, tests 

were performed at three different vibrational frequencies, 500 Hz, 5.5 kHz and 8 kHz. 

For all selected frequencies the amplitudes were fixed at 500 nm. At each frequency three 

polishing tests were performed. The polishing process parameters were the same as those 

detailed in Table 5-3 in chapter 5. 

6.4.1 Test Results: Comparison with Soft Tool Results and Discussions 

The removal rates and surface finishes resulting from polishing with the hard and 

soft tools test are presented in Figure 6-7 and Figure 6-8. The values presented are the 

average over three polishing tests while the error bars represent the standard deviations. 

The results in Figure 6-7 shows how increases in input vibrational frequency 

increase the MRR for both hard and soft tools, however the increment slope is higher for 

the soft tool (≈ 30%). For both the tools the base line tests with no input vibrations 

resulted in similar removal rates (≈ 2.1 mg/hr). 
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Figure 6-7:  MRR versus vibrational frequency for both hard and soft tools. 

 

The results in Figure 6-8 shows the high (SWLI 50×) and low (SWLI 2.5×) 

spatial roughness of workpieces polished on both soft and hard tools. In all the cases, the 

hard tool produced rougher surfaces when compared to that produced by the soft tool, 

however the differences are more noticeable in the lower spatial frequency domain and at 

vibrational frequency of 8 kHz. 

 
Figure 6-8: Surface finish, RMS roughness values for hard and soft tools (vibrational 
amplitude fixed at 500 nm). 
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6.5 Keanini’s Model with respective to Hard Tools 

The material removal model that was outlined in chapter 5 and presented in 

Appendix F is an analytic model, which takes the geometric characteristics of the tool 

surface into consideration. According to the model the MRR obtained while polishing in 

the presence of process vibration (MRRtot), is the combined action of: 1) vibration-

insensitive chemical-mechanical removal, MRRcm, and 2) flow-induced removal, 

MRRflow , whereby the later is produced by cyclic, vibration-driven acceleration of the 

polishing slurry film:  

MRRtot = MRRcm + MRRflow   (6-1) 

In this section the influence of the tool’s properties and surface characteristics on 

the polishing MRR is evaluated. Geometrical and mathematical analysis is performed to 

evaluate the ability of the model to accommodate different tools (pitch grades and tool 

topography). The following sub-sections evaluate the MRRcm and MRRflow components 

separately. 

6.5.1 Chemical-mechanical Removal (MRRcm) Aspect of the Model 

According to the model, when polishing with sinusoidal vibrations, the average 

chemical-mechanical removal (MRRcm) is independent of the vibrational frequency and 

amplitude (they average out to zero), while for non-sinusoidal vibrations, theMRRcmterm 

is sensitive to vibrations. Under cyclic loading the extremely thin slurry film (~200 nm, 

based on 3×AFM RMS roughness value of the tool surface) in between the tool and the 

workpiece generates a viscous damping force, Fviscous, and the contact between tool and 

workpiece generates as elastic contact force, Felastic. Keanini estimated that the elastic 

contact force dominates the viscous force by a factor of ~105and this suggests that the 
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viscous force is negligible compared to the elastic force. That said the change in MRRcm 

between soft and hard tools due to the change in pitch grade would be mainly influenced 

by the associate elastic force of the variation. In the model the elastic force is represented 

by: 

Felastic =  Eparticle×δc×a2×Nc
Sq

    (6-2) 

Where δc = the characteristic elastic deformation of tool-embedded polishing abrasives, 

a = the characteristic radius of abrasive-workpiece elastic contact zones, 

Eparticle  = the polishing abrasive elastic modulus 

Nc = Do
2dp−2 = total number of abrasive-workpiece contact points, where Do is the 

workpiece diameter, and dp = the characteristic diameter of the polishing abrasives 

Sq = AFM roughness values of the tool crust. 

In equation 6-2, Eparticleis same for both the tools, thereby the ratio of the elastic 

force between soft and hard tools become, 

(Felastic)Soft
(Felastic)Hard

~ δcs
δch

× �as
ah
�
2

× Ncs
Nch

× Sqh
Sqs

  (6-3) 

The subscripts ‘s’ and ‘h’ denote soft and hard pitch respectively. Equation 6-3 represents 

the ratio of elastic forces between the soft and hard tool. Following sections analyze and 

estimate each of the ratios on the right side of Equation 6-3. 

6.5.1.1 The ratio of elastic deformation,𝜹𝜹𝒄𝒄𝒄𝒄
𝜹𝜹𝒄𝒄𝒄𝒄

 

The elastic deformation of tool-embedded particles under polishing pressure 

depends on the elasticity of pitch, slurry particles and workpiece material. According to 

the theory [11], the deformation (∆) is inversely proportional to the elastic modulus of the 
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material (∆∝ 1
E
). However, the elastic modulus of the glass and slurry particles is much 

higher than that of pitch (30 to 80 times) [11, 75, 85] and the displacement due to pitch 

deformation dominants the other two. Therefore the total displacement can be 

approximated by the Equation 6-4.  

δc =  ∆pitch ∝ 1
Epitch

     (6-4) 

Using Equation 6-4 the ratio of total elastic deformations become,  

δcs
δch

=  
1

(Epitch)Soft
1

(Epitch)Hard

=  (Epitch)Hard
(Epitch)Soft

   (6-5) 

As estimated from reference [56], the hard and soft AcculapTM pitches are 

equivalent to Gugolz73 and Gugolz55 respectively [Table 2-1], thus the elastic modulus 

for hard and soft pitch are taken as those reported [11] for Gugolz73 and Gugolz55 

respectively. 

(Epitch)Soft = 2.055 × 109Nm−2 and (Epitch)Hard = 2.455 × 109Nm−2 

where the estimation of the modulus for the soft pitch is obtained by extrapolation of the 

data presented in table 6 in reference [11]. By putting these values into equation 6-5 the 

ratio becomes, 

δcs
δch

 ~ (Epitch)Hard
(Epitch)Soft

 ~ 1.2   (6-6) 

That implies for the same applied polishing pressure the resulting deformation is 

higher for a soft pitch when compared to a hard pitch. 

6.5.1.2 The ratio of Abrasive-workpiece Elastic Contact Zone,�𝒂𝒂𝒔𝒔
𝒂𝒂𝒉𝒉
�
𝟐𝟐
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Two separate methods were applied to calculate this ratio, and both methods 

produced similar values. 

Method 1:  

From Cook’s [12] analysis, the elastic contact radius between a particle and the 

workpiece is given by: 

a =  �3
4

p �dp
2
� �1−v

2

E
+ 1−v′2

E′
��

1
3
   (6-7) 

Where dp is the characteristic diameter of the polishing abrasives, v and v′ are the 

poison’s ratio and E and E′ are the modulus of elasticity for glass and particles 

respectively. All the parameters in right side of Equation 6-8 is same for both hard and 

soft tool except the pressure (p) on a single particle, which is different and depends on 

the particle concentration (K) in tool surface. From Equation 6-7, 

 

�as
ah
�
2

=  �ps
ph
�
2
3    (6-8) 

 
 

Figure 6-9: Particle scratching workpiece [12]. 
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Cook stated that, the bearing load on a single particle (p) depends on the total load 

per unit area (P) on the tool, particle diameter (dp) and the concentration of embedded 

particles (K) as defined by the Equation 6-9: 

p =  3Pdp
2

2K
     (6-9) 

From equation 6-8 and 6-9 

�as
ah
�
2

=  �Kh
Ks
�
2
3    (6-10) 

The SEM analysis determined the percentage of area covered by particles on tool 

surface (see Table 6-2), which is equivalent to the particles concentration.  Therefore the 

values of particles concentration for hard and soft tools are Kh = 69 ± 6.6 and Ks =

82 ± 8.6 respectively. This means the ratio defined in equation 6-10 can be rewritten as 

�as
ah
�
2

= �69−6.6
82+8.6

�
2
3 to �69+6.6

82−8.6
�
2
3 =  0.78 to 1.02  (6-11) 

Method 2:  

Brown [11] and Cook [12] analyzed the penetration depth caused by particles into 

the workpiece. For particles abrading the workpiece under pressure (P), where the elastic 

modulus of workpiece is E, and the concentration of embedded particles is K, the depth of 

penetration (Rs) can be represented by, 

Rs =  3
4
� P
2KE

�
2
3     (6-12) 
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Figure 6-10: particle workpiece interaction, scratching depth Rs. 
 

For a particles abrading the workpiece with depthRs, from the geometrical 

analysis as provided in Figure 6-10, a2 =  Rs�dp − Rs�. Considering the hard and soft 

tools produce different depth of penetration, Rss and Rsh respectively, the ratio becomes 

�as
ah
�
2

= Rss�dp−Rss�
Rsh�dp−Rsh�

    (6-13) 

where dp is on the order of 200 nm (from analysis of particle sizes for both hard and soft 

tool SEM images) and from Cook analysisRs is in the order of 0.2nm [12].As Rs>>dp, it 

can be considered that�dp − Rss�~ �dp − Rsh�which simplifies the Equation 6-13 in to, 

�as
ah
�
2

= Rss
Rsh

.      (6-14) 

Replacing Rs from Equation 6-12 in Equation 6-14, the ratio becomes �as
ah
�
2

=

 �Kh
Ks
�
2
3 which is exactly similar to Equation 6-10 that obtained from a different approach 

in Method 1. 

6.5.1.3 Number of abrasive-workpiece contact points, Nc = Do
2 dp

-2 

From Table 6-2 the estimated total number of particles per unit area is Ncs =

17 ± 3 andNch = 13 ± 2for soft and hard tool respectively. The ratio of contact points  

glass

dp / 2

a
Rs

Rs

(d
p
/ 2

-R
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Ncs
Nch

=  17−3
13+2

 to 17+ 3
13−2

= 0.9 to 1.8   (6-15) 

6.5.1.4  AFM roughness of the particles-embedded tool surface, Sq 

The AFM roughness from Table 6-2 for soft and hard tools are Sqs = 66nm and 

Sqh = 112nm respectively, the roughness ratio becomes 

Sqh
Sqs

 ~ 112
66

 ~ 1.7    (6-16) 

Substituting the high and low approximate ratio values from equations 6-6, 6-11, 

6-15 and 6-16 into Equation 6-3 gives a range of elastic force ratio values between soft 

and hard tool. 

(Felastic)Soft
(Felastic)Hard

~ (1.2 × 0.78 × 0.9 × 1.7) to (1.2 × 1.02 × 1.8 × 1.7) ~ 1.4 to 3.7       (6-17) 

So the ratio of the elastic forces between soft and hard tool are ranges from 1.4 to 

3.8. However, the chemical mechanical removal, MRRcm is proportional to the contact 

stress [112,8]: 

MRRcm ∝ Felastic
Acontact

    (6-18) 

(MRRcm)Soft
(MRRcm)hard

~ (Felastic)Soft
(Felastic)hard

× (Acontact)Hard
(Acontact)Soft

   (6-19) 

Assuming uniform contact between tool crust and workpiece, the contact area is the area 

of abrasive crust which is represented by the percentage of bright area in Table 6-2. So, 

the ratio of contact area between hard and soft tool is, 

(Acontact)Hard
(Acontact)Soft

  ~ 69±6.6
82±8.6

= 69−6.6
82+8.6

 to 69+6.6
82−8.6

= 0.68 to1.03 (6-20) 

Putting the values from Equation 6-17 and 6-20 in to equation 6-19, the ratio of removal 

rates become, 
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(MRRcm)Soft
(MRRcm)hard

~ 1.4 × 0.68 to 3.7 × 1.03 = 0.95 to 3.8 (6-21) 

The ratio of chemical-mechanical removal rates between hard and soft tools is in 

the range of 0.95 to 3.8. From the experimental test the removal rate obtained with no 

external vibrational input represents the MRRcmcomponent i.e., the MRR at x = 0 in 

Figure 6-7.For both hard and soft tools the MRRcm component is 2.13 mg/hr and 2.1 

mg/hr respectively which give a ratio of approximately 1. This is within the expected 

range. 

6.5.2 Flow Induced Removal Aspect of the Model (MRRflow) 

In the analytical model the cyclic vibration-driven acceleration of the fluid 

between the tool and the workpiece generates flow-induced removal, MRRflow. Flow-

induced removal is the combined effect of three individual removal mechanisms; the 

viscous-shear-driven removal, MRRS, the suction/blow driven removal, MRRP, and the 

inertia driven removal, MRRI. However analysis shows that the first two mechanisms 

dominate the inertia-driven removal and thereby MRRflow correspond to the following 

sum: 

MRRflow = c1MRRS + c2MRRP   (6-22) 

Where, 

MRRP ∝ � A
do
ω and MRRS ∝ �

A
lp
ω   (6-23) 

where do represent the estimated gap thickness between tool and workpiece,lp represents 

the lateral spacing between embedded abrasives, andω and A are the frequency and 

amplitude of the vibration. Combining equations 6-22 and 6-23 the flow induced removal 

becomes, 
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MRRflow ∝ �� A
do

+ �
A
lp
�ω    (6-24) 

From equation 6-24 the ratio of flow induced removal between soft and hard tool is  

(MRRflow)soft
(MRRflow)hard

=  
�� 1

dos
+�

1
lps

�

��
1

doh
+�

1
lph

�
=   

�dohlph��dos+ �lps�

�doslps��doh+ �lph�
  (6-25) 

The AFM roughness value,Rq, of the tool roughness at the tool surfaces are used 

to approximate the gap thickness, whereby do is approximated as  3Rq. For soft and hard 

tools the corresponding do values are, dos = 3 × 66 nmand doh = 3 × 112 nm. The 

SEM image analysis estimated the lateral distance between two particles for both soft and 

hard tools (lps andlph). The values are presented in Table 6-2. 

Putting all the values into equation 6-25, provides the approximate ratio of 

expected for the MRRflow component: 

(MRRflow)soft
(MRRflow)hard

=  √3×112×26 �√3×66+ √10�
√3×66×10�√3×112+ √26�

 ~ 1.55  (6-26) 

Table 6-4details values of the MRRflow term obtained from experiments on both 

hard and soft tools, while also showing the calculated MRRflow ratios at each test 

condition. The ratio of experimentally obtained MRRflow values lies between 1.4 and 

2.07. This is comparable to the theoretically predicted approximate ratio of 1.55 in 

equation 6-26. 
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Table 6-4: Experimental flow induced removal ratio between soft and hard tools 

Frequency
(Hz) 

MRRtotal, 
(mg/hr) 

MRRflow = MRRtotal − MRRcm
∗  

(mg/hr) 
Ratio =   (MRRflow)soft

(MRRflow)hard
 

Soft 
Tool 

Hard 
Tool Soft Tool Hard Tool 

500 2.93 2.5 0.83 0.4 2.07 

5500 4.1 3.53 2 1.43 1.40 

8000 5.27 4.33 3.17 2.23 1.42 
* MRRcm (≈ 2.1 mg/hr) is taken as the removal at no vibrational input, i.e. the ‘y’ axis intercepts for all 
tests in Figure 6-7. 

 

6.6 Conclusions and Discussion 

MRRs of fused silica obtained by polishing with hard and soft tools are compared. 

A similar MRR trend was noted for both pitch grades whereby higher vibrational powers 

resulted in higher MRRs. At any vibrational power input, the removal rate obtained with 

a soft tool is higher than that obtained with a hard tool. The difference is more significant 

at higher vibrational frequencies. At a higher vibrational input frequency (>500 Hz) 

a140% higher flow induced removal rate was obtained using the soft tool (Table 6-4).Soft 

tools produced better surface finishes as when compared to that achieved with a hard 

tool. Up to 200% difference is observed in the lower spatial roughness (SWLI 2.5×) 

values.SEM and AFM evaluations of the tool surfaces provided insights in to the 

difference between the abrasive crusts formed on hard and soft tools, and found more 

particles (over 30% more).Material property differences between hard and soft tools can 

be incorporated into Keanini’s model, with the alteration providing reasonable 

predictions with respect to the MRR expect with the different tools. Each segment of total 

removal rate, MRRcm and MRRflow, individually comply with the experimental results. 

 



7 CHAPTER 7: VIBRATION ADDED FROM EXTERNAL SOURCES 
 
 

Most of the published research on vibration assisted polishing processes utilizes 

high frequency (> 20 kHz) ultrasonic vibrations with amplitudes greater than one micron 

to enhance the polishing outcomes [126 - 135]. However, it has been shown that low 

amplitude vibrations (< 10 nm) up to 16 kHz can have significant impact on the material 

removal obtained during pitch polishing process [Chapter 4]. Polishing on two machines 

with identical process parameters but significantly different vibrational content resulted 

in different polishing outcomes [Chapter 4, 172]. Further investigations revealed an 

approximate linear relationship between the removal rate and nominal vibrational power 

input [Chapter 5], where higher input powers produce higher removal rates. This chapter 

considers the power input associated with two different polishing machines, and 

investigates the possibility of applying external vibration sources to the polishing process 

so as to induce higher removal rates. 

7.1 Vibrational Power versus Removal Rate from Previous Test 

In case of polishing on the test-bed with single frequency input vibrations (chapter 

5), the nominal vibrational power input, W (Watt = Nm/s) was approximated by eqn. 1. 

W = force (mg) × displacement(fA) = mgfA  (7-1) 

Where m is the applied load, g is gravity, and f and Aare the frequency and 

amplitude of the input vibration. The product f×A represents the displacement of 

workpiece in unit time. However on an actual polishing machine the workpiece is 
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subjected to vibrations across multiple frequencies and the total displacement is 

considered to be the summation of all the individual displacements (∑ fiAi). The Fourier 

Transform (FT) of measured accelerometer output provides information on the frequency 

and amplitude content within the frequency bandwidth. Thereby the input power for a 

polishing machine within the frequency range 10 to16 kHz can be calculated by equation 

7-2. 

Ẇ = mg � fiAi

16k Hz

f=10 Hz

                                             (7 − 2) 

Applying equation 7-2 to previously collected data enables power values to be 

calculated for the polishing machines detailed in chapter 4 when using two different pitch 

tools (tools A1 and A2). The results are summarized in Table 7-1. The corresponding 

removal rates are also presented in the same table. Figure 7-1graphically presents the data 

listed in Table 7-1. Referring to the material removal model outlined in chapter 5 and 

presented in Appendix F, the total removal, MRRtot, is described by the following 

equation: 

MRRtot =  MRRcm + MRRflow   (7-3) 

According to the model the chemical-mechanical removal component, MRRcm, is 

insensitive to vibrations while the flow mediated removal, MRRflow, is sensitive to 

vibrations. In Figure 7-1a the y axis intercept represents the MRRcmterm and is 

determined to be 5.92 and 4.8 mg/hr for tool A1 and A2 respectively. The MRRcm 

and MRRflow term are also presented in Table 7-1.Figure 7-1b illustrates the input power 

versus the MRRflow component. 
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Table 7-1: Vibrational powers and corresponding removals for tests in chapters 4. 
Vibrational power of actual polishing  

test in Chalper 4,−Ẇ = mg � fA
16k Hz

f=10 Hz

 

Total removal rates from chapter 4, 
MRRtot =  MRRcm + MRRflow 

(mg/hr) 

FT measured for 
different Tools and 
Polishing Machines 

Power, 
Nm/s Stdev* MRRtot 

MRRcm 
(Fig. 7-1a) 

MRRflow Stdev* 

Tool A1 
Machine 1 0.2 0.03 9.67 

5.92 
3.75 0.97 

Machine 2 0.07 0.009 7.23 1.31 0.31 

Tool A2 
Machine 1 0.17 0.035 8.4 

4.8 
3.6 0.26 

Machine 2 0.06 0.015 6.07 1.27 0.4 
*Standard deviation for three separate measurements. 
 

 
   a      b 

Figure 7-1: a. MRRtot b. MRRflow versus power input for two different tools on the two 
polishing machines. 

 

The high R2 value (0.98) of the best fit line through all data points in Figure 7-1b 

strongly supports that the MRRflow term is proportional to the input power. Thereby 

equation 7-3 becomes 

MRRtot  =  MRRcm +  c × Vibrational power  (7-4) 
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where c is constant and can be determined from experimental test results. Following from 

these results it is not unreasonable to propose a polishing system where external 

vibrational sources could be attached to the polishing system to increase the power input 

and hence the material removal rates. 

7.2 Addition of External Vibrations 

There are a number of possible ways to induce vibrations in a polishing tool, such 

as using a shaker table, piezoelectric vibrating disc, or using a mechanical unbalanced 

motor attached to the underside of the tool. In the case of smooth polishing (nm – 

roughness) the desired amplitude of the excitation should be very low (nm – µm level) 

while the frequency should be such to produce certain input power from the nm level of 

vibration amplitude. To impart additional vibrations the research utilized a low cost 

system consisting of high speed (11 and 13krpm) unbalanced motors, which usually find 

application in mobile phone. The next sections analyze the feasibility of using these 

unbalanced motors to impart additional vibrations to the platen to increase the process 

vibration and thereby the removal rates on fused silica samples. 

7.2.1 Design and Implementations/Characterization 

Four high speed DC motors were obtained, three 3 volt motors (Ø ≈ 6 mm Radio 

Shack model number: 273-047), and one 9 volt motor (Ø ≈ 15 mm Radio Shack model 

number: 273-107). The smaller motors came with a 0.5 g eccentric mass attached to the 

spindle, while for the larger motor a 4 g eccentric mass was prepared and attached to the 

spindle. The small motors can run at ≈ 13 krpm, while the larger motor can run at ≈ 11 

krpm and the unbalanced rotating mass generates the required vibrations. Each motor is 

securely fixed to an aluminum holder that was glued to either the polishing tool platen or 
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the workpiece holder depending on the test conditions. The three small motors were 

connected in series to a 9 volt battery, while the larger motor was connected to a separate 

9 volt battery. The use of batteries allows the motors to be attached to the rotating platen 

without consideration to wiring concerns. 

The extent of vibrations existing at the tool surface were investigated under three 

different conditions, 1) under normal operating conditions with no external vibration 

sources, 2) all four motors are placed on the underside of the polishing platen, and 3) the 

larger motor remains on the underside and while the other three are placed on the 

workpiece holder. Figure 7-2 provides the schematic of condition 2 and condition 3 while 

Figure 7-3is a photograph of condition 2.The natural frequency of the tool platen and the 

workpiece holder were evaluated using SolidWorks simulation, FFEPlus Solid Mesh 

iterative solver [173]. The results in Table 7-2corresponding to the first five frequency 

mode shapes [106]. 

Table 7-2: Natural frequencies of tool platen and workpiece holder. 

Parameters Steel Tool Platen Aluminum Workpiece Holder 

Mode Shape 1 2 3 4 5 1 2 3 4 5 

Natural Frequency, 
kHz 0.57 0.66 0.67 1.3 1.59 4.6 6.2 6.5 9.95 13.75 

 

Since the frequencies of the smaller and larger motors (0.22 and 0.18 kHz 

respectively) are much lower than the natural frequency of the tool and workpiece holder, 

the arrangement of vibrators relative to each other will not significantly impact the 

vibration generation. However for uniformity, the three smaller motors were arranged 

with equal distribution (120˚ apart) at 2/3rd of the radius from the center, for both tool 

and workpiece holder. While the larger motor was placed at 2/3 of the tool radius in 
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between two of the smaller motors and remained in this position for both test conditions2 

and 3.‘Normal operating’ conditions were those detailed in chapter 4 for the fused silica 

polishing test; platen speed = 20 rpm, over-arm sweep = 5 rpm and polishing load = 10 N 

(see Table 4-4). 

 

Figure 7-2: Schematic of condition 2 and 3; 9V motor fixed at bottom for both the 
conditions while 3V motors switched from tool to workpiece. 

 

 

Figure 7-3: Picture of condition 2, the vibrators attached to the bottom of the substrate 
(Tool A3). 
 

An accelerometer mounted onto the top of the tool surface measured the 

vibrations occurring under each set of conditions. The FT of the accelerometer signal 

provided the frequency and amplitude content of the measured vibrations, see chapter 4 
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for details on vibration measurements. The FTs for the three conditions are plotted in 

Figure 7-4. The corresponding power inputs determined by equation 7-2 are also reported 

in Figure 7-4. 

 

Figure 7-4: FTs of the measured vibrations on Machine 2 using tool A3. (g= 9.81 m/s2) 
and calculated power at three conditions. 

 

As the polishing platen consists of a 16 kg steel substrate coated with a 25 mm 

thick layer of Acculap™Soft pitch the external vibration sources make minimal impact 

when attached to the underside of the platen, increasing the power input from 0.07 W (no 

excitation) to 0.12 W, with over 90% of the power increase attributed to the three smaller 

motors (three smaller motor separately run to estimate their contribution). Attachment of 

the motors to the workpiece holder (a 3kg Aluminum block with a polyurethane liner) 

increased the power input to the tool surface up to 0.22 W. In this arrangement the larger 

motor on the underside of the plate has minimal (<5%) contribution to the power 

increase. 

7.3 Polishing Test and Result Analysis 

Fused silica samples were polished under all three vibrational conditions listed in 

Figure 7-4. The tool named A3 is the same tool as A1 used in chapter 4, however since 

the time lapsed between tests was over six months and the tool was extensively 
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reconditioned before reusing, the tool is renamed as A3. The process consumables are 

similar to those detailed in chapter 4.Figure 7-5a details the material removal rates 

obtained on Machine 2 with the different power inputs. The slope of the best fit line 

through the data (m= 20.3) is similar to the slopes obtained using tools A1 (m=18.8) and 

A2 (m=21.2) on polishing Machines 1 and 2, see Figure 7-1a. The y axis intercept 

represents the MRRcmcomponent which is 3.05 mg/hr. Figure 7-5b plots the 

MRRflowcomponent along with the equivalent data for tools A1 and A2 (seen in Figure 

7-1b). The addition of the three extra data points induces minor changes to the slope 

(m=19.8 increases to m=20) and the R2 value (0.98 versus 0.87) which further 

emphasizes the correlation between the power input and the material removal rates, 

MRRtot = MRRcm + c × Vibrational power. 

 
a      b 

Figure 7-5: a. MRRtot versus power inputs for three conditions plotted in Figure 7-4, b. 
MRRflow for A1, A2 and A3. 

 

The surface roughness values of the workpieces are also evaluated before and 

after each of the polishing test. A scanning white light interferometer (Zygo 

NewView5000) is used to measure the surface roughness for low (2.5×) and high (50×) 

spatial resolutions. Figure 7-6a and b depict the average surface roughness values and 

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25

M
RR

to
t
(m

g/
hr

)

Power (Nm/s)

Condition 1

Condition 2
Condition 3

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2 0.25

M
RR

flo
w

(m
g/

hr
)

Power (Nm/s)

A3 with and without excitation
A1 and A2 without excitation



132 

associated standard deviations before and after polishing test for three different 

conditions.  

 
a      b 

Figure 7-6: a. SWLI 2.5× and b. SWLI 50× RMS surface roughness values for three 
conditions Figure 7-4. 

 

For both the 2.5× and 50× roughness values, two significant trends are observed; 

1) for each of the conditions the one hour polishing operation slightly increased the 

roughness values, with increases being larger when the external vibration sources are 

activated, 2) comparing condition 2 and 3, where the external vibrations sources are 

activated, the polished samples have comparable final surface roughness values even 

though there was a 85% difference in the power input and 12% increase in MRRs. 

Although for most of the conditions the roughness values error bars overlap between the 

before and after polishing results, the external vibration sources can potentially 

deteriorate the final surface finish quality. Further investigation required to ascertain if 

this negative impact on finish can be overcome by additional polishing step with the 

external sources turned off. 
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7.4 Summary and Discussion 

Small, low cost, battery operated, high speed unbalanced motors generating lower 

frequency vibrations (<20 kHz) were used to impart nanometer level vibrations into the 

polishing system. These additional vibrations induced up to an 80% increase in the 

material removal rate. This increased removal rates does result in higher surface 

roughness values. This offers new opportunities for those involved in polishing optical 

materials to increase their productivity and throughput. 

These results suggest that the analytic model, which correlates the input 

vibrational power to material removal rate, (outlined in chapter 5 and provided in 

Appendix F) is also applicable in the case where external vibrational sources are used to 

increase the power input. The data in Figure 7-5supports the linearity of the relationship 

between power input and material removal rates irrespective of the power input sources. 



8 CHAPTER 8: CONCLUSIONS AND FUTURE WORK 
 

 
Throughout this dissertation, the experimentally based research intends to explore 

the role of vibrational dynamics in pitch polishing process by investigating the correlation 

between process vibrations and polishing outcomes such as material removal rates and 

surface finish. While the literature studies support the preposition that vibrations affect 

the polishing outcomes, this dissertation strongly answered some follow up questions and 

identified new thoughts for future work. This chapter summarizes the conclusions, 

discusses the findings and ends up by highlighting future work areas. 

8.1 Conclusions 

The main findings of the dissertation summarized below: 

Polishing system vibrations were measured in the 1 Hz to 16 kHz range and were 

found to have amplitudes ranging from several nanometers at lower frequencies down to 

several Angstroms that the higher end of the frequency bandwidth. Factors found to 

affect the vibrational response of the system include; the polishing machine itself, process 

speeds, and tool construction. 

Fused silica polishing tests were conducted on two different machines and with 

two different tool constructions. The tool–machine combination with the highest 

vibrational content (power input) produced higher material removal rates (30%) than that 

of the lower power input combination.  
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The higher level vibrations were also found to have a negative impact on the 

surface finishes obtained in the lower spatial domains. The PSD analysis of the polished 

surfaces at lower spatial domain indicated that the lower frequency response of the 

machines is responsible for deteriorate the lower spatial frequency roughness values. 

A test bed was designed and fabricated (Figure 5-1) that facilitated a more 

controlled investigation into the role of process vibrations on the material removal rates. 

Multiple polishing tests carried out under a wide range of vibration frequencies and 

amplitudes, demonstrated that up to a limit a linear correlation exists between the power 

input and the material removal rate. In this case the limit was controlled by the 

vibrational amplitude, i.e. above 10 microns a decrease in the material removal rate was 

observed. This was attributed to a possible separation between the tool and the 

workpiece. The effect of increase the frequency above 8 kHz was not investigated 

(limited by the shaker table). 

Methods of altering the process vibrations were presented; vibration attenuation 

was achieved through the addition of a layer of cork in the tool construction, and 

amplified by the addition of external vibrational sources to the machine. As expected 

higher material removal rates (80%, see Figure 7-5) were achieved when vibration 

amplification was implemented. 

Limited dynamic testing of pitch samples and tools indicate that while different 

grades of pitch have different dynamic properties, they do not provide significant process 

vibration attenuation or amplification. The tests also indicate that the response of the 

polishing tool is dominated by the metal substrate used in polishing tool fabrication over 

the choice of pitch used to coat the tool. 
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The experimental results provided the basis for a new combined contact-fluid 

dynamics based model developed by Dr. Keanini that considers both nano-scale tool 

topography and thin film fluid flow components. 

Extensive analytical analysis considering the surface topography of hard and soft 

pitch tools demonstrated that Dr. Keanini’s model can be take tool changes into 

consideration. 

8.2 Future Work 

There are many areas of this research that can be extended in the future. The 

future work is branched up into two broad parts; process monitoring and control, and 

further investigations into how to minimize the potential degradation of the surface finish 

with increasing vibrational power input. 

8.2.1 Process Monitoring and Control 

The research has clearly demonstrated that there is a correlation between process 

vibrations and polishing outcomes. This offers the potential to introduce fairly simple 

process control to the workshop floor. Accelerometers could be mounted to the polishing 

machine and over time the vibrational response of the machine could be mapped to the 

process outcomes. This would enable the user to develop an optimal process control 

window. Deviations outside of the window would alert the users to potential issues and 

shorten trouble shooting time frames. 

Similarly the vibrational response of many machines within a facility can be 

compared to each other and characteristics of the ‘good’ polishing systems quantified. 

This may provide suggestions on how to alter lower performing polishing systems, i.e. 
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adjust the driving belt, greasing or replacing the gear box, change the tool substrate 

material, optimize the tool running speed etc. 

Opportunities also exist to alter existing vibrational characteristics by addition of 

external vibration source. A simple turn on turn off product can be developed such as 

unbalance mass motor system (as used in chapter 7), piezoelectric vibrating pad etc. so 

that in can be attached to a polishing system to amplify the vibrations and there by 

optimize the polishing outcomes. The knowledge can incorporate in machine or tool 

design to obtain optimal process vibration. 

8.2.2 Surface Finish Aspects 

While the work demonstrated that the material removal rate increases with 

vibrational power input, it also indicated that the lower spatial frequency roughness 

values can deteriorate. Further works is required to better isolate the factors affecting the 

surface roughness quality, i.e. is it just the presence of the additional vibrations or does 

poor tooling management and/or lack of precision polishing expertise play a role. As the 

polishing tests performed for this research considered mainly the roughness of the part 

and not the part form, it would be of interest to determine if the same surface roughness 

values would be obtained should the parts be polished by an expert, i.e. under optimal 

tooling conditions and process kinematics. If the same trends are observed, then it would 

be of interest to determine the length of additional polishing time required under lower 

vibrational power conditions to reverse any negative impacts of polishing with additional 

vibrations, i.e. is the overall combined polishing time shorter than polishing without 

inducing any additional vibrations within the process. 
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In chapter 4 the PSD analysis performed is based on sub-aperture measurements 

with a field of view of 2.2 mm × 2.4 mm, it is realized that the measurements should be 

expanded further to include larger areas, i.e. full-aperture measurements, so as to better 

understand the impact of vibration on low spatial roughness values. 
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APPENDIX A: VIBRATIONAL TRANSMISSION AND Q FACTORS 
 
 

Before the swept test, the natural frequency of the sample tool platen was 

evaluated utilizing finite element simulation (FFEPlus solver) in SolidWorks. The 

frequency modes were set to 7 and the results are presented in Table A-1. 

Table A-1: Frequency mode and corresponding natural frequency of sample tool platen (6 
mm thick aluminum platen with diameter, Ø = 50 mm). 

Frequency Modes 1 2 3 4 5 6 7 

Natural Frequency, 
kHz 5.3 5.6 5.6 8.7 11.7 11.7 24.4 

 

 
Figure A- 1: Frequency sweep test, red (Asoft) and green (Avf) are synthetic while blue 
(G55) and black (G73) is natural. 
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Figure A-2: Frequency sweep test, red (Asoft) and green (Avf) are synthetic while blue 
(G55) and black (G73) is natural. 

 

 

Figure A-3: Impact test hammer hitting location 
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Figure A-4: Corresponding natural frequencies for different platen material and tool. 
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Q Factor or Quality Factor 

The quality factor or Q factor is a dimensionless parameter that describes 

damping of an oscillator relative to its center frequency [107]. Higher Q value indicates a 

lower damping system i.e. the oscillations die out more slowly. That’s why a parameter 

termed as ‘inverse quality factor’, Q-1 [106] is used to quantify the damping of vibrational 

transmission. Higher Q-1 value indicates higher damping system. For a response curve as 

illustrated in Figure A-5, the Q factor can be calculated from equation A-1 [106]. 

 
𝐐𝐐 =  𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇−𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛
=  𝐟𝐟𝟑𝟑

(𝐟𝐟𝟐𝟐−𝐟𝐟𝟏𝟏)
   (A-1) 

 

 

Figure A-5: Q factor calculation for a typical response, higher Q-1 means higher 
attenuation. 
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APPENDIX B: MATLAB CODE FOR PSD CALCULATION, PSD.M 
 
 
clc; 
fid1 = fopen('25I2.txt','r'); % open the file (fid is a file id) 
pts1 = fscanf(fid1, '%g %g',[2,inf]); 
status = fclose(fid1);          % close the file. 
N=length (pts1);                % sample number 
Fs = N/max(pts1(1,:));          %N/scan length = sampling 
 
%psd with ft 
ydft = ft(pts1(2,:)); 
ydft = ydft(1:N/2+1);   
psdx = (1/(Fs*N)).*abs(ydft).^2; 
psdx(2:end-1) = 2*psdx(2:end-1); % default rectangular window 
q = 0:Fs/N:Fs/2; 
 
plot(q,psdx);  
%plot(q,10*log10(psdx));     % to make y axis logarithmic 
 
xlabel('Frequency, mm^-^1') 
ylabel('nm^2.mm^2') 
title('PSD of SEM image') 
 
%f = fopen('output1.xls', 'w'); 
f = fopen('output.txt', 'w');  
fprintf(f, '%g \n', psdx); 
fclose(f); 
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APPENDIX C: RELATIVE VELOCITY BETWEEN TOOL AND WORKPIECE 
 
 

For a fixed polishing speed (tool × over-arm = 20×5) the relative speed between 

tool and workpiece varies as the workpiece travels over the tool radius, see Figure C-1. 

The workpiece was set to travel back and forth between 40 mm and 120 mm of tool 

radius. The corresponding relative velocities between tool and workpiece over the radius 

are modeled in Figure C-2. 

 
 

Figure C-1: Schematic of relative velocity calculation between tool and workpiece 
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Figure C-2: Velocities of platen, over-arm and combined of both. 

 

Table C-1: Maximum and minimum relative velocities between tool and workpiece from 
Vcombined. 

Relative velocity between tool and workpiece* 

vmin = 0.08 m/s vmax = 0.2 m/s vaverage = 0.15 m/s 
*Considering workpiece fixed with over-arm and not rotating with its own axis. 
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APPENDIX D: SSD EVALUATION BY DR. WESLEY WILLIAMS 
 
 

Characterization of vibration-induced subsurface damage: Two samples, which 

were polished on Machine 1, and two samples which were polished on Machine 2, were 

exposed to a hydrofluoric acid (8%) etch.  Approximately 0.4 µm of material was etched 

away (based on mass loss), revealing defects - scratches, chatter marks, and pits - 

consistent with subsurface damage. The level of subsurface damage in the individual 

specimens was quantified by sampling 36 locations (a 6×6 array) on each etched surface, 

under an Olympus BX51 optical microscope, and by recording a 850 µm × 660 µm 

micrograph at 10× magnification. The images were converted to grayscale, with each 

pixel being represented by an 8-bit integer.  A quadratic surface (in two directions) was 

then fit to the data, after excluding points with grayscale values less than or equal to 

140;the latter were seen to correspond to obvious scratches and pits.  The fit surface was 

then subtracted from the original data set, and the standard deviation of the pixel values 

between the fit and actual surface was calculated.  The fit surface and standard deviation 

were then compared to the original data set (no pixels excluded), and any pixel whose 

grayscale value deviated from the surface fit by more than three standard deviations was 

classified as a defect.  Qualitatively, this algorithm identified defects that were visible to 

the human eye in the micrographs, without producing false positives in noisier regions of 

the images. 

Analysis of images from the samples polished on Machine 1 and Machine 2 

exhibited a great deal of image-to-image variability in the number of pixels at which 

defects were detected.  Figure D-1 depicts a histogram which bins the number of pixels 

detecting damage, versus the number of image sample locations having any given pixel-
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level degree of damage. Figure D-2 shows example surface images exhibiting low and 

high levels of SSD. The least damaged sample images exhibited a 0.09% degree of pixel-

level damage, while the most damaged samples exhibited a 1.2% degree of damage. [The 

degree of damage in any given sample is defined as the number of pixels detecting SSD, 

divided by the total number of pixels in the image.]  These results were not unexpected, 

as defect sites were uncommon and were distributed across the surface, showing up in 

some fields of view and being absent in others.  No significant difference in damage 

count was observed for samples polished on Machine 1 versus Machine 2; standard 

deviations were such that more detailed trends could not be extracted. 

 
Figure D-1: Distribution of damage levels for Machine 1 and Machine 2. Note 72 surface 
images generated on Machine 1 were examined, similarly for Machine 2.  Representative 
images from values indicated by detail 1 and 2 are shown in Figure D-2. 

 

1 
2 
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Figure D-2:10× micrographs of samples representative of damage levels indicated in 
Detail 1 and Detail 2 in Figure D-1. 

 

These simple experiments clearly indicate that even minute levels of vibration can 

significantly increase achievable MRRs, while producing little to no effect on surface and 

subsurface quality. In order to better understand the role of vibration on material removal, 

a test apparatus was constructed which allowed control of both vibration frequency and 

amplitude during polishing. A description of the experimental system and presentation of 

the experimental results obtained are detailed in the next two sections.  

1 

2 
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APPENDIX E: PHASE CALCULATION BY XCORRFUNCTION.M 
 
 

fid = fopen('5µm@500Hz1.txt','r');   % open the file (fid is a file id) 
pts = fscanf(fid, '%g %g %g', [3,inf]);                                             
p1=pts'; 
status = fclose(fid);                % close the file. 
 
[B,A]= BUTTER (2, 5/25000, 'high');  %filtering accls 
pts1 = filter (B,A,p1); 
 
[C,D]= BUTTER (2, 50/25000, 'high');  %filtering CapGage 
pts2 = filter (C,D,p1(:,3)); 
 
disptGlass =1e6*(pts1(:,1)*960.615)/(2*3.14*500)^2; %1e6* for micron 
disptTool =1e6*(pts1(:,2)*912.400)/(2*3.14*500)^2; 
Gap = pts2*2.5; 
 
x= 1/50000:1/50000:5; 
plot (x,disptTool,x,disptGlass,x,(disptTool-disptGlass))  
%first column is w/p (acclm 17), 2nd column is tool (acclm 41) 
 
xlabel('Second') 
ylabel('Displacement and Gap, µm') 
title('Workpiece displacements relative to the tool displacements, 5Micron@500Hz') 
 
%PhaseDifference between tool and glass (not given write values) 
i=1; 
n=1; 
while (n < 250000) 
if pts1(n,1)*pts1(n+1,1) < 0.00       %glass phase 
T1(1,i) = n*2e-5; 
i=i+1; 
        n=n+30;  
end 
    n=n+1; 
end 
j=1; 
n=1; 
while (n < 250000) 
if pts1(n,2)*pts1(n+1,2) < 0.00 
T2(1,j) = n*2e-5;           %tool phase 
j=j+1; 
        n=n+30; 
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end 
    n=n+1; 
end 
 
sum = 0.0; 
for n = 4000:1:4500 
T(1,n)= abs (T1(1,n)-T2(1,n)); 
sum = sum + T(1,n); 
end 
 
AvgPhase = sum/500 
Stdev = std(T)  
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APPENDIX F: DR. KEANINI’S EMPERICAL MODELS 
 
 

The results presented in Figure 5-10and Figure 5-11, corresponding to the small-

amplitude limit of vibration-assisted polishing, are first considered. In this limit, roughly 

corresponding to A≲ 1.6 μmand 500 Hz≤f≤8000 Hz, contact between the tool and 

workpiece is both fluid- and solid-mediated, with the load being shared by pitch-

embedded abrasive particlesand a thin, entrapped fluid layer. Abrasive-workpiece contact 

is assumed Hertzian, and the film thickness, based on local AFM measurements of the 

pitch surface, is assumed to be on the order of 3×Rq ≈ 200 nm. In this limit, workpiece 

material removal occurs by the combined action of chemical-mechanical removal, 

produced by relative motion between the workpiece and contacting tool asperities, and 

flow-mediated removal, driven by vibrational acceleration of the slurry film between the 

tool and workpiece.   

Analysis of material removal in the large-amplitude limit, corresponding roughly 

to 𝐴𝐴 ≥ 5 𝜇𝜇m  and500 Hz ≤ 𝑓𝑓 ≤ 8000 Hz, and yielding the data shown in Figure 5-13,is 

presented in Sec. K below. In contrast to the small-amplitude limit, it is argued - based on 

data in Table 5-4and on surface roughness measurements - that when𝐴𝐴 ≥ 5 𝜇𝜇m, the tool 

and workpiece remain out of contact, separated by a relatively thick slurry film. 

Importantly, in this limit, material removal is thus strictly flow-mediated. Note, from this 

point on, the term ‘gap’ refers to the slurry-filled space separating the tool and workpiece. 

As indicated by Figure 6-3and as supported by AFM data, the gap space is densely 

interpenetrated by tool-embedded polishing abrasives, a large fraction of which are in 

elastic contact with the workpiece.  Thus, the gap space is filled with both slurry and 

fixed, interpenetrating polishing abrasives. 
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A. Combined Chemical-mechanical and Flow-induced Removal: Small Amplitude Limit 

With regard to the small-amplitude limit, three principal results are presented:  

1) The important question concerning the sensitivity of Cook’s [12] chemical-

mechanical material removal mechanism, 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 ,to low-amplitude vibration is 

first addressed. Using two physically distinct arguments, and based on observed 

material removal rates shown in Figure 5-10 and Figure 5-11 it is argued 

that𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 remains insensitive to low-amplitude vibration.  

2) Evidence is presented that the total observed material removal rate, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 , is 

determined by the superposed action of: 

i) vibration-insensitive chemical-mechanical removal, 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 , and  

ii) strictly flow-induced removal, 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , produced by cyclic, vibration-

driven acceleration of the polishing slurry film: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑅𝑅𝑐𝑐𝑐𝑐+𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (F-1) 

3) The non-Newtonian fluid dynamics of the nano-scale, vibrationally forced 

polishing slurry film are analyzed via scaling arguments.  Introducing reasonable 

assumptions concerning the physical mechanisms underlying flow-induced 

material removal, and using the results of the scaling argument, an experimentally 

consistent expression for𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is proposed: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∝ � 𝐴𝐴
𝑑𝑑𝑜𝑜
∙ 𝜔𝜔    (F-2) 

where 𝜔𝜔 = 2𝜋𝜋𝜋𝜋, and 𝑑𝑑𝑜𝑜 is the characteristic gap thickness. 

B. Insensitivity of MRRcm to Vibration: Macroscale Argument 
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The chemical-mechanical material removal mechanism proposed by Cook [12] is 

characterized by enhanced diffusion of hydrogen into the workpiece matrix, driven by, 

and taking place in the vicinity of, nano-scale workpiece-polishing abrasive elastic 

contact zones.  Enhanced hydrogen diffusion produces subsurface weakening of 𝑆𝑆𝑆𝑆 − 𝑂𝑂𝑥𝑥 

bonds which, in turn, enhances chemical removal of near-surface silicates. 

Making the reasonable assumption that Cook’s chemical-mechanical removal 

mechanism can be modeled using Preston’s equation [8], one obtains a lumped, macro-

scale relationship 

𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝐾𝐾𝑝𝑝
𝐹𝐹(𝑡𝑡)
𝐴𝐴𝑜𝑜

𝑣𝑣𝑟𝑟(𝑡𝑡)   (F-3) 

where 

𝐹𝐹(𝑡𝑡) = 𝑚𝑚(𝑔𝑔 + 𝐴𝐴𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (F-4) 

is the time-dependent load acting on the polishing tool, 𝐴𝐴𝑜𝑜is the nominal workpiece area, 

and 𝑣𝑣𝑟𝑟(𝑡𝑡) is the time-varying translational speed of the workpiece relative to the tool.The 

Preston coefficient, 𝐾𝐾𝑝𝑝, captures the effects of process parameters such as slurry 

composition, pH, and temperature. 

Equations (F-3) and (F-4) describe material removal on the short vibration time-

scale, 𝜏𝜏𝑉𝑉 = 𝜔𝜔−1. In order to expose the effect of the vibrational load,𝑚𝑚 ∙ 𝐴𝐴 ∙ 𝜔𝜔2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, on 

chemical-mechanical removal, Eq. (F-3) is integrated over a time scale, 𝜏𝜏𝐼𝐼, that is long 

relative to 𝜏𝜏𝑉𝑉 , but short relative to the time scale for translational motion, 𝜏𝜏𝑇𝑇 , i.e.,𝜏𝜏𝑉𝑉 ≪

𝜏𝜏𝐼𝐼 ≪ 𝜏𝜏𝑇𝑇 , where 𝜏𝜏𝑇𝑇 = 𝐷𝐷𝑜𝑜
𝑣𝑣𝑟𝑟𝑟𝑟

, 𝑣𝑣𝑟𝑟𝑟𝑟 is the characteristic translational speed of the workpiece 

relative to the tool, and 𝐷𝐷𝑜𝑜 is the workpiece diameter. [Note, in the present 
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experiments,𝜏𝜏𝑇𝑇~10 𝑠𝑠 and 𝜏𝜏𝑉𝑉,𝑚𝑚𝑚𝑚𝑚𝑚~2 𝑚𝑚𝑚𝑚. ]. On the intermediate time scale,𝜏𝜏𝐼𝐼,𝑣𝑣𝑟𝑟(𝑡𝑡) 

remains nominally fixed and integration of Eq. (F-4) shows that  

𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐���������� = 1
𝜏𝜏𝐼𝐼
∫ 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐(𝑡𝑡)𝑑𝑑𝑑𝑑 =𝑡𝑡𝑜𝑜+𝜏𝜏𝐼𝐼
𝑡𝑡𝑜𝑜

𝐾𝐾𝑝𝑝
𝑚𝑚𝑚𝑚
𝐴𝐴𝑜𝑜
𝑣𝑣𝑟𝑟(𝑡𝑡𝑜𝑜)  (F-5) 

Thus, at least in theory, vibration appears to play no role in chemical-mechanical 

removal.  

An important question concerns the effect of non-sinusoidal load motion on the 

sensitivity of chemical-mechanical removal to vibration. Specifically, when cyclic load 

motion is non-sinusoidal and the average vibrational load through each cycle is non-zero 

(where the latter is zero for sinusoidal motion), the chemical-mechanical removal 

mechanism does become sensitive to vibration. Moreover, under these circumstances, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐���������� ∝ 𝐴𝐴 ∙ 𝑓𝑓, consistent with the experimental low-amplitude results shown in Figs 7a 

and 7b.  [The latter relationshipcan be shown by expressing a non-sinusoidal, cyclic load 

in a Fourier expansion.] However, in order for load motion to differ significantly from the 

imposed sinusoidal motion, the extremely thin slurry film, again having thickness on the 

order of three times the root mean tool roughness, 3𝑅𝑅𝑞𝑞~𝑑𝑑𝑜𝑜~200 𝑛𝑛𝑛𝑛,must exert a 

viscous damping force, 𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, comparable to the (total) elastic contact force, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 

extant between tool-embeddedpolishing abrasives and the workpiece. A straightforward 

scaling argument, which assumes Hertzian polishing abrasive-workpiece contact, a 

uniform polishing abrasive distribution over the tool surface, and a generalized non-

Newtonian slurry (see Sec. E below), allows comparison of these forces, showing that: 

𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

~ 𝜇𝜇∞𝛿𝛿𝑐𝑐𝜔𝜔𝑅𝑅𝑞𝑞−1𝐴𝐴𝑜𝑜
(𝐸𝐸𝛿𝛿𝑐𝑐𝑅𝑅𝑞𝑞−1𝑎𝑎2)𝑁𝑁𝑐𝑐

      (F-6) 
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where 𝜇𝜇∞, 𝛿𝛿𝑐𝑐, E, a, and 𝑁𝑁𝑐𝑐 = 𝐷𝐷𝑜𝑜2𝑑𝑑𝑝𝑝−2, are, respectively, the slurry viscosity at infinite 

strain rate (see below), the characteristic elastic deformation of tool-embedded polishing 

abrasives, the polishing abrasive elastic modulus, the characteristic radius of abrasive-

workpiece elastic contact zones, and the characteristic total number of abrasive-

workpiece contact points.  In addition, 𝐷𝐷𝑜𝑜 and 𝑑𝑑𝑝𝑝 are, respectively, the workpiece 

diameter and the characteristic diameter of the polishing abrasives. Using a standard 

formula for a[175], 𝐸𝐸 = 1.65 × 1011𝑁𝑁𝑚𝑚−2[85], and values given above for the 

remaining parameters, it is found that 

𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

~10−5       (F-7) 

Thus, assuming that viscous damping represents the only physical mechanism 

capable of producing significant non-sinusoidal load motion, it is clear that the motion 

remains strongly sinusoidal, again suggesting that chemical-mechanical removal remains 

insensitive to vibration. 

C. Insensitivity of MRRcm to Vibration: Micro-scale Argument 

Consider next time-dependent nano-scale elastic contact between random tool 

surface asperities and the workpiece. Using Greenwood and Williamson’s [176] model, 

and assuming a Gaussian distribution of asperity, i.e., polishing abrasive, heights, it is 

found that, over a wide range of (ensemble averaged) elastic deformations, 

〈𝛿𝛿(𝑡𝑡)〉,−0.5𝜎𝜎𝑠𝑠 ≥ 〈𝛿𝛿(𝑡𝑡)〉 ≥ −3.0𝜎𝜎𝑠𝑠, the time-varying, ensemble-average,total elastic 

stress, 〈𝐹𝐹(𝑡𝑡)〉〈𝐴𝐴(𝑡𝑡)〉−1, exerted by the rough tool  surface on the (nominally smooth) 

workpiece surface remains nominally fixed: 

〈𝐹𝐹(𝑡𝑡)〉〈𝐴𝐴(𝑡𝑡)〉−1~constant     (F-8) 
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Thus, assuming the validity of Preston-law material removal, represented by Eq. 

(F-3), this second analysis again strongly suggests that, even for vibration-induced elastic 

deformations much larger than those expected here, the chemical-mechanical removal 

mechanism remains largely insensitive to vibration. Here, instantaneous averages, 〈∙

(𝑡𝑡)〉, are carried out over the distribution of asperity (embedded abrasive) heights, 

〈𝐹𝐹(𝑡𝑡)〉is the total, instantaneous, ensemble average force produced by elastic deformation 

of tool asperities, 〈𝐴𝐴(𝑡𝑡)〉 is the associated total, instantaneous, ensemble average elastic 

contact area, and 𝜎𝜎𝑠𝑠~𝑅𝑅𝑞𝑞is the standard deviation of surface asperity heights relative to the 

mean datum.  

D. Slurry Fluid Dynamics 

Next to be considered are the fluid dynamics within the slurry-filled gap between 

the polishing tool and workpiece; the analysis applies to both the small- and large-

amplitude limits defined above. The objectives center on the following: 

i) Expose the dominant fluid dynamic processes within the gap. 

ii) Identify, and determine the relative importance of, flow processes capable of 

producing workpiece material removal. 

iii) Propose a simple linear relationship between the flow-mediated material 

removal rate, 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , and the dominant fluid dynamic features identified in 

ii). 

Figure F-1 shows the reference plane, Ω, defined as coincident with the mean 

datum of the tool surface. Since the measured root mean square roughness of the tool 

surface, Rq, is on the order of 70 nm, and since this corresponds approximately to a 

characteristic valley-to-peak distance of 6Rq, or equivalently, to three times the 
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characteristic mean datum-to-peak height, the characteristic gap thickness, do, is assumed 

to be on the order of 200 nm; based on the phase lag measurements, Table III above, it is 

assumed that do remains fixed under vibrational motion. 

 

 

Figure F-1: Model definition and parameters. 
 

E. Non Newtonian Behavior of Slurry  

At the outset, five significant limitations are noted, all of which pertain to how the 

slurry is modeled. First, under the experimental conditions used (which are representative 

of ceria-based polishing processes), the slurry behaves in a strongly non-Newtonian 

fashion [177].  Second, while Hsu and Nacu [177] observed shear-thinning behavior for 

ceria-water mixtures, their measurements were limited to maximum shear rates on the 

order of 100 s^(-1); shear rates in the present experiments are approximately four orders 

of magnitude beyond this. Third, the highest ceria-to-water volume ratio examined by 

Hsu and Nacu was 4.32%; the volume ratio used here is 10 %. Fourth, it appears that no 

constitutive relationships have been established for ceria-water-based mixtures of any 

composition. Fifth, thermophysical properties, in particular, the shear-dependent 
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viscosity, as well as thermal conductivity and specific heat, are unknown. In light of these 

limitations, the mixture of free ceria particles, water, and products of the polishing 

process are modeled as a simple, homogeneous, though non-Newtonian fluid. Thus, the 

generic equation of fluid motion, expressed in terms of the fluid stress tensor, 𝜏𝜏 = 𝜏𝜏(𝑟𝑟, 𝑡𝑡), 

and pressure, 𝑃𝑃 = 𝑃𝑃(𝑟𝑟, 𝑡𝑡),relative to a tool-fixed coordinate system (z,r), is given by  

𝜌𝜌[𝑣𝑣,𝑡𝑡+ 𝑣𝑣 ∙ ∇𝑣𝑣] = −∇𝑃𝑃 + ∇ ∙ 𝜏𝜏 + 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝑎𝑎𝑜𝑜 − 𝜌𝜌𝑣𝑣𝑜𝑜 ∙ ∇𝑣𝑣 (F-9) 

where 𝜌𝜌 is the slurry density, 𝑎𝑎𝑜𝑜 = 𝑎𝑎𝑜𝑜(𝑡𝑡) and 𝑣𝑣𝑜𝑜 = 𝑣𝑣𝑜𝑜(𝑡𝑡)are the vertical, cyclic, 

vibration-driven acceleration and velocity of the tool-fixed coordinate system,𝑣𝑣 =

𝑣𝑣(𝑟𝑟, 𝑡𝑡)is the slurry velocity field, and 𝑔𝑔the gravity vector. The velocity field, 𝑣𝑣, 

associated with the fluid within the gap, is that observed in the non-inertial coordinate 

system attached to the reference plane, Ω;  the flow problem is cast in polar-cylindrical 

coordinates so that 𝑣𝑣 = 𝑢𝑢𝑒𝑒𝑟𝑟 + 𝑣𝑣𝑒𝑒𝜃𝜃 + 𝑤𝑤𝑒𝑒𝑧𝑧. In order to highlight the central role of 

vibration on slurry motion, the last two terms on the right of Eqn. (F-9), which 

correspond to vibration-driven inertial terms, are viewed as effective body forces. 

Considering the constitutive behavior of the slurry, the ceria-water mixture is 

assumed to behave as a generalized Newtonian fluid [178]: 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜇𝜇(𝛾̇𝛾)𝛾̇𝛾𝑖𝑖𝑖𝑖     (F-10) 

where𝛾̇𝛾𝑖𝑖𝑖𝑖 = 𝛾̇𝛾is the strain rate tensor, and 𝛾̇𝛾 = 𝐷𝐷𝐷𝐷𝐷𝐷𝛾̇𝛾is the determinant of 𝛾̇𝛾.Using a 

generalized Quemeda model [179],and carrying out measurements over fairly wide 

ranges of slurry pH's, temperatures, and ceria-water weight ratios, Hsu and Nacu [177] 

determined 𝜇𝜇(𝛾̇𝛾) for water-ceria mixtures.  Although the largest shear rates measured 

were only on the order of 100 𝑠𝑠−1,much smaller than the approximate 104 −

105𝑠𝑠−1(~𝐴𝐴𝐴𝐴𝑑𝑑𝑜𝑜−1)shear rates extant here, Hsu and Nacu's data suggest that 𝜇𝜇begins to 
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approach asymptotic values, 𝜇𝜇∞ ,for strain rates greater than approximately 

100 𝑠𝑠−1,consistent with the assumed existence of 𝜇𝜇∞in Quemeda's model [179]. Here, it 

is assumed that  

𝜇𝜇(𝛾̇𝛾) = 𝜇𝜇∞      (F-11) 

and in numerical estimates, the volume fraction-dependent asymptotic viscosities 

reported in [177] are used. Thus, Eq. (10) becomes 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜇𝜇∞𝛾̇𝛾𝑖𝑖𝑖𝑖       (F-12) 

F. Order of Magnitude Analysis: Gap Fluid Dynamics 

Determining the appropriate radial and vertical velocity scales, 𝑢𝑢𝑠𝑠and 𝑤𝑤𝑠𝑠, for the 

slurry within the gap is crucial to arriving at a physically consistent picture of gap 

dynamics.[Aside: Physical consistency here refers to velocity and length scale estimates 

that lead to: i) mathematically-consistent ordering of terms in the governing momentum 

equations, (F-9); ii) a physically reasonable picture of gap fluid dynamics; and iii) 

experimentally verifiable predictions of flow-induced material removal.] A physically 

consistent estimate for 𝑤𝑤𝑠𝑠 follows from the z-component of Eq. (F-9). Specifically, it is 

assumed that vertical vibrational forcing, represented by the penultimate right-side term 

in Eq. (F-9), induces a significant advective vertical acceleration, 𝑤𝑤𝑤𝑤,𝑧𝑧 .Thus, in an order 

of magnitude sense, 𝑤𝑤𝑤𝑤,𝑧𝑧 ~𝑎𝑎𝑜𝑜𝑜𝑜~𝐴𝐴𝜔𝜔2. Approximating 𝑤𝑤𝑤𝑤,𝑧𝑧as𝑤𝑤𝑠𝑠2𝑑𝑑𝑜𝑜−1,where the vertical 

length scale, 𝑧𝑧𝑠𝑠 = 𝑑𝑑𝑜𝑜, then yields 

𝑤𝑤𝑠𝑠 = �𝐴𝐴𝑑𝑑𝑜𝑜𝜔𝜔     (F-13) 

In order to determine a physically consistent radial velocity scale, 𝑢𝑢𝑠𝑠, some care is 

required. Specifically, it is recognized that due to the proliferation of tool-embedded 

polishing abrasives filling the gap space, radial velocities undergo significant variations 



174 

in magnitude and direction, on radial length scales that are on the order of the 

characteristic gap height, 𝑑𝑑𝑜𝑜 . (In the small-amplitude limit, radial velocities vary 

significantly on radial length scales on the order of either 𝑅𝑅𝑞𝑞 or 𝑑𝑑𝑝𝑝,where 𝑅𝑅𝑞𝑞~𝑑𝑑𝑝𝑝~𝑑𝑑𝑜𝑜, 

and where𝑑𝑑𝑝𝑝roughly determines the lateral spacing between embedded abrasives.) Thus, 

from the mass conservation constraint, given by the continuity equation, ∇ ∙ 𝑣𝑣 = 0,𝑢𝑢𝑠𝑠 

follows by balancing 𝑢𝑢,𝑟𝑟against 𝑤𝑤,𝑧𝑧, or 𝑢𝑢𝑠𝑠𝑑𝑑𝑜𝑜−1~𝑤𝑤𝑠𝑠𝑑𝑑𝑜𝑜−1, so that 

𝑢𝑢𝑠𝑠 = �𝐴𝐴𝑑𝑑𝑜𝑜𝜔𝜔     (F-14) 

Two consistency checks can be carried out. First, the estimates for 𝑤𝑤𝑠𝑠 and𝑢𝑢𝑠𝑠, 

along with the estimated vertical and radial length scales, 𝑧𝑧𝑠𝑠 = 𝑟𝑟𝑠𝑠 = 𝑑𝑑𝑜𝑜 , and the time 

scale, 𝑡𝑡𝑠𝑠 =  𝜔𝜔−1, allow comparison of the magnitudes of the advective, 𝑤𝑤𝑤𝑤′𝑧𝑧,and local 

vertical acceleration,𝑤𝑤′𝑡𝑡 , terms in Eq.(9): 

𝑤𝑤𝑤𝑤,𝑧𝑧
𝑤𝑤,𝑡𝑡

~ 𝑢𝑢𝑤𝑤,𝑟𝑟
𝑤𝑤,𝑡𝑡

~� 𝐴𝐴
𝑑𝑑𝑜𝑜

> 1    (F-15) 

While the inequality does not hold for the limited measurements carried out at 

𝐴𝐴 = 100 𝑛𝑛𝑛𝑛, for all other measurements, it remains valid. Thus, the initial assumption 

concerning the dominance of the advective acceleration over the local is confirmed. 

Second, and more importantly, the velocity scales in (11) and (12), through their 

connection to shear stress scales, lead to theoretical material removal rates that are 

consistent with experimental observations. 

 

Shear stress and pressure scales follow from (10) and (7), respectively, where 

terms in the strain rate tensor, 𝛾̇𝛾, are of order  

𝜇𝜇∞𝑤𝑤,𝑟𝑟 ~𝜇𝜇∞𝑤𝑤,𝑧𝑧 ~𝜇𝜇∞𝑢𝑢,𝑧𝑧 ~𝜇𝜇∞𝑢𝑢,𝑟𝑟 ~𝜇𝜇∞𝑤𝑤𝑠𝑠𝑑𝑑𝑜𝑜−1; thus,  



175 

𝜏𝜏𝑟𝑟𝑟𝑟~𝜏𝜏𝑟𝑟𝑟𝑟~𝜏𝜏𝑧𝑧𝑧𝑧~𝜇𝜇∞
𝑤𝑤𝑠𝑠
𝑑𝑑𝑜𝑜

 ~𝜇𝜇∞
𝑢𝑢𝑠𝑠
𝑑𝑑𝑜𝑜

= 𝜇𝜇∞�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔  (F-16a) 

𝑃𝑃~𝜏𝜏𝑖𝑖𝑖𝑖~𝜇𝜇∞
𝑤𝑤𝑠𝑠
𝑑𝑑𝑜𝑜

 ~𝜇𝜇∞
𝑢𝑢𝑠𝑠
𝑑𝑑𝑜𝑜

= 𝜇𝜇∞�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔   (F-16b) 

Note, consistent with the extreme thinness of the gap, viscous shears and 

pressures dominate fluid inertia, where the characteristic ratio of inertia to shear stresses 

(or pressure) is: 

𝜌𝜌|𝑣𝑣∙∇𝑣𝑣|
𝜏𝜏𝑖𝑖𝑖𝑖,𝑗𝑗

~ 𝜌𝜌�𝐴𝐴𝑑𝑑𝑜𝑜𝜔𝜔𝑑𝑑𝑜𝑜
𝜇𝜇∞

≪ 1   (F-17) 

G. Proposed Flow-mediated Removal Mechanisms 

It is proposed that flow-driven removal of workpiece material, under both the 

small- and large-amplitude limits, takes place by three distinct mechanisms: 

i) inertial removal, via cyclic impact of fluid-borne ceria particles on the 

workpiece surface, 

ii) suction/blowing removal via cyclic pressure gradients, and 

iii) frictional removal, produced by cyclic viscous slurry shear stresses. 
 

Additionally, it is proposed that the rate of material removal produced by each 

mechanism is linearly proportional to the scale of each underlying fluid dynamic process.  

Thus, denoting the material removal rate associated with mechanism i) as 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼,and 

those corresponding to mechanisms ii) and iii) as 𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆, respectively, gives:  

𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 ∝ |𝜌𝜌𝜌𝜌 ∙ ∇𝑣𝑣|𝑠𝑠 ∝ 𝜌𝜌𝑤𝑤𝑠𝑠2  = 𝜌𝜌𝑑𝑑𝑜𝑜𝐴𝐴𝜔𝜔2    (F-18a) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 ∝ |∇P|𝑠𝑠 ∝ 𝑃𝑃𝑠𝑠 = 𝜇𝜇∞
𝑤𝑤𝑠𝑠
𝑑𝑑𝑜𝑜

= 𝜇𝜇∞�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔    (F-18b) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆 ∝ |𝜏𝜏|𝑠𝑠 = 𝜇𝜇∞
𝑤𝑤𝑠𝑠
𝑑𝑑𝑜𝑜

= 𝜇𝜇∞�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔     (F-18c) 
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Using the following characteristic magnitudes for the parameters in Eq. (F-18a)-

(16c), 𝜇𝜇∞ = 10−3𝑁𝑁𝑁𝑁𝑚𝑚−2[176],𝜌𝜌 = 103𝑘𝑘𝑘𝑘𝑚𝑚−3 [176], 𝐴𝐴 = 500 𝑛𝑛𝑛𝑛, 𝑑𝑑𝑜𝑜 = 200 𝑛𝑛𝑛𝑛,and 

𝜔𝜔 = 2𝜋𝜋 ∙ 500𝑠𝑠−1, and assuming the validity of Eqs. (18a)-(18c), it is found that viscous-

shear-driven and suction/blowing material removal dominates inertially-driven removal: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆~𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 ≫ 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼    (F-19) 

Finally, this gives the main result of the analysis: under both small- and large-

amplitude vibration, the total flow-driven material removal rate, 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, corresponds 

to the sum 

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑐𝑐1𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆 + 𝑐𝑐2𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃   (F-20) 

Or more specifically, from Eqs. (18b) and (18c): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑐𝑐3𝜇𝜇∞�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔   (F-21) 

H. A Second Set of Scales for𝑑𝑑𝑜𝑜 ≈ 𝐴𝐴; Analysis of the Data in Figures F-1, F-2, and F-3 

A degree of uncertainty attaches to the appropriate scale for 𝑑𝑑𝑜𝑜 , and by extension, 

to the corresponding velocity scales, 𝑤𝑤𝑠𝑠 and 𝑢𝑢𝑠𝑠. The analysis underlying Eqs. (13) 

through (19) assumes that 𝑑𝑑𝑜𝑜 is on the order of 3 ×themeasured root mean square 

roughness, 𝑅𝑅𝑞𝑞 ≈ 70 𝑛𝑛𝑛𝑛. For 𝑑𝑑𝑜𝑜 of this magnitude, and for mostA’s tested, 𝑑𝑑𝑜𝑜 < 𝐴𝐴. 

Under these circumstances, and as indicated in Eq. (F-15), advective acceleration is 

larger than local acceleration, and 𝑤𝑤𝑠𝑠 and 𝑢𝑢𝑠𝑠 are as given in Eqs. (13) and (14).  Based on 

our measurements of 𝑅𝑅𝑞𝑞, and assuming 𝑑𝑑𝑜𝑜 ≈ 3 × 𝑅𝑅𝑞𝑞 (< 𝐴𝐴), we use these scales in 

analyzing the data in Fig. 5-10. 

By contrast, the data in Fig. 5-11 suggests that 𝑑𝑑𝑜𝑜 ≈ 𝐴𝐴. Specifically, when 𝑑𝑑𝑜𝑜 ≈

𝐴𝐴, the following scales emerge:  
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i) 𝑤𝑤𝑠𝑠 = 𝐴𝐴𝐴𝐴 (obtained by balancing 𝑤𝑤,𝑡𝑡 against 𝑎𝑎𝑜𝑜𝑜𝑜 in the z-momentum 

equation), 

ii) 𝑢𝑢𝑠𝑠 = 𝑤𝑤𝑠𝑠 =  𝐴𝐴𝐴𝐴 (from continuity), 

iii) 𝜏𝜏𝑟𝑟𝑟𝑟~𝜏𝜏𝑟𝑟𝑟𝑟~𝜏𝜏𝑧𝑧𝑧𝑧~𝜇𝜇∞
𝑤𝑤𝑠𝑠
𝑑𝑑𝑜𝑜

 ~𝜇𝜇∞
𝑢𝑢𝑠𝑠
𝑑𝑑𝑜𝑜

= 𝜇𝜇∞
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔  (see, for comparison, Eq. (F-16a)), 

and 

Using these estimates, and introducing the same assumptions underlying Eqs. 

(18), one obtains, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∝ 𝐴𝐴𝐴𝐴    (F-22) 

consistent with the qualitative trend observed in Figure F-1. It is thus assumed, when 

analyzing the results in this figure, that 𝑑𝑑𝑜𝑜 ≈ 𝐴𝐴.[While both scaling lead to reasonable fits 

of the data in Fig. 5-10, only the second is consistent with the results in Fig. 5-11.]    

Finally, since the condition 𝑑𝑑𝑜𝑜 < 𝐴𝐴clearly holds for the large-amplitude data, i.e., 

𝐴𝐴 ≥ 5 𝜇𝜇𝜇𝜇, as presented in Fig. 5-13, the velocity, pressure, and stress scales in Eqs. (13) 

through (14) apply. Likewise, the parametric forms of 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼,  𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃 , and 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆 in Eqs. 

(18) are assumed, leading to Eqs. (19) and (20), as well as an expression for𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓of 

the form in Eq. (F-21), i.e., 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∝ �𝐴𝐴 𝑑𝑑𝑜𝑜⁄ 𝜔𝜔.  

I. Combined MRRcm and MRRflow: Comparison with Data in Figure 5-10. 

Consider measured removal rates under the small-amplitude limit, 𝐴𝐴 ≲

1.6 𝜇𝜇𝜇𝜇.Under these conditions, and as suggested by the apparent maximum gap heights, 

𝑑𝑑𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺, shown in Table III, it is assumed that the workpiece maintains contact with 

the tool surface.Thus, both chemical-mechanical [12] and flow-mediated removal take 

place; since, as argued above, chemical-mechanical removal appears to remain 

insensitive to vibration, we express the total material removal rate as: 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑜𝑜𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≲ 1.6 𝜇𝜇𝜇𝜇)  (F-23a) 

or, using Eq. (F-21) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑐𝑐4�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≲ 1.6 𝜇𝜇𝜇𝜇)  (F-23b) 

where, due the uncertain magnitude of 𝜇𝜇∞, 𝑐𝑐3𝜇𝜇∞is rewritten as 𝑐𝑐4, while the known 

parameters 𝐴𝐴 and 𝜔𝜔are maintained. In addition, 𝑑𝑑𝑜𝑜 is assumed to be equal to 3𝑅𝑅𝑞𝑞(=

200 𝑛𝑛𝑛𝑛). 

 

Figure F-2: Comparison between the experimental results shown in Figure 5-10 and the 
theoretical values fit to equation (F-23b). 

 

Theoretically predicted 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡magnitudes from Eq. (F-23b) are compared in 

Fig.5-11 against experimentally observed material removal rates shown in Fig. 5-10. As 

noted, two sets of measurements were performed. In the first, vibration amplitude was 

fixed at A=500 nm and 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 was measured over a range of frequencies, 𝑓𝑓(=

𝜔𝜔(2𝜋𝜋)−1): 500 𝐻𝐻𝐻𝐻 ≤ 𝑓𝑓 ≤ 8000 𝐻𝐻𝐻𝐻. Inthe second, 𝐴𝐴 was fixed at 100 𝑛𝑛𝑛𝑛, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 

was measured at 𝑓𝑓 = 500 𝐻𝐻𝐻𝐻and 𝑓𝑓 = 8000 𝐻𝐻𝐻𝐻.  The coefficient 𝑐𝑐4,and the chemical-

mechanical removal rate, 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐, in Eq. (F-23b) were determined by a least squares fit, 

using the A=500 nm data, with the results𝑐𝑐4 =  4.1 (10)−5𝑚𝑚𝑚𝑚 ∙ ℎ𝑟𝑟−1 ∙ 𝑠𝑠 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 =
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2.10 𝑚𝑚𝑚𝑚 ∙ ℎ𝑟𝑟−1(𝑅𝑅2 = 0.82). These values of 𝑐𝑐4 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 were then used to generate 

both sets of theoretical 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡values shown in Fig.5-11.  As shown, Eq. (F-23b) 

provides reasonable predictions of low-amplitude, vibration-assisted material removal, 

over fairly wide ranges of vibration amplitude and frequency. 

J. Dependence of Small-amplitude MRRtot on Nominal Vibrational Power Input– Figure 
5-10. 
 

As noted above, and as shown in Fig. 5-11, when measured material removal 

rates,𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡,are plotted against the nominal vibration power input to the workpiece, 

𝑊̇𝑊𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, one observes an approximate linear proportionality between 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 and 

𝑊̇𝑊𝑖𝑖𝑖𝑖 : 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 ∝ 𝑊̇𝑊𝑖𝑖𝑖𝑖=𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   (F-24) 

Where m is the applied load acting on the workpiece (expressed as a mass). It is 

important to note that while much of the data underlying Fig. 5-11 is the same as that 

underlying Fig. 5-10, the range of experimental conditions exhibiting the behavior 

represented by Eq. (F-24) is significantly larger than that underlying Fig. 5-10. 

Specifically, two additional sets of measurements, obtained at 𝑓𝑓 = 500 𝐻𝐻𝐻𝐻,𝐴𝐴 = 1.6 𝜇𝜇𝜇𝜇, 

and𝑚𝑚 = 2 𝑘𝑘𝑘𝑘, as well as at𝑓𝑓 = 8000 𝐻𝐻𝐻𝐻, 𝐴𝐴 = 500 𝑛𝑛𝑛𝑛,  and 𝑚𝑚 = 1 𝑘𝑘𝑘𝑘,are observed to 

follow Eq. (F-24); see Fig. 5-11.  

Using the scales noted above, i.e., those associated with the approximate 

equality,𝑑𝑑𝑜𝑜 ≈ 𝐴𝐴,the observed dependence of 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑜𝑜𝑜𝑜 on 𝑓𝑓 ∙ 𝐴𝐴 (or equivalently, 𝜔𝜔 ∙ 𝐴𝐴) can 

again be explained in terms of gap fluid dynamics.  Thus, assuming that chemical-

mechanical and flow-driven removal are superposed, as represented by Eq. (F-23a), and 

using Eq, (22) for 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, we obtain:  
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𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 + 𝑐𝑐5𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≲ 1.6 𝜇𝜇𝜇𝜇)  (F-25) 

As a check on the consistency of the above scaling analyses, we note that since 

Eqs. (23b) and (25) both describe material removal in the small amplitude limit, 𝐴𝐴 ≲

1.6 𝜇𝜇𝜇𝜇, then 𝑐𝑐5should be related to 𝑐𝑐4according to 

𝑐𝑐5𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐4� 𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔    (F-26) 

Thus, 𝑐𝑐5 is determined by a least squares fit of the experimental magnitudes of the 

product,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, against 𝑐𝑐4�𝐴𝐴 𝑑𝑑𝑜𝑜⁄ 𝜔𝜔, where 𝑐𝑐4 = 4.1 (10)−5𝑚𝑚𝑚𝑚 ∙ ℎ𝑟𝑟−1 ∙ 𝑠𝑠(determined 

above); the result is 𝑐𝑐5 = 7.55𝑚𝑚𝑚𝑚 ∙ ℎ𝑟𝑟−1 ∙ 𝑊𝑊−1(𝑅𝑅2 = 0.76). 

Using this value for𝑐𝑐5 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐 = 2.10 𝑚𝑚𝑚𝑚 ∙ ℎ𝑟𝑟−1 (determined above) in Eq. 

(F-25) yields the theoretical points shown in Figure 5-14b. The reasonable agreement 

observed between predicted and measured 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡, again seen over a wide range of 

experimental conditions, provides further evidence of the validity of the proposed picture 

of small-amplitude, in-gap fluid dynamics and material removal.  

 

 

Figure F-3: Comparison between the experimental results shown in Figure 5-11 and the 
theoretical values fit to equation (F-25).  
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K. MRRflow only: Non-contact, Large Amplitude Limit –Figure 5-13. 

As shown in Table III, under conditions where 𝐴𝐴 ≥ 5𝜇𝜇𝜇𝜇,maximum gap 

thicknesses, 𝑑𝑑𝑜𝑜,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺,are, larger than the 3𝑅𝑅𝑞𝑞 ≈ 200 𝑛𝑛𝑛𝑛.A simple argument in which 

complete cyclic closure of the gap is assumed, and in which the associated volumetric 

flow rate, Q=Q(r,t), is determined (via integration of the continuity equation), shows that 

corresponding mean radial velocities,𝑢𝑢� = 𝑢𝑢�(𝑟𝑟, 𝑡𝑡) = 𝑄𝑄(𝑟𝑟, 𝑡𝑡)(2𝜋𝜋𝜋𝜋𝑑𝑑𝑜𝑜)−1, are,at the edge of 

the workpiece, on the order of 50 𝑚𝑚𝑠𝑠−1.  Since slurry velocities of this magnitude are 

never observed, it becomes apparent that for 𝐴𝐴 ≥ 5𝜇𝜇𝜇𝜇, the gap never completely closes, 

so that the workpiece and polishing tool remain completely out of contact.  

Thus, referring to Eq. (F-23b), the total material removal rate is given by 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = 𝑐𝑐6�
𝐴𝐴
𝑑𝑑𝑜𝑜
𝜔𝜔 (𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 ≥ 5 𝜇𝜇𝜇𝜇)   (F-27) 

Equations (F-23b) and (F-27) model physically distinct polishing conditions. In 

the first case, material removal occurs via combined chemical-mechanical and flow-

mediated mechanisms, taking place within thin slurry gaps of height 𝑑𝑑𝑜𝑜~3𝑅𝑅𝑞𝑞, where the 

gapsare punctuated by numerous polishing abrasive asperities; see Figure 6-3. In the 

second, the characteristic gap height, 𝑑𝑑𝑜𝑜, is much larger than 𝑅𝑅𝑞𝑞.Due to this difference, it 

is expected, and observed, that the proportionality constants, 𝑐𝑐4 and 𝑐𝑐6, differ. 

Thus, the coefficient 𝑐𝑐6 is determined, again by a least squares fit, using the four 

material removal rates, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡,observed under large amplitude conditions, 𝐴𝐴 ≥ 5 𝜇𝜇𝜇𝜇, 

with the result 𝑐𝑐6 =  2.75 (10)−4𝑚𝑚𝑚𝑚 ∙ ℎ𝑟𝑟−1 ∙ 𝑠𝑠(𝑅𝑅2 = 0.79).  Using this 𝑐𝑐6in Eq. (F-27) 

then yields the four predicted 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡magnitudes presented in Fig. 13.As shown, 
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theoretically predicted, strictly flow-mediated removal rates are,over 5 𝜇𝜇𝜇𝜇 ≤ 𝐴𝐴 ≤

25 𝜇𝜇𝜇𝜇, in reasonable agreement with those observed. 

Finally, the above scaling analyses can be used to explain the qualitative trends in 

measured 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡, as observed in Figure 5-13.Considering the dependence of the 

characteristic vertical and radial in-gap velocity scales, 𝑤𝑤𝑠𝑠 = 𝑢𝑢𝑠𝑠 = �𝑑𝑑𝑜𝑜𝐴𝐴𝜔𝜔, on 

amplitude, A, as well as the experimentally observed dependence of gap height, 𝑑𝑑𝑜𝑜, on A, 

it is found that for 0.1 𝜇𝜇𝜇𝜇 ≤ 𝐴𝐴 ≤ 10 𝜇𝜇𝜇𝜇, fluid velocities increase at a faster rate with A 

than does 𝑑𝑑𝑜𝑜. Given the assumed linear dependence of 𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 on the characteristic 

slurry shear stresses, 𝜏𝜏𝑟𝑟𝑟𝑟 , 𝜏𝜏𝑟𝑟𝑟𝑟 ,  and 𝜏𝜏𝑧𝑧𝑧𝑧 , as well as on the characteristic pressure, 𝑃𝑃𝑠𝑠 - all of 

which are on the order of 𝜇𝜇∞𝑤𝑤𝑠𝑠𝑑𝑑𝑜𝑜−1- it thus appears that the observed roll-off in 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡for 𝐴𝐴 ≤ 10 𝜇𝜇𝜇𝜇reflects a roll-off in in-gap fluid stresses. Similarly, 

 

 

Figure F-4: Comparison between the experimental results shown in Figure 5-13 and the 
theoretical values obtained from equations (F-23b) and (F-27).Equation (F-23b) is used 
for 𝐴𝐴 ≲ 1.6 𝜇𝜇𝜇𝜇 and equation (F-27) is used for 𝐴𝐴 ≥ 5 𝜇𝜇𝜇𝜇. 
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The decay in observed 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡for 𝐴𝐴 ≥ 10 𝜇𝜇𝜇𝜇reflects a faster rate of increase in 

gap thickness, 𝑑𝑑𝑜𝑜 = 𝑑𝑑𝑜𝑜(𝐴𝐴), than the rate of increase in 𝑤𝑤𝑠𝑠 = 𝑤𝑤𝑠𝑠(𝐴𝐴)and 𝑢𝑢𝑠𝑠 = 𝑢𝑢𝑠𝑠(𝐴𝐴); thus, 

fluid shears and associated 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 ′𝑠𝑠 decay. 
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APPENDIX G: MATLAB CODE FOR PARTICLESSIZE, SNOWFLAKES.M 
 
 

How the Granulometry of Snowflakes program works: 

This example shows how to calculate the size distribution of snowflakes in an 

image by using Granulometry. Granulometry determines the size distribution of objects 

in an image without explicitly segmenting (detecting) each objects first. 

Read Image: 

Read in the 'snowflakes.png' image, which is a photograph of snowflakes. 

I = imread('snowflakes.png'); 
figure, imshow(I) 

 

 

Figure G-1: photograph of snowflakes. 

Enhance Contrast: 

The first step is to maximize the intensity contrast in the image. It can do this 

using ADAPTHISTEQ, which performs contrast-limited adaptive histogram equalization. 

Rescale the image intensity using IMADJUST so that it fills the data type's entire 

dynamic range. 

claheI = adapthisteq(I,'NumTiles',[10 10]); 
claheI = imadjust(claheI); 
imshow(claheI); 
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Figure G-2: Enhanced image. 

Determine Intensity Surface Area Distribution in Enhanced Image: 

Granulometry estimates the intensity surface area distribution of snowflakes as a 

function of size. Granulometry likens image objects to stones whose sizes can be 

determined by sifting them through screens of increasing size and collecting what 

remains after each pass. Image objects are sifted by opening the image with a structuring 

element of increasing size and counting the remaining intensity surface area (summation 

of pixel values in the image) after each opening. 

Choose a counter limit so that the intensity surface area goes to zero as you increase the 

size of your structuring element. For display purposes, leave the first entry in the surface 

area array empty. 

for counter = 0:22  %particles are disk type and counter is in radius 
remain = imopen(claheI, strel('disk', counter)); 
intensity_area(counter + 1) = sum(remain(:)); 
end 
figure,plot(intensity_area, 'm - *'), grid on; 
title('Sum of pixel values in opened image as a function of radius'); 
xlabel('radius of opening (pixels)'); 
ylabel('pixel value sum of opened objects (intensity)'); 
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Figure G-3: Sum of pixel values. 

Calculate First Derivative of Distribution: 

A significant drop in intensity surface area between two consecutive openings 

indicates that the image contains objects of comparable size to the smaller opening. In 

above figure most of the particles are in between radius 5-10 pixel. This is equivalent to 

the first derivative of the intensity surface area array, which contains the size distribution 

of the snowflakes in the image. Calculate the first derivative with the DIFF function. 

intensity_area_prime= diff(intensity_area); 
plot(intensity_area_prime, 'm - *'), grid on; 
title('Granulometry (Size Distribution) of Snowflakes'); 
set(gca, 'xtick', [0 2 4 6 8 10 12 14 16 18 20 22]); 
xlabel('radius of snowflakes (pixels)'); 
ylabel('Sum of pixel values in snowflakes as a function of radius'); 
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Figure G-4: First derivative of curve in Figure G-3. 

Extract Snowflakes Having a Particular Radius: 

Notice the minima and the radii where they occur in the graph. The minima tell 

you that snowflakes in the image have those radii. The more negative of the minimum 

point means the higher the snowflakes' cumulative intensity at that radius. For example, 

the most negative minimum point occurs at the 5 pixel radius mark. You can extract the 

snowflakes having a 5 pixel radius with the following steps. 

open5 = imopen(claheI,strel('disk',5)); 
open6 = imopen(claheI,strel('disk',6)); 
rad5 = imsubtract(open5,open6);  %black for 6 – black for 5 
imshow(rad5,[]); 

 

 
Figure G-5: Post processed image. 
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APPENDIX H: MATLAB CODES FOR PERCENTAGE OF BRIGHT AREA 
 
 

Clear all; 
 
filter_cutoff = 100 ; %70% of the rms of the image in line 98 
 
% Opens gui browser for STL file selection. 
[Filename, Pathname, Filterindex] = uigetfile('*.jpg', 'Pick a JPG file.'); 
 
ifisequal(Filename,0) || isequal(Pathname,0) 
disp('User pressed cancel') 
else 
disp(['User selected ', fullfile(Pathname, Filename)]) 
 
% Merges Pathname and Filename for opening image and creates Excel 
% version to save to. 
JPGFile = strcat(Pathname,Filename); 
XLSFile = strcat(Pathname,Filename(1:end-4),'_enhanced','.xlsx'); 
 
% This is for determining the light intensity mean and STD 
% reads jpg image into MATLAB 
    I=imread(JPGFile); 
 
% Converts image from RGB to gray scale matrix also turns into a 2d matrix 
    g=rgb2gray(I); 
 
%select square to crop the gray pic 
    r=0; 
    c=0; 
rend=422;   %Asoft = 757*1004 and Ahard = 623*833 
cend=528; 
RMSsum=0.00; 
i=1; 
whilei<=(rend-r) 
        j=1; 
while j<=(cend-c) 
x(i,j)=g(r+i,c+j); 
RMSsum = RMSsum+x(i,j)^2;   % for rms calculation 
            j=j+1; 
end 
i=i+1; 
end 
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% This is to verify that the matrix is an n x n matrix     
disp(' Matrix Size:') 
disp(size(x)) 
MatrixMaxValue = max(max(x,[],1),[],2) 
MatrixMinValue = min(min(x,[],1),[],2) 
%MatrixRMSValue = sqrt(sum/(i-1)) 
RMSsum 
% Determines size of matrix 
columns = length(x(:,1)); 
rows = length(x(1,:)); 
totalsize = columns*rows; 
 
% The following code removes all values less than the filter cutoff 
% from the matrix. 
%------------------------------------------------------------------ 
assistmatrix = ones(columns,rows)*filter_cutoff; 
 
% Changes X to double, reduce by filter cutoff, then change back to 
% uint8. Anything of filter cutoff and before is changed to 0. 
new = double(x) - assistmatrix; 
new = uint8(new); 
imshow(new) 
 
% Reduces all good values to 1's and bad values to 0's. 
assistmatrix = uint8(new./new); 
 
% Calculates number of good ('1') and bad ('0') cells 
cells_good = sum(sum(assistmatrix)) 
cells_bad = totalsize - cells_good 
 
 
% Return new to original values, excluding the 0 cells 
new = new + assistmatrix*filter_cutoff; 
%------------------------------------------------------------------ 
 
% Gives the average of the values in the rows and columns divided by the size of the 

matrix times a matrix of all good cells. 
 
avg_mean = sum(sum(new)) / cells_good 
avg_matrix = avg_mean * double(assistmatrix); 
% Used double x because there are decimals in the average values and and the matrix 

originally is an 8bit image 
stdeva = (double(new) - avg_matrix).^2; 
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% Summing columns and rows 
stdevb = sum(sum(stdeva)); 
 
% Finding standard deviation by the n-1 formula 
stdev = sqrt(stdevb/(cells_good - 1)) 
 
% Finds the rms of the image, it only needs the first element because the avg matrix is a 

ones matrix multiplied by the avg value 
rms = sqrt((stdev^2 + avg_mean^2)) 
 
 
% This determines ballpark alignment of the dot in the picture 
 
% Percentage of black space 
percent_black = (cells_bad/(totalsize))*100 
 
    X = grayslice(new,16); 
%imshow(new); 
figure, imshow(X,jet(16)) 
 
end 
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