
THE CENTER AND CYCLICITY PROBLEMS IN A FAMILY OF THREE
DIMENSIONAL POLYNOMIAL SYSTEMS OF ORDINARY DIFFERENTIAL

EQUATIONS

by

Kokouvi Hounkanli

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2013

Approved by:

Dr. Douglas S. Shafer

Dr. Joel Avrin

Dr. Thomas G. Lucas

Dr. Aidong Lu



ii

c⃝ 2013

Kokouvi Hounkanli

ALL RIGHTS RESERVED



iii

ABSTRACT

KOKOUVI HOUNKANLI. The center and cyclicity problems in a family of three
dimensional polynomial systems of ordinary differential equations. (Under the

direction of DR. DOUGLAS S. SHAFER)

This dissertation is mainly a study of the center problem in the context of a family

of three dimensional systems of ordinary differential equations of the form

u̇ = −v + P (u, v, w), v̇ = u+Q(u, v, w) ẇ = −λw +R(u, v, w),

for which the right-hand sides are polynomials and λ ̸= 0. Such systems are called

polynomial systems.

There is a two dimensional local center manifold W c
loc through the origin. It is invari-

ant under the flow. The problem is to decide whether there is a focus or a center at

the origin for the flow restricted to W c
loc.

For two-dimensional systems a general method due to Poincaré and Lyapunov reduces

the problem to that of solving an infinite system of polynomial equations whose vari-

ables are parameters of the system of differential equations. That is, the center-focus

problem is reduced to the problem of finding the variety of the ideal generated by

a collection of polynomials, called the focus quantities of the system ([12]). In this

thesis we show how these ideas can be generalized to the setting of systems in R3

of the form above. This will involve generalizing to this setting the concepts of the

complexification of real systems, normal forms and the center variety, described for

two-dimensional systems by Valery G. Romanovski and Douglas S. Shafer in the Cen-

ter and Cyclicity Problems: A Computational Algebra Approach. We then apply the

ideas to the Moon-Rand family of systems that arise naturally. We will solve the

center problem by providing sufficient conditions for the existence of a center, and

otherwise determine the stability of the focus on W c
loc.
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CHAPTER 1: INTRODUCTION

Consider the family of three dimensional polynomial system of ordinary differential

equations of the form,

u̇ = −v + P (u, v, w)

v̇ = u+Q(u, v, w)

ẇ = −λw +R(u, v, w),

(1.1)

for which, P (x, y, z), Q(x, y, z) and R(x, y, z) are polynomials without constant or

linear part.

The system and its associated vector field X,

X(u, v, w) =(−v + P (u, v, w))
∂

∂u
+

(u+Q(u, v, w))
∂

∂v
+

(−λw +R(u, v, w))
∂

∂w

are analytic on a neighborhood of the origin, for which the eigenvalues of the associ-

ated linear part at the origin are ±i and −λ with λ ̸= 0.

There exists a two dimensional local center manifold W c
loc through the origin, tangent

to the (u, v)−plane and invariant under the flow ([4, 11, 13]). The center manifold

need not be unique and also it need not be analytic. There is a Cr center mani-

fold for every r ∈ N. The local flows induced by X on any two Cr center manifolds

are Cr−1 conjugate ([3]). It is known, however, that when the origin is a center for

X | W c
loc, then the local manifold is unique, and is analytic. The system is not linear
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and moreover the linear part at the singular point, the origin, has eigenvalues that

are purely imaginary. Therefore, the topological type of the origin is not determined

by the linear approximation. Although in general for a non-analytic system on the

plane, an isolated singularity at which the eigenvalues are purely imaginary does not

have to be either a center or a focus, in the situation of (1.1), for the flow induced by

X on any center manifold at the origin, the origin must be either a focus, in which

case there is a neighborhood of the origin in which every orbit spirals towards or

away from the origin, or center, in which case there is a neighborhood of the origin

in which every orbit except the origin is periodic ([1]). Two problems naturally arise

in this context. The first is the center problem, which is to determine whether the

origin is a center or a focus for the flow restricted to W c
loc. The second is the cyclicity

problem, which is to determine the maximum number of limit cycles (isolated closed

orbits) that can emerge from the focus or center when the right hand side of (1.1) is

perturbed slightly.

Recent decades have seen a surge of interest in the center and cyclicity problems.

Certainly an important reason for this is that the resolution of these problems involves

extremely laborious computations, which nowadays can be carried out using powerful

computational facilities. Applications of concepts that could not be utilized even 30

years ago are now feasible, often on a personal computer, because of advances in

the mathematical theory, in the computer software of computational algebra, and in

computer technology. This thesis explains and illustrates methods of computational

algebra, as a means of approaching the center-focus and cyclicity problems in the

context of system (1.1).

The methods we present can be most effectively exploited if the original real system

of differential equations is properly complexified; hence, the idea of complexifying a

real system, and more generally working in a complex setting, is one of the central

ideas of the thesis. Although the idea of extracting information about a real system
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of ordinary differential equations from its complexification goes back to Lyapunov, it

is still relatively scantily used ([12]).

Chapter 2 introduces the primary technical tools for this approach to the center

and cyclicity problems for (1.1). We cover the complexification of real systems of

ordinary differential equations and the basics of the theory of normal forms of ordinary

differential equations, including examples for the normalization procedure. We next

cover the generalization of the Lyapunov center theorem to our new setting, and

other theorems that are aimed at the investigation of the stability of singularities (in

this context termed equilibrium points) by means of Lyapunov functions. We then

describe how the concept of a center can be generalized to complex systems, in order

to take advantage of working over the algebraically closed field C in place of R.

In Chapter 3, we explore the Lyapunov numbers, derive polynomials in the co-

efficients of the system whose vanishing is sufficient for existence of a center on the

local center manifold. We prove that their vanishing is also necessary for existence of

a center, and thus show that the set of parameter values for which there is a center

on the center manifold is an affine variety. We present an efficient computational

algorithm for computing the focus quantities, which are the polynomials that define

the center variety. This program and its efficiency are demonstrated by applying the

algorithm to compute the first few focus quantities for two particular examples of

certain families of quadratic systems.

Chapter 4 is devoted to the application of the theory to the Moon-Rand family of

systems that arose in the problem of modeling certain flexible structures.



CHAPTER 2: COMPLEXIFICATION AND NORMAL FORMS

2.1 Complexification of real systems

Our main concern is to work with the family of systems in the form (1.1), but it

is more appealing to complexify the system because the eigenvalues of the linear part

at the origin of every system in question are complex. We begin by considering the

real space (x, y, z) as a complex plane cross a line.

x = u+ iv, z = w. (2.1)

Differentiating (2.1) and using (1.1) we obtain

ẋ = u̇+ iv̇

= (−v + P (u, v, w)) + i(u+Q(u, v, w))

= i(u+ iv) + P (u, v, w) + iQ(u, v, w).

That is,

ẋ = ix+ S

(
x+x̄
2
, x−x̄

2i
, z

)
. (2.2)

Equation (2.2) is a single complex equation that carries all the information in the first

two equations in (1.1). Nothing changes if we adjoin to (2.2) its complex conjugate,

˙̄x = −ix̄+ S

(
x+x̄
2
, x−x̄

2i
, z

)
.
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If we let U = R(x+x̄
2
, x−x̄

2i
, z) and replace every occurrence of x̄ in ẋ, ˙̄x, and ż by a new

variable y, and replace for any coefficient ajk that arises in S its complex conjugate

ājk by bkj, regarded as independent of ajk, then we obtain

ẋ = ix+ S(x, y, z)

ẏ = −iy + T (x, y, z)

ż = −λz + U(x, y, z)

(2.3)

The system (2.3) in C3 is the complexification of the real system (1.1). This leads to

the study of families of systems that are of the form,

ẋ = P̃ (x, y, z) = i(x−
∑

(p,q,r)∈S

apqrx
p+1yqzr)

ẏ = Q̃(x, y, z) = −i(y −
∑

(p,q,r)∈S

bpqrx
qyp+1zr)

ż = R̃(x, y, z) = (−λz −
∑

(p1,q1,r1)∈T

cp1q1r1x
p1yq1zr1+1)

(2.4)

where the variables x, y, z are complex, the coefficients of P̃ , Q̃, R̃ are also complex,

where S ⊂ ({−1} ∪ N0) × N0 × N0 is a finite set, every element (p, q, r) of which

satisfies p+ q+ r ≥ 1, where bpqr = āqpr ∈ S, and where T ⊂ N0 ×N0 × ({−1} ∪N0).

The set S specifies the collection of admissible nonzero coefficients, hence the family

of systems under consideration.

The unusual indexing simplifies later expressions that will arise. Similarly, although

system (2.4) is a system of the form (3.13) below, we will find that it is more convenient

to completely factor out the i than it is to use the form (3.13). The complexification

of any individual system of the form (1.1) can be written in the notation of (2.4)

by choosing the set S and T and the individual coefficients apqr, bqpr and cp1q1r1 suit-

ably. The collection of admissible coefficients in (1.1) determines the collection of

admissible coefficients in (2.4). For example, if P,Q, and R are arbitrary homoge-
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neous polynomials of a fixed degree, then the nonlinearities in (2.4) correspond to all

homogeneous nonlinearities of the same degree.

In general our interest is in families of systems of the form (2.4) when y is regarded

as independent of x and the coefficients bpqr do not necessarily satisfy b̄qpr = apqr,

i.e., when they are not necessarily complexifications of real systems. We can then

specialize the general results to the case of complexifications, as with the family of

Moon-Rand systems that will be examined in Chapter 4. In any case the degree of

the polynomials in (1.1) or the allowable non-zero coefficients must be restricted in

order for computations to be feasible. In such a situation the collection of admissible

coefficients is viewed as a parameter space; for (2.4) it will be denoted E(a, b, c).

2.2 Normal Forms

Normal forms of differential equations are essential tools in the study of differential

equations and in their applications. Given a relatively complicated differential system

with a singularity, there exists, in many instances, a local change of coordinates

accompanied by a possible rescaling in time after which the system takes a most

simple form: a normal form. The idea is to modify the system by eliminating as

many terms as possible. System (2.3) (hence (2.4)) may be written as

ẋ = Ax+X1(x). (2.5)

We will investigate normal forms of complex systems (2.5). Since we are working

with systems whose right-hand sides are power series, we will also allow formal rather

than convergent series as well.

We say that the original system (2.5) under consideration is formally equivalent to a

like system

ẏ = Ay + Y (y) (2.6)
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if there is a change of variables

x = H(y) = y + h(y) (2.7)

that transforms (2.5) into (2.6), where the coordinate functions of Y and h, Yj and

hj, j = 1, · · · , n, are formal power series. If all Yj and hj are convergent power series

(and all Xj are as well), then by the Inverse Function Theorem the transformation

(2.7) has an analytic inverse on a neighborhood of O and we say that (2.5) and (2.6)

are analytically equivalent.

Consider the following example drawn from ([12]).

Example 2.2.1. Consider the linear system

ẋ1 = 2x1

ẋ2 = x2

which has a hyperbolic equilibrium at the origin, and the general quadratic system

with the same linear part,

ẋ1 = 2x1 + ax21 + bx1x2 + cx22

ẋ2 = x2 + a
′
x21 + b

′
x1x2 + c

′
x22.

We make the change of coordinates x = y + h(2)(y) + h(3)(y) + · · · , where the linear

terms are the identity because the linear part is already in canonical form. Then,

ẋ = ẏ + dh(2)(y)ẏ + · · · = (I + dh(2)(y) + · · · )ẏ.

Note that x and y could be either real or complex and that for y sufficiently close to
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0 the linear transformation (I + dh(2)(y) + · · · ) is invertible. Hence, inserting,

ẏ = (I + dh(2)(y) + · · · )−1ẋ = (I − dh(2)(y) + · · · )−1ẋ,

and writing

h(2)(y) =

a20y21 + a11y1y2 + a02y
2
2 + · · ·

b20y
2
1 + b11y1y2 + b02y

2
2 + · · ·

 ,

a computation gives

ẏ1
ẏ2

 =

2y1 + (a− 2a20)y
2
1 + (b− a11)y1y2 + cy22 + · · ·

y2 + (a′ − 3b20)y
2
1 + (b′ − 2b11)y1y2 + (c′ + b02)y

2
2 + · · ·

 .

From this last expression it is important to note that five of the six quadratic terms

can be eliminated by a suitable choice of h, so that the normal form through order

two is ẏ1
ẏ2

 =

2y1 + cy22

y2

 . �

In general, in Rn, for α = (α1, · · · , αn) ∈ Nn
0 , let x

α denote xα1
1 · · · xαn

n , let |α| =

α1 + · · ·+ αn, and let Hs denote the vector space of functions from Rn to Rn each of

whose components is a homogeneous polynomial function of degree s; elements of Hs

will be termed vector homogeneous functions. Then for ẋ = Ax+ · · · , working step

by step attempting to eliminate homogeneous terms of higher and higher degree, it

is well known that at each stage

(a) we can eliminate all terms of degree k iff the operator

L : Hk → Hk : p(y) 7→ dp(y)Ay − Ap(y) is onto,

(b) otherwise we can be certain to eliminate only those terms that lie in Image(L)

and there remain terms in any previously specified complementary subspace Kk ofHk,

such that Hk = Image(L)
⊕

Kk. (In general, for system (2.5) on Cn this is proved in
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([12]) using Lemma 2.3.1.) Then, this means that higher order terms X
(α)
m xα in (2.24)

corresponding to pairs (m,α) for which (m,α)−κm ̸= 0 for all m ∈ {1, 2, · · · , n} and

for all α ∈ Nn
0 for which |α| > 2 are the ones that can definitely be eliminated by a

near-identity transformation (2.7). The remaining terms have the following special

designation.

Definition 2.2.2. Let κ1, · · · , κn be the eigenvalues of the matrix A in (2.5), ordered

according to the choice of a Jordan normal J of A, and let κ = (κ1, · · · , κn). Suppose

m ∈ {1, · · · , n} and α ∈ Nn, |α| = α1 + · · ·+ αn ≥ 2, are such that (α, κ)− κm = 0.

Then m and α are called a resonant pair, the corresponding coefficient X
(α)
m of the

monomial Xα in the mth component of X is called a resonant coefficient, and the

corresponding term is called a resonant term of X. Index and multi-index pairs,

terms, and coefficients that are not resonant are called nonresonant.

A 88normal form′′ for system (2.5) should be a form that is as simple as possible.

The first step in the simplification process is to change the linear part A in (2.5)

into a Jordan normal form. We will assume that the preliminary step has already

been taken, so we begin with (2.5) in the form

ẋ = Jx+X(x), (2.8)

where J is a lower-triangular Jordan matrix. (Note that the following definition is

based on this supposition.) The simplest form that we are sure to be able to obtain

is one in which all nonresonant terms are zero, so we will take this as the meaning of

the term 88normal form.′′

Definition 2.2.3. A normal form for system (2.5) is a system (2.8) in which every

nonresonant coefficient is equal zero. A normalizing transformation for system (2.5)

is any (possibly formal) change of variables (2.7) that transforms (2.5) into a normal

form; it is called distinguished if for each resonant pair m and α, the corresponding
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coefficient h
(α)
m is zero, in which case the resulting normal form is likewise termed

distinguished.

Example 2.2.4. Consider any C∞ system (2.5) with an equilibrium at O that has the

form:

ẋ1 = x1 + ax21 + bx1x2 + cx1x3 + · · ·

ẋ2 = 2x2 + a′x21 + b′x1x2 + c′x1x3 + · · ·

ẋ3 = x3 + a′′x21 + b′′x1x2 + c′′x1x3 + · · · .

(2.9)

The resonant coefficients are determined by the equations

(α, κ)− 1 = α1 + 2α2 + α3 − 1 = 0

(α, κ)− 2 = α1 + 2α2 + α3 − 2 = 0

(α, κ)− 1 = α1 + 2α2 + α3 − 1 = 0.

When |α| = 2, the first and third equations do not have a solution and the second

equation has solution (α1, α2, α3) ∈ {(2, 0, 0), (1, 0, 1), (0, 0, 2)}; for |α| ≥ 3, no equa-

tion has a solution. Thus by Definition 2.2.3, for any k ∈ N0, the normal form through

order k is

ẏ1 = y1 + o(|y|k)

ẏ2 = 2y2 + Y
(2,0,0)
2 y21 + Y

(1,0,1)
2 y1y3 + Y

(0,0,2)
2 y23 + o(|y|k)

ẏ3 = y3 + o(|y|k). �

For families of systems (2.4), the eigenvalues of A are i,−i and −λ. The resonant
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coefficients are determined by the equations

(α, κ)− i = iα1 − iα2 − λα3 − i = 0

(α, κ) + i = iα1 − iα2 − λα3 + i = 0

(α, κ) + λ = iα1 − iα2 − λα3 + λ = 0.

Solutions of the first equation that correspond to |α| ≥ 2 are the triplets

(n + 1, n, 0), n ∈ N0, n ≥ 1; solutions of the second equation that correspond to

|α| ≥ 2 are the triplets (n, n + 1, 0), n ∈ N0, n ≥ 1; solutions of the third equation

that correspond to |α| ≥ 2 are the triplets (n, n, 1), n ∈ N0, n ≥ 1. By Definition

2.2.3, the normal form of families of systems (2.4) is

ẋ1 = ix1 +
∞∑
n=1

X(n+1,n,0)xn+1
1 yn1

ẏ1 = −iy1 +
∞∑
n=1

Y (n,n+1,0)xn1y
n+1
1

ż1 = −λz1 +
∞∑
n=1

Z(n,n,1)xn1y
n
1 z1,

which we will write as

ẋ1 = ix1 + x1

∞∑
j=1

X(j+1,j,0)(x1y1)
j = ix1 + x1X(x1y1)

ẏ1 = −iy1 + y1

∞∑
j=1

Y (j,j+1,0)(x1y1)
j = −iy1 + y1Y (x1y1)

ż1 = −λz1 + z1

∞∑
j=1

Z(j,j,1)(x1y1)
j = −λz1 + z1Z(x1y1).

(2.10)

From now X and Y will specify the functions appearing in (2.10).

It is important to note that the qualitative behavior of the system (1.1) is invariant

under the nonlinear change of coordinates (2.7), which has an inverse in a small neigh-

borhood of the origin since it is near-identity transformation; i.e., the two systems
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are topologically conjugate, and therefore they have the same qualitative behavior in

a neighborhood of the origin. The method of reducing the system (1.1) to its normal

form (system (2.3)) by means of a near-identity transformation of coordinates of the

form (2.7) originated in the Ph.D. thesis of Poincaré ([11]).



CHAPTER 3: THE CENTER PROBLEM

Definition 3.0.5. A first integral on an open set Ω in Rn or Cn of a smooth or analytic

system of differential equations

ẋ1 = f1(x), · · · , ẋn = fn(x) (3.1)

defined everywhere on Ω is a differentiable function Ψ : Ω −→ C that is not constant

on any open subset of Ω but is constant on trajectories of (3.1) (that is, for any

solution x(t) of 3.1 in Ω the function ψ(t) = Ψ(x(t)) is constant). A formal first

integral is a formal power series in x, not all of whose coefficients are zero, which

under term-by-term differentiation satisfies d
dt
[Ψ(x(t))] ≡ 0 in Ω [12].

Remark 3.0.6. (a) If Ψ is a first integral or formal first integral for system (3.1)

on Ω, if F : C → C is any nonconstant differentiable function, and if λ is any

constant, then Φ = F ◦ Ψ is a first integral or formal first integral for the system

ẋ1 = λf1(x), · · · , ẋn = λfn(x) on Ω.

(b) If

X(x) = f1(x)
∂

∂x1
+ · · ·+ fn(x)

∂

∂xn
(3.2)

is the smooth or analytic vector field on Ω associated to system (3.1), then a non-

constant differentiable function (or formal powers series) Ψ on Ω is a first integral (or

formal first integral) for (3.1) if and only if the function XΨ vanishes throughout Ω :

XΨ = f1
∂Ψ

∂x1
+ · · ·+ fn

∂Ψ

∂xn
≡ 0 on Ω. (3.3)
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(c) Our concern is only with a neighborhood of the origin, so by 88existence of a first

integral′′ we will always mean 88existence on a neighborhood of the origin′′.

Our first result is a generalization to (2.4) a result from the analogous two-

dimensional case (system (2.4) without z). It connects existence of a first integral to

properties of the normal form.

Theorem 3.0.7. System (2.4) admits a formal first integral of the form

Ψ(x, y, z) = xy + · · · .

if and only if the functions X and Y in any normal form (2.10) satisfy

X + Y ≡ 0.

Proof. Suppose (2.4) has such a formal first integral of the form

Ψ(x, y, z) = xy + · · · .

Let x = H(y) be the normalizing transformation that produces (2.10) from (2.4).

Recalling from (2.7) the form of H and writing F = Ψ ◦ H according to our usual

convention, F (x1, y1, z1) has the form

F (x1, y1, z1) =
∑

(α1,α2,α3)

F (α1,α2,α3)xα1
1 y

α2
1 zα3

1

= x1y1 + · · · .

(3.4)
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Then F is the formal first integral for (2.10), hence

∂F

∂x1
(x1, y1, z1)[ix1 + x1X(x1y1)]+

∂F

∂y1
(x1, y1, z1)[−iy1 + y1Y (x1y1)]+

∂F

∂z1
(x1, y1, z1)[−λz1 + z1Z(x1y1)] ≡ 0

(3.5)

which we arrange as

ix1
∂F

∂x1
(x1, y1, z1)− iy1

∂F

∂y1
(x1, y1, z1)− λz1

∂F

∂z1
(x1, y1, z1) =

− x1
∂F

∂x1
(x1, y1, z1)X(x1y1)− y1

∂F

∂y1
(x1, y1, z1)Y (x1y1)

− z1
∂F

∂z1
(x1, y1, z1)Z(x1y1).

(3.6)

A simple computation on the left-hand side of (3.6) and inserting (2.10) into the

right-hand side, yield

∑
|α|≥2

(iα1 − iα2 − λα3)F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1 =

−
[∑

|α|≥2 α1F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1X

(j+1,j,0)(x1y1)
j

]
−
[∑

|α|≥2 α2F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1 Y

(j,j+1,0)(x1y1)
j

]
−
[∑

|α|≥2 α3F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1 Z

(j,j,1)(x1y1)
j

]
.

(3.7)

We claim that F (x1, y1, z1) is a function of (x1y1) alone, so that it may be written as

F (x1, y1, z1) = f1(x1y1) + f2(x1y1)
2 + · · · .

The claim is precisely the statement that for any term F (α1,α2,α3)xα1
1 y

α2
1 zα3

1 of F ,

(α1 − α2, α3) ̸= (0, 0) implies F (α1,α2,α3) = 0. (3.8)
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Equation (3.4) implies that for |α| ≤ 2, F (α1,α2,α3) = 0 except for F (1,1,0) = 1. That

is,(3.4) shows (3.8) holds for |α| ≤ 2. This implies that the right-hand side of (3.7)

has the form

−
[
x1y1 +

∑
|α|≥3 α1F

(α1,α2,α3)xα1
1 y

α2
1 zα3

1

] [∑∞
j=1X

(j+1,j,0)(x1y1)
j

]
−

[
x1y1 +

∑
|α|≥3 α2F

(α1,α2,α3)xα1
1 y

α2
1 zα3

1

] [∑∞
j=1 Y

(j,j+1,0)(x1y1)
j

]
−

[∑
|α|≥3 α3F

(α1,α2,α3)xα1
1 y

α2
1 zα3

1

] [∑∞
j=1 Z

(j,j,1)(x1y1)
j

]
= c2(x1y1)

2 + · · ·

for c2 = −(X(2,1,0) + Y (1,2,0)). Hence, the left-hand side of (3.7) has the same form.

It has no terms of order 3, because −λα3 + (α1 − α2)i ̸= 0 if α1 + α2 + α3 is odd,

F (α) = 0 for |α| = 3. The terms of order 4 are c2(x1y1)
2, so F (2,2,0) = c2 and F (α) = 0

for |α| = 4, α ̸= (2, 2, 0).

Now, for k ∈ N, assume that implication (3.8) holds for |α| ≤ 2k. We want to show

that it also holds for |α| ≤ 2(k+1). For simplicity we will consider equation (3.7) for

|α| ≥ 2k. That is

∑
|α|≥2k

(iα1 − iα2 − λα3)F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1 =

−
[∑

|α|≥2k α1F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1X

(j+1,j,0)(x1y1)
j

]
−
[∑

|α|≥2k α2F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1 Y

(j,j+1,0)(x1y1)
j

]
−
[∑

|α|≥2k α3F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1 Z

(j,j,1)(x1y1)
j

]
.

(3.9)
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If implication (3.8) holds for |α| ≤ 2k, then the right-hand side of (3.9) has the form

−
[
kF (k,k,0)(x1y1)

k +
∑

|α|≥2k+1 α1F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1X

(j+1,j,0)(x1y1)
j

]
−

[
kF (k,k,0)(x1y1)

k +
∑

|α|≥2k+1 α2F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1 Y

(j,j+1,0)(x1y1)
j

]
−
[∑

|α|≥2k+1 α3F
(α1,α2,α3)xα1

1 y
α2
1 zα3

1

] [∑∞
j=1 Z

(j,j,1)(x1y1)
j

]
= ck+1(x1y1)

k+1 + · · ·

for ck+1 = −kF (k,k,0)(X(2,1,0)+Y (1,2,0)). Hence, the left-hand side of (3.9) has the same

form. It has no terms of order 2k+1, hence because−λα3+(α1−α2)i ̸= 0 if α1+α2+α3

is odd, F (α) = 0 for |α| = 2k + 1. The terms of order 2(k+1) are ck+1(x1y1)
k+1, so

F (k+1,k+1,0) = ck+1 and F (α) = 0 for |α| = 2(k + 1), α ̸= (k + 1, k + 1, 0). Hence by

(3.9) implication (3.8) holds for |α| ≤ 2(k+1). Therefore, by mathematical induction,

(3.8) must hold in general, establishing the claim.

But if F (x1, y1, z1) = f(x1y1), then

x1
∂F

∂x1
= x1y1f

′(x1y1),

y1
∂F

∂y1
= x1y1f

′(x1y1) and

z1
∂F

∂x1
= 0.

Letting w = x1y1, (3.6) becomes

0 ≡ −wf ′(w)X(w)− wf ′(w)Y (w) = −wf ′(w)(X(w) + Y (w)).

But because F is a formal first integral, it is not a constant, so we immediately obtain

X + Y ≡ 0.
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Direct calculations show that if X + Y ≡ 0, then

Ψ̂(x1, y1, z1) = x1y1 + · · ·

is the first integral of (2.10). The coordinate transformation that places (2.4)(hence

(2.5)) in normal form has the form given in (2.7), hence has an inverse of the form

y = x + ĥ(x). Therefore, system (2.4)(hence (2.5)) admits a formal first integral of

the form Ψ(x, y, z) = xy + · · · .�

Theorem 3.0.8 (Lyapunov Center Theorem). An analytic system on a neighborhood

of the origin in R3 of the form

u̇ = −v + · · ·

v̇ = u+ · · ·

ẇ = −λw + · · ·

(3.10)

has a center on some (hence every) local center manifold if and only if the system (in

R3) admits a real analytic local first integral

Φ(u, v, w) = u2 + v2 + · · · (3.11)

in a neighborhood of the origin in R3.

Proof. Section 3 of ([2]).

Now, rewriting (3.11) as

Φ(u, v, w) = (u+ iv)(u− iv) + · · · ,

and by applying (2.1), Φ(u, v, w) in (3.11) is equal to xy + · · · . This means that

existence of a first integral or formal first integral of (1.1) on a neighborhood of the
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origin is equivalent to existence of a first integral of the form

Ψ(x, y, z) = xy +
∑

j+k+n≥3

νj−1,k−1,nx
jykzn, where j, k, n ∈ N0 (3.12)

for its complexification (2.4) in a neighborhood of the origin in C3. Here is the gen-

eralization of the concept of a center to the complex setting, based on the Lyapunov

Center Theorem.

Definition 3.0.9. Consider the system

ẋ1 = ix1 +X1(x1, x2, x3)

ẋ2 = −ix2 +X2(x1, x2, x3)

ẋ3 = −λx3 +X3(x1, x2, x3),

(3.13)

where x1, x2 and x3 are complex variables and X1, X2 and X3 are complex series

without constant or linear terms that are convergent in a neighborhood of the origin.

System (3.13) is said to have a center at the origin if it has a formal first integral of

the form

Ψ(x1, x2, x3) = x1x2 +
∑

j+k+n≥3

wj,k,nx
j
1x

k
2x

n
3 . (3.14)

Theorem 3.0.10. The following statements about real analytic system (1.1) are equiv-

alent:

(1) The origin is a center for the system restricted to any local center manifold.

(2) The system (1.1) admits a formal first integral in the neighborhood of the origin

in R3 of the form,

Ψ(u, v, w) = u2 + v2 + · · · .

(3) The system (1.1) admits a real analytic local first integral in the neighborhood of
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the origin in R3 of the form,

Φ(u, v, w) = u2 + v2 + · · · .

Proof.

(1) ⇔ (3) is shown by the Lyapunov center theorem above.

(2) ⇒ (3): In Section 5 of [2], it is shown that for the functions X and Y in the normal

form (2.10), X + Y ≡ 0 implies that the distinguished normalizing transformation

x = H(y) = y + h(y) that changes (2.5) to (2.6) is analytic. By the Inverse Function

Theorem it has a local analytic inverse, hence by the last part of the proof of Theorem

3.0.7,the fact that Ψ̂(x1, y1, z1) = x1y1 + · · · is analytic implies that Ψ(x, y, z) =

xy + · · · is a real analytic local first integral in the neighborhood of the origin in R3.

(3) ⇒ (2) is automatic. �

3.1 The Poincaré First Return Map and the Lyapunov Numbers

The object of this section is the real analytic system (1.1) that we write as u̇ = f(u)

on a neighborhood of O in R3, where f(0) = 0 and the eigenvalues of the linear part

of f at O are ±i and λ with λ ̸= 0. The polynomials P,Q and R on the right-

hand sides of (1.1) can be written as P (u, v, w) =
∑N

k=2 P
(k)(u, v, w), Q(u, v, w) =∑N

k=2Q
(k)(u, v, w), andR(u, v, w) =

∑N
k=2R

(k)(u, v, w), where P k(u, v, w), Qk(u, v, w)

and Rk(u, v, w) (if nonzero) are homogeneous polynomials of degree k. But we do not

need to do this in R3 because we will be restricting to the two-dimensional center

manifold and working in local coordinates, which means we are still in R2. We review

the theory of the Poincaré first return map in a neighborhood of the origin in R2 for

systems of the form

u̇ = au− bv + P (u, v)

v̇ = bu+ av +Q(u, v)

. (3.15)
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In polar coordinates u = r cosφ, v = r sinφ, system (3.15) becomes

ṙ = ar + P (r cosφ, r sinφ) cosφ+Q(r cosφ, r sinφ) sinφ

= ar + r2[P (2)(cosφ, sinφ) cosφ+Q(2)(cosφ, sinφ) sinφ+ · · · ]

φ̇ = b− r−1[P (r cosφ, r sinφ) sinφ−Q(r cosφ, r sinφ) cosφ]

= b− r[P (2)(cosφ, sinφ) sinφ−Q(2)(cosφ, sinφ) cosφ+ · · · ].

(3.16)

It is clear that for |r| sufficiently small, if b > 0 then the polar angle φ increases as

t increases, while if b < 0 then the angle decreases as t increases. It is convenient to

consider, in place of system (3.16), the equation of its trajectories on the polar plane

dr

dφ
=
ar + r2F (r, sinφ, cosφ)

b+ rG(r, sinφ, cosφ)
= R(r, φ). (3.17)

The function R(r, φ) is a 2π-periodic function of φ and is analytic for all φ and for all

|r| < r∗, for some sufficiently small positive real number r∗. The fact that the origin

is a singularity for (3.15) corresponds to the fact that R(r, φ) ≡ 0, so that r = 0 is a

solution of (3.17). We can expand R(r, φ) in a power series in r :

dr

dφ
= R(r, φ) = rR1(φ) + r2R2(φ) + r3R3(φ) + · · · = a

b
r + · · · , (3.18)

where Rk(φ) are 2π-periodic functions of φ. The series is convergent for all φ and for

all sufficiently small r. Denote by r = f(φ, φ0, r0) the solution of system (3.18) with

initial conditions r = r0 and φ = φ0. The function f(φ, φ0, r0) is an analytic function

of all three variables φ, φ0 and r0 and has the property that

f(φ, φ0, 0) ≡ 0 (3.19)
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(because r = 0 is a solution of (3.18)). We can expand f(φ, 0, r0) in a power series in

r0,

r = f(φ, 0, r0) = w1(φ)r0 + w2(φ)r
2
0 + · · · , (3.20)

which is convergent for all 0 ≤ φ ≤ 2π and for |r0| < r∗ for r∗ sufficiently small. This

function is a solution of (3.18), hence

w′
1r0 + w′

2r
2
0 + · · · ≡

R1(φ)(w1(φ)r0 + w2(φ)r
2
0 + · · · ) +R2(φ)(w1(φ)r0 + w2(φ)r

2
0 + · · · )2 + · · · ,

where the primes denote differentiation with respect to φ. Equating the coefficients

of like powers of r0 in this identity, we obtain recurrence differential equations for the

functions wj(φ) :

w′
1 = R1(φ)w1,

w′
2 = R1(φ)w2 +R2(φ)w

2
1,

w′
3 = R1(φ)w3 + 2R2(φ)w1w2 +R3(φ)w

3
1,

...

(3.21)

The initial condition r = f(0, 0, r0) = r0 yields

w1(0) = 1, wj(0) = 0 for j > 1. (3.22)

Using these conditions, we can consequently find the functions wj(φ) by integrating

equations (3.21). In particular,

w1(φ) = e
a
b
φ (3.23)
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Definition 3.1.1. Fix a system of the form (3.15).

(a) The function

ℜ(r0) = f(2π, 0, r0) = η̃1r0 + η2r
2
0 + η3r

3
0 + · · · (3.24)

(defined for|r0| < r∗), where η̃1 = w1(2π) and ηj = wj(2π) for j ≥ 2, is called the

Poincaré first return map or just the return map.

(b) The function

D(r0) = ℜ(r0)− r0 = η1r0 + η2r
2
0 + η3r

3
0 + · · · (3.25)

is called the difference function.

(c) The coefficient ηj, j ∈ N, is called the jth Poincaré-Lyapunov number.

Let ℜ(u) denote the Poincaré first return map on a sufficiently short segment of

the positive u−axis and D(u) = ℜ(u) − u. By the kth Poincaré-Lyapunov quantity

we mean the coefficient ηk in the expression D(u) = η1u + η2u
2 + · · · . It is known

that there always exists a sufficiently smooth function V from a neighborhood of the

origin into R of the form V (u, v) = 1
2
(u2 + v2) + · · · such that if ς is the vector field

associated to (3.15) then ςV = L4(u
2+v2)2+L6(u

2+v2)3+ · · · . ([5]). The coefficient

L2k will be called the kth Lyapunov quantity.

Theorem 3.1.2. System (3.15) has a center at the origin if and only if all the Poincaré-

Lyapunov numbers are zero. Moreover, if η1 ̸= 0, or if for some k ∈ N

η1 = η2 = · · · = η2k = 0, η2k+1 ̸= 0, (3.26)

then all trajectories in a neighborhood of the origin are spirals and the origin is a

focus, which is stable if η1 < 0 or (3.26) holds with η2k+1 < 0 and is unstable if η1 > 0

or (3.26) holds with η2k+1 > 0.



24

Proof. Section 3 in ([12]).

3.2 Focus Quantities

Focus quantities are polynomials in the coefficients of certain polynomial systems

of differential equations on R2 or C2 whose vanishing provides necessary and sufficient

conditions for the existence of a center. In this section we derive analogous polyno-

mials that determine existence of a center at the origin on the center manifold at the

origin of system (1.1).

Beginning with a family (1.1) we form the complexification (2.4). We will actually

work in more generality by not assuming that the coefficients bpqr are restricted to

satisfying the condition bpqr = aqpr. To determine if a system of the form (2.4) has

a center at the origin, by Definition 3.0.9 we must look for a formal first integral of

the form (3.12). A function Ψ(x, y, z) of the form (3.12) is a formal first integral of a

system of the form (2.4) if and only if

XΨ =
∂Ψ

∂x
P̃ (x, y, z) +

∂Ψ

∂y
Q̃(x, y, z) +

∂Ψ

∂z
R̃(x, y, z) ≡ 0,

which reads

i

(
y +

∑
j+k+n≥3 j · νj−1,k−1,nx

j−1ykzn
)(

x−
∑

(p,q,r)∈S apqrx
p+1yqzr

)
+

i

(
x+

∑
j+k+n≥3 k · νj−1,k−1,nx

jyk−1zn
)(

−y +
∑

(p,q,r)∈S bqprx
qyp+1zr

)
+(∑

j+k+n≥3 n · νj−1,k−1,nx
jykzn−1

)(
−λz −

∑
(p1,q1,r1)∈T cp1q1r1x

p1yq1zr1+1

)
≡ 0.

(3.27)

From (3.12), we must have ν0,0,0 = 1 and ν1,−1,0 = ν0,−1,1 = ν−1,1,0 = ν−1,0,1 =

ν−1,−1,2 = 0, so that ν0,0,0 is the coefficient of xy in Ψ(x, y, z). We set apqr = bqpr = 0

for (p, q, r) ̸∈ S and cp1q1r1 = 0 for (p1, q1, r1) ̸∈ T.
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With these conventions, for k1, k2 in {−1} ∪ N0 and k3 in N0 the coefficients gk1,k2,k3

of xk1+1yk2+1zk3 in (3.27) are zero for k1 + k2 + k3 < 1 and for k1 + k2 + k3 ≥ 1 are

gk1,k2,k3 =− iak1,k2,k3 + ibk1,k2,k3 + [−λk3 + (k1 − k2)i]νk1,k2,k3

− i

k1+k2+k3+1∑
j+k+n=2
1≤j≤k1+2
0≤k≤k2+1
0≤n≤k3

jak1−j+1,k2−k+1,k3−nνj−1,k−1,n

+ i

k1+k2+k3+1∑
j+k+n=2
0≤j≤k1+1
1≤k≤k2+2
0≤n≤k3

kbk1−j+1,k2−k+1,k3−nνj−1,k−1,n

−
k1+k2+k3+1∑
j+k+n=2
0≤j≤k1+1
0≤k≤k2+1
1≤n≤k3+1

nck1−j+1,k2−k+1,k3−nνj−1,k−1,n.

(3.28)

Starting from (2.4), we wish to find νj−1,k−1,n so that gk1,k2,k3 = 0 for all (k1, k2, k3),

thus yielding a formal first integral Ψ. If we proceed in a step-by-step process, at the

first stage finding all suitable νk1,k2,k3 for which k1 + k2 + k3 = 1, at the second stage

finding all suitable νk1,k2,k3 for which k1 + k2 + k3 = 2, and so on, then for a triplet

k1, k2 and k3, if k1 ̸= k2 and k3 ̸= 0, and if all coefficients νj1,j2,j3 are already known

for j1 + j2 + j3 < k1 + k2 + k3, then νk1,k2,k3 is uniquely determined by (3.28) and the

conditions that gk1,k2,k3 be zero, and the process is successful at this step.

By our specifications of ν1,−1,0, ν0,−1,1, ν0,0,0, ν−1,1,0, ν−1,0,1 and ν−1,−1,2, the pro-

cedure can be started. But at every second stage (in fact, at every even value of

k1+ k2+ k3), there is one triplet k1, k2 and k3 such that k1 = k2 = K > 0 and k3 = 0,
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for which (3.28) becomes

gK,K,0 =− iaK,K,0 + ibK,K,0

− i
2K+1∑
j+k=2

1≤j≤K+2
0≤k≤K+1

jaK−j+1,K−k+1,0νj−1,k−1,0

+ i

2K+1∑
j+k=2

0≤j≤K+1
1≤k≤K+2

kbK−j+1,K−k+1,0νj−1,k−1,0

−
2K+1∑

j+k+1=2
0≤j≤K+1
0≤k≤K+1

cK−j+1,K−k+1,−1νj−1,k−1,1.

(3.29)

The coefficient νK,K,0 is now missing, so the process of constructing a formal first

integral Ψ succeeds at this step only if the expression on the right-hand side of (3.29)

is zero. The value of νK,K,0 is not determined by the equation (3.28) and may be

assigned arbitrarily. For a fixed choice of λ in R \ {0}, it is evident from (3.28) that

for all indices k1, k2 in {−1} ∪ N0 and k3 in N0, νk1,k2,k3 is a polynomial function of

the coefficients of (2.4), that is, is a polynomial in elements of the set that we denote

E(a, b, c), hence by (3.29) so are the expressions gK,K,0 for all K. The terms νk1,k2,k3

in (3.29) are obtained by setting gk1,k2,k3 = 0 in (3.28) at the stage 2K − 1. Thus,

gK,K,0 =
g̃K,K,0

dK
, where dK = f(λ) =

∏
k1+k2+k3=2K−1

[−λk3 + (k1 − k2)i].

Then for the values of λ = iz, where z is a nonzero integer, dK = 0, that is gK,K,0 is

not defined. Therefore, if λ is allowed (like the a, b, c) to be complex, we do not have

a center variety, and when λ is restricted to only real values there is a center variety.

The polynomial g1,1,0 is unique, but for K ≥ 2 the polynomial gK,K,0 depends

on the arbitrary choices made for νj,j,0 for 1 ≤< K. So while it is clear that if for

the system (a∗, b∗, c∗), gK,K,0(a
∗, b∗, c∗) = 0 for all K ∈ N, then there is a center
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at the origin, since the process of constructing the formal first integral ψ succeeds

at every step, the truth of the converse is not immediately apparent. For even if

for some K ≥ 2 we obtained gK,K,0(a
∗, b∗, c∗) ̸= 0, it is conceivable that if we had

made different choices for the polynomials νj,j,0 for 1 ≤ K, we might have gotten

gK,K,0(a
∗, b∗, c∗) = 0. We will show below (Theorem 3.2.3) that in fact whether or not

gK,K,0 vanishes at any particular (a∗, b∗, c∗) ∈ E[a, b, c] is independent of the choices

of the νj,j,0. Thus, the polynomial gK,K,0 may be thought of the Kth 88 obstacle ′′ to

the existence of a first integral (3.4). If at a point (a∗, b∗, c∗) of our parameter space

E[a, b, c], gK,K,0(a
∗, b∗, c∗) ̸= 0, then the construction process fails at that step, no

formal first integral of the form (3.12) exists for the corresponding system (2.4), and

by Theorem 3.0.8, the system does not have a center at the origin. Only if all the

polynomials gK,K,0 vanish, gK,K,0(a
∗, b∗, c∗) = 0 for all K > 0, does the corresponding

system (2.4) have a formal first integral of the form (3.12), hence have a center at the

origin of C3. Although it is not generally true that a first integral of the form (3.12)

exists, the construction process always yields a series of the form (3.12) for which

XΨ = XXP̃ + XY Q̃+ XZR̃ reduces to

XΨ = g1,1,0(xy)
2 + g2,2,0(xy)

3 + g3,3,0(xy)
4 + · · · . (3.30)

A pseudocode algorithm for applying this idea for computing the coefficients in Ψ

and the focus quantities is given in Table 4.1.

Example 3.2.1. Let us consider the set of all systems of the form (2.4) whose sets of

admissible indices ordered from greatest to least under degree lexicographic order are
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S and T, S = {(1, 0, 0), (−1, 1, 1)} and T = {(1, 1,−1), (0, 0, 1)}. Then (2.4) reads

ẋ = i(x− a1,0,0x
2 − a−1,1,1yz)

ẏ = −i(y − b1,−1,1xz − b0,1,0y
2)

ż = −λz − c1,1,−1xy − c0,0,1z
2

(3.31)

We will use (3.28) to compute νk1,k2,k3 through the first stage, and use (3.29) to

compute g1,1,0.

Stage 0: k1 + k2 + k3 = 0 :

(k1, k2, k3) ∈ {(−1,−1, 2), (−1, 0, 1), (−1, 1, 0), (0,−1, 1), (0, 0, 0), (1,−1, 0)}.

By definition, ν0,0,0 = 1 and ν−1,−1,2 = ν−1,0,1 = ν−1,1,0 = ν0,−1,1 = ν1,−1,0 = 0.

Stage 1: k1 + k2 + k3 = 1 :

(k1, k2, k3) ∈ {(−1,−1, 3), (−1, 0, 2), (−1, 1, 1), (−1, 2, 0), (0,−1, 2), (0, 0, 1),

(0, 1, 0), (1,−1, 1), (1, 0, 0), (2,−1, 0)}.

In (3.28), j + k + n runs from 2 to 2.

If (k1, k2, k3) = (−1,−1, 3), (j, k, n) ∈ {(1, 0, 1)} for the first sum, (j, k, n) ∈ {(0, 1, 1)}

for the second sum, and (j, k, n) ∈ {(0, 0, 2)} for the third sum. Inserting the values

of νk1,k2,k3 from stage 0 into (3.28) yields

g−1,−1,3 =− ia−1,−1,3 + ib−1,−1,3 − 3λν−1,−1,3 − ia−1,0,2ν0,−1,1 + ib0,1,2ν−1,0,1

− 2c0,0,1ν−1,−1,2 = −3λν−1,−1,3.

Setting g−1,−1,3 = 0 yields ν−1,−1,3 = 0.

If (k1, k2, k3) = (−1, 0, 2), (j, k, n) ∈ {(1, 0, 1), (1, 1, 0)} for the first sum, (j, k, n) ∈

{(0, 1, 1), (0, 2, 0)} for the second sum, and (j, k, n) ∈ {(0, 0, 2), (0, 1, 1)} for the third
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sum. Inserting the values of νk1,k2,k3 from stage 0 into (3.28) yields

g−1,0,2 =− ia−1,0,2 + ib−1,0,2 + (−2λ− i)ν−1,0,2 − ia−1,0,2ν0,−1,1

− ia1,0,2ν0,0,0 + ib0,1,2ν−1,0,1 + ib0,−1,2ν−1,1,0 − 2c0,0,1ν−1,−1,2

− c0,0,1ν−1,0,1 = (−2λ− i)ν−1,0,2.

Setting g−1,0,2 = 0 yields ν−1,0,2 = 0.

If (k1, k2, k3) = (−1, 1, 1), (j, k, n) ∈ {(1, 0, 1), (1, 1, 0)} for the first sum, (j, k, n) ∈

{(0, 1, 1), (0, 2, 0)} for the second sum, and (j, k, n) ∈ {(0, 0, 2), (0, 1, 1)} for the third

sum. Inserting the values of νk1,k2,k3 from stage 0 into (3.28) yields

g−1,1,1 =− ia−1,1,1 + ib−1,1,1 + (−λ− 2i)ν−1,1,1 − ia−1,0,0ν0,−1,1 − ia1,1,1ν0,0,0

+ ib0,1,1ν−1,0,1 + ib0,0,1ν−1,1,0 − c0,1,0ν−1,0,1 − 2c0,1,−1ν−1,−1,2

=− 2ia−1,1,1 + (λ− 2i)ν−1,1,1.

Setting g−1,1,1 = 0 yields ν−1,1,1 =
−2ia−1,1,1

λ+2i
.

Applying the same procedure for all the remaining choices of (k1, k2, k3), we obtain

ν−1,2,0 = 0,

ν0,−1,2 = 0,

ν0,0,1 = 0,

ν0,1,0 = 2b0,1,0,

ν−1,1,1 =
2ib1,−1,1

λ−2i
,

ν1,0,0 = 2a1,0,0,

ν2,−1,0 = 0.

Notice that we have applied the conventions ap,q,r = bq,p,r = 0 if (p, q, r) ̸∈ S and

cp1,q1,r1 = 0 if (p1, q1, r1) ̸∈ T.

We now use (3.29) with K = 1 to compute g1,1,0. In (3.29) j + k runs from 2 to 3.

The sums are over the terms (j, k) in the index sets {(1, 1), (2, 0), (1, 2), (3, 0)},
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{(0, 2), (1, 1), (0, 3), (1, 2), (2, 1)} and {(0, 1), (1, 0), (0, 2), (1, 1), (2, 0)} respectively for

the first, the second and the third sums. Inserting the values of νk1,k2,k3 from stages

0 and 1 into (3.29), we obtain

g1,1,0 =− ia1,1,0 + ib1,1,0 − ia1,1,0ν0,0,0 − 2ia0,2,0ν1,−1,0 − ia1,0,0ν0,1,0

− 2ia0,1,0ν1,0,0 − 3ia−1,2,0ν2,−1,0 + 2ib2,0,0ν−1,1,0 + ib1,1,0ν0,0,0

+ 3ib2,−1,0ν−1,2,0 + 2ib1,0,0ν0,1,0 + ib0,1,0ν1,0,0 − c2,1,−1ν−1,0,1

− c1,2,−1ν0,−1,1 − c2,0,−1ν−1,1,1 − c1,1,−1ν0,0,1 − c0,2,−1ν1,−1,1

=0.

This is the first focus quantity for an element of family (3.31).

Similarly, we compute νk1,k2,k3 at stages 2, 3, 4, · · · , for all admissible (k1, k2, k3) except

when k1 − k2 = k3 = 0(k1 = k2 = K) for which we set νK,K,0 = 0. Then all gK,K,0

must vanish in order for an element of family (3.31) to have a center at the origin. �

The computations quickly become too large to be feasible for hand computation.

A Mathematica procedure derived from the algorithm presented in Table 4.1 is shown

in Table 4.2. It is used in the following example.

Example 3.2.2. Let us consider the set of all systems of the form (2.4) that have some

quadratic nonlinearities, so that the sets of admissible indices ordered from greatest

to least under degree lexicographic order, are S and T,

S = {(1, 0, 0), (0, 0, 1), (−1, 1, 1), (−1, 0, 2)} and T = {(2, 0,−1), (0, 0, 1)}. Then (2.4)

reads

ẋ = i(x− a1,0,0x
2 − a0,0,1xz − a−1,1,1yz − a−1,0,2z

2)

ẏ = −i(y − b1,−1,1xz − b0,1,0y
2 − b0,0,1yz − b0,−1,2z

2)

ż = −λz − c2,0,−1x
2 − c0,0,1z

2

(3.32)

We will use the algorithm in Table 4.1 and the associated Mathematica code for
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Example 3.2.2 in Table 4.2 to compute νk1,k2,k3 through the second stage and also

compute g1,1,0. We obtain,

at stage=0, by definition ν0,0,0 = 1 and ν−1,−1,2 = ν−1,0,1 = ν−1,1,0 = ν0,−1,1 = ν1,−1,0,

at stage=1,

ν−1,−1,3 = 0,

ν−1,0,2 =
−2ia−1,0,2

i+2λ
,

ν−1,1,1 =
−2ia−1,1,1

2i+λ
,

ν−1,2,0 = 0,

ν0,−1,2 =
−2ib0,−1,2

−i+2λ
,

ν0,0,1 =
−2i(a0,0,1−b0,0,1)

λ
,

ν0,1,0 = 2b0,1,0,

ν1,−1,1 =
2ib1,−1,1

−2i+λ
,

ν1,0,0 = 2a1,0,0,

ν2,−1,0 = 0.

When (k1, k2, k3) = (1, 1, 0), (3.29) becomes g1,1,0 = 2ia−1,1,1c2,0,−1

2i+λ
. This is the first

focus quantity, which must be zero in order for an element of family (3.32) to have a

center at the origin. �

We now show that for fixed K ∈ N, the variety V (g1,1,0, g2,2,0, · · · ) is the same for

all choices of the polynomials νj,j,0, j < K, which determine gK,K,0, and thus that the

center variety VC is well-defined.

Theorem 3.2.3. Fix sets S and T and consider family (2.4).

1. Let Ψ be a formal series of the form (3.12) and let g1,1,0(a, b, c), g2,2,0(a, b, c), · · · be

polynomials satisfying (3.30) with respect to system (2.4). Then system (2.4) with

parameters (a⋆, b⋆, c⋆) has a center at the origin if and only if gk,k,0(a
⋆, b⋆, c⋆) = 0 for

all k ∈ N.

2. Let Ψ and gk,k,0 be as in (1) and suppose there exist another function Ψ′ of the form

(3.12) and polynomials g′1,1,0(a, b, c), g
′
2,2,0(a, b, c), · · · that satisfy (3.30) with respect
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to family (2.4). Then VC = V ′
C,

where VC = V (g1,1,0(a, b, c), g2,2,0(a, b, c), · · · ) and where

V ′
C = V (g′1,1,0(a, b, c), g

′
2,2,0(a, b, c), · · · ).

Proof. 1. Suppose that family (2.4) is as in the statement of the theorem. Let Ψ

be a formal series of the form (3.12) and let {gk,k,0(a, b, c) : k ∈ N} be polynomials

in (a, b, c) that satisfy (3.30). If for (a⋆, b⋆, c⋆) ∈ E(a, b, c), gk,k,0(a
⋆, b⋆, c⋆) = 0 for all

k ∈ N, then Ψ is a formal first integral for the corresponding family in (2.4). By

Definition 3.0.9 the system has a center at the origin of C3.

To prove the converse, we first make the following observations. Suppose that there

exist k ∈ N and a choice (a⋆, b⋆, c⋆) of the parameters such that gj,j,0(a
⋆, b⋆, c⋆) = 0

for 1 ≤ j ≤ k − 1 but gk,k,0(a
⋆, b⋆, c⋆) ̸= 0. Let H(x1, y1, z1) be the distinguished

normalizing transformation (2.7), producing the distinguished normal form (2.10),

and consider the function F = Ψ ◦H. By construction

∂F

∂x1
(x1, y1, z1)[ix1 + x1X(x1y1)] +

∂F

∂y1
(x1, y1, z1)[−iy1 + y1Y (x1y1)]

+
∂F

∂z1
(x1, y1, z1)[−λz1 + z1Z(x1y1)]

=gk,k,0(a
⋆, b⋆, c⋆)[x1 + h1(x1, y1, z1)]

k+1[y1 + h2(x1, y1, z1)]
k+1 + · · ·

=gk,k,0(a
⋆, b⋆, c⋆)xk+1

1 yk+1
1 + · · · .

(3.33)

Through order 2k + 1 this is almost precisely equation (3.5), so if we repeat verba-

tim the argument that follows (3.5), we obtain identity (3.8), through order 2k + 2.

Therefore,

F (x1, y1, z1) = f1(x1y1) + · · ·+ fk+1(x1y1)
k+1 + U(1, y1) = f(1y1) + U(1, y1),
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where f1 = 1 and U(1, y1) begins with terms of order at least 2k + 3. Thus,

x1
∂F

∂x1
= x1y1f

′(1y1) + α(1, y1) and y1
∂F

∂y1
= x1y1f

′(1y1) + β(1, y1),

where α(1, y1) and β(1, y1) begin with terms of order at least 2k + 3, and so the

left-hand side of (3.33) is

i[α(1, y1)− β(1, y1)] + (X(x1y1) + Y (x1y1))x1y1f
′(1y1)+

X(x1y1)α(1, y1) + Y (x1y1)β(1, y1).

Hence if we subtract from both sides of (3.33)

i[α(1, y1)− β(1, y1)] +X(x1y1)α(1, y1) + Y (x1y1)β(1, y1),

which begins with terms of order at least 2k + 3, we obtain

(X(x1y1) + Y (x1y1))f
′(1y1) = gk,k,0(a

⋆, b⋆, c⋆)(x1y1)
k + · · · , (3.34)

where X and Y are functions in (2.10). Thus supposing, contrary to what we wish

to show, that system (2.10) for the choice of (a, b, c) = (a⋆, b⋆, c⋆) has a center at the

origin of C3, so that it admits a first integral Φ(x, y, z) = xy+ · · · . Then by Theorem

3.0.8, the function X + Y vanishes identically, hence the left-hand side of (3.34) is

identically zero, whereas the right-hand side is not, a contradiction.

2. If VC ̸= V ′
C, then there exists (a⋆, b⋆, c⋆) that belongs to one of the varieties VC

and V ′
C but not to the other, say (a⋆, b⋆, c⋆) ∈ VC and (a⋆, b⋆, c⋆) ̸∈ V ′

C. The inclusion

(a⋆, b⋆, c⋆) ∈ VC means that the system corresponding to (a⋆, b⋆, c⋆) has a center at

the origin. Therefore by part (1) g′k,k,0(a
⋆, b⋆, c⋆) = 0 for all k ∈ N. This contradicts

our assumption that (a⋆, b⋆, c⋆) ̸∈ V ′
C. �
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3.3 The Center Variety

Definition 3.3.1. Fix sets S and T of admissible indices of (2.4). The polynomial

gK,K,0 defined by (3.29) is called the Kth focus quantity for the singularity at the

origin of system (2.4). The ideal of focus quantities, B = ⟨g1,1,0, g2,2,0, · · · , gj,j,0, · · · ⟩ ⊂

C[a, b, c], is called the Bautin ideal, and the affine variety VC = V (B) is called the

center variety for the singularity at the origin of system (2.4), or more simply, of

system (2.4). BK will denote the ideal generated by the first K focus quantities,

BK = ⟨g1,1,0, g2,2,0, · · · , gK,K,0⟩.

Remark 3.3.2. Let G(w) =
∑∞

k=1G2k+1w
k be the function of complex variable w

defined by G ≡ X + Y. Note that it is a consequence of (3.34) that if, for a par-

ticular (a⋆, b⋆, c⋆) ∈ E(a, b, c), gk,k,0(a
⋆, b⋆, c⋆) is the first nonzero focus quantity, then

the first nonzero coefficient of G(a⋆, b⋆, c⋆) is G2k+1(a
⋆, b⋆, c⋆) and G2k+1(a

⋆, b⋆, c⋆) =

gk,k,0(a
⋆, b⋆, c⋆).

Thus points of VC correspond precisely to systems in family (2.4) that have a center

at the origin of C3, in the sense that there exists a first integral of the form (3.12).

If (a, b, c) ∈ VC and apqr = bqpr for all (p, q, r) ∈ S, which we denote b = a, then

such point corresponds to a system that is the complexification of the real system

expressed in complex coordinates as (2.4), which then has a topological center at the

origin for the system restricted to the center variety. More generally, we can consider

the intersection of the center variety VC with the set Π := {(a, b, c) : b = a} whose

elements correspond to complexifications of real systems; we call this the real center

variety V R
C := VC ∩ Π. To the set Π there corresponds a family of real systems of

differential equations on R3 expressed in complex form as (2.4) or in real form as

(1.1), and for this family there is a space ER of real parameters. Within ER, there is

a variety V corresponding to systems that have a center at the origin. These ideas are

the generalization to (1.1) of similar concepts for analogous two-dimensional systems
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(essentially (1.1) without z).

By Theorems 3.0.8, and 3.2.3, in order to find either VC or V R
C , one can compute

either the coefficients G2k+1 of the function G defined in Remark 3.3.2 or the focus

quantities gk,k,0, all of which are polynomial functions of the parameters.

From the point of view of applications the most interesting systems are the real

systems. The trouble is, of course, that the field R is not algebraically closed, making

it far more difficult to study real varieties than complex varieties. This is why we will

primarily investigate the center problem for complex systems (2.4).



CHAPTER 4: THE MOON-RAND SYSTEM

4.1 The Polynomial Moon-Rand System

The polynomial Moon-Rand family of systems introduced in ([9]) to model certain

flexible structures is the family of three dimensional polynomial systems of ordinary

differential equations of the form

u̇ = v

v̇ = −u− uw

ẇ = −λw + c20u
2 + c11uv + c02v

2,

(4.1)

where λ, c20, c11 and c02 are real parameters and λ ̸= 0. There is an isolated equilibrium

at the origin at which the associated linear part has two eigenvalues that are purely

imaginary ( ±i) and one eigenvalue that is real (−λ.) We analyze the local flows

induced by X on a neighborhood of the origin in any center manifold of the polynomial

Moon-Rand systems. We then solve the center problem on the center manifold W c
loc,

find the Lyapunov numbers to determine the stability of the focus on W c
loc, and find

the cyclicity of the foci.

4.1.1 Complexification of the Polynomial Moon-Rand System

We start by applying the following change of coordinates to put system (4.1) into

a system of the form (1.1):

U = −u V = v W = w.
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We obtain

U̇ = −V

V̇ = U + UW

Ẇ = −λW + c20U
2 − c11UV + c02V

2.

(4.2)

We now consider the real space (U, V,W ) as a complex plane cross a line, x = U +

iV, w = W , for the complexification of the system (4.2).

Simple computations yield

ẋ =ix+
i

2
xz +

i

2
yz

ẏ =− iy − i

2
xz − i

2
yz

ż =− λz +
1

4
(c20 − c02 + ic11)x

2 +
1

2
(c20 + c02)xy

+
1

4
(c20 − c02 − ic11)y

2.

(4.3)

We then factor out i from the first two equations to put system (4.3) in the form

of system (2.4), hence, to use the results of the theory previously presented in this

dissertation. We obtain

ẋ =i[x− (−1

2
xz − 1

2
yz)]

ẏ =− i[y − (−1

2
xz − 1

2
yz)]

ż =[−λz − (−1

4
(c20 − c02 + ic11)x

2 − 1

2
(c20 + c02)xy

− 1

4
(c20 − c02 − ic11)y

2)].

(4.4)

Therefore, the index sets S and T are given by

S = {(0, 0, 1), (−1, 1, 1)} and T = {(2, 0,−1), (1, 1,−1), (0, 2,−1)}, and the corre-

sponding nonzero coefficients are

a0,0,1 = a−1,1,1 = b1,−1,1 = b0,0,1 = −1
2
,
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c2,0,−1 = −1
4
(c20 − c02 + ic11),

c1,1,−1 = −1
2
(c20 + c02),

c0,2,−1 = −1
4
(c20 − c02 − ic11).

4.1.2 Focus Quantities for the Polynomial Moon-Rand System

Let X denote the associated vector field to system (4.2). By the Lyapunov center

theorem, the real system (4.2) has a center at the origin of R3 on a local center

manifold W c
loc if and only if it admits a first integral of the form

Φ(U, V,W ) = U2 + V 2 + · · · .

We have shown that it is equivalent to the existence of the first integral Ψ of the form

(3.12) for its complexification (4.4). From the discussion after the formula for gK,K,0

in Section 3.2, a series of the form (3.12) for which

XΨ = XXP̃ + XY Q̃+ XZR̃,

reduces to

XΨ = g1,1,0(xy)
2 + g2,2,0(xy)

3 + g3,3,0(xy)
4 + · · · .

The first focus quantity g1,1,0 is uniquely determined, but for K ∈ N, K ≥ 2, gK,K,0

depend on the choices made for νj,j,0, j ∈ N, j < K. It is natural that we assign

0 to all νj,j,0, j ∈ N. The focus quantities gK,K,0 are polynomials in the coefficients

c20, c02, c11, that have parameter λ, λ ̸= 0, and are computed using the algorithm in

Table 4.1 with the associated Mathematica code in Table 4.3. The first five nonzero

focus quantities are computed, but we only show the results for the first two since
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the others have too many terms (more than 300) to display here.

g1,1,0 =
2c20 − 2c02 − λc11

8 + 2λ2

g2,2,0 =
(c20 + c02)[2c02(−4 + λ2) + 2c20(12 + λ2)− λc11(12 + λ2)]

8λ(4 + λ2)2

Recall that vanishing of all the focus quantities is sufficient for the existence of the

formal first integral. We also know that by Theorem 3.2.3, for any fixed K ∈ N, the

variety V (gK,K,0) is the same for all choices of the polynomials νj,j,0, j < K, which

determine gK,K,0, and thus that the center variety VC is well-defined.

4.1.3 The Center Variety for the Polynomial Moon-Rand System

We now introduce a concept, the radical of an ideal I, that will be of fundamental

importance in the procedure for identifying the variety V (I) of I.

Definition 4.1.1. Let I ⊂ k[x1, · · · , xn] be an ideal. The radical of I, denoted
√
I, is

the set

√
I = {f ∈ k[x1, · · · , xn] : there exists p ∈ N such that f p ∈ I}.

An ideal J ∈ k[x1, · · · , xn] is called a radical ideal if J =
√
I. ([12]).

Example 4.1.2. [Example 1.3.13 on page 31 of ([12]).] Consider the set of ideals

I(p) = ⟨(x − y)p⟩, p ∈ N. All these ideals define the same variety V, which is the

line y = x in the plane k2. It is easy to see that I(1) % I(2) % I(3) % · · · and that
√
I(p) = I(1) for every index p, so the only radical ideal among the I(p) is I(1) = ⟨x−y⟩.

This example indicates that it is the radical of an ideal that is fundamental in

picking out the variety that it and other ideals may determine.

Part of the importance for us of the concept of radical ideal is that when the field

k in question is C, it completely characterizes when two ideals determine the same
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affine variety:

Proposition 4.1.3. Let I and J be ideals in C[x1, · · · , xn]. Then,

V(I) = V(J) if and only if
√
I =

√
J.

Proof. Section 1.3 of ([12]).

It is a difficult computational problem to compute the radical of a given ideal

(unless the ideal is particulary simple, as was the case in Example 4.1.2). However,

we obtain in Section 1.3 of ([12]), the following method for checking whether or not

a given polynomial belongs to the radical of a given ideal.

Theorem 4.1.4. Let k be an arbitrary field and let I = ⟨f1, · · · , fs⟩ be an

ideal in k[x1, · · · , xn]. Then f ∈
√
I if and only if

1 ∈ J := ⟨f1, · · · , fs, 1− wf⟩ ⊆ k[x1, · · · , xn,w].

Proof. Section 1.3 of ([12]).

This theorem provides the simple algorithm presented in Table 1.4 [The Radi-

cal Membership Test] in ([12]) for deciding whether or not a polynomial f lies in√
⟨f1, · · · , fs⟩.

Definition 4.1.5. Consider systems

ẋ = P̃ (x, y, z), ẏ = Q̃(x, y, z), ż = R̃(x, y, z), (4.5)

where x, y, z ∈ C, P̃ , Q̃ and R̃ are polynomials without constant terms that have no

nonconstant common factor,and

m = max(deg(P̃ ), deg(Q̃), deg(R̃)).

A nonconstant polynomial f(x, y, z) ∈ C[x, y, z] is called an algebraic partial integral

of system (4.5) if there exists a polynomial K(x, y, z) ∈ C[x, y, z], such that

Xf =
∂f

∂x
P̃ +

∂f

∂y
Q̃+

∂f

∂z
R̃ = Kf. (4.6)
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The polynomial K is termed a cofactor of f ; it has degree at most m− 1.[12].

Theorem 4.1.6 (The center conditions). Consider the polynomial Moon-Rand system

(4.1). Let X denote its associated vector field. Then for the flow induced by X on the

neighborhood of the origin of R3 in any center manifold W c of (4.1), the origin is a

center if and only if c02 = −1
2
λc11 + c20 = 0.

Proof. Let g̃K,K,0 denote the numerator of gK,K,0 and

BK = ⟨g̃1,1,0, g̃2,2,0, · · · , g̃K,K,0⟩.

Using Singular, a highly efficient computer algebra system for polynomial compu-

tations, we decompose the radicals of BK , 1 ≤ K ≤ 5 into a unique intersection of

prime ideals. We replace for simplicity c20, c11, c02 and λ by x, y, z and L respectively.

The code (with only parts of g̃3,3,0, g̃4,4,0 and g̃5,5,0 displayed) for carrying out the

decompositions and the outputs are as follows.

> LIB "primdec.lib";

> ring r=0,(x,y,z,L),dp;

> poly g1=(2*x - L*y - 2*z);

> poly g2=((x + z)*(-2*(12 + L^2)*x + 12*L*y + L^3*y + 8*z

- 2*L^2*z));

> poly g3=(-2*(-98304 - 188672*L^2 - 53744*L^4 - 1360*L^6

+ 947*L^8 +...+2*L^7*(903*y^2*z + 1471*z^3) +

32*L^3*(61*y^2*z + 3725*z^3)));

> poly g4=-(-2*(-33554432 - 536346624*L^2 -2400976896*L^4

-...+ 2048*L^8*(499118*y^2*z + 3438707*z^3)));

> poly g5=(-2*(18029791672270848 + 244935868857450496*L^2

+ ...- 16777216*L^8*(1925486675*y^4 +

105107739599*y^2*z^2 + 250632146354*z^4)));

> ideal j1=g1;
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> ideal j2=g1,g2;

> ideal j3=g1,g2,g3;

> ideal j4=g1,g2,g3,g4;

> ideal j5=g1,g2,g3,g4,g5;

> minAssGTZ(j1);

[1]:

_[1]=-1/2yL+x-z

> minAssGTZ(j2);

[1]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[2]:

_[1]=yL+4z

_[2]=-1/2yL+x-z

[3]:

_[1]=z

_[2]=-1/2yL+x-z

> minAssGTZ(j3);

[1]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+10

_[2]=-2zL+5y

_[3]=-1/2yL+x-z

[3]:

_[1]=L2+1
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_[2]=-4zL+y

_[3]=-1/2yL+x-z

[4]:

_[1]=z

_[2]=-1/2yL+x-z

> minAssGTZ(j4);

[1]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+1

_[2]=-4zL+y

_[3]=-1/2yL+x-z

[3]:

_[1]=z

_[2]=-1/2yL+x-z

> minAssGTZ(j5);

[1]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+1

_[2]=-4zL+y

_[3]=-1/2yL+x-z

[3]:

_[1]=z

_[2]=-1/2yL+x-z
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The first command downloads a Singular library that enables computation of primary

and prime decompositions. The second command declares that the polynomial ring

involved has characteristic zero, that the variables are x, y, z, and L is also treated

as variable, and in the order L > x > y > z, and that the term order to be used (as

specified by the parameter dp) is degree lexicographic order. The next five command

lines specify the polynomials g1,1,0 through g5,5,0. The next five lines declare succes-

sively that the ideals under consideration are BK = ⟨g1,1,0, · · · , gK,K,0⟩ from K = 1 to

K = 5. Finally, minAssGTZ(jK) commands the computation of a primary decompo-

sition of jK using the minimal associated primes via Gianni,Trager,Zacharias (with

modifications by Laplagne)([6]). In the output the symbol L2 is Singular’s short no-

tation for L2. Each output to the exception of the first one, is a list of ideals, where

each ideal is, of course specified by a list of generators.

The outputs indicate that
√
B1 $

√
B2 $

√
B3 $

√
B4 =

√
B5. Hence, we suspect

that VC = V (B4). Moreover, we obtain the prime decomposition of the variety V (B4)

as the union of three varieties V (Ji) which are:

J1 = ⟨λ2 + 4,−1

2
λc11 + c20 − c02⟩

J2 = ⟨λ2 + 1,−4λc02 + c11,−
1

2
λc11 + c20 − c02⟩

J3 = ⟨c02,−
1

2
λc11 + c20 − c02⟩

Notice that setting the generators of either J1 or J2 to zero yields complex num-

bers, which contradicts the fact that system (4.1) in question is real. Therefore, the

necessary conditions given by setting the polynomial generators of J3 equal to zero

are:

c02 = −1

2
λc11 + c20 = 0 (4.7)

for the origin to be a center for X | W c
loc.

Conversely, suppose that conditions (4.7) hold. We must show that there exists,
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on a neighborhood of the origin, a first integral Φ of (4.1) of the form Φ(u, v, w) =

u2 + v2 + · · · . By the Darboux theory (see [12]), for a polynomial vector field X

of degree m on R3, if F1, · · · , Fk are polynomial functions on R3 for which there

are polynomials K1, · · · , Kk and constants α1, · · · , αk such that X(Fj) = KjFj for

1 ≤ j ≤ k and
∑
αjKj = 0, then a first integral is F = Fα1

1 · · ·Fαk
k . (Each surface

fj = 0 is an invariant surface for X; each Fj is called an algebraic partial integral with

cofactor Kj, which can have degree at most deg(X)− 1.) To apply this theory we let

X denote the vector field associated to system (4.1) when conditions (4.7) hold and

search for polynomials F (which could have any degree) and K (of degree at most 1)

satisfying

X(F ) = KF.

So let F (u, v, w) = [F200u
2 +F110uv+F101uw+F020v

2 +F011vw+F002w
2 + · · · ], and

K(u, v, w) = [K000 + K100u + K010v + K001w]. Using the Mathematica code (where

\[Lambda] represents λ) below, we are able to construct the polynomials F (u, v, w)

and K(u, v, w).

F[u_, v_, w_] := a*u^2 + b*u*v + c*u*w + d*v^2 + e*v*w +

f*w^2 +g*u + h*v + i*w + j;

K[u_, v_, w_] := k + l*u + m*v + n*w;

F1[u_, v_, w_] := Expand[D[F[u, v, w], u]*v +

D[F[u, v, w], v]*(-u - u*v) +

D[F[u, v, w], w]*(-\[Lambda]*w +

x*(u^2) + y*u*v + z*(v^2))];

F2[u_, v_, w_] := Expand[K[u, v, w]*F[u, v, w]];

F3[u_, v_, w_] := Expand[F2[u, v, w] - F1[u, v, w]];

z=0;

Coefficient[F3[u, 0, 0], u]
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Coefficient[F3[0, v, 0], v]

Coefficient[F3[0, 0, w], w]

Coefficient[F3[u, 0, 0], u^2]

Coefficient[F3[u, 0, 0], u^3]

Coefficient[F3[u, v, 0], u*v]

Coefficient[F3[u, v, 0], u*u*v]

Coefficient[F3[u, v, 0], u*v*v]

Coefficient[F3[u, 0, w], u*w]

Coefficient[F3[u, 0, w], u*u*w]

Coefficient[F3[u, 0, w], u*w*w]

Coefficient[F3[0, v, 0], v*v]

Coefficient[F3[0, v, 0], v*v*v]

Coefficient[F3[0, v, w], v*v*w]

Coefficient[F3[0, v, w], v*w]

Coefficient[F3[0, v, w], v*w*w]

Coefficient[F3[u, v, w], u*v*w]

Coefficient[F3[0, 0, w], w*w]

Coefficient[F3[0, 0, w], w*w*w]

The first two lines define the polynomial F (u, v, w) where its coefficients F200, F110,

F101, F020, F011, F002, F100, F010, F001 and F000 are replaced by a, b, c, d, e, f, g, h, i

and j respectively. The third line defines the cofactor polynomial K(u, v, w) where its

coefficients K100, K010, K001 and K000 are replaced by k, l, m and n respectively. The

next three lines define the expression XF where the coefficients c20, c11 and c02 are

replaced x, y, and z respectively, and the following line defines the expression KF ,

both expressions are clearly polynomials in coefficients of F and K. The next line

defines the polynomial XF − KF that need to be a zero polynomial. Line nine set

the coefficient z = c02 to zero to meet the first of the two center conditions (4.7). The
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last nineteen lines extract the coefficients of the zero polynomial XF −KF that we

set each equal to zero. The output (where \[Lambda] represents λ) is the following.

h + g k + j l

-g + h k + j m

i k + j n + i \[Lambda]

b + a k + g l - i x

a l - c x

-2 a + 2 d + h + b k + h l + g m - i y

b + b l + a m - e x - c y

2 d + d l + b m - e y

e + c k + i l + g n + c \[Lambda]

c l + a n - 2 f x

f l + c n

-b + d k + h m

d m

e m + d n

-c + e k + i m + h n + e \[Lambda]

f m + e n

e + e l + c m + b n - 2 f y

f k + i n + 2 f \[Lambda]

f n

We then solve the equations obtained that have fewer coefficient variables and run

the code again, but this time with the values of the coefficients found. For instance,

we solve dm = fn = 0 to set d = f = m = n = 0 when we run the code again, so

to create zeroes and to leave us with fewer equations with less coefficient variables to

solve for. We obtain

h + g k + j l
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-g + h k

i k + i \[Lambda]

b + a k + g l - i x

a l - c x

-2 a + h + b k + h l - i y

b + b l - e x - c y

-e y

e + c k + i l + c \[Lambda]

c l

0

-b

0

0

-c + e k + e \[Lambda]

0

e + e l

0

0

Next we set b = c = e = g = h = l = 0, and after running the code again with

these values, we obtain all zeroes except for the following: ik + iλ, ak − ix and

−2a − iy. Therefore, substituting back the coefficients of F (u, v, w) and K(u, v, w),

yield the following first three equations to which we add a forth equation that is just
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the second of the center conditions (4.7):

F001(K000 + λ) = 0

F200K000 − F001c20 = 0

−2F200 − F001c11 = 0

c20 −
1

2
λc11 = 0

The above four equations yield

K000 = −λ

F200 = −c20

F001 = λ

Here we find that

F (u, v, w) = −c20u2 + λw = 0, (4.8)

with cofactor K(u, v, w) = −λ, is an invariant surface that satisfies our conditions.

This result is not sufficient for applying the Darboux theory, but we notice that the

surface given by (4.8) is tangent to the (u, v)−plane, the center eigenspace, hence

because it is invariant it must be a center manifold. Solving (4.8) for w and inserting

this expression into the first two equations in (4.1) gives X | W c
loc in local coordinates

about the origin:

u̇ = v

v̇ = −u− c20
λ
u3

(4.9)

on W c
loc.

In Section 2.14 of ([11]), this system is one particular type of Hamiltonian system,

the Newtonian system with the Hamiltonian function H(u, v) = T (v) + U(u) where
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T (v) = v2

2
is the kinetic energy and

U(u) = −
∫ u

u0

(−s− c20
λ
s3)ds =

u2

2
+
c20
4λ
u4

is the potential energy. Therefore, by Theorem 3 in Section 2.14 of ([11]), since the

origin is a strict local minimum of the analytic function U(u), it is a center for the

polynomial Moon-Rand system (4.1). �

4.1.4 The Lyapunov numbers and the stability of the focus

In this section we turn our attention to the case that the center conditions (4.7)

are not met. That is if

c02 ̸= 0 or − 1

2
λc11 + c20 ̸= 0 or both. (4.10)

We investigate the stability of the focus at the origin, with respect to X | W c. To

do this, we implement a code in Mathematica to compute the first few Lyapunov

numbers by using the Poincaré first return map in the Definition 3.1.1. Then we

appeal to Theorem 3.1.2 to decide whether or not the focus at the origin is stable or

not.

Definition 4.1.7. When (3.26) in Theorem 3.1.2 holds for k > 0 the focus at the origin

is called a fine focus of order k.

Theorem 4.1.8 (The stability of the focus). Consider the polynomial Moon-Rand

system (4.1) with its associated vector field X. Suppose that system (4.1) meets

conditions (4.10). For any flow induced by X on any center manifold W c of system
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(4.1) at the origin of R3 the following hold:

1. if 2c20 − 2c02 − λc11 ̸= 0, then η3 = −π(2c20 − 2c02 − λc11)

4(4 + λ2)
and the origin

is the first order fine focus which is stable when η3 < 0 and unstable when

η3 > 0;

2. if c02 = −λc11
2

+ c20 and λc11 − 4c20 ̸= 0, then

η5 = −π(λc11 − 4c20)(λc11 − 2c20)

16λ(4 + λ2)
and the origin is the second order fine

focus which is stable when η5 < 0 and unstable when η5 > 0;

3. if c02 = −λc11
2

+ c20, λc11 − 4c20 = 0 and c11 ̸= 0 (to agree with our

assumption), then η7 = − πλ(10 + λ2)c311
512(4 + λ2)(16 + λ2)

and the origin is the third

order fine focus which is stable when − λc11 < 0 and unstable when

−λc11 > 0.

Proof. Any center manifold at the origin for system (4.1) (whether the center

conditions are met or not) can be expressed as the graph of a function

w = h(u, v)

such that h(0, 0) = 0 (it passes through the origin) and hu(0, 0) = hv(0, 0) = 0 (it is

tangent to the (u, v)−plane, which is the center eigenspace, at the origin). Since the

center manifold is arbitrary smooth h can be written in the form

h(u, v) = h20u
2 + h11uv + h02v

2 + · · ·

with as many terms as are needed for a particular computation.

We obtain an expression for X | W c
loc in local coordinates about the origin by inserting

an initial segment of the series for h into u̇ and v̇ (since X | W c
loc is the graph of the
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function h(u, v).) Thus

X | W c
loc :

u̇ = v

v̇ = −u− uh(u, v) = −u− h20u
3 − h11u

2v − h02uv
2 + · · ·

(4.11)

To find the hjk (that are in terms of λ and the cjk) we equate coefficient of like powers

of u and v in the expression that we get by differentiating the formula for the center

manifold, w = h(u, v) and using the expression for ẇ with w replaced by h, namely,

huu̇+ hvv̇ = −λh+ c20u
2 + c11uv + c02v

2.

We can manually compute the first few terms in h. Using just the quadratic terms in

h, this is already pretty large when written out:

v(2h20u+ h11v + · · · )+

(−u− u(h20u
2 + h11uv + h02v

2 + · · · ))(h11u+ 2h02v + · · · )

= −λ(h20u2 + h11uv + h02v
2 + · · · ) + c20u

2 + c11uv + c02v
2,

we obtain

h20 =
λc11 + (2 + λ2)c20 + 2c02

λ(4 + λ2)
,

h11 =
λc11 − 2c20 + 2c02

4 + λ2
,

h02 =
−λc11 + 2c20 + (2 + λ2)c02

λ(4 + λ2)
.

These coefficients are sufficient for finding the first few Lyapunov quantities with the

approach to stability described in section 3.1 (with the direction of time reversed,

hence the Lyapunov quantities computed are the negatives of the correct values.)
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Using the notations in section 3.1, for system (4.11), (3.17) reads

dr

dφ
=
r cosφ sinφh(r cosφ, r sinφ)

1 + cos2 φh(r cosφ, r sinφ)
= R(r, φ), (4.12)

and (3.18) reads

dr

dφ
=R(r, φ) = rR1(φ) + r2R2(φ) + r3R3(φ) + · · ·

=(r cosφ sinφh(r cosφ, r sinφ))[1− (cos2 φh(r cosφ, r sinφ))

+ (cos2 φh(r cosφ, r sinφ))2 + · · · ]

=r3 cosφ sinφ(h20 cos
2 φ+ h11 cosφ sinφ+ h02 sin

2 φ+ · · · )[1

− r2 cos2 φ(h20 cos
2 φ+ h11 cosφ sinφ+ h02 sin

2 φ+ · · · ) + · · · ]

where R1(φ) = R2(φ) = 0,

R3(φ) = cosφ sinφ(h20 cos
2 φ + h11 cosφ sinφ + h02 sin

2 φ), andRj(φ) for 3 < j < 9

(that are material) will be computed using Mathematica. With initial conditions

(3.22), the first three equations in (3.21) give

1. w′
1 =R1(φ)w1 = 0, w1(0) = 1 yields w1(φ) = 1,

2. w′
2 =R1(φ)w2 +R2(φ)w

2
1 = 0, w2(0) = 0 yields w2(φ) = 0, and

3. w′
3 =R1(φ)w3 + 2R2(φ)w1w2 +R3(φ)w

3
1 = R3(φ), w3(0) = 0 yields

w3(φ) =
1− cos4 φ

4
h20 +

4φ− sin 4φ

32
h11 +

sin4 φ

4
h02.

Therefore, by Definition 3.1.1, η1 = η2 = 0 and

η3 = −w3(2π) = −π
4
h11 = −π(λc11−2c20+2c02)

4(4+λ2)
. This together with Theorem 3.1.2 es-

tablish part 1. Proceeding on the assumption that η3 = 0 allows us to eliminate a

parameter (c02 = −λ
2
c11 + c20,) thereby simplifying the computations. At this point

hand computations are too long to perform. We implement a code in Mathematica

(see Table 4.4) that computes the next few terms in h, R4 and R5, and η4 and η5
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(whose results are displayed below.)

η4 = 0 and η5 = −π(λc11−4c20)(λc11−2c20)
16λ(4+λ2)

.

Next, if η5 = 0 then λc11 − 4c20 = 0 or λc11 − 2c20 = 0. We must exclude the last

condition (λc11− 2c20 = 0) since then the origin is a center by Theorem 4.1.6. There-

fore, we proceed on the assumption that λc11 − 2c20 ̸= 0 and that η3 = 0 by setting

c20 = λ
4
c11 with c11 ̸= 0 (otherwise it would imply c02 = 0). The Mathematica code

in Table 4.4 gives η6 = 0 and η7 = − πλ(10+λ2)c311
512(4+λ2)(16+λ2)

that has the same sign as −λc11.

These together with Theorem 3.1.2 establish parts 2 and 3. �

Remark 4.1.9. If we want to get η1 = η3 = η5 = η7 = 0, we must have c20 = c11 =

c02 = 0. Then the origin is a center for the flow restricted to W c
loc. This means for

system (4.1), if the origin is a focus, it can only be of at most third order.

In this next section we will investigate the possible number of limit cycles (isolated

periodic orbits) occurring in the phase portrait of system (4.1) in a neighborhood of

the origin.

4.1.5 Bifurcation of the Limit Cycles

We consider the problem of the cyclicity of a simple singularity of system (4.1)

(that is, one at which the determinant of the linear part is nonzero.)

Let Ξ be a subset of R3 and let P : R × Ξ → R : (r, ξ) 7→ P(r, ξ) be an ana-

lytic function, which represents the difference function, and which we will write in a

neighborhood of the origin of r = 0 in the form

P(r, ξ) = ℜ(r, ξ)− r = η1(ξ)r + η2(ξ)r
2 + η3(ξ)r

3 + · · · . (4.13)

Definition 4.1.10. We consider a family of systems (4.1) with coefficients drawn from

the parameter space Ξ equipped with a topology. A limit periodic set is a point set

Γ in the phase portrait of the system (4.1) that corresponds to some choice ξ0 of the
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parameters that has the property that a limit cycle can be made to bifurcate from

Γ under a suitable but arbitrary small change in the parameters. That is, for any

neighborhood M of Γ in R3 and any neighborhood N of ξ0 in Ξ there exists ξ1 ∈ N

such that the system corresponding to parameter choice ξ1 has a limit cycle lying

wholly within M. The limit periodic Γ has cyclicity c with respect to Ξ if and only

if for any choice ξ of parameters in the neighborhood of ξ0 in Ξ the corresponding

system (4.1) has at most c limit cycles wholly contained in a neighborhood of Γ, and

c is the smallest number with this property ([12]).

Examples of limit periodic sets under consideration are singularities of focus or

center type. It is worth to recall that zeros of (4.13) regarded as an equation in r

alone, correspond to cycles (closed orbits, that is, orbits that are ovals) of system

(4.1); isolated zeros correspond to limit cycles (isolated closed orbits).

We now treat the cyclicity of the polynomial Moon-Rand system restricted to

W c
loc. Even though W c

loc is not unique, existence of a topological conjugacy between

the flows on any two center manifolds insures that the cyclicity is well-defined.

Theorem 4.1.11. Consider the polynomial Moon-Rand system (4.1) with its associ-

ated vector field X.

1. If the origin is a third order focus, then the origin on the local center manifold has

cyclicity two: the origin can be made to bifurcate two, but no more than two, limit

cycles on a neighborhood of the origin in W c
loc.

2. If the origin is a second order focus, then the origin on the local center manifold

has cyclicity one: the origin can be made to bifurcate one, but at most one limit cycle

on a neighborhood of the origin in W c
loc.

3. If the origin is a first order focus, then the origin on the local center manifold has

cyclicity zero on a neighborhood of the origin in W c
loc.

4. If the origin is a center, then the origin on the local center manifold on a

neighborhood of the origin in W c
loc can be made to bifurcate two limit cycles if
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c20 = c11 = c02 = 0 and one limit cycle if c20, c11 ̸= 0.

Proof. 1. If the origin is a third order focus, then (4.13) reads

P(r, ξ) = η1(ξ)r + η3(ξ)r
3 + η5(ξ)r

5 + η7(ξ)r
7 + o(r, ξ)

= Z(r, ξ) + η7(ξ)r
7 + o(r, ξ),

(4.14)

on {(r, ξ) : |r| < ϵ and |ξ − ξ∗| < δ}, for some positive real numbers δ and ϵ, and

ηj(0, ξ
∗) = 0 for j = 1, 3, 5, and η7(0, ξ

∗) ̸= 0 and o(0, ξ) = 0. To finish the proof we

will imitate, but in a much simpler way, the proof of Proposition 6.1.2 of ([12]).

Let δ1 and ϵ1 be such that 0 < δ1 < δ and 0 < ϵ1 < ϵ and | ηj(r, ξ) |< 1 if

|r| ≤ ϵ1 and |ξ − ξ∗| ≤ δ1 for j = 1, 3, 5. let B(ξ∗, δ1) denote the closed ball in R3

of radius δ1 centered at ξ∗. For each j ∈ {1, 3, 5}, ηj is not the zero function, else

the corresponding term is not present in (4.14). We begin by defining the set V0 by

V0 := {ξ ∈ B(ξ∗, δ1) : ηj(ξ) = 0 for all j = 1, 3, 5}, a closed, proper subset of B(ξ∗, δ1).

For ξ0 ∈ V0, as a function of r, Z(r, ξ0) vanishes identically on (0, ϵ0), so the origin is

indeed a second order focus since η7(0, ξ0) ̸= 0.

For any ξ0 ∈ B(ξ∗, δ1) \V0, let l ∈ {1, 3, 5} be the least index for which ηl(ξ0) ̸= 0.

Then Z(r, ξ0) = ηl(ξ0)r
kl + rkl+1v(r, ξ0), where v(r, ξ0) is a real analytic function on

[−ϵ1, ϵ1]. Thus the kthl derivative of Z(r, ξ0) is nonzero at r = 0, so Z(r, ξ0) is not

identically zero, hence has a finite number S0(ξ0) of zeros in (0, ϵ1). Since, for all

values of (c20, c11, c02) in Ξ, and for all admissible values of λ, η1 = 0, then l ∈ {3, 5}.

Let V1 = {ξ ∈ B(ξ∗, δ1) : η5(ξ) = 0};V1 ⊃ V0. For ξ0 ∈ V1, if η3(ξ0) = 0,

then Z(r, ξ0) vanishes identically on (0, ϵ1); if η3(ξ0) ̸= 0, then, as a function of

r, Z(r, ξ0) = η3(ξ0)r
3(1 + v(r, ξ0)) has no zeros in (0, ϵ1).

For ξ ∈ B(ξ∗, δ1) \ V1, we divide Z(r, ξ) by r3(1 + η3(ξ)) to form a real analytic

function Z̃(1)(r, ξ) of r on [−ϵ1, ϵ1] that can be written in the form Z̃(1)(r, ξ) = η3(ξ)
1+η3(ξ)

+

η5(ξ)r2

1+η3(ξ)
. Then we differentiate with respect to r to obtain a real analytic function

Z(1)(r, ξ) of r on [−ϵ1, ϵ1] that can be written in the form Z(1)(r, ξ) = 2 η5(ξ)r
1+η3(ξ)

. As a
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function of r, Z̃(1)(r, ξ) has the same number S0(ξ) of zeros in (0, ϵ1) as does Z(r, ξ).

As a function of r, Z(1)(r, ξ) is not identically zero, and moreover has no zeros in

(0, ϵ1). By Rolle’s Theorem, Z̃(1)(r, ξ) has at most one more zero in (0, ϵ1) than does

Z(1)(r, ξ), so S0(ξ) ≤ 1.

Let V2 = {ξ ∈ B(ξ∗, δ1) : η3(ξ) = 0};V2 ⊃ V1 ⊃ V0. For ξ0 ∈ V2, if η5(ξ0) = 0,

then Z(r, ξ0) vanishes identically on (0, ϵ1); if η5(ξ0) ̸= 0, then, as a function of

r, Z(r, ξ0) = η5(ξ0)r
5 has no zeros in (0, ϵ1).

For ξ ∈ B(ξ∗, δ1) \ V2, we divide Z(r, ξ) by r3(1 + η3(ξ)) to form a real analytic

function Z̃(2)(r, ξ) of r on [−ϵ1, ϵ1] that can be written in the form Z̃(2)(r, ξ) = η3(ξ)
1+η3(ξ)

+

η5(ξ)r2

1+η3(ξ)
. Then we differentiate with respect to r to obtain a real analytic function

Z(2)(r, ξ) of r on [−ϵ1, ϵ1] that can be written in the form Z(2)(r, ξ) = 2 η5(ξ)r
1+η3(ξ)

. As a

function of r, Z̃(2)(r, ξ) has the same number S0(ξ) of zeros in (0, ϵ1) as does Z̃
(1)(r, ξ).

As a function of r, Z(2)(r, ξ) is not identically zero, and moreover has no zeros in (0, ϵ1).

By Rolle’s Theorem, Z̃(2)(r, ξ) has at most one more zero in (0, ϵ1) than does Z(2)(r, ξ),

so S0(ξ) ≤ 2. Therefore the upper bound in point 1 holds for all ξ ∈ B(ξ∗, δ1).

Similarly, if the origin is a second order focus, then the origin on the local center

manifold can be made to bifurcate at most one limit cycle on a neighborhood of the

origin in W c
loc.

3. For all values of (c20, c11, c02) in Ξ, and for all admissible values of λ, η1(ξ) = 0.

Therefore, we will not be able to create any isolated zeros with a change in the

parameters if the origin is a first order focus. This proves 3.

4. If c20 = c11 = c02 = 0, then we will be able to perturb the system to create

a third order fine focus near the origin. Thus statement (1) applies. If c20, c11 ̸= 0,

then there is no third order fine focus near the center at the origin. We will then be

able to perturb the system to create a second order fine focus near the origin. Thus

statement (2) applies. This proves 4.

The bounds in points 1 and 2 are sharp because the Lyapunov numbers can
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be adjusted independently. (The bounds in point 4 might not be sharp because of

possible lack of analyticity of the center manifold under perturbation.) �

4.2 The Generalized Rational Moon-Rand System

In this section we analyze the generalized rational Moon-Rand family of systems

which are three dimensional systems of ordinary differential equations of the form,

u̇ = v

v̇ = −u− uw

ẇ = −λw +
c20u

2 + c11uv + c02v
2

1 + ηu2
,

(4.15)

where λ, c20, c11, c02 and η are real parameters with η ̸= 0.

We first perform a time rescaling by 1 + ηu2 on system (4.15) to obtain

u̇ = (1 + ηu2)v

v̇ = (1 + ηu2)(−u− uw)

ẇ = −λ(1 + ηu2)w + c20u
2 + c11uv + c02v

2

or

u̇ = v + ηu2v

v̇ = −u− uw − ηu3 − ηu3w

ẇ = −λw + c20u
2 + c11uv + c02v

2 − ληu2w

(4.16)

that has the same structures in consideration as (4.15).

Theorem 4.2.1. Consider the generalized rational Moon-Rand system (4.15). Let X

denote the associated vector field to system (4.16) obtained by performing a time

rescaling by 1 + ηu2 on system (4.15). Then for the flow induced by X on the neigh-

borhood of the origin of R3 in any center manifold W c of (4.16), the origin is a center
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if and only if c02 + λη = c20 − λ
2
c11 + λη = 0 or c20 = c11 = c02 = 0.

Proof. As for the Polynomial Moon-Rand system in section 4.1, we complexify

system (4.16) and hand computations give

ẋ =i[x− (−1

2
xz − 1

2
yz − η

4
x3 − η

2
x2y − η

4
xy2

− η

8
x3z − 3η

8
x2yz − 3η

8
xy2z − η

8
y3z)]

ẏ =− i[y − (−1

2
xz − 1

2
yz − η

4
x2y − η

2
xy2 − η

4
y3

− η

8
x3z − 3η

8
x2yz − 3η

8
xy2z − η

8
y3z)]

ż =[−λz − (−1

4
(c20 − c02 + ic11)x

2 − 1

2
(c20 + c02)xy

− 1

4
(c20 − c02 − ic11)y

2) +
λη

4
x2z +

λη

2
xyz +

λη

4
y2z].

(4.17)

Therefore, the index sets S and T are given by

S ={(0, 0, 1), (−1, 1, 1), (2, 0, 0), (1, 1, 0), (0, 2, 0), (2, 0, 1), (1, 1, 1),

(0, 2, 1), (−1, 3, 1)}

T ={(2, 0,−1), (1, 1,−1), (0, 2,−1), (2, 0, 0), (1, 1, 0), (0, 2, 0)},

and the corresponding nonzero coefficients are

a0,0,1 = a−1,1,1 = b1,−1,1 = b0,0,1 = −1
2
,

a2,0,0 = a0,2,0 = b2,0,0 = b0,2,0 = −η
4
,

a1,1,0 = b1,1,0 = −η
2
,

a2,0,1 = a−1,3,1 = b3,−1,1 = b0,2,1 = −η
8
,

a1,1,1 = a0,2,1 = b1,1,1 = b2,0,1 = −3η
8
,

c2,0,−1 = −1
4
(c20 − c02 + ic11),

c1,1,−1 = −1
2
(c20 + c02),

c0,2,−1 = −1
4
(c20 − c02 − ic11),

c2,0,0 = c0,2,0 =
λη
4
,
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c1,1,0 =
λη
2
.

The first five nonzero focus quantities g1,1,0, · · · , g5,5,0 in the coefficients c20, c02, c11,

with parameters λ, η, ̸= 0, are computed using the algorithm in Table 4.1 with the

associated Mathematica code in Table 4.5. We only show below the results for the

first two since the others have too many terms to display here.

g1,1,0 =
2c20 − λc11 − 2c02

2(4 + λ2)

g2,2,0 =
(c20 + c02)

8λ(4 + λ2)2
[2(12 + λ2)c20 − λ(12 + λ2)c11 + 2(−4 + λ2)c02+

4λη(4 + λ2)]

As in the proof of Theorem 4.1.6, we use Singular to decompose the radicals of

BK , 1 ≤ j ≤ 5 into a unique intersection of prime ideals. We replace for simplicity

c20, c11, c02, λ and η by x, y, z, L and M respectively. The code (with only parts of

g̃3,3,0, g̃4,4,0 and g̃5,5,0 displayed) for carrying out the decompositions and the outputs

are displayed in Table 4.5. We also obtain the prime decomposition of the variety

V (B5) as the union of five varieties V (Ji), 1 ≤ i ≤ 5 which are:

J1 =⟨λη + c02, c20 −
λ

2
c11 − c02⟩

J2 =⟨λ2 + 4, c20 −
λ

2
c11 − c02⟩

J3 =⟨9λ2 + 4,−9λ19η + · · ·+ 162502848c02, 9λ
18η + · · ·+ 260025846η,

c20 −
λ

2
c11 − c02⟩

J4 =⟨λ2 + 1,−4λc02 + c11, c20 −
λ

2
c11 − c02⟩

J5 =⟨c02, c11, c20 −
λ

2
c11 − c02⟩

Notice that setting the generators of either J2, J3 or J4 to zero yields complex numbers,

which contradicts the fact that system (4.15) in question is real. Therefore, the

necessary conditions are given by setting the polynomial generators of J1 or J5 to
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zero. We get

c02 + λη = c20 −
λ

2
c11 + λη = 0 or c20 = c11 = c02 = 0 (4.18)

for the origin to be a center for X | W c
loc.

Conversely, when conditions (4.18) hold, we search for polynomials F (which could

have any degree) and K (of degree at most 3) satisfying

X(F ) = KF. (4.19)

So let F (u, v, w) = F300u
3 + F210u

2v + F201u
2w + F120uv

2 + · · · (this time we were

unsuccessful to find a quadratic F that satisfies (4.19)) and K(u, v, w) = K300u
3 +

K210u
2v +K201u

2w +K120uv
2 + · · · .

Using the Mathematica code in Table 4.6 (where, \[Lambda] and \[Eta] represent

λ and η respectively), we were able to construct the polynomials F (u, v, w) and

K(u, v, w). In the process, we first obtained a system of eighty four equations with

forty variables that we were unable to solve with Mathematica. Then we manually

solved for a few equations by successively setting

F000 = 0,

F010 = F100 = 0;K000 = −λ,

F003 = F012 = F102 = F111 = F120 = 0 and

F021 = F030 = 0.

This reduced the system of equations to sixty-three equations with fewer unknown

coefficient variables that we were able to solve with the Mathematica code in Table

4.6. The output yields a material solution which is the following.

{F300 → 0, F210 → 0, F200 → (2η−c11)F201

2η
, F110 → 0, F101 → 0,
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F020 → F201, F011 → 0, F002 → 0, F001 → F201

η
, K100 → 0, K010 → 0,

K001 → 0, K200 → −ηλ,K110 → 0, K101 → 0, K020 → 0, K011 → 0,

K002 → 0, K300 → 0, K210 → 0, K201 → 0, K120 → 0, K111 → 0,

K102 → 0, K030 → 0, K021 → 0, K012 → 0, K003 → 0}.

For convenience, we choose F201 = 2η, and obtain

F (u, v, w) = 2ηu2w + (2η − c11)u
2 + 2ηv2 + 2w, and

K(u, v, w) = −ηλu2 − λ

that satisfy conditions (4.19). We have found an invariant algebraic surface

F (u, v, w) = 2ηu2w + (2η − c11)u
2 + 2ηv2 + 2w = 0 (4.20)

that is tangent to the (u, v)−plane, hence it must be the center manifold. Solving

(4.20) for w and inserting this expression into the first two equations in (4.16) gives

X | W c
loc in local coordinates about the origin:

u̇ = v + ηu2v

v̇ = −u− c11
2
u3 + ηuv2.

(4.21)

If we set

u̇ = Ũ(u, v) = v + ηu2v and v̇ = Ṽ (u, v) = −u− c11
2
u3 + ηuv2

then,

Ũ(u,−v) = −Ũ(u, v) and Ṽ (u,−v) = Ṽ (u, v),

so system (4.21) possesses a time-reversible symmetry with respect to the u−axis.

Therefore, the origin is a center by Theorem 3.5.5. in ([12]). �



63

Theorem 4.2.2. Consider the generalized rational Moon-Rand system (4.16) with its

associated vector field X. Suppose that system (4.16) does not meet conditions (4.18).

For any flow induced by X on any center manifold W c of system (4.16) at the origin

of R3 the following hold:

1. If η3 =
π(2c20 − λc11 − 2c02)

4(4 + λ2)
̸= 0 then the origin is a first order

fine focus which is asymptotically stable if and only if

2c20 − λc11 − 2c02 < 0 (or unstable iff 2c20 − λc11 − 2c02 > 0.)

2. If η3 = 0 and η5 =
π(λc11 − 4c20)(2c20 − λc11 + 2λη)

16λ(4 + λ2)
̸= 0

[that is if c02 = −λc11
2

+ c20 ̸= −λη and c20 ̸=
λc11
4

] then

the origin is a second order fine focus whose stability

is determined by the sign of λ(λc11 − 4c20)(2c20 − λc11 + 2λη).

3. If η3 = η5 = 0 and

η7 =
πλc11(4η − c11)(64η + 4ηλ2 + 10c11 + λ2c11)

512(4 + λ2)(16 + λ2)
̸= 0

[that is if c02 = −λc11
2

+ c20 ̸= −λη, c20 =
λc11
4

̸= λη (c11 ̸= 0)

and c11 ̸= −64η + 4ηλ2

10 + λ2
] then the origin is a third order fine

focus whose stability is determined by the sign of

λc11(4η − c11)(64η + 4ηλ2 + 10c11 + λ2c11).

4. If η3 = η5 = η7 = 0 [that is if c02 = −λc11
2

+ c20 ̸= −λη,

c20 =
λc11
4

̸= λη (c11 ̸= 0) and c11 = −64η + 4ηλ2

10 + λ2
] then

η9 =
5πη4λ(13 + λ2)(16 + λ2)

8(10 + λ2)4
̸= 0, and the origin is a fourth

order fine focus whose stability is determined by the sign of λ.

Proof. As we did in Theorem 4.1.8 we compute the Lyapunov quantities for
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X | W c
loc using the same ideas in the proof of the polynomial Moon-Rand system, for

the generalized rational Moon-Rand system. Using the same notations we obtained

η1 = η2k = 0 for 1 ≤ k ≤ 4, and first

η3 =
π(2c20 − λc11 − 2c02)

4(4 + λ2)

which has the same sign as 2c20 − λc11 − 2c02, this proves 1.

Setting η3 = 0 yields c02 = −λc11
2

+ c20 ̸= −λη, where the inequality is necessary for

the system not to meet conditions (4.18). With the substitution of c02, we obtain

η5 =
π(λc11 − 4c20)(2c20 − λc11 + 2λη)

16λ(4 + λ2)

which has the same sign as λ(λc11−4c20)(2c20−λc11+2λη). The assumption −λc11
2

+

c20 ̸= −λη implies 2c20 − λc11 + 2λη ̸= 0 hence η5 ̸= 0 if and only if c20 ̸= λc11
4
, this

proves 2.

Next setting η3 = η5 = 0 yields [ c02 = −λc11
2

+ c20 ̸= −λη, c20 = λc11
4

̸= λη (c11 ̸= 0)

], where the last two inequalities are necessary for the system not to meet conditions

(4.18). Substituting c20 =
λc11
4
, gives

η7 =
πλc11(4η − c11)(64η + 4ηλ2 + 10c11 + λ2c11)

512(4 + λ2)(16 + λ2)

which has the same sign as λc11(4η−c11)(64η+4ηλ2+10c11+λ
2c11). The assumption

c20 =
λc11
4

̸= λη (c11 ̸= 0) implies η7 ̸= 0 if and only if 64η + 4ηλ2 + 10c11 + λ2c11 ̸= 0

(or c11 ̸= −64η+4ηλ2

10+λ2 ), this proves 3.

Finally, we substitute c11 = −64η+4ηλ2

10+λ2 so for η3 = η5 = η7 = 0 and obtain

η9 =
5πη4λ(13 + λ2)(16 + λ2)

8(10 + λ2)4
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that is a nonzero number that has the same sign as λ, this proves 4. �

Theorem 4.2.3. Consider the generalized rational Moon-Rand system (4.16) with its

associated vector field X.

1. If the origin for 2 ≤ k ≤ 4 is a kth order fine focus, then the origin on the local

center manifold has cyclicity k : the origin can be made to bifurcate k−1 limit cycles

on a neighborhood of the origin in W c
loc.

2. If the origin is a first order focus, then the origin on the local center manifold

has cyclicity zero: no limit cycles bifurcate from the origin on a neighborhood of the

origin in W c
loc.

3. If the origin is a center, then the origin on the local center manifold on a neigh-

borhood of the origin in W c
loc.

can be made to bifurcate:

a. one limit cycle if c02 = −λ
2
c11 + c20 = −λη and λc11 − 4c20 ̸= 0.

b. two limit cycles if c02 = −λ
2
c11 + c20 = −λη and λc11 − 4c20 = 0.

c. two limit cycles if c20 = c11 = c02 = 0.

Proof. The proof is similar to the one of Theorem 4.1.11 for the polynomial

Moon-Rand system since the computation of the Lyapunov quantities give analogous

results, so we use the same technique to create zeros that correspond to limit cycles

under small perturbation of the parameter system (c20, c11, c02, λ, η) within system

(4.16). �
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APPENDIX:TABLES

Table 1: The Algorithm for computing g1,1,0, g2,2,0, · · · , gk,k,0.
The Algorithm for computing νk1,k2,k3 and gk,k,0.

Input:
S = {(p, q, r)|(p, q, r) ∈ S}
T = {(p1, q1, r1)|(p1, q1, r1) ∈ T}
Stage = 2k.

Output:
νk1,k2,k3(k1, k2 ∈ {−1} ∪ N0 and k3 ∈ N0), k1 + k2 + k3 ≤ 2k
g1,1,0, g2,2,0, · · · , gk,k,0.

Procedure:
g:=Array[g,{stage,stage,1},{1,1,0}]

ν:=Array[ν,{stage+3,stage+3,stage+3},{-1,-1,0}]

a:=Array[a,{stage+3,stage+3,stage+3},{-1,-1,0}]

b:=Array[b,{stage+3,stage+3,stage+3},{-1,-1,0}]

c:=Array[c,{stage+3,stage+3,stage+3},{0,0,-1}]

For i=-1 To stage+3 Do
For j=-1 To stage+3 Do
For k=-1 To stage+3 Do
ν [i,j,k]=0
If(i, j, k) ∈ S Then a[i, j, k] = ai,j,k; b[j, i, k] = bj,i,k Otherwise a[i, j, k] = b[j, i, k] = 0
If (i, j, k) ∈ T Then c[i, j, k] = ci,j,k Otherwise c[i, j, k] = b[i, j, k]

ν[0,0,0]=1

For i=1 To stage Do
For k1 = −1 To i+1 Do
For k2 = −1 To i-k1 Do
k3 = i-(k1 − k2)
Compute A=the first sum in (3.28)
Compute B=the second sum in (3.28)
Compute A=the third sum in (3.28)

If k3 = k2 − k1 = 0 Then Compute gk1,k1,0 using (3.29); Set νk1,k1,0 = 0
Otherwise Compute νk1,k2,k3 by solving for it in (3.28)
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Table 2: The Mathematica code for Example 3.2.2
S = {(1, 0, 0), (0, 0, 1), (−1, 1, 1), (−1, 0, 2)}; T = {(2, 0,−1), (0, 0, 1)};
Stage=2;
g:=Array[g,{stage,stage,1},{1,1,0}];
ν:=Array[ν,{stage+3,stage+3,stage+3},{-1,-1,0}];
a:=Array[a,{stage+3,stage+3,stage+3},{-1,-1,0}];
b:=Array[b,{stage+3,stage+3,stage+3},{-1,-1,0}];
c:=Array[c,{stage+3,stage+3,stage+3},{0,0,-1}];
For[i = −1, i ≤ stage + 3, i + +,
For[j = −1, j ≤ stage + 3, j + +,
For[k = −1, k ≤ stage + 3, k + +,
ν [i,j,k]=0;
If[MemberQ[S,{i,j,k}], a[i,j,k]=Subscript[a,i,j,k];b[j,i,k]=Subscript[b,j,i,k],
a[i,j,k]=0;b[j,i,k]=0;
If[MemberQ[T,{i,j,k}], c[i,j,k]=Subscript[c,i,j,k],c[i,j,k]=0]]]];
ν [0,0,0]=1;
For[i = 1, i ≤ stage, i + +,
For[k1 = −1, k1 ≤ i + 1, k1 + +,
For[k2 = −1, k2 ≤ i− k1, k2 + +,
k3 = i− (k1 + k2); A = 0;B = 0; Z = 0;
For[j = 1, j ≤ k1 + 2, j + +,
For[k = 0, k ≤ k2 + 1, k + +,
For[n = 0, n ≤ k3, n + +,
If[2 ≤ j + k + n ≤ k1 + k2 + k3 + 1,
A = A+ j ⋆ a[k1− j + 1, k2− k + 1, k3− n] ⋆ ν[j− 1, k− 1, n]]]]];
For[j = 0, j ≤ k1 + 1, j + +,
For[k = 1, k ≤ k2 + 2, k + +,
For[n = 0, n ≤ k3, n + +,
If[2 ≤ j + k + n ≤ k1 + k2 + k3 + 1,
B = B + k ⋆ b[k1− j + 1, k2− k + 1, k3− n] ⋆ ν[j− 1, k− 1, n]]]]];
For[j = 0, j ≤ k1 + 1, j + +,
For[k = 0, k ≤ k2 + 1, k + +,
For[n = 1, n ≤ k3 + 1, n + +,
If[2 ≤ j + k + n ≤ k1 + k2 + k3 + 1,
Z = Z + n ⋆ c[k1− j + 1, k2− k + 1, k3− n] ⋆ ν[j− 1, k− 1, n]]]]];
If k3 == k2 − k1 == 0, gk1,k1,0 = i ⋆ a[k1, k2, k3] + i ⋆ b[k1, k2, k3]− i ⋆ A+ i ⋆ B− Z;
ν[k1, k2, k3] = 0,
ν[k1, k2, k3] = (1/((− ⋆ λ) ⋆ (k3) + (k1− k2) ⋆ i)) ⋆ (i ⋆ a[k1, k2, k3]− i ⋆ b[k1, k2, k3]
+i ⋆ A− i ⋆ B + Z)]; ]]];
For[i = 1, i ≤ stage, i + +,
For[k1 = −1, k1 ≤ i + 1, k1 + +,
For[k2 = −1, k2 ≤ i− k1, k2 + +,
k3 = i− (k1 + k2); A = 0;B = 0; Z = 0;
Print[Subscript[ν, k1, k2, k3], ” = ”, Simplify[ν[k1, k2, k3]]]; ]]];
For[i = 1, i ≤ stage/2, i + +,
Print[Subscript[g, i, i, 0], ” = ”, Simplify[g[i, i, 0]]]];
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Table 3: g1,1,0, · · · , g5,5,0. for Polynomial Moon-Rand system
S = {(0, 0, 1), (−1, 1, 1)}; T = {(2, 0,−1), (1, 1,−1), (0, 2,−1)};
Stage=10;
g:=Array[g,{stage,stage,1},{1,1,0}];
ν:=Array[ν,{stage+3,stage+3,stage+3},{-1,-1,0}];
a:=Array[a,{stage+3,stage+3,stage+3},{-1,-1,0}];
b:=Array[b,{stage+3,stage+3,stage+3},{-1,-1,0}];
c:=Array[c,{stage+3,stage+3,stage+3},{0,0,-1}];
a[0,0,1]=a[-1,1,1]=b[0,0,1]=b[1,-1,1]=−1

2
;

c[2,0,-1]=−1
4
(c20 − c02 + ic11);

c[1,1-1]=−1
2
(c20 + c02);

c[0,2,-1]=−1
4
(c20 − c02 − ic11);

ν [0,0,0]=1;
For[i = 1, i ≤ stage, i + +,
For[k1 = −1, k1 ≤ i + 1, k1 + +,
For[k2 = −1, k2 ≤ i− k1, k2 + +,
k3 = i− (k1 + k2); A = 0;B = 0; Z = 0;
For[j = 1, j ≤ k1 + 2, j + +,
For[k = 0, k ≤ k2 + 1, k + +,
For[n = 0, n ≤ k3, n + +,
If[2 ≤ j + k + n ≤ k1 + k2 + k3 + 1,
A = A+ j ⋆ a[k1− j + 1, k2− k + 1, k3− n] ⋆ ν[j− 1, k− 1, n]]]]];
For[j = 0, j ≤ k1 + 1, j + +,
For[k = 1, k ≤ k2 + 2, k + +,
For[n = 0, n ≤ k3, n + +,
If[2 ≤ j + k + n ≤ k1 + k2 + k3 + 1,
B = B + k ⋆ b[k1− j + 1, k2− k + 1, k3− n] ⋆ ν[j− 1, k− 1, n]]]]];
For[j = 0, j ≤ k1 + 1, j + +,
For[k = 0, k ≤ k2 + 1, k + +,
For[n = 1, n ≤ k3 + 1, n + +,
If[2 ≤ j + k + n ≤ k1 + k2 + k3 + 1,
Z = Z + n ⋆ c[k1− j + 1, k2− k + 1, k3− n] ⋆ ν[j− 1, k− 1, n]]]]];
If k3 == k2 − k1 == 0, gk1,k1,0 = i ⋆ a[k1, k2, k3] + i ⋆ b[k1, k2, k3]− i ⋆ A+ i ⋆ B− Z;
ν[k1, k2, k3] = 0,
ν[k1, k2, k3] = (1/((− ⋆ λ) ⋆ (k3) + (k1− k2) ⋆ i)) ⋆ (i ⋆ a[k1, k2, k3]− i ⋆ b[k1, k2, k3]
+i ⋆ A− i ⋆ B + Z)]; ]]];
For[i = 1, i ≤ stage, i + +,
For[k1 = −1, k1 ≤ i + 1, k1 + +,
For[k2 = −1, k2 ≤ i− k1, k2 + +,
k3 = i− (k1 + k2); A = 0;B = 0; Z = 0;
For[i = 1, i ≤ stage/2, i + +,
Print[Subscript[g, i, i, 0], ” = ”, Simplify[g[i, i, 0]]]];
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Table 4: Poincaré-Lyapunov numbers for the Polynomial Moon-Rand system
Print[88POINCARE− LYAPUNOV NUMBERS / STABILITY OF THE FOCI′′];
Clear[u]; Clear[v]; Clear[s]; Clear[h]; Clear[λ]; Clear[W]; Clear[R];
Remove[88Global8∗′′];
(∗Defining the center manifold
w = h(u, v) = h20u

2 + h11uv + h02v
2 + h40u

4 + h31u
3v + · · · ∗)

h[u−, v−] := (Subscript[h, 20]) ∗ u2 + (Subscript[h, 11]) ∗ u ∗ v+
(Subscript[h,88 02′′]) ∗ v2 + (Subscript[h, 40]) ∗ u4+
(Subscript[h, 31]) ∗ (u3) ∗ v + (Subscript[h, 22]) ∗ (u2) ∗ (v2)+
(Subscript[h, 13]) ∗ u ∗ (v3) + (Subscript[h,88 04′′]) ∗ v4+
(Subscript[h, 60]) ∗ u6 + (Subscript[h, 51]) ∗ (u5) ∗ v+
(Subscript[h, 42]) ∗ (u4) ∗ (v2) + (Subscript[h, 33]) ∗ (u3) ∗ (v3)+
(Subscript[h, 24]) ∗ (u2) ∗ (v4) + (Subscript[h, 15]) ∗ u ∗ (v5)+
(Subscript[h,88 06′′]) ∗ v6;
(∗Defining the zero function
s(u, v) = huu̇ + hvv̇ + λh(u, v)− c20u

2 − c11uv − c02v
2∗)

s[u−, v−] = D[h[u, v], u] ∗ v + D[h[u, v], v] ∗ (−u− u ∗ h[u, v]) + λ ∗ h[u, v]−
(Subscript[c, 20]) ∗ u2 − (Subscript[c, 11]) ∗ u ∗ v − (Subscript[c,88 02′′]) ∗ v2;
(∗Solving for h20, h11, h02, and assigning results∗)
sols = Solve [ Coefficient[s[u, 0], u2] == 0,Coefficient[s[u, v], u ∗ v] == 0,
Coefficient[s[0, v], v2] == 0, Subscript[h, 20], Subscript[h, 11], Subscript[h,88 02′′]; ]
Subscript[h, 20] = Simplify[Subscript[h, 20]/.sols[[1]]];
Subscript[h, 11] = Simplify[Subscript[h, 11]/.sols[[1]]];
Subscript[h,88 02′′] = Simplify[Subscript[h,88 02′′]/.sols[[1]]];
Print[88h′′

20,
88 =′′, Subscript[h, 20]];

Print[88h′′
11,

88 =′′, Subscript[h, 11]];
Print[88h′′

02,
88 =′′, Subscript[h,88 02′′]];

(∗Defining dr
dφ

= r cos[φ] sin[φ]h(r cos[φ],r sin[φ])
1−cos2[φ]h(r cos[φ],r sin[φ])

=

r cos[φ] sin[φ]h(r cos[φ], r sin[φ])[1− cos2[φ]h(r cos[φ], r sin[φ]) + · · · ]∗)
R[r−, φ−] := (r ∗ cos[φ] ∗ sin[φ] ∗ h[r ∗ cos[φ], r ∗ sin[φ]]) ∗ (1 + (−(cos[φ])2)∗)
h[r ∗ cos[φ], r ∗ sin[φ]] + (−((cos[φ])2) ∗ h[r ∗ cos[φ], r ∗ sin[φ]])2+
(−((cos[φ])2) ∗ h[r ∗ cos[φ], r ∗ sin[φ]])3;)
Print[Subscript[R, 1],88 =′′,Coefficient[R[r, φ], r]];
Print[Subscript[R, 2],88 =′′,Coefficient[R[r, φ], r2]];
Print[Subscript[R, 3],88 =′′,Coefficient[R[r, φ], r3]];
Print[Subscript[R, 4],88 =′′,Coefficient[R[r, φ], r4]];
Print[Subscript[R, 5],88 =′′,Coefficient[R[r, φ], r5]];
Print[Subscript[R, 6],88 =′′,Coefficient[R[r, φ], r6]];
Print[Subscript[R, 7],88 =′′,Coefficient[R[r, φ], r7]];
Print[Subscript[R, 8],88 =′′,Coefficient[R[r, φ], r8]];
(∗Computing w3(φ) by integrating w

′
3(φ) = R3(φ) and

using the initial condition w3(0) = 0. η3 = w3(2π) = N3(2π). ∗)
w3[φ−] = Integrate[Coefficient[R[r, φ], r3], φ];
N3[φ−] = w3[φ]− w3[0];
Print[88η3 =

′′, Simplify[N3[2 ∗ Pi]]];
(∗Conditions for η3 = 0∗)
Print[88With′′, Subscript[c,88 02′′],88 =′′, Subscript[c, 20]− λ ∗ Subscript[c, 11]/2];
Subscript[c,88 02′′] = Subscript[c, 20]− λ ∗ Subscript[c, 11]/2;
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Table 4.4 : (continued)
(∗Solving for h40, h31, h22, h13, h04, and assigning corresponding results.∗)
sols4 = Solve [{Coefficient[s[u, 0], u4] == 0,
Coefficient[s[u, v], (u3) ∗ v] == 0,
Coefficient[s[u, v], (u2) ∗ (v2)] == 0,
Coefficient[s[u, v], u ∗ (v3)] == 0,
Coefficient[s[0, v], v4] == 0 },
{Subscript[h, 40], Subscript[h, 31], Subscript[h, 22], Subscript[h, 13],
Subscript[h,88 04′′]}];
Subscript[h, 40] = Simplify[Subscript[h, 40]/.sols4[[1]]];
Subscript[h, 31] = Simplify[Subscript[h, 31]/.sols4[[1]]];
Subscript[h, 22] = Simplify[Subscript[h, 22]/.sols4[[1]]];
Subscript[h, 13] = Simplify[Subscript[h, 13]/.sols4[[1]]];
Subscript[h,88 04′′] = Simplify[Subscript[h,88 04′′]/.sols4[[1]]];
(∗Computing w5(φ) by integrating w

′
5(φ) = 3R3(φ)w3(φ) + R5(φ) and

using the initial condition w5(0) = 0. η5 = w5(2π) = N5(2π). ∗)
w5[φ−] = Integrate [ 3 ∗ Coefficient[R[r, φ], r3] ∗ w3[φ] + Coefficient[R[r, φ], r5], φ];
N5[φ−] = w5[φ]− w5[0];
Print[88η3 =

′′, Simplify[N3[2 ∗ Pi]],88 andη5 =′′,Factor[Simplify[N5[2 ∗ Pi]]]];
(∗Conditions for η5 = 0∗)
Print[88With′′, Subscript[c, 20],88=′′, λ ∗ Subscript[c, 11]/4];
Subscript[c, 20] = λ ∗ Subscript[c, 11]/4;
(∗Solving for h60, h51, h42, h33, h24, h15, h06, and assigning corresponding results .∗)
sols6 = Solve [{ Coefficient[s[u, 0], u6] == 0,
Coefficient[s[u, v], (u5) ∗ v] == 0,
Coefficient[s[u, v], (u4) ∗ (v2)] == 0,
Coefficient[s[u, v], (u3) ∗ (v3)] == 0,
Coefficient[s[u, v], (u2) ∗ (v4)] == 0,
Coefficient[s[u, v], u ∗ (v5)] == 0,
Coefficient[s[0, v], v6] == 0 },
{ Subscript[h, 60], Subscript[h, 51], Subscript[h, 42], Subscript[h, 33],
Subscript[h, 24], Subscript[h, 15], Subscript[h, 06]}];
Subscript[h, 60] = Simplify[Subscript[h, 60]/.sols6[[1]]];
Subscript[h, 51] = Simplify[Subscript[h, 51]/.sols6[[1]]];
Subscript[h, 42] = Simplify[Subscript[h, 42]/.sols6[[1]]];
Subscript[h, 33] = Simplify[Subscript[h, 33]/.sols6[[1]]];
Subscript[h, 24] = Simplify[Subscript[h, 24]/.sols6[[1]]];
Subscript[h, 15] = Simplify[Subscript[h, 15]/.sols6[[1]]];
Subscript[h,88 06′′] = Simplify[Subscript[h,88 06′′]/.sols6[[1]]];
(*Computing η7(φ) by integrating
w

′
7(φ) = 3R3(φ)(w

2
3(φ) + w5(φ)) + 5R5(φ)w3(φ) + R7(φ) and

using the intial condition w7(0) = 0. η7 = w7(2π) = N7(2π). *)
w7[φ−] = Simplify [ Integrate [ Coefficient[R[r, φ], r3] ∗ ((w3[φ])

2 + w5[φ])+
5 ∗ Coefficient[R[r, φ], r5] ∗ w3[φ] + Coefficient[R[r, φ], r7], φ ]];
N7[φ−] = w7[φ]− w7[0];
Print[88η3 = η5 =

′′, Simplify[N5[2 ∗ Pi]],88 andη7 =′′,Factor[Simplify[N7[2 ∗ Pi]]]];
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Table 5: Prime decomposition of B for the Generalized Rational Moon-Rand

> LIB "primdec.lib";

> ring r=0,(x,y,z,L,M),dp;

> poly g1=2*x - L*y - 2*z;

> poly g2=-((x + z)*(24*x + 4*L*(4*M - 3*y) +

L^3*(4*M - y) - 8*z + 2*L^2*(x + z)));

> poly g3=16*L^13*M^2*y + 196608*x*(x + z)^2 +...

+y*(-501*x^2 - 138*y^2 + 1222*x*z + 1171*z^2));

> poly g4=-1152*L^24*M^3*y -...

-x*(76*y^2 + 45*z^2) - 61*(2*y^2*z + z^3)));

> poly g5=31352832*L^41*M^4*y - ...

-85878606571852*y^2*z^2 + 60687397590549*z^4)));

> ideal j1=g1;

> ideal j2=g1,g2;

> ideal j3=g1,g2,g3;

> ideal j4=g1,g2,g3,g4;

> ideal j5=g1,g2,g3,g4,g5;

> minAssGTZ(j1);

[1]:

_[1]=-1/2yL+x-z

> minAssGTZ(j2);

[1]:

_[1]=LM+z

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[3]:

_[1]=yL+4z

_[2]=-1/2yL+x-z

> minAssGTZ(j3);

[1]:

_[1]=LM+z

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[3]:

_[1]=-L3M+zL2-16LM+10z

_[2]=2L2M-2zL+5y+32M

_[3]=-1/2yL+x-z

[4]:

_[1]=L2+1

_[2]=-4zL+y

_[3]=-1/2yL+x-z
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Table 4.5 : (continued)

[5]:

_[1]=z

_[2]=y

_[3]=-1/2yL+x-z

> minAssGTZ(j4);

[1]:

_[1]=LM+z

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+4

_[2]=-1/2yL+x-z

[3]:

_[1]=9L2+4

_[2]=-9L19M-265L17M-3149L15M-20887L13M-81782L11M-

214324L9M-211640L7M-1245136L5M+9628192L3M-

260025856LM+162502848z

_[3]=9L18M+265L16M+3149L14M+20887L12M+81782L10M+

214324L8M+211640L6M+1245136L4M-9628192L2M+

40625712y+260025856M

_[4]=-1/2yL+x-z

[4]:

_[1]=L2+1

_[2]=-4zL+y

_[3]=-1/2yL+x-z

[5]:

_[1]=z

_[2]=y

_[3]=-1/2yL+x-z

> minAssGTZ(j5);

[1]:

_[1]=LM+z

_[2]=-1/2yL+x-z

[2]:

_[1]=L2+4

_[2]=-1/2yL+x-z
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Table 4.5 : (continued)

[3]:

_[1]=9L2+4

_[2]=-9L19M-265L17M-3149L15M-20887L13M-81782L11M-

214324L9M-211640L7M-1245136L5M+9628192L3M-

260025856LM+162502848z

_[3]=9L18M+265L16M+3149L14M+20887L12M+81782L10M+

214324L8M+211640L6M+1245136L4M-9628192L2M+

40625712y+260025856M

_[4]=-1/2yL+x-z

[4]:

_[1]=L2+1

_[2]=-4zL+y

_[3]=-1/2yL+x-z

[5]:

_[1]=z

_[2]=y

_[3]=-1/2yL+x-z

>
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Table 6: Coefficients of F for the Generalized Rational Moon-Rand

Clear[\[Lambda]]; Clear[j]; Clear[k];

F[u_, v_, w_] := Subscript[F, 300]*u^3 +

Subscript[F, 210]*(u^2)*v +

Subscript[F, 201]*(u^2)*w + Subscript[F, 120]*u*(v^2) +

Subscript[F, 111]*u*v*w + Subscript[F, 102]*u*(w^2) +

Subscript[F, "030"]*v^3 + Subscript[F, "021"]*(v^2)*w +

Subscript[F, "012"]*v*(w^2) + Subscript[F, "003"]*w^3 +

Subscript[F, 200]*u^2 + Subscript[F, 110]*u*v +

Subscript[F, 101]*u*w + Subscript[F, "020"]*v^2 +

Subscript[F, "011"]*v*w + Subscript[F, "002"]*w^2 +

Subscript[F, 100]*u + Subscript[F, "010"]*v +

Subscript[F, "001"]*w + Subscript[F, "000"];

K[u_, v_, w_] := Subscript[K, "000"] + Subscript[K, 100]*u +

Subscript[K, "010"]*v + Subscript[K, "001"]*w +

Subscript[K, 200]*u^2 + Subscript[K, 110]*u*v +

Subscript[K, 101]*u*w + Subscript[K, "020"]*v^2 +

Subscript[K, "011"]*v*w + Subscript[K, "002"]*w^2 +

Subscript[K, 300]*u^3 + Subscript[K, 210]*(u^2)*v +

Subscript[K, 201]*(u^2)*w + Subscript[K, 120]*u*(v^2) +

Subscript[K, 111]*u*v*w + Subscript[K, 102]*u*(w^2) +

Subscript[K, "030"]*v^3 + Subscript[K, "021"]*(v^2)*w +

Subscript[K, "012"]*v*(w^2) + Subscript[K, "003"]*w^3 ;

Subscript[C, "02"] = -\[Lambda]*\[Eta];

Subscript[C, 20] = (\[Lambda]/2)*Subscript[C, 11] - \[Lambda]*\[Eta];

F1[u_, v_, w_] = Expand[D[F[u, v, w], u]*v*(1 + \[Eta]*u^2) +

D[F[u, v, w], v]*(-u - u*w)*(1 + \[Eta]*u^2) +

D[F[u, v, w], w]*(-\[Lambda]*w*(1 + \[Eta]*u^2) +

Subscript[C, 20]*(u^2) + Subscript[C, 11]*u*v +

Subscript[C, "02"]*(v^2))];

F2[u_, v_, w_] := Expand[K[u, v, w]*F[u, v, w]];

F3[u_, v_, w_] := Expand[F2[u, v, w] - F1[u, v, w]];

Subscript[F, "000"] = Subscript[F, "010"] = Subscript[F, 100] = 0;

Subscript[K, "000"] = -\[Lambda];

Subscript[F, "003"] = Subscript[F, "012"] = Subscript[F, 102] =

Subscript[F, 111] = Subscript[F, 120] = 0;

Subscript[F, "021"] = Subscript[F, "030"] = 0;
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Table 4.6 : (continued)

sols = Solve[{

Coefficient[F3[u, 0, 0], u^2] == 0,

Coefficient[F3[u, v, 0], u*v] == 0,

Coefficient[F3[u, 0, w], u*w] == 0,

Coefficient[F3[0, v, 0], v*v] == 0,

Coefficient[F3[0, v, w], v*w] == 0,

Coefficient[F3[0, 0, w], w^2] == 0,

Coefficient[F3[u, 0, 0], u^3] == 0,

Coefficient[F3[u, v, 0], (u^2)*v] == 0,

Coefficient[F3[u, 0, w], (u^2)*w] == 0,

Coefficient[F3[u, v, 0], u*(v^2)] == 0,

Coefficient[F3[u, v, w], u*v*w] == 0,

Coefficient[F3[u, 0, w], u*(w^2)] == 0,

Coefficient[F3[0, v, 0], v^3] == 0,

Coefficient[F3[0, v, w], (v^2)*w] == 0,

Coefficient[F3[0, v, w], v*(w^2)] == 0,

Coefficient[F3[0, 0, w], w^3] == 0,

Coefficient[F3[u, 0, 0], u^4] == 0,

Coefficient[F3[u, v, 0], u^3*v] == 0,

Coefficient[F3[u, 0, w], u^3*w] == 0,

Coefficient[F3[u, v, 0], u^2*v^2] == 0,

Coefficient[F3[u, v, w], u^2*v*w] == 0,

Coefficient[F3[u, 0, w], u^2*w^2] == 0,

Coefficient[F3[u, v, 0], u*v^3] == 0,

Coefficient[F3[u, v, w], u*(v^2)*w] == 0,

Coefficient[F3[u, v, w], u*v*(w^2)] == 0,

Coefficient[F3[u, 0, w], u*(w^3)] == 0,

Coefficient[F3[0, v, 0], v^4] == 0,

Coefficient[F3[0, v, w], (v^3)*w] == 0,

Coefficient[F3[0, v, w], (v^2)*(w^2)] == 0,

Coefficient[F3[0, v, w], v*(w^3)] == 0,

Coefficient[F3[0, 0, w], w^4] == 0,

Coefficient[F3[u, 0, 0], u^5] == 0,

Coefficient[F3[u, v, 0], u^4*v] == 0,

Coefficient[F3[u, 0, w], u^4*w] == 0,

Coefficient[F3[u, v, 0], u^3*v^2] == 0,

Coefficient[F3[u, v, w], u^3*v*w] == 0,

Coefficient[F3[u, 0, w], u^3*w^2] == 0,

Coefficient[F3[u, v, 0], u^2*v^3] == 0,

Coefficient[F3[u, v, w], u^2*v^2*w] == 0,

Coefficient[F3[u, v, w], u^2*v*w^2] == 0,

Coefficient[F3[u, 0, w], u^2*w^3] == 0,

Coefficient[F3[u, v, 0], u*v^4] == 0,

Coefficient[F3[u, v, w], u*v^3*w] == 0,

Coefficient[F3[u, v, w], u*v^2*w^2] == 0,
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Table 4.6 : (continued)

Coefficient[F3[u, v, w], u*v*w^3] == 0,

Coefficient[F3[u, 0, w], u*w^4] == 0,

Coefficient[F3[0, v, 0], v^5] == 0,

Coefficient[F3[0, v, w], (v^4)*w] == 0,

Coefficient[F3[0, v, w], (v^3)*(w^2)] == 0,

Coefficient[F3[0, v, w], (v^2)*(w^3)] == 0,

Coefficient[F3[0, v, w], v*(w^4)] == 0,

Coefficient[F3[0, 0, w], w^5] == 0,

Coefficient[F3[u, 0, 0], u^6] == 0,

Coefficient[F3[u, v, 0], u^5*v] == 0,

Coefficient[F3[u, 0, w], u^5*w] == 0,

Coefficient[F3[u, v, 0], u^4*v^2] == 0,

Coefficient[F3[u, v, w], u^4*v*w] == 0,

Coefficient[F3[u, 0, w], u^4*w^2] == 0,

Coefficient[F3[u, v, 0], u^3*v^3] == 0,

Coefficient[F3[u, v, w], u^3*v^2*w] == 0,

Coefficient[F3[u, v, w], u^3*v*w^2] == 0,

Coefficient[F3[u, 0, w], u^3*w^3] == 0,

Coefficient[F3[u, v, 0], u^2*v^4] == 0,

Coefficient[F3[u, v, w], u^2*v^3*w] == 0,

Coefficient[F3[u, v, w], u^2*v^2*w^2] == 0,

Coefficient[F3[u, v, w], u^2*v*w^3] == 0,

Coefficient[F3[u, 0, w], u^2*w^4] == 0},

{Subscript[F, 300],Subscript[F, 210], Subscript[F, 201],

Subscript[F, 200],Subscript[F, 110], Subscript[F, 101],

Subscript[F, "020"],Subscript[F, "011"],Subscript[F, "002"],

Subscript[F, "001"],Subscript[K, 100], Subscript[K, "010"],

Subscript[K, "001"],Subscript[K, 200], Subscript[K, 110],

Subscript[K, 101],Subscript[K, "020"], Subscript[K, "011"],

Subscript[K, "002"],Subscript[K, 300], Subscript[K, 210],

Subscript[K, 201],Subscript[K, 120], Subscript[K, 111],

Subscript[K, 102],Subscript[K, "030"], Subscript[K, "021"],

Subscript[K, "012"], Subscript[K, "003"] }]


