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ABSTRACT

COLBY TYLER FORD. An Integrated Phylogeographic Analysis of the Bantu
Migration. (Under the direction of DR. DANIEL JANIES)

“Bantu” is a term used to describe lineages of people in around 600 different ethnic

groups on the African continent ranging from modern-day Cameroon to South Africa.

The migration of the Bantu people, which occurred around 3,000 years ago, was influ-

ential in spreading culture, language, and genetic traits and helped to shape human

diversity on the continent. Research in the 1970s was completed to geographically

divide the Bantu languages into 16 zones now known as “Guthrie zones” [25].

Researchers have postulated the migratory pattern of the Bantu people by exam-

ining cultural information, linguistic traits, or small genetic datasets. These studies

offer differing results due to variations in the data type used. Here, an assessment

of the Bantu migration is made using a large dataset of combined cultural data and

genetic (Y-chromosomal and mitochondrial) data.

One working hypothesis is that the Bantu expansion can be characterized by a

primary split in lineages, which occurred early on and prior to the population spread-

ing south through what is now called the Congolese forest (i.e. “early split”). A

competing hypothesis is that the split occurred south of the forest (i.e. “late split”).

Using the comprehensive dataset, a phylogenetic tree was developed on which to

reconstruct the relationships of the Bantu lineages. With an understanding of these

lineages in hand, the changes between Guthrie zones were traced geospatially.

Evidence supporting the “early split” hypothesis was found, however, evidence for
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several complex and convoluted paths across the continent were also shown. These

findings were then analyzed using dimensionality reduction and machine learning

techniques to further understand the confidence of the model.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

On the continent of Africa, approximately one-third of the population falls under

the category of Bantu. Bantu is a group of over 200 million people from Central

and Southern Africa. Among the Bantu population, there are around 600 languages

(including dialects) spoken. It is thought that the Bantu people originated from

what is now Cameroon ˜3,000 years ago and then spread to the east and south of

the continent [11]. However, the exact migratory or expansion path that was taken

is unknown and, as a result, the point of some debate.

The Bantu migration was a majorly influential spreading of culture, language,

and of course, genetic traits. The Bantu people had a more sedentary and settled

lifestyle than that of the indigenous people. Specifically, the Bantu placed a larger

importance on farming, whereas the indigenous people were commonly forest foragers.

With developments such as agricultural technology, the making of ceramics, and the

use of iron, new advancements drove the expansion to new ecological zones for the

use of the land’s resources [43, 19]. Thus, the spread of these individuals significantly

shaped the human diversity on the continent.

The Bantu expansion has been an active area of research for over 50 years. The

work of researchers Malcom Guthrie, in the 1960s and 1970s [26], and Roland Oliver,

in the late 1960s [44], helped shape the initial understanding of the Bantu people,

their expansion, and its importance. Guthrie’s work resulted in a linguistic division
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of the region into 16 Guthrie zones. Oliver laid the foundation of this area of research

when he created one of the first expansion models, which consisted of four distinct

phases and was based on archaeological and linguistic data coupled with geographical

features of the land.

By looking at changes in the Bantu people geographically, the trajectory by which

the individuals moved around the continent throughout time can be approximated.

But depending on the type of changes that are in question, the resulting migratory

path can differ drastically.

1.1 Current Migratory Models

Recently, researchers from various disciplines have published their own postulations

around the Bantu migration. While there is overall agreement that the group started

in what is now the Republic of Cameroon, the agreement stops there. When compar-

ing the publications on this topic, it is easy to notice that the migration paths are very

different from one another. This is likely due to data that was used by each research

team. Some researchers have relied on simplified genetic data (such as single nu-

cleotide polymorphisms) where as others have taken a more anthropologically-driven

approach. One of these approaches includes using linguistic data, for example. While

these datasets and approaches are valid, they paint very different pictures about the

migration path.

Linguistic researchers, such as Dr. Rebecca Grollemund and others, have shown

that there is considerable importance in linguistic traits of Bantu languages as markers

for inferring migratory patterns [24]. Other research has surfaced that suggests that
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the hypothesis concerning Bantu expansion can be tested by using both linguistic

and some genetic data [16]. As shown on the maps in figure 1, there is some obvious

disagreement in the proposed Bantu expansions. There has even been some research

that attempts to uncover a Bantu expansion by analyzing the spread of farming [47]

across the continent.

Some of these hypotheses are built on the notion that the likelihood by which a

group will have to adapt in the new environment affects the migratory choices that

the group will make. For example, there is a notion that humans preferred to migrate

through habitats that were most similar in climate, terrain, vegetation, or habitat

compared to where they had previously lived (referred to as a “path of least resistance”

approach). This resulted in a later theory known as the “beachcomber” hypothesis,

which proposes that the individuals may have migrated using a more coastal route

[41]. However, given the data from the previous migratory model publications, this

does not seem to be the case. Large movements into vastly different areas of the

continent are shown in each of the different models which do not support this theory.

Having this belief of a “path of least resistance” may have increased the risk of

skewed interpretations in the previous migratory research. Incorrectly interpreting

messy results risks apophenia. That is, perceiving results in a certain way based on

the prior hypothesis, rather than from an objective viewpoint. With this in mind, the

analyses in this research were performed with little dependence on the aforementioned

notions.
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Figure 1: Hypotheses of Bantu language expansion.
a) “early split” vs. b) “late split” de Filippo et al., 2011 [16], (fig. 2)
c) Currie et al., 2013 [14], (fig. 2b)
d) Grollemund et al., 2015 [24], (fig. 2A) main nodes and branches. Note that these
paths are summarized to the Guthrie zone, which may be at a higher level than the
published work’s results.
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1.2 The Early Split Hypothesis

The working hypothesis behind this research is that the Bantu expansion can be

characterized by a primary split in lineages, which occurred early on and prior to the

population spreading south through the now Congolese forest region. In maps (a)

and (b) in figure 1, the de Filippo models show two different points of divergence,

one beginning in present-day Cameroon and one with a later split, following a more

linear migration path.

If the split was indeed earlier on, the divergence and migration should flow from

north to south as well as east to west. That is, the Bantu individuals in present-day

South Africa are the most dissimilar (both culturally and genetically) to the Bantu

individuals in present-day Cameroon, correlated to their geographic distance. This

is opposite of the “path of least resistance” theory where the thought is that east-

west migrations should have occurred more than north-south migrations because the

former is less likely to result in encountering variations in climate or habitat [18].

Also, conversely to the de Filippo models, it is expected that the migratory path will

take a less linear route, but spread in a branching manner.

By combining the cultural and genomic data to create a single migratory path, this

hypothesis is tested. Also, it is of interest to see the concordance or discordance from

the resulting model to the other migratory models that are currently available.

1.2.1 The Role of Geographic Barriers in the Bantu Migration

In any migratory scenario, there could be limitations as to the path a group of

organisms can take. For example, without proper technology such as large ships
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or the ability to fly, it is unlikely that the Bantu people migrated via sea or air.

Therefore, the only way this group expanded was on land.

Even on land, though, there are regions of the continent that would have been more

difficult to traverse than others. This likely shaped the migration path by limiting

the possibly trajectories people could have traveled.

One such region is the Congolese forest. This area of the continent is considerably

more wet and verdant than the surrounding, more arid areas. Certain parts of this

rainforest are conducive to farming and habitation, whereas other parts are more

swamp-like and therefore less inhabitable or more difficult to traverse.

This forms a sub-hypothesis around the migratory path that the Congolese for-

est has provided a geographic boundary of sorts, around which the Bantu people

migrated. As shown in figure 2, the rainforest is shown to run through Southern

Cameroon, Gabon, Republic of the Congo, and the Democratic Republic of the Congo.

Additionally, there are large mountain ranges on the eastern side of the continent,

such as the Eastern Rift mountains, that may have also played a role in shaping the

Bantu migration trajectory. Mountains in these ranges, such as Kilimanjaro, are over

5,000 meters high and have very difficult climates on top [1]. These regions could

have been treacherous to surmount, therefore limiting the spread the Bantu people

in these areas.

If the early split hypothesis is true and the Bantu expansion went around the

areas such as the Congolese forest or the Eastern Rift, further research is needed to

understand if this was truly due to the geographical features such as mountains and

rainforests prohibiting migrant travel and settling or if other factors played a role.
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Figure 2: Spatial distribution of the African rainforests derived from MODIS data.
(Mayaux et al., 2013 [40])



CHAPTER 2: PHYLOGENETIC ANALYSIS USING HETEROGENEOUS DATA

2.1 Introduction

To begin analyzing the migratory path of the Bantu population, a model tree

is generated under the optimality criterion of parsimony. Typically, phylogenetic

analysis is performed on a single data type, such as a set of DNA sequences or

amino acid sequences. However, the goal was to use heterogeneous data together to

create a more complete picture of the Bantu migration. The use of Y-chromosomal,

mitochondrial DNA, and cultural data together was presumed to create a phylogenetic

tree which is better at explaining the multifaceted nature of the variation among the

Bantu groups. These three datasets look to represent the paternal, maternal, and

cultural lineages of the people.

Employing traditional methods of heuristically parsimonious tree generation does

not work without careful manipulation of the input data, along with the combination

file generation that contains all the data together, rather than three individual inputs.

Given the variety of the data, certain data processing exercises must be completed

before the data are acceptable for use in tree generation. The required processing

steps differ depending on the input data that are available.
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2.2 Materials and Methods

2.2.1 Data Curation

Genetic data representing the paternal lineage of the Bantu groups has been cu-

rated using Y-chromosomal (Ychr) short tandem repeats (STRs). The STR markers

are published in a .nexus file as integers which correspond to the number of tandem

repeats the individual possesses for a given microsatellite. The data are then re-coded

to retain the representation of the allelic makeup as a character string. This repre-

sentation allows a compact display of the STRs as a 12-character string where each

character corresponds to one STR marker, and the STR name is given as a charac-

ter state label. The order of the character state labels is as follows: 1: DYS389 I,

2: DYS389 II, 3: DYS385a, 4: DYS385b, 5: DYS391, 6: DYS390, 7: DYS393, 8:

DYS392, 9: DYS19, 10: DYS437, 11: DYS438, and 12: DYS439. See table 17 for

more information [10]. This data contains 1,724 Bantu-speaking STR profiles and 157

non-Bantu Nigerian samples (to serve as an outgroup set) for a total of 1,881 samples.

This data covers 49 distinct language groups (plus 2 outgroups), which represents 11

of the 16 Guthrie zones. This data is provided in the .nexus format.

In addition to representing the paternal lineage, mitochondrial DNA samples are

also collected to represent the maternal lineage. This data includes samples from

742 Bantu-speaking individuals and an additional 4 non-Bantu Nigerian samples (to

serve as an outgroup set) for a total of 746 samples. The mtDNA data covers 56

distinct language groups (plus 2 outgroups), which represents 12 of the 16 Guthrie

zones. This data is provided in an unaligned .fasta format.
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For some previous Bantu migration publications, there is an uneven distribution of

the samples among the different groups, which may have introduced bias into their

respective models. For example, in the de Filippo migration study [16], figure 2 in

the publication shows the heavy concentration of data samples in the northeastern

area around Cameroon. To check for a geographic bias of the data in this work, the

sampling locations from each of the papers were mapped. See figure 3. The spread of

the Ychr and mtDNA genetic samples appears to be more evenly distributed compared

to other publications’ datasets, at least from a purely visual inspection.

Figure 3: Mapped locations of the 138 genetic samples. Note that multiple samples
may have come from the same location.

In addition to the genetic data, cultural data has been collected and is used in

conjunction with the mtDNA and Ychr data. The cultural data is composed of 92

cultural traits outlined by the Ethnographic Atlas Codebook [23]. These “traits” are

cultural customs, such as the dependence on hunting, gathering, and fishing, as well
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Table 1: Number of individual samples and the representation of Guthrie zones for
each dataset.

Guthrie zone mtDNA Ychr Cultural Total
A 5 155 5 165
B 10 569 5 584
C 4 215 11 230
D 5 5
E 2 6 8
F 30 3 33
G 2 7 9
H 21 49 6 76
J 9 9
K 184 165 3 352
L 42 36 2 80
M 104 118 6 228
N 8 7 6 21
P 2 2
R 148 173 3 324
S 212 207 12 431
Z (Outgroup) 4 157 12 173
Total 746 1881 103 2730
Zone Coverage 75% 69% 100% 100%

as marriage practices, the use of animals for food and agriculture, and gender roles.

For a full list of cultural traits collected from the Ethnographic Atlas Codebook, see

table 18. In the cultural data, 93 language groups are represented, which includes all

16 Guthrie zones.

Only 16 of the groups (TaxaIDs) are exact matches in between all three of the

datasets. However, despite having a low number of specific groups matching, a ma-

jority of the Guthrie zones are represented in each dataset. Zones D, E, F, G, J, and

P are underrepresented in the genetic data only. All zones are represented in the

cultural data. See table 1. The migratory model is generated at the Guthrie zone

level. So, this coverage is sufficient for that analysis.



12

For a complete list of citations for the data, see table 2.
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2.2.2 Data Workflow

Given the diversity of the data, each dataset must be standardized such that each

can be similarly analyzed, both separately and combined. To integrate the datasets

for a combined analysis, each dataset must be converted to the same format so that

the integration can occur. The optimal format for both standalone and combined

analyses is the .nexus file format. Nexus is an extensible file format that is popular

in the bioinformatics field as it is flexible enough to house different types of data and

metadata [39].

The Ychr data was derived by hand from the original Y-chromosomal samples and

manually formatted as a .nexus file. For the mitochondrial data, the original file for-

mat was an unaligned .fasta file. Multiple sequence alignment was performed using

MAFFT (Multiple Alignment using Fast Fourier Transform) [32] (with default set-

tings) and the results were exported as an aligned .nexus file. Some manual cleansing

of the mitochondrial data was necessary as there were some sequence quality issues in

the original .fasta file(s). The cultural data was obtained pre-formatted as a .nexus

file. No changes were made to the cultural data’s format.

Once the data conversions are complete, the individual blocks of sequences in the

separate .nexus files are then copied into a single, combined file. This workflow now

results in 4 .nexus files, one for each of the separate datasets and one for the combined

data. See figure 4 for a graphical representation of the workflow.
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Figure 4: Tree generation and migratory model creation workflow.

2.2.3 Tree Search

Parsimony methods to building phylogenetics trees are some of the most widely

used algorithms in the field. These methods work by finding the tree that can explain

the sequences in the observed data using the least number of substitutions [20].

To identify the “best” tree, the parsimony algorithm searches through all topolo-

gies and assigns a cost to each. In other words, there are two distance steps for

parsimonious tree generation:

1. Compute the cost of a given tree T .

2. Search through all trees and find the overall minimum cost.

Note that the “best” tree here is the optimal tree result due to the allowed amount

of computational time and heuristics given. A better (more parsimonious) tree may

exist, but but may not have been found without further processing time, for example.
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With the .nexus files as inputs, POY4 [55] was used to perform the tree search. For

each of the analyses (three separate and one combined), a single, heuristically-derived

consensus tree is created using the parsimonious method. The resulting tree is the

one found to have the lowest cost, or number of substitutions given the input data.

2.2.3.1 Haversine Distances as a Cost Function

Parsimonious tree reconstructions are dependent on a set of cost parameters known

as a cost matrix or a Sankoff matrix [48]. A matrix can be derived using various

methods, such as the probability from transitioning from state i to j or some logic

around adjacent versus non-adjacent geographic transitions.

Here, the haversine distance was selected as the metric from which to generate the

cost matrix for the tree reconstruction. Haversine distance is the distance between

two points on a sphere and is used as a method to calculate the distance between two

locations on the planet [9]. In this scenario, the geolocation of individual Guthrie

zones is important in the overall postulation of the migration path. Given the avail-

ability of Guthrie zone and taxa locations, this distance is easily calculated.

To calculate the haversine distance d on a sphere of radius R, the steps are as

follows [33]:

a = sin2(
lat1 − lat2

2
) + cos(lat1) · cos(lat2) · sin2(

long1 − long2
2

)

c = 2 arctan 2(
√
a,
√

1− a)

d = R · c

For these calculations, the radius of the Earth is calculated as 6371e3.
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Table 3: Calculated centroids of each Guthrie zone.

Guthrie zone Latitude Longitude
A 2.348888889 10.31111111
B -1.753125 13.153125
C -0.40769231 21.38846154
D -1.78 27.604
E -2.35 38.45
F -3.73333333 33
G -5.85 37.7125
H -5.57142857 15.75
J -1.44444444 30.91111111
K -12.963 22.225
L -9.16 26.44
M -13.1222222 29.19444444
N -13.5571429 33.51428571
P -13.3 39.125
R -15.825 15.45
S -23.125 29.665625
Z 5.774285714 9.385

Using the latitude and longitude in table 3, the haversine distance was calculated

and resulted in the matrix in table 4. Note that the indel cost is the average of the

non-zero values in the rest of the matrix. This makes the cost to make an insertion

or deletion less than making a large jump between distant Guthrie zones, but not so

low that non-adjacent zone transitions are never favored over indels.

2.2.4 Reconstructing Migration Trajectory

Once the best tree is generated for each of the datasets, the next step is to extract

the apomorphies from each tree. Apomorphy is a derived trait, specialized to a

particular group [59]. In this case, the derived trait is the transition between one

Guthrie zone to another.

By understanding the apomorphic transitions between Guthrie zones for each of
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Table 4: Haversine distance-based cost matrix used in the parsimonious tree search.

A B C D E F G H J K L M N P R S Z Indel
A 0 555 1269 1977 3171 2611 3176 1068 2329 2151 2198 2702 3111 3624 2098 3524 395 1755
B 555 0 928 1606 2812 2215 2762 513 1974 1597 1685 2171 2596 3133 1585 2970 936 1755
C 1269 928 0 708 1909 1342 1910 850 1065 1399 1122 1655 1980 2423 1834 2680 1499 1755
D 1977 1606 708 0 1207 637 1209 1381 370 1377 831 1273 1462 1802 2053 2384 2191 1755
E 3171 2812 1909 1207 0 624 398 2543 844 2140 1529 1572 1359 1220 2931 2497 3352 1755
F 2611 2215 1342 637 624 0 573 1923 344 1567 943 1125 1094 1259 2343 2186 2827 1755
G 3176 2762 1910 1209 398 573 0 2430 900 1873 1296 1235 973 843 2669 2106 3400 1755
H 1068 513 849 1381 2543 1923 2430 0 1744 1086 1244 1696 2139 2702 1141 2457 1446 1755
J 2329 1974 1065 370 844 344 900 1744 0 1599 990 1312 1377 1599 2330 2415 2521 1755
K 2151 1597 1399 1377 2140 1567 1873 1086 1599 0 645 755 1224 1830 796 1376 2521 1755
L 2198 1685 1122 831 1529 923 1296 1244 990 625 0 533 913 1458 1404 1590 2516 1755
M 2702 2171 1655 1273 1572 1125 1235 1696 1312 755 533 0 470 1075 1510 1113 3034 1755
N 3111 2596 1980 1462 1359 1094 973 2139 1377 1224 913 470 0 608 1959 1139 3423 1755
P 3624 3133 2423 1802 1220 1259 843 2702 1599 1830 1458 1075 608 0 2562 1479 3909 1755
R 2098 1585 1834 2053 2931 2343 2669 1141 2330 796 1404 1510 1959 2562 0 1695 2493 1755
S 3524 2970 2680 2384 2497 2186 2106 2457 2415 1376 1590 1113 1139 1479 1695 0 3896 1755
Z 395 936 1499 2191 3352 2827 3400 1446 2521 2521 2516 3034 3423 3909 2493 3896 0 1755

Indel 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755 0

the taxa in a tree, a migration trajectory is reconstructed. However, tracing the

apomorphies by simply looking a large tree can be difficult if the tree is complex. As

such, using a computational method to perform this search speeds up the extraction

of this information.

PAUP: Phylogenetic Analysis Using Parsimony is a widely available tool for creat-

ing and analyzing phylogenetics trees. This tool was used to extract the apomorphies

from the tree file in each analysis. Since the trees were generated using a more ro-

bust and flexible tool like POY, PAUP was only used as a secondary extractor of the

necessary apomorphy information. This output is a list of the changes in the format

“A ==> B, B ==> H, F −− > G” and so on. The double arrow “==>” repre-

sents unambiguous changes whereas the single arrow “−− >” represents ambiguous

changes. This information is then transferred into a more specialized dataset that

contains the relevant attributes for visualization purposed such as latitude, longitude,

Guthrie zone, and model information. See table 5.
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2.3 Results

2.3.1 Trees

Four heuristically parsimonious phylogenetic trees were generated in POY: a com-

bined tree using all three datasets (figure 5), a tree using only the mtDNA data (figure

6), a tree using only the Ychr data (figure 7) and a tree using only the cultural data

(figure 8). Note that only a single outgroup (Ejagham) was used rather than the

entire Nigerian-based set from the data sources.

Regarding the tree generated using the combined data, figure 5, lineages from

Guthrie zones S, P, F, and R are monophyletic whereas others are not. The pathways

in this model are largely unambiguous.

The trees generated using a singular dataset each have the same overall trajectory

as the combined tree, but with with slight variations. One such variation includes

the presence of more ambiguity in the reconstruction of the ancestral Guthrie zone

states.

As for the tree generated using the mtDNA data, figure 6, there is variation from

the combined model in that there are movements from zones B to C and a split

from E to F and E to G. All of these are ambiguously reconstructed in the mtDNA

model, though. In this tree, the only zones in which the Guthrie character maps to

a monophyletic group are H, F, E, G, R, P and S.

In terms of variation in results derived from the tree generated using only Y-

chromosomal data with that of combined data tree, the main split occurs in zone

J leading to M. See figure 7. This split occurs at zone D in the combined model.
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Figure 5: Parsimonious phylogenetic tree generated by POY using the combined data
and the haversine distance-based Sankoff matrix.
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Tree Cost: 11221.000

Figure 6: Parsimonious phylogenetic tree generated by POY using the mtDNA data
and the haversine distance-based Sankoff matrix.
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However, this is ambiguously reconstructed in the Y-chromosomal model. In this

tree, the only zones in which the Guthrie character maps to a monophyletic group

are C, D, F, E, R, P, and S.

One variation that is seen in the tree generated using only cultural data is the pres-

ence of a D to K zone transition, albeit ambiguously reconstructed. See figure 8. In

this tree, the only zones in which the Guthrie zone character maps to a monophyletic

group are F, L, P, R, and S.

2.3.2 Migratory Path Visualization

Using the .tree files from the POY output, apomorphies were extracted using PAUP.

The apomorphic characters, or derived characters/traits that arose directly from the

ancestor and is unique to all descendants [59], are treated as transitions between

Guthrie zones. These zone transitions are transformed and combined into the data

seen in figure 5. From here, Tableau was used to plot these transitions geographically

[49]. This tool provides immersive and interactive functionality for data exploration,

which was useful in the comparison of the generated models as well as the comparison

to the reference models from previous researchers.

For the combined migratory model, the trajectory is seen starting in the northwest

in Guthrie zone A and moving southward to zones B and H. Then, the model shows an

eastward movement through zones C and D. At zone D a split occurs with migration

going east through zones J, F, G, and E and south to zone L. From zone L, another

split occurs, heading west to zones K and R and heading southwest to zone M. At

zone M, another split occurs, with one branch heading south and ending at zone S and
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Figure 7: Parsimonious phylogenetic tree generated by POY using the Ychr data and
the haversine distance-based Sankoff matrix.
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Figure 8: Parsimonious phylogenetic tree generated by POY using the cultural data
and the haversine distance-based Sankoff matrix.
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heading east to zone N and ending at P. See figure 9. Note that the only ambiguous

transitions occur from zone J to F and F to G. Every other transition is unambiguous.

Figure 9: Migratory model generated using the Guthrie zone transitions from the
combined data and the haversine distance-based Sankoff matrix.

The migratory model generated using only mtDNA data shows a slightly different

trajectory. The path starts in the northwest in Guthrie zone A and moves southward

to zone B, but seems have an area of ambiguity between zones B, C, H, and D. At

zone D a split occurs with migration going east through zones J, F, G, and E and
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south to zone L, similar to the combined model. From zone L, another split occurs,

heading west to zones K and R and heading southwest to zone M. At zone M, another

split occurs with one branch heading south and ending at zone S and heading east to

zone N and ending at P, the same as the combined model. See figure 10. Note that

there are more ambiguous transitions occurring here attached to zones (B, C, and H),

(J, E, F, and G), and (D, L, M, and N).

Figure 10: Migratory model generated using the Guthrie zone transitions from the
mtDNA data and the haversine distance-based Sankoff matrix.
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The model generated using only the Ychr data is strikingly similar to the combined

model. This models shows the same trajectory starting in the northwest in Guthrie

zone A and moving southward to zone B and H and then an eastward movement

through zones C and D. At zone D a split occurs with migration going east through

zones J, F, G, and E. The only topological difference in this model compared to the

combined is that the southbound movement from zone D is linked to zone M rather

than H, but this is an ambiguous transition. At zone M, the branching is the same

to the combined model in that one is heading south and ending at zone S and one is

heading east to zone N and ending at P. See figure 11. Note that a major difference

in ambiguity from the combined model is along the path through H, C, D, J, and G.

The final separate model to compare is the cultural model. The model generated

using only the cultural data is strikingly similar to both the combined model as well

as the Ychr model. The trajectory is seen starting in the northwest in Guthrie zone

A and moving southward to zones B and H. Then, the model shows an eastward

movement through zones C and D. At zone D a split occurs with migration going

east through zones J, F, G, and E. The major difference in this model compared

to the combined is that the southbound movement from zone D is linked to zone K

rather than H, but this is an ambiguous transition. At zone M, the branching is the

same to the combined model in that one is heading south and ending at zone S and

one is heading east to zone N and ending at P. See figure 12. Note that the only

ambiguous areas of this model are mainly in the center of the continent, which is the

area of disagreement to the combined model.
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Figure 11: Migratory model generated using the Guthrie zone transitions from the
Ychr data and the haversine distance-based Sankoff matrix.



30

Figure 12: Migratory model generated using the Guthrie zone transitions from the
cultural data and the haversine distance-based Sankoff matrix.
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2.4 Discussion

Overall, the trees have similar overall topologies. This is seen in the reconstructed

migratory paths as well. For example, there is an overall agreement that there is a

lateral movement from Guthrie zone A to the west. Also, around zone D, there seems

to have been a split in lineages with a new trajectory moving south. Overall, there is

an agreement in the branching pattern seen in the southern zones as well. However,

the points of disagreement are often in the central zones on the region. The tree

topologies all differ slightly, but the common monophyly of Guthrie characters F, R,

P, and S among all the results from different datasets suggests that the endpoints of

the Bantu migration have been largely stable over time with respect to the genetic

and cultural makeup of the population.

Comparing the migratory models, the combined model has the clearest migration

path as it has the least ambiguous transitions and a more reasonable trajectory. For

example, in comparison to the mtDNA migratory model, the combined model exhibits

far less “back tracking” across the continent. In the mtDNA model, there are some

transitions, such as from zones J to E and back to F, that are not seen in the combined

model. It seems the movement in the combined model is mostly unidirectional until

branching begins to occur. Thus, there are novel results here that have very little

internal conflict and become less ambiguous when data are combined.

By combining the datasets together, a more cohesive migration postulation is cre-

ated. This combined model takes aspects from each of the constituent sets, and traces

the trajectory in a more condensed manner. This can be seen in figure 13. Note the
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combined model (the blue path) is central to the other individual models’ paths.

Figure 13: All four generated migratory models overlaid for comparison.

Finally, both the combined migratory model, as well as the separate models, provide

evidence that partially confirms the initial hypothesis that the migration is character-

ized by an “early split”. This can clearly be seen in Guthrie zone D in the combined

model, as well as in most of the separate models. These pathways are different than

previous authors have reconstructed. Specifically, the location of the split is different

(more centered on the continent) than the “early split” de Filippo model. In addition,
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there is evidence of later, more branching migratory paths after the primary split.

The branching events can be seen in the models in zones L and M, but with less

ambiguity in the combined model.

A southeastward lineage movement is seen from zones A to B to H to C. This path

covers from modern-day Cameroon to Equatorial Guinea and Gabon, to the Republic

of the Congo and then to the Democratic Republic of the Congo (DRC). Next, there

is a split at zone D. One lineage heads eastward from zones D to J to F to G to E.

This path covers from modern-day DRC to Uganda to Tanzania and then to Kenya.

The ancestral state reconstruction of zones J to F to G to E are the only ambiguous

ones on the map.

Another lineage that splits from zone D runs southward to L in the southern part

of modern-day DRC. From zone L, one lineage splits eastward to zones K and R in

modern-day Zambia and Angola. Also, from zone L, another lineage splits westward

to zone M in modern-day Zambia. From zone M, there is another split with one

lineage moving due east through zones N and P, which represent modern-day Malawi

and Mozambique. Lastly, from zone M, there is a lineage that moves due south to

zone S, which is modern-day South Africa.

Overall, the approach with combining the datasets together has provided a more

confident migratory model for Bantu migration than that of any of the separate

datasets. By looking at paternal, maternal, and cultural data together, a clearer

trajectory is drawn with far less ambiguity in the overall path.



CHAPTER 3: COMPARING TAXA PROXIMITIES USING DIMENSIONALITY
REDUCTION

3.1 Introduction

In addition to phylogenetic tree generation, further analysis of the data is performed

using two dimensionality reduction techniques. Phylogenetic trees use inference meth-

ods that rely on an optimality criterion such as maximum likelihood or maximum

parsimony. Along with the parsimonious inference method, Multidimensional Scaling

and Laplacian Eigenmaps are used as distance-based methods for comparison.

In the previous chapter, the outcome of the parsimonious tree generation shows that

the combined data produces a less ambiguous model of the Bantu migration. Now,

using dimensionality reduction, this model’s data is further analyzed to understand

the relationships or distances between taxa by projecting into a lower dimensional

space. This helps to identify taxa that are closely related in the data, but are not in

the same Guthrie zone. Then, rolling up to the Guthrie zone-level, the trajectory is

compared to the placement of points in the lower dimensional space.

Agreement between the outputs of the tree generation, probabilistic simulations,

and the dimensionality reduction exercises are used to build support or confidence in

the Bantu migration model. Any non-negligible differences between the results help

to pinpoint the areas where confidence is low in the migration model.
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3.1.0.1 Parallel Trajectories of Genetic and Linguistic Admixture in a Genetically

Admixed Creole Population

Research performed by Verdu et al. [54] around the genetic and linguistic trajecto-

ries of Creole people served as a model for the analysis of the Bantu data. The research

was completed using a multidimensional scaling analysis to look at individual-pairwise

allele-sharing dissimilarities of different populations. Also, the research shows the use

of the k-Means clustering method to analyze admixture among the groups. From a

visualization standpoint, the paper includes graphics generated from the results of the

dimensionality reduction steps that were useful in the overall assessment of variation

in Creole people.

3.2 Materials and Methods

3.2.1 Data Shaping

Given that the available data consists of sequences in different shapes and from

different file formats, the data must be transformed such that the desired algorithms

can use it. Generally, the required shape is rectangular or tabular in that every row

is an observation and every column is a feature. Specifically, the data is transformed

such that each row of the data is an individual sample (by taxa) and then each column

is an attribute or sample of taxa (Guthrie zone, TaxaID, etc. plus mtDNA, Ychr,

and Cultural sequences) each as its own column.

The individual data files from the mtDNA, Ychr, and Cultural datasets are each

loaded into their own SQL database table. In total, there are four tables being used:

one table for each of the three datasets and one table to house the geographical
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Table 6: Schema of the mtDNA database table.

mtDNA Example
TaxaID H31Yaka
GuthrieZone H
Taxa H31Yaka BiakaPygmy NA mt01
BCMID H31
SampleID mt01
mtDNA gatcacaggtctatcacccta

Table 7: Schema of the Ychr database table.

Ychr Example
TaxaID A34Benga
GuthrieZone A
Taxa A34Benga Benga Gabon chry01
BCMID A34
SampleID chry01
Ychr STR EJGJBPDBFEBB

information for mapping. See figures 6, 7, 8, and 9. See appendix A for the SQL code

used to generate these tables.

TaxaID is used as the key on which to join the tables together to make a single file.

Two views are created: one inner joining the data and one using a full outer join. This

created two versions of a combined dataset for use in the dimensionality reduction

exercises. The inner join view uses only perfectly matched TaxaIDs between all three

datasets. In contrast, the outer join data joins on TaxaID, but can leave a particular

dataset’s column as NULL if there is no match in the data.

Table 8: Schema of the Cultural database table.

Cultural Example
TaxaID A242Duala
GuthrieZone A
Taxa A242Duala
BCMID A24 2
Cultural EthnogAtlas 0101818559189B293919997
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Table 9: Schema of the Geographic Information database table.

Geographic Information Example
GuthrieZone B
BCM ID FULL B80L1
BCM ID SIMPLE B80
BCM ID SUFFIX L1
BCM ID INDEX 1
BCM NAME Lwel 1
BCM FULL NAME B80L1Lwel 1
Longitude -4.45
Latitude 20.1

An R script was written and used to further prepare this data for use in the

dimensionality reduction algorithms. Since the data consists of strings of sequences,

conversion has to occur to get a numerical representation of the characters in each

position (nucleotides for the mtDNA data, character state labels for alleles in the

Ychr data, and answers to the cultural questions in the Cultural data).

To begin, the data is loaded into R from the joined SQL view. At this stage, the

values are character strings of the entire sequence from each data source. See step

(1) in figure 14.

The strings are then split up and each position is assigned to a new variable. This

causes the data table to grow considerably wider as the length of the sequences are

quite long. See step (2) in figure 14.

At this stage, the data is still solely character-based. So, the next step is to

dummy code these values to convert them from single character strings to 1s and

0s [50]. This process increases the number of variables further by creating a new

column for each possible character at that position. For example, if position 145 of

the mtDNA sequence can have “A”, “C”, “T”, and “G”, four dummy columns are
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created to capture these levels. The data at this step is quite large as it now has

>30,000 variables and 22,000-33,000 rows. See step (3) in figure 14.

Next, the data is rolled up to either the TaxaID or Guthrie zone level. (The

dimensionality reduction is performed and visualized at both levels for comparison.)

By summarizing and returning the mean value for each column, this now captures

the percentage that a character occurs for each Taxa or zone. For example, “44%

of the time, individuals from Guthrie zone A have “g” in the first position of their

mtDNA sequence.” Each set of columns for a position will sum to 1. See step (4) in

figure 14.

At this stage, the data now holds a numerical representation for each position of

the sequences for each TaxaID or Guthrie zone. Now the data is in an acceptable

format for the dimensionality reduction algorithms. The packages that were used to

read in, shape, and dummy code data in R are: tidyr [57], readr [58], dplyr [56], purrr

[28], and psych [46].

Figure 14: Dimensionality Reduction data shaping workflow.
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This dimensionality reduction pipeline was completed using an R script. The R

script includes sections to load in the data, perform the aforementioned shaping, and

output the Multidimensional Scaling and Laplacian Eigenmap analyses, then writes

the results back to disk. See appendix B.

The 2-dimensional result sets are visualized via scatter plots using Tableau Desktop,

which allowed for interactive analysis of the data [49].

3.2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a technique often used to reduce dimensionality

[35]. MDS can accept an input of a correlation matrix, distance matrix, or a similarity

matrix. Then, the number of dimensions for the analysis must be selected a priori.

This analysis can be completed using a sweep of dimensions from 2 to n − 1, where

n is the number of dimensions in the input data. However, only MDS results in 2 or

3 dimensions were calculated as this is the limit to what can be visualized.

The steps of the classical MDS algorithm are as follows:

1. Begin by calculating the Euclidean distance between two points i and j to form

the distance matrix D.

2. Using D, calculate A =
{
−1

2
dij

2
}

.

3. Then, calculate B = {aijai.a.j + a..}, where ai. is the average of all aij across j.

4. Find the p largest eigenvalues λ1 > λ2 > ... > λp of B plus their corresponding

eigenvectors L = {L1, L2, ..., Lp}.

5. Output the coordinates of the objects, which are the rows of L.
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Then, the goal is to place the objects in an N-dimensional space such that the

distances between each object are maintained as well as possible. To do this, MDS

minimizes a cost function known as “stress”, shown in equation 1, which is a residual

sum of squares metric.

The non-metric version of multidimensional scaling finds the non-parametric mono-

tonic relationship, as well as the Euclidean distances between the distance matrix

entries [6]. Non-metric multidimensional scaling differs from classical MDS in that

the algorithm will iteratively sample the data, scale it, and then calculate the stress.

The steps of the non-metric MDS algorithm are as follows:

1. Sample from a normal distribution to collect a random arrangement of the

datapoints.

2. Recalculate the distance matrix given the arrangement.

3. Determine the optimal monotonic transformation function of the distances to

result in optimally-scaled data.

4. Compute the stress value of the scaled data.

5. If the stress value is below some threshold or if the algorithm has reached

convergence, exit the algorithm. Otherwise, return to step 1.

stress =

√√√√(dij − d̂ij)2∑
d̂2ij

(1)

If the stress ≤ 0.05, the goodness-of-fit is considered acceptable. However, the

number of dimensions that yields the lowest stress will be considered the best num-



41

ber of dimensions for the analysis of the data. The result of an MDS analysis is a

multidimensional projection of the data that has measured the similarity of the data

points. In this case, a matrix where each taxon (on rows) is described by a number

of dimensions (on columns).

Non-metric MDS is sensitive to certain parameter inputs such as the maximum

number of iterations, the power for the Minkowski distance of the configuration space,

and the tolerance for declaring convergence [36]. The algorithm is O(n3), so the ma-

nipulation of these parameters can provide varying time performance of the analysis.

Since the data here have a small number of observations, the convergence tolerance

can be small and maximum number of iterations can be quite large without signifi-

cantly sacrificing speed.

Non-metric MDS is available as an R function in the MASS package called isoMDS

[53].

3.2.3 Laplacian Eigenmaps

As a sub-comparison to MDS and, by extension, the phylogenetic tree result, Lapla-

cian Eigenmaps (LEs) were also used. While MDS may provide an acceptable pro-

jection of the data in a lower-dimensional space, LE may provide a better visual

of the similarities in the taxa. Traditionally, LE’s provide a denser placement of

similarly-related data points and a sparser placement of distantly-related cases.

LE’s look for local similarities only. This is accomplished by defining a neigh-

borhood using the k-Nearest Neighbor (k-NN) algorithm, the epsilon neighborhood

algorithm, or some other distance matrix method. Using the Gaussian kernel, Eu-



42

clidean distances are converted to similarity values [4]. The desired number of reduced

dimensions must be defined a priori. The LE analysis is run using 2 and 3 dimensions

given that this is the limit to what can be visualized.

The steps of the LE algorithm are as follows:

1. Construct the adjacency graph using either the k-NN algorithm or the epsilon

neighborhood algorithm.

2. Choose the weights of the edges of the resulting network either using a heat

kernel or a simple-minded (non-parameterized) approach.

3. Calculate the eigenmaps of the graph and output the eigenvectors to embed the

data into an n-dimesional Euclidean space.

Given that the output of the LE algorithm is highly dependent on the graph gener-

ation, the optimal parameters must be found for the chosen graph algorithm. It was

opted for k-NN to be used as the graph algorithm for this analyses. Before the LE

algorithm was run, the optimal number for k in the k-NN was determined based on a

parameter sweep for values of k between 1 and the number of rows in the data. (The

number of rows is equivalent to the number of TaxaIDs or Guthrie zones in the input

data, depending on the dataset being analyzed.) Then, the value for k that resulted

in the highest accuracy for the generated k-NN model was selected and passed to the

LE algorithm. This ensures that the LE algorithm is using the k-NN graph with the

highest possible accuracy given the input data.

These steps were completed for both inner and outer join datasets, TaxaID and

Guthrie zone summarizations for 2 and 3 dimensions. This results in eight datasets
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that are then visually analyzed for comparison to the phylogenetic results. See table

11 for the accuracy levels and optimal k values for each input dataset.

LE is implemented as an R package called dimRed [34].

3.3 Results

Using the four generated datasets of summarized data (using the inner joined and

outer joined data and summarized by Guthrie zone and TaxaID), the dimensionality

reduction analyses are completed. This results in individual data outputs ready for

visualization. Note that the inner joined data results in a lower number of samples

and thus a lower coverage of Guthrie zones, but still generally covers most regions of

the continent.

Using Tableau Desktop, visuals for the dimensionality reduction results are created

with the 2-dimensional datasets (both inner joined and outer joined data). This

includes 4 LE visuals and 4 MDS visuals as well as a map plotting the location of

each of the TaxaIDs.

The results of the dimensionality reduction analyses require a more involved ap-

proach than simply looking at the plots at face value. For MDS and LE, the locations

of the points are indicative of the similarity of the TaxaID or Guthrie zone. However,

some of the plots have densely packed areas that are difficult to see into without fur-

ther investigation. To do so, the plots are linked to the TaxaID Map (see figure 29) so

that selecting points on a particular plot filters the map to show those points as well.

This interactivity allows for geospatial comparison of the points to their location in

the dimensionality reduction plots.
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In the 2D MDS plot using inner joined data summarized by TaxaID (see figure

15), most TaxaIDs are densely located in the lower left corner with the two points

(S33Sotho and M52Lala) from the S and M zones located farther away in different

quadrants. Zooming in on the dense area shows a much clearer distribution of the

TaxaIDs. See figure 18. The location of the TaxaIDs with regard to their correspond-

ing Guthrie zones is overall very similar to the results seen in the combined migratory

model. For example, it appears that Guthrie zones A and B are similar. Then, zones

K, L, and M in the middle and R, N, and S are also at the tips of the migratory path.

Figure 15: 2D non-metric MDS scatter plot of inner joined data summarized by
TaxaID.
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Figure 16: A zoomed-in view of figure 15, disregarding the farthest two points
(S33Sotho and M52Lala).
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Next, in the 2D MDS plot using the outer joined data summarized by TaxaID

(see figure 17), the image is quite similar to before. Most of the points are located

in a single cluster with a few TaxaIDs placed farter away. This time, the 11 points

from the A, B, F, H, K, L, and S zones are located farther away. Zooming in on

the densest area shows a less clear distribution of the TaxaIDs. See figure 18. The

location of the TaxaIDs with regard to their corresponding Guthrie zones is partially

discordant to the results seen in the combined migratory model. However, it does

appear that the placement of most of the TaxaIDs with respect to their Guthrie zones

is acceptable. For example, points from the more southern zones K, L, M, R, and S

are closely related, which is likely true. The northern zone seems to be spread around

the southern zone cluster in the center.

After looking at the MDS plots that were generated used data summarized by

TaxaID, a secondary look is taken at the results using data that was generated by

summarizing over Guthrie zones. These datasets are smaller as the maximum number

of records is 16 (or 17 if the outgroup zone Z is included).

First, using the inner joined data, another MDS analyses is run and plotted, re-

sulting in figure 19. Notice that the M Guthrie zone is shown far from the seemingly

vertical line of the remaining zone. However, excluding zone M results in a much

more interesting spread of the other zones. See figure 20. Moving from left to right,

the location of the zones is similar to the combined migratory model. For example,

zones A and B are in the north and then the remaining zones are after the “early

split” thought to have occurred in zone D.

Finally, the last MDS analysis is run using the outer joined data. The outer join
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Figure 17: 2D non-metric MDS scatter plot of outer joined data summarized by
TaxaID.
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Figure 18: A zoomed-in view of figure 17 of the densest cluster of points.
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Figure 19: 2D non-metric MDS scatter plot of inner joined data summarized by
Guthrie zone.
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Figure 20: A filtered view of figure 19, disregarding Guthrie zone M.
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data provides coverage for almost all the Guthrie zones. In figure 21, the spread of

the zones is obfuscated due to zones M, F, and A. Figure 22 shows the plot after

excluding these points. This analysis, in particular, is the most discordant to the

combined migratory model. There seems to be no north-to-south or east-to-west flow

between the points. Even geospatially-close zones are not in an expected proximity to

one another. For example, zone G (from the northeast) is very close to zone R (from

the mid-southeast), but not close to zone C, to which it is adjacent geospatially.

Figure 21: 2D non-metric MDS scatter plot of outer joined data summarized by
Guthrie zone.

Transitioning to LE analyses, more extreme cases of dispersion than in MDS were
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Figure 22: A filtered view of figure 21, disregarding Guthrie zones A, F, and M.
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expected. However, this is not necessarily the case for all of the following plots.

For the 2D LE plot using the inner joined data summarized by TaxaID, the locations

of the points are well-contained in a dense cluster except for two TaxaIDs (K11Ciokwe

and R111Umbundu) belonging to the K and R Guthrie zones, respectively. Zooming

in on the denser cluster shows a radiating pattern of the similar points compared

to the combined migratory model. See figure 24. Specifically, if points belonging to

zones A and B are taken as a center, the points moving outward are all south. Also,

if the TaxaID belonging to zone L is taken as a starting point, movement to N, S,

and R is consistent with the combined migratory model.

Figure 23: 2D LE scatter plot of inner joined data summarized by TaxaID.
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Figure 24: A zoomed-in view of figure 23, disregarding the farthest two points
(K11Ciokwe and R111Umbundu).

Next, using the outer joined dataset summarized by TaxaID yields a plot very

similar to the MDS plot in figure 19. See figure 25. Two TaxaIDs in Guthrie zones

C and M (C55Kele and M54Lamba) appear to be skewing the locations of the rest

of the zones by making them appear as if they are in a vertical line. Excluding these

results in a slightly clearer picture. It appears that there is some, but not complete,

agreement to the combined migratory model. For example, there is a cluster depicting

a spread of northern to middle zones, such as B to H and then to M and P, but it is



55

difficult to explain the close placement of TaxaIDs in zones A and S, or G and N.

Figure 25: 2D LE scatter plot of outer joined data summarized by TaxaID.

The last two LE analyses yielded clearly spread placements of the datapoints.

Figure 27 shows the results of the LE analysis using the inner joined data summarize

by Guthrie zone. There is some agreement to the combined migratory model. Moving

from right to left depicts the trajectory from northern zones such as A and B to the

middle zones of K, M, and N after the “early split”. However, the location of zones

R and L are a slightly out of place in comparison to the combined migratory model.

The final LE analysis used the outer joined data summarized by Guthrie zone.
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Figure 26: A zoomed-in view of figure 25, disregarding the farthest two points
(C55Kele and M54Lamba).
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Figure 27: 2D LE scatter plot of inner joined data summarized by Guthrie zone.
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This particular analysis resulted in the most noticeable agreement to the combined

migratory model. See figure 28. In this visualization, there is an overall match of the

trajectory. Starting at zones A and B and moving left, the next zones are C and H,

which are the next two zones in the migratory model. Continuing left, zones E, F,

and G are shown together, which matches the next area in the northwest corner of

the map. Finally, ending with zones L, N, K, and R agrees with the final branches of

the subsequent southeastern part of the migration seen in the model.

Figure 28: 2D LE scatter plot of outer joined data summarized by Guthrie zone.
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Figure 29: Map of TaxaID locations, colored by Guthrie zone.
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Table 10: Stress values of the MDS Analyses. Note that all are below 0.05.

Join Type Summary Variable Dimensions Stress
Inner TaxaID 2 0.006988
Inner TaxaID 3 0.008973
Inner GuthrieZone 2 0.009335
Inner GuthrieZone 3 0.005880
Outer TaxaID 2 0.007755
Outer TaxaID 3 0.009791
Outer GuthrieZone 2 0.006923
Outer GuthrieZone 3 0.009002

Table 11: Optimal k parameters in k-NN step for LE Analyses and their corresponding
k-NN model accuracies.

Join Type Summary Variable Dimensions Optimal kNN Accuracy
Inner TaxaID 2 14 0.6875
Inner TaxaID 3 14 0.6875
Inner GuthrieZone 2 2 0.7500
Inner GuthrieZone 3 2 0.7500
Outer TaxaID 2 8 0.6250
Outer TaxaID 3 8 0.6250
Outer GuthrieZone 2 12 0.7857
Outer GuthrieZone 3 12 0.7857
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3.4 Discussion

Using MDS and LE analyses proved to be both beneficial and insightful in under-

standing the validity of the combined Bantu migration model. Using two differently

built datasets (the inner joined and outer joined data) as well as two ways of rolling

up/summarizing the data (TaxaID and Guthrie zone) provided a very diverse set of

output and resulting plots.

Many of these visualizations agree, at least in part, with the combined migratory

model. It seems that, from the TaxaID-level data, there are TaxaIDs in the M Guthrie

zone (such as M54Lamba) that seem to be outliers in relation to the other data points.

For each plot, excluding or hiding these points enabled the other points to expand

out and be viewed.

A possible reason for the unclear understanding of the inner joined-based plots is

due to the low Guthrie zone coverage. For this dataset, only half of the Guthrie zones

are available, which could negatively affect the resulting visualization.

In contrast, the outer joined dataset resulted in a much more robust set of dat-

apoints on which to analyze and visualize. This is likely why the best agreement

between any of the MDS or LE analyses (such as figure 28, for example) and the

migratory model came from analyses using the larger, more encompassing dataset.

With this data quality notion in mind and given the evidence previously shown us-

ing the dimensionality reduction techniques, it appears that the combined migratory

model using all three datasets has resulted in a highly confident model. This is backed

by results of the dimensionality reduction analyses that are using the equivalent data
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combing Ychr, mtDNA, and cultural aspects of the Bantu people.



CHAPTER 4: ASSESSMENT AND COMPARISON OF MODEL ACCURACY
USING MACHINE LEARNING

4.1 Introduction

After generating the combined migratory model, its plausibility has been tested

using dimensionality reduction from a visual standpoint. In addition, a more quan-

titative approach is necessary to compare and prove the combined model’s power in

relation to its constituent datasets’ models.

In Chapter 2, a parsimonious tree search was completed, which generated both

the individual models from one of the three datasets as well as the combined model.

A competing method of tree generation that is often used is known as Maximum

Likelihood. For maximum likelihood trees, the goal is to find the tree that maximizes

the probability of n sequences (x.) given topology T and edge lengths t. or P (x.|T, t.)

[20].

This requires two steps to be completed many times and evaluated for the resultant

likelihoods:

1. Search over the possible tree topologies, specifying the order of taxa assignments

beforehand.

2. For each topology, search through all possible lengths of edges t..

The main goal of a probability-based approach to constructing a phylogeny is to
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evaluate trees according to their likelihood P (data|tree) or, to take a more Bayesian

view, look at their posterior probability P (data|tree). Often, a secondary goal is

also to find the likelihood of particular taxonomic features. However, these methods

require a substitution model to serve as the basis for understanding the probability of

changes in the sequences (mutations). A substitution model does not exist for data

other than nucleic acids or amino acids. Thus, some other method must be used on

the combined data given the inclusion of the Ychr STR and cultural information,

which do not fit into the any available substitution models.

For Bantu, the specific goal is to understand the ancestral relationships and derive

a migratory path that explains this lineage. Given a particular set of input data, is

the data majorly indicative of the Guthrie zone to which the information belongs?

Also, does the indication quality increase as more data is considered? If the combined

model is a more comprehensive view of the Bantu people, their respective Guthrie

zones, and thus their migratory path, a machine learning model can be trained such

that the Guthrie zones of each record can be accurately predicted. The predictive

power of the combined model should be stronger than that of the separate constituent

datasets, assuming equivalent machine learning algorithms are used for training.

Using a random forest algorithm, machine learning models are generated to predict

the Guthrie zone for each record of data. This is completed using each individual

dataset as well as the combined dataset to compare the accuracy of the models. The

overall accuracy of the combined model is statistically significantly higher than that

of the other models.

Random decision forests were first created in 1995 by Tin Kam Ho from Bell
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Laboratories [29]. The algorithm was then extended in 2001 by Leo Breiman and

Adele Cutler to include a “bagging” method (also known as bootstrap aggregating)

for random feature selection as well as a method for generating trees with a controlled

variance [7]. The random forest algorithm is a supervised ensemble classification

method that builds a multitude of decision trees. This algorithm is often preferred

over singular decision trees as they correct against overfitting to the data. Decision

trees (and thus decision forests) are non-parametric models, so they support data

with varying distributions [51]. This is necessary for the diversity seen in this genetic

and cultural sequence data.

4.2 Materials and Methods

Some of the data preprocessing steps that were performed for the dimensionality

reduction analyses are reused for shaping the data in the correct format for machine

learning. In figure 14, only steps 1 and 2 are necessary to shape the data for machine

learning. This is due to the ability of a random forest algorithm to take in categorical

data and missing data (as opposed to needing the numerical representation of the

characters). For the R code to generate these datasets, see appendix D. For this

analysis, five datasets are generated: the combined data, mtDNA data, Ychr data,

Genetic data (containing both mtDNA and Ychr data), and Cultural data.

Each of these datasets are uploaded as separate saved datasets in the Microsoft

Azure Machine Learning Studio experiment. From here, each saved dataset is brought

onto the experiment canvas and connected to a Partition and Sample module. The

Partition and Sample module is then connected, along with the Multiclass Decision
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Forest model module, to the Cross Validate Model module. Finally, the Cross Validate

Model module is connected to the Evaluate Model module, which will output the

accuracy metrics for the trained and cross-validated model. See figure 30 for an

example experiment workflow. Note that this is completed for each of the datasets

in a single experiment. Each of the model outputs are downloaded and visualized for

further comparison.

Figure 30: Example Azure Machine Learning experiment workflow.

4.2.1 Random Forest Model Generation

Using the Azure Machine Learning Studio, the individual and combined datasets

are used to train individual Multiclass Decision Forest models. Using the input pa-

rameters listed in table 12, each of the five models are trained using the aforemen-

tioned corresponding datasets. The sets of trees are trained using the Guthrie zone

as the dependent variable and then the individual characters of the sequence(s) as

the features.
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Table 12: Input parameters for the Azure Machine Learning Multiclass Decision
Forest module.

Resampling Method Bagging
Number of decision trees 250
Maximum depth of the decision trees 10000
Number of splits per node 250
Minimum number of samples per lead nodes 10

The algorithm randomly generates multiple decision trees, selecting different fea-

tures each time. Then, the algorithm determines the classification output for each

record by looking at the classification decision from each tree and picking the one

with the greatest number of votes [51].

4.2.1.1 Cross-Validation

While cross-validation is not required for random forest models, it allows for vis-

ibility into the varying model performance with random subsets of data. For noisy

data such as is seen in genetics, cross-validation will return performance metrics for

each fold in the partitioned data to show an overall distribution of model accuracy,

precision, recall, etc.

Using the Partition and Sample module, the data are separated into 3 folds for use

in the subsequent cross-validation step. The parameter settings for the Partition and

Sample module can been found in table 13.

Next, the fold indicator along with the rest of the data is passed to the Cross

Validate Model module where the repetitive model generation occurs and is 3-fold

cross-validated. The output nodes of this module include the prediction results as

well as the cross-validation output metrics.

Finally, this cross-validated model is evaluated using the Evaluate Model module.
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Table 13: Input parameters for the Azure Machine Learning Partition and Sample
module

Partition or sample mode Assign to Folds
Use replacement in the partitioning True
Randomized split True
Random seed 1337
Specify the partitioner method Partition evenly
Specify the number of folds to split evenly into 3
Stratified split True
Stratification key column GuthrieZone

This module returns the accuracy metrics as well as the confusion matrix of the

classification (Guthrie zone) prediction.

4.2.1.2 Statistical Test of Proportions

To statistically compare the results of the machine learning model accuracies, a

test of equal proportions is performed. Using the prop.test function in base R, the

accuracies of the individual models are compared to quantify if they are different

enough to be statistically significant. The prop.test function performs an n-sample

test of proportions and returns the χ2 value and p-value as a result. This performs

a z-test to test the equivalency of the input proportions. That is, the null tested is

that the proportions in each group are the same. In this case, each proportion is the

relationship of correct predictions versus the total number of records in each machine

learning model.

4.3 Results

The overall accuracy of each of the random forest models corresponding to an

individual input data can be seen in table 14. The machine learning model that uses

the combined dataset has the highest overall accuracy. The model using the Ychr
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Table 14: Overall random forest 3-fold cross-validation accuracy by model.

Model Overall Accuracy
Combined 72.51%
mtDNA 42.84%
Ychr 69.46%
Genetic (mtDNA + Ychr) 55.22%
Cultural 52.02%

dataset also has a similarly high accuracy, with the remaining models having much

lower overall accuracies.

To visually compare the classification accuracy by Guthrie zone, a confusion matrix

was generated. In figure 31, the combined model shows the highest accuracy (correct

classifications) along the diagonal of the matrix. However, the Ychr and Cultural

models also have strong accuracies. It should be noted that it seems the many records

in all the models are often misclassified as the S Guthrie zone. Also note that for

some zones, there may not be any accurate predictions. For example, Guthrie zone A

was never predicted to be zone A in the mtDNA model. This influences the following

metrics’ visualizations.

Note that there are certain zones with no correct predictions in the data. These are

zones with low coverage in the training dataset, leading to less predictive accuracy in

zones E, F, G, and N. See table 15.

The distribution of model accuracy can be examined at a lower level by showing

the distribution by either Guthrie zone or the cross-validation fold number.

In figure 32, the top two models are once again the combined model and the Ychr

model. Both of these models have a higher accuracy in more of the Guthrie zones.

If the zones with low data coverage are are excluded, the combined model becomes
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Model Guthrie Zone

Scored Labels

A B C F H K L M N R S

Combined A

B

C

E

F

G

H

K
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N
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Figure 31: Confusion matrix of Guthrie zone predictions versus actual zones by model.
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Table 15: Zone coverage in the Random Forest model training datasets.

Guthrie Zone Combined Cultural mtDNA Ychr Genetic Overall
A 0.67% 0.57% 0.55% 0.67% 0.54% 0.60%
B 2.03% 0.48% 1.51% 2.04% 1.51% 1.58%
C 1.66% 0.00% 1.67% 1.66% 1.68% 1.42%
E 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%
F 0.09% 0.14% 0.00% 0.09% 0.00% 0.06%
G 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%
H 2.46% 0.05% 2.45% 2.47% 2.46% 2.10%
K 16.62% 0.29% 16.76% 16.55% 16.70% 14.24%
L 2.84% 0.14% 2.87% 2.85% 2.88% 2.46%
M 13.97% 14.99% 14.12% 14.01% 14.16% 14.20%
N 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%
R 24.30% 33.50% 24.58% 24.37% 24.65% 25.80%
S 35.29% 49.79% 35.41% 35.24% 35.37% 37.46%
Grand Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

evident that it is more accurate (in the zones that had an acceptable number of

training instances). See figure 33.

Furthermore, the additional metrics of average log loss, precision, and recall are

visualized in box plot format as well. See figure 34. The lowest average log loss

belongs to the genetic model, with the Ychr and combined models following. The

highest precision is given by the Ychr model.

The accuracy distributions are also visualized by the cross-validation folds. Given

that only 3-fold cross-validation was completed, each model only has three points

from which to plot. As seen in figure 35, the combined and Ychr models have similar

accuracies over the three folds with the Ychr model marginally having the highest

accuracy fold between the two. The combined model, though, has a lower range

of accuracy, therefore showing that the combined model has the superior accuracy

overall.

For average log loss, precision, and recall, the superior model is less clear. In
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Figure 32: Box plots of accuracy by model, colored by Guthrie zone.
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Figure 33: Box plots of accuracy by model, colored by Guthrie zone. Shown excluding
zones E, F, G, and N, which had low observation counts in the training datasets for
these models.
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Figure 34: Box plots of additional model metrics, colored by Guthrie zone.
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Table 16: R output of the 5-proportion Z-test for equivalence of model accuracies.

5-sample test for equality of proportions
without continuity correction

prop.test(x = ModelAccuracy$Correct, n = ModelAccuracy$Total)
data: ModelAccuracy$Correct out of ModelAccuracy$Total
X-squared: 6124.5
df: 4
p-value: <2.2e-16
alternative hypothesis: two.sided
sample estimates:
prop 1 0.6945880
prop 2 0.4283911
prop 3 0.5202384
prop 4 0.7251017
prop 5 0.5521931

figure 36, the genetic, Ychr, and combined models have the lowest distributions of

average log loss. For precision and recall, the outcome is similar to before. It appears

that the Ychr has the highest precision and recall distributions. This is due to the

overall distributions of these metrics being skewed by TaxaIDs with 0% precision or

recall. However, for TaxaIDs with precision/recall values 6= 0, the combined, Ychr,

and genetic models all show acceptable levels. The mtDNA model has the worst

distributions of these metrics overall.

The 5-sample proportion test, shown in table 16, rejects the null hypothesis that

all the proportions are equal. In other words, the overall accuracy of the individual

models are statistically significantly different from one another. More importantly,

the combined model’s highest overall accuracy is statistically different than that of

the Ychr model.
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Figure 35: Box plots of accuracy by model, colored by cross-validation fold.
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Figure 36: Box plots of additional model metrics, colored by cross-validation fold.
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4.4 Discussion

Using the random forest algorithm to generate predictive models for each of the

datasets provided new insight into the predictive power of each type of data. Compar-

ing the overall accuracies, the distribution of accuracies, and other metrics supports

the importance of using the combined data. Given the superior overall accuracy

and distribution of accuracies by both Guthrie zone and fold, the combined model is

proven to be more indicative of the Guthrie zone. The statistical test also confirms

that the difference in overall accuracies is statistically significant.

While there are some metrics that show competing models may have a better pre-

cision, recall, or average log loss, this is likely due to the non-classification of certain

Guthrie zones in the data. Without any records being predicted to belong in a particu-

lar zone, the precision and recall are shown to be 0%, skewing the overall distribution.

Excluding these for all the models results in a clearer box plot comparison, one where

the combined or Ychr models most often have the best distribution of the metric in

question.

This confirms that the migratory model using the combined data has a higher

indicative power to explain more of the variation in the migration trajectory from zone

to zone. Using these machine learning random forest models, this builds confidence

that the migratory model generated by the combined data is a more confident overall

model than other models using a singular dataset.



CHAPTER 5: CONCLUSION

Understanding the evolutionary relationships of a set of organisms is often a difficult

problem as getting enough data to derive a clear tree is tricky. Furthermore, extending

this work geospatially to determine a migratory path is often an arduous task in and

of itself. For humans, the task is even less straightforward because of the different

aspects we pass along to our offspring. We not only pass down our genetic information,

but the cultural norms we practice. Cultural traits can be treated as seriously as genes

given their variability and tendency to blend with one another. For each of us, we

not only inherited a mixture of genetic traits from our mothers and fathers, but were

taught how to behave by them as well.

Beyond the first step creating a combined phylogeny, the data here have been fur-

ther analyzed using dimensionality reduction and machine learning methods. Looking

at the results from the different analyses helped to build confidence around the re-

sultant migratory model. This suggests that the combined model most confidently

follows the true Bantu migration path (given the available data) more closely than the

individual models (models generated using a singular dataset) or previous methods’

models (models postulated by other researchers). This led to the partial support for

the initial “early split” hypothesis, but poses evidence of a subsequent migration.

Visualization also played an integral part in the interpretation of the analysis re-

sults. Plotting the phylogenetic tree and the apomorphies geographically proved to
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be imperative in the derivation of the migratory model. Plotting the phylogeny of

the combined dataset was necessary in determining the areas of agreement or dis-

agreement to the other, previously-published models. Plus, representing Guthrie

zone transitions as a geographic migration trajectory was the final step in generating

the assessment of the migratory path. In addition, the results of the dimensional-

ity reduction and machine learning exercises were graphically represented for easier

interpretation and comparison to the phylogenetic analyses.

All steps of this research were designed to test the hypothesis that the Bantu

expansion can be characterized by a primary split in lineages. Given the results of the

overall analysis, the “early split” hypothesis is supported, but the results also provide

evidence for a subsequent migration that is not shown in the published migratory

models previously referenced. This alludes to the notion that the migration is more

complicated than originally presumed. The de Filippo and Grollemund models show

a rather linear path in which the individuals moved in a mostly singular direction

from the northwest to the southeast. However, the results of this work show a more

complex movement characterized by a west to east trajectory subsequently followed

by a north to south branching expansion. This is most similar to the Currie model

superficially, but is still a very different trajectory overall. See figure 1.

The completion of this research has shown the versatility and usefulness of inte-

grated data, phylogenetics, and visual analytics in bioinformatics and computational

biology, specifically in the examination of the Bantu migration. This has provided

a more complete look at Bantu migration, encompassing both cultural and genetic

viewpoints.
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5.1 New Working Hypothesis

Initially, the hypothesis being tested was that the Bantu expansion can be char-

acterized by a primary split in lineages. Given the results of the analyses performed

in this work, the initial hypothesis cannot be fully rejected, but it seems that the

hypothesis is incomplete. Also, it seems that the split did not occur quite as “early”

as originally hypothesized.

A better working hypothesis would be that the migration began in present day

southern Cameroon and experienced a binary split early on, but somewhere more

eastward such as in the northern part of present day Democratic Republic of the

Congo (Guthrie zone D). Then, subsequent migrations occurred in a more branching

pattern south throughout the rest of the continent.

This new working hypothesis can be supported by the results of the previously

highlighted analyses.

5.1.1 Evidence of Early Split

The result of the parsimonious phylogenetic tree first shows zone transitions be-

tween zones A, B, and H. This looks most similar to the first portion of the de Filippo

model (b) in figure 1. Then, the transitions move north and then east from zone H

to C to D. This characterizes the linear portion of the migration.

At zone D, the split occurs and there are then branches going from D eastward (to

zones J, F, G, and E) and then a southward trajectory to zone L and branching out

to the rest of the more southern zones next.

The sequence of these transitions provide evidence partially confirming the “early
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split” hypothesis.

5.1.2 Evidence of Subsequent Migration

Following the expansion to zone L, the migratory path branches out significantly

from there. This is the portion of the model that was not captured by the original

hypothesis in that this is a subsequent migration following the initial split.

From L, there are three overall directions of expansion that can be identified: to the

southwest, to the east, and to the south. The southwest movement is characterized

by transitions from zone L to K to R. The southward movement is characterized by

transitions from zone L to M to S. These are paths that would likely not be as easily

identified by previous models because of the theory that movement occurs mainly east

to west due to the avoidance of encountering differing climates and habitats. However,

there are quite a few cases in this model that do not follow “path of least resistance”

theory. See figure 37. Finally, the subsequent eastward movement is characterized by

transitions from zone L to M to N to P.

The radiating trajectories after the initial “early split” provide evidence in a more

complex migration than originally assumed. These branching events are not shown in

any of the previously published models. Furthermore, the other models show far less

activity the southern zones than the model generated here. Thus, there is further work

to understand the later migratory events shown here in the southernmost transitions.

5.2 Significance and Future Work

The Bantu migration is important in the understanding of human history and

evolution as it marks one of the most influential cultural events of all time. This
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Figure 37: Color-coded migration directions between Guthrie zones.
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work is significant in that it provides another perspective of the migration using both

genetic and cultural data. Contrary to previously published models, it seems that

the migration is much more complicated than originally thought. Future work is at

hand to further understand the timeline around this migration and how other events

affected it. Also, more understanding is needed around the effect of geographical

features on the migration path. Specifically, geographical features such as swamps,

forests, and mountains seem to have played a role in the “early split” hypothesis

and the subsequent migration in that individuals settled around these geographical

features rather than in them.

5.2.1 Applicability to Other Research

Beyond Bantu migration, the pipeline designed in this work can be applied to

many other areas of research. For any organismal migration, this same analysis can

be accomplished given access to the appropriate data. In infectious disease research in

particular, analyzing diverse data to get a full picture of the movement of organisms

is a crucial step. For example, mapping the infection path of serious pathogens such

as Middle East respiratory syndrome [30], Zika virus [15], or influenza virus [31] has

proven effective from an epidemiological standpoint.

This pipeline also helps to address the complicated task of analyzing data when the

data is both diverse and difficult to combine. In any research setting where data is

diverse, the first challenge is to combine the data in a meaningful way and the second

is to analyze it holistically without compromising parts of the data due to limitations

in software, hardware, or understanding. In this research, it has been demonstrated
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that large amounts of diverse data can be successfully integrated and analyzed, both

phylogenetically and beyond. Then, the output can be visualized for a geographic

view of the analysis. These steps prove to be important in the overall geospatial

understanding of organismal movement.
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APPENDIX A: DATABASE SETUP CODE

A Create Table SQL Scripts

Listing 1: Create mtDNA table

CREATE TABLE [ dbo ] . [ mtDNA] (

[ Taxa ] [ nvarchar ] ( 2 5 5 ) NULL,

[ GuthrieZone ] [ nvarchar ] ( 1 0 ) NULL,

[BCMID] [ nvarchar ] ( 2 5 5 ) NULL,

[ TaxaID ] [ nvarchar ] ( 2 5 5 ) NULL,

[ SampleID ] [ nvarchar ] ( 2 5 5 ) NULL,

[mtDNA] [ nvarchar ] (max) NULL

)

Listing 2: Create Ychr table

CREATE TABLE [ dbo ] . [ Ychr ] (

[ Taxa ] [ nvarchar ] ( 2 5 5 ) NULL,

[ GuthrieZone ] [ nvarchar ] ( 1 0 ) NULL,

[BCMID] [ nvarchar ] ( 2 5 5 ) NULL,

[ TaxaID ] [ nvarchar ] ( 2 5 5 ) NULL,

[ SampleID ] [ nvarchar ] ( 2 5 5 ) NULL,

[ Ychr STR ] [ nvarchar ] ( 2 5 5 ) NULL

)

Listing 3: Create Cultural table
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CREATE TABLE [ dbo ] . [ Cu l tura l ] (

[ Taxa ] [ nvarchar ] ( 2 5 5 ) NULL,

[ TaxaID ] [ nvarchar ] ( 2 5 5 ) NULL,

[BCMID] [ nvarchar ] ( 2 5 5 ) NULL,

[ GuthrieZone ] [ nvarchar ] ( 1 0 ) NULL,

[ Cultura l EthnogAt las ] [ nvarchar ] ( 2 5 5 ) NULL

)

Listing 4: Create Geographic Information table

CREATE TABLE [ dbo ] . [ GeographicInformation ] (

[ GuthrieZone ] [ nvarchar ] ( 2 5 5 ) NULL,

[BCM ID FULL ] [ nvarchar ] ( 2 5 5 ) NULL,

[BCM ID SIMPLE ] [ nvarchar ] ( 2 5 5 ) NULL,

[BCM ID SUFFIX ] [ nvarchar ] ( 2 5 5 ) NULL,

[BCM ID INDEX ] [ int ] NULL,

[BCM Name ] [ nvarchar ] ( 2 5 5 ) NULL,

[BCM FULL NAME] [ nvarchar ] ( 2 5 5 ) NULL,

[ Long Orig ] [ nvarchar ] ( 2 5 5 ) NULL,

[ Lat Orig ] [ nvarchar ] ( 2 5 5 ) NULL,

[ Lat i tude ] [ f loat ] NULL,

[ Longitude ] [ f loat ] NULL

)
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B Create View SQL Scripts

Listing 5: Create Inner Joined Dataset View

CREATE VIEW [ dbo ] . [ vwInnerJoinedData ] AS(

SELECT c . TaxaID

, c . GuthrieZone

, c . Taxa AS CulturalTaxa

,mt . Taxa AS mtDNATaxa

, y . Taxa AS YchrTaxa

, c . Cultura l EthnogAt las

,mt .mtDNA

, y . Ychr STR

FROM Cultura l c

JOIN mtDNA mt

ON mt . TaxaID = c . TaxaID

JOIN Ychr y

ON y . TaxaID = c . TaxaID

AND mt . TaxaID = y . TaxaID)

Listing 6: Create Outer Joined Dataset View

CREATE VIEW [ dbo ] . [ vwOuterJoinedData ] AS(

SELECT (CASEWHEN mt . TaxaID IS NULL THEN

(CASEWHEN y . TaxaID IS NULL THEN
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c . TaxaID ELSE y . TaxaID END) ELSE

mt . TaxaID END) AS TaxaID

, (CASEWHEN mt . GuthrieZone IS NULL THEN

(CASEWHEN y . GuthrieZone IS NULL THEN

c . GuthrieZone ELSE y . GuthrieZone END)

ELSE mt . GuthrieZone END) AS GuthrieZone

,mt . Taxa AS mtDNATaxa

, y . Taxa AS YchrTaxa

, c . Taxa AS CulturalTaxa

,mt .mtDNA

, y . Ychr STR

, c . Cultura l EthnogAt las

FROM mtDNA mt

FULL OUTER JOIN Ychr y

ON mt . TaxaID = y . TaxaID

LEFT JOIN Cultura l c

ON mt . TaxaID = c . TaxaID

OR y . TaxaID = c . TaxaID)
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Table 18: Cultural Ethnographic Atlas Question List, from Gray et al., 1998 [23]

Cultural

Dataset

Position

Ethnographic Atlas Codebook

1 Gathering

2 Hunting

3 Fishing

4 Animal Husbandry

5 Agriculture

6 Mode of Marriage (Primary)

7 Mode of Marriage (Alternate)

8 Domestic Organization

9 Marital Composition: Monogamy and Polygamy

10 Marital Residence with Kin: First Years

11 Transfer of Residence at Marriage: After First Years

12 Marital Residence with Kin: After First Years

13 Marital Residence with Kin: Alternate Form

14 Transfer of Residence at Marriage: Alternate Form

15 Community Marriage Organization

16 Community Marriage Organization

17 Largest Patrilineal Kin Group



97

18 Largest Patrilineal Exogamous Group

19 Largest Matrilineal Kin Group

20 Largest Matrilineal Exogamous Group

21 Largest Matrilineal Kin Group

22 Secondary Cognatic Kin Group: Kindreds and Ramages

23 Cousin Marriages (Allowed)

24 Subtypes of Cousin Marriages

25 Preferred rather than just Permitted Cousin Marriages

26 Subtypes of Cousin Marriages (Preferred rather than just Permitted)

27 Kin Terms for Cousins

28 Intensity of Agriculture

29 Major Crop Type

30 Settlement Patterns

31 Mean Size of Local Communities

32 Jurisdictional Hierarchy of Local Community

33 Jurisdictional Hierarchy Beyond Local Community

34 High Gods

35 Games

36 Post-partum Sex Taboos

37 Male Genital Mutilations

38 Segregation of Adolescent Boys
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39 Animals and Plow Cultivation

40 Predominant Type of Animal Husbandry

41 Milking of Domestic Animals

42 Subsistence Economy

43 Descent: Major Type

44 Sex Differences: Metal Working

45 Sex Differences: Weaving

46 Sex Differences: Leather Working

47 Sex Differences: Pottery Making

48 Sex Differences: Boat Building

49 Sex Differences: House Construction

50 Sex Differences: Gathering

51 Sex Differences: Hunting

52 Sex Differences: Fishing

53 Sex Differences: Animal Husbandry

54 Sex Differences: Agriculture

55 Age or Occupational Specialization: Metal Working

56 Age or Occupational Specialization: Weaving

57 Age or Occupational Specialization: Leather Working

58 Age or Occupational Specialization: Pottery Making

59 Age or Occupational Specialization: Boat Building
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60 Age or Occupational Specialization: House Construction

61 Age or Occupational Specialization: Gathering

62 Age or Occupational Specialization: Hunting

63 Age or Occupational Specialization: Fishing

64 Age or Occupational Specialization: Animal Husbandry

65 Age or Occupational Specialization: Agriculture

66 Class Stratification

67 Class Stratification

68 Class Stratification (Endogamy)

69 Class Stratification (Endogamy)

70 Type of Slavery

71 Former Presence of Slavery

72 Succession to the Office of Local Headman

73 Type of Hereditary Succession

74 Inheritance Rule for Real Property (Land)

75 Inheritance Distribution for Real Property (Land)

76 Inheritance Rule for Movable Property

77 Inheritance Distribution for Movable Property

78 Norms of Premarital Sexual Behavior of Girls

79 Prevailing Type of Dwelling: Ground Plan

80 Prevailing Type of Dwelling: Floor Level
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81 Prevailing Type of Dwelling: Wall Material

82 Prevailing Type of Dwelling: Shape of Roof

83 Prevailing Type of Dwelling: Roofing Materials

84 Secondary or Alternative House Type: Ground Plan

85 Secondary or Alternative House Type: Floor Level

86 Secondary or Alternative House Type: Wall Material

87 Secondary or Alternative House Type: Shape of Roof

88 Secondary or Alternative House Type: Roofing Materials

89 Region

90 Political Succession for the Local Community

91 Trance States

92 Societal Rigidity
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APPENDIX C: DIMENSIONALITY REDUCTION CODE

l ibrary ( t i dy r )

l ibrary ( readr )

l ibrary ( dplyr )

l ibrary ( purrr )

l ibrary ( psych )

l ibrary (MASS)

l ibrary (dimRed)

####################################################################

## Input as Tab le

# Choose Datase t ( Inner Join or Outer Join )

CombinedData <− read csv ( ” Dimens ional i tyReduct ion CombinedData InnerJo in . csv ” ) #Inner Join Data

colnames ( CombinedData ) [ 1 ] <− ”TaxaID” #Fix <U+FEFF> I s s u e s

mtDNA c o l s <− paste0 ( ”mtDNA. pos” , seq ( 1 : 16590 ) )

Ychr c o l s <− paste0 ( ”Ychr . pos” , seq ( 1 : 1 2 ) )

Cul tura l c o l s <− paste0 ( ” Cul tura l . pos” , seq ( 1 : 9 2 ) )

## Separa t e S t r i n g s i n t o I n d i v i d u a l Columns

SepCombinedData <− CombinedData %>%

separate ( . ,

mtDNA,

mtDNA co l s ,

sep = seq ( 1 : 1 2 ) ,

remove = TRUE) %>%

separate ( . ,

Ychr STR,

Ychr co l s ,

sep = seq ( 1 : 16590 ) ,

remove = TRUE) %>%

separate ( . ,

Cu l tura l EthnogAtlas ,

Cul tura l co l s ,

sep = seq ( 1 : 9 2 ) ,

remove = TRUE)

## Remove NA Columns

SepCombinedData <− SepCombinedData [ ! i s .na(names( SepCombinedData ) ) ]

## Clean Up Memory to Avoid Error

rm( ”CombinedData” , ” Cul tura l c o l s ” , ”mtDNA c o l s ” , ”Ychr c o l s ” )

gc ( )

memory . l i m i t ( s i z e =99999)

## Dummy Code Each Column and Write to Disk

DummyCodedCombinedData <− as . data . frame ( lapply ( SepCombinedData , dummy. code ) )
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DummyStartLoc <− which (colnames (DummyCodedCombinedData)==” Cultura l . pos1 . 1 ” )

DummyCodedCombinedData <− cbind ( SepCombinedData [ , 1 : 5 ] ,

DummyCodedCombinedData [ , DummyStartLoc :

ncol (DummyCodedCombinedData ) ] ) #Append Data

DummyCodedCombinedData <− DummyCodedCombinedData %>%

dplyr : : s e l e c t (− s t a r t s with ( ”X” ) ) #Remove Var i a b l e With Only 1 Value ( S t a r t s w i th X)

## Clean Up Memory

rm( SepCombinedData )

gc ( )

## Co l l a p s e Data By TaxaID

CollapsedDummyCodedCombinedData <− DummyCodedCombinedData %>%

dplyr : : s e l e c t (−GuthrieZone ,

−CulturalTaxa ,

−mtDNATaxa,

−YchrTaxa ) %>%

group by(TaxaID) %>%

summarise a l l (mean)

rownames( CollapsedDummyCodedCombinedData ) <− CollapsedDummyCodedCombinedData$GuthrieZone

CollapsedDummyCodedCombinedData$TaxaID <− NULL

CollapsedDummyCodedCombinedData$GuthrieZone <− NULL

CollapsedDummyCodedCombinedData$CulturalTaxa <− NULL

CollapsedDummyCodedCombinedData$mtDNATaxa <− NULL

CollapsedDummyCodedCombinedData$YchrTaxa <− NULL

## Clean Up Memory

rm(DummyCodedCombinedData)

gc ( )

####################################################################

## Mul t i d imens i ona l S c a l i n g

## Non−Metr ic MDS

MDS NonMetric Combined <− isoMDS( d i s t ( CollapsedDummyCodedCombinedData ) ,

y = cmdscale ( d i s t ( CollapsedDummyCodedCombinedData ) ,

k = 2) ,

k = 2 ,

maxit = 500 ,

trace = TRUE,

t o l = 1e−3,

p = 2)

#Ex t ra c t Po in t s

MDS NonMetric Combined Points <− as . data . frame (MDS NonMetric Combined$points )

#Add Column and Rename
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MDS NonMetric Combined Points$TaxaID <− rownames( CollapsedDummyCodedCombinedData )

colnames (MDS NonMetric Combined Points ) <− c ( ”x” , ”y” , ”TaxaID” )

############

##Lap lac ian Eigenmaps

#Find op t ima l number o f k in k−nn

knn accuracy <− data . frame ( k = 0 ,

accuracy = 0)

for ( k in 1 :nrow( CollapsedDummyCodedCombinedData )){

knn <− class : : knn ( CollapsedDummyCodedCombinedData ,

CollapsedDummyCodedCombinedData ,

rownames( CollapsedDummyCodedCombinedData ) ,

k=2)

knn prop <− prop . table ( table (knn , rownames( CollapsedDummyCodedCombinedData ) ) )

accuracy <− sum(diag ( knn prop ) )/sum( knn prop )

i t e r accuracy <− data . frame ( k = k ,

accuracy = accuracy )

knn accuracy <− rbind ( i t e r accuracy , knn accuracy )

}

most accurate k <− knn accuracy [which .max( knn accuracy$accuracy ) , ] $k

CollapsedDummyCodedCombinedData dimRed <− dimRedData ( CollapsedDummyCodedCombinedData [ ,

1 : ncol ( CollapsedDummyCodedCombinedData ) ] ) #Convert to dimRed c l a s s

l e im <− LaplacianEigenmaps ( ) #S4 Ob jec t f o r LE

LEpars <− l i s t (ndim = 2 , #Def ine Parameter Se t f o r LE

spar se = ”knn” ,

knn = most accurate k ,

#eps = 0 .1 ,

t = Inf ,

norm = FALSE)

LE Combined <− leim@fun ( CollapsedDummyCodedCombinedData dimRed , LEpars )

LE Combined Points <− as . data . frame (LE Combined@data@data ) #Ex t ra c t Po in t s

LE Combined Points$TaxaID <− rownames( CollapsedDummyCodedCombinedData ) #Add Column and Rename

#colnames (MDS NonMetric Combined Po in t s ) <− c (” x ” ,” y ” ,” z ” ,”TaxaID”)
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APPENDIX D: MACHINE LEARNING DATA PREPARATION CODE

l ibrary ( t i dy r )

l ibrary ( readr )

l ibrary ( dplyr )

############

## Load Fu l l Data

CombinedData <− read csv ( ” Dimens ional i tyReduct ion CombinedData OuterJoin . csv ” ) #Outer Join Data

colnames ( CombinedData ) [ 1 ] <− ”TaxaID” #Fix <U+FEFF> I s s u e s

CombinedData [ CombinedData == ”NULL” ] <− NA

## Create mtDNA Datase t

mtDNA c o l s <− paste0 ( ”mtDNA. pos” , seq ( 1 : 16590 ) )

mtDNAData <− CombinedData %>%

s e l e c t (−TaxaID ,

−CulturalTaxa ,

−mtDNATaxa,

−YchrTaxa ,

−Cultura l EthnogAtlas ,

−Ychr STR) %>%

f i l t e r (complete . c a s e s ( . ) ) %>%

separate ( . ,

mtDNA,

mtDNA co l s ,

sep = seq ( 1 : 16590 ) ,

remove = TRUE)

# Remove NA Columns

mtDNAData <− mtDNAData [ ! i s .na(names(mtDNAData ) ) ]

mtDNAData$GuthrieZone <− as . factor (mtDNAData$GuthrieZone )

## Create Ychr Datase t

Ychr c o l s <− paste0 ( ”Ychr . pos” , seq ( 1 : 1 2 ) )

YchrData <− CombinedData %>%

s e l e c t (−TaxaID ,

−CulturalTaxa ,

−mtDNATaxa,

−YchrTaxa ,

−Cultura l EthnogAtlas ,

−mtDNA) %>%

f i l t e r (complete . c a s e s ( . ) ) %>%

separate ( . ,

Ychr STR,

Ychr co l s ,
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sep = seq ( 1 : 1 2 ) ,

remove = TRUE)

# Remove NA Columns

YchrData <− YchrData [ ! i s .na(names( YchrData ) ) ]

YchrData$GuthrieZone <− as . factor ( YchrData$GuthrieZone )

## Create Genet ic Only Datase t

GeneticData <− CombinedData %>%

s e l e c t (−TaxaID ,

−CulturalTaxa ,

−mtDNATaxa,

−YchrTaxa ,

−Cultura l EthnogAtlas ) %>%

f i l t e r (complete . c a s e s ( . ) ) %>%

separate ( . ,

mtDNA,

mtDNA co l s ,

sep = seq ( 1 : 16590 ) ,

remove = TRUE) %>%

separate ( . ,

Ychr STR,

Ychr co l s ,

sep = seq ( 1 : 1 2 ) ,

remove = TRUE)

# Remove NA Columns

GeneticData <− GeneticData [ ! i s .na(names( GeneticData ) ) ]

GeneticData$GuthrieZone <− as . factor ( GeneticData$GuthrieZone )

## Create Cu l t u r a l Da ta s e t s

Cultura l c o l s <− paste0 ( ” Cul tura l . pos” , seq ( 1 : 9 2 ) )

CulturalData <− CombinedData %>%

s e l e c t (−TaxaID ,

−CulturalTaxa ,

−mtDNATaxa,

−YchrTaxa ,

−mtDNA,

−Ychr STR) %>%

f i l t e r (complete . c a s e s ( . ) ) %>%

separate ( . ,

Cu l tura l EthnogAtlas ,

Cul tura l co l s ,

sep = seq ( 1 : 9 2 ) ,

remove = TRUE)

# Remove NA Columns

CulturalData <− CulturalData [ ! i s .na(names( CulturalData ) ) ]
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CulturalData$GuthrieZone <− as . factor ( CulturalData$GuthrieZone )

## Create Combined Da ta s e t s

CombinedData <− CombinedData %>%

s e l e c t (−TaxaID ,

−CulturalTaxa ,

−mtDNATaxa,

−YchrTaxa ) %>%

#f i l t e r ( comp le t e . c a s e s ( . ) ) %>%

s eparate ( . ,

mtDNA,

mtDNA co l s ,

sep = seq ( 1 : 16590 ) ,

remove = TRUE) %>%

separate ( . ,

Ychr STR,

Ychr co l s ,

sep = seq ( 1 : 1 2 ) ,

remove = TRUE) %>%

separate ( . ,

Cu l tura l EthnogAtlas ,

Cul tura l co l s ,

sep = seq ( 1 : 9 2 ) ,

remove = TRUE)

# Remove NA Columns

CombinedData <− CombinedData [ ! i s .na(names( CombinedData ) ) ]

CombinedData$GuthrieZone <− as . factor ( CombinedData$GuthrieZone )
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APPENDIX E: LINKS TO RESEARCH MATERIALS

The visualizations generated in this work as hosted online as interactive dashboards

on Tableau Public (cford38!/vizhome/BantuMigration/BantuMigration/

AnIntegratedPhylogeographicAnalysisoftheBantuMigration).

All scripts and data are available on GitHub (colbyford/BantuMigration).

https://public.tableau.com/profile/cford38#!/vizhome/BantuMigration/AnIntegratedPhylogeographicAnalysisoftheBantuMigration
https://public.tableau.com/profile/cford38#!/vizhome/BantuMigration/AnIntegratedPhylogeographicAnalysisoftheBantuMigration
https://github.com/colbyford/BantuMigration
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