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ABSTRACT

YIJING ZHOU. Path integral methods using Feynman-Kac formula and reflecting
Brownian motions for Neumann and Robin Problems. (Under the direction of DR. WEI

CAI)

In this dissertation, we propose numerical methods for computing the boundary local

time of reflecting Brownian motion (RBM) in R3 and its use in the probabilistic repre-

sentation of the solution of the Laplace equation with the Neumann and Robin boundary

conditions respectively. Approximations of RBM based on a walk-on-spheres (WOS) and

random walk on lattices are discussed and tested for sampling RBM paths and their ap-

plicability in finding accurate approximation of the local time and discretization of the

probabilistic formula. Numerical tests for a cube domain have shown the convergence of

the numerical methods as the time length of RBM paths and number of paths sampled in-

creases. Spherical, ellipsoidal, nonconvex domains were also tested to prove the efficiency

and accuracy of the algorithm. Moreover, an exterior Neumann problem of a many-spheres

system further demonstrated the effectiveness of the method even the starting point of the

path lying exactly on the boundary. Additionally, the application in electrical impedance to-

mography to solve the forward problem further demonstrates the simplicity and efficiency

of our approach, which is extremely important for some reconstruction methods of the in-

verse problem. Other applications in material science in calculating the electrical properties

of materials in special shapes are also discussed as possible future work.
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CHAPTER 1: INTRODUCTION

The dissertation focuses on the simulation of standard reflecting Brownian motion and

numerical realization of the well known Feynman-Kac formula [14] for the Laplace opera-

tor given the Neumann and/or Robin boundary conditions in a 3D domain. Different from

the conventional numerical methods, like finite element, finite difference and boundary el-

ement methods, Feynman-Kac formula successfully connects the solutions of differential

equations of diffusion and heat flow and random processes of Brownian motions, which

provides an alternative way to solve PDEs without constructing spatial mesh.

The Feynman-Kac formula represents the solutions of parabolic and elliptic PDEs as the

expectation functionals of stochastic processes (specifically Brownian motions), and con-

versely, the probabilistic properties of diffusion processes can be obtained through investi-

gating related PDEs characterized by corresponding generators [43]. The formula involves

the path integrals of the diffusion process starting from an arbitrarily prescribed location,

and this enables us to find a local numerical solution without constructing space and time

meshes as in traditional deterministic numerical methods mentioned above, which incur

expensive costs in high dimensions. In many applications it is also of practical importance

and necessity to seek a local solution of PDEs at some interested points. If the sample

paths of a diffusion process are simulated, then by computing the average of path integrals

we can obtain approximations to the exact solutions of the PDEs. For second order ellip-

tic PDEs with Dirichlet and Neumann boundaries, the average of path integrals is reduced
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to the average of boundary integrals under certain measure where the detailed trajectories

of the diffusion process have no effect on the averages except the hitting locations on the

boundaries.

In the Dirichlet case, the underlying stochastic process is Brownian motion and its path

will terminate upon reaching the boundary, also called killed Brownian motion. For the

Neumann and/or Robin boundary conditions, the reflecting Brownian motion comes into

play instead which will have instantaneous reflection on the boundary.

Simulations of diffusion paths can be done by random walks methods [27] [2][35][20]

either on lattice or in continuum space. In some cases such as for the Poisson equation, the

Feynman-Kac formula has a pathwise integral requiring the detailed trajectory of each path.

Moreover, one may need to adopt random walks on a discrete lattice in order to incorporate

inhomogeneous source terms. As for the continuum space approach, the Walk on Spheres

(WOS) method is preferred where the path of diffusion process within the domain does not

appear in the Feynman-Kac formula. For Laplace equation, Walk on Spheres method turns

out to be more efficient and effortless when the dimensions are high.

Chapter 2 is preparatory. We introduce the basic concepts of reflecting Brownian motion

and its boundary local time which arises from the Skorohod problem in a bounded domain.

In Chapter 3, the boundary value problems associated with Laplace equation are discussed

and we give the explicit form of the probabilistic solutions. The Walk-on-Spheres method

is described in Chapter 4 in details and based on which the numerical methods and results

of the boundary value problems are given in Chapter 5. In Chapter 6, the forward problem

in electric impedance tomography is treated on the basis of a Robin-to-Neumann map using

generalized Feynman-Kac formula. Numerical results are given on a unit sphere with eight
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electrodes in three dimensions.



CHAPTER 2: REFLECTING BROWNIAN MOTION, BOUNDARY LOCAL TIME
AND SKOROHOD PROBLEM

2.1 Reflecting Brownian Motion

2.1.1 Brownian Motion

Let us review the definition of Brownian motion first. Mathematically, the transition

density function p̃(t,x,y) of Brownian motion process satisfies the following parabolic dif-

ferential equation:
∂

∂ t
p̃(t,x,y) =

1
2

∆x p̃(t,x,y), (t,x,y) ∈ R+×Rd×Rd;

lim
t→0

p̃(t,x,y) = δy(x), (x,y) ∈ Rd×Rd.

(2.1.1)

The first equation in (2.1.1) is known as the heat equation. It is motivated by the diffusion

of heat through space (e.g. a steel rod). From the PDE theory, the heat equation has

fundamental solution in one dimension

p̃(t,x) =
1√
2πt

e−x2/2t , (2.1.2)

which is exactly the density function of Brownian motion.

The p̃(t,x,y) above describes the microscopic movement of a Brownian particle through-

out the whole space. Next, a formal mathematical definition presents the general features

of Brownian motion.

Definition 1. Brownian motion: A Brownian motion B(t) = (B1(t),B2(t), ..., Bd(t)) in Rd



5

is a set of d independent stochastic processes with the following properties: for 1≤ i≤ d,

1. (Normal increments) Bi(t)−Bi(s) has the normal distribution with mean 0 and vari-

ance t− s.

2. (Independence of increments) Bi(t)−Bi(s) is independent of the past, i.e., of Bu,

0≤ u≤ s.

3. (Continuity of paths) Bi(t), t ≥ 0 is a continuous function of t.

Another important fact is that every Brownian sampling path is a nowhere differentiable

function of t.

2.1.2 Reflecting Brownian Motion

As shown in (2.1.1), Brownian motion is defined in the whole space while reflecting

Brownian motion (RBM) only exists within a bounded domain with certain constraints.

Similarly, the transition density function p(t,x,y) of RBM satisfies a modified boundary

value problem with an additional boundary condition in a bounded D ∈ Rd:

∂

∂ t
p(t,x,y) =

1
2

∆x p(t,x,y), (t,x,y) ∈ R+×D×D;

lim
t→0

p(t,x,y) = δy(x), (x,y) ∈ D̄× D̄;

∂

∂nx
p(t,x,y) = 0, (t,x,y) ∈ R+×∂D×D.

(2.1.3)

The normal derivative (2.1.3) being zero implies that the path of RBM will not be able to

move out to the exterior of the domain but reflect back along the normal inwardly each time

it reaches the boundary. Obviously, the path of RBM behaves like the Brownian motion in

the interior of the domain but behave differently on the boundary.
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The existence for the transition density function p(t,x,y) is guaranteed by a C3 boundary

[14] and the function can be constructed by a well-known method in the theory of partial

differential equations. Detailed proof is omitted here.

Next, we state some properties of p(t,x,y) in a theorem.

Theorem 1. The function p(t,x,y) in (2.1.3) has the following properties:

1. p(t,x,y)> 0;

2. p(t,x,y) is symmetric in x and y;

3. ∫
D

p(t,x,y)σ(dy) = 1; (2.1.4)

4. The Chapman-Kolmogoroff equation holds:

p(t + s,x,y) =
∫

D
p(t,x,z)p(s,z,y)σ(dz); (2.1.5)

Property 1 is a consequence of a strong version of the maximum principle. Property

2 is proved by using the self-ajointness of the Laplacian operator with the zero Neumann

boundary condition. Property 3 and 4 are derived from the uniqueness of the solution of

the first two equations of (2.1.3). The four properties together ensure that p(t,x,y) is the

transition density function of a reflecting Brownian motion [14].

2.2 Skorohod Problem

2.2.1 One Dimensional Case

Let Bt denote a standard Brownian motion in R and any x ∈ R, then the positive sub-

martingale |Bt − x| is called the reflecting Brownian motion at x and it has the decompo-

sition as the sum of another Brownian motion B̂t and a continuous nondecreasing process
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L(t,x):

|Bt− x|= B̂t +L(t,x), (2.2.1)

where L(t,x) is the local time of Bt at x and was first proposed by P. Lévy [18]. It is defined

as follows:

L(t,x) = lim
ε→0

1
2ε

∫ t

0
I(x−ε,x+ε)(Bs)ds

= lim
ε→0

1
2ε

m{s ∈ [0, t] : Bx ∈ (x− ε,x+ ε)} . (2.2.2)

(2.2.1) is the Skorohod equation in one dimension and as a matter of fact, the Tanaka’s

formula gives the solution to it.

Tanaka’s formula For each (t,x), we have a.s.

|Bt− x|= |B0− x|+
∫ t

0
sgn(Bs− x)dBs +L(t,x), (2.2.3)

and almost surely, L(t,x) increases only when |Bt− x| is at zero, i.e.,

∫
∞

0
1{t:B(t)6=x}dL(t,x) = 0 a.s.. (2.2.4)

Further, by comparing (2.2.1) with (2.2.3), it reveals that

B̂(t,x) = |B0− x|+
∫ t

0
sgn(Bs− x)dBs. (2.2.5)

This can be proved by calculating the quadratic variations of both sides of the equation [6].

Remark 1. Without loss of generality, by setting x = 0 in (2.2.3), we have

|B|= B̂+L. (2.2.6)

It can be proved that |B̂| is equivalent in law to |B|, but it is not possible that |B̂| is equal
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to |B| . Otherwise, if |B̂| = |B|, then (2.2.6) would be |B̂| = B̂+ L where |B̂| and B̂ are

simultaneously zero for a sequence of times approaching ∞, and this would lead to L ≡ 0

which is not true. Simply speaking, the equivalence in law of two processes will not imply

the equality of sample paths.

It is interesting that |B| is called the reflection of the Brownian motion B and B̂ has the

same distribution as B. This inspires us the idea of construction of sample path of |B| from

B directly. Details can be found in Chapter 5.

2.2.2 Generalized Skorohod Equation

In this section, we give the formulation of Skorohod problem in multi-dimensional Eu-

clidean space.

Definition 2. Skorohod equation: Assume D is a bounded domain in Rd with a C2 boundary.

Let f (t) be a (continuous) path in Rd with f (0) ∈ D̄. A pair (ξt ,Lt) is a solution to the

Skorohod equation S( f ;D) if the following conditions are satisfied:

1. ξ is a path in D̄;

2. L(t) is a nondecreasing function which increases only when ξ ∈ ∂D, namely,

L(t) =
∫ t

0
I∂D(ξ (s))L(ds); (2.2.7)

3. The Skorohod equation holds:

S( f ;D) : ξ (t) = f (t)− 1
2

∫ t

0
n(ξ (s))L(ds), (2.2.8)

where n(x) stands for the outward unit normal vector at x ∈ ∂D.
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Remark 2. In Definition 2, the smoothness constraint on D can be relaxed to bounded

domains with C1 boundaries, which however will only guarantee the existence of (2.2.8).

But for a domain D with a C2 boundary, the solution will be unique. Obviously, (ξt ,Lt) is

continuous in the sense that each component is continuous.

The Skorohod problem was first studied in [28] by A.V. Skorohod in addressing the

construction of paths for diffusion processes with boundaries, which results from the in-

stantaneous reflection behavior of the processes at the boundaries. Skorohod presented

the result in one dimension in the form of an Ito integral and Hsu [14] later extended the

concept to d-dimensions (d ≥ 2).

Theorem 2. Let D be a bounded domain in Rd with C1 boundary and f be a continuous

path in Rd with f (0) ∈ D̄. Then the solution to the Skorohod equation (2.2.8) exists and is

unique if D has C2 boundary.

The full proof was given in [14]. The existence of the solution was shown by explicit

construction for the right continuous step path f in Rd and then generalized to any con-

tinuous path by taking the limit, which also guarantees the uniqueness according to the

Arzelá-Ascoli theorem. Furthermore, the moduli of continuity of ξ is no less continuous

than f which can be observed by the construction of ξ from f . Besides, Theorem 2 is also

true for unbounded domains.

Theorem 3. Suppose D is a bounded domain with C3 boundary. Let Bt be standard Brown-

ian motion starting at x ∈ D. If Xt and Lt are continuous stochastic processes in Rd and R+

respectively, such that with probability one, (Xt ,Lt) is the solution to the Skorohod equation

S(B : D), then Xt has the law of SRBM in D.
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The proof Theorem 3 is established by identifying the equivalence of the reflecting Brow-

nian motion and the solution to the submartingale problem . Because the transition prob-

ability density of the SRBM satisfies the same parabolic differential equation as that by a

BM, a sample path of the SRBM can be simulated simply as that of the BM within the

domain. However, the zero Neumann boundary condition for the density of SRBM implies

that the path be pushed back at the boundary along the inward normal direction whenever

it attempts to cross the boundary. We shall see the construction of a SRBM from a SBM in

latter chapters.

In the rest of the thesis, we only discuss the reflecting Brownian motion Xt and its local

time L(t).

2.3 Boundary Local Time

Now, we may want to further look into the local time L(·).

In (2.2.2), if we treat x as a boundary, then (2.2.7) is essentially the extension of (2.2.2) and

it measures the amount of time ξt spend in the neighborhood of the boundary within the

time period [0, t]. Therefore, we may call it boundary local time. It is the unique continuous

nondecreasing process that appears in the Skorohod equation (2.2.8) [14] [19] [25]. In the

measure theory, it is well established that t ∈ R+ : Xt ∈ ∂D is a closed set with Lebesgue

measure zero while the sojourn time of the set is nontrivial. In fact, it exists both in L2

and a.s.. This concept provides a powerful tool in studying the Brownian sample paths.

Moreover, it is not just a mathematical one but also has physical relevance in understanding

the crossover exponent associated with renewal rate in modern renewal theory [38].

Theorem 4. Let D be a bounded domain with C3 boundary, Bt be the standard Brownian
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motion in Rd with starting point x ∈D and (Xt ,Lt) be the solution to the Skorohod equation

S(B : D). Then with probability one,

lim
ε→0

∫ t

0

IDε
(Xs)

ε
= L(t) (2.3.1)

and in L2(Px) for each fixed t. Here Dε is a strip region of width ε containing ∂D and

Dε ⊂ D.

(2.3.1) may be utilized as the new definition of boundary local time. Next, Skorohod

integral is introduced to give an explicit formula for boundary local time.

Theorem 5. The integral ∫ t

0
I∂D {Xs}

√
ds (2.3.2)

exists. Moreover, the boundary local time Lt of SRBM Xt can be expressed as

L(t) =

√
π

2

∫ t

0
I∂D {Xs}

√
ds, (2.3.3)

where the right-hand side of (2.3.3) is understood as the limit of

n−1

∑
i=1

max
s∈∆i

I∂D(Xs)
√
|∆i|, max

i
|∆i| → 0, (2.3.4)

and ∆ = {∆i} is a partition of the interval [0, t] and each ∆i is an element in ∆.

Now we have three different forms of boundary local time Lt of reflecting Brownian

motion, (2.2.7), (2.3.1) and (2.3.3). It can be shown that they are equivalent in probability

and L2. We will discuss the implementation of both (2.3.1) and (2.3.3) in Chapter 5.



CHAPTER 3: BOUNDARY VALUE PROBLEMS

In this chapter, we introduce the well-known Feynman-Kac formulas for boundary value

problems associated with Schrödinger operator. The formulation is established on the ex-

pectation functionals of stochastic processes, specifically standard Brownian motion, under

certain probability space. The generalizations are mainly focused on two types in financial

applications: (a) those where other Ito diffusion processes and (b) those in which the dif-

fusion process is confined in a region of space. In this chapter, we mainly discuss the latter

case.

3.1 Review of Dirichlet Problem

Let us consider the following Dirichlet problem of general elliptic PDE in a bounded

domain D⊂ Rd .
L(u)≡

n

∑
i=1

bi(x)
∂u
∂xi

+
n

∑
i, j=1

ai j(x)
∂ 2u

∂xi∂x j
= f (x), x ∈ D

u = φ1(x), x ∈ ∂D

(3.1.1)

Let Xt be the Ito diffusion relating to the standard Brownian motion Bt ,

dXt = b(Xt)dt +α(Xt)dBt , (3.1.2)

where [ai j] =
1
2α(x)αT (x), then Feynman-Kac formula provides a probabilistic solution

[12] to (3.1.1) as

u(x) = Ex0 (φ1 (XτD))+Ex0[
∫

τD

0
f (Xt)dt]. (3.1.3)
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Here τD stands for the first hitting time of the domain boundary. The expectation in (3.1.3)

calculates the expected value of functions in the probability space Px(D) of Xt with X0 = x0.

Note that when bi = 0, ai j = 1 and f (x)= 0, elliptic PDE (3.1.1) is reduced to the Poisson

equation with no source term, or Laplace equation. Then (3.1.3) becomes

u(x) = Ex0 (φ1 (XτD)) , (3.1.4)

which shows that u can be evaluated as an average of the boundary values at the first

hitting positions on the boundary. Since Xt stops moving and begin absorbed once hits the

boundary, one may call it killed Brownian motion.

3.2 Neumann Problem

Now consider the Neumann boundary value problem of the elliptic PDE on bounded

domain D⊂ Rd , 
(

∆

2
+q(x)

)
u = 0, x ∈ D

∂u
∂n

= φ2(x), x ∈ ∂D

(3.2.1)

When the bottom of the spectrum of the operator ∆/2+ q is negative a probabilistic

solution of (3.2.1) is given by

u(x) =
1
2

Ex
[∫

∞

0
eq(t)φ2(Xt)L(dt)

]
, (3.2.2)

where Xt is a SRBM starting at x, Lt is the boundary local time w.r.t. Xt and eq(t) is the

Feynman-Kac functional [14]

eq(t) = exp
[∫ t

0
q(Xs)ds

]
.

Remark 3. Comparing with formula (3.2.2), we find that the probabilistic solutions to
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the Laplace equation with the Dirichlet boundary condition has a very similar form (see

(3.1.4)). In the Dirichlet case, killed Brownian paths were sampled by running random

walks until they are absorbed on the boundary and u(x) is evaluated as an average of the

boundary values at the first hitting positions on the boundary. On the other hand, for the

Neumann condition, while u(x) is also given as a weighted average of the Neumann data

at hitting positions of RBM on the boundary, the weight is related to the boundary local

time of RBM. This is a noteworthy point when we compare the probabilistic solutions of

the two boundary value problems and try to understand the formula in (3.2.2).

To see the existence of the infinite integral in (3.2.2), we introduce a Gauge function

Gq(x) = Ex0

[∫
∞

0
eq(t)L(ds)

]
, (3.2.3)

which is always a positive function of q.

Theorem 6. Let D be a bounded domain in Rd . If the gauge Gq is finite at one point in D̄

then it is bounded on D̄.

Theorem 7. For any φ2(x) ∈ L∞(∂D), if the gauge function Gq is finite on D̄, then there is

a unique weak solution to the Neumann boundary problem (3.2.1).

Theorem 6 and Theorem 7 together ensure the existence and thus validity of the integral

defined under the condition that Gq is finite.

The “weak solution” mentioned in Theorem 7 is understood under the martingale for-

mulation which initially brought up by [14]. Though the formulation is completely differ-

ent from the weak solution in classical theory, they are essentially equivalent if assuming

u ∈C2(D)∩C1(D̄).
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Definition 3. A bounded measurable function u on D̄ is called a weak solution of the Neu-

mann problem (3.2.1) if for all x ∈ D̄,

Mu
φ (t) = u(Xt)−u(X0)+

1
2

∫ t

0
φ(Xs)L(ds)+

∫ t

0
qu(Xt)ds (3.2.4)

is a continuous Px-martingale.

Theorem 8. Let u be continuous function on D̄. The following two conditions are equiva-

lent:

(a) Mu
φ

defined in (3.2.4) is a continuous Px-martingale for all x ∈ D̄.

(b) For any f ∈C2
∂
(D), we have

∫
D

u(x)
(

∆

2
+q
)

f (x)m(dx) =−1
2

∫
∂D

φ2(x) f (x)σ(dx), (3.2.5)

The above theorem demonstrates the equivalence of the martingale formulation and the

integral formulation of the weak solution of Neumann problem when u is continuous. If

the domain D has a C3 boundary, q is a Feynman-Kac functional and Gq is finite, and φ2 is

bounded on ∂D, the solution defined in (3.2.2) is bounded and continuous. Thus, according

to Theorem 8 the form (3.2.2) suggests it is a weak solution in the classical sense. Besides,

it should be noted that the martingale formulation does not introduce the test functions.

3.3 Robin Problem

3.3.1 Third Boundary Value Problem

For the same time-independent Schrödinger equation with Robin boundary conditions,
1
2

∆u+q(x)u = 0, x ∈ D;

∂u
∂n
− c(x)u = φ3(x), x ∈ ∂D.

(3.3.1)
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A generalization of Feynman-Kac formula gives the probabilistic solution as follows,

u(x) = Ex0

{∫
∞

0
eq(t)êc(t)φ3(Xt)dLt

}
. (3.3.2)

Again, Xt is a SRBM initiating at x0. The term Feynman-Kac functional eq(t), also ap-

peared in the Neumann problem (3.2.1), is defined as

eq(t) = exp
[∫ t

0
q(Xs)ds

]
, (3.3.3)

and a second functional is introduced for the Robin boundary problem,

êc(t) = exp
[∫ t

0
c(Xs)dLs

]
. (3.3.4)

Now (3.3.2) may be written as

u(x) = Ex
{∫

∞

0
exp
[∫ t

0
(q(Xs)ds+ c(Xs)dLs)

]
φ3(Xt)dLt

}
. (3.3.5)

The existence of the integral defined under the new measure Lt in (3.3.5) will be shown

by a similar construction of gauge function as in the Neumann case.

Definition 4. Define the Gauge for system (2.3.2) to be

G(x) = Ex0

[∫
∞

0
êc(t)eq(t)dLt

]
. (3.3.6)

Theorem 9. Let D be a bounded domain in Rd . If there exists an xc ∈ D̄ such that G(xc) is

finite, then the function G is continuous and bounded on D̄.

Theorem 10. For any φ3(x) ∈ L∞(∂D), if the gauge function G is finite on D̄, then there is

a unique weak solution to the Robin boundary problem (3.3.1).

Moreover, the weak solution under martingale formulation will be
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Definition 5. A function u is called a weak solution of the third problem (3.3.1) if, for all

x ∈ D̄,

Mu
φ3
(t) = u(X− t)−u(X0)+

∫ t

0
c(Xs)u(Xs)dLs+

∫ t

0
φ3(Xs)dLs+

∫ t

0
q(Xs)u(Xs)ds (3.3.7)

is a continuous Px-martingale.

Next theorem shows the equivalence of weak solutions under the martingale formulation

and classical sense.

Theorem 11. The function u is a weak solution of (4.1.3) in the sense of Definition 5 if and

only if it is a continuous weak solution in the classical sense.

3.3.2 The Connection with The Neumann Problem

Recall the definition of the local time in Chapter 2 (2.3.1), we have the following ap-

proximation

L(t)≈ 1
ε

∫ t

0
IDε

(Xs)ds, (3.3.8)

thus,

dL(s)≈ 1
ε

IDε
(Xs)ds. (3.3.9)

Therefore, (3.3.5) can be modified as

u(x)≈ Ex
{∫

∞

0
exp
[∫ t

0

(
q(Xs)+

1
ε

c(Xs)IDε
(Xs)

)
ds
]

φ3(Xt)dLt

}
, (3.3.10)

It can also be shown that as ε goes to zero, (3.3.10) converges to (3.3.9) uniformly on D̄.

As (3.3.10) resembles the Feynman-Kac formula for the Neumann problem with a mod-

ified q(x) [14], it indicates a connection between the Robin and the Neumann problems,
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namely, we may introduce

qε(x) = q(x)+
1
ε

c(x)IDε
(x), (3.3.11)

then, the Robin boundary problem (3.3.1) can be viewed as a limiting case (ε → 0) of

Neumann problems 
1
2

∆u+qεu = 0, in D;

∂u
∂n

= φ , on ∂D.

(3.3.12)

3.4 Mixed Boundary Problem

To our concern, we only consider mixed Neumann and Robin boundary conditions in a

bounded domain D with ∂D = B1∪B2.

1
2

∆u+q(x)u = 0, x ∈ D

∂u
∂n

(x) = φ2(x), x ∈ B1

∂u
∂n

(x)− cu(x) = φ3(x), x ∈ B2

(3.4.1)

From the previous two sections, we have the probabilistic solution to (3.4.1) is

u(x) = Ex
{∫

∞

0
êc(t)eq(t)φ3(Xt)dL(t)

}
+

1
2

Ex
{∫

∞

0
eq(t)φ2(Xt)dL(t)

}
. (3.4.2)

where Xt is the standard reflecting Brownian motion and L(t) is the corresponding local

time.

The two integrals correspond to the two different boundary conditions. The first expec-

tation only calculates the average information obtained on the Robin boundary while the

second expectation cumulates the Neumann values w.r.t. local time along the Neumann

boundary.
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The application of the mixed boundary value problem will be discussed in Chapter 6.



CHAPTER 4: WALK ON SPHERES METHOD

Random walk on spheres (WOS) method was first proposed by Müller [23], which can

solve the Dirichlet problem for the Laplace operator efficiently. Actually, the general linear

elliptic operator

l(u) =
N

∑
i, j=1

ai j(x)
∂ 2u

∂xi∂x j
+

N

∑
i=1

b j(x)
∂u
∂xi

(4.0.1)

is allowed for the Dirichlet problem. Here ai j(x),b j(x) are C2 functions in the domain. We

will first briefly review Dirichlet Problem and this method and then show how it can be

adapted for RBM and the Neumann problem in latter chapters.

4.1 Review of Dirichlet Problem

For the Poisson equation with a Dirichlet boundary condition,

L(u) =
n

∑
i, j=1

ai j(x)
∂ 2u

∂xi∂x j
= f (x),x ∈ D,

u|∂D = φ(x),x ∈ ∂D.

(4.1.1)

where ai j = δi j.

The probabilistic representation of the solution is [11][12]

u(x) = Ex(φ(XτD))+Ex
[∫

τD

0
f (Xt)dt

]
, (4.1.2)

where Xt is the standard Brownian motion

dXt = dBt . (4.1.3)
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The expectation in (4.1.2) is taken over all sample paths starting from x and τD is the first

exit time for the domain D. This representation holds true for general linear elliptic PDEs.

For the Neumann boundary condition, similar formulas can be obtained [14][4]. However

different measures on the boundary ∂D will be used in the mathematical expectation.

In order to illustrate the WOS method for the Dirichlet problem, let us consider the

Laplace equation where f = 0 in (4.1.1).

The solution to the Laplace equation can be rewritten in terms of a measure µx
D defined

on the boundary ∂D,

u(x) = Ex(φ(XτD)) =
∫

∂D
φ(y)dµ

x
D, (4.1.4)

where µx
D is the so-called harmonic measure defined by

µ
x
D(F) = Px {XτD ∈ F} ,F ⊂ ∂D,x ∈ D. (4.1.5)

It can be shown that the harmonic measure is related to the Green’s function for the domain

with a homogeneous boundary condition,
−∆g(x,y) = δ (x− y), x ∈ D,

g(x,y) = 0, x ∈ ∂D

. (4.1.6)

By the third Green’s identity,

u(x) =
∫

∂D

[
u(y)

∂g(y,x)
∂n

−g(y,x)
∂u
∂n

(y)
]

dSy, (4.1.7)

and using the zero boundary condition of g, we have

u(x) =
∫

∂D
u(y)

∂g(y,x)
∂n

dSy, (4.1.8)
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where dSy denotes the surface measure at point y on the boundary. Comparing (4.1.4) with

(4.1.8), we can see that the hitting probability µx
D([y,y+dSy]) = p(x,y)dSy is given by

p(x,y) =−∂g(x,y)
∂ny

. (4.1.9)

For instance, the Green’s function for a ball for this purpose is given as

g(x,y) =− 1
4π|x− y|

+
1

4π|x− y∗|
, (4.1.10)

where y∗ is the inversion point of y with respect to the sphere [27].

Then through implementation of boundary element method, one may obtain the numer-

ical solution to (4.1.8) at any interior point x.

4.2 Walk on Spheres Method

Definition 6. The Spherical Process Given a domain D ⊂ Rd and fixed point x ∈ D∪∂D,

then the d-dimensional Spherical process originating from x is Φ(x), where

(a) Φ(x) = {S(x,φ),0≤ φ ≤ 1};

(b) Each φ determines the points in the set S(x,φ) = {Pi+1(x,φ), i = 0,1, ...} generated

as follows:

i. The point P0(x,φ) = x, specifies the d-dimensional sphere K(P0) contained in

D.

ii. The point P1(x,φ) is selected uniformly on K(P0).

iii. The point Pi+1(x,φ) is determined recursively from Pi(x,φ) and K(Pi) in the

same mannar as P1(x,φ) was determined from P0(x,φ).
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(a) WOS within the domain (b) WOS (with a maximal step size for
each jump) within the domain

Figure 1: Walk on Spheres method

Theorem 12. Given any point x belong to a domain D with boundary ∂D, then with proba-

bility 1, the spherical process originating from x converges to a point on ∂D.

Given an interior point x, the Brownian motion process can be simulated by spherical

processes as long as the domain is homogeneous. The first ball is drawn at the center of x,

then the probability of the BM exiting a portion of the boundary of the ball will be propor-

tional to the portion’s area. According to Theorem 12, all sample functions of Brownian

motion processes starting in the domain intersects the boundary ∂D almost surely. There-

fore, sampling a Brownian path by drawing balls within the domain, regardless of how the

path navigates in the interior before hitting the boundary, can significantly reduce the path

sampling time. To be more specific, given a starting point x inside the domain D, we simply

draw a ball of the largest possible radius fully contained in D and then the next location of

the Brownian path on the surface of the ball can be sampled, using a uniform distribution on

the sphere, say at x1. Treat x1 as the new starting point, draw a second ball fully contained

in D, make a jump from x1 to x2 on the surface of the second ball as before. Repeat this

procedure until the path hits an absorption ε-shell of the domain [13]. When this happens,

we assume that the path has hit the boundary ∂D (see Fig. 1 for an illustration).
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Next we define an estimator of (4.1.4) by

u(x)≈ 1
N

N

∑
i=1

φ(xi), (4.2.1)

where N is the number of Brownian paths sampled and xi is the first hitting point of each

path on the boundary. Using a jump size (radius of the ball) δ on each step for the WOS,

we expect to take O(1/δ 2) steps for a Brownian path to reach the boundary [2]. To speed

up, maximum possible size for each step would allow faster first hitting on the boundary. In

the next chapter, the WOS approach will be employed to simulate RBM paths as illustrated

in Fig. 1(b).



CHAPTER 5: NUMERICAL METHODS AND RESULTS

Simulations of diffusion paths can be done by random walks methods [20][2] [23][24]

either on a lattice or in continuum space. In some cases such as for the Poisson equation, the

Feynman-Kac formula has a pathwise integral requiring the detailed trajectory of each path.

Moreover, one may need to adopt random walks on a discrete lattice in order to incorporate

inhomogeneous source terms. As for the continuum space approach, the Walk on Spheres

(WOS) method is preferred where the path of diffusion process within the domain does not

appear in the Feynman-Kac formula. For instance, the WOS method was implemented in

[27] to solve Laplace equation with Dirichlet boundary condition at some interested points

and a local boundary integral equation is used to obtain a DtN map.

This chapter focuses on simulation of reflecting Brownian motion paths, calculation of

boundary local time and how it can be incorporated into Feynman-Kac formulas under

different boundary conditions.

5.1 Simulation of Reflecting Brownian Paths

A standard reflecting Brownian motion path can be constructed by reflecting a standard

Brownian motion path back into the domain whenever it crosses the boundary. So in prin-

ciple, the simulation of RBM is reduced to that of BM.

It is known that standard Brownian motion can also be constructed as the scaling limit of

a random walk on a lattice so we can model BM by a random walk with proper scaling (see
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Figure 2: A ε-region for a bounded domain in R3

Appendix for details). However, it turns out that the WOS method is the preferred method

to simulate BM for our purpose [24] (see Remark 5 for details). As mentioned before, an

ε-shell is chosen around the boundary as the termination region in the Dirichlet case. Here

we follow a similar strategy by setting up a ε-region but allowing the process Xt to continue

moving after it reaches the ε-region instead of being absorbed.

Fig.2 shows a strip region with width ε near the boundary for a bounded domain. In a

spherical domain, the ε-region is simply an ε-shell near the boundary of width ε . Denote

Mε(D) as the ε-region and Iε(D) as the remaining interior region D\Mε(D).

Recall the discussion of the WOS in the previous section. For a BM starting at a point x

in the domain, we draw a ball centered at x. The Brownian path will hit the spherical surface

with a uniform probability as long as the ball does not overlap the domain boundary ∂D.

The balls are constructed so that the jumps are as large as possible by taking the radius

of the ball to be the distance to the boundary ∂D. We repeat this procedure until the path

reaches the region Mε(D). Here, we continue the WOS in Mε(D) but with a fixed radius ∆x

much smaller than ε . In order to simulate the path of RBM, at some points of the time the

BM path will run out of the domain. For this to happen, the radius of WOS is increased to

2∆x when the path is close to boundary at a distance less than ∆x. In this way, the BM path

will have a chance to get out of the domain, and when that happens, we then pull it back to
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Figure 3: WOS in the ε-region. BM path hits x1 in ε-region for the first time. Then the
radius of sphere is changed to ∆x, the path continues until it arrives at x2 whose distance to
∂D is smaller or equal to ∆x. Then the radius of the ball is enlarged to 2∆x so that the path
has a chance to run out of the domain at x3. If that happens, we pull back x3 to x4 which
is the closest point to x3 on the boundary. Record φ(x4), and continue WOS-sampling the
path starting at x4.

the nearest point on the boundary along the normal of the boundary. Afterwards, the BM

path will continue as before.

In summary, a reflecting Brownian motion path is simulated by the WOS method inside

D. Once it enters the ε-region Mε(D), the radius of WOS changes to a fixed value, either

∆x or 2∆x, depending on its current distance of the Brownian particle to the boundary.

Once the path reaches a point on the boundary after the reflection, the radius of WOS

changes back to ∆x. Fig.3 illustrates the movement of RBM in the ε-region Mε(D). As

time progresses, we expect the path hits the boundary at some time instances and lies in

either Iε(D) or Mε(D) at others. A sample path of RBM is shown in Fig.4 within a cube of

size 2.



28

Figure 4: A RBM path within a cube in R3

5.2 Computing the Boundary Local Time

5.2.1 Average Exit Time for One Step of WOS

For the random walk on a lattice as in Fig. 5 to converge to a continuous BM, a relation-

ship between ∆t and ∆x in R3 will be needed and is shown to be

∆t =
(∆x)2

3
. (5.2.1)

The following is a proof of this result (See [5] for a reference). The density function of

standard BM satisfies the following PDE [14]

∂ p
∂ t

=
1
2

∆x p(t,x,y) . (5.2.2)

By using a central difference scheme and changing p to v, equation (5.2.2) becomes

vn+1
i, j,k− vn

i, j,k

∆t
=

1
2

vn
i+1, j,k + vn

i−1, j,k + vn
i, j+1,k + vn

i, j−1,k + vn
i, j,k+1 + vn

i, j,k−1−6vn
i, j,k

(∆x)2 ,

(5.2.3)

where i, j,k are the indices of grid points on the lattice with respect to the three axes.
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Figure 5: Central difference scheme in R3

Reorganizing (5.2.3) and letting λ = ∆t/(2(∆x)2), we have

vn+1
i, j,k = λvn

i+1, j,k +λvn
i−1, j,k +λvn

i, j+1,k +λvn
i, j−1,k +λvn

i, j,k+1 +λvn
i, j,k−1 +(1−6λ )vn

i, j,k ,

(5.2.4)

By setting λ = 1
6 , we have

vn+1
i, j,k =

1
6

vn
i+1, j,k +

1
6

vn
i−1, j,k +

1
6

vn
i, j+1,k +

1
6

vn
i, j−1,k +

1
6

vn
i, j,k+1 +

1
6

vn
i, j,k−1. (5.2.5)

Using the initial condition φ , we have

vn+1
i, j,k = ∑

i′, j′,k′
Ci′, j′,k′φ

(
n

∑
l=1

→
ηl

)
, (5.2.6)
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where

→
ηl =



(−h,0,0)T , prob =
1
6

(h,0,0)T , prob =
1
6

(0,h,0)T , prob =
1
6

(0,−h,0)T , prob =
1
6

(0,0,h)T , prob =
1
6

(0,0,−h)T , prob =
1
6

, (5.2.7)

and

n

∑
l=1

→
ηl =


−n+2i′+ i

−n+2 j′+ j

−n+2k′+ k


h. (5.2.8)

Let
→
ηl = (xl,yl,zl)

T , then

xl =



−h, prob =
1
6

h, prob =
1
6

0, prob =
2
3

, (5.2.9)

for each l. We known that yl , zl have the same distribution as xl .

Notice that the covariance between any two of xl , yl , zl is zero, i.e. E(xlyl) = 0, E(ylzl) =

0 and E(xlzl)= 0. So E(∑n
i=1 xl ∑

n
i=1 yl)= 0, E(∑n

i=1 yl ∑
n
i=1 zl)= 0 and E(∑n

i=1 xl ∑
n
i=1 zl)=

0. According to the central limit theorem, we have

n

∑
i=1

xl
D
= N

(
0,

nh2

3

)
as n→ ∞. (5.2.10)

The same assertion holds for ∑
n
i=1 yl and ∑

n
i=1 zl .

Since λ = ∆t
2(∆x)2 =

1
6 , then h2 = 3k and hence nh2

3 = nk = t. Therefore ∑
n
i=1 xl ∼ N(0, t)
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as n→ ∞. So are ∑
n
i=1 yl and ∑

n
i=1 zl .

Recall that the covariance between any pair of ∑
n
i=1 xl , ∑

n
i=1 yl , and ∑

n
i=1 zl is zero, that

∑
n
i=1 xl ,∑n

i=1 yl and ∑
n
i=1 zl become independent normal random variables as n→∞. Hence,

Ci′, j′,k′,n =P


n

∑
l=1

→
ηl =


−n+2i′+ i

−n+2 j′+ j

−n+2k′+ k


h =



n

∑
i=1

xl

n

∑
i=1

yl

n

∑
i=1

zl




D→ 1

(2πt)3/2 e
−‖→x −→x0‖

2

2t , (5.2.11)

and

vn+1
i, j,k = ∑

i′, j′,k′
Ci′, j′,k′,nφ(

n

∑
l=1

→
ηl)→

∫∫∫
R3

1
(2πt)3/2 e

−‖→x −→x0‖
2

2t φ(
→
x )d

→
x , (5.2.12)

which coincides with the density function of the 3-d standard BM.

In conclusion, when ∆t
2(∆x)2 = 1

6 , i.e. ∆t = (∆x)2

3 or
√

dt = dx√
3
, the central difference

scheme converges to the standard BM in 3-d. Generally, the result can be extended to

d-dimensional Euclidean space and the result will be ∆t = (∆x)2

d .

5.2.2 Computing the Boundary Local Time

Two equivalent forms of the local time have been given in (2.3.1) and (2.3.3). Here

we will show how the ε-region for the construction of the RBM in Fig.3 can also be used

for the calculation of the local time. When the ε-region is thin enough, i.e. ε � 1, an

approximation of (2.3.1) is given in (3.3.8), which is the occupation time that RBM Xs

sojourns within the ε-region during the time interval [0, t]. A close look at (3.3.8) reveals

that only the time spent near the boundary is involved and the specific moment when the

path enters the ε-region has no effect on the calculation of L(t).
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Suppose x ∈ D is the starting point of a Brownian path, which is simulated by the WOS

method. Once the path enters the ε-region, the radius of WOS is changed to ∆x or 2∆x. It

is known that the elapsed time ∆t for a step of a random walk on average is proportional to

the square of the step size, in fact, ∆t = (∆x)2/d,d = 3 when ∆x is small (see the previous

section), which also applies to WOS moves (See Remark 5 for details). Therefore, we can

obtain an approximation of the local time L(dt) by counting the number of steps the path

spent inside Mε(D) multiplied by the time elapsed for each step, i.e.

L(dt) = L(t j− t j−1)≈
∫ t j

t j−1
IDε

(Xs)ds

ε
= (nt j −nt j−1)

(∆x)2

3ε
, (5.2.13)

where dt is defined as time increment t j− t j−1 and nt j − nt j−1 is the number of steps that

WOS steps remain in the ε-region during the time interval [t j−1, t j]. Note that in our method

within the ε−region, the radius of the BM may be ∆x or 2∆x, which means the correspond-

ing elapsed time of one step for local time will be either (∆x)2/3 or (2∆x)2/3. If we absorb

the factor 4 into nt , we will still have (5.2.13). Fig.6 gives a sample path of the simulated

local time associated with the RBM in Fig.4.

In practical implementation, we treat nt as a vector of entries of increasing value, the

increment of each component of nt over the previous one after each step of WOS will be 0,

1 or 4, corresponding to the scenarios that Xt is out of the ε-region, in the ε-region while

sampled on the sphere of a radius ∆x, or in the ε-region while sampled on the sphere of a

radius 2∆x, respectively.

Remark 4. (Alternative way to compute local time L(t) ) From (2.3.3), the local time

increases if and only if the RBM path hits the boundary, which implies that the time before

the path hits the boundary makes no contribution to the increment of the local time. Thus,
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Figure 6: Boundary local time (4.1.10) increases when the path runs into the region Mε(D).
The insert shows the piecewise linear profile of the local time path with flat level regions.
By our construction, most of the path will fall into the ε-region. If x-axis changes to time
line, the graph should be more flatter than it appears here which implies that boundary local
time increases only on a small set.

a WOS method with a changing radius can also be used with (2.3.3). Specifically, we

divide the time interval [0, t] into to N small subintervals of equal length. In each [ti, ti+1]

the Brownian path will move 2∆x or ∆x with the WOS method when the current path lies

within a distance less or more than ∆x to the boundary. If the path hits or crosses the

boundary within [ti, ti+1], then L(t) will increase by
√

π/2
√

ti+1− ti.

Remark 5. (Approximating RBM by WOS or random walks on a lattice - a comparison)

There are two ways to find approximation to Brownian paths inside the region Mε(D) and

construct their reflections once they get out of the domain. One way is by using the WOS

approach as described in the beginning of the chapter . The other is in fact to use a random

walk on a lattice inside Mε(D). Both belong to the random walk techniques while WOS

prevails in homogeneous media without consideration of the whole trajectories of paths and

random walk on a lattice is widely used in various other situations. In the second approach,
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Figure 7: Random walks on the ε-region. A BM path hits x1 ∈Mε(D) by the WOS method.
Replace x1 by the nearest grid point x′1. Then several steps of random walks will make a
path as x2→ x3→ x4. Since x4 /∈ D, we push it back along the normal line (dash arrow)
to x′4 then replace it by the closest grid point within domain (solid arrow) x5. Here path
crosses the boundary at x′4 ∈ ∂D. Then continue the random walk as usual at x6.

as illustrated in Fig.7, a grid mesh is set up over Mε(D) and the random walk takes a one-

step walk on the lattice until the path goes out of the domain and then it will be pushed

back to the nearest lattice point inside Mε(D). And the elapsed time for a ∆x walk is on

average (∆x)2/3 as shown previously. The boundary local time L(t) can still be calculated

as in (2.3.3). The problem with this approach is that a Brownian motion actually should

have equal probability to go in all directions in the space while a random walk on the lattice

only considers six directions in R3. This limitation was found in our numerical tests to lead

to insufficient accuracy in simulating reflecting Brownian motions for our purpose.

Meanwhile, the WOS method in the ε-region Mε(D) has a fixed radius ∆x, which enables

us to calculate the boundary local time by (5.2.13) since the elapsed time of a ∆x move in

R3 on average still remains to be (∆x)2/3. This conclusion can be heuristically justified

by considering points on the sphere as linear combinations of the directions along the three
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axes, which implies that the average time that the path hits the sphere with radius ∆x should

also be the same. As discussed before, if the path comes within a distance very close to the

boundary, say less than ∆x, the radius of the WOS method is increased to 2∆x so that it will

have a chance to run out of the domain and then be pushed back to the nearest point on the

boundary to effect a hit of the RBM on the boundary.

5.3 Probabilistic Representation for Various Boundary Conditions

5.3.1 Neumann Boundary Problem

Finally, with the boundary local time of RBM available, we can come to the approxima-

tion of the Neumann problem solution u(x) using the probabilistic approach (3.3.4). First

of all, we will need to truncate the infinite time duration required for the RBM path Xt in

(3.2.2) to a finite extent for computer simulations. The exact length of truncation will have

to be numerically determined by increasing the length until a convergence is confirmed

(namely, the approximation to u(x) does not improve within a prescribed error tolerance

between two different choices of truncation times under same number of sampled paths).

Assume that the time period is limited to from 0 to T , then by a Monte Carlo sampling of

RBM paths, an approximation of (3.2.2) will be

ũ(x) =
1

2ε

N

∑
i=1

[∫ T

0
φ(X i

t )I∂D(X
i
t )
∫ t+dt

t
IDε

(X i
s)ds

]
, (5.3.1)

where X i
t , i = 1, ...,N are stochastic processes sampled according to the law of RBM.

Next, let us see how the RBM can be incorporated into the representation formula once

its path is obtained.

Associate the time interval [0,T ] with the number of steps NT of a sampling path, NT
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will give the total length of each path. Then, the integral inside the square bracket in (5.3.1)

can be transformed into j

NT

∑
j′=1

(
φ(X i

t j
)I∂D(X

i
t j
)
∫ t j

t j−1

IDε
(X i

s)ds
)
, (5.3.2)

where j′ stands for the j′−th step of the WOS method, and j corresponds to a step for

which X i
t j
∈ ∂D and summation is only done over those j’s.

As the integral in (5.3.2) is in fact the occupation time as shown in (5.2.13), (5.3.2)

becomes
NT

∑
j′=1

(
φ(X i

t j
)I∂D(X

i
t j
)(nt j −nt j−1)

(∆x)2

3

)
. (5.3.3)

As a result, an approximation to the PDE solution ũ(x) becomes

ũ(x) =
1

2ε

N

∑
i=1

[
NT

∑
j′=1

(
φ(X i

t j
)I∂D(X

i
t j
)(nt j −nt j−1)

(∆x)2

3

)]
. (5.3.4)

Theoretically speaking, ε should be chosen much larger than ∆x. Here, we take ε = k∆x,

k > 1 is an integer, which will increase as ∆x vanishes to zero. Then, (5.3.4) reduces to

ũ(x) =
1

2k∆x

N

∑
i=1

[
NT

∑
j=1

(
φ(X i

t j
)I∂D(X

i
t j
)(nt j −nt j−1)

(∆x)2

3

)]

=
∆x
6k

N

∑
i=1

[
NT

∑
j=1

(
φ(X i

t j
)I∂D(X

i
t j
)(nt j −nt j−1)

)]
,

(5.3.5)

which is the final numerical algorithm for the Neumann problem. In the following we

present the general implementation of this numerical algorithm.

Let x be any interior point in D where the solution u(x) for the Neumann problem is

sought. First, we define the ε-region Mε(D) near the boundary. For each one of N RBM

paths, the following procedure will be executed until the length of the path reaches a pre-

scribed length given by NT :
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1. If x /∈Mε(D), predict next point of the path by the WOS with a maximum possible

radius until the path locates near the boundary within a certain given distance ε, say

ε = 3∆x (hit the ε-region Mε(D)). If x ∈ Mε(D), l(ti) = 1(4); otherwise, l(ti) = 0.

Here l(t) is the unit increment of L(t) at time t.

2. If x∈Mε(D), use the WOS method with a fixed radius ∆x to predict the next location

for Brownian path. Then, execute one of the two options:

Option 1. If the path happens to hit the domain boundary ∂D at xti , record φ(xti).

Option 2. If the path passes crosses the domain boundary ∂D, then pull the path

back along the normal to the nearest point on the boundary. Record the Neumann value at

the boundary location.

Due to the independence of the paths simulated with the Monte Carlo method, we can

run a large number of paths simultaneously on a computer with many cores in a perfectly

parallel manner, and then collect all the data at the end of the simulation to compute the

average. Algorithm 1 gives a pseudo-code for the numerical realization of implementing

the WOS in both I(D) and Mε(D) regions.

As described in this section, it is quite clear that calculation of the distance to the bound-

ary accounts for a large portion of computing time in our algorithm, especially when the

Brownian path is out of the ε-shell. For simple domains like a cube and a sphere in R3,

this distance can be found easily and thus consumes little time. In the ellipsoid case, the

distance is still computable which involves the calculation of normal directions and thus

requires much more time than the former cases. For more general domains, more efficient
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numerical methods are desired.

5.3.2 Robin Boundary Problem

In this section, we only consider the case of the Laplace equation where q = 0 in (3.3.1).

From (3.3.2),

u(x) = Ex
{∫

∞

0
e
∫ t

0 c(Xt)dLt f (Xt)dLt

}
, (5.3.6)

where Xt represents the standard reflecting Brownian motion. For the sake of computer

simulation, the time period is truncated into [0,T ] to produce an approximation for u(x),

i.e.,

ũ(x) = Ex
{∫ T

0
e
∫ t

0 c(Xt)dLt f (Xt)dLt

}
. (5.3.7)

We have described the realization of SRBM paths and the calculation of the correspond-

ing local time, as implemented in [30]. A SRBM path can be constructed by pulling back a

BM path back onto the boundary whenever it runs out of the domain. Specifically, a SRBM

path behaves exactly the same way as a BM which is simulated by the WOS method.

Robin boundaries represent a general form of an insulating boundary condition for convection-

diffusion equations where c(x) stands for the positive diffusive coefficients. For our numer-

ical test, we will consider two cases: a positive constant c and a positive function c(x).

• Constant c(x)

Example 1 c(Xt) =−1

In this case, (5.3.7) is reduced to

u(x) = Ex
{∫

∞

0
e
∫ t

0−dLt f (Xt)dLt

}
, (5.3.8)
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Algorithm 1: The algorithm for the probabilistic solution of the Laplace equation with the
Neumann boundary condition

1: Data: Select integers N and NT , a starting point X0 ∈ D, step size h and ε-region
Mε(D) near the boundary.

2: Output An approximation of u(X0).
3:
4: Initialization L[NT ],v[NT ],u[N], X = X0, i← 1 and j← 1;
5:
6: While i≤ N do
7: Set Si = 0.
8: While j ≤ NT do
9: If X ∈ I(D) then /* If the path has not touched the ε-region */

10: Set L[ j]← 0; /*Increment of local time at each step. */
11: Set r← d(X ,∂D); /* Find the distance to the boundary */
12: Randomly choose a point X1 on B(X ,r) then set X ← X1.
13: Else /* The path enters the ε-region */
14: Set r← h (2h); /* If d(X ,∂D)> h or =0 (0 < d(X ,∂D)≤ h) */
15: L[ j]← 1(4); /*local time increases */
16: Randomly choose a point X1 on B(X ,r) then set X ← X1.
17: If X /∈ D̄, then
18: Find X j to be the nearest point on ∂D to X and pull X back
19: onto ∂D at X j;
20: Set X ← X j;
21: Set v[ j]← φ(X j)
22: End
23: End
24: j← j+1;
25: End
26: count← 0;
27: For k=1:NT
28: count← count + L[k];
29: If v[k]∼= 0 then
30: u[i]← u[i]+φ(Xk)·count;
31: count← 0;
32: End
33: i← i+1;
34: End
35: Return ũ(X0) = h∑

N
k=1 u[k]/N/(6k)
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which is equivalent to

u(x) = Ex
{∫

∞

0
e−Lt+L0 f (Xt)dLt

}
, (5.3.9)

or

u(x) = Ex
{∫

∞

0
e−Lt f (Xt)dLt

}
, (5.3.10)

for a starting point x belonging to the interior of the solution domain.

We will truncate the time interval to [0,T ], an approximation to (5.3.12) will be

ũ(x) = Ex
{∫ T

0
eLt f (Xt)dLt

}
. (5.3.11)

Using the fact that

dLt ≈ (nt−nt−1)
(∆x)2

3ε
, (5.3.12)

we can rewrite (5.3.11) as

ũ(x) = Ex
{∫ T

0
e−nt

(∆x)2
3ε f (Xt)(nt−nt−1)

(∆x)2

3ε

}
. (5.3.13)

Next, identifying the time interval with the length of sample path NP, we have

ũ(x) = Ex

{
NP

∑
j′=0

e−nt j
(∆x)2

3ε f (Xt j)(nt j −nt j−1)
(∆x)2

3ε

}
, (5.3.14)

where j′ denotes each step of the path and j denotes the steps where the path hits the

boundary.

At each step along a path we first evaluate

e−nt j
(∆x)2

3ε f (Xt j)(nt j −nt j−1)
(∆x)2

3ε
,

if Xt j hits the boundary, we then compute f (Xt j)(nt j−nt j−1)
(∆x)2

3ε
, followed by multiplying it

by e−nt j
(∆x)2

3ε , which uses the cumulative time of Lt j from t = 0 to t j. Finally, the expectation



41

is done via the average over N sample paths.

• Variable c(x)

Example 2 c(Xt) = −|x|, x is the first component of Xt on the boundary. Similar to

Example 1, we have

u3rd(x) = Ex
{∫

∞

0
e
∫ t

0 c(Xs)dLs f (Xt)dLt

}
. (5.3.15)

It can be seen that c(Xs)dLs and f (Xt)dLt have the same form, so we can handle c(Xs)dLs

exactly the same way as f (Xt)dLt . Then, we have

˜u3rd(x) = Ex

{
NP

∑
j′=0

e∑
j
k=0 c(Xtk )(ntk−ntk−1)

h2
3ε f (Xt j)(nt j −nt j−1)

h2

3ε

}
, (5.3.16)

where j′ denote each step for the path and j denotes the steps where the path hits the

boundary.

Notice that the term

e∑
j
k=0 c(Xtk )(ntk−ntk−1)

h2
3ε (5.3.17)

cumulates all the information of c(Xt) with respect to the local time from the beginning to

the current time. If c(Xt) =−|x|, then

˜u3rd(x) = Ex

{
NP

∑
j′=0

e−∑
j
k=0 |xtk |(ntk−ntk−1)

h2
3ε f (Xt j)(nt j −nt j−1)

h2

3ε

}
. (5.3.18)
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5.3.3 Mixed Boundary Problem

Again, only Laplace equations are considered which implies q(x) = 0 in (3.4.2) then

(3.4.2) is reduced to

uMix(x) = Ex
{∫

∞

0
êc(t)φ3(Xt)dL(t)

}
+

1
2

Ex
{∫

∞

0
φ2(Xt)dL(t)

}
. (5.3.19)

where Xt is the standard reflecting Brownian motion and L(t) is the corresponding local

time.

The numerical approximation to (5.3.19) will be

ũMix(x) = Ex
{∫ T

0
e
∫ t

0 c(Xt)dL(t)
φ3(Xt)dL(t)

}
+

1
2

Ex
{∫ T

0
φ2(Xt)dL(t)

}
. (5.3.20)

or

ũMix(x) = Ex

{
NP

∑
j=0

e
∫ t

0 c(Xt j )dL(t j)
φ3(Xt j)dL(t j)

}
+

1
2

Ex

{
NP

∑
j=0

φ2(Xt j)dL(t j)

}
. (5.3.21)

Equivalently,

ũMix(x) = Ex

 NP

∑
j:Xt j∈E

e
∫ t

0 c(Xt j )dL(t j)
φ3(Xt j)dL(t j)

+
1
2

Ex

 NP

∑
j:Xt j∈D

φ2(Xt j)dL(t j)

 .

(5.3.22)

5.4 Numerical Results

5.4.1 Neumann Boundary Problem

In this section, we give the numerical results for the Neumann problem in cubic, spheri-

cal, ellipsoid and non-convex domains.

To monitor the accuracy of the numerical approximation of the solutions, we select a

circle inside the domain, where the solution of the PDE u(x) will be found by the proposed
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numerical methods, defined by

{(x,y,z)T = (r cosθ1 sinθ2,r sinθ1 sinθ2,r cosθ2)
T} (5.4.1)

with r = 0.6, θ1 = 0,2π/30,4π/30, ...,2π , θ2 = π with 15 different θ1 in ascending order.

In addition, a line segment will also be selected as the locations to monitor the numerical

solution, the endpoints of the segment are (0.4,0.4,0.6)T and (0.1,0,0)T , respectively.

Fifteen uniformly spaced points on the circle or the line are chosen as the locations for

computing the numerical solutions.

The true solution of the Neumann problem (4.0.1) with the corresponding Neumann

boundary data is

u(x) = sin3xsin4y e5z +5. (5.4.2)

In the figures of numerical results given below, the blue curves are the true solutions

and the red-circle ones are the approximations. The numerical solutions are shifted by a

constant so they agree with the exact solution at one point as the Neumann problem is

only unique up to an arbitrary additive constant. “Err” indicates the relative error of the

approximations.

• Convergence rate study

The analysis of the errors of our numerical methods is complex as it involves several

inter-connected factors, the time truncation T , the radius of the WOS sphere inside the

ε-layer and the layer’s thickness, and the number of Brownian paths.

A cubic domain of size 2 is selected to test the choice of the number of paths and the

length of the paths (truncation time duration T ) in the numerical formula (5.3.5).Taking the
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cubic domain avoids a source of errors in computing the projection of the paths onto the

domain boundary.

First we consider the proper choice of the truncation length NT parameter of the Brow-

nian paths. The step-size ∆x = 5× 10−4 is used as the radius of the WOS inside the ε-

region Mε(D), namely, the step-size of the random walk approximation of the RBM near

the boundary. The strip width ε is chosen to be 3∆x. The number of paths is taken as

N = 2×105. Two choices for the path length parameter NT = 2.7×104 and NT = 2.9×104

for the circle (NT = 2.4× 104 and NT = 2.5× 104 for the line segment) are compared to

gauge the convergence of the numerical formula in terms of the path truncation. Fig.8

and Fig.9 show the solution and the relative errors in both cases, which indicates that

NT = 2.9× 104 and NT = 2.5× 104 will be sufficient to give an error below 3% for the

circle and the line segment, respectively, as shown in Fig.9.

It should be noted that the parameter NT for the length of the path (in terms of number

of WOS steps) does not correspond to the physical time T . This is due to the fact that no

elapsed time estimate is known for a WOS step of a large sphere radius inside the interior of

the domain. In theory, the larger the truncation time T , the more accurate is the probabilistic

solution for the Neumann solution. Theoretical variance estimate on the truncation of the

time T has been given in [20]. However, for a fixed spatial mesh size ∆x, a too long time

integration will result in the accumulation of time discretization error for the Brownian

paths, thus leading to the degeneracy of the numerical solutions as shown in our numerical

experiments. Therefore, the choices for NT and ∆x for our method are more complicated

than that for the number of paths N, and have been tested, as discussed above, to give the

3% relative errors in our simulations.
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Table 1: Convergence rate of relative errors as O(1/Nα) for the Neumann solution in a
cube where ∆x = 5×10−4,ε =3∆x.

NT = 2.5×104 α NT = 2.9×104 α

N errors on the line errors on the circle
2×102 0.2316 1.0158
2×103 0.0364 0.37 0.4395 0.52
2×104 0.0345 0.15 0.0717 0.59
2×105 0.0178 0.29 0.0287 0.39

The traditional Monte Carlo methods for computing high dimensional integrals has a

1/
√

N convergence rate where N is the number of samples in the simulation. However,

in computing the path averages in the Feynman-Kac formula for the Neumann solution,

the accuracy for the local time will also affect the overall accuracy of numerical methods.

Regarding the former, Révész [9] proposed several approximations of the local time for

1-D Brownian motions with convergence rates ranging from O(∆t1/4) to O(∆t1/3). Such

an analytical result is expected to hold in higher dimensional Brownian motions. As such,

we expect the overall convergence rate for our Neumann solution will be limited by that of

the local time.

In Table 1, we have included the relative errors of the Neumann solution monitored

along a circle and a line segment in terms of the number of paths N. For all simulations,

∆x = 5× 10−4 and the strip width ε is chosen to be 3∆x. The numerical results show

that the convergence rate is around O(1/Nα),α = 0.29, which is less than the O(1/
√

N)

convergence rate of Monte Carlo integrations. Meanwhile, the relative error of 2.87×10−2

for the Neumann solution is approximately at the same order of ∆t1/4 = 1.68× 10−2 for

∆t = (∆x)2 /3,∆x = 5×10−4, reflecting the error estimate of local time in [9].

In the rest of the numerical tests, we will set ∆x = 5e− 4 and the number of path N =
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(a) ε = 3∆x, Err = 10.50%, NT = 2.7×104
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(b) ε = 3∆x, Err = 3.83%, NT = 2.4×104

Figure 8: Cubic domain: number of paths N = 2×105. (Left) Solution on the circle; (right)
solution on a line segment.
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(a) ε = 3∆x, Err = 2.87%, NT = 2.9×104
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(b) ε = 3∆x, Err = 1.78%, NT=2.5×104

Figure 9: Cubic domain: number of paths N = 2×105. (Left) Solution on the circle; (right)
solution on a line segment.

2×105 but change NT by different boundaries.

• Spherical domain

The unit ball is centered at the origin. Similar numerical results are obtained as in the

case of the cube domain. Here, the reflected points of Brownian path are the intersection

of the normal and the domain. Though both Fig.10(a) and Fig.10(b) shows little deviation

in the middle, the overall approximation are within an acceptable relative error less than

5.26%.

• Ellipsoidal domain
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(a) ε = 3∆x, Err = 5.26%, NT = 5×104
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(b) ε = 3∆x, Err = 2.00%, NT = 4.5×104

Figure 10: Spherical domain: number of paths N = 2×105. (Left) Solution on the circle;
(right) solution on a line segment.

We use the ellipsoid with axis lengths (3, 2, 1) centered at the origin. ∆x remains to

be 5e− 4. The numerical results (Fig.11) for circle are less accurate than for the cubic

and spherical domains. A possible reason is as follows. An ellipsoid has “corners” around

the longest axis if the lengths of three axis are not the same. When the initial point of

the Brownian particle is far away from the “corners”, the Brownian paths have a smaller

probability to run into the regions close to those “corners”. This implies that a large number

of sampled paths starting at those points may stay away from the “corners”, which may

undermine the calculation accuracy of u(x) since u(x) is the weighted average over of

Neumann data at hitting positions of RBM on the boundary. While the numerical solutions

along the line segment show better accuracy.

• Non-convex and non-smooth domain

A non-convex domain in R3 is constructed by rotating the profile of the function y =

2x(x−1)− sin(3πx)/8 with respect to the x-axis with x ∈ [0,1], as shown in Fig.12. This

domain is not smooth as two pointed tips exist at the extreme values of x, i.e. [0,0,0] and

[1,0,0], respectively. However, the probability of RBM hitting those two tips is zero. For
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(a) ε = 3∆x, Err = 8.85%, NT = 5.025×
104
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(b) ε = 3∆x, Err = 1.69%, NT = 4.525×
104

Figure 11: Ellipsoidal domain: number of paths N = 2×105. (Left) Solution on the circle;
(right) solution on a line segment.

the sake of computing the RBM paths, the normals at [0,0,0] and [1,0,0] are set to be unit

vector along negative and positive x-axis, respectively. The numerical results along a line

segment connecting [0.3,−0.1,−0.2] and [0.75,0.2,0.4] with 15 evenly distributed points

are displayed in Fig.13. Despite the non-convexity and non-smoothness of the domain, our

numerical method is shown to work with a very small average relative error 0.56% with

N = 2×105 sample paths, each of length NT = 2.5×104.

• Exterior Neumann problem for a domain of multiple spheres

Now we consider the exterior Neumann problem of a domain whose boundary is formed

by multiple spheres, as shown in Fig.14. Thirty small hemispheres, with varying radii rang-

ing from 0.12 to 0.18, are superimposed on the surface of a unit sphere with no overlapping

between the small spheres. The solution domain is formed by the big sphere and thirty

small hemispheres. We will calculate the potential on the boundary for the exterior Neu-

mann problem of this domain. Using the Feynman-Kac formula, we can find the potential

at any single point within the domain. By our algorithm, we can simply place the point on

the boundary and start the reflecting Brownian path from that point. Solutions at fourteen
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Figure 12: Non-convex domain by rotating 2x(x− 1)− sin(3πx)/8 along x-axis with x ∈
[0,1].
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Figure 13: Non-convex domain: ∆x = 4.5e− 4, ε = 3∆x, Err = 0.56%, N=2× 105, NT =
2.5×104.
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Figure 14: A domain with a boundary formed by multiple small hemispheres and a unit
sphere.

points with ten points on the unit sphere and four points on the small hemispheres are cal-

culated. For this case, the analytical solution is set to be 10/
√
(x−0.5)2 + y2 + z2. Fig.15

shows the satisfactory results of the algorithm on the boundary with a relative error around

2%. Note that for the exterior problem, the Brownian path may go to infinity so a large

boundary is needed to mark the paths considered to be far away from the domain bound-

ary, namely, escaping to infinite, and here a much larger sphere with radius 20R(R = 1) is

chosen. Finally, the number of Monte Carlo path samples is taken to be 2×104, giving the

obtained results.

5.4.2 Some Numerical Issues and Comparison with Existing MC and Grid-based

Methods

• Calculation of distance and parallel implementation

It is clear that the calculation of the distance to the boundary accounts for a large portion

of computing time for the WOS algorithm. In the multiple-spheres example, it takes a
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Figure 15: Exterior Neumann problem for the domain in Fig.13: exact potentials (asterisks)
and numerical solutions (circles) on the boundary with a relative error of 2.31%. ∆x =
5×10−4, ε = 3∆x, N=2×104, NT = 5×104.

little time to find the closest point on the boundary by looping over all the thirty small

hemispheres. But, consider the case of a boundary formed by many more small spheres,

e.g. 1000 spheres, it will be time-consuming to calculate the distance. However, if the

radii of the small spheres is small, some existing packages, for instance nanoflann library

[47], can be used to speed up the closest-point query. One may find the applications in

calculating the electric properties of materials of special shapes [65]. In the case of general

domains, a regular Cartesian mesh covering the whole domain can be used to facilitate the

calculation. As the signed distance function is a smooth function of position if it is given a

negative value of the absolute distance outside the domain, we can pre-calculate the signed

distance function at the regular mesh points, and the distance for any interior point to the

boundary can be approximated accurately by appropriate high order interpolations of the

distance function values on the mesh points. This greatly reduces the computing time at

each step of the WOS algorithm. Also, as our algorithm requires the exact reflecting point
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on the boundary when the path exits the domain, a Newton root-finding method will be

used to locate the nearest point on the boundary along the inward normal.

The MC approach of our method is intrinsically parallel as paths initiating from the

location where the PDE solution is sought after are independent, a large number of paths

can be sampled simultaneously on a multiple-core/nodes computer in a perfectly parallel

manner and only at the end of the simulation the data is collected to compute the average

in the Feynman-Kac formula.

• Memory use and CPU time for sampling paths

For each sample path, the hitting locations and corresponding local time are recorded to

evaluate the average of contributions of each path. Therefore, the memory storage required

for the algorithm is O(N ·NT ) given N paths, each of length NT . If distance functions

are pre-calculated, as needed for a domain of general shape, additional memory of O(N3
1 )

(N1 be the number of subdivision along each dimension of the domain), is needed to store

the distance function values on the mesh. The CPU time of the algorithm mainly arises

from the calculation of the distance to the boundary and the reflecting points. For cube and

sphere domains, it is trivial and thus quick to compute. For general domains, one should

take into account of CPU time spending on the Newton method used to find the reflecting

points on the boundary. Naturally, the overall CPU time also depends on the number of

sample paths, length of each path in proportion.

• Comparison to an existing MC for the Neumann problem

In [20], the diffusion process generated by the Laplace operator is approximated by

a transport process depending on a small parameter ε ≥ 0. Then the original problem
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is reduced to a transport problem with a simple algorithm, since the particle moves in a

given direction at a given speed until the next collision which changes its direction. This

kinetic approximation was initially adopted to simulate diffusions with piecewise constant

coefficients locally to treat the interface [62] in Rd . Satisfactory results for the Dirichlet

boundary problem has also been achieved. Later [20] took advantage of the idea to treat

the reflecting Brownian process.

A Monte Carlo method for the Neumann problem of the Poisson equation was proposed

in [20] where WOS method was also used to simulate Brownian motions. The main differ-

ence from the algorithm in this paper is about how to treat the Brownian paths once they

enter the ε-layer of the boundary. In [20], once the path enters the ε-layer, the path is then

projected onto the boundary, say at (x,y). And, in order to continue the walk back into the

domain, with the help of the Neumann data φ(x), a Taylor expansion for the PDE solution

is used to relate the solutions at a grid point of a local regular mesh of size h inside the

domain, say (x+ h,y), and at the boundary in the form of u(x,y) = u(x+ h,y)+ 2hφ(x).

A randomization of this relation shows the score of the walk should be increased by an

amount of 2hφ(x) and the walk arrives at the new position (x+ h,y) inside the domain.

Moreover, in order to introduce the elapsed time for each walk, a kinetic approximation

of the diffusion operator by a neutron transport operator is used such that the new position

of the walk can be at (x+ hvxtc,y+ hvytc), where (vx,vy) is the velocity of the walk, tc is

a small parameter, and h2tc will be the elapsed time to arrive this new position. A Tay-

lor expansion of the solution will give a similar afore-mentioned relation, which indicates a

different score increment 4φ(x)h/π. And, the motion of the walk continues until the pre-set

truncation time of the path is reached.
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In terms of complexity and memory usage, the MC algorithm of [20] is similar to the

method introduced in this paper as it only needs to record the locations when the Brownian

path enter ε-layer and the projected position onto the boundary and the times (or stepsizes)

at each walk step.

However, there is one difference in the way when a path is considered having hit the

boundary and then reflected back into the domain. In our algorithm, the path has to “phys-

ically” cross the boundary before it is treated as a RBM path. In the approach of [20],

once a path enters the ε-layer, it is then considered as a RBM path, as a result, this ap-

proach may treat a Brownian path which enters the layer, then leaves it without hitting the

boundary for a while, also as behaving as a RBM path, in fact the local time increment for

this path before it re-enters the ε-layer should be zero. The effect of this happening to the

averages in the Feynman-Kac formula is not clear and should be investigated in relation to

the thickness of the ε-layer .

• Comparison to grid-based method

Comparing to grid based method such as finite element method with a mesh size ∆x =

∆y = ∆z = L
N for a cube of [0,L]3, an unstructured mesh as in a general domain will require

O(N3) memory while the generation of the mesh itself will also take large amount of CPU

time. An iterative solver such as GMRES or conjugate gradient will take O(pN3) flops for

p-iterations. The main difference is that the grid-based method has to find the solution in

the whole solution domain while the Monte Carlo method allows the solution at one single

point. For the Monte Carlo method used in this paper, to find the solution at one single

point, we only need to record the times and locations where the reflecting Brownian path



55

hits the boundary for each of the N and no mesh generation and linear solver is required

either.

5.4.3 Robin Boundary Problem

To guarantee the convergence of the numerical solutions to the analytical ones, we

choose c(Xt) to be negative functions so that the Robin boundary problem has a unique

solution (when c(Xt) is positive, the uniqueness is not guaranteed). Two cases are consid-

ered, c(Xt) = −1 and c(Xt) = −|x| and two test points (0.1,0,0), (0.4,0.4,0.6) are selected

to check accuracy of our numerical method described earlier. Below shows the results for

cubic, spherical and ellipsoidal domains respectively.

• Example 1 c(Xt) =−1

Table 2: Cube domain when c(Xt) =−1

Point N NT ∆x ũ u |Err|

(0.1,0,0) 2×105 3×104 0.002 4.7994 5 4.01%

(0.4,0.4,0.6) 2×105 4.2×103 0.0005 23.4916 23.7125 0.93%

Table 3: Spherical domain when c(Xt) =−1

Point N NT ∆x ũ u |Err|

(0.1,0,0) 2×105 7×103 0.003 4.8322 5 3.35%

(0.4,0.4,0.6) 2×105 6×103 0.0005 23.7618 23.7125 0.21%
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Table 4: Ellipsoidal domain when c(Xt) =−1

Point N NT ∆x ũ u |Err|

(0.1,0,0) 2×105 2.5×104 0.003 5.0373 5 0.75%

(0.4,0.4,0.6) 2×105 4.5×103 0.0005 23.5394 23.7125 0.73%

• Example 2 c(Xt) =−|x|

Table 5: Cube domain when c(Xt) =−|x|

Point N NT ∆x ũ u |Err|

(0.1,0,0) 2×105 3.5×104 0.003 4.8797 5 2.41%

(0.4,0.4,0.6) 2×105 5.5×103 0.0005 24.0368 23.7125 1.37%

Table 6: Spherical domain when c(Xt) =−|x|

Point N NT ∆x ũ u |Err|

(0.1,0,0) 2×105 2.7×104 0.003 4.8036 5 3.93%

(0.4,0.4,0.6) 2×105 7×103 0.0005 24.4202 23.7125 2.98%

Table 7: Ellipsoidal domain when c(Xt) =−|x|

Point N NT ∆x ũ u |Err|

(0.1,0,0) 2×105 1.2×104 0.003 4.9492 5 1.02%

(0.4,0.4,0.6) 2×105 5×103 0.0005 23.2270 23.7125 2.05%
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The two test points are far away from each other with (0.1,0,0) being closer to the origin

and (0.4,0.4,0.6) closer to the boundary. Table 2-7 display two different selections of ∆x for

the two points under different domains and c(Xt). Meanwhile, the length of path NT of the

first point is longer than that of the second one under the two selections fo ∆x. Physically,

it reveals that the Brownian paths should walk a much longer distance for the first point in

the space. If the same ∆x =5e-4 was employed to (0.1,0,0), it may require an even longer

path to reach the same accuracy that we’ve already gained in the tables. Note that, when

NT gets longer the error of boundary local time accumulates simultaneously, which may

undermine the accuracy of approximations. This should be an interesting topic to explore

in our future work.



CHAPTER 6: ELECTRICAL IMPEDANCE TOMOGRAPHY

With both Neumann and Robin boundary problems explored, we will consider applica-

tions of the boundary value problems in Electric Impedance Tomography (EIT).

6.1 Introduction to Electric Impedance Tomography

Electrical Impedance Tomography (EIT) is a non-invasive medical imaging technique in

which an image of the electrical properties (conductivity or permittivity) of part of the body

is inferred from surface electrode measurements. It has the advantages over other current

techniques like X-rays and requires no exposure to radioactive materials. Applications

include detection of breast cancer, pulmonary emboli, blood clots and impaired gastric

emptying. Essentially, only by surface measurements, internal electric conductivity and

permittivity are desired to be recovered as an image across the human body. For instance,

the electric conductivity of malignant tumor, high-water-content tissue, is one order higher

than that of the normal (fat) tissue, which allows one to identify the potential diseases and

locations through the constructed image over the body [66].

EIT is also a useful tool in other fields such as geophysics, environmental sciences and

nondestructive testing of materials. For instance, it is able to locate the underground min-

eral deposits, detect leaks in underground storage tanks and monitor flows of injected fluids

into the earth for extraction or environmental cleaning. Moreover, EIT can detect the the

corrosion or defects of construction material and machine parts [66][48] when invasion
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testing is not possible or destructive.

The mathematical model or conductivity equation reads

∇ · γ∇u = 0 (6.1.1)

where γ is the electric conductivity varying at different locations. Only isotropic conduc-

tivities are considered in our work, so no permittivity appears.

Researchers are concerned with how to work out the conductivity inside an object if only

some boundary measurements are available. It is well known that this inverse problem is

nonlinear, unstable and intrinsically ill-posed [48].

Theoretically speaking, complete boundary measurements indeed determine the conduc-

tivity in the interior uniquely [55] [56], yet only limited number of electrodes and current

patterns are available in practice for measurements. More details and discussions of the

theoretical inverse problem is followed in the next section.

6.2 Forward Problem and Inverse Problem

6.2.1 Complete Electrode Model

To obtain the surface measurements, alternating currents are applied on different combi-

nation of electrodes attached on the surface of the object. Then the resulting voltages will

be measured with the same electrodes. An estimate of the internal conductivity distribution

over the object is expected to be reconstructed by using those voltage measurements. In

other words, the prerequisite of an accurate EIT reconstruction is to have a forward model

capable of predicting the voltages on electrodes. There have been developed several math-

ematical models to compare with the experimental data. As a matter of fact, continuum
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model, gap model, shunt model and complete models are the most commonly used in mod-

elling electrodes. Among all, the complete model was shown to be capable of predicting

the experimentally measured voltages to within 0.1% on the electrodes and the existence

and uniqueness were proved in [58]. Next we will introduce the complete model in this

section and it is chosen to be our forward problem in approximating the electric fields.

• Complete Electrode Model (CEM)

Suppose the domain of the object is Ω and L electrodes Ei, i = 1, ...,L are attached to the

boundary of the domain. The complete electrode model assumes the following

∇ · γ∇u = 0, in Ω (6.2.1a)∫
El

γ
∂u
∂n

dS = Il, l = 1,2, ...,L (6.2.1b)

γ
∂u
∂n

= 0, off ∪L
l=1 El (6.2.1c)

u+ zlγ
∂u
∂n

=Ul on El, l = 1,2, ...,L. (6.2.1d)

(6.2.1e)

(6.2.1a) describes the change of electric potential in the interior of the object where γ

is the conductivity or inverse of the resistivity. It was derived from Maxwell equations by

neglecting the time-dependence of the alternating current and assuming the current source

inside the object to be zero [58]. Both (6.2.1b) and (6.2.1c) show the knowledge of cur-

rent density on the boundary and (6.2.1d) takes account of the electrochemical effect by

introducing zl as the contact impedance or surface impedance which quantitatively charac-

terizes a thin, highly resistive layer at the contact between the electrode and the skin, which
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causes potential jumps according to the Ohms law. It should be noted that, the regularity of

potential decreases as the contact impedance approaches zero [62], which becomes a huge

hindrance since usually good contacts (or small contact impedance) are desired in practice.

6.2.2 Calderón Problem

Calderón Problem Let Ω be a bounded domain in Rn,n ≥ 2, with Lipschizian bound-

ary ∂Ω, and γ be a real bounded measurable function in Ω with a positive lower bound.

Consider the differential operator

Lγ(w) = ∇(γ∇w) (6.2.2)

acting on H1(Ω) and the quadratic form Qγ(φ), where the functions in H1(Rn) defined by

Qγ =
∫

Ω

γ(∇w)2dx,w ∈ H1(Rn),w|∂Ω = φ

Lγw = ∇ · (γ∇w) = 0 in Ω.

(6.2.3)

The problem is then to decide whether γ is uniquely determined by Qγ and to calculate

γ in terms Qγ if γ is truly determined by Qγ . Put it in another way, is the map

Φ : γ → Qγ injective? (6.2.4)

As discussed in the beginning of this chapter, one would like to identify the conductivity

through the surface electrode measurements without penetrating Ω. Within the context of

physics, Qγ(φ) represents the power necessary to maintain an electrical potential φ on ∂Ω.

Calderoń showed that Φ is analytic if γ ∈ L∞(Ω) and dΦ|γ=const is injective. He also proved

that Qγ determines Γ when γ is sufficiently close to a constant with an error estimate.

Many authors have made contributions to the problem under various assumptions. Kohn
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and Vogelius [55] provided positive an answer to the determination of the conductivity and

all of its derivatives at the boundary. Sylvester and Uhlmann [56] proved uniqueness for

C2 conductivities in the plane. While Brown [63] relaxed the regularity of the conductivity

to 3/2+ ε derivatives.

We may treat Calderón Problem from another perspective. To be more specific, knowing

Qγ(φ) for each φ ∈ H1/2(Γ) is equivalent to the knowledge of “Dirichlet-to-Neumann”

data. In fact, by the Green’s identity

∫
Ω

[v∇ · (γ∇u)+∇v · γ∇u]dx =
∫

Γ

v · γ ∂u
∂n

dS. (6.2.5)

If v = u above, then ∫
Ω

γ|∇u|2dx =
∫

Γ

φ · γ ∂u
∂n

dS, (6.2.6)

where the left-hand side of (6.2.6) is exactly Qγ(φ) and the other side is Neumann values

given Dirichlet conditions on the boundary. Thus, the Calderón Problem can be restated as

whether γ is uniquely determined by the “Dirichlet-to-Neumann” mapping on the bound-

ary. The map tells us how the boundary potential determines the current flux across the

boundary [64]. Furthermore, a “Robin-to-Neumann” (or voltage-to-current) mapping is es-

sentially equivalent to a “Dirichlet-to-Neumann” mapping through a close look at (6.2.1d).

Given a full Robin-to-Neumann map Rzl ,γ : φ → γ∇u|∂Ω, it uniquely determines zl and

thus equivalent to the Dirichlet-to-Neuman map. Under such circumstances, uniqueness

of solutions to the inverse conductivity problem was proved by Astala and Päivärinta [51]

without any regularity imposed on the boundary given a bounded measurable conductivity

in two dimensions. In three dimensions, Haberman and Tararu [64] confirmed the answer
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for C1 conductivities and Lipchitz conductivities close to identity.

Various numerical algorithms to reconstruct the conductivity on the boundary have been

proposed and fall into two categories, noniterative and interative methods. Noniterative

methods were developed based on the assumption that the conductivity does not differ too

much from a constant. Calderón [49] proved that the map in (6.2.4) is injective when

γ is close to a constant in a sufficiently small neighborhood, and thus an approximation

formula was given to reconstruct the conductivity. Barber-Brown backprojection method

[54] gave a crude approximation to the conductivity increment δγ based on inverse of the

generalized Radon transform, which works best for smooth δγ or δγ whose singularity is

far from the boundary. For the L-electrode system, Noser algorithm minimizes the sum of

squares error of the voltages on the electrodes by taking one step of a regularized Newton’s

method. While the iterative methods are devoted to minimize different regularized least

squares functionals like Tikhonov regularization [57] method and totoal variation method

[52] where iterative gradient-based optimization algorithms are commonly used.

6.2.3 Robin-to-Neumann Map

The Robin-to-Neumann map may also be called a voltage-to-current map. In the inverse

problem, iterative algorithms usually require solving the forward problem at each iteration

numerically then the computation time accumulates excessively for the commonly used

FEM method.

One possible way to improve the efficiency would be to develop a probabilistic estimator

of the voltage-to-current map. The main advantage of the method lies in the prevailing mul-

ticore computing. Maire and Simon [62] proposed a so-called partially reflecting random
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walk on spheres algorithm to compute voltage-to-current map in a parallel manner, which

is also specially efficient when only solutions at only a few points are desired. For the

Dirichlet boundary problem, it is well known that killed Brownian motion is the stochastic

process that governs the differential operator. Instead, in the mixed boundary situations,

the partially reflecting Brownian motion comes into play in preventing the path running out

of the domain by either absorption or instantaneous reflection. Simulation of absorption

is much easier to take care of comparing to that of reflection which usually needs spe-

cial techniques like local finite difference discretization. Various schemes of first order or

second roder schemes have been proposed and analyzed [20][46]. Maire and Simon also

proposed a similar approach involving second order space discretization scheme. A vari-

ance reduction technique was introduced as well to improve the efficiency and accuracy of

the method.

In our work, we aim to find a probabilistic solution to the voltage-to-current map by

directly simulating the reflecting Brownian motion paths. More precisely, the calculation

of the boundary local time is treated explicitly in details and coupled with the Feynman-

Kac type representation, then the voltages are obtained numerically on the boundary and

by simple integrations the currents can be worked out.

The rest of the chapter is devoted to the realization of voltage-to-current map using an

example in 3D.

6.3 Computational Procedure

Again, in medical applications, limited electrodes are attached to human body to get

surface measurements. Our numerical test was performed based on a unit spherical model,
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see Fig. 17. Eight electrodes are imposed on the boundary and the centers of the electrodes

all lie on the y− z plane with radius 0.2.

Consider the Laplace equation with both Neumann and Robin boundary problem

∆u = 0 in Ω

zl∇u+u = φ(x) =: cos(4θ) on El , l=1,...,8

∂u
∂n

= 0 D=off ∪8
l=1El

(6.3.1)

where zl is a constant bounded by 0 and 1. Here we choose zl be 0.5 as an example.

In this section, we will describe two methods to find a Robin-to-Neumann mapping.

A. Direct WOS sampling on the boundary

In Chapter 5, the numerical results are shown for the multisphere boundary formed by

multiple small hemispheres and a unit sphere. The test points are chosen on the boundary

so that the Brownian path starts on the boundary by WOS sampling. Now the same idea is

adopted but for an interior problem with mixed boundary conditions. In other words, we

aim to find the potentials on the electrodes through numerical method described in Chapter

5, then by Robin boundary conditions the Neumann values are automatically known.

B. Local boundary integral equation

It is also possible to consider solving local boundary integral equations for the Neumann

values around each electrode. The main construction follows from [27]. To illustrate the

method, a sphere centered at x with radius r is superimposed on an arbitrary bounded

domain (Fig.16). Then the region bounded by the sphere and the big domain formed a new

domain Ωx with two boundary surfaces S and Γ.
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Figure 16: Local boundary integral integration domain

The second Green’s identity shows

∫
Ωx

(u(y)∆G(x,y)−G(x,y)∆u(y))dy =
∫

Γ∪S

∂G(x,y)
∂ny

u(y)dSy−
∫

Γ∪S
G(x,y)

∂u(y)
∂ny

dSy.

(6.3.2)

When x approaches S from the interior of Ωx,

−1
2

u(x) =
∫

Γ∪S

∂G(x,y)
∂ny

u(y)dSy−
∫

Γ∪S
G(x,y)

∂u(y)
∂ny

dsy, (6.3.3)

or

1
2

u(x) =−p.v.
∫

Γ∪S

∂G(x,y)
∂ny

u(y)dSy +
∫

Γ∪S
G(x,y)

∂u(y)
∂ny

dsy. (6.3.4)

Let G(x,y)|y∈Γ = 0,

1
2

u(x) =−p.v.
∫

S

∂G(x,y)
∂ny

u(y)dSy−
∫

Γ

∂G(x,y)
∂ny

u(y)dSy +
∫

S
G(x,y)

∂u(y)
∂ny

dSy. (6.3.5)

Under the Robin boundary condition for u, 1
2

∂u(x)
∂nx

+u = φ(x),

1
2

(
−∂u(x)

2∂n
+φ(x)

)
=−p.v.

∫
S

∂G(x,y)
∂ny

(
−∂u(y)

2∂ny
+φ(y)

)
dSy−∫

Γ

∂G(x,y)
∂ny

u(y)dSy +
∫

S
G(x,y)

∂u(y)
∂ny

dsy.

(6.3.6)
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1
4

∂u(x)
∂n

+
1
2

p.v.
∫

S

∂G(x,y)
∂ny

∂u(y)
∂ny

dSy +
∫

S
G(x,y)

∂u(y)
∂ny

dsy = p.v.
∫

S

∂G(x,y)
∂ny

φ(y)dSy+

1
2

φ(x)+
∫

Γ

∂G(x,y)
∂ny

u(y)dSy.

(6.3.7)

The notation “p.v.” in the above equations denotes the principle value of the integral

when the singularity exists. Since it is merely weakly singular, a polar transform can be

carried out to remove it easily.

If a boundary mesh is set up on S with mesh points ∪N
i=1xi, then for each xi, we have

one above equation and together a system of boundary integral equations is obtained. The

solutions to the system will then give us the Neumann values.

Remark 6. The reference solutions are required for the whole spherical boundary to gauge

the accuracy of the numerical approximations of potentials on S and Γ for method A and

B respectively. While method A is more straightforward, no integral equations need to be

solved. As long as the numerical approximations of potential are accurate, the resulting

Neumann values should have the same accuracy. Method B involves singularities at the

intersection of S and Γ which will result in large error around surrounding area. To over-

come this, a radius larger than that of the electrode may be taken so that the local boundary

integral equations will yield accurate Neumann values. We will implement method A and

method B is similar except an extra local boundary integral equation system involved on Γ.

6.3.1 Reference Solutions for Unit Sphere

• Mesh setup

Different boundary meshes are constructed on the electrode patches and off-electrode

patch, see Fig.18 and Fig.19. Specifically, GMSH generates unstructured 3D meshes given
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Figure 17: Limited electrodes model on unit sphere

a “size field” while the mesh on the electrode patches is clearly structured along the lon-

gitude and altitude and the mapping from the elemental triangle to the curved ones can be

identified [45]. Thus global boundary integral equations can now be set up based on the

two meshes.

Let Ω be the unit ball centered at the origin, and ∂Ω=D∪E, E =∪8
i=1Ei. Each electrode

patch has the equal surface area as displayed in Fig.17.

The second Green’s identity shows for any fixed x ∈Ω,

∫
Ω

(u(y)∆G(x,y)−G(x,y)∆u(y))dy =
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy−
∫

∂Ω

G(x,y)
∂u(y)
∂ny

dSy.

(6.3.8)
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When x→ ∂Ω from the interior, then

−1
2

u(x) =
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy−
∫

∂Ω

G(x,y)
∂u(y)
∂ny

dsy, (6.3.9a)

−1
2

u(x) =
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy−
∫

E
G(x,y)

∂u(y)
∂ny

dsy, (6.3.9b)

−1
2

u(x) =
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy−
∫

E
G(x,y)(φ(y)−u(y))/zldsy, (6.3.9c)

−1
2

u(x) =
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy−
1
zl

∫
E

G(x,y)φ(y)dSy +
1
zl

∫
E

G(x,y)u(y)dSy, (6.3.9d)

(6.3.9e)

or

1
zl

∫
E

G(x,y)φ(y)dsy =
1
2

u(x)+
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy +
1
zl

∫
E

G(x,y)cu(y)dSy. (6.3.10)

where the condition (6.3.1) is used to deduce from (6.3.9a) to (6.3.9b). Therefore we obtain

a global boundary integral equation for u. Build different meshes on D and E and let x move

over all the mesh points, then through (6.3.10) we have a system for solving u(x) on ∂Ω,

which means the reference potentials on the boundary can be obtained to make Monte

Carlo simulations. Meanwhile, any reference potentials inside the domain can be achieved

as well through

u(x) =
∫

∂Ω

G(x,y)
∂u(y)
∂ny

dSy−
∫

∂Ω

∂G(x,y)
∂ny

u(y)dSy. (6.3.11)

where ∂u(y)
∂ny

, the Neumann values on the boundary, are automatically known once the ref-

erence potentials are found on the electrode patches based on the Robin conditions.
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(a) Construction of curved triangles in 2D
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Figure 18: Curved triangles

Figure 19: Boundary mesh generated by GMSH on off-electrode patch.
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6.4 Numerical Results

Since the contact impedance zl variates from 0 to 1, we may take zl = 0.5 as an example.

Eight electrodes with radius r = 0.2 are superimposed on the y− z plane. A close look at

the boundary conditions in (6.3.1) reveals the discontinuity at the rims of all the electrodes.

It is natural to enlarge the radius of mesh on Ei so that we may have an easy control over

the mesh size for calculation. Assume the enlarged radius to be re = 0.3. Because of the

discontinuity, we consider a graded mesh on the enlarged surface by introducing a layered

structure, as Fig. 20 illustrates. There are four layers with the first from center to r1, second

from r1 to r, third from r to r2 and fourth from r2 to re. Obviously, a dense mesh should

be imposed around the rim (r = 0.2) of the electrode and that means both 2nd layer and

3rd layer should have a decreased mesh size towards r = 0.2. Further, a graded mesh also

discretizes the first layer while an evenly distributed mesh is imposed on the fourth layer.

And m1,m2,m3 and m4 are the number of divisions of altitude in each layer respectively.

Here we take m1 = 20,m2 = 16,m3 = 16 and m4 = 9. The mesh size can be calculated

through dx ·α i, i = 0, ...,m j − 1(α = 3/4, j = 1,2,3,4). The number of divisions along

longitude will be the same for each layer, i.e. n = 120. Fig.21 is the realization of the

graded mesh on the north pole patch as discussed. The red points are the mesh points on

the electrode (first two layers) and blue ones are off-electrode points on the rest two layers.

We can clearly see the Meshes on Ei, i = 2, ...,8 can be constructed similarly or obtained

through rotation of that on E1 along x-axis. Besides, the “size field” of GMSH is 0.012 on

D which yields 88383 mesh points and 175530 triangle elements.

• Reference solutions
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Figure 20: Graded mesh on electrode patches.
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(a) View in 2D: Mesh points projected to x-y plane
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Figure 21: Mesh points on the north pole patch
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We will show the result in terms of electrode currents. According to

Jl =
1
|El|

∫
El

∂u
∂n
|∂Ddσ(x), (6.4.1)

we have

Table 8: Reference currents on each electrode

Current E1 E2 E3 E4

Jre f
l 1.3377346024 -1.3960453685 1.4543557058 -1.3960453502

Current E5 E6 E7 E8

Jre f
l 1.3377346471 -1.3960453364 1.4543557459 -1.3960453565

A direct summation of Jl over eight electrodes yields the whole current to be -7.10e-

7 which is close to 0 as the conservation of charges condition suggests. Meanwhile the

electrode currents show symmetric patterns with respect to both y and z axis.

Based on the reference solution, we can now conduct Monte Carlo simulations and ob-

tain the Neumann values through second equation of (6.3.1).

• Direct WOS sampling on the boundary

In Chapter 5, an example of direct sampling of exterior Neumann problem is given. We take

the same idea here for the mixed boundary value problem. In other words, the Brownian

path is initiated at the boundary and it will be pushed back if running out of the scope of

domain otherwise it moves by the law of WOS described in Chapter 4. Under the mixed

boundary conditions, the numerical solution to (6.3.1) is derived from (5.3.22) and thus
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given by

ũ(x0) =
N

∑
i=1

NP

∑
j:Xt j∈E

e
∫ t

0 c(Xt j )dL(t j) 1
zl

φ(Xt j)dL(t j) (6.4.2)

or

ũ(x0) =
N

∑
i=1

NP

∑
j:Xt j∈E

e∑
j
k=0 c(Xt j )(nk−nk−1)

h2
3ε

1
zl

φ(Xt j)(n j−n j−1)
h2

3ε
(6.4.3)

where x0 is the initial point of Brownian motion Xt on the boundary.

Since the solution exists uniquely under the assumption of (6.3.1), at one single point

we can definitely obtain an approximation . However, different initial points may require

different length of path or even different ∆x. It is still possible to try the same length of path

NP for different points when they are close to each other. In our test, the mesh points on the

north pole patch are divided into two groups and each group seems to gain high accuracy on

average with the same length for its points respectively. Based on (6.4.1), Table 9 presents

the numerical approximation and absolute error comparing to the reference current on north

pole patch which was obtained earlier in Table 8. We do not list the numerical results for

Neumann values here since there are too many points but the maximum error is small

around 1.9% which is also demonstrated by the small error of current.

Table 9: Numerical approximation of the current on north pole patch

Jre f
1 J̃1 |Err|

Current 1.33773 1.33756 0.01%

With the numerical approximation of potentials on the boundary, the Neumann values

are automatically known and thus a full Robin-to-Neumann mapping has been achieved

over the whole boundary by conducting the same procedure at all the mesh points on dif-
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ferent electrode patches. Therefore, we’ve found an effective way to identify the voltage-to-

current mapping without constructing 3D mesh in the domain once the reference potentials

are known on the boundary.



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

In this study we have proposed numerical methods for computing the local time of re-

flecting Brownian motion and the probabilistic solution of the Laplace equation with the

Neumann and/or Robin boundary condition. Without knowing the complete trajectories

of RBM in space, we are able to use the WOS to sample the RBM and calculate its local

time, based on which a discrete probabilistic representation (5.3.1) was obtained to produce

satisfactory approximations to the solution of the Neumann/Robin problem at one single

point. Numerical results validated the stability and accuracy of the proposed numerical

methods.

In addition, random walk on a lattice was also investigated as an alternative way to

sample RBM. However, numerical experiments show that the numerical results are inferior

to those obtained by the WOS method. A possible reason is that formula (2.3.1) for the

local time is valid for a smooth path while a random walk approximation of the Brownian

path contains inherent errors.

The local time can also be computed by a mathematically equivalent formula (2.3.3).

Again the numerical results based on (2.3.3) are inferior to those obtained using the orig-

inal limiting process of Lévy in [18] . We believe that this fact may result from the time

discretization error of Brownian paths especially when long time truncation is employed in

the probabilistic representation.

Various issues affecting the accuracy of the proposed numerical methods remain to be
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further investigated, such as the number of random walk or WOS steps and the truncation

of duration time T for the paths [20], the choice of the thickness for the ε-region, the size

of ∆x for the lattice, etc. Regarding the convergence rate of the proposed method, more

theoretical work is needed on the exact rate of convergence. This will be helpful when

the reference solutions of boundary value problems are difficult to obtain under special

geometries.

For the purpose of application in material science, more flexible domains with local

convexity will be considered as it relates to the calculations of electrical properties such

as the conductivity of composite materials where the particle shapes plays an important

role [41]. It should be noted that the distance calculation is the most time-consuming

and for some special geometry data structures, algorithms are desired to quickly solve the

closest-point queries [67]. One may consider the exterior problem of the geometry as the

combination of multiple intersecting spheres in Fig.22. If the path stays away from the

domain, the distance to the curved boundary of the reflecting Brownian path boils down to

the closest-point query which can be handled by binning spheres with same radius, solving

the closest-point queries for the sphere centers in each bin, mapping the closest-point back

to the corresponding radius and selecting the closest sphere. While the path falls into the

domain, the reflecting point should be searched along the intersection or on the surface of

nearby spheres.
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Figure 22: Geometry with multiple intersecting spheres
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