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ABSTRACT 

NAVANIT SRI SHANMUGAM. Bridge Scour Detection Using Terrestrial LiDAR and 

Advanced Quantification Techniques 

(Under the direction of Dr. Shen-En Chen) 

 

Scour is an important factor affecting the hydraulic structures of a bridge. Remote sensing 

techniques such as terrestrial LiDAR (Light Detection And Ranging) can help speed up the 

inspection process and provide high-resolution records of the extent of scour. With LiDAR point 

cloud data, a temporal record of scour can be established. However, there are limitations to LiDAR 

scans. For example, a scan would contain not just the scour but surfaces surrounding the scour as 

well. Thus, there is a need to identify and separate scour points from the rest. Moreover, laser light 

does not bend and can be obstructed by objects along the light path resulting in missing geometric 

information behind the obstacles thereby creating a void in the point cloud data. To address this 

data void issue and to ‘reconstruct’ likely scour void, innovative analytical processes are being 

explored in this dissertation.  

1. To automate scour detection and classification, 3D Point Capsule Network (3D 

PCN) for processing LiDAR point clouds captured from bridge hydraulic structure scans 

is presented. Scan results were first processed to cut portions that contain scour points. 

Synthetic data resembling a scour were then generated and 3D PCN, powered by a dynamic 

routing algorithm, was used to label the points of a given scour point cloud into scour and 

non-scour points. If scour is identified, it is segmented (cut) out from the point cloud for 

documentation.  

2. To ‘fill in’ the missing data, spatial interpolation of 3D LiDAR point cloud data 

using Ordinary Kriging (OK) method is suggested and actual field data from scanning a 
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scoured bridge pier is presented to demonstrate the application. Kriging is a geostatistical 

interpolation technique and OK assumes that the spatial variation of the phenomenon or 

object being considered is random and intrinsically stationary with a constant mean. Here, 

the complete scour envelope is reconstructed using kriging. 

3. Interpolation of the point cloud data can result in either extremes of data density, 

very dense or very sparse. A method to find an ‘optimum’ point-to-point distance after 

interpolation using processing times, surface area and volume calculations is presented.  

Scanned point cloud from the Phillips Road Bridge of the Toby Creek, Charlotte, North 

Carolina, has been used for the study. The different processes (OK and 3D PCN) are then applied 

to the point cloud data set separately.  

The results from the distinct methodologies are summarized as follows: 

• The 3D PCN was trained to detect scour using 1,000 sets of synthetic scour data, 

using a split of 750-150-100 for training, evaluation, and testing.  

• The resulting model had an accuracy of 63% in identifying scour points from the 

input scour and non-scour point cloud. 

• The network performed well on a real-world point cloud from the Phillips Road 

Bridge pier scour. 

• Data voids were identified on the same real-world scour and OK process was used 

to fill in those voids. 

• Post-kriging spatial resolution of the points was much higher (i.e., point-to-point 

distances were much lower) than the original, which had varying point density in 

different portions of the cloud. 
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• Scour depth was measured, and surface areas and volumes were calculated for 

scenarios consisting of nine different spatial resolutions. A point-to-point distance 

of 20mm was found to be the optimal spatial resolution considering total processing 

times and comparison of the scour parameters with the actual values. 
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1 INTRODUCTION 

1.1 Motivation and Background 

Scour is the primary cause of bridge failures in the United States and is responsible for 

almost 60% of the bridge failures (Melville & Coleman, 2000). About 83% of the structures listed 

in the National Bridge Inventory (NBI) cross waterways and are exposed to the threats of flooding 

and scour. During the last 30 years, 600 bridges have failed due to scour problems (Shirole & Holt, 

1991).  

Scour can compromise the structural integrity of a bridge structure by removing soil and 

sand surrounding a bridge component (Lagasse et al., 2012). It is caused primarily by fast moving 

water. The most concerning fact about scour failures of bridges is that they can occur without any 

warning. So, monitoring scour surrounding a bridge structure is necessary and the monitoring 

techniques must be effective. River flow hydrodynamic characteristics like water velocity and the 

integrity of the surrounding geomaterial of a bridge pier dictate the scour process and define the 

extent of scouring problem. 

To monitor scour conditions, several measurement techniques have been suggested and can 

be distinguished into static and dynamic measurement techniques (Prendergast & Gavin, 2014). 

Terrestrial LiDAR is a popular condition monitoring technique – Based on the detection of 

returned laser beams, the technique has been used for bridge monitoring needs such as detection 

of condition changes (Liu et al., 2012; Liu & Chen, 2013). In this research, LiDAR scanning of 

bridge hydraulic structures is proposed as a scour monitoring technique. LiDAR facilitates the 

collection high-resolution point cloud data of a bridge hydraulic structure. This data can then be 

used to quantify material losses. Laser scans taken over a period of time can generate periodic data 
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and thus, periodic quantification of scours can be done. This would help determine the rate of 

removal or addition of streambed or bank material surrounding the bridge foundation. 

The severity of a scour is typically determined using scour depth; however, area and volume 

can also be established as scour parameters. Since a bridge environment (i.e., bridge hydraulic 

structure geometry, bank surface) is highly irregular, it is difficult to automate the scour 

identification process. This study focuses on scour detection and quantification using deep learning 

algorithm, specifically the 3D Point Capsule Network (PCN) approach (Zhao et al., 2019). The 

scour detection is identified as a classification problem for scour and non-scour areas for given a 

rough set of points of scour and its surroundings. To find the scour volume, the points in the point 

cloud is first classified either as a scour or a non-scour using 3D PCN, then, the points are analyzed 

to calculate the scour parameters. Contrast to conventional neural networks that uses scalar values 

for feature representation, 3D PCN uses capsulated vectors to represent features, which enables 

better feature recognition capabilities. 3D PCN has been used successfully for applied to spatial 

problem types including local part extraction, 3D-feature reconstruction, and object classification. 

An advantage of using 3D Point Capsule Network is that it is not affected by translation, rotation, 

or the scale of point cloud data, which is advantageous if real world data is used. 

However, there are limitations on LiDAR scans: Since LiDAR uses light, which does not 

bend, may be obstructed by an object along the light path and resulting in interference (Munoz 

Rodriguez, 2012).  As a result, obstacles make the surfaces behind the obstacle ‘invisible’ to the 

LiDAR device and create a void in the point cloud data. A typical solution is to scan the structure 

at multiple angles and stitch the images to generate the full image. Due to the complexity and size 

of the scoured area, sometimes, even multiple scans will not be able to fully describe the full 

scoured void. 
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To address the issue of voided data due to obstacles, this study suggests the use of spatial 

interpolation: Spatial interpolation is the process to estimate values of locations that were not 

surveyed using the data from the network of known points (Hohn, 1991). There are several spatial 

interpolation techniques including both deterministic and statistical methods (Cressie, 1993). In 

particular, Kriging is useful for the population of voided data (Meng et al., 2013). In the case of 

complex and under-sampled problems, co-Kriging using auxiliary variables can be useful to 

populate the voided data (Knotters et al., 1995). 

In this study, ordinary kriging (OK) will be used to populate missing scour geometry due to 

LiDAR scan unable to reach areas beyond the line-of-sight. Data from an actual bridge is used for 

the study - The Phillips Road Bridge at UNC Charlotte is recognized to have scouring issue. 

LiDAR scans were performed around the bridge piers experiencing soil mass losses (scour) over 

the span of three years. 
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1.2 Research Objectives 

The objectives of this research, therefore, are: 

1. To scan local scour on a case study bridge using terrestrial LiDAR. 

2. To demonstrate application of AI in scour detection by using 3D Point Capsule Network 

to detect scour in a LiDAR point cloud. 

3. To evaluate LiDAR scan on bridge scour problem, in particular the issue of point cloud 

missing data points by spatially interpolating the point cloud data using kriging. 

4. To analyze the effects of spatial point density from the interpolated results. 
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1.3 Methodology 

This dissertation will be presented as the summary of three journal papers. The 

methodology for this research is summarized in the figures in this section. Scanned point cloud 

from the Phillips Road Bridge of the Toby Creek, Charlotte, North Carolina, has been used for the 

study. The different processes (OK and 3D PCN) are then applied to the point cloud data set 

separately.  

Synthetic data was created to train the AI in Chapter 2. Terrestrial LiDAR was used to scan 

the case study bridge. It was processed and then input into the network to evaluate its performance. 

Spatial interpolation using OK was used on the same scour point cloud to fill in the missing data 

voids in Chapter 3. Interpolated results at various point densities were analyzed to get an 

‘optimum’ resolution for the point cloud in Chapter 4. Figure 1-1 to Figure 1-3 show the 

methodology schematics for Chapters 2-4 respectively. The overall methodology to automatically 

get scour parameters with a given ‘near scour’ point cloud as input is shown in Figure 1-4. 
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Figure 1-1 A basic methodology schematic for Chapter 2 
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Figure 1-2 A basic methodology schematic for Chapter 3 
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Figure 1-3 A basic methodology schematic for Chapter 4 

 

 

 

Figure 1-4 Overall algorithm for this research 
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1.4 Scope 

The scope of this research is limited to point cloud scour detection, interpolation, and the 

analysis of resulting spatial point density from the scanned scour image of the Phillips Road 

Bridge. In this study, we have explored two different advanced point cloud processing techniques 

namely Ordinary Kriging and the 3D Point Capsule Network. It is appreciated that scour problem 

for a bridge can vary significantly, hence, current study is not all encompassing. Furthermore, this 

study focuses on the pier-on-bank type of bridge, which can behave differently from pier in the 

river channel. The following are a summary of the specific scope conducted in current study: 

1. Point cloud scour detection 

a. Use of 3D Point Capsule Network deep learning algorithm with 2048 points. 

b. Use a real-world scour to check results – Case from Phillips Road Bridge. 

2. Spatial Interpolation of bridge pier scour point cloud data 

a. Use of Ordinary Kriging 

b. Local scour found in LiDAR data from Phillips Road Bridge. 

3. Analysis of point density after scour point cloud spatial interpolation 

a. Scour depth, surface area and volume calculations 
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1.5 Dissertation Outline 

Following this introduction, the dissertation includes chapters and appendices. Chapters 

consist of to-be-published peer-reviewed journal articles. Chapter 2 discusses the use of a novel 

artificial intelligence (AI) approach to label scour and non-scour points in a point cloud. As 

there could be voids present in a point cloud, Chapter 3 is an article presenting a spatial 

interpolation method to fill in the spatial data voids in a scour point cloud. Chapter 4 describes 

a more in-depth investigation of the relations between OK interpolated spatial density and the 

filling in of selected data voids. Overall conclusions from this research work and scope for 

future research are given in Chapter 5 and Chapter 6 respectively. Appendices include select 

photos of bridge pier, scour parameter results over time and computer codes. 
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2 USING 3D POINT CAPSULE NETWORK FOR POINT CLOUD SCOUR DETECTION 

2.1 Abstract 

Scour is an important factor affecting the hydraulic structures of a bridge. Remote sensing 

techniques such as terrestrial LiDAR (Light Detection And Ranging) can help speed up the 

inspection process and provide high-resolution records of the extent of scour. To automate scour 

detection and classification, this paper introduces the 3D Point Capsule Network (3D PCN) for 

processing LiDAR point clouds captured from bridge hydraulic structure scans. Scan results were 

first processed to cut portions that contain scour points. Synthetic data resembling a scour were 

then generated and 3D PCN, powered by a dynamic routing algorithm, was used to label the points 

of a given scour point cloud into scour and non-scour points. If scour is identified, it is segmented 

(cut) out from the point cloud for documentation. The existing method to achieve this requires 

manually opening the point cloud file and labeling the points as scour and non-scour. The work in 

this paper is a novel application for automated classification and segmentation of a scour point 

cloud, which significantly reduces the time taken for such processing.  

Keywords: Bridge Scour Identification, LiDAR Point Cloud, 3D Point Capsule Network 

2.2  Introduction 

Scour, caused by swiftly moving water, can remove sand and soil, creating holes surrounding 

a bridge component and compromising the integrity of a structure. Scour has been identified as the 

primary cause of bridge failures in the United States responsible for almost 60% of the bridge 

failures (Melville and Coleman 2000). About 83% of the structures listed in the National Bridge 

Inventory (NBI) span waterways and are exposed to the threats of flooding and scour (ASCE 

2017). The danger of bridge scour failures lies in the fact that they can occur without warning 

(Shirole and Holt 1991). Thus, there is a need for effective monitoring techniques for scour 
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problems surrounding bridge structures. Figure 2-1 shows the mechanisms of scouring 

surrounding a bridge pier. The hydrodynamic characteristics of the river flow and the integrity of 

the surrounding geomaterial of a bridge pier dictate the scouring process and define the extent of 

the scour problem.  

The scour shown in Figure 2-1 is typically considered as a ‘local’ scour which occurs around 

individual bridge piers and is caused by an acceleration of flow and resulting vortices induced by 

obstructions to the flow. Scouring removes the soil support around the bridge pier, thus reducing 

the soil bearing capacity. Scour alters static and dynamic characteristics of the bridge structure and 

may lead to excessive structural settlement and may result in load redistribution in structural 

members ultimately leading to failure of the bridge structure. 

 

 

Figure 2-1 Mechanism of scour at a circular pier (Chavan et al. 2022) 
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Figure 2-2 A Point Cloud of a Bridge with Missing Data, Vegetation and Noise Marked 

 

Bridge scour is combatted in many ways, including through hydraulic and structural 

countermeasures (NCHRP, 2009). However, these have limitations and uncertainties. In addition, 

usually they can be implemented only on new structures during the design stage of a bridge. A 

more effective and economically viable method for existing structures is to monitor scour 

evolution over time (Briaud et al., 2011) and implement the required remediation works. 

To monitor scour conditions, terrestrial LiDAR is suggested as a technique to quantify the mass 

loss due to bridge hydraulic condition changes (Chavan et al. 2022). LiDAR (Light Detection And 

Ranging) is a surveying technique that uses reflected pulsed laser light to make 3D representations 

of the target (Liu et al. 2012). The representations are in the form of a 3D point cloud, a set of 

digital points (XYZ coordinates). A LiDAR consists of a laser emitter, which emits a concentrated 

beam of light. The emitted laser then gets reflected back to the LiDAR device after hitting an 
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object. Using the time difference between the emission and detection, the distance between the 

device and the object can be calculated. Based on the detection of returned laser beams, the 

technique has been used for bridge monitoring needs such as the detection of scour formation 

(Chavan et al. 2022) and condition changes (Liu et al. 2012, 2013). Rapid and repeated laser scans 

can generate periodic quantification of scours and help define the process of erosion and determine 

the rate of removal of streambed or bank material surrounding the bridge foundation. The severity 

of a scour is typically quantified using scour depth, however, scour area and volume can also be 

established as scour parameters. 

Since lasers cannot penetrate solid objects, the area around the scour of interest should always 

be cleared along the line-of-sight (LOS). Furthermore, a data void or a ‘shadow’ is unavoidable 

for any single scan as the light cannot reach the regions behind the object. It is also inevitable to 

capture some obstacles (such as trees, shrubs, etc.) in the point cloud, which are collectively 

identified as noise, and noise removal must be performed. Figure 2-2 shows a point cloud with 

marked noise and missing data. The point cloud has a total of about 70 million points. 

We have adopted a deep learning algorithm for the detection of bridge hydraulic structures 

(Tang et al. 2022) and this paper focuses on scour detection and quantification using a deep 

learning algorithm, specifically the 3D Point Capsule Network (PCN) approach (Zhao et al. 2019). 

Since a bridge environment (i.e., bridge hydraulic structure geometry, bank surface) is highly 

irregular, it is difficult to automate the scour identification process. Currently, there are no known 

published works with the objective of classifying point clouds of any local scour surface. The scour 

detection is recognized as a classification problem between scour and non-scour areas for an 

unedited LiDAR scan of bridge pier scour and its surroundings. To find the scour volume, the 

points in the point cloud are first classified either as a scour or a non-scour using 3D PCN. Then, 
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the points are analyzed to calculate the scour parameters such as the scoured area.  

To summarize, the contributions of the authors in this work are as follows: 

• Application of 3D PCN as an artificial intelligence approach to label bridge pier local 

scour points in a point cloud 

• Generation of a synthetic dataset consisting of 1000 scour-like point clouds. 

• Evaluating 3D PCN on real data to demonstrate the generalization of the approach. 

 

2.3 Point Clouds in Deep Neural Networks  

Point clouds are preferred for many 3D applications due to their capabilities in explaining 3D 

data without assuming one modality (Zhao et al., 2019). Point cloud-specific architecture 

algorithms must be invariant to permutations of the input set, invariant to rigid transformations 

and should capture the interaction between points. PointNet (Qi et al., 2017), PointNet++ (Qi et 

al., 2017), and others (Li et al., 2018; Liu et al., 2018; Lei et al., 2018; Hermosilla et al., 2018), 

have exploited these properties. It is also possible to process point sets by taking projections to 

reduce the operation to two dimensions. 

 

2.4 3D Point Capsule Network 

Capsulated network is a modification of the classical deep learning techniques using neurons 

to obtain the vector representations of desired entities. Capsule Networks (CNs) have found many 

uses in 2D deep learning including object segment, classification and 2D image generation 

(LaLonde and Bagci, 2018; Durage et al., 2018; Jaiswal et al., 2018; Saqur et al., 2018; Upadhay 

et al., 2018). In contrast to conventional neural networks that use scalar values for feature 

representation, 3D PCN uses capsulated vectors to represent features, which enables better feature 
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recognition capabilities. 3D PCN is used successfully for applications to spatial problems 

including local part extraction, 3D-feature reconstruction, and object classification (Xiang et al 

2018; Ma et al. 2020). An advantage of using 3D Point Capsule Network is that it is not affected 

by translation, rotation, or the scale of point cloud data, which is critical if real world data are used 

(Xiang et al. 2018). 

Several modified capsulated networks have been proposed for enhancing image processing 

capabilities (Xiang et al. 2018; Deng et al. 2018; Zhu et al. 2019). However, for LiDAR point 

cloud data processing, the 3D PCN remains the standardized approach (Park et al. 2020). 

Developed by Zhao et al. (2019), the 3D PCN can be summarized as a set of capsule-encoder and 

decoder couples that enable deep mapping through dynamic routing. Instead of point-

representation, the capsule representation allows high-level feature vectorization and rapid 

convolution operations. The dynamic routing suggests that cascading evaluation of capsule-

representations can be performed at higher levels (latent capsule mapping). Sabour et al. (2017) 

described the dynamic routing algorithm as the evaluation of different capsules with different 

coupling coefficients. In our study, the 3D-PointCapsNetwork (Zhao et al. 2019) is used for 

processing the LiDAR point cloud captured from a bridge pier for scour detection and 

classification.  

Figure 2-3 summarizes the 3D-PointCapsNetwork architecture and the components of the 

network are described as follows: 

Encoder: PointNet-like (Qi et al. 2017) layers are used in the 3D PCN, where the network input 

is a 2048x3 point cloud. A point-wise Multi-Layer Perceptron (MLP) (3-64-128-1024) is 

then used to extract local feature maps. These feature maps are then fed into multiple 

independent convolutional layers with different weights, each with a distinct summary of 
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the input shape with diversified geometries. The responses are max pooled in order to 

obtain a global latent representation. These descriptors are concatenated into a set of 

vectors named primary point capsules. Dynamic routing is then used to embed the primary 

point capsules into higher-level latent capsules. Each capsule is independent and is 

considered as a cluster centroid of the primary point capsules. The total size of the latent 

capsules is fixed as 64x64. 

Decoder: The decoder treats the latent capsules as a feature map and uses the MLP (64-64-32-

16-3) to reconstruct a patch of points. The entire capsule is replicated several times and a 

synthesized grid is appended specifying a local area (similar to the FoldingNet, Yang et al. 

2018). These patches are then glued together. 

Loss function: The Discrete Chamfer metric (Zhao et al., 2019) is used to approximate the 

training loss over predicted and ground truth point cloud. 

Optimizer: A first order gradient based stochastic objective function optimizer algorithm called 

Adam (Kingma and Ba, 2014) with a learning rate of 0.01 for the first 30 epochs, 0.001 for 

epochs less than 50, and 0.0001 for epochs beyond 50. 

One hot encoding (Harris and Harris, 2012): This step is done so that point cloud labels do 

not affect the network with their values. Non-scour and scour points are represented by the 

numeric ‘1’ and ‘2’, respectively. Although the number 2 is greater than 1, one-hot 

encoding makes the labels ‘scour’ not ranked higher or lower than ‘non-scour’. 

  



17 

 

 

 

Figure 2-3 3D-PointCapsNetwork (3D PCN) Architecture (Zhao et al., 2019) 
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2.5 LiDAR Point Cloud Training Using 3D PCN 

To verify and validate the 3D PCN algorithm for detecting scour, synthetic data resembling a 

scour were created using MATLAB. A 1,000 x 1,000 point matrix was created and five Gaussian 

depressions/peaks with random amplitudes were introduced. Each depression had a maximum 

amplitude of 50 units. This resulting point cloud was randomly sampled to obtain 2,048 points (to 

match the 3D PointCapsNet). Then, the points were classified into scour/non-scour based on their 

height metric. The XY plane was set as the ground plane. Thus, the Z coordinate determines if a 

point is scour or non-scour. The XYZ coordinates and the scour classification were then saved into 

a different data file (required by PointCapsNet). One thousand different randomly generated point 

clouds were used in this study. 

Out of this dataset, 750 point clouds were used to train the 3D PCN. While testing, the network 

did not detect scour – all the test points were identified as non-scour. An analysis of the results 

indicated that the scour depth was not large enough for the capsules to differentiate between scour 

and non-scour cases. Figure 2-4 shows the results from the two sets of artificial data. The one on 

the left with clearly marked scour and non-scour in the original data. 
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Figure 2-4 Scour Point Clouds. a) Two sets of manually labelled input b) Output result showing 

incorrectly labelled points 

 

Figure 2-5 Result Comparison a) Manually labeled point cloud b) AI labeled point cloud 

 

Another 1,000 artificial sets of data were then generated and used to train the model, this time 

with a maximum peak depth of 200 units for each depression/peak. The network performed better 

with a detection accuracy of about 63%. Figure 2-5 shows the two sets of data (original and scour 
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detected point clouds). This shows that the scour points are used to construct some of the non-

scour points and some non-scour points are used to construct scour points. 

2.6 Case Study 

The 3D PCN was applied to a scoured bridge pier that belongs to the Phillips Road Bridge over 

Toby Creek (35°18'28.2"N 80°44'16.6"W) in northern Charlotte, North Carolina, USA. The newly 

constructed Phillips Road bridge was opened on March 12, 2016. The bridge consists of three 

spans supported on prestressed concrete girders and drilled pier foundations (Chavan et al. 2022). 

Each pier consists of a reinforced concrete column supported on a concrete drilled pier foundation 

driven through four layers of different types of soil and fill material. Figure 2-6 shows the scoured 

bridge pier and Figure 2-7 depicts the LiDAR scan of the scoured bridge pier. 

To detect the scour, a FARO Focus S 350 scanning laser was used. The FARO scanner uses a 

near infrared laser of 1,550 nm wavelength and has a shooting range of 350 m. After the point 

cloud was captured, the data must be processed before the determination of the scour. There are 

several steps needed to process the raw point cloud data including data stitching, which may be 

required when multiple scans are performed at a site. In cases where multiple scans were performed 

at a site to capture the object from different angles, the multiple point clouds were combined 

(stitched) together into a single point cloud with a single global coordinate system for all scans.  
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Figure 2-6 Scour surrounding piers on the north bank of Toby Creek 

 

Figure 2-7 LiDAR scan of the scour around one of the north bank piers of Philipps Road Bridge 
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The stitched point cloud is then segmented to reduce the size of the data file and also to isolate 

the scoured areas. The processed data can then be used for scour detection. The procedure of the 

point cloud analysis can be summarized as follows: 

1. Identify scour surrounding the pier and scan the scour. 

2. Transfer data and segment the point cloud to include only the points containing scour 

and its surrounding region.  

3. Export the point cloud and use the 3DPCN algorithm to label scour. 
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2.7 Discussion 

While training, the weights for the neural network were adjusted with the aim of minimizing 

an objective function. An epoch is when the entire training dataset passes through the neural 

network once. Training loss is the value of the objective function to be minimized. A whole point 

cloud dataset could not pass through the network all at once, rather the dataset was split into 

batches and thus, the value of the objective function was updated multiple times in a single epoch. 

Figure 2-8 shows the average training loss with respect to number of epochs. The average training 

loss stabilized at around 0.001222 corresponding to the 86th epoch. The training was stopped at 

epoch 97 after 10 additional epochs resulted in very small variations in the training loss. 

The next step in this study would be to increase the number of scour points in the dataset. 

Currently, there is a huge difference in the distance between the scour points and the distance 

between non-scour points. Effects of changing the network parameters, like decreasing the number 

of latent capsules, would be interesting to see. This network was originally trained and tested on 

the Shapenet-Part dataset, consisting of 50 different parts (Chang et al., 2015). However, for the 

present scour case, only two conditions, scour or non-scour are considered. 

There are many challenges associated with scour. The first is that scour is not always close to 

the structure. Second, a well-defined geometry is often not present. Scour can result in many shapes 

and sizes. It also important to note that the existence of scour does not necessarily mean structural 

instability. The Phillips Road bridge is an example of such a case, as scour is present but at present 

the structure is not unstable (Chavan et al. 2022). Another challenge is that scour can vary over 

time. Depending on the weather and flow conditions, over time more material can be washed away 

from, or material can be deposited, at least temporally filling an existing scour.  
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Figure 2-8 Average Training Loss 

 

There are also technical challenges associated with the analysis of point clouds generated from 

LiDAR scans. One real-world LiDAR scan can generate millions of points, resulting in more than 

700MB of data in compressed file format. For example, a single Phillips Road Bridge scan consists 

of 26.7 million points. Converting the scans to obtain XYZ point data format - which is used in 

PCN - would result in more than 6GB of data. Processing them would take considerable 

time/resources. A system with at least 64GB of RAM, CPU with 8 physical cores and a solid-state 

drive is recommended for processing a LiDAR point cloud project. Data voids in scans are another 

challenge. Currently, it is difficult for a machine to tell if the void is due to a defect or due to an 

object blocking the laser. 
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2.8 Conclusions 

In this paper, 3D PCN method has been used to reconstruct scour shape from a LiDAR point 

cloud. To train the network, 750 synthetic data using Gaussian depression/compression sets of 

random amplitudes were generated. 150 sets of synthetic data were used to evaluate the training 

model. While training, the loss function rapidly decreased from 0.157 to 0.006 in just 2 epochs. 

However, it took 86 epochs to reduce to 0.001 (Figure 2-8). One hundred datasets were used for 

testing the final network model. The results of identifying scour and non-scour points averaged at 

63% accuracy. This trained network was also applied to a real-world point cloud – the case study 

scours from Phillips Road Bridge and showed favorable results (Figure 2-9). 

 

 

Figure 2-9 Phillips Road Bridge point cloud a) original point cloud showing scour around pier b) 

3DPCN output of the scour point cloud – pier was removed before input 
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3 SPATIAL INTERPOLATION OF BRIDGE SCOUR POINT CLOUD DATA USING 

ORDINARY KRIGING 

3.1 Abstract 

Scour is a critical condition change for a bridge hydraulic system and terrestrial LiDAR scans have 

been suggested as a way to quantify the scour conditions. With LiDAR point cloud data, a temporal 

record of scour can be established. However, there are limitations to LiDAR scans, for example 

laser light does not bend and can be obstructed by objects along the light path resulting in missing 

geometric information behind the obstacles thereby creating a void in the point cloud data. To ‘fill 

in’ the missing data, spatial interpolation of 3D LiDAR point cloud data using Ordinary Kriging 

(OK) method is suggested and actual field data from scanning a scoured bridge pier are presented 

to demonstrate the application. Kriging is a geostatistical interpolation technique and OK assumes 

that the spatial variation of the phenomenon or object being considered is random and intrinsically 

stationary with a constant mean. Here, the complete scour envelope is reconstructed using kriging 

and is shown to have excellent results.  

Keywords: Bridge Scour, LiDAR Scan, Data Void, Kriging 

3.2 Introduction 

Scour is the primary cause of bridge failures in the United States and is responsible for almost 

60% of bridge failures (Melville and Coleman 2000). During the last 30 years, 600 bridges have 

failed due to scour problems (Shirole and Holt 1991). Scour, caused by swiftly moving water, can 

remove sand and soil, create holes surrounding a bridge component and compromise the integrity 

of a structure (FHWA 2012). The danger of bridge scour failures lies in the fact that they can occur 

without prior warning. Thus, there is a need for effective monitoring techniques for the assessment 

of scour problems surrounding a bridge structure.  
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Figure 3-1 shows the mechanisms of scouring surrounding a bridge pier. The hydrodynamic 

characteristics of the river flow and the integrity of the surrounding geomaterial of a bridge pier 

dictate the scour process and define the extent of the scouring problem. The scour shown in Figure 

3-1 would typically be considered as ‘localized’ scour which occurs around individual bridge piers 

and abutments and is caused by an acceleration of flow and resulting vortices induced by 

obstructions to the flow. Once scouring removes the soil support around the bridge pier, the soil 

bearing capacity can be reduced significantly and may lead to excessive structural settlement 

resulting in load redistribution amongst structural members ultimately leading to the failure of a 

bridge structure. 

Bathymetric surveys of bridges, stream channels, and wetlands are pivotal to spatially explicit 

modeling of flood, drainage, and scours (Prendergast et al. 2014). Remote sensing techniques are 

especially useful for bathymetric surveys. In particular, terrestrial LiDAR has been gaining 

popularity as a condition monitoring technique for highway bridge systems; based on the detection 

of returned laser beams, the technique has been used for bridge monitoring needs such as detection 

of condition changes (Liu et al. 2012, 2013). For scour detection, LiDAR scanning of bridge 

hydraulic structures has been proposed as a scour monitoring technique, where high-resolution 

point cloud data of a bridge hydraulic structure can be used to quantify material mass losses (Suro 

et al. 2020). Rapid and repeated laser scans can generate periodic quantification of scours and help 

define the process of erosion and determine the rate of removal of streambed or bank material 

surrounding the bridge foundation. For large riverine scans, Lewis et al. (2020) suggested the 

combined LiDAR-UAS (Unmanned Aerial Systems) technique for bank erosion studies. 

However, there are limitations to the LiDAR scans: Since traditional LiDAR uses infrared 

light, it gets absorbed by water resulting in the inability to scan underwater surfaces. For the same 
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reason, they cannot be used in rainy or foggy weather. Light does not bend, so it can be obstructed 

by an object along the light path, resulting in interference (Rodriguez 2012). As a result, obstacles 

make the surfaces behind the obstacle ‘invisible’ to the LiDAR and thereby create a void in the 

point cloud data. A typical solution is to scan the surface from multiple locations and stitch the 

point clouds together to generate the full image. However, due to the complexity and size of the 

scoured area, sometimes, even multiple scans will not be able to fully describe the scoured void. 

In experiments utilizing circular holes with different surface finishes, Bian et al. (2017) 

demonstrated that the backscattering of light within circular holes can result in complicated light 

scattering effects on point cloud data. 
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Figure 3-1 Mechanism of Scour at a Circular Pier 

 

To address the issue of voided data, this paper proposes the use of spatial interpolation, which 

is the process of estimating values of locations that are not surveyed, using data from the network 

of known points, to help fill-in the voided point cloud data. There are several spatial interpolation 

techniques including both deterministic and statistical methods (Isaaks et al. 1989; Cressie 1993). 

In particular, Kriging is useful for populating areas of voided data (Meng et al. 2013). Kriging is a 

spatial prediction technique based on the assumption of random processes and the use of spatial 

covariance estimations. Kriging methods may be classified into Ordinary Kriging (OK), Simple 

Kriging (SK), Universal Kriging (UK), Residual Kriging (RK), and Co-Kriging (Knotters et al. 
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1995; Montero et al. 2015). In the case of complex and under-sampled problems, Co-Kriging using 

auxiliary variables has been used to populate the area of voided data (Knotters et al. 1995). 

In this study, we explore the spatial interpolation of a 3D LiDAR point cloud of a bridge scour 

using OK method and test the interpolated results using a separate point cloud scan of the missing 

area (with additional scans). LiDAR scan data from the Phillips Road Bridge at UNC Charlotte, 

Charlotte, North Carolina, USA, were used in the current study (Chavan et al. 2022). LiDAR scans 

were performed around the piers of the Phillips Road bridge which experienced soil mass losses 

(scour) and the point cloud data were generated for the current study. The complete scour envelope 

is reconstructed using the OK method and is shown to have excellent results in filling the voided 

point cloud data.  

3.3 Spatial Interpolation and Kriging 

The inherent assumptions for spatial interpolation approaches include the autocorrelation of 

spatial data and that the values are continuous over space (Oliver and Webster 2015). There are 

several different types of spatial interpolation methodologies including the Inverse Distance 

Weighted (IDW), different variations of Kriging, and local polynomial interpolations, to name a 

few (Montero et al. 2015). In particular, Kriging is a geostatistical interpolation technique used to 

predict the unknown value of a function at a given point by computing a weighted average of 

known values of the function in the neighborhood of the point. In this study, the OK method, which 

relies on the spatial autocorrelation of the data to determine the weighted values that can be used 

to predict the unsampled point and suggests an unknown mean value (m), is used: 

Z(s) = m + e(s)          (1) 

where Z(s) = predicted value and e(s) = a random quantity with a mean value of zero and 

covariance c(h):  
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c(h) = E[e(s)-e(s+h)]          (2) 

and h is the separation between samples, s, and E is the expectation. 

Under the assumption of intrinsic stationarity, the expected differences are zero. 

E[Z(s) – Z(s+h)] = 0          (3) 

Covariance can be replaced by half of the variance of differences (semivariance). 

γ(h) = ½ var[Z(s) – Z(s+h)] = ½ E[{Z(s) – Z(s+h)}2]     (4) 

The semivariance depends only on h, and the function γ can be used to construct the variogram. 

The variogram function is a measure of the spatial autocorrelation. When the distance increases 

away from the sample points, the autocorrelation (similarity) between the sample points tends to 

decrease and, when their variances begin to flatten out, the sample values are no longer related to 

one another. The value at which the sample values are no longer associated (completely spatially 

independent) is indicated as a ‘sill’. 

Figure 3-2 shows the general idea of Kriging where one-dimensional randomly distributed 

points are used (Figure 3-2a). The Kriging estimator usually relies on a weighted function that may 

be a function of the covariance of the sampled points (measured values). As shown in Figure 3-2b, 

two clusters of missing data can be filled by Kriging estimator (Figure 3-2c and Figure 3-2d). The 

resulting data may have different M and ê(s) values: 

Z(s) = M + ê(s)         (5) 

The OK predictor is a linear combination of the data values. It is unbiased because it attempts 

to keep the mean residual to zero and tries to minimize the residual variance. OK is also statistically 

called the ‘best linear unbiased estimator’ (Schabenberger and Gotway 2005). 
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Figure 3-2 Spatial Variation in One Dimension (s) 

 

Identifying a scoured pier is non-trivial as the scour depression around the pier may be 

obscured by vegetation, blocking the line-of-sight of the LiDAR. Due to the size of a bridge pier 

and the geometric shape of a scour, a full scan of the scour cannot be made from a single scan 

position. Hence, to completely capture a scoured area, LiDAR must be shot from multiple positions 

(while at the same time keeping track of the scanning angles and the heights of the laser head 

above the ground surface). The multiple scans can then be stitched together to generate a more 

complete point cloud dataset. However, this may not always be feasible at a bridge site. For 

example, obstacles such as constricted site space can prevent a full-circle scan of the bridge pier. 

Due to the scanning mechanism of a laser head, there is a 60o cone underneath the laser that 

cannot be scanned. As a result, it is usually not feasible to place the laser directly above a scoured 
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area and additional space is required between the laser position and the scour. Furthermore, a 

stitched point cloud takes more time to process. 

3.4 The Phillips Road Bridge Case Study 

The scoured pier considered in this study belongs to the six-year-old Phillips Road Bridge over 

Toby Creek (35°18'28.2"N 80°44'16.6"W) located at the University of North Carolina at Charlotte 

(Figure 3-3). Phillips Road Bridge is a three-span continuous prestressed concrete girder bridge 

with span lengths of 14, 25, and 14 m, respectively. The bridge has a clear roadway width of 9.75 

m and supports two traffic lanes of 4.88 m each. The overall width of the bridge deck is 15.54 m. 

The cast-in-situ concrete slab has a uniform thickness of 20.96 cm and is supported by seven 

prestressed concrete girders at each span. 

The bridge has semi-integral abutments with expansion joints at the abutments and end bents. 

At the intermediate bents, the bridge girders are resting on fixed elastomeric bearings above the 

piers. Figure 3-3 shows different views of the bridge. Bents 1 and 2 are supported on drilled pier 

foundations. The end bent abutments include cast-in-place stem walls with wings turning back 

parallel to the roadway. The End Bent 1 wall has exposed heights up to approximately 5.18 m and 

End Bent 2 wall has exposed heights up to approximately 5.48 m. A strip footing connecting the 

piles are a minimum of 0.61 m below the existing ground and founded on a pile supported strip 

footing. The scours surrounding the piers on the north bank were observed on 4 of the 6 piers and 

were scanned on June 9, 2020. 
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Figure 3-3 Snapshots of Phillips Road Bridge (on 03/30/2019) 
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3.5 Scour Scan and OK Analysis 

Figure 3-4 shows the studied pier and a full LiDAR scan of the Phillips Road Bridge. The 

scanning was performed using a FARO Focus S 350 LiDAR. The FARO LiDAR uses a mono-

dyne laser with a wavelength of 1,550 nm. Multiple scans were conducted on the bridge over a 

three-year span (2018-2020). A point cloud processing program (CloudCompare, v. 2.6.1, 2015) 

was used to open the proprietary FARO file format (.fls) and to segment out all the points excluding 

the scoured points. The point cloud of the scoured area contains the x, y, and z coordinates. Figure 

3-5a) shows the point cloud of the scour surrounding the selected pier of the Phillips Road Bridge. 

Figure 3-5a) also indicates a voided area (there are multiple voided areas). 

To quantify the scour, a reference plane is first defined and projections of points to the reference 

plane are then determined. Figure 3-5b shows the defined reference plane and the projections. The 

projections are the perpendicular distances from the reference plane to the data points in the point 

cloud. This is used to calculate the perpendicular distances of points to the plane and remove 

recurring points. The recurring points must be removed so that the data have only one depression 

(z value) at a particular point on the x-y plane. These data are then interpolated to fill the missing 

data between the points. To assess the interpolation results, a stitched point cloud, derived from a 

combined point cloud from multiple scans of the selected scour area, are compared with the 

interpolation results. 

The reference plane was used with a criterion that the number of data points should be 

minimized allowing only a single normal vector passing through the reference plane. Where 

multiple points passing through the same plane (recurring projections from the same normal vector 

to the reference plane) occurred, the additional data points were removed. Three points were 
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selected, and their coordinates were used to define the reference plane. One of the points chosen 

comprised the origin and the entire dataset was translated and rotated to simplify the analysis. 

If s1, s2, s3 are the coordinates of the three selected points, and s1 is chosen to be the origin, the 

equation of the plane is: 

(s-s1).n = 0          (6) 

where s is an arbitrary vector and n is the normal vector to the plane defined by 

n =(s2-s1) x (s3-s1) 

This normal vector is rotated such that it is oriented towards the z axis and makes the plane 

parallel to the xy plane. Thus, the z coordinates of the points will be the distance of that point from 

the reference plane. This can be achieved by rotating the normal vector by an angle of rangle about 

raxis, which are given by: 

rangle =  cos−1(
n

‖n‖
. [0 0 − 1])        (7) 

raxis =  
n

‖n‖
 x [0 0 1]          (8) 

where ||n|| is the norm of n and [0 0 1] is the z axis vector. 

Finally, the transformation matrix T is given as: 

T =  [
t ∗ u1 ∗ u1 + C t ∗ u1 ∗ u2 − S ∗ u3 t ∗ u1 ∗ u3 + S ∗ u2

t ∗ u1 ∗ u2 + S ∗ u3 t ∗ u2 ∗ u2 + C t ∗ u2 ∗ u3 − S ∗ u1
t ∗ u1 ∗ u3 − S ∗ u2 t ∗ u2 ∗ u3 + S ∗ u1 t ∗ u3 ∗ u3 + C

]   (9) 

where C = cos(rangle) 

S=sin(rangle) 

t=1-C 
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Figure 3-4 The Scoured Pier of the Phillips Road Bridge: a) Scoured Pier on the North bank and 

b) Bridge Laser Scan 
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Figure 3-5 Sample Scour Point Cloud with a) Data voids marked, b) Sample reference plane with 

plane perpendiculars going towards the scour data 

 

and [u1  u2  u3] is the unit vector for the axis of rotation, raxis. Transforming the data by this matrix, 

the data coordinate will become (x,y,z) – where (x,y) is the coordinate of the perpendicular 

projection of a point on the reference plane and z is the distance of the point from the reference 

plane. If a point was found to have repeated projections, the one that was furthest away from the 

reference plane was removed. The data now have the position (x,y) and a single z (scour depth) 

value at each position. The algorithm was programmed in MATLAB and ArcGIS Pro software.  

A semivariogram plot was constructed for the spatial data and to evaluate multiple fits for the 

semivariogram, a Stable curve fit with a parameter of 1.871 was found to be the most suitable. A 

Stable parameter of 1 corresponds to the Exponential model and 2 corresponds to the Gaussian 
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model. Using the fit, the range of the data, the sill and the nugget effect were calculated. The term 

‘range’ refers to the distance at which the model falls off and there is no more spatial relation in 

the data; this is a representation of the data correlation. ‘Sill’ is the value at which the model is out 

of range and is an indication of the data variance. Finally, ‘nugget’ is the value at which the 

semivariogram intercepts the y axis (distance = 0). Figure 3-6 shows the semi-variance curve for 

the Kriging model, where OK was performed to spatially interpolate the data using these 

parameters. 

For this study, a stitched point cloud was used to test the interpolated results. The stitched point 

cloud was then segmented where the data void existed to define the scour boundary for the Kriging 

analysis. 

 

 

Figure 3-6 Semi-Variance Graph for the Selected Point Cloud 
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3.6 Results and Discussions 

The semivariogram range and sill were calculated to be 2.16 m and 0.05, respectively. The 

voided scour hole scan has a total of 1,000 data points (segmented out from the original stitched 

point cloud with a void). The average interpolation error calculated using the x and y coordinates 

was approximately 0.02 m. This was calculated by comparing the interpolated point cloud with 

the stitched point cloud. The transformation matrix, T, for the sample problem was calculated to 

be 

T =  [
0.9996 0.0292 0.0007
0.0292 −0.9985 −0.0466

−0.0007 0.0466 −0.9989
] 

 

Moreover, the cos(rangle) value was equal to 0.9985 (a value = 1 would indicate that the 

reference plane and the original coordinate plane perfectly overlay each other). 

Figure 3-7 below shows the interpolation data of the final scour hole. The numbers in the 

legend are the depth range of scour at various locations. As the raxis was defined by multiplying [0 

0 1] (unit vector in the z direction) in Equation 8, the depths of the scour were presented in negative 

values. The maximum depth region lies near the center of the data region, and it decreases as the 

processing moves outwards, which matches with the actual field data. The cut-out section in the 

scour boundary is due to a portion of the square bridge pier and the rest of the boundaries are 

selected to capture only the scoured area. A comparison between the original point cloud and the 

interpolated cloud is shown in Figure 3-8. The Kriging result is shown to be significantly denser 

than the original point cloud.  
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Figure 3-7 Ordinary Kriging Interpolation Results – Legend Shows the Scour Depth Range (in 

Meters) 

 

It is important to recognize that segmenting out the point cloud for scour points is time-

consuming and dependent on the size of the original point cloud. Also, the point density in a single 

scan point cloud decreases with distance from the scanner, i.e., points are closer to each other when 

the location of the scanned surface is close to the LiDAR device. It is possible to sample down the 

point cloud by reducing the number of spatial data points in the point cloud to reduce computation 



46 

 

time. However, this should only be performed when the whole scoured area and voided volume 

should not be compromised. For example, when the scour location is not close to the scanner. 

Finally, the current scour case studied did not have any data points removed as there were no 

redundancies in the original point cloud. The post-Kriging point cloud shown in Figure 3-8 has a 

spatial resolution of 2 mm resulting in a 3D point cloud of 1.86 million data points. As shown in 

Figure 3-8, the post-Kriging data density is extremely high as a result of the analysis trying to 

match the smallest distance between the points. Since the original point cloud has variable data 

spacing, the fine scale post-Kriging eliminated any likely data voids. 

 

 

Figure 3-8 Original Point Cloud (1,000 Points, Left) with voids marked in circles and Point 

Cloud (1.86 million Points, Right) after Kriging Interpolation 

 

The OK method utilized in our analysis generated an extremely dense point cloud, which can 

make further analysis time consuming. Future studies should investigate approaches to reduce the 

spatial density of the data (i.e., reduce the number of data points). 
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3.7 Conclusions 

In this study, a LiDAR scan of a scoured hole from a pier of the Phillips Road Bridge was 

identified with data voids generated to investigate the possible obstruction of the LiDAR scan from 

vegetation surrounding the pier or physical site constraints which might limit the viewscape of a 

scan. The point cloud of the scour was segmented using CloudCompare and an OK process was 

performed on the data to populate the data voids that were generated. A reference plane was 

manually selected by choosing three points and the dataset was transformed in its orientation to 

Cartesian (xyz) coordinates with z as the scour depth. Furthermore, the distances of the points from 

the selected reference plane were determined. The accuracy of the kriging results is reported in a 

semivariogram along with the sill, range, and nugget effect values. The results show that the OK 

procedure generated data points that can accurately fill the spatial voids of the scanned scour hole. 

This study represents a first attempt in using OK to populate voided scour LiDAR scans, which 

can be developed into an effective scour monitoring technique. Currently, bridge inspections 

typically only report scour depth. LiDAR scans with the suggested Kriging data interpolation 

technique can be used to quantify scour parameters such as the scoured surface area and the 

scoured volume. The data can also be used to define a reference surface for the scour point data, 

allowing bridge engineers to quantify the actual volume and area of the mass/volume losses during 

the hydrodynamic processes of scouring over time. 
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4 SPATIAL DENSITY ANALYSIS OF BRIDGE SCOUR POINT CLOUD USING 

ORDINARY KRIGING 

4.1 Abstract 

In this study, we propose using terrestrial LiDAR to capture bridge pier scour hole point clouds 

and use Ordinary Kriging (OK) as a spatial interpolation method to normalize the point cloud 

density and establish the scour hole signatures (volume and area). Scour hole signatures are 

important to establish the extent of hydraulic erosion surrounding a bridge pier. Failure of 

managing scour surrounding bridge piers can lead to bridge failures. However, LiDAR point cloud 

data for bridge scours often display uneven spatial distributions resulting in data voids that can be 

critical to the quantification of scour hole area and volume. To ‘fill in’ the missing data, OK 

method has been used to spatially interpolate 3D LiDAR point cloud data. In this study, different 

spatial data densities have been generated with a goal to determine what is the ‘optimal’ data 

resolution that can help minimize later computational efforts. Actual field data from scanning a 

scoured bridge pier are used in the sensitivity analysis. Two scans from different time periods were 

also compared. 

Keywords: Bridge Scour, LiDAR Scan, Data Void, Kriging 

4.2 Introduction 

Scour is one of the primary causes of bridge failures worldwide and is responsible for almost 

60% of bridge failures in the United States (Melville and Coleman 2000). Scour can be defined as 

the erosion of soil and sand surrounding a bridge component caused by swiftly moving water. This 

compromises the integrity of a bridge structure (Arneson et al. 2012; Lagasse et al. 2012). Scour 

failures can occur without prior warning and thus is very dangerous. So, there is a need for effective 

monitoring techniques for assessing scour potential surrounding bridge structures. 
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Remote sensing techniques have been identified as a transformative technology for both 

terrestrial and bathymetric surveys (Lewis et al. 2020). Terrestrial LiDAR, in particular, has been 

found to be useful as a condition assessment technique for highway bridges including bridge 

displacement and as-built condition assessments (Dai et al. 2014; Fuchs et al. 2004; Watson et al. 

2013). More recently, LiDAR has been used for monitoring bridge construction processes, which 

generates a temporal record of the building process and is useful for geometric confirmation of 

design drawings (Lin et al. 2021).  

Scour is a unique bridge problem interfacing three disciplines: structural engineering, 

geotechnical engineering, and hydraulic engineering. Terrestrial lasers have been used to capture 

the physical conditions of the bridge hydraulic structures and to generate high-resolution point 

clouds of the bridge to quantify surficial damage (Chavan et al. 2021; Suro et al. 2020). The most 

significant benefit of scour detection using LiDAR scans is the potential of quantifying mass 

losses, which can reflect on both the hydrodynamic history and bridge stability. However, there 

are obvious limitations to the LiDAR scans including the obstruction of laser beam pathways by 

unintended objects resulting in imaging interferences. As a result, it is hard to construct a complete 

image of the targeted area without conducting laser scans from multiple locations.  

Due to the roughness of the ground surface, each scanned area can be impeded by voided areas 

similar to the shadows of pebbles or rocks within a scour. This presents a different issue to the 

LiDAR scan applications to bridge scour monitoring and can remain even when scans from 

multiple locations are performed. The stitched point cloud may cover the full scour surfaces, but 

some data voids could remain within the stitched point cloud due to subtle covered areas created 

by, for example, pebbles. Furthermore, the surface textures can also have effects on the laser 

energy returned to the transceiver. By experimenting on circular holes with different surface 
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finishes, Bian et al. (Bian et al. 2017) demonstrated that the back-scattering of light within the 

circular holes can result in a complicated light energy scattering effect on point cloud data. 

To address the above-mentioned voided point cloud data issue, this paper proposes the use of 

spatial interpolation using Ordinary Kriging (OK) technique. To help fill-in the voided point cloud 

data, Kriging, which is a process to estimate values of locations by interpolation, can help generate 

additional data points that are not surveyed by using the data from a network of known points 

(Cressie 1993; Isaaks and Srivastava 1989; Krige 1951; Meng et al. 2013). In this study, the most 

common OK technique is used for spatial interpolation of 3D LiDAR point cloud data from the 

scanning of an existing bridge scour.  

The case study bridge site is located in Charlotte, North Carolina (Figure 4-1). Figure 4-2 

shows a scanned image of the scour near the bridge (Phillips Road Bridge) at one of the piers: 

Figure 4-2a) shows the actual pier scour and Figure 4-2b) shows the point cloud data generated 

from a laser scan that is used in this study. 

OK technique is capable of generating different spatial densities from the same scanned point 

cloud dataset. To determine the sensitivity of the OK technique to the filling of original data voids 

and the associated data density, the same scanned point cloud is evaluated at different spatial 

densities. Since a high spatial density corresponds to long computational time for post-processing 

of data (such as the calculation of the scour hole soil mass loss rate), there is a significant 

implication to the computational budget. Hence, the objective of this study is to determine the 

‘optimal’ spatial density to minimize subsequent computation time associated with a massive 

number of data points. At the same time, we also attempt to understand the effect of normalized 

data spacing on the aforementioned data voids. 
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Figure 4-1 Study bridge: Phillips Road Bridge in Charlotte, NC (Photos were taken on 

03/30/2019; Photo credit: Shen-En Chen) 



54 

 

 

Figure 4-2 Scoured pier of the study bridge: a) scour hole with pebbles and b) LiDAR scan of the 

scour and pier (Photo credit: Shen-En Chen). 

4.3 Spatial Interpolation of Point Cloud Using Ordinary Kriging 

There are different types of spatial interpolation techniques including the Inverse Distance 

Weighted (IDW), different variations of Kriging, and local polynomial interpolations (Montero et 

al. 2015; Oliver and Webster 2015). Of these, the Ordinary Kriging (OK) is probably one of the 

most used geostatistical interpolation techniques. In this study, OK is used to predict the unknown 

value of a variable at a given point by computing a weighted average of known values of the 

variable at the neighborhood of the point: 

𝑍(𝑠) = 𝑚 + 𝑒(𝑠)          (1) 

where Z(s) is a predicted value, m is the mean value and e(s) is a random quantity with a mean 

value of zero and an associated covariance c(h):  

c(h) = E[e(s)e(s+h)]          (2) 

and h is the separation between samples, s, and E is the expectation.  

Under the assumption of intrinsic stationarity, the expected differences are zero: 
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E[Z(s) – Z(s+h)] = 0          (3) 

And the covariance can be replaced by half of the variance of differences (semivariance): 

γ(h) = ½ var[Z(s) – Z(s+h)] = ½ E[{Z(s) – Z(s+h)}2]     (4) 

The semivariance depends only on h, and the function γ can be used to construct the variogram. 

Some Kriging terms need to be explained: The term ‘range’ refers to the distance at which the 

model falls off and where there is no more spatial relation in the data and is a representation of the 

data autocorrelation. ‘Sill’ is the value at which the model is out of range and is an indication of 

the data variance. Finally, the ‘nugget effect’ is the value at which the semivariogram intercepts 

the y axis (distance = 0). The variogram function is a measure of the spatial autocorrelation. As 

the distance increases away from the sample points, there is no longer a relationship between the 

sample points and their variances begin to flatten out and the sample values are no longer related 

to one another  

 The missing data to be filled by the Kriging estimator may have different M and ê(s) values: 

𝑍(𝑠) = ℳ + �̂�(𝑠)         (5) 

Figure 4-3a) and Figure 4-3b) show pre-Kriging results with Z(s) and M and e(S), whereas 

Figure 4-3c) and d) show post-Kriging results with Z(s) and M and ê(s). 

The OK predictor is a linear combination of the data values. It is unbiased because it attempts 

to keep the mean residual to zero and tries to minimize the residual variance. OK is also statistically 

called the ‘best linear unbiased estimator’ (Schabenberger and Gotway 2017). 

Kriging has been used for laser point cloud processing and for different data improvement 

applications. For example, Hui et al. (Hui et al. 2016) suggested a multi-level kriging interpolation 

for filtering airborne LiDAR point clouds with the challenges of managing ground versus non-

ground spatial points. Large spatial region interpolations are typically complicated by land covers 
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such as vegetation and man-made structures. Scour detection is more akin to the construction of 

microtopography such as the establishment of wetland boundaries (Stovall et al. 2019) and 

vegetated sites(Nouwakpo et al. 2016; Zhang et al. 2021). In this case, Kriging can be useful in 

filling in the voided areas. Da Costa et al. (Da Costa et al. 2018) compared different interpolation 

techniques including Kriging, spline, and machine learning, for spatial data points and noted that 

Kriging and spline models are similar in some cases. 

 

Figure 4-3 Example Kriging predictions with original scanned data (a and b) and post-Kriging 

results (c and d). 
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Figure 4-4 Full LiDAR scan with laser scanner position and the location of the studied scour 

(number of points: 24,248,705). 
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4.4 Captured Scour Point Cloud and Spatial Density Analysis 

To evaluate the effect of Kriging data interpolation on scour quantitative measures (i.e. scour 

volume and scoured area), a scour hole on a pier of the Phillip’s Road Bridge (Chavan et al. 2021) 

is used in this study. The Phillips Road Bridge over Toby Creek (35°18'28.2"N 80°44'16.6"W) 

consists of three spans supported on prestressed concrete girders and drilled pier foundations. To 

detect the scour hole, a FARO Focus S 350 scanning laser was used. The FARO scanner uses a 

near infrared laser of 1,550 nm wavelength and has a maximum shooting range of 350 m. It is 

recognized that the bridge piles of the Phillips Road bridge are round, but the bridge piers are 

square in shape. As a result, the laser scanned scour images have a relatively sharp cornered shape 

shown partially in Figure 4-2b. 

For this study, a scanned point cloud was processed by removing everything except the scoured 

area. It is possible to detect the scours automatically using artificial intelligence (AI), but that is 

beyond the scope of this paper, which focuses on the scanned data quality with different OK 

interpolations. Figure 4-4 shows the original unprocessed scan indicating the bridge piers and the 

data scattered from the surrounding vegetation. The scanner and the scour positions are also 

identified from the image. For this study, the area surrounding the scour of interest is extracted 

from Figure 4-4 and is shown in Figure 4-5. As described earlier, the square bridge pier also needs 

to be extracted from the point cloud before analysis. Finally, a point cloud sample that contains 

1,000 spatial points (i.e., control points; see Figure 4-6) is considered for Kriging. The figure also 

shows the voids present in the point cloud. 
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Figure 4-5 Extracted image of the scoured area showing data voids (circled area). 

 

Figure 4-6 Sample scour points with voids marked (in red circles). 
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The input point cloud and the interpolated points are aligned in such a way that the Z-

coordinate is considered the scour depth. The resulting points appear in a uniform grid format with 

their projections displaced on the XY (spatial) plane. We designed a sensitivity analysis 

experiment with nine scenarios in terms of point resolution (inter-point distance of interpolated 

points). Using the Kriging model, nine different point-to-point (inter-point) distances – 500 mm, 

200 mm, 100 mm, 50 mm, 20 mm, 10 mm, 5 mm, 2 mm, and 1 mm – are used in this study. The 

processing was done on a workstation with Intel i7-11800H processor and a RAM of 32GB. 

Multiple software packages including CloudCompare, MATLAB, and ArcGIS were used in this 

study. 
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4.5 Results and Discussions 

Figure 4-7 shows the semivariance plot with its range, sill and nugget effect marked. The 

Kriging results are shown in Figure 4-8. Table 4-1 summarizes the results of this study, where the 

time reported in the table includes the time taken for scour identification, segmentation, sampling, 

boundary drawing, interpolation, and quantification processes. 

The first scenario, using a point resolution of 500 mm, generated 31 new points. From visual 

inspection (Figure 4-9), these points did not fully fill the voids in the input cloud. The projected 

2D area of the point cloud on the XY plane was 7.47 m2. This value was used in calculating the 

point density of the generated point clouds. 

Table 4-1 Results of the experiment used in this study. 

Scenario 

No. 

Point to Point 

distance 

No. of  

points generated 

Point 

density 

Processing 

time 

Surface  

area Volume 

 mm 
 

points/m
2 second m

2 m
3 

1 500 31 4.15 306 4.49 2.56 

2 200 185 24.76 307 6.37 3.25 

3 100 743 99.43 307 7.20 3.59 

4 50 2,991 400.25 307 7.68 3.76 

5 20 18,680 2,499.70 310 7.95 3.86 

6 10 74,731 10,000.29 330 8.07 3.89 

7 5 298,861 39,992.74 367 8.17 3.91 

8 2 1,867,735 249,935.03 596 8.33 3.92 

9 1 7,471,074 999,758.06 1,890 8.46 3.92 
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Figure 4-7 Semi-variance graph (semivariogram) for the selected point cloud (γ: semivariance). 

 

 

Figure 4-8 Ordinary Kriging results a) raster plot (OK: Ordinary Kriging); b) point cloud view. 
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Figure 4-9 Point cloud and interpolated points with point-to-point distance of 500 mm a) XY 

view b) 3D view. 

Figure 4-10 shows the results for scenario 2, with decreased point-to-point distance of 200 mm. 

It had a point density approximately 6 times greater than the 500 mm scenario. The processing 

time increased marginally, and the data voids were still visible. When the data density increased 

further such as in scenario 3 (Figure 4-11), there were no visible voids. The time taken for the 

processing was about the same as in the previous scenarios. The scour depth, the surface area and 

volume are parameters that are important for scour monitoring and assessing the health of a bridge 

structure. From the figures, there is very little change in the maximum depths observed using 

different resolutions of data interpolation. However, the differences are clearly observed in both 

surface area and volume. The surface area and volume for the scenario 3 point cloud were 7.20 m2 

and 3.59 m3, respectively, and these are different from the actual values of the Kriged surface 

(scenario 1) by 18% and 8.6%, respectively. Further decreasing the point distance resulted in an 

increased number of points generated whilst creating a decrease in the differences in quantification 

values. Figure 4-13 shows this observation clearly, where the x-axis is presented in natural 

logarithm of the spatial resolution. As the number of points increased, the differences in 
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quantification parameters decreased. Naturally, more interpolation points would correspond to a 

better-defined surface. Thus, the decrease was faster when the initial number of points were on the 

lower side. Consequently, processing times increased by just a few milliseconds to hundreds of 

seconds. Figure 4-14 shows the increase in processing time with respect to decrease in inter-point 

distances.  

One of the critical questions that inspired the current study is “What is the optimal interpolation 

density?” Based on the nine scenarios generated, the ‘optimal’ point cloud density is identified 

with point distances about 20 mm, which has less than 10% difference in surface area (when 

compared to the original point cloud) and the corresponding volume difference is lower than 2%.  

To demonstrate the effect of temporal changes in scouring, we delve into more detailed 

discussion by comparing the scour scans at two different times in the following section.  

 

Figure 4-10 Point cloud and interpolated points with point-to-point distance of 200 mm a) XY 

view b) 3D view. 
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Figure 4-11 Point cloud and interpolated points with point-to-point distance of 100 mm a) XY 

view b) 3D view 

 

Figure 4-12 Point cloud and interpolated points with point-to-point distance of 20 mm a) XY 

view b) 3D view 
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Figure 4-13 Percentage difference in surface area and volume with decreasing point-to-point 

distances. 

 

 

Figure 4-14 Processing times increase with decreasing point distances 

4.6 Scour Change Over Time 

In order to study the development of scour over time, the Phillips Road bridge scour was 

scanned multiple times over a period of several months. The scour described in the previous section 
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was scanned on June 9, 2020. A prior scan was taken on August 17, 2019, and is used here to 

describe how it had changed over the course of ten months. The LiDAR point clouds from 2019 

and 2020 are referred to as PointCloud1 (PC1) and PointCloud2 (PC2), respectively. The LiDAR 

was positioned approximately at the same location for both scans.  

Visually inspecting the two point clouds indicates that the PC1 scour had a greater number of 

small loose rocks when compared to PC2. This means that some of the rocks were washed away 

during the scouring process, thus PC2 has a smoother surface than PC1. The positions of the rocks 

were also different, indicating that flooding over the ten-month period had caused the rocks to 

move. As a result, many of the locations of the voids in the scans were not identical. However, the 

nature of the voids closest to the scanner location was similar in both PC1 and PC2, both due to 

the sudden change in ground elevation due to scour depth. However, PC1 had a more gradual 

change, and thus smaller voids. Figure 4-15 shows the segmented point cloud of the study scour 

in PC1. Voids were noted in the point cloud and OK was used to interpolate the data using the 

same procedure. The raster plot of the interpolated point cloud is shown in Figure 4-16.  

Comparing the interpolated data from PC1 and PC2, it is clear that the scour shape had also 

changed over the months. The change in scour parameters also reflects this observation. The 

maximum scour depth increased from 0.833 m in PC1 to 0.845 m in PC2. This increase can also 

be noticed visually from the location of the pier cap - While the pier cap was partially visible on 

both the scans, the pier cap from PC2 was more apparent because of deeper scour. The volumes 

of the scour remained approximately equal for both PC1 and PC2 scans and is about 3.91 m3. 

However, surface areas decreased from 8.94 m2 to 8.46 m2, which may be due to different scanning 

angles. 
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Last, it should be recognized that this study focuses on the scouring process of a pier-on-bank 

scenario – The pier is situated on the riverbank, which allows the scanning of a ‘dry’ scour hole, 

thus, the laser energy returned is not affected by water at the bottom of the scour hole. In contrast, 

a scour that occurs to a pier in the riverbed would not be visible to the terrestrial LiDAR. In such 

cases, a different frequency LiDAR (e.g., bathymetric LiDAR) can be used. Unfortunately, the 

scan data alone cannot explain the scouring history of the Phillip’s Road bridge and additional data 

from the hydraulic and hydrological processes of the Toby Creek will be needed. 

 

Figure 4-15 Phillips Road bridge scour point cloud as on Aug 17, 2019. Data voids are marked in 

red circles. 
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Figure 4-16 Raster plot of OK results (Aug 2019 scour). 

4.7 Conclusions 

In this study, a LiDAR scan of a scoured hole from a pier of the Phillips Road Bridge was 

identified with data voids generated to investigate the possible obstruction of the LiDAR scan from 

vegetation surrounding the pier or physical site constraints which might limit the viewscape of a 

LiDAR device. OK was performed on the segmented data to fill in the voids. The results show that 

the OK procedure generated data points that can accurately fill the spatial voids of the scanned 

scour hole. The Kriging result was used to generate point clouds with varying point density. It was 

observed that a spatial resolution of 20 mm performed well in terms of accuracy of scour surface 

area, volume, and processing time and can be considered the ‘optimal’ resolution for interpolated 

scour point cloud. A different scan performed at the same location with a gap of ten months 

between them was used to compare the scour parameters. From the results, scour depth had 

increased, surface area had decreased, and the volume had remained the same at the end of the ten-

month period. 
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LiDAR scans with the suggested Kriging data interpolation technique can be used to reliably 

quantify scour parameters such as the scoured surface area and the scoured volume. The data can 

also be used to define a reference surface for the scour point data, allowing bridge engineers to 

quantify the actual volume and area of the mass/volume losses during the hydrodynamic processes 

of scouring over time.  

However, it is acknowledged that the natural scour process is not straightforward – as the 

comparison of the two scans of the same scour indicated. Future studies should include scans 

before and after each significant storm over an extended period. Current scour effect rating is only 

based on scour depth measurements, which is insufficient to establish the stability analysis of a 

bridge due to scouring. The continued use of LiDAR scans can potentially help devise more robust 

scour quantifiers for assessing the overall stability of a bridge. 
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5 OVERALL CONCLUSIONS 

To address the issue of bridge scour monitoring, this dissertation explored effective 

approaches to identify and quantify local scour on pier-on-bank bridges addressing specifically the 

issues of LiDAR point cloud data processing pertaining to the data void infilling and automated 

volumetric and surface area quantification. As scour is the most critical and hidden risk for a 

bridge, the contributions from this research are many folds:  

1. It establishes the potential of LiDAR scans as a viable technology for scour detection. 

2. It suggests automation for scour detection in a massive point cloud data, and 

3. It explores the more theoretical issues of quantifying scour hole dimensions. 

The conclusions from this research are summarized as follows. 

1. Bridge failures caused by scour account for most of the bridge failures in the US, resulting 

in a substantial repair and replacement costs. 

2. Scour depth, surface and volume are parameters that can be used to estimate the severity 

of a scour. 

3. LiDAR technology is a more effective monitoring technique for scour investigations. It has 

the advantages of being more accurate, consistent, faster, lower cost, light independent, 

and ground control point independent over other surveying techniques. 

4. The Phillips Road Bridge over Toby Creek (35°18'28.2"N 80°44'16.6"W) located at the 

University of North Carolina at Charlotte was known to have local scour and was used as 

a case study. 

5. No previous research was found on the use of AI to detect scour. 3D PCN method was used 

to reconstruct scour shape from LiDAR point cloud. One thousand sets of synthetic data 

were used to train this network and it was applied on a real-world scour point cloud.  
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6. Discrete chamfer metric was used as the loss function governing the network training. It 

stabilized at 0.000122 at the 86th epoch. 

7. This network currently has an average accuracy of 63% in labelling the points as scour and 

non-scour. 

8. OK process was performed on a terrestrial LiDAR scour point cloud data to populate the 

data voids that were present. A reference plane was manually selected by choosing three 

points and the dataset was transformed in its orientation to Cartesian (xyz) coordinates such 

that z was the scour depth. The cos(rangle) value was 0.9985 for the case study scour point 

cloud, meaning that the reference plane chosen was almost overlapping the ground plane. 

9. Kriging can result in varying point densities, with processing times increasing with larger 

number of points.  

10. Kriging results with a wide range of point densities were studied, varying from just 31 new 

points at 500 mm distance to millions of points at 1 mm distance. 

11. Voids were filled with a resolution of 100 mm. However, the surface area and volume for 

this point cloud were 7.20m2 and 3.59m3 respectively, but those were off by 18% and 8.6% 

from the actual values of the Kriged surface.  

12. As the number of points increased, the differences in surface area and volume decreased. 

The decrease was faster when the density was low.  

13. Processing times increased by just few milliseconds to hundreds of seconds as the number 

of points increased.  

14. This method is applicable for any scour point cloud, not just from a terrestrial LiDAR. The 

results from this can be used to make an informed decision on the health of a bridge 

structure.  
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6 SCOPE FOR FUTURE RESEARCH 

This study revealed a very interesting subject on scour quantification, which currently still 

limited to scour depth determination during bridge evaluation (Melville et al. 2000). 

The use of LiDAR scan to establish the volumetric and area information of a scour can be 

significant in determining the actual criticality of the changed condition of a bridge support 

structure. This modern-day tool has already seen a dramatic increase in its applications for the past 

ten years. What current study is contributing is the potential integration of automatable numeric 

techniques that can significantly improve the workflow of a hydraulic engineer. 

Considering the vast advanced analytical techniques that can be used for point cloud data 

manipulation, current study is only scratching the surface of study. Figure 6-1 shows the potential 

evolution of this subject as part of the workflow of scour evaluation. As shown, there are several 

other techniques that can be experimented for the current subject. 
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Figure 6-1 Potential future research 
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APPENDICES 

Appendix A. Phillips Road Bridge North Bank Photos 

 

Figure A-1 North Bank Pier No. 2 (June 9, 2020) 

 

Figure A-2 North Bank Pier No.3 (June 9, 2020) 

 

Figure A-3 North Bank Pier No.4 (June 9, 2020) 
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Figure A-4 LiDAR scan in progress (June 9, 2020) 

 

Figure A-5 Sample Phillips Road Bridge LiDAR point cloud visualized using CloudCompare 
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Appendix B. Phillips Road Bridge North Bank Pier No. 2 Scour Over Time 

 

 

Figure B-1 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on Feb 11, 

2019 
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Figure B-2 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on Aug 17, 

2019 
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Figure B-3 Point cloud of Phillips Road Bridge North Bank Pier No. 2 and scour as on June 9, 

2020 
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Figure B-4 Pier No. 2 scour point cloud comparison a) Feb 11, 2019; b) Aug 17, 2019; c) June 9, 

2020 
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Table B-1 Pier No. 2 scour parameters over time 

Date Pier No. Scour Depth (m) Surface Area (m2) Volume (m3) 

2019-02-11 2 0.26 2.05 0.15 

2019-08-17 2 0.43 5.72 0.77 

2020-06-09 2 0.38 5.48 0.99 
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Appendix C. Phillips Road Bridge North Bank Pier No. 3 Scour Over Time 

 

Figure C-1 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on Aug 17, 

2019 
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Figure C-2 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on Jan 24, 

2020 
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Figure C-3 Point cloud of Phillips Road Bridge North Bank Pier No. 3 and scour as on June 6, 

2020 
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Figure C-4 Pier No. 3 scour point cloud comparison; a) Aug 17, 2019; b) Jan 24, 2020; c) June 9, 

2020 
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Table C-1 Pier No. 3 scour parameters over time 

Date Pier No. Scour Depth (m) Surface Area (m2) Volume (m3) 

2019-08-17 3 0.83 8.94 3.91 

2020-01-24 3 0.58 12.7 2.37 

2020-06-09 3 0.85 8.46 3.91 
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Appendix D. MATLAB Scripts 

Generate Gaussian curve – Initial attempt 

j=1000;                  % number of point clouds 

ne=1000;                 

np=2048;                  % number of points to be sampled 

wor_dir=pwd; 

dest_pt=[wor_dir '\points\']; 

dest_seg=[wor_dir '\segs\']; 

for j=1:nj 

z = zeros(ne,ne);      % initialize z matrix 

n = 5;                  % number of bumps 

sigma = 100;            % std width of bell curve 

max_ht = 50;           % maximum height 

[x,y] = meshgrid(1:size(z,1),1:size(z,2)); 

% vol_calc=0;            % initialize for volume using formula 

for i=1:n 

    % random location of bumps 

    xc = randi([size(z,1)/4 3*size(z,1)/4]); 

    yc = randi([size(z,2)/4 3*size(z,2)/4]); 

    x_c(i)=xc; 

    y_c(i)=yc; 

    % bell curve 

    exponent = ((x-xc).^2 + (y-yc).^2)./(2*sigma^2); 

    amplitude(i) = rand()*max_ht;   

    z = z + amplitude(i)*exp(-exponent); 

z1=reshape(z,ne*ne,1); 

x1=reshape(x,ne*ne,1); 

y1=reshape(y,ne*ne,1); 

z2=[x1 y1 z1]; 
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m1=randsample(size(z2,1),np); 

z3=z2(m1,:); 

writematrix(z3,[dest_pt 'ptfile_' num2str(j) '.txt'], 'Delimiter', ' '); 

z4=[z3 ones(size(z3,1),1)];          %annotate all points as 1 

z4(z4(:,3)>4,4)=2;                    %change annotation of scour points as 2 

writematrix(z4(:,4),[dest_seg 'segfile_' num2str(j) '.txt']); 
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Generate Gaussian curve – Increased amplitude 

nj=1000;                  % number of point clouds 

ne=1000;                 

np=2048;                  % number of points to be sampled 

wor_dir=pwd; 

dest_pt=[wor_dir '\points\']; 

dest_seg=[wor_dir '\segs\']; 

for j=1:nj 

z = zeros(ne,ne);      % initialize z matrix 

n = 5;                  % number of bumps 

sigma = 100;            % std width of bell curve 

max_ht = 200;           % maximum height 

[x,y] = meshgrid(1:size(z,1),1:size(z,2)); 

for i=1:n 

    % random location of bumps 

    xc = randi([size(z,1)/4 3*size(z,1)/4]); 

    yc = randi([size(z,2)/4 3*size(z,2)/4]); 

    x_c(i)=xc; 

    y_c(i)=yc; 

    % bell curve 

    exponent = ((x-xc).^2 + (y-yc).^2)./(2*sigma^2); 

    amplitude(i) = rand()*max_ht;   

    z = z + amplitude(i)*exp(-exponent); 

end 

z1=reshape(z,ne*ne,1); 

x1=reshape(x,ne*ne,1); 

y1=reshape(y,ne*ne,1); 

z2=[x1 y1 z1]; 

m1=randsample(size(z2,1),np); 
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z3=z2(m1,:); 

writematrix(z3,[dest_pt 'ptfile_' num2str(j) '.txt'], 'Delimiter', ' '); 

z4=[z3 ones(size(z3,1),1)];          %annotate all points as 1 

z4(z4(:,3)>10,4)=2;                   %change annotattion of scour points as 2 

writematrix(z4(:,4),[dest_seg 'ptfile_' num2str(j) '.txt']);  
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Subsample Point Cloud Data 

function orient_subsamp(scour_file) 

%read data 

a = readmatrix(scour_file); 

%get xyz data 

b = a(:,1:3); 

%get reference plane 

[s1, s2, s3] = get_refpl(a); 

%Translate and rotate data along with the reference plane 

b_t=b-s1; 

s1_t=s1-s1; 

s2_t=s2-s1; 

s3_t=s3-s1; 

p1=cross(s2_t,s3_t); 

p1_n=p1./norm(p1); 

r_axis=cross(p1_n,[0 0 1]); 

r_a_n=r_axis./norm(r_axis); 

r_angle=acos(dot(p1_n,[0 0 -1])); 

C=cos(r_angle); 

S=sin(r_angle); 

t=1-C; 

u1=r_a_n(1); 

u2=r_a_n(2); 

u3=r_a_n(3); 

T=[t*u1*u1+C t*u1*u2-S*u3 t*u1*u3+S*u2; 

    t*u1*u2+S*u3 t*u2*u2+C t*u2*u3-S*u1; 

    t*u1*u3-S*u2 t*u2*u3+S*u1 t*u3*u3+C]; 

b_new=b_t*T; 

%ignore data if it has recurring points 
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[c,ia,~]=unique(b_new(:,1:2),'rows','stable'); 

b_new2=[c b_new(ia,3)];  

%random sample data 

random1k=randsample([1:size(b_new2,1)],1000); 

random10k=randsample([1:size(b_new2,1)],10000); 

b_rand1k=b_new2(random1k,:); 

b_rand10k=b_new2(random10k,:); 

%write data to text file 

[~,file_name,~] = fileparts(scour_file); 

writematrix(b_new2, ['point_output_' file_name '.txt']); 

writematrix(b_rand1k,['point_output_' file_name '_1k.txt']); 

writematrix(b_rand10k,['point_output_' file_name '_10k.txt']); 

end 
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Appendix E. Python 3.6 Scripts 

Tensorflow logger 

# Code referenced from 

https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 

import tensorflow as tf 

import numpy as np 

import scipy.misc  

try: 

    from StringIO import StringIO  # Python 2.7 

except ImportError: 

    from io import BytesIO         # Python 3.x 

class Logger(object): 

        def __init__(self, log_dir): 

        """Create a summary writer logging to log_dir.""" 

        self.writer = tf.summary.FileWriter(log_dir) 

    def scalar_summary(self, tag, value, step): 

        """Log a scalar variable.""" 

        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, 

simple_value=value)]) 

        self.writer.add_summary(summary, step) 

    def image_summary(self, tag, images, step): 

        """Log a list of images.""" 

        img_summaries = [] 

        for i, img in enumerate(images): 

            # Write the image to a string 

            try: 

                s = StringIO() 

            except: 

                s = BytesIO() 

            scipy.misc.toimage(img).save(s, format="png") 



99 

 

            # Create an Image object 

            img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), 

                                       height=img.shape[0], 

                                       width=img.shape[1]) 

            # Create a Summary value 

            img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), 

image=img_sum)) 

        # Create and write Summary 

        summary = tf.Summary(value=img_summaries) 

        self.writer.add_summary(summary, step) 

            def histo_summary(self, tag, values, step, bins=1000): 

        """Log a histogram of the tensor of values.""" 

        # Create a histogram using numpy 

        counts, bin_edges = np.histogram(values, bins=bins) 

        # Fill the fields of the histogram proto 

        hist = tf.HistogramProto() 

        hist.min = float(np.min(values)) 

        hist.max = float(np.max(values)) 

        hist.num = int(np.prod(values.shape)) 

        hist.sum = float(np.sum(values)) 

        hist.sum_squares = float(np.sum(values**2)) 

        # Drop the start of the first bin 

        bin_edges = bin_edges[1:] 

        # Add bin edges and counts 

        for edge in bin_edges: 

            hist.bucket_limit.append(edge) 

        for c in counts: 

            hist.bucket.append(c) 

        # Create and write Summary 

        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) 



100 

 

        self.writer.add_summary(summary, step) 

        self.writer.flush() 
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Auto-Encoder Testing 

#Code referenced from https://github.com/yongheng1991/3D-point-capsule-

networks 

import argparse 

import torch 

import torch.nn.parallel 

from torch.autograd import Variable 

import torch.optim as optim 

import sys 

import os 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models'))) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders'))) 

import shapenet_part_loader 

import shapenet_core13_loader 

import shapenet_core55_loader 

from pointcapsnet_ae import PointCapsNet 

def main(): 

    USE_CUDA = True 

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size, 

opt.latent_caps_size, opt.latent_caps_size, opt.num_points) 

      if opt.model != '': 

        capsule_net.load_state_dict(torch.load(opt.model)) 

    else: 

     print ('pls set the model path') 

         if USE_CUDA:        

        print("Let's use", torch.cuda.device_count(), "GPUs!") 

        capsule_net = torch.nn.DataParallel(capsule_net) 
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        capsule_net.to(device) 

        if opt.dataset=='shapenet_part': 

        test_dataset = shapenet_part_loader.PartDataset(classification=True, 

npoints=opt.num_points, split='test') 

        test_dataloader = torch.utils.data.DataLoader(test_dataset, 

batch_size=opt.batch_size, shuffle=True, num_workers=4)         

    elif opt.dataset=='shapenet_core13': 

        test_dataset = shapenet_core13_loader.ShapeNet(normal=False, 

npoints=opt.num_points, train=False) 

        test_dataloader = torch.utils.data.DataLoader(test_dataset, 

batch_size=opt.batch_size, shuffle=True, num_workers=4) 

    elif opt.dataset=='shapenet_core55': 

        test_dataset = 

shapenet_core55_loader.Shapnet55Dataset(batch_size=opt.batch_size,npoints=op

t.num_points, shuffle=True, train=False) 

# test process for 'shapenet_part' or 'shapenet_core13' 

    capsule_net.eval() 

    if 'test_dataloader' in locals().keys() : 

        test_loss_sum = 0 

        for batch_id, data in enumerate(test_dataloader): 

            points, _= data 

            if(points.size(0)<opt.batch_size): 

                break 

            points = Variable(points) 

            points = points.transpose(2, 1) 

            if USE_CUDA: 

                points = points.cuda() 

            latent_caps, reconstructions= capsule_net(points) 

            test_loss = capsule_net.module.loss(points, reconstructions) 

            test_loss_sum += test_loss.item()             

            print('accumalate of batch %d loss is : %f' % (batch_id, test_loss.item())) 

        test_loss_sum = test_loss_sum / float(len(test_dataloader)) 
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        print('test loss is : %f' % (test_loss_sum)) 

              

# test process for 'shapenet_core55' 

    else: 

        test_loss_sum = 0 

        while test_dataset.has_next_batch():     

            batch_id, points_= test_dataset.next_batch() 

            points = torch.from_numpy(points_) 

            if(points.size(0)<opt.batch_size): 

                break 

            points = Variable(points) 

            points = points.transpose(2, 1) 

            if USE_CUDA: 

                points = points.cuda() 

            latent_caps, reconstructions= capsule_net(points) 

            test_loss = capsule_net.module.loss(points, reconstructions) 

            test_loss_sum += test_loss.item()                 

            print('accumalate of batch %d loss is : %f' % (batch_id, test_loss.item())) 

        test_loss_sum = test_loss_sum / float(len(test_dataloader)) 

        print('test loss is : %f' % (test_loss_sum)) 

                               if __name__ == "__main__": 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--batch_size', type=int, default=2, help='input batch size') 

    parser.add_argument('--n_epochs', type=int, default=300, help='number of 

epochs to train for') 

 

    parser.add_argument('--prim_caps_size', type=int, default=1024, help='number 

of primary point caps') 

    parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of 

primary point caps') 
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    parser.add_argument('--latent_caps_size', type=int, default=64, help='number 

of latent caps') 

    parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of 

latent caps') 

    parser.add_argument('--num_points', type=int, default=2048, help='input point 

set size') 

    parser.add_argument('--model', type=str, 

default='tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth', 

help='model path') 

    parser.add_argument('--dataset', type=str, default='shapenet_part', 

help='dataset: shapenet_part, shapenet_core13, shapenet_core55') 

    opt = parser.parse_args() 

    print(opt) 

    main() 
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Auto-Encoder Training 

import argparse 

import torch 

import torch.nn.parallel 

from torch.autograd import Variable 

import torch.optim as optim 

import sys 

import os 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models'))) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders'))) 

import shapenet_part_loader 

import shapenet_core13_loader 

import shapenet_core55_loader 

from logger import Logger 

from pointcapsnet_ae import PointCapsNet 

def main(): 

    USE_CUDA = True 

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size, 

opt.latent_caps_size, opt.latent_caps_size, opt.num_points) 

      if opt.model != '': 

        capsule_net.load_state_dict(torch.load(opt.model)) 

     if USE_CUDA:        

        print("Let's use", torch.cuda.device_count(), "GPUs!") 

        capsule_net = torch.nn.DataParallel(capsule_net) 

        capsule_net.to(device) 

    #create folder to save logs 
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log_dir='./logs'+'/'+opt.dataset+'_dataset_'+str(opt.latent_caps_size)+'caps_'+str(o

pt.latent_vec_size)+'vec'+'_batch_size_'+str(opt.batch_size) 

    if not os.path.exists(log_dir): 

        os.makedirs(log_dir); 

    logger = Logger(log_dir) 

    #create folder to save trained models 

    if not os.path.exists(opt.outf): 

        os.makedirs(opt.outf); 

        if opt.dataset=='shapenet_part': 

        train_dataset = shapenet_part_loader.PartDataset(classification=True, 

npoints=opt.num_points, split='train') 

        train_dataloader = torch.utils.data.DataLoader(train_dataset, 

batch_size=opt.batch_size, shuffle=True, num_workers=4)         

    elif opt.dataset=='shapenet_core13': 

        train_dataset = shapenet_core13_loader.ShapeNet(normal=False, 

npoints=opt.num_points, train=True) 

        train_dataloader = torch.utils.data.DataLoader(train_dataset, 

batch_size=opt.batch_size, shuffle=True, num_workers=4) 

    elif opt.dataset=='shapenet_core55': 

        train_dataset = 

shapenet_core55_loader.Shapnet55Dataset(batch_size=opt.batch_size, 

npoints=opt.num_points, shuffle=True, train=True) 

# training process for 'shapenet_part' or 'shapenet_core13' 

    capsule_net.train() 

    if 'train_dataloader' in locals().keys() : 

        for epoch in range(opt.n_epochs): 

            if epoch < 50: 

                optimizer = optim.Adam(capsule_net.parameters(), lr=0.0001) 

            elif epoch<150: 

                optimizer = optim.Adam(capsule_net.parameters(), lr=0.00001) 

            else: 

                optimizer = optim.Adam(capsule_net.parameters(), lr=0.000001) 
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            train_loss_sum = 0 

            for batch_id, data in enumerate(train_dataloader): 

                points, _= data 

                if(points.size(0)<opt.batch_size): 

                    break 

                points = Variable(points) 

                points = points.transpose(2, 1) 

                if USE_CUDA: 

                    points = points.cuda() 

                    optimizer.zero_grad() 

                latent_caps, reconstructions= capsule_net(points) 

                train_loss = capsule_net.module.loss(points, reconstructions) 

                train_loss.backward() 

                optimizer.step() 

                train_loss_sum += train_loss.item() 

                 

                info = {'train_loss': train_loss.item()} 

                

                for tag, value in info.items(): 

                    logger.scalar_summary( 

                        tag, value, (len(train_dataloader) * epoch) + batch_id + 1)                 

                              if batch_id % 50 == 0: 

                    print('bactch_no:%d/%d, train_loss: %f ' %  (batch_id, 

len(train_dataloader), train_loss.item())) 

                print('Average train loss of epoch %d : %f' % 

                  (epoch, (train_loss_sum / len(train_dataloader)))) 

                if epoch% 5 == 0: 

                dict_name=opt.outf+'/'+opt.dataset+'_dataset_'+ 

'_'+str(opt.latent_caps_size)+'caps_'+str(opt.latent_caps_size)+'vec_'+str(epoch)+'

.pth' 

                torch.save(capsule_net.module.state_dict(), dict_name) 
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# training process for 'shapenet_core55' 

    else: 

        for epoch in range(opt.n_epochs): 

            if epoch < 20: 

                optimizer = optim.Adam(capsule_net.parameters(), lr=0.001) 

            elif epoch<50: 

                optimizer = optim.Adam(capsule_net.parameters(), lr=0.0001) 

            else: 

                optimizer = optim.Adam(capsule_net.parameters(), lr=0.00001) 

                    train_loss_sum = 0 

            while train_dataset.has_next_batch():     

                batch_id, points_= train_dataset.next_batch() 

                points = torch.from_numpy(points_) 

                if(points.size(0)<opt.batch_size): 

                    break 

                points = Variable(points) 

                points = points.transpose(2, 1) 

                if USE_CUDA: 

                    points = points.cuda() 

                optimizer.zero_grad() 

                latent_caps, reconstructions= capsule_net(points) 

                train_loss = capsule_net.module.loss(points, reconstructions) 

                train_loss.backward() 

                optimizer.step()     

                train_loss_sum += train_loss.item()                 

                    info = {'train_loss': train_loss.item()} 

                for tag, value in info.items(): 

                    logger.scalar_summary( 

                        tag, value, (int(750/opt.batch_size) * epoch) + batch_id + 1) 

                nfo = {'train_loss': train_loss.item()} 
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                for tag, value in info.items(): 

                    logger.scalar_summary( 

                        tag, value, (int(750/opt.batch_size) * epoch) + batch_id + 1) 

                                    if batch_id % 50 == 0: 

                    print('bactch_no:%d/%d at epoch %d train_loss: %f ' %  (batch_id, 

int(750/opt.batch_size),epoch,train_loss.item() )) # the dataset size is 57448 

            print('Average train loss of epoch %d : %f' % (epoch, (train_loss_sum / 

int(750/opt.batch_size))))         

            train_dataset.reset()       

            if epoch% 5 == 0: 

                dict_name=opt.outf+'/'+opt.dataset+'_dataset_'+ 

'_'+str(opt.latent_caps_size)+'caps_'+str(opt.latent_caps_size)+'vec_'+str(epoch)+'

.pth' 

                torch.save(capsule_net.module.state_dict(), dict_name) 

if __name__ == "__main__": 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--batch_size', type=int, default=2, help='input batch size') 

    parser.add_argument('--n_epochs', type=int, default=2000, help='number of 

epochs to train for') 

    parser.add_argument('--prim_caps_size', type=int, default=1024, help='number 

of primary point caps') 

    parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of 

primary point caps') 

    parser.add_argument('--latent_caps_size', type=int, default=64, help='number 

of latent caps') 

    parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of 

latent caps') 

    parser.add_argument('--num_points', type=int, default=2048, help='input point 

set size') 

    parser.add_argument('--outf', type=str, default='tmp_checkpoints', help='output 

folder') 

    parser.add_argument('--model', type=str, default='', help='model path') 

    parser.add_argument('--dataset', type=str, default='shapenet_part', 

help='dataset: shapenet_part, shapenet_core13, shapenet_core55') 
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    opt = parser.parse_args() 

    print(opt) 

    main() 
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Visualize Capsule Reconstruction 

from open3d import * 

import argparse 

import torch 

import torch.nn.parallel 

from torch.autograd import Variable 

import torch.optim as optim 

import sys 

import os 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models'))) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders'))) 

import shapenet_part_loader 

import shapenet_core13_loader 

import shapenet_core55_loader 

from pointcapsnet_ae import PointCapsNet 

def main(): 

        #create pcd object list to save the reconstructed patch per capsule 

    pcd_list=[] 

    for i in range(opt.latent_caps_size): 

        pcd_ = open3d.geometry.PointCloud() 

        pcd_list.append(pcd_) 

    colors = plt.cm.tab20((np.arange(20)).astype(int))     

    #random selected viz capsules 

    hight_light_caps=[np.random.randint(0, opt.latent_caps_size) for r in 

range(10)] 

           USE_CUDA = True 

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size, 

opt.latent_caps_size, opt.latent_caps_size, opt.num_points) 
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    if opt.model != '': 

        capsule_net.load_state_dict(torch.load(opt.model)) 

    else: 

        print ('pls set the model path') 

            if USE_CUDA:        

        print("Let's use", torch.cuda.device_count(), "GPUs!") 

        capsule_net = torch.nn.DataParallel(capsule_net) 

        capsule_net.to(device) 

        if opt.dataset=='shapenet_part': 

        test_dataset = shapenet_part_loader.PartDataset(classification=True, 

npoints=opt.num_points, split='test') 

        test_dataloader = torch.utils.data.DataLoader(test_dataset, 

batch_size=opt.batch_size, shuffle=True, num_workers=4)         

    elif opt.dataset=='shapenet_core13': 

        test_dataset = shapenet_core13_loader.ShapeNet(normal=False, 

npoints=opt.num_points, train=False) 

        test_dataloader = torch.utils.data.DataLoader(test_dataset, 

batch_size=opt.batch_size, shuffle=True, num_workers=4) 

    elif opt.dataset=='shapenet_core55': 

        test_dataset = 

shapenet_core55_loader.Shapnet55Dataset(batch_size=opt.batch_size,npoints=op

t.num_points, shuffle=True, train=False) 

    capsule_net.eval()     

    if 'test_dataloader' in locals().keys() : 

        test_loss_sum = 0 

        for batch_id, data in enumerate(test_dataloader): 

            points, _= data 

            if(points.size(0)<opt.batch_size): 

                break 

            points = Variable(points) 

            points = points.transpose(2, 1) 
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            if USE_CUDA: 

                points = points.cuda() 

            latent_caps, reconstructions= capsule_net(points) 

                                    for pointset_id in range(opt.batch_size):         

                prc_r_all=reconstructions[pointset_id].transpose(1, 

0).contiguous().data.cpu() 

                prc_r_all_point=open3d.geometry.PointCloud() 

                prc_r_all_point.points = open3d.utility.Vector3dVector(prc_r_all)         

                colored_re_pointcloud= open3d.geometry.PointCloud()                

                jc=0 

                for j in range(opt.latent_caps_size): 

                    

current_patch=torch.zeros(int(opt.num_points/opt.latent_caps_size),3) 

                    for m in range(int(opt.num_points/opt.latent_caps_size)): 

                        current_patch[m,]=prc_r_all[opt.latent_caps_size*m+j,] # the 

reconstructed patch of the capsule m is not saved continuesly in the output 

reconstruction. 

                    pcd_list[j].points = open3d.utility.Vector3dVector(current_patch) 

                    if (j in hight_light_caps): 

                        pcd_list[j].paint_uniform_color([colors[jc,0], colors[jc,1], 

colors[jc,2]]) 

                        jc+=1 

                    else: 

                        pcd_list[j].paint_uniform_color([0.8,0.8,0.8]) 

                    colored_re_pointcloud+=pcd_list[j]         

                open3d.visualization.draw_geometries([colored_re_pointcloud]) 

             # test process for 'shapenet_core55' 

    else: 

        test_loss_sum = 0 

        while test_dataset.has_next_batch():     

            batch_id, points_= test_dataset.next_batch() 
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            points = torch.from_numpy(points_) 

            if(points.size(0)<opt.batch_size): 

                break 

            points = Variable(points) 

            points = points.transpose(2, 1) 

            if USE_CUDA: 

                points = points.cuda() 

            latent_caps, reconstructions= capsule_net(points) 

            for pointset_id in range(opt.batch_size):         

                prc_r_all=reconstructions[pointset_id].transpose(1, 

0).contiguous().data.cpu() 

                prc_r_all_point=open3d.geometry.PointCloud() 

                prc_r_all_point.points = Vector3dVector(prc_r_all)         

                colored_re_pointcloud= open3d.geometry.PointCloud()                

                jc=0 

                for j in range(opt.latent_caps_size): 

                    

current_patch=torch.zeros(int(opt.num_points/opt.latent_caps_size),3) 

                    for m in range(int(opt.num_points/opt.latent_caps_size)): 

                        current_patch[m,]=prc_r_all[opt.latent_caps_size*m+j,] # the 

reconstructed patch of the capsule m is not saved continuesly in the output 

reconstruction. 

                    pcd_list[j].points = Vector3dVector(current_patch) 

                    if (j in hight_light_caps): 

                        pcd_list[j].paint_uniform_color([colors[jc,0], colors[jc,1], 

colors[jc,2]]) 

                        jc+=1 

                    else: 

                        pcd_list[j].paint_uniform_color([0.8,0.8,0.8]) 

                    colored_re_pointcloud+=pcd_list[j] 

         



115 

 

                draw_geometries([colored_re_pointcloud]) 

if __name__ == "__main__": 

    from open3d import * 

    import matplotlib.pyplot as plt 

    import numpy as np 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--batch_size', type=int, default=2, help='input batch size') 

    parser.add_argument('--n_epochs', type=int, default=100, help='number of 

epochs to train for') 

    parser.add_argument('--prim_caps_size', type=int, default=1024, help='number 

of primary point caps') 

    parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of 

primary point caps') 

    parser.add_argument('--latent_caps_size', type=int, default=64, help='number 

of latent caps') 

    parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of 

latent caps') 

    parser.add_argument('--num_points', type=int, default=2048, help='input point 

set size') 

    parser.add_argument('--model', type=str, 

default='tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth', 

help='model path') 

    parser.add_argument('--dataset', type=str, default='shapenet_part', 

help='dataset: shapenet_part, shapenet_core13, shapenet_core55') 

    opt = parser.parse_args() 

    print(opt) 

    main() 
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Evaluate Segmentation 

from open3d import * 

import argparse 

import torch 

import torch.nn.parallel 

from torch.autograd import Variable 

import torch.optim as optim 

import torch.nn.functional as F 

import sys 

import os 

import numpy as np 

import statistics 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models'))) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders'))) 

import shapenet_part_loader 

import matplotlib.pyplot as plt 

from pointcapsnet_ae import PointCapsNet 

from capsule_seg_net import CapsSegNet 

#import h5py 

from sklearn.svm import LinearSVC 

import json 

def main(): 

    blue = lambda x:'\033[94m' + x + '\033[0m' 

    cat_no={'Scour':0}     

    #generate part label one-hot correspondence from the catagory: 

    dataset_main_path=os.path.abspath(os.path.join(BASE_DIR, '../../dataset')) 

    oid2cpid_file_name=os.path.join(dataset_main_path, 

opt.dataset,'shapenetcore_partanno_segmentation_benchmark_v0/shapenet_part_

overallid_to_catid_partid.json')         
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    oid2cpid = json.load(open(oid2cpid_file_name, 'r'))    

    object2setofoid = {} 

    for idx in range(len(oid2cpid)): 

        objid, pid = oid2cpid[idx] 

        if not objid in object2setofoid.keys(): 

            object2setofoid[objid] = [] 

        object2setofoid[objid].append(idx) 

        all_obj_cat_file = os.path.join(dataset_main_path, opt.dataset, 

'shapenetcore_partanno_segmentation_benchmark_v0/synsetoffset2category.txt') 

    fin = open(all_obj_cat_file, 'r') 

    lines = [line.rstrip() for line in fin.readlines()] 

    objcats = [line.split()[1] for line in lines] 

#    objnames = [line.split()[0] for line in lines] 

#    on2oid = {objcats[i]:i for i in range(len(objcats))} 

    fin.close() 

    colors = plt.cm.tab10((np.arange(10)).astype(int)) 

    blue = lambda x:'\033[94m' + x + '\033[0m' 

# load the model for point cpas auto encoder     

    capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size, 

opt.latent_caps_size, opt.latent_vec_size, opt.num_points,) 

    if opt.model != '': 

        capsule_net.load_state_dict(torch.load(opt.model)) 

    if USE_CUDA: 

        capsule_net = torch.nn.DataParallel(capsule_net).cuda() 

    capsule_net=capsule_net.eval() 

     # load the model for capsule wised part segmentation       

    caps_seg_net = CapsSegNet(latent_caps_size=opt.latent_caps_size, 

latent_vec_size=opt.latent_vec_size , num_classes=opt.n_classes)     

    if opt.part_model != '': 

        caps_seg_net.load_state_dict(torch.load(opt.part_model)) 

    if USE_CUDA: 
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        caps_seg_net = caps_seg_net.cuda() 

    caps_seg_net = caps_seg_net.eval()     

        train_dataset = shapenet_part_loader.PartDataset(classification=False, 

class_choice=opt.class_choice, npoints=opt.num_points, split='test') 

    train_dataloader = torch.utils.data.DataLoader(train_dataset, 

batch_size=opt.batch_size, shuffle=False, num_workers=4)         

    pcd_colored = open3d.geometry.PointCloud()                    

    pcd_ori_colored = open3d.geometry.PointCloud()         

    rotation_angle=-np.pi/4 

    cosval = np.cos(rotation_angle) 

    sinval = np.sin(rotation_angle)            

    flip_transforms  = [[cosval, 0, sinval,-1],[0, 1, 0,0],[-sinval, 0, cosval,0],[0, 0, 0, 

1]] 

    flip_transformt  = [[cosval, 0, sinval,1],[0, 1, 0,0],[-sinval, 0, cosval,0],[0, 0, 0, 

1]] 

            correct_sum=0 

    for batch_id, data in enumerate(train_dataloader): 

        points, part_label, cls_label= data         

        if not (opt.class_choice==None ): 

            cls_label[:]= cat_no[opt.class_choice] 

            if(points.size(0)<opt.batch_size): 

            break 

                        # use the pre-trained AE to encode the point cloud into latent 

capsules 

        points_ = Variable(points) 

        points_ = points_.transpose(2, 1) 

        if USE_CUDA: 

            points_ = points_.cuda() 

        latent_caps, reconstructions= capsule_net(points_) 

        reconstructions=reconstructions.transpose(1,2).data.cpu() 

                        #concatanete the latent caps with one-hot part label 
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        cur_label_one_hot = np.zeros((opt.batch_size, 16), dtype=np.float32) 

        for i in range(opt.batch_size): 

            cur_label_one_hot[i, cls_label[i]] = 1 

            iou_oids = object2setofoid[objcats[cls_label[i]]] 

            for j in range(opt.num_points): 

                part_label[i,j]=iou_oids[part_label[i,j]] 

        cur_label_one_hot=torch.from_numpy(cur_label_one_hot).float()         

        expand =cur_label_one_hot.unsqueeze(2).expand(opt.batch_size, 16, 

opt.latent_caps_size).transpose(1,2) 

        expand,latent_caps=Variable(expand),Variable(latent_caps) 

        expand,latent_caps=expand.cuda(),latent_caps.cuda() 

        latent_caps=torch.cat((latent_caps,expand),2) 

              # predict the part class per capsule 

        latent_caps=latent_caps.transpose(2, 1) 

        output=caps_seg_net(latent_caps)         

        for i in range (opt.batch_size): 

            iou_oids = object2setofoid[objcats[cls_label[i]]] 

            non_cat_labels = list(set(np.arange(2)).difference(set(iou_oids))) #  

            mini = torch.min(output[i,:,:]) 

            output[i,:, non_cat_labels] = mini - 1000    

        pred_choice = output.data.cpu().max(2)[1] 

               # assign predicted the capsule part label to its reconstructed point patch 

        

reconstructions_part_label=torch.zeros([opt.batch_size,opt.num_points],dtype=tor

ch.int64) 

        for i in range(opt.batch_size): 

            for j in range(opt.latent_caps_size): 

                for m in range(int(opt.num_points/opt.latent_caps_size)): 

                    

reconstructions_part_label[i,opt.latent_caps_size*m+j]=pred_choice[i,j] 
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                # assign the part label from the reconstructed point cloud to the input 

point set with NN 

        pcd=pcd = open3d.geometry.PointCloud()  

        

pred_ori_pointcloud_part_label=torch.zeros([opt.batch_size,opt.num_points],dtyp

e=torch.int64)    

        for point_set_no in range (opt.batch_size): 

            pcd.points = 

open3d.utility.Vector3dVector(reconstructions[point_set_no,]) 

            pcd_tree = open3d.geometry.KDTreeFlann(pcd) 

            for point_id in range (opt.num_points): 

                [k, idx, _] = 

pcd_tree.search_knn_vector_3d(points[point_set_no,point_id,:], 10) 

                local_patch_labels=reconstructions_part_label[point_set_no,idx] 

                

pred_ori_pointcloud_part_label[point_set_no,point_id]=statistics.median(local_p

atch_labels) 

                       # calculate the accuracy with the GT 

        correct = 

pred_ori_pointcloud_part_label.eq(part_label.data.cpu()).cpu().sum() 

        correct_sum=correct_sum+correct.item()         

        print(' accuracy is: %f' 

%(correct_sum/float(opt.batch_size*(batch_id+1)*opt.num_points))) 

 

                         # viz the part segmentation 

        point_color=torch.zeros([opt.batch_size,opt.num_points,3]) 

        point_ori_color=torch.zeros([opt.batch_size,opt.num_points,3]) 

        for point_set_no in range (opt.batch_size): 

            iou_oids = object2setofoid[objcats[cls_label[point_set_no ]]] 

            for point_id in range (opt.num_points): 

                part_no=pred_ori_pointcloud_part_label[point_set_no,point_id]-

iou_oids[0] 

                point_color[point_set_no,point_id,0]=colors[part_no,0] 
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                point_color[point_set_no,point_id,1]=colors[part_no,1] 

                point_color[point_set_no,point_id,2]=colors[part_no,2] 

                 

            pcd_colored.points=open3d.utility.Vector3dVector(points[point_set_no,]) 

            

pcd_colored.colors=open3d.utility.Vector3dVector(point_color[point_set_no,]) 

                        for point_id in range (opt.num_points): 

                part_no=part_label[point_set_no,point_id]-iou_oids[0] 

                point_ori_color[point_set_no,point_id,0]=colors[part_no,0] 

                point_ori_color[point_set_no,point_id,1]=colors[part_no,1] 

                point_ori_color[point_set_no,point_id,2]=colors[part_no,2] 

                 

            

pcd_ori_colored.points=open3d.utility.Vector3dVector(points[point_set_no,]) 

            

pcd_ori_colored.colors=open3d.utility.Vector3dVector(point_ori_color[point_set

_no,]) 

                       pcd_ori_colored.transform(flip_transforms)# tansform the pcd in 

order to viz both point cloud 

            pcd_colored.transform(flip_transformt) 

            open3d.visualization.draw_geometries([pcd_ori_colored, pcd_colored]) 

                    if __name__ == "__main__": 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--batch_size', type=int, default=2, help='input batch size') 

    parser.add_argument('--prim_caps_size', type=int, default=1024, help='number 

of primary point caps') 

    parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of 

primary point caps') 

    parser.add_argument('--latent_caps_size', type=int, default=64, help='number 

of latent caps') 

    parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of 

latent caps') 
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    parser.add_argument('--num_points', type=int, default=2048, help='input point 

set size') 

    parser.add_argument('--part_model', type=str, 

default='./tmp_checkpoints/64caps_64vec_100% 

of_training_data_at_epoch100.pth', help='model path for the pre-trained part 

segmentation network') 

    parser.add_argument('--model', type=str, 

default='../AE/tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth', 

help='model path') 

    parser.add_argument('--dataset', type=str, default='shapenet_part', 

help='dataset: shapenet_part, shapenet_core13, shapenet_core55, modelent40') 

    parser.add_argument('--n_classes', type=int, default=2, help='part classes in all 

the catagories') 

    parser.add_argument('--class_choice', type=str, default='Scour', help='choose 

the class to eva') 

    opt = parser.parse_args() 

    print(opt) 

    USE_CUDA = True 

    main() 
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Save Results 

from open3d import * 

import argparse 

import torch 

import torch.nn.parallel 

from torch.autograd import Variable 

import torch.optim as optim 

import sys 

import os 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../models'))) 

sys.path.append(os.path.abspath(os.path.join(BASE_DIR, '../../dataloaders'))) 

import shapenet_part_loader 

from pointcapsnet_ae import PointCapsNet 

def main(): 

    USE_CUDA = True 

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    capsule_net = PointCapsNet(opt.prim_caps_size, opt.prim_vec_size, 

opt.latent_caps_size, opt.latent_caps_size, opt.num_points) 

      if opt.model != '': 

        capsule_net.load_state_dict(torch.load(opt.model)) 

     if USE_CUDA:        

        print("Let's use", torch.cuda.device_count(), "GPUs!") 

        capsule_net = torch.nn.DataParallel(capsule_net) 

        capsule_net.to(device) 

        if opt.dataset=='shapenet_part': 

        if opt.save_training: 

            split='train' 

        else : 

            split='test'             
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        dataset = shapenet_part_loader.PartDataset(classification=False, 

npoints=opt.num_points, split=split) 

        dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, 

shuffle=True, num_workers=4)         

        # init saving process 

    pcd = open3d.geometry.PointCloud()  

    data_size=0 

    dataset_main_path=os.path.abspath(os.path.join(BASE_DIR, '../../dataset')) 

    out_file_path=os.path.join(dataset_main_path, opt.dataset,'latent_caps') 

    if not os.path.exists(out_file_path): 

        os.makedirs(out_file_path);    

    if opt.save_training: 

        out_file_name=out_file_path+"/saved_train_with_part_label.h5" 

    else: 

        out_file_name=out_file_path+"/saved_test_with_part_label.h5"         

    if os.path.exists(out_file_name): 

        os.remove(out_file_name) 

    fw = h5py.File(out_file_name, 'w', libver='latest') 

    dset = fw.create_dataset("data", 

(1,opt.latent_caps_size,opt.latent_vec_size,),maxshape=(None,opt.latent_caps_siz

e,opt.latent_vec_size), dtype='<f4') 

    dset_s = 

fw.create_dataset("part_label",(1,opt.latent_caps_size,),maxshape=(None,opt.late

nt_caps_size,),dtype='uint8') 

    dset_c = fw.create_dataset("cls_label",(1,),maxshape=(None,),dtype='uint8') 

    fw.swmr_mode = True 

#  process for 'shapenet_part' or 'shapenet_core13' 

    capsule_net.eval() 

        for batch_id, data in enumerate(dataloader): 

        #print(list(enumerate(dataloader))) 

        points, part_label, cls_label= data 

        if(points.size(0)<opt.batch_size): 
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            break 

        points = Variable(points) 

        points = points.transpose(2, 1) 

        if USE_CUDA: 

            points = points.cuda() 

        latent_caps, reconstructions= capsule_net(points) 

               # For each resonstructed point, find the nearest point in the input 

pointset,  

        # use their part label to annotate the resonstructed point, 

        # Then after checking which capsule reconstructed this point, use the part 

label to annotate this capsule 

        reconstructions=reconstructions.transpose(1,2).data.cpu()    

        points=points.transpose(1,2).data.cpu()   

        cap_part_count=torch.zeros([opt.batch_size, opt.latent_caps_size, 

opt.n_classes],dtype=torch.int64) 

        for batch_no in range (points.size(0)): 

            pcd.points = open3d.utility.Vector3dVector(points[batch_no,]) 

            pcd_tree = open3d.geometry.KDTreeFlann(pcd) 

            for point_id in range (opt.num_points): 

                [k, idx, _] = 

pcd_tree.search_knn_vector_3d(reconstructions[batch_no,point_id,:], 1) 

                point_part_label=part_label[batch_no, idx]             

                caps_no=point_id % opt.latent_caps_size 

                #print(batch_no) 

                #print(caps_no) 

                #print(point_part_label.numpy()) 

                cap_part_count[batch_no,caps_no,point_part_label]+=1             

        _,cap_part_label=torch.max(cap_part_count,2) # if the reconstucted points 

have multiple part labels, use the majority as the capsule part label    

             # write the output latent caps and cls into file 

        data_size=data_size+points.size(0) 
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        new_shape = (data_size,opt.latent_caps_size,opt.latent_vec_size, ) 

        dset.resize(new_shape) 

        dset_s.resize((data_size,opt.latent_caps_size,)) 

        dset_c.resize((data_size,)) 

                latent_caps_=latent_caps.cpu().detach().numpy() 

        target_=cap_part_label.numpy() 

        dset[data_size-points.size(0):data_size,:,:] = latent_caps_ 

        dset_s[data_size-points.size(0):data_size] = target_ 

        dset_c[data_size-points.size(0):data_size] = cls_label.squeeze().numpy() 

            dset.flush() 

        dset_s.flush() 

        dset_c.flush() 

        print('accumalate of batch %d, and datasize is %d ' % ((batch_id), 

(dset.shape[0]))) 

               fw.close()    

             if __name__ == "__main__": 

    import h5py 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--batch_size', type=int, default=2, help='input batch size') 

    parser.add_argument('--n_epochs', type=int, default=100, help='number of 

epochs to train for') 

    parser.add_argument('--prim_caps_size', type=int, default=1024, help='number 

of primary point caps') 

    parser.add_argument('--prim_vec_size', type=int, default=16, help='scale of 

primary point caps') 

    parser.add_argument('--latent_caps_size', type=int, default=64, help='number 

of latent caps') 

    parser.add_argument('--latent_vec_size', type=int, default=64, help='scale of 

latent caps') 

    parser.add_argument('--num_points', type=int, default=2048, help='input point 

set size') 
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    parser.add_argument('--model', type=str, 

default='../AE/tmp_checkpoints/shapenet_part_dataset__64caps_64vec_95.pth', 

help='model path') 

    parser.add_argument('--dataset', type=str, default='shapenet_part', help='It has 

to be shapenet part') 

#    parser.add_argument('--save_training', type=bool, default=True, help='save 

the output latent caps of training data or test data') 

    parser.add_argument('--save_training', help='save the output latent caps of 

training data or test data', action='store_true') 

    parser.add_argument('--n_classes', type=int, default=2, help='catagories of 

current dataset') 

    opt = parser.parse_args() 

    print(opt) 

    main() 
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ShapeNet Loader 

#from __future__ import print_function 

import torch.utils.data as data 

import os 

import os.path 

import torch 

import json 

import numpy as np 

import sys 

BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

dataset_path=os.path.abspath(os.path.join(BASE_DIR, 

'../dataset/shapenet_part/shapenetcore_partanno_segmentation_benchmark_v0/')) 

 

class PartDataset(data.Dataset): 

    def __init__(self, root=dataset_path, npoints=2048, classification=False, 

class_choice=None, split='train', normalize=True): 

        self.npoints = npoints 

        self.root = root 

        self.catfile = os.path.join(self.root, 'synsetoffset2category.txt') 

        self.cat = {} 

        self.classification = classification 

        self.normalize = normalize 

        with open(self.catfile, 'r') as f: 

            for line in f: 

                ls = line.strip().split() 

                self.cat[ls[0]] = ls[1] 

        # print(self.cat) 

        if not class_choice is None: 

            self.cat = {k: v for k, v in self.cat.items() if k in class_choice} 

            print(self.cat) 
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        self.meta = {} 

        with open(os.path.join(self.root, 'train_test_split', 

'shuffled_train_file_list.json'), 'r') as f: 

            train_ids = set([str(d.split('/')[2]) for d in json.load(f)]) 

        with open(os.path.join(self.root, 'train_test_split', 

'shuffled_val_file_list.json'), 'r') as f: 

            val_ids = set([str(d.split('/')[2]) for d in json.load(f)]) 

        with open(os.path.join(self.root, 'train_test_split', 

'shuffled_test_file_list.json'), 'r') as f: 

            test_ids = set([str(d.split('/')[2]) for d in json.load(f)]) 

        for item in self.cat: 

            # print('category', item) 

            self.meta[item] = [] 

            dir_point = os.path.join(self.root, self.cat[item], 'points') 

            dir_seg = os.path.join(self.root, self.cat[item], 'points_label') 

            # print(dir_point, dir_seg) 

            fns = sorted(os.listdir(dir_point)) 

            if split == 'trainval': 

                fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))] 

            elif split == 'train': 

                fns = [fn for fn in fns if fn[0:-4] in train_ids] 

            elif split == 'val': 

                fns = [fn for fn in fns if fn[0:-4] in val_ids] 

            elif split == 'test': 

                fns = [fn for fn in fns if fn[0:-4] in test_ids] 

            else: 

                print('Unknown split: %s. Exiting..' % (split)) 

                exit(-1) 

            for fn in fns: 

                token = (os.path.splitext(os.path.basename(fn))[0]) 
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                self.meta[item].append((os.path.join(dir_point, token + '.txt'), 

os.path.join(dir_seg, token + '.txt'),self.cat[item], token))             

        self.datapath = [] 

        for item in self.cat: 

            for fn in self.meta[item]: 

                self.datapath.append((item, fn[0], fn[1], fn[2], fn[3])) 

        self.classes = dict(zip(sorted(self.cat), range(len(self.cat)))) 

        print(self.classes) 

        self.num_seg_classes = 0 

        if not self.classification: 

            for i in range(len(self.datapath)//50): 

                l = len(np.unique(np.loadtxt(self.datapath[i][2]).astype(np.uint8))) 

                if l > self.num_seg_classes: 

                    self.num_seg_classes = l 

        # print(self.num_seg_classes) 

        self.cache = {}  # from index to (point_set, cls, seg) tuple 

        self.cache_size = 18000 

    def __getitem__(self, index): 

        if index in self.cache: 

#            point_set, seg, cls= self.cache[index] 

            point_set, seg, cls, foldername, filename = self.cache[index] 

        else: 

            fn = self.datapath[index] 

            cls = self.classes[self.datapath[index][0]] 

#            cls = np.array([cls]).astype(np.int32) 

            point_set = np.loadtxt(fn[1]).astype(np.float32) 

            if self.normalize: 

                point_set = self.pc_normalize(point_set) 

            seg = np.loadtxt(fn[2]).astype(np.int64) - 1 

            foldername = fn[3] 
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            filename = fn[4] 

            if len(self.cache) < self.cache_size: 

                self.cache[index] = (point_set, seg, cls, foldername, filename) 

        #print(point_set.shape, seg.shape) 

        choice = np.random.choice(len(seg), self.npoints, replace=True) 

        # resample 

        point_set = point_set[choice, :] 

        seg = seg[choice] 

         

        # To Pytorch 

        point_set = torch.from_numpy(point_set) 

        seg = torch.from_numpy(seg) 

        cls = torch.from_numpy(np.array([cls]).astype(np.int64)) 

        if self.classification: 

            return point_set, cls 

        else: 

            return point_set, seg , cls 

            def __len__(self): 

        return len(self.datapath) 

        

    def pc_normalize(self, pc): 

        """ pc: NxC, return NxC """ 

        l = pc.shape[0] 

        centroid = np.mean(pc, axis=0) 

        pc = pc - centroid 

        m = np.max(np.sqrt(np.sum(pc**2, axis=1))) 

        pc = pc / m 

        return pc 

if __name__ == '__main__': 

    print('test') 
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    d = PartDataset( 

root='../dataset/shapenetcore_partanno_segmentation_benchmark_v0/',classificati

on=True, class_choice='Scour', npoints=2048, split='test') 

    ps, cls = d[0] 

    print(ps.size(), ps.type(), cls.size(), cls.type()) 

 


