
A COMPARISON OF MACHINE LEARNING ALGORITHMS FOR THE
PREDICTION OF THERMAL-EXPANSION OF SPHERICAL SHELLS

by

Kolby Bumgarner

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Mechanical Engineering

Charlotte

2022

Approved by:

Dr. Harish Cherukuri

Dr. Yawo Amengonu

Dr. Russell Keanini

ii

©2022
Kolby Bumgarner

ALL RIGHTS RESERVED

iii

ABSTRACT

KOLBY BUMGARNER. A Comparison of Machine Learning Algorithms for The
Prediction of Thermal-Expansion of Spherical Shells. (Under the direction of DR.

HARISH CHERUKURI)

Machine Learning (ML) applications in material science is an active area of research

due to its accurate predictive capabilities while also being generalizable. Experimen-

tation where a physical model of the problem is constructed has been widely used

in the past and is still used today but is very costly in time and capital. Simula-

tion using virtual models can be much more efficient than experimental modeling

but still takes time to construct and solve computationally. ML uses statistics and

data science methods to predict a variety of different problem configurations quickly

while remaining accurate. While becoming an increasingly popular method, different

ML model types have their own advantages and disadvantages. In this work, ML

models are trained to predict the thermal expansion of a hollow sphere so that these

advantages and disadvantages may be studied. Six ML model types were explored

by training on instances of data generated from Finite Element Analysis (FEA) data

then compared using error metrics. Sample size analysis was completed to determine

required amounts of input data to produce an accurate model for each ML type. A

noise study was conducted to observe how each model type would react to varying

levels of noise added to the data. Sensitivity analysis was carried out on the optimal

model to test how each predictor variable affected the prediction value. Finally, the

optimal model was tested against new data that had not been encountered before to

simulate how a production ready model would work in the real world.

iv

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF ABBREVIATIONS viii

CHAPTER 1: INTRODUCTION 1

1.1. Problem Description 1

1.2. Machine Learning 2

1.2.1. Machine Learning Example 2

CHAPTER 2: Literature Review 9

2.1. Datasets 9

2.2. ML Models 9

2.3. Error Types and Ranges 10

2.4. Additional Inquiries 10

2.5. Conclusion 11

CHAPTER 3: Experimental Methods 12

3.1. Preprocessing 12

3.1.1. Software 12

3.2. Machine Learning Models 19

3.2.1. Linear Regression 19

3.2.2. K Nearest Neighbors 21

3.2.3. Artificial Neural Network 23

3.2.4. Support Vector Regression 25

3.2.5. Gaussian Processes Regression 27

v

3.3. Evaluation 29

CHAPTER 4: Results 32

4.1. Linear 32

4.1.1. OLS Model 32

4.1.2. Lasso 33

4.2. KNN Model 34

4.3. Artificial Neural Network 37

4.4. Support Vector Regression 39

4.5. Gaussian Processes Regression 40

4.6. Response to Different Training Sample Sizes 41

4.7. Response to Noise 44

4.8. Sensitivity of GPR Model 46

4.9. Production Ready Model 46

CHAPTER 5: Conclusions and Future Work 51

REFERENCES 52

vi

LIST OF FIGURES

FIGURE 1.1: The hollow sphere before and after thermal expansion 1

FIGURE 1.2: Deflection of cantilever beam with force applied unsup-
ported end

3

FIGURE 1.3: How an equation is used to calculate deflection 5

FIGURE 1.4: How a ML model is used to predict deflection 5

FIGURE 1.5: ML model predictions on original dataset (Table 1.2) 6

FIGURE 1.6: ML model predictions on new instances of data 6

FIGURE 1.7: Cantilever beam example ML predictions vs actual values 7

FIGURE 1.8: ML model training only using measurement data 8

FIGURE 3.1: Experimental method flow chart 12

FIGURE 3.2: Raw data shown in a pandas Dataframe 14

FIGURE 3.3: Variable distributions 16

FIGURE 3.4: Correlation Heatmap 17

FIGURE 3.5: Normalized data with the target variable unchanged 18

FIGURE 3.6: KNN visualization 21

FIGURE 3.7: ANN Architecture 23

FIGURE 3.8: Node calculation [1] 24

FIGURE 3.9: SVR visualization [2] 25

FIGURE 3.10: Kernel visualization [3] 26

FIGURE 3.11: Two random variables sampled 1,000 times from the Gaus-
sian distribution [4]

27

FIGURE 3.12: Uncorrelated Gaussian distributed random variables con-
nected [4]

28

vii

FIGURE 3.13: Correlated Gaussian distributed random variables [4] 28

FIGURE 4.1: OLS Results from training on training set 32

FIGURE 4.2: OLS predicted vs actual values 33

FIGURE 4.3: Lasso predicted vs actual values 34

FIGURE 4.4: R2 values for sweep of K values 35

FIGURE 4.5: RMSE values for sweep of K values 36

FIGURE 4.6: KNN predicted vs actual values 37

FIGURE 4.7: ANN predicted vs actual values 38

FIGURE 4.8: SVR predicted vs actual values 40

FIGURE 4.9: GPR predicted vs actual values 41

FIGURE 4.10: R2 values for up to 9,000 training instances 42

FIGURE 4.11: RMSE values for up to 9,000 training instances 42

FIGURE 4.12: R2 values for up to 2,000 training instances 43

FIGURE 4.13: RMSE values for up to 2,000 training instances 43

FIGURE 4.14: R2 values for each percentage of noise 45

FIGURE 4.15: RMSE values for each percentage of noise 45

FIGURE 4.16: First degree sensitivity graph 46

FIGURE 4.17: Histogram of training data and production data 47

FIGURE 4.18: Predicted vs actual values of full production ready dataset 48

FIGURE 4.19: Histogram of training data and production data that over-
lap in value ranges (pruned dataset)

49

FIGURE 4.20: Predicted vs actual values with pruned dataset 50

viii

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

FEA Finite Element Analysis

GPR Gaussian Processes Regression

KNN K Nearest Neighbors

ML Machine Learning

MPR Multivariable Polynomial Regression

OLS Ordinary Least Squares

RMSE Root Mean Square Error

SVM Support Vector Machine

SVR Support Vector Regression

CHAPTER 1: INTRODUCTION

1.1 Problem Description

Figure 1.1: The hollow sphere before and after thermal expansion

In this study, the thermal expansion of a hollow sphere due to thermal gradient

across the thickness is studied. The sphere is at an initially uniform temperature. At

t = 0, the temperatures at inner and outer radii are suddenly changed resulting in a

contraction or expansion of the sphere. The goal of this exploratory study is to use

various learning algorithms to predict the change of thickness of the hollow sphere

given input parameters that govern the deformation of the sphere. The predictive

and target variables are shown in Fig.1.1 and listed in Table 1.1.

2

Table 1.1: Parameters to be used in prediction

Symbol Parameter

ν Poisson’s Ratio

E Young’s Modulus (N/m2)

α Thermal Expansion Coefficient (C−1)

a Inner Radius (m)

b Outer Radius (m)

Ta Inner Temperature (◦C)

Tb Outer Temperature (◦C)

(b′ − a′)− (b− a) Thickness Change (m)

1.2 Machine Learning

For this problem, machine learning (ML) will be used to attempt to find a predictive

method for estimating the thickness change of the hollow sphere. Machine learning

algorithms use data driven problem solving methods to create models that predict new

information after training on previously known information. Instead of discovering

an equation that explains exactly how a set of independent variables relates to a

dependent variable, an ML model predicts dependent variables after the model is

trained on a set of data with dependent and independent variables.

1.2.1 Machine Learning Example

As an example of machine learning and its application in a mechanical engineering

problem, a simple beam deflection problem can be solved. A cantilever beam with

a load applied at the unsupported end has a derivable equation which describes the

deflection at the unsupported end which is outlined in Eqn.1.1 and viewed in Fig.1.2.

F is the force in Newtons applied at the free-end of the beam, L is the total length

of the beam in meters from the supported end to the unsupported end, E is Young’s

Modulus which encapsulates the beam’s material properties, and I is the Second

3

Moment of Inertia which is a term that is derived from the beams cross-sectional

geometry. Delta (δ) describes the deflection of the right end due to the force.

δ =
FL3

3EI
(1.1)

Figure 1.2: Deflection of cantilever beam with force applied unsupported end

Since there is an equation that fully describes this particular problem, a ML pre-

dictive model may be tested against the known truth of the equation as the example.

For a mental visualization of the problem, the beam can be thought of as a diving

board of varying length. If a person stands on the edge of a very short diving board,

the deflection down where the person stands will be small. As the length of the diving

board increases with the person at the tip of the board, the deflection down increases

(in a cubic manner). Table 1.2 shows data generated by using Eqn.1.1 of said diving

board to train a machine learning model. The person stays the same weight, thus

applying the same force on the edge of the board at any length. The material of

the board (aviation grade aluminum) stays the same so the Young’s Modulus (E) is

constant. The cross sectional area (0.5m wide, 0.005m thick) stays the same which

results in the same second moment of inertia (I) for each length.

4

Table 1.2: Deflection data from a diving board of varying length

F L E I δ

100 0.25 340000000 0.0005208333 0.000002941176659

100 0.5 340000000 0.0005208333 0.000002941176659

100 0.75 340000000 0.0005208333 0.00002352941327

100 1 340000000 0.0005208333 0.00007941176979

100 1.25 340000000 0.0005208333 0.0001882353062

100 1.5 340000000 0.0005208333 0.0003676470824

100 1.75 340000000 0.0005208333 0.0006352941583

100 2 340000000 0.0005208333 0.001008823594

100 2.25 340000000 0.0005208333 0.001505882449

100 2.5 340000000 0.0005208333 0.002144117784

100 2.75 340000000 0.0005208333 0.002941176659

100 3 340000000 0.0005208333 0.003914706133

100 3.25 340000000 0.0005208333 0.005082353266

100 3.5 340000000 0.0005208333 0.006461765119

100 3.75 340000000 0.0005208333 0.008070588752

100 4 340000000 0.0005208333 0.009926471224

100 4.25 340000000 0.0005208333 0.01204705959

100 4.5 340000000 0.0005208333 0.01445000092

100 4.75 340000000 0.0005208333 0.01715294227

100 5 340000000 0.0005208333 0.0201735307

5

Figure 1.3: How an equation is used to calculate deflection

Figure 1.3 shows how the deflection would be calculated using a transformation

of the measured values. If the deflection of the diving board was required, the val-

ues could be measured and entered into the equation which transform the values to

predict how far down the diving board would bend if a person were to stand at the

unsupported edge.

Figure 1.4: How a ML model is used to predict deflection

Figure 1.4 shows how a machine learning model (ML Model) is used in the diving

board example specifically. The equation is used to find the deflection using mea-

sured values. All the values including the dependent variable (deflection) are used to

train a ML model which can then predict new deflection values (δ′) from previously

unencountered input parameters (F ′, L′, E ′, I ′).

6

After training a machine learning model, the accuracy of the model can be visually

evaluated using graphs. Figure 1.5 shows the ML model predictions using the values

that trained the model listed in Table 1.2 against the true values calculated using the

equation.

Figure 1.5: ML model predictions on original dataset (Table 1.2)

Figure 1.6 shows predictions of previously unencountered input values for L. Using

the new input values, predictions still match closely to the true values that would be

calculated with the beam equation.

Figure 1.6: ML model predictions on new instances of data

7

A different graphing technique allows a more general visualization of how accurate

a model is as seen in Fig.1.7. With the true value being the x component and y value

being the predicted value, the closer a point is to the x = y line, the more accurate

the prediction is.

Figure 1.7: Cantilever beam example ML predictions vs actual values

8

With this simple example, it can be shown that ML models can be used to predict

physical phenomena. Instead of needing an equation to produce the target variable

to test, the target variable can be measured and fed into the machine learning model

as visualized in Fig.1.8.

Figure 1.8: ML model training only using measurement data

When all the values are measured and the underlying relationships cannot be as

closely tested against a known true value, many more questions arise. How do different

ML models perform with the data? How can the models be evaluated mathemati-

cally? How many measurements would be needed to produce the most accurate ML

model? If the measurements have noise (measurement error), how well will the models

perform? Is there a particular input variable that strongly predicts the outcome?

CHAPTER 2: Literature Review

To get an idea of how researchers are approaching problems of similar scope, a

literature review was performed to get an idea of what methods would be most useful

in the hollow sphere case. Machine learning based prediction is a key focus of today’s

research of deformation and failure of materials. Research was found which was

published within the last year related to machine learning and materials science. The

papers reviewed all had similar focuses on ML models in material science but differing

focuses in their hypothesis’ and conclusions.

2.1 Datasets

The datasets used focused on measurements taken from experiments like different

concrete mixtures using different ratios of eco-friendly aggregate [5] to varied loading

on fatigue strength of steels [6]. Some of the papers did not mention dataset size

but of the ones that did, sample sizes ranged from 125 instances of data to 437

instances. The majority of data used to train the ML models were measurement

data but also Finite Element Analysis (FEA) simulation data was used in one of the

experiments. Of these instances of data, there were only one target variable for each

of the studies and independent predictor variables ranging from five to 25. Some data

used raw measurement data like distance or mixture percentage but others used data

like location parameter and size of deformity in additively manufactured parts which

were measured using x-ray technology.

2.2 ML Models

There were a wide range of ML models used with some performing better than

others. Ordinary Least Squares (OLS) linear regression was used with the highest

10

accuracy on the study of steel fatigue strengths [6]. Support Vector Regression (SVR)

was the most accurate on a study of additively manufactured material fatigue life

[7]. The eco-friendly concrete mixture study found that Multivariate Polynomial

Regression was the most accurate in predicting fatigue limits [5]. A two-step loading

fatigue life experiment found that Gaussian Processes Regression (GPR) was the most

accurate in predicting the remaining serviceable lifetime of different material types

[8]. Other model types used in the literature were Artificial Neural Networks (ANN),

K Nearest Neighbors (KNN), and many more that did not perform as well as those

already mentioned.

2.3 Error Types and Ranges

Many different error types were used across the literature but two were common

amongst almost all of the papers. Coefficient of Determination (R2) and Root Mean

Square Error (RMSE) were the most commonly used error types as a base with more

error types depending on the study. Values to be accepted as the most accurate in

the literature varied from a R2 of 0.81 to 0.99 meaning that accuracy metrics depend

greatly on what the experiment is trying to achieve.

2.4 Additional Inquiries

After these general steps were completed, the literature changed direction into

different focuses. Some of the papers focused on which ML model performed the best

on noiseless data while others tested models with and without noisy data. The study

on noisy data also tested measured data versus a dataset mixed with measurement

data and simulation data. Sensitivity analysis was also conducted in one of the

studies where the resulting predictions where two of the five predictive measurements

accounted for a combined 80% of change in fatigue strength.

11

2.5 Conclusion

It is common for researchers to attempt to predict outcomes using ML models

in materials science. The datasets used were mostly measured data which small or

medium sized numbers of total variables. Usually, a few different model types are

chosen and optimized for the data then compared against each other. Coefficient of

Determination and RMSE are used the most often with other error types added in

depending on what the researcher found relevant to measure the accuracy of each

model. A few hundred instances of data which can make a surprisingly accurate

model with R2 values of 0.8 to 0.99. The data comes into question sometimes in the

form of what predictive data should be used, can simulated data be used to accurately

predict measurement data or a mixture of the two, how sensitive a model is to each

predictor variable, and how robust a model is to noise.

CHAPTER 3: Experimental Methods

Figure 3.1: Experimental method flow chart

Using current literature on the topic of ML and materials science, an experimental

method was constructed to find an optimal ML model for the hollow sphere expansion

problem. The experimental method can be visualized in 3.1 starting with preprocess-

ing.

3.1 Preprocessing

3.1.1 Software

In general, ML models are built to be used with computational software. The-

oretically, the algorithms could be completed by hand but that isn’t feasible when

computers may be used. Table 3.1 shows a list of all software libraries used in building

and optimizing the ML models in this thesis.

13

Table 3.1: Software Used

Software Name Purpose

Numpy Allows the use of array calculation in python

pandas [9] DataFrame functionality

matplotlib Math plotting

seaborn [10] DataFrame plotting functionality

sklearn [11] Machine learning functionality for all used models

Python was used exclusively for the exploratory data analysis, preproccessing,

model generation, evaluation, and visualization of the data. Google Colab [12] has

Python functionality built in with many libraries that are as easily accessible as in-

cluding them with one line of code. All the libraries used were included in Google

Colab. Pandas [9] is a library used in data analysis that gives the user access to

DataFrames. A DataFrame is a type of labeled array where data can be stored un-

der labeled columns. Pandas allows for many difficult functions to be applied to

DataFrames automatically like histograms which visualize the data distribution with

one command. Seaborn [10] was used to generate the heatmap of the total dataframe

in the exploratory data analysis section. The library sklearn [11] was first used to

split the training, validation, and testing data. Each machine learning scheme was

also available using sklearn along with many statistical functions needed for error

calculation.

Since ML is a data-focused approach to problem solving, data management is

important. Preprocessing of data refers to any formatting, normalization, or ran-

domization of data before it is used to train ML models.

14

Table 3.2: Data minimums and maximums

Parameter Minimum Value Maximum Value
Poisson’s Ratio 0 0.49
Young’s Modulus 7.00e10 3.99e11
Thermal Expansion Coefficient 2.00e-6 3.00e-5
Inner Radius 1.02e-2 1.19
Outer Radius 1.26e-1 2.37
Inner Temperature 2.50e1 1.99e2
Outer Temperature 3.86e1 3.98e2
Change in thickness 2.96e-5 9.79e-3

Figure 3.2: Raw data shown in a pandas Dataframe

The raw data was given in an excel file and can be seen in Fig.3.2 as a pandas

DataFrame after it was imported using python. There are a total of 10,000 instances

of data. An instance of data refers to one instance of the problem where all the

variables have been measured which is listed as one full row of data in the DataFrame.

Before training any ML model or altering the raw data, it is important to first

understand the data in general. The minimum and maximum values may be viewed

in table 3.2. From the table, the value ranges are obviously very different with the

Young’s Modulus being on the order of 1010 while Change in Thickness is on the order

of 10−4. Since the ranges are so large, normalization will be important.

15

When exploring the data, the distribution of the data is also important for un-

derstanding how the ML models will behave. Figure 3.3 shows histograms of each

variable including the target variable, ThicknessChange. A histogram looks at each

variable’s values and sorts them into bins to show how many instances of specific

values there are. In this case, 100 bins were used meaning the total range of values

from maximum to minimum for each variable was split into 100 bins and any value

falling within a bin range would be added to the total. From the figure, there are

uniform distributions for all of the variables except for OuterRadius, OuterTemp,

and the target variable ThicknessChange. A uniform distribution means the proba-

bility of having any value in the range is the same for each value. The OuterRadius

and OuterTemp seem to be closer to a Gaussian distribution which is more common

in natural phenomenon. Finally, the target variable ThicknessChange, shows many

more measurements on the lower end of the spectrum. This type of distribution

signals that it may be difficult for the machine learning models to correctly predict

higher dependent variable values due to a lack of training data in that range.

16

Figure 3.3: Variable distributions

A correlation between two variables is a calculation of how similar the values are

to each other from instance to instance. If two variables are similar in each instance,

the correlation will be high. If two variables are exactly the same in each instance,

the correlation will be 1. Correlation of parameters are important in exploratory

data analysis because some of the variables may be highly correlated leading to the

possibility of omitting the need of predictive variables. Pandas uses the Pearson

correlation calculation as a default whose equation is found in Eqn.3.1.

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(3.1)

17

Figure 3.4 shows a correlation heatmap where light blue denotes a high correlation

between variables and dark blue for negative correlation. The highest correlations

are between InnerRadius and OuterRadius, and InnerTemp and OuterTemp. The

ThicknessChange is the most correlated with ThermalExpansion, InnerTemp, and

OuterRadius.

Although there are some higher correlations, none of the variables have higher than

a correlation of 0.7 meaning all the predictors should be kept to predict the target

variable until otherwise indicated in the machine learning models.

Figure 3.4: Correlation Heatmap

After exploring the data, it is ready to be preprocessed. The first step in prepro-

cessing is normalization. Normalization refers to transforming the data to make it

more digestible by the ML models. There are many different ways to normalize data

but the most convenient for this application is the Min-Max normalization. Min-

18

Max normalization [13] takes a variable (one column of data) and scales it down

between two values as calculated in 3.2. In the equation, A is the column of values

to be normalized with C and D as the lower and upper bounds of the normalized

data respectively. The values after normalization are shown in Fig.3.5. Importantly,

the values of the target variable are not normalized since our goal is to not have to

postprocess the target variable.

Âi =
Ai −min(A)

max(A)−min(A)
∗ (D − C) + C (3.2)

Figure 3.5: Normalized data with the target variable unchanged

Following normalization, the dataset is split into three subsets: training, valida-

tion, and testing sets. To accomplish this, sklearn has a function that splits input

and target variable datasets into two subsets randomly which alleviates the need for

instance randomization manually. First the dataset was split into two subsets: test

and train_val. This was done because some of the ML model functions have internal

validation splitting which makes pre-splitting unnecessary. After the first split, an-

other split was applied to the train_val set to split into the training and validation

sets. At the end of preprocessing, 80% of the data was used as a training set, 10% as

a validation set, and 10% as a test set.

19

The training subset is used to train the model. A training subset is usually a larger

portion of the total dataset so that maximum information may be gained from the

dataset.

The testing subset is used specifically for error measurement after a model has

been trained. Having a set of information prepared for testing means that data that

should be correctly predicted by a well trained model. The error between a known

target value and predicted target value using the test set is an important metric in

evaluating the accuracy of a model in general.

The validation subset is used to test models for overfitting. Overfitting of a model

is when the model is trained too much on a dataset making it less accurate on a

dataset of values the model was not trained on. The validation subset is used to have

a disconnected subset of valid data to check prediction accuracy during the training

or optimization of a model.

3.2 Machine Learning Models

3.2.1 Linear Regression

Linear regression is one of the oldest used regression schemes and in some respects

is the most simple which is why it was chosen as the first regression algorithm. The

concept applies a linear combination of each input parameter multiplied by a coeffi-

cient as seen in Eqn.3.3. The coefficients can be found using a few different methods

and there are schemes to reduce some coefficients to low values or zero depending on

the minimization of the error.

y = β0 + β1x1 + β2x2 + ...βnxn (3.3)

3.2.1.1 Ordinary Least Squares (OLS)

Ordinary least squares, or OLS, is an optimization method that minimizes the

OLS error when finding the Linear Regression coefficients. In a generalized multiple

20

input linear regression as seen in Eqn.3.4, the target variables (Y), coefficients (β),

predictor variables (X) are all in matrix form. An error matrix (ϵ) is added to the

calculation so that it may be minimized.

Y = βX + ϵ (3.4)

To find the optimal values for the linear coefficient matrix, a minimization is per-

formed on the square of the errors as seen in Eqn.3.2.1.1.

ϵ2 = (Y − βX)2 (3.5)

S(β) =
n∑

i=1

∣∣∣∣∣yi −
p∑

j=1

Xijβj

∣∣∣∣∣
2

= (Y − βX)2

3.2.1.2 Lasso

Least absolute shrinkage and selection operator, or Lasso, linear regression is a

method that seeks to minimize the absolute sum of the coefficients. It accomplishes

this by adding a new penalty term into the minimization target as seen in 3.6. The

tuning parameter (λ) controls the strength of the penalty with a zero being the same

as the OLS regression.

S(β) =
n∑

i=1

∣∣∣∣∣yi −
p∑

j=1

Xijβj

∣∣∣∣∣
2

+ λ

p∑
j=1

|βj| (3.6)

The major strength of the Lasso method is that it will remove predictive variables

from the calculation by reducing the associated coefficient to zero if the variable does

not contribute to the prediction. Looking at the coefficients after the lasso method

can show if any of the variables are less important for prediction.

21

3.2.2 K Nearest Neighbors

Figure 3.6: KNN visualization

Table 3.3: KNN visualization data

x 1 2 3 4 5 6 7 8 9 10 6.5

y 10 1 2 9 8 4 3 7 6 5 5.5

z 5 4 6 3 7 2 8 1 9 10 ?

K Nearest neighbors (KNN) is a machine learning scheme that is simple in theory

and can most easily be described in an example. Figure 3.6 shows an example figure

of a two input, one target variable model. The x and y values of each instance are

visualized by the location of a circle at their combined coordinates and the z value is

inside each associated coordinate circle. To predict the value of the unknown z value,

the nearest neighbors to the circle can be consulted.

22

If only one neighbor is consulted, the predicted value takes on the same value as

the neighbor since there are no other points to average with.

? = 2 (3.7)

If the three closest neighbors are consulted, the predicted value takes the form of

the average of the three closest points.

? =
2 + 8 + 1

3
(3.8)

When K = 5, five neighbors are consulted and the predicted value is the average

of those values.

? =
2 + 8 + 1 + 7 + 9

5
(3.9)

There are two main ways to optimize the KNN model which are distance measure-

ments and the K-value. A distance measurement refers to the distance of training

data to the testing prediction variables. As in the example, the Euclidean distance

is calculated using Eqn. 3.10. Other types of distance can be used depending on the

data type.

√
(x1 − x̂1)2 + (x2 − x̂2)2 (3.10)

The K-value refers to the number of neighbors the algorithm will average. A

K-value of one means that the one closest distance value will be made to be the

prediction. For a K-value of two, the two closest distance data points are averaged

and that average is used as the prediction. Each possible K-value can be tested up

to the total value of instances of data in the dataset.

23

3.2.3 Artificial Neural Network

Figure 3.7: ANN Architecture

input
layer

hidden layer

output
layer

An artificial neural network or ANN can be visualized in Fig.3.7 and is built using

a few fundamental parts. Each column of the ANN represents a "layer". A layer is a

set of nodes (the colored circles) that are not interconnected but will be connected to

the previous or next layer. In the figure, the left most layer is the input layer. The

input layer takes altered or unaltered predictor data. The second layer represents a

"hidden" layer. Each line denotes some calculation connecting nodes meaning in the

figure’s case that the layers are "fully connected" or each node in a layer is connected

to each node of the previous layer. Eventually, after calculations are completed, the

final layer calculates the predicted value at the output layer.

24

Figure 3.8: Node calculation [1]

Each node, or neuron, has an associated calculation as seen in Fig.3.8. The node

takes in values from previous layer nodes, multiplies them by weights (coefficients),

adds them together, then transforms them depending on an activation function. The

activation function is a function that is applied after the summation and multiplica-

tion of each node. An activation function allows the ANN to be non-linear since each

layer would essentially be a summation of linear regressions.

After the architecture has been decided and constructed, there needs to be a method

of updating the weights associated with each node so that the model can be nudged

into more accurate predictions. The method of going back to update weights is called

back propagation which uses something called an optimizer.

An optimizer goes into effect after some data has been sent through the model

and a few predictions have been calculated. These predictions are compared to the

training data and errors are calculated and used to go back and update weights in

the model.

Clearly there are many different options for optimizing the ANN model which

25

can lead to some unwanted outcomes. One of the unwanted outcomes that can be

common for ANN models is overfitting. Overfitting is when a model is trained too

much on it’s training data. A model should be able to generalize, meaning it should

accurately predict on unseen data but an overfitted model will be most accurate on

data that it had been trained on. A simple way to measure overfitting is to provide a

validation dataset. The validation dataset is different data than the training dataset

so it can be used during the training process to test against. When the accuracy

of the prediction on the validation dataset begins to decrease, the model becomes

overtrained and should be stopped.

3.2.4 Support Vector Regression

Figure 3.9: SVR visualization [2]

Support Vector Regression (SVR) is a ML model that builds a "tube" around

training data in order to predict test data. Figure 3.9 shows a visualization of a one

dimensional case along with some of the pertinent hyperparameters. SVR aims to

optimize the function shown in Eqn.3.11 [14].

26

y = f(x) =< w, x > +b =
M∑
j=1

wjxj + b (3.11)

SVR uses hyperparameters like ϵ which is half the width of the tube which the

support vectors will construct and ξ which are slack parameters that can guard against

outliers in the training data. Using these hyperparameters, an optimization process

is performed on Eqn.3.12.

min||w||2 + C
N∑
i=1

(ξn + ξ∗n) ||w||2 = ⟨w,w⟩ (3.12)

s.t.

yi − wTφ(x) ≤ ϵ+ ξi

−yi − wTφ(x) ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≤ 0

i = 1, 2, ...N

Figure 3.10: Kernel visualization [3]

The kernel of SVR is a function that maps the original space of the dataset into

a new coordinate system that may be more easily fitted to a line or more simplified

27

boundary. This is a common practice in ML since data that can be more easily

divided can have higher accuracy than working with the original data distribution.

3.2.5 Gaussian Processes Regression

A Gaussian Process is an expansion of the idea of a random variable with a prob-

ability that is normally distributed, or Gaussian distributed. A normal distribution

is defined by it’s Probability Density Function (PDF) in Eqn.3.13 which defines the

probability of the random variable being a value given some mean (µ) and standard

deviation (σ).

fX(x) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

))
(3.13)

Figure 3.11: Two random variables sampled 1,000 times from the Gaussian distribu-
tion [4]

Figure 3.11 shows two independent normally distributed random variables with

1,000 samples from each with one random variable at X = 0 and one random variable

at X = 1.

28

Figure 3.12: Uncorrelated Gaussian distributed random variables connected [4]

Figure 3.12 shows how connecting these lines gives unsmooth connections because

the random variables are independent of each other. The way to fix this is to define

the random variable’s correlation with each other.

To correlate the random variables together, kernel equations are used. In the most

common case, the RBF kernel function (Eqn.3.14) is used to describe the correlation

between all the random variables with each other. After the correlation matrix has

been built, Fig.3.13 shows how the random variables are smoothed.

k(xi, xj) = cov(xi, xj) = exp

(
−(xi − xj)

2

2

)
(3.14)

Figure 3.13: Correlated Gaussian distributed random variables [4]

To bring all this together, the training data is used as a known condition in the

GPR model (Eqn.3.15) then the prediction data (Eqn.3.16) are also added to the

29

correlation matrix. The combined matrix can be seen in Eqn.3.17 where f∗ denotes

the predicted data [4].

KKK =

k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

(3.15)

KKK∗ =

[
k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)

]
KKK∗∗ = k(x∗, x∗) (3.16)

yyy

f∗f∗f∗

 ∼ N

0,

KKK KKK∗T

KKK∗ KKK∗∗

 (3.17)

3.3 Evaluation

To evaluate the models, error measurements will be used during the training and

optimization phases to gauge which models will be the most advantageous to continue

further with. The two most common error measurements used in literature were the

Coefficient of Determination and the RMSE which are included in the scikit metrics

library and shown in Eqns.3.19 and 3.18 [15].

R2 = 1−
∑

(yi − fi)
2∑

(yi − ȳ)2
(3.18)

RMSE =
√∑

(yi − fi)2 (3.19)

The Coefficient of Determination is an error type which takes values from negative

infinity to positive one. Any negative number is associated with no correlation at all

between the predicted and true training or testing values. The closer the Coefficient

of Determination approaches one, the more closely the model’s predictions match

30

the correct target values meaning a R2 of one would be a perfect match between

the prediction and true values. The RMSE error type is a calculation that gives the

summed squared errors across all tested instances. Since any error of this type is

unwanted, the goal is to find a model with the lowest RMSE value.

After the selected models have been constructed, trained, and tested using the

initial error metrics, further testing is needed to check for robustness to other common

issues for ML models. One of the more important problems with ML models is the

amount of data needed to train an accurate model. To test for this, the optimal model

for each model type is to be trained using varying amounts of training data to see

how the accuracy of the models are effected by training set sizes. Another common

problem for ML models are how they perform when noise is introduced. Noise in the

dataset refers to a value that may be measured incorrectly which are usually due to

tolerance issues in the measurement device. To make the noisy data more realistic,

each measurement can be viewed independently for how accurate those measurements

would most likely be if they were made in the real world. When referring to the

predictor variables, measurements like distance and temperature are fairly accurate

with current measurement methods while Young’s Modulus, Poisson’s Ratio, and

coefficient of Expansion would be more difficult to measure in each sphere. For this

reason, only the measurements with a high likelihood of error will have noise added.

To simulate noise in the given FEA data which is noiseless, normally distributed

noise can be added to the synthetic data to produce noisy data. The normal, or

Gaussian distribution was covered earlier in Eqn.3.13. From the PDF, one can surmise

that the distribution of the noise depends on the mean and standard deviation given

in the PDF. The mean of the noise is set to zero so that the noise can either add

or subtract from the data randomly. Finally the standard deviation may be varied

to generate random variable variables useful test with. In the case of this thesis,

percentages of noise would like to be compared. For example, if a noise level of 1%

31

was needed, what standard deviation value should the normally distributed noise be

set to? To solve this, the expected value of the random variable can be used but

the expectation of the normal distribution would be the mean or zero in this case.

To combat this, the expected value of a normal distribution of only positive values

was used called the half-normal distribution. The expected value of a half normal

distribution is calculated by Eqn.3.20 which can be rearranged to solve for standard

deviation as seen in Eqn.3.21.

E(X) = σ

√
2

π
(3.20)

σ = E(X)/

√
2

π
(3.21)

The expected value for the noise should be a percentage of the normalized data.

Since the normalized data ranges from zero to one, a percentage of one makes the

most sense meaning that 1% of 1 would be 0.01. For any percentage to be tested,

it can be input into the equation to solve for an appropriate standard deviation to

construct the noise.

Finally, a sensitivity analysis on the best model would be helpful in determining

how important each predictor variable is to the output. Sensitivity analysis refers

to how sensitive an output is to changes of an individual input variable or groups

of input variables. To accomplish this analysis, a library called SALib [16], [17] was

used. SALib creates a uniformly distributed input array of specified range which is

then fed into the model in question instead of testing data. The model predictions

are then taken and the variances are calculated following Eqn.3.22.

Vi = V arXi
(EX i

(Y |Xi)) Si =
Vi

V ar(Y)
(3.22)

CHAPTER 4: Results

Each model was imported using the scikit library and optimized. The most accurate

model of each type was then tested using the test set and graphed below.

4.1 Linear

4.1.1 OLS Model

The OLS model was created using the scaled training set and the results may be

viewed in Fig.4.1. The R2 of the model was 0.91 when fitted to the training set.

When testing against the test set, the R2 was 0.762 and the RMSE was 0.000628.

Figure 4.1: OLS Results from training on training set

33

Figure 4.2: OLS predicted vs actual values

4.1.2 Lasso

When optimizing the Lasso regression, the only parameter to vary was the tuning

parameter (λ). The optimal tuning parameter was found by sweeping through many

different values ultimately resulting in a value of 0.000002. Figure 4.3 shows how

the test set targets compared to the predictions of the Lasso model. The final Lasso

model had a R2 of 0.827 and RMSE of 0.000535 on the test set.

34

Figure 4.3: Lasso predicted vs actual values

4.2 KNN Model

For the KNN model, a loop was used to first compare the R2 and RMSE values

for all values of K so that the optimal value of K could be chosen for the most

accurate model. Figure 4.4 and 4.5 shows the R2 and RMSE values for each K value

respectively when tested on the test set. The R2 is highest and RMSE is lowest for

K values from five to ten so those values were tested individually.

35

Figure 4.4: R2 values for sweep of K values

36

Figure 4.5: RMSE values for sweep of K values

Each K value between five and ten were individually checked for accuracy to find

the optimal K value. The K value of 6 gave the highest R2 value of 0.889 and

RMSE of 0.000429. Figure 4.6 shows the graphs of predicted values vs actual values.

This graph shows an improvement from the linear and lasso results by predicting all

positive values and having less of a curve in the data. The higher the predicted value,

the worse a prediction was due to having less training data in the higher range of

target variables.

37

Figure 4.6: KNN predicted vs actual values

4.3 Artificial Neural Network

For the ANN, different architecture types were tested using the grid search method.

First activation type and solver were fixed while different numbers of nodes and

layers were tested. Four to five layers of 100 to 1,000 nodes each would produce

models that gave a R2 of around 0.94 consistently. Since accuracy was fairly high,

different activation types and solvers were tested but relu and adam produced the

most accurate models. Finally, more architectures were tested with higher node

counts and different layers but the most accurate model had four fully connected

layers of 3,000 nodes which produced an R2 of 0.972 and a RMSE of 0.00022 on test

data.

The ANN took the longest to train by far with the final model taking around forty

38

Figure 4.7: ANN predicted vs actual values

minutes to train. An early ending option was used where the model would continue

to train until the error did not change for five iterations.

39

4.4 Support Vector Regression

Table 4.1: Parameters for SVR model

Parameter Purpose

Kernel type linear, polynomial, rbf, sigmoid

Degree In the polynomial kernel, you can set the degree of the

polynomial used.

Gamma Kernel coefficient for rbf, poly and sigmoid

coef0 Independent term in kernel function. Only significant in

poly and sigmoid.

C Regularization parameter. Strength of the regularization is

inversely proportional to C.

Epsilon The amount of error from the support vector that is

acceptable.

To optimize the SVR model, a grid search was conducted to find the optimal value

of each SVR parameter listed in Table 4.1. The most important parameter was the

kernel of which the polynomial type performed the best. Finding the best degree of

the polynomial and the coefficient (coef0) finalized the optimization. The final model

had the parameters listed in 4.2. An ϵ of 0.000001 meant that the tube boundaries

were only 0.000002 wide making this a very accurate model. The final SVR model

had an R2 of 0.994 and RMSE of 0.000103 on the testing data. Figure 4.8 shows the

predicted values of the test set with the actual values.

Table 4.2: SVR Final Parameters

C coef0 degree ϵ gamma kernel
1 0.9 8 0.000001 scale poly

40

Figure 4.8: SVR predicted vs actual values

4.5 Gaussian Processes Regression

For the GPR model, no optimization or changing of parameters was needed. The

first training of the GPR gave a R2 of 0.99999 and a RMSE of 0.00000119.

41

Figure 4.9: GPR predicted vs actual values

Clearly the SVR and GPR models performed the best when only looking at the

error calculations but further testing was needed on all the models for training set

sample size and noise tolerance.

4.6 Response to Different Training Sample Sizes

The amount of data needed is important to ML because not many sets of data

may be available or measuring may be expensive and time consuming so the smallest

amount of data possible to produce an accurate model is vital. To first check the full

data range for each ML model, different sample sizes were selected where instances

were randomly chosen from the full pool for 10,000 instances. Figures 4.10 and 4.11

show the errors at each sample size. Once the initial sample size accuracies were

calculated, it was clear that not much was to be gained from viewing the range of

42

samples from 2000 to 9000 so a smaller set of sample sizes were tested. Figures 4.12

and 4.13 show the error calculations on smaller sample sizes.

Figure 4.10: R2 values for up to 9,000 training instances

Figure 4.11: RMSE values for up to 9,000 training instances

43

Figure 4.12: R2 values for up to 2,000 training instances

Figure 4.13: RMSE values for up to 2,000 training instances

Clearly, again the GPR model is the most accurate at any sample size with the

SVR model performing worse than other model types until around 300 samples are

used in the training set. The ANN may take multiple full attempts at making a

model which makes the calculations erratic until around the 1200 sample size. The

KNN model does best with more instances of data because it directly relates to the

training data for averaging so even at the 9000 instance mark, the KNN accuracy is

increasing.

44

4.7 Response to Noise

For the noise response test after conducting the sample size test, it was decided

to use 3000 of the 10,000 available instances to train the models to save time while

also being because the GPR and SVR model types were performing so much better

than the other model types. The percentages of noise chosen to test against are listed

below in Table

Table 4.3: Noise percentages and associated standard deviations

Percent Noise Standard Deviation

0.01 0.000125

0.1 0.00125

1 0.0125

1.5 0.0188

2 0.0251

2.5 0.0313

3 0.0376

3.5 0.0439

4 0.0501

4.5 0.0564

5 0.0627

7.5 0.0940

10 0.125

12.5 0.157

15 0.188

45

Figure 4.14: R2 values for each percentage of noise

Figure 4.15: RMSE values for each percentage of noise

46

4.8 Sensitivity of GPR Model

Since the GPR model was the most accurate in every way, sensitivity analysis was

performed on it. Figure 4.16 shows the first degree sensitivity values which relate the

correlation between each predictor variable individually with the prediction.

Figure 4.16: First degree sensitivity graph

4.9 Production Ready Model

A production ready model is a model that would be put in place in a production

setting. This model would be what would let manufacturing personnel know if pro-

duced materials were within tolerance. For the production ready model, the most

optimal model is trained from the original 10,000 instance dataset then tested on

a new 500 instance dataset that has not been encountered before. Since the GPR

model type was the most accurate in all settings, that type model was chosen for the

47

production ready model.

Since a new dataset is being introduced to the experimental method, data analysis

should be performed on it. As before, a histogram of the new data is helpful in

understanding how the model will perform when it encounters the new data. Figure

4.17 shows the histograms of both the original 10,000 instance dataset that would be

used to train the production ready model along with the new 500 instance production

data that the model would be tested on. When viewing the distributions of the

datasets, there are some obvious issues the production dataset could encounter when

being tested. The Young’s Modulus values for the production data ranges lower and

much higher than the training data meaning that the model may not interpret the

values that do not overlap with the training data ranges.

Figure 4.17: Histogram of training data and production data

48

When training and testing the production ready model without removing any in-

stances of data, the performance of the GPR model was expectedly bad with a R2 of

0.25 and RMSE of 0.00115. The predictions and true values are shown in Fig.4.18.

Figure 4.18: Predicted vs actual values of full production ready dataset

Since the GPR performed was very inaccurate, some extra work was needed. The

obvious issue was different ranges of values between the two datasets so instances

with values in ranges that did not match were pruned and a new model was trained

and tested. The histogram of the two new pruned datasets may be viewed in Fig.4.19.

Now that the ranges of the values matched more closely, the model performed much

better with a R2 value of 0.97 and RMSE of 0.000224. The prediction and actual

values are graphed in Fig.4.20 which shows a much closer prediction set to the actual

values.

49

Figure 4.19: Histogram of training data and production data that overlap in value
ranges (pruned dataset)

50

Figure 4.20: Predicted vs actual values with pruned dataset

No more optimization was completed on this production ready model because 300

instances of data of the 500 production dataset were already removed in the pruned

model.

CHAPTER 5: Conclusions and Future Work

ML models can be a powerful tool in predicting information in materials science

but caution must be taken before implementing any model into production. Many

factors can effect the outcome of a model which come in a variety of forms. The

dataset itself is the most important part since not having data for a specific range

can have a catastrophic effect on the final model. Depending on the model used, a

large amount of measured data may be required to sufficiently train and test a ML

model. A work around for noise is also available but knowing where and how the

noise is present can increase the accuracy of the ML model before training begins.

There are many ML model types available with as many parameters to optimize in

each. One could spend their whole lives attempting to optimize a ML model but

there needs to be a trade-off with accuracy and time spent training and testing ML

models that go into production. Having an understanding of the limitations of each

ML model is a helpful tool in knowing when to stop optimization and possibly looking

for different model types.

For this experiment, the GPR model was the clear winner at sample size response

and noise tolerance but that could not alleviate the differences of data ranges in the

production data. For future work, there are many avenues that could be followed.

More simulation data could be produced for the ranges of data in the production

dataset so that a more accurate model could be produced. Measuring and using

experimental data for model training would give much more insight into how mod-

els would perform on real world data along with if the noise addition was accurate

compared to the real world measurements which almost certainly would contain noise.

52

REFERENCES

[1] C. Patterson, Managing a real-time massively-parallel neural architecture. PhD
thesis, 01 2012.

[2] S. Lahiri and K. Ghanta, “The support vector regression with the parameter
tuning assisted by a differential evolution technique: Study of the critical velocity
of a slurry flow in a pipeline,” Chemical Industry and Chemical Engineering
Quarterly, vol. 14, 07 2008.

[3] Alisneaky, “Kernel Machine.” Accessed Sep. 6, 2022 [Online].

[4] J. Wang, “An intuitive tutorial to gaussian processes regression,” 09 2020.

[5] H. Imran, N. M. Al-Abdaly, M. H. Shamsa, A. Shatnawi, M. Ibrahim, and K. A.
Ostrowski, “Development of prediction model to predict the compressive strength
of eco-friendly concrete using multivariate polynomial regression combined with
stepwise method,” Materials, vol. 15, p. 317, Jan 2022.

[6] A. Agrawal, P. Deshpande, A. Cecen, B. Gautham, A. Choudhary, and S. Ka-
lidindi, “Exploration of data science techniques to predict fatigue strength of
steel from composition and processing parameters,” Integrating Materials and
Manufacturing Innovation, vol. 3, 04 2014.

[7] H. Bao, S. Wu, Z. Wu, G. Kang, X. Peng, and P. J. Withers, “A machine-learning
fatigue life prediction approach of additively manufactured metals,” Engineering
Fracture Mechanics, vol. 242, p. 107508, 2021.

[8] J. Gao, C. Wang, Z. Xu, J. Wang, S. Yan, and Z. Wang, “Gaussian process
regression based remaining fatigue life prediction for metallic materials under
two-step loading,” International Journal of Fatigue, vol. 158, p. 106730, 2022.

[9] pandas, “pandas Homepage.” Accessed Jul. 18, 2022 [Online].

[10] seaborn, “seaborn Homepage.” Accessed Jul. 18, 2022 [Online].

[11] SKLearn, “SKlearn Homepage.” Accessed Jul. 18, 2022 [Online].

[12] Google, “Google Colab Introduction Page.” Accessed Aug. 24, 2022 [Online].

[13] S. G. PATRO and D.-K. K. Sahu, “Normalization: A preprocessing stage,” IAR-
JSET, 03 2015.

[14] M. Awad and R. Khanna, Support Vector Regression, pp. 67–80. Berkeley, CA:
Apress, 2015.

[15] scikit learn, “3.3. Metrics and scoring: quantifying the quality of predictions.”
Accessed Jul. 18, 2022 [Online].

53

[16] T. Iwanaga, W. Usher, and J. Herman, “Toward SALib 2.0: Advancing the acces-
sibility and interpretability of global sensitivity analyses,” Socio-Environmental
Systems Modelling, vol. 4, p. 18155, May 2022.

[17] J. Herman and W. Usher, “SALib: An open-source python library for sensitivity
analysis,” The Journal of Open Source Software, vol. 2, Jan 2017.

