
LOW-POWER LTE-M BASED REMOTE MONITORING OF PROPANE TANK
FILL LEVELS USING ASYNCHRONOUS EMBEDDED RUST FIRMWARE

by

Daniel Kyle Hayes

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Applied Energy and Electromechanical Engineering

Charlotte

2022

Approved by:

Dr. Maciej Noras

Dr. Michael Smith

Dr. James Conrad

ii

©2022
Daniel Kyle Hayes

ALL RIGHTS RESERVED

iii

ABSTRACT

DANIEL KYLE HAYES. Low-power lte-m based remote monitoring of propane
tank fill levels using asynchronous embedded rust firmware. (Under the direction of

DR. MACIEJ NORAS)

Remote monitoring of propane tank fuel levels can have many convenience and cost

benefits for both suppliers and consumers. For suppliers, physical tank checks can

be eliminated while reducing the maintenance and fuel costs for fill trucks. As a re-

sult, customer satisfaction can be increased according to better visibility and quicker

service. For consumers, monitoring eliminates physical gauge checking, offers a bet-

ter understanding of usage habits, and eliminates running tanks dry for remote or

part-time residences. The current monitoring devices on the market are expensive

and are not designed for a battery life of greater than 5 years for wide-area cover-

age. The development of an open-source cellular device with secure communications

and self-sustaining power is investigated. The Rust programming language is re-

viewed for its possible use in the prototype for its memory safety and speed. During

the development of the monitoring device different communication protocols, micro-

controller hardware, sensor hardware, and power sources are compared. The resulting

prototype uses a Conexio Stratus development kit based on the nRF9160 system-in-

package (SiP). The CoAP protocol is utilized with DTLS over LTE-M networks which

offers efficient and secure communications to the cloud with pre-shared keys (PSK).

A lithium-ion capacitor (LIC) paired with solar-charging eliminates the need for a

battery, which can supply power for the entire life of the device. Power profiling

demonstrated the LIC’s ability to store enough energy to power the device up to 28

days in the absence of any solar charging and a minimum of 90% transmission success

rate. Sensor testing showed that the hall-effect sensor setup can accurately measure

between 10% and 95% fuel levels with ± 1% accuracy compared to the gauge position.

iv

ACKNOWLEDGEMENTS

I would like to take the time to extend my gratitude to Dr. Maciej Noras for his

guidance and patience. I extend my appreciation to Dr. Michael Smith and Dr. James

Conrad for their participation and the donation of their valuable time. I would also

like to acknowledge and extend a special thanks to Conexio Technologies for donating

a Status cellular development kit in support of my research. Your hardware donation

and support are greatly appreciated. Also, I appreciate Nordic Semiconductors for

donating a power profiler kit version 2 in support of my efforts. Special thanks to the

fantastic, embedded Rust community for their dedication to growing Rust support

for embedded devices and providing knowledge for new-comers and veterans alike.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

CHAPTER 1: INTRODUCTION 1

1.1. Motivation and Problem Statement 2

1.2. Literature Review 5

1.3. Methodology and Contributions 15

CHAPTER 2: NETWORKING STACK FOR IOT 17

2.1. Comparing Cellular LPWANs and Wi-Fi Networking 18

2.2. LTE-M and NB-IoT LWANs 19

2.3. Transport and Application Layers 21

CHAPTER 3: HARDWARE SELECTION 24

3.1. Hardware Comparisons 24

3.2. Hardware Features 28

CHAPTER 4: RUST PROGRAMMING 31

4.1. Embedded Rust Firmware 32

CHAPTER 5: EXPERIMENTAL SETUP 36

5.1. Hall Effect Sensor for Detecting Needle Position 36

5.2. Positional Testing Setup 39

5.3. Power Source and Solar Charging 42

5.4. Power Measurement 44

vi

5.5. Flashing and Debugging 45

CHAPTER 6: RESULTS 47

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 53

REFERENCES 55

APPENDIX A: E-PEAS AEM10941 DATASHEET 60

APPENDIX B: DRV5055-Q1 DATASHEET 61

APPENDIX C: VINATECH VEL1335 LIC DATASHEET 64

APPENDIX D: ADC TO TANK LEVEL CONVERSION RAW DATA 65

APPENDIX E: BUILD.RS 66

APPENDIX F: CARGO.TOML 67

APPENDIX G: AT.RS 70

APPENDIX H: CONFIG.RS 71

APPENDIX I: GNSS.RS 72

APPENDIX J: PSK.RS 73

APPENDIX K: LIB.RS 76

APPENDIX L: APP.RS 83

vii

LIST OF TABLES

TABLE 1.1: C and C++ Memory Sanitizing Tool Test Results. 6

TABLE 1.2: Rust Memory Safety Handling. 7

TABLE 1.3: Cellular IoT Throughput and Latency Median Values. 8

TABLE 1.4: Cellular IoT Packet Drops. 8

TABLE 1.5: Damslora Current Consumption Results of the nRF9160. 13

TABLE 1.6: Damslora Signal Strength and Location Comparison. 13

TABLE 2.1: Cellular and Wi-Fi IoT Network Comparisons. 19

TABLE 2.2: LTE-M and NB-IoT Comparisons. 20

TABLE 3.1: Development Hardware Kit Comparisons. 27

TABLE 6.1: Communication Reliability Based on Signal Strength. 52

viii

LIST OF FIGURES

FIGURE 1.1: Magnetic Flux Example. 1

FIGURE 1.2: Generac 7009. 2

FIGURE 1.3: Monnit Wireless Propane Tank Level Monitor. 3

FIGURE 1.4: Cellular IoT Projected Device Growth. 5

FIGURE 1.5: Cellular IoT Power Consumption. 10

FIGURE 1.6: U-Blox N211 and R410M Transmission Power Consump-
tion.

11

FIGURE 1.7: LIC Lifetime Stress Factors. 12

FIGURE 1.8: Estimated Current of nRF9160 using eDRX and PSM
Modes.

14

FIGURE 2.1: Networking Stack Models. 17

FIGURE 2.2: MQTT and CoAP Architectures 22

FIGURE 2.3: DTLS Handshake Process. 23

FIGURE 2.4: Device communication architecture. 23

FIGURE 3.1: nRF9160 SiP block diagram. 28

FIGURE 3.2: Conexio Stratus development kit with pinout. 29

FIGURE 3.3: e-peas AEM10941 Simplified Schematic. 30

FIGURE 3.4: Laird External, Cellular Antenna. 30

FIGURE 4.1: Firmware Operational Algorithm (State-Machine). 34

FIGURE 5.1: Remote ready R3D propane gauge. 37

FIGURE 5.2: Sensor housing 3D model with dimensions. 38

FIGURE 5.3: Typical hall effect sensor schematic. 39

ix

FIGURE 5.4: Sensor housing with potted electronics. 39

FIGURE 5.5: Tank level testing jig. 40

FIGURE 5.6: Sensor output ADC values 5%-95%. 41

FIGURE 5.7: Ragonne Plot for Energy Storage Technologies. 42

FIGURE 5.8: NREL Map of Solar Irradiance. 43

FIGURE 5.9: Nordic Power Profiler Kit 2. 44

FIGURE 5.10: PPK2 Connection Diagram. 45

FIGURE 5.11: Example of Defmt RTT Debugging Logs. 46

FIGURE 6.1: Development platform mounted in an enclosure. 47

FIGURE 6.2: Example Transmission Log in Golioth Cloud. 48

FIGURE 6.3: Typical power profile of cellular data transmission. 49

FIGURE 6.4: Typical power profile of cellular data transmission. 49

FIGURE 6.5: Typical power profile of transition from sleep to a sensor
sample.

50

FIGURE 6.6: Field-Deployed Prototype. 51

x

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter.

CoAP Constrained Application Protocol.

DDoS Distributed Denial of Service.

DoD Depth of Discharge.

DTLS Datagram Transport Layer Security.

EDLC Electric Double Layer Capacitor.

eDRX Extended Discontinuous Reception.

ESR Equivalent Series Resistance.

FFI Foreign Function Interface.

FSM Finite State Machine.

GNSS Global Navigation Satellite System.

IDE Integrated Development Environment.

IoT Internet of Things

IP Intellectual Property.

Kbps Kilobits per second.

LIB Lithium-Ion Battery.

LIC Lithium-Ion Capacitor.

LiPo Lithium-ion Polymer.

LPWAN Low-Power Wide Area Network.

xi

LTE Long-Term Evolution, standard for wireless broadband communication.

LTE-M Long-Term Evolution Machine Type Communication.

M2M Machine to Machine.

Mbps Megabits per second.

MQTT Message Queuing Telemetry Transport.

NB-IoT NarrowBand-Internet of Things.

NREL National Renewable Energy Laborator.

OEM Original Equipment Manufacturer.

OSI Open Systems Interconnection.

PPK2 Power Profiler Kit Version 2.

PSK Pre-Shared Key.

PSM Power Save Mode.

PWM Pulse Width Modulation.

QoS Quality of Service.

RAM Random Access Memory.

RF Radio Frequency.

RTOS Real-Time Operating System.

RTT Real-Time Transfers.

SIM Subscriber Identity Module.

SiP System in Package.

xii

SoC System on Chip.

SPM Secure Partition Manager.

SSID Service Set Identifier.

TAU Tracking Area Updates.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TOML Tom’s Obvious, Minimal Language.

UART Universal Asynchronous Receive/Transmit.

UDP User Datagram Protocol.

CHAPTER 1: INTRODUCTION

Many homes and businesses consume propane for heating purposes and have tank-

based storage due to a lack of pipeline access. This means that the tanks must be filled

regularly without any standard means for monitoring the fill level. The consumer must

keep track of the fill level and order refill services when needed or pay for the supplier

to perform physical checks periodically if available. Most propane tank gauges are

driven by a rotating magnet positioned by a float mechanism. Currently, there are

remote-ready tank gauges on the market, which accepts a hall-effect sensor module

to determine fill level based on magnetic flux density as shown in Figure 1.1.

Figure 1.1: Common magnet orientation for hall-effect sensors (Image Courtesy:
Texas Instruments).

There are many benefits, both from a provider and consumer perspective, when

setting up remote monitoring including:

1. eliminating physical checks;

2

2. greater insight into usage habits;

3. remote areas or part-time residents do not need to worry about running dry;

4. suppliers can streamline their filling operations;

5. less fuel consumption by fill trucks;

6. better customer satisfaction.

1.1 Motivation and Problem Statement

The benefits for actively monitoring propane tank fuel levels can be significant, but

implementing a solution is not as obvious. First, is to determine what options are

currently available on the market, specifically devices that available to purchase by

end-users. The Generac model 7005 monitor utilizes a Wi-Fi connection for monitor-

ing services which requires an internet connection and comes with a $237 price tag.

The Generac model 7009, shown in Figure 1.2, is the cellular version of the 7005 and

costs $250 with a required $50 yearly subscription [1].

Figure 1.2: Generac 7009 cellular propane tank monitoring device (Image Courtesy:
Generac).

3

The Generac monitor advertises a 5-6 year battery life with a transmission rate of

once per 24 hours.

Monnit offers a propane monitoring device for more commercial-type settings,

shown in Figure 1.3 and operates on a 900 MHz frequency with a proprietary proto-

col. The sensor costs $391, requires a 900 MHz gateway to manage data transmission

with common communications, such as Ethernet or a cellular network, and advertises

a battery life up to 12 years. The gateway can manage several sensor nodes and adds

$242 to $385 to the total cost [2], and requires mains electricity for operation.

Figure 1.3: Monnit wireless propane tank level monitor (Image Courtesy: Monnit).

When considering these two devices, a few things stand out: they do not offer any

type of energy harvesting, require battery replacements, and are expensive. Despite

the Monnit gateway being able to handle multiple sensors, the sensor’s 900 MHz

protocol range is only 1200 feet, which is not applicable for a monitoring system with

distributed tanks. It seems that there is room for improvement in the propane tank

monitoring sector, but what features are required to offer such improvements?

The monitoring sensor is considered an Internet-of-Things (IoT) device because it

is a distributed system that relays information over a network. IoT devices almost

4

always consider battery life as a primary concern since devices are dispersed mak-

ing battery changes very costly when considering both material and labor costs [3].

In some cases, the devices are placed in environments that are not easily or safely

accessible compounding the cost of changing batteries. An ideal IoT device would

have a battery or power source that can last for the lifetime of the sensor without

relying on mains electricity. Secondly, an IoT device needs a reliable communication

method to send data with, otherwise the deployment costs would far outweigh any

added benefits.

In close relationship with reliable communications, is secure communications. Secu-

rity is very important to protect data integrity and prevent exploits such as distributed

denial-of-service attacks (DDoS) using insecure IoT devices. Security vulnerabili-

ties often arise from memory bugs in firmware, and most embedded device firmware

is heavily skewed towards C and C++ programming [4]. These languages are not

memory safe which increases the possibility of memory misuse such as double-frees,

use-after-free, and out-of-bounds accesses. Rust is a modern, systems programming

language that provides high-level features with low-level control while providing mem-

ory safety. The application of Rust to the IoT sector may provide an safer alternative

to C-based firmware and should be considered for any new deployments.

The security of communications can be improved by eliminating memory vulnera-

bilities, but the communication method is also important for efficiency. Many previous

IoT deployments have been implemented with Wi-Fi networks. While Wi-Fi provides

plenty of data bandwidth, security is not a default feature and needs to be managed

and maintained by the operator. Cellular IoT deployments can be a safer network

option with batteries included security since it is licensed as a part of 3GPP Release

13 [5]. Since the release of LTE-M and NB-IoT for wide-area IoT networks, cellular

devices have steadily grown and is projected to support over 5 billion devices by 2028

as shown in Figure 1.4 [6].

5

Figure 1.4: Cellular IoT connections by segment and technology in billions (Image
Courtesy: Ericsson).

Cellular IoT devices seem like a great option for wide-area deployments which also

support mobility; however, energy efficiency could be a concern. Lithium-ion batteries

(LIB) have typically been the de facto standard for small, portable devices because of

their energy density, but they are not the most environmentally friendly products [7].

Lithium-ion capacitors (LIC) are a novel alternative to LIBs being a hybrid of both

LIBs and super-capacitors resulting in a device with greater cycler life than LIBs and

greater energy density than super-capacitors [8]; therefore, LICs should be considered

as a replacement power source for IoT devices.

Based on these considerations, the research goals are to develop an open-source

monitoring device that: uses a reliable and secure communication method, is devel-

oped in the Rust programming language for memory safety and reliability, and a

power source to eliminate or reduce battery replacements.

1.2 Literature Review

Noseda et al. provide insight into the benefits of using the Rust programming

language for secure IoT applications [9]. Memory safety bugs are arguably the most

common and the most costly when security is considered. Even when security is

not a priority, memory misuse can have tremendous impacts on device functionality.

Although, C and C++ have static and dynamic code analysis tools, they still can

6

miss memory bugs as detailed in Table 1.1.

Table 1.1: Static and dynamic code analysis tool testing for memory unsafe languages.

Bug Cppcheck Splint GNU C/C++ sanitize

0 ✓ ✓ ✓

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 missed ✓ missed

4 missed ✓ compile error

5 ✓ ✓ missed

6 ✓ ✓ missed

7 missed ✓ missed

8 ✓ ✓ partly

9 partly ✓ partly

10 ✓ missed missed

11 missed ✓ missed

12 ✓ ✓ missed

13 missed ✓ partly

14 ✓ incompatible ✓

15 missed incompatible missed

On the contrary, Rust’s compiler is built with memory safety guarantees built-in at

the sacrifice of longer compile times. Table 1.2 lists the memory bug type and when

Rust handles them.

7

Table 1.2: Rust’s handling of memory bugs.

Bug type Rust (release build)

Out-of-bounds R/W Run time

Null dereference Run time

Type confusion Run time

Integer Overflow Run time

Use-after-free Compile time

Double free Compile time

Invalid stack R/W Compile time

Uninitialized memory Compile time

Data race Compile time

Overall, Noseda et al. concluded that static and dynamic analysis tools provide

inadequate protection where Rust excels with memory safety without loss of perfor-

mance. Their final recommendation is to consider switching to Rust or adding it to

existing C code bases for its ergonomics, safety, and performance. Uzlu and Saykol

explore utilizing Rust programming concepts for the Internet of Things and compare

them to other languages such as C, Haskell, Python, and more [10]. Their findings

formed their opinion that Rust is capable of being the main language for IoT sys-

tems programming using memory safety and compile time abstractions for maximum

efficiency on constrained devices.

Based on research from Ballal et al. [11], most current IoT devices function over

Wi-Fi or a Local Area Network (LAN) which have been considered superior choices

for stationary devices. LPWAN technologies such as LoRaWAN and Sigfox have

better coverage and lower power consumption than Wi-Fi; however, these technologies

operate on unlicensed frequency bands. Cellular IoT technologies have lower latency

and better coverage then LoRaWAN and Sigfox. They also allow for devices to roam,

8

adding mobility. In comparing the cellular technologies, Ballal et al. collected and

reviewed end-to-end delays, bit-rates, and packet drop metrics for both NB-IoT and

LTE-M networks in three different countries. The results are shown in Tables 1.3 and

Table 1.4.

Table 1.3: Cellular IoT throughput and latency field results.

Technology Median Bitrate (Kbps) Median end-to-end Latency (ms)

Denmark Norway Sweden Denmark Norway Sweden

NB-IoT 2.102 8.9805 8.7515 1905.004 314.77 373.571

LTE-M 8.5665 12.8055 12.8115 220.326 220.623 219.795

Table 1.4: Number of dropped packets.

Technology
Number of Packet Drops Number of

Packets

Sent

Denmark

(Home)

Norway

(Roaming)

Sweden

(Roaming)

NB-IoT 180 31 64 1000

LTE-M 36 40 16 1000

According to Jubin et al. [12], many IoT applications do not need high speeds or

throughput, rather they require long range and low power with low data rates and

bandwidth. In efforts to meet these requirements, unlicensed-spectrum low-power

wide area networks (LPWANs) such as LoRa and SigFox were created. These led the

way for licensed technologies such as LTE-M and NB-IoT. LoRa, an amalgamation

of the words long and range, is a proprietary LPWAN technology based on chirp

spread spectrum (CSS)[13] radio modulation. LoRa describes the physical layer, or

the chip itself, LoRaWAN is the media access control layer (MAC) protocol. Al-

though LoRaWAN is an open standard, the LoRa chips themselves are only available

from Semtech [14]. LoRaWAN supports both public and private network structures

9

and is widely available with commercially available end devices [15]. SigFox is an

LPWAN technology which uses Ultra Narrow Band (UNB) modulation, which uses

a slow modulation rate to achieve longer range. SigFox is best for applications that

send small payloads infrequently. SigFox has limited downlink capabilities and is

susceptible to signal interference. SigFox uses a one-hop star topology which needs a

mobile operator to carry the data traffic [16].

Jubin et al.’s findings revealed that SigFox had the best penetration but was limited

to 12-byte payloads and a maximum of 140 messages per day. LoRaWAN was able

to support up to 256-byte payloads but showed less tolerance for interference and

coexistence issues.

According to Lauridsen et al. [17], their studies on coverage and capacity of LTE-

M and NB-IoT in rural areas revealed that LTE-M can provide coverage to 99.9%

of outdoor devices and indoor devices with less than 10 dB of additional signal loss.

For deep indoor users NB-IoT can provide coverage for 95% of users. LTE-M, by

definition, has a Maximum Coupling Loss (MCL) of 156 dB at 1 Mbps in a 1.4 MHz

bandwidth. NB-IoT supports a MCL of up to 164 dB at 100 kbps in a 200 kHz

bandwidth. When experiencing 30 dB of additional losses in signal strength due to

deep-indoor or basement positioning, LTE-M can only provide coverage for 80% of

devices. Figure 1.5 revealed NB-IoT as supporting less users per sector and consumed

much more power than LTE-M.

10

(a) Number of supported users per sector in rural area.

(b) Average device power consumption per day with MCL

above 150 dB.

Figure 1.5: Comparison of NB-IoT and LTE-M device support and power consump-
tion in rural areas [17].

Extending battery life is essential for the IoT as many devices will be deployed

in hard-to-access locations. Some IoT applications require massive deployment, as

in more than 100,000 per cell, and replacing the batteries on that scale is costly,

cumbersome, and impractical in many cases. Research by Sorensen et al. validates

battery lifetime estimation models for both NB-IoT and LTE-M technologies [18].

Their findings in Figure 1.6 illustrates that the U-Blox EVK-N211 had the least

11

amount of power consumption over different transmission power levels while using

the NB-IoT network compared to the U-Blox EVK-R410M device.

Figure 1.6: Measured power consumption of N211 and R410M as a function of
transmission power [18].

El Sousssi et al. determined that both NB-IoT and LTE-M can achieve an 8-year

battery life in the context of a smart city with poor coverage and a reporting interval

of one day. Overall, power consumption of an IoT device can vary greatly based on

deployment area and hardware used.

A lot of attention has been given in the past to battery life management for IoT

applications; however, considerations for newer technologies, such as lithium-ion ca-

pacitors (LIC), should also be explored. Soltani and Beheshti [19] provides a compre-

hensive review of LICs according to their development, modeling, thermal manage-

ment, and applications. It is stated that the LIC has a longer cycle life than lithium

batteries and high power density of approximately 10kW/kg. LICs are considered to

have a lifespan of more than 10 years, but this can be affected by time the cell is not

in use (calendar aging) and depth of discharge (DoD), as well as other factors like

temperature as shown in Figure 1.7.

12

Figure 1.7: LIC lifetime stress factors [19].

LIC stress factors result in the reduction in capacitance and an increase in equiv-

alent series resistance (ESR). These are typically used to indicate the end-of-life for

an LIC, which commonly include a 100% increase in ESR or a 20% reduction in

capacity. Overall, LICs have good specific power and greater energy density than

super-capacitors, and with a longer cycle life in a wide temperature range compared

to LIBs.

Work by Damslora [20], explored the use of the nRF9160 cellular modem for a smart

meter sensor network with requirements of sending data 24 times per minute using the

MQTT protocol and LTE-M. Although, Damslora discusses the importance of power

optimization, it is not addressed in their research. The following results, in Tables

1.5 and 1.6, were produced in their experiments using the Nordic Semiconductor

nRF9160 development kit while being supplied 4.92 Volts. The development kit also

utilized the Zephyr real-time operating system (RTOS) for programming [21].

13

Table 1.5: Power consumption versus payload size test results.

Payload size

(bytes)

Current consumption

(mA)

Transmission

success

0 13.96 Yes

4 15.99 Yes

16 16.76 Yes

64 16.55 Yes

512 16.90 Yes

4096 18.62 Yes

Table 1.6: Signal strength variation by location and network.

Location Signal Strength,

LTE-M (dBm)

Signal Strength,

NB-IoT (dBm)

Third floor -86 -80

Ground floor -93 -85

Sub-basement -114 -105

Research by Vishnubhatla [22], investigates the performance proposition of the

nRF9160’s coverage, throughput, latency, capacity, and power efficiency. Vishnub-

hatla proposes a smart-city IoT solution using MQTT, LTE-M, the Zephyr RTOS,

and Google Cloud with the nRF9160 to monitor air quality, rainfall, traffic, and

more. The conclusion is that the nRF9160 has been extensively tested with leading

customers and is a complete solution for integration of cellular IoT devices.

Gabelle provides a comprehensive study of NB-IoT power save modes, which also

can be used for LTE-M, using the Zephyr RTOS and nRF9160 cellular modem [23].

The study analyzed energy performance based on payload size, extended discontin-

uous reception (eDRX), tracking area updates (TAU), power saving modes (PSM),

14

and more. All results were generated using the nRF9160 development kit and an Otii

Arc power analyzer from Qoitech [24]. Figure 1.8 compares the estimated current

consumption of the nRF9160 modem when utilizing eDRX and PSM modes during

connection and idle states.

(a) nRF9160 Extended discontinuous reception.

(b) nRF9160 Power Save Mode.

Figure 1.8: Estimated modem current in connected and idle states.

Gabelle’s conclusion showed increasing battery life can be accomplished by mini-

mizing the following parameters:

1. payload size;

15

2. upload frequency;

3. paging frequency;

4. paging duration;

5. tracking area update frequency;

6. active time duration.

The absolute performance of the nRF9160 is not determined by Gabelle’s research,

but instead presents a comparative study of NB-IoT power saving techniques.

1.3 Methodology and Contributions

The following steps are used to develop a working prototype that can monitor the

fuel level of a single propane tank, or even a fleet of tanks, maintenance free for a

targeted 10-year lifespan:

1. Compare and select a low-power wide-area network technology or Wi-Fi;

2. Choose a suitable transport and application protocol with security and power

efficiency in mind;

3. Compare available hardware development kits based on communication capa-

bilities and power options;

4. Explore the validity of Rust firmware in IoT applications;

5. Provide an open-source, hall-effect sensor module for R3D type gauges to accu-

rately read fuel levels;

6. Consider LIC energy storage as a sufficient power source for sensor’s operational

lifetime using solar charging;

7. Present energy consumption field measurements using a power analyzer;

16

8. Determine the reliability of communications in areas of varying network recep-

tions.

The completion of these objectives will demonstrate the possibility of battery-less

IoT devices using a next-generation, embedded programming language called Rust.

As a result, the foundation for further cellular IoT research and long-term validation

is laid.

CHAPTER 2: NETWORKING STACK FOR IOT

The main feature of an IoT device is its network connectivity. Internet-of-Things

is a description that contains many different types of devices. They can be anything

from remote sensors to kitchen appliances; however, they all share the commonality

of being able to share data using a networking stack. Networks are built as a stack of

technologies working on top of each other defining the entire communication model.

The Open Systems Interconnection (OSI) model consists of 7 layers to describe a full

network stack, where the TCP/IP model simplifies it to 4 layers as shown in Figure

2.1.

Figure 2.1: OSI and TCP/IP networking layer models.

When choosing protocols for an IoT networking stack, there are several factors that

must be considered, such as what protocols are available, are the devices stationary

or mobile, what is the power budget, what does the hardware support, and ow much

does the hardware cost? With this in mind, the first communication layer to select is

the network layer. The two main network protocols for IoT are Wi-Fi and low-power

18

wide-area networks (LPWANs). A LPWAN is not a single technology, but a group

of low-power technologies, some of which include SigFox, LoRa [25], and cellular

networks such as LTE-M and NB-IoT. Wi-Fi and cellular-based LPWANs are the

networks in focus as SigFox and LoRa require proprietary chips and use unlicensed

radio frequency (RF) bands making them less flexible and reliable choices.

2.1 Comparing Cellular LPWANs and Wi-Fi Networking

Wi-Fi is a great choice for IoT deployments that require reoccurring, large data

transfers as the pricing model is based on data throughput not quantity. For cellular,

the 1NCE connectivity platform has a flat rate pricing model set at $10 for 500 MB

of data which is good for 10 years [26]. This flat-rate equates to $10/500 MB =

$0.02/MB with a minimum yearly cost of $10/10 years = $1/year minimum if less

than 50 MB per year is used. The average Wi-Fi cost in the US is approximately $36

per month [27]. For a Wi-Fi network that is dedicated to IoT devices, the break-even

point for a cellular network would be $36month/$0.02MB = 1800MB/month at the

lowest network speed. Wi-Fi can offer a lower cost-per-byte with high data throughput

and have cheaper hardware, but they can have a higher final cost-per-device since Wi-

Fi networks require more maintenance and setup [28]. Wi-Fi IoT fleets may also incur

third-party provisioning costs on networks that the fleet operator does not control.

If a cellular deployment does end up with a higher cost-per-device, it still can be

the best choice as cellular LPWANs come with world-class security and reliability,

something that a Wi-Fi IoT fleet would need to provide itself [28]. Part of the extra

cost for cellular, is for an expertly managed network since LTE-M and NB-IoT are

licensed spectrums [18]. Cellular networks are not typically affected by blackouts and

have high reliability, where Wi-Fi can be unavailable during power outages and can

suffer from networking issues associated with SSIDs and login credentials. Cellular

networks can also handle tower handovers making mobile projects simple. Table 2.1

summarizes the comparisons between Wi-Fi and cellular-based networks for IoT use

19

cases.

Table 2.1: Comparisons between Wi-Fi and cellular-based networks for IoT.

Cellular Wi-Fi

Cost per MB $0.02 (1NCE SIM) $0 (monthly fee)

Modem cost ≈ $24 (nRF9160) ≈ $1-$3 (ESP32)

Reliability and security High,

included

Slightly lower,

self-managed

Coverage Great for mobile and

stationary projects

Best for stationary

projects, or where

cellular does not exist

Data throughput Kbps range Mbps range

Deployment Turn-key SSID and credentials

needed

Overall, the choice between a cellular or Wi-Fi network for IoT is situational. Wi-

Fi is a great choice for already in-place Wi-Fi networks and those that focus on

stationary devices. Wi-Fi is also a great choice for consumer-level devices where the

end-user already has a Wi-Fi network. Cellular networks can work well for both

consumer and commercial machine-to-machine (M2M) networks with its turn-key

setup, mobility, and built-in security and reliability features. For these reasons, a

cellular-based LPWAN is chosen for the networking layer of the communication stack.

2.2 LTE-M and NB-IoT LWANs

Cellular networks typically support two different standards for IoT devices: LTE-M

and NB-IoT. LTE-M, also known as Cat-M1, is designed for low-power applications

with medium throughput capabilities. Compared to an LTE network, as used by

cellular phones, LTE-M has a much narrower bandwidth of 1.4 MHz versus 20 MHz

for LTE. The narrower bandwidth limits the amount of throughput but increases

20

the device’s range. Secure end-to-end communication, such as TCP/TLS, is suitable

over LTE-M networks and mobility is fully supported using the same tower transition

protocols as LTE. LTE-M also provides latency in the millisecond range which is

important for time-critical applications where real-time communication is needed.

NB-IoT, also known as Cat-NB1, operates with a much narrower bandwidth than

LTE-M and does not use an LTE physical layer. With a bandwidth of 200 kHz,

NB-IoT has less throughput capabilities than LTE-M but supports greater range and

signal penetration. NB-IoT is more suited for applications that are static with smaller

data payloads and require longer range. A summary of the comparison between LTE-

M and NB-Iot networks is shown in Table 2.2.

Table 2.2: Comparisons between cellular supported IoT standards. DL, UL represent
downlink and uplink throughput [29].

LTE-M NB-IoT

Also known as eMTC, LTE Cat-M1 LTE Cat-NB1, LTE Cat-NB2

Max throughput (DL/UL) 300/375 kbps 30/60 kbps, 127/169 kbps

Range Up to 11 km Up to 15 km

Latency 50-100 ms 1.5-10 s

Mobility/cell re-selection Yes Limited

Roaming Supported Limited

Deployment density Up to 50,000 per cell Up to 50,000 per cell

Battery life Up to 12 years Up to 12 years

LTE-M is the networking standard of choice for its mobility capabilities and faster

connection speed, which will reduce power consumption. Since cellular LTE-M net-

working is used, the internet layer will be handled by the subscriber identity module

(SIM) card.

21

2.3 Transport and Application Layers

An LTE-M connection is not the only thing needed to transmit data. Protocols

for the transport and application layers are also required and are selected together

as they are tightly coupled. The two transport layers most widely available are

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is

connection-oriented, designed to ensure successful delivery of data packets across the

network and uses a three-way handshake. If the connection times out before the

data confirmation handshake is completed, the transmission is attempted again. In

an IoT application, TCP can be sensitive to delays and packet losses during data

transmissions [30]. A common application layer using TCP, is Message Queuing

Telemetry Transport (MQTT). MQTT offers a Quality of Service (QoS) setting to

control to level of confidence provided with data delivery. The QoS settings include:

1. QoS0, the message is sent at most once and does provide a delivery guarantee;

2. QoS1, the message is sent at least once to guarantee delivery;

3. QoS2, the message is sent exactly once using a 4-way handshake [31].

The QoS level setting for MQTT can provide a more lightweight option than a TCP

socket alone; however, MQTT still requires an always-on connection making it less

power efficient.

UDP is message-oriented, designed for real-time communication and does not ver-

ify the delivery of a data packet where packets can also arrive in the wrong order.

Since UDP is connection-less, it can be said that UDP has less overhead than TCP.

A popular application layer protocol for UDP is the Constrained Application Proto-

col (CoAP). CoAP is connection-less, so two devices can connect without any prior

arrangements making it more power efficient than MQTT. CoAP does not have a

controllable QoS, instead the message transfer can be set as confirmable or non-

confirmable. A confirmable CoAP transfer will be more reliable as the server will

22

reply with a receive acknowledgement. A non-confirmable transfer maintains the

UDP connection-less model [32]. Figure 2.2 illustrates the architecture differences

between the two protocols.

Figure 2.2: MQTT uses a publish/subscribe model, CoAP a request/response model
(Image Courtesy: Nordic Semiconductor).

Since CoAP does not need to keep a connection alive, it is typically better for

low-power applications, and is used for this reason. CoAP has also been shown to be

more efficient with less latency specifically over cellular networks [33].

Communication security must also be considered for all IoT deployments, no matter

the size. The connection made to the cloud should be encrypted and authenticated to

prevent device impersonation and eavesdropping. A secure connection can be created

over the UDP transport with Datagram Transport Layer Security (DTLS). Various

credential types and extensions can be used with DTLS. Pre-shared Key (PSK) based

authentication is superior to certificate-based authentication from a performance and

low-power stand point [34]. A PSK-ID and PSK are assigned to every device that

will connect to the server, these act as credentials for validating the connection. The

PSK-ID acts as a username where the PSK acts like a password.

23

Figure 2.3: DTLS handshake process between a device and server [35].

DTLS will add more overhead than a raw UDP socket and re-introduces a hand-

shake process similar to what TCP had, Figure 2.3, but the added encryption, au-

thentication, and reliability is well worth the cost. Figure 2.4 shows the complete

networking stack for communication.

Figure 2.4: Illustration of the networking stack: CoAP, DTLS, and LTE-M layers.

CHAPTER 3: HARDWARE SELECTION

To use the chosen networking stack protocols, hardware must be selected that

supports those protocols. The network protocol is the most important factor when

choosing hardware since the physical radio must be designed to support a specific

network standard, in this case, LTE-M. Most, if not all, micro-controllers can sup-

port the transport and application layers since they are software defined, their only

limitation being available libraries in the programming language of choice. Of course,

libraries are not required, but not having to reinvent the wheel is usually the goal

when programming. When selecting the LTE-M hardware, we are specifically looking

for a development kit since custom designed hardware is out of scope. The following

development kits support LTE-M and are readily available:

1. Particle Boron (U-Blox SARA R510 LTE-M modem) [36];

2. Conexio Stratus (nRF9160 LTE-M/NB-IoT modem) [37];

3. Actinius Icarus (nRF9160 LTE-M/NB-IoT modem) [38];

4. Nordic Thingy:91 (nRF9160 LTE-M/NB-IoT modem) [39].

3.1 Hardware Comparisons

The nRF9160 system-in-package (SiP) from Nordic Semiconductors is one of the

most prominent cellular modems on the market. Nordic specializes in chips for ultra-

low power wireless technology making them a prime candidate for our hardware

choice. All the development kits under review are based on the nRF9160 except

for the Boron, which uses the U-Blox R510 modem. The R510 is not a SiP since it

has a separate nRF52840 system-on-chip (SoC) dedicated for user applications. The

25

nRF9160 SiP includes a Cortex-M33 processor housed inside the same package as

the modem. All the dev kits support the required LTE-M network, but it is good to

have flexibility and not the bare minimum when testing. The nRF9160 based kits

have support for NB-IoT and Global Navigation Satellite System (GNSS) in addition

to LTE-M. Another important aspect for hardware choice, is the amount of prepaid

cellular data included. The Boron kit comes with their own branded etherSIM sup-

porting a completely free data plan when using under 100 devices with a 100 MB

and 100,000 transaction limit per month. For installations requiring more data, or

more devices, requires a subscription plan for which the pricing is not published. The

Stratus kit comes with an external SIM card prepaid with 500 MB of data that is

guaranteed for 10 years. The Icarus kit has an on-board chip SIM (eSIM) which

requires an Actinius account and is only valid for 3 months after activation. It also

supports an external SIM card to bypass the account setup step, but it is not included

with the kit. Finally, the Thingy:91 kit does not include a SIM card, so it must be

supplied by the developer. Based on the amount of data, the time limits, and ease of

management, the Stratus seems to be the best choice as 500 MB can last the lifetime

of most devices without any extra account hassle.

Another important consideration for an IoT device, is battery and power manage-

ment. All the kits support a power saving mode to reduce power consumption as

cellular modems can be power hungry. Since they all have power saving modes, the

ability for charging must be considered. Lithium-ion Polymer (LiPo) batteries are a

very popular choice for IoT devices, making a battery charging circuit very impor-

tant. All the development kits include a charging circuit; however, the Stratus kit

has energy harvesting capabilities that the others do not making it a much better

candidate for solar charging. The last key feature being considered while choosing

a development platform is how much support they have for the Rust programming

language. The nRF9160 has official support for the Zephyr RTOS, which is written in

26

the C programming language. Nordic chips are well-supported in the embedded Rust

community, also having libraries (crates) specifically for using the nRF9160 modem.

The U-Blox modem has official support in C++ and can use most Arduino libraries

[40]. U-Blox has very limited Rust support, which is early in the development stages

and can only issue AT commands to control the modem.

Table 3.1 summarizes key feature comparisons between all of the mentioned devel-

opment kits.

27

Table 3.1: Comparisons between LTE-M supported development kits.

Boron Stratus Icarus Thingy:91

Manufacturer Particle Conexio Tech Actinius Nordic Semi

Modem U-Blox SARA

R510

Nordic

nRF9160

Nordic

nRF9160

Nordic

nRF9160

Application

processor

Cortex-M4F

(nRF52840)

Cortex-M33

(nRF9160)

Cortex-M33

(nRF9160)

Cortex-M33

(nRF9160)

NB-IoT support No Yes Yes Yes

GNSS support No Yes Yes Yes

DTLS support Yes Yes Yes Yes

Rust support Limited Yes Yes Yes

Flash/RAM 1 MB/256 KB 1 MB/256 KB 1 MB/256 KB 1 MB/256 KB

Total pins 28 33 28 8

I/O pins 20 26 21 8

LiPo charging Yes Yes Yes No

Energy harvester No Yes No No

Power save mode Yes Yes Yes Yes

Prepaid data 100 MB per

month total

500 MB 10 MB 10 MB

Data validity N/A 10 years 3 months N/A

Accelerometer No Yes Yes Yes

Environmental

Sensors

No Yes No No

Kit price $60 $89 $130 $125

When considering each development board, the Conexio Stratus is selected as all

the hardware support needed for the chosen communication stack, can be used with

28

Rust programming with plenty of no-hassle data, and has the best charging and

energy harvesting capabilities.

3.2 Hardware Features

The Stratus kit is equipped with the nRF9160 SiP, as previously mentioned. A

high-level block diagram of the nRF9160’s features and peripherals are shown in

Figure 3.1.

Figure 3.1: nRF9160 SiP block diagram (Image courtesy: Nordic Semiconductors).

The development kit designed around the nRF9160 SiP is shown in Figure 3.2 and

illustrates available pins and their functionality.

29

Figure 3.2: Stratus cellular IoT development kit and pinout(Image courtesy: Conexio
Technologies).

Although it is not a required feature, the Stratus also has on-board sensors such as a

SHT4x temperature and humidity sensor from Sensirion[41], and a ST Microelectron-

ics LIS2DH MEMS digital output, 3-axis accelerometer [42]. These sensors make the

kit suitable for weather stations and asset tracking as well. The solar energy harvester

is a fantastic addition to the kit and makes it a perfect choice for low-maintenance

IoT deployments where changing batteries need to be avoided. The harvesting ca-

pability is provided by an e-peas AEM10941 solar energy harvester with maximum

power-point tracking [43]. The AEM10941 can charge any type of rechargeable bat-

tery or super-capacitor providing excellent power source flexibility. The datasheet is

provided in Appendix A. Figure 3.3 displays a high-level operational schematic for

the energy harvester.

30

Figure 3.3: Simplified schematic of the AEM10941 energy harvester (Image Courtesy:
e-peas).

External antennas are required for both cellular and GNSS (GPS) functionality on

the Stratus. Featuring both LTE-M and NB-IoT support, the Laird EFF6989A3S-

19MHF1 is used for its small size and wide band-width support range of 698MHz to

6GHz [44]. The antenna is shown in Figure 3.4.

Figure 3.4: Laird external antenna with uFL connector.(Image courtesy: Digikey).

CHAPTER 4: RUST PROGRAMMING

The language is designed to guide you naturally towards reliable code that

is efficient in terms of speed and memory usage [45].

The Rust programming language is a systems language built for performance, relia-

bility, and safety. Being a systems level language means that Rust exposes low-level

details about memory management, data representation, and concurrency. Rust gives

the developer precise control over both the stack and heap memory of an application

while being able to provide memory safety guarantees. This is one of the main ad-

vantages of Rust over C and C++ frameworks. The C language was developed in the

1970s, well before any concepts of network-connected device security was exploited

from memory mishandling [46]. C and C++ were designed for speed and more speed,

any notion of safety was added as an afterthought. Rust, on the other hand, was

created for speed and safety. Other languages such as Java and Python, are memory

safe but they achieve this using garbage collection algorithms to deallocate mem-

ory that is no longer needed [47]. This type of memory safety comes at the cost

of losing speed and efficiency. Rust has baked memory management into the lan-

guage using ownership and lifetime rules. These rules are used to determine when

memory goes out of scope at which point it is automatically dropped [48]. What

makes Rust a good choice for embedded development includes everything previously

mentioned, but also because of easy cross-compiling, asynchronous support, and a

strong type-system [49]. Rust also has a fantastic package manager, Cargo, which

is a cross-compiler by default. Cargo makes it simple to compile an application for

an embedded target, control application dependencies, and produce repeatable builds

[50]. Rust’s async/await syntax allows for asynchronous programs to be read as if

32

they were synchronous making them easier to reason about. Asynchronous program-

ming is useful for networking and input/output operations where the CPU can be

freed to perform other operations, for example, while it waits for a data packet to

arrive [49]. Finally, Rust’s strong type-system can be leveraged to prevent hardware

misuse, such as trying to configure a digital pin as an analog input. These qualities

make Rust a fantastic choice for embedded systems programming and for our device

firmware.

4.1 Embedded Rust Firmware

The device firmware used for this research is open-source and available on Github

at https://github.com/dkhayes117/propane-monitor-embassy/.

Nordic Semiconductors solely supports an RTOS called Zephyr and is written in C.

Nordic’s cellular modem library, nrfxlib, is also written in C and is closed-sourced [51].

To be able to interact with the nRF9160’s modem, Rust must be able to inter-operate

with the C programming in their library. This interoperability is achieved through

Rust’s foreign function interfaces (FFI), otherwise, completely reverse engineering the

modem library to Rust would be required. The FFIs are type translation definitions

and are used create Rust function wrappers around the C functions. With the FFIs

in place, the rest of the firmware can be written in pure Rust.

There are two structures defined, Payload and TankLevel. The TankLevel struc-

ture is used to contain all the data associated with a single measurement operation.

TankLevel holds three data measurements: tank and battery levels, and an optional

timestamp to be used with GPS synchronization, which has not been implemented.

To save power, the firmware is not transmitting every time a measurement cycle is

completed. Instead, the Payload structure is used to buffer the measurements where

they can be sent all at once. The Payload structure contains fields for holding mul-

tiple measurements, the connection strength during transmission, a timeout counter,

and a private location field used only to label testing data.

https:/github.com/dkhayes117/propane-monitor-embassy

33

Before the main logic can begin, interrupts EGU1 and IPC are enabled for modem

communication purposes, and the universal asynchronous receive/transmit (UART)

peripherals are explicitly disabled to save power. Next, the heap data section is

initialized for the memory allocator, which is required for the CoAP protocol and

for serializing the payload data into JavaScript Object Notation (JSON) format.

The following steps creates and initializes everything needed for the firmware’s state

machine:

1. take ownership of all device peripherals;

2. set pin 29 as disconnected to disable on-board accelerometer for power savings;

3. define pins to control the hall effect sensor, an LED, and the battery measure-

ment circuit;

4. configure the analog-to-digital (ADC) converter for two sampling channels used

to measure the tank and battery levels;

5. calibrate the ADC;

6. initialize the cellular modem;

7. install the PSK-ID and PSK in the modem for cloud authentication;

8. construct a Payload instance;

9. create a ticker(timer) to control how often the device does work.

When these steps are completed, the device is ready to begin measurements and is in

the Ready state. Figure 4.1 is a finite state machine (FSM) diagram that describes

how the firmware should operate.

34

Figure 4.1: State-machine diagram of firmware operational algorithm.

The FSM is inside a loop; therefore, the firmware will not return from this loop

unless there is an unrecoverable error. The hall-effect sensor must be powered up

and the battery measurement circuit enabled before the ADC can begin to sample.

According to the datasheet in Appendix B, the hall-effect sensor can take up to a

maximum of 330 µs to be ready for use after power up. A 500 µs delay is used to

ensure the sensor has enough to time to stabilize before a measurement is taken. After

the delay, we are in the Sample state and the ADC is passed a mutable buffer equal

to the number of channels being sampled. The buffer is where the sample data will be

stored in the same order that the ADC channels were configured. After completing a

sampling cycle, the TankLevel structure containing our data is buffered in the Payload

structure. When the Payload buffer is full, the FSM will move to the Transmit state,

otherwise it will transition back to the Sleep state and wait for the next ticker event.

35

The buffer capacity is set to 6 with a 10-minute ticker, which means that the device

will wake from sleep and take a measurement every ten minutes and transmit once

every hour. If the application sends the measurement data on every cycle, more data

will be used and much more power required. The same amount of measurement data

is being sent, but the DTLS data packets require header information for the server

to authenticate and receive them properly. This means that the header bytes would

need to be sent 6 times an hour versus once with the buffered data method. If the

payload vector is full, the application transitions into the Transmit state where the

cellular modem is used. The transmit state executes the following logic:

1. a DTLS socket is created and connected to the cloud server;

2. the connection signal strength is recorded;

3. a CoAP request is constructed;

4. the payload is serialized in JSON format;

5. the data is sent to the cloud over the socket;

6. the socket is deactivated for low-power sleep.

This data transmission code is wrapped with a 30 second timeout. If signal conditions

change or a network issue arises to prevent a socket connection, the timeout will trigger

and keep the device from fully discharging the power source. The application is not

meant for mission critical purposes; therefore, a timeout event counter is incremented,

and the previous data is cleared and the loop continues as if the transmission was

successful.

CHAPTER 5: EXPERIMENTAL SETUP

Now that the device firmware is setup to take sensor samples and send data to

the cloud over LTE-M, the device needs to be setup for experimental testing. To

accurately determine the fuel level, a hall effect sensor is used to detect the gauge’s

magnetic flux. The sensor needs to be properly positioned on the tank gauge and

tested to generate an ADC to percentage conversion equation. Next, a mounting

jig is used to attach the gauge mechanism to a servo for easy positioning of the

float for data collection. Power source selection and solar considerations are reviewed

followed by the details of the power profiling setup. Finally, the method for flashing

and debugging the development kit is introduced so the final prototype can be field

tested.

5.1 Hall Effect Sensor for Detecting Needle Position

Many commercial, propane tank float mechanisms utilize a magnet to rotate the

gauge needle to display the tank’s current fill percentage. This allows for the tank

to remain sealed eliminating a leak hazard and makes replacing the gauge easy. This

design offers the opportunity for detecting the fill-level of the tank by monitoring the

magnetic flux induced by the rotating magnet. A fixed-mounted, hall effect sensor

can quantify the amount of flux incurred allowing for the conversion into a fill-level

percentage to match the shown fill on the physical gauge. An example of a gauge

that allows for sensor mounting is the R3D shown in Figure 5.1. The gauge has a

black plastic placeholder where a hall effect sensor can be mounted.

37

Figure 5.1: Remote ready R3D propane gauge (Image Courtesy: Rochester Sensors).

Distributors of monitoring devices currently on the market, typically do not offer

the sale of a mountable hall effect sensor separately from the entire device. The hall

effect module that goes with the R3D gauge is only available to original equipment

manufacturers (OEM), therefore a custom sensor setup is used [52]. The Texas In-

struments DRV5055-Q1 ratiometric, hall effect sensor was the sensor of choice. First,

the sensor responds linearly to magnetic flux density allowing for accurate position

sensing. The automotive grade sensor also has a temperature range of -40°C to 150°C

and implements compensation for magnetic temperature drift, making it perfect for

outdoor applications. The DRV5055-Q1 comes in 5 different sensitivity options which

vary based on the maximum range of flux density that can be measured in milliteslas

(mT), and the millivolt output change per millitesla (mV/mT), or sensitivity. The

A4 version of the DRV5055-Q1 was used for initial testing as the float’s magnetic flux

density is unknown, and the A4 has the greatest sensing range of ± 169 mT. The

first tests using the A4 hall effect sensor is used to determine the best position for

the sensor with respect to the gauge. These tests showed the optimal position to be

9 mm from the gauge center as shown in Figure 5.2.

38

Figure 5.2: Sensor housing 3D model with dimensions.

This placement yields the most voltage output swing by the sensor while keeping

a linear relationship between 10% and 95% positions. During these position tests,

the magnetic flux extremes was calculated to ensure the proper sensitivity option is

selected using the sensor magnetic response equation 5.1.

VOUT = VQ + β ∗ (Sensitivity(25◦C) ∗ (1 + STC ∗ (TA − 25◦C)) (5.1)

where Vq is typically half of VCC

Beta is the applied magnetic flux density

Sensitivity(25°C) depends on the device option and VCC

STC is typically 0.12

TA is the ambient temperature

Testing at 20°C, 68°F, yielded a maximum and minimum voltage output of 2.839 V

and 2.196 V respectively. These voltage output values represent magnetic flux values

of 27.133 mT and -24.330 mT; therefore, to maximize voltage swing between these

flux values, the A2 sensor version was used with a range of ± 42 mT.

39

Figure 5.3: Typical sensor schematic.

Figure 5.3 shows the sensor wiring diagram where VCC is 3.3 V and the capacitor

value is 20 pF (10 pF minimum). The capacitor is soldered directly to the pins of the

TO-92 sensor package along with the sensor wire, then potted with electronics epoxy

into the 3D printed housing. The final sensor module is shown in Figure 5.4.

Figure 5.4: Sensor housing with potted sensor electronics.

5.2 Positional Testing Setup

To properly test the sensor measurements, the gauge float assembly is mounted

into a fixed position on a plywood substrate as shown in Figure 5.5.

40

Figure 5.5: Tank level testing jig with servo positioning.

The rotating float is attached to a digital servo, Hitec 645MW, so the position

can be accurately and repeatably set. Most servos are controlled with a pulse width

modulation (PWM) signal operating at a 50 Hz frequency which has a 20 ms period.

The nRF9160’s PWM0 peripheral from the Stratus development board is setup to

control the float position by controlling the servo. Using the tank level testing jig

and servo, 13 fill positions are used between the 5% and 95% points. Each position

is measured with an ADC oversampling value of 3, which means that every ADC

conversion is taking the average of 23(8) measurements. Each measurement cycle

begins at 5% and ends with 95% and is repeated for 10 cycles. Having the gauge

move to each position one at a time instead of taking 10 measurements before moving

to the next ensures that the results are repeatable. The results provided as Appendix

D, are tabulated and fitted with both polynomial and linear regressions. The data

shows that any measurements below 10% are unreliable as the sensor output begins

to increase instead of continuing to decrease. If values under 10% are included, then

the fit-curve resembles a third-order polynomial more than a straight line. Figure

5.6 illustrates the average ADC value for each needle position recorded, each point

represents a ten value average, and show both linear and polynomial regressions.

Excluding measurements below 10% yields a much tighter fit and matches the linear

41

equation with less variance.

(a) Sensor data: range 5%-95%; a linear and polynomial fit

(b) Sensor data: range 10%-95%; a linear and polynomial fit

Figure 5.6: Linear and polynomial fitting of ADC measurements to percentage fill
level.

The final result is shown in Equation 5.2 and is used in the firmware to convert the

ADC measurements into a fill percentage value.

Fill% = 0.0534 ∗ valueADC − 39.0634 (5.2)

42

5.3 Power Source and Solar Charging

Power source selection for a low-power, IoT device is very important for long-

term service. Lithium-Ion Batteries (LIB) are very common choices for their high-

energy density (Wh/kg) and small footprints; however, they do have disadvantages.

For example, LIBs experience performance degradation after a limited amount of

discharge/charge cycles, typical battery life is around 500 cycles up to over 4000

cycles with different electrolytes and cathode/anode material combinations [53]. LIBs

also have a limited amount of power density and are not the most environmentally

friendly product. Supercapacitors, or Electric Double Layer Capacitors (EDLC), have

very high-power density (W/kg), but have a much lower energy density compared to

LIBs. Lithium-Ion Capacitors (LIC) are a newer technology which has started to

emerge to bridge the gap between LIB and EDLC technologies. An LIC is a hybrid

electrochemical system combining the functions of LIBs, using the negative graphite

electrode, and EDLCs, using the positive carbon electrode, in a single device [54].

Figure 5.7 uses a Ragonne plot to illustrate the relationship of energy density and

power density between different energy storage technologies.

Figure 5.7: Ragonne plot of different energy storage technologies, including LIC char-
acteristics compared to LIB and EDLC [55].

For IoT, the selling point is LIC’s long life. In most applications, it will be

43

unnecessary to change the LIC during the life of the device [55]. The Vinatech

VEL13353R8257G LIC was selected for its wide temperature range, low self-discharge,

and high capacitance rated at 3.8 V and 250 Farads (F). According to the datasheet,

Appendix C, the LIC has a rated life of 20,000 cycles and a capacity of 90 milliamp-

hours (mAh) which equals 90mAh ∗ 3.8V = 342mWh of energy storage. If a device

averages 400 µA of current draw at 3.8 V, the LIC would last for approximately

342mWh/(400µA ∗ 3.8V) = 225 hours, or 9.375 days. Even if a full discharge/charge

cycle happened once a day, the LIC would only experience 3,650 cycles over a 10-year

period, which isn’t even 20% of its rated cycle life. LICs are a fantastic choice for

IoT devices as they can power the device for its entire lifetime without replacement

when combined with a charging system like the solar energy harvester on the Stratus

board.

A generic solar panel rated at 700 mW with a 5 V output is connected to the

energy harvester. According to the National Renewable Energy Laboratory (NREL),

the testing site for the device should get an average of 4.25 to 4.50 kWh/m2/day as

shown in Figure 5.8.

Figure 5.8: Global horizontal solar irradiance (Image Courtesy: National Renewable
Energy Laboratory).

The solar panel is approximately 6.25 in2 or 0.004 m2, so the panel should be able

44

to generate 17 Wh per day over 4.25 hours for commerical solar panels. This generic

solar panel is not commercial grade, so according to the 0.7-watt specification, the

panel can only produce 2.975 Wh per day. This means that the solar panel can

provide 2.975Wh
5V ∗4.25h = 140 mA of charging current. The e-peas solar harvester can charge

at a maximum of 80 mA; therefore, the charging system will have an average daily

power budget of 80mA ∗ 3.8V ∗ 4.25hours = 1.292 Wh of total energy. This amount

of energy produced is enough to charge the LIC over 3 times its capacity. From this,

it can be concluded that the solar charging setup can keep the device fully charged

for continual and maintenance free use.

5.4 Power Measurement

The Nordic power profiler kit 2 (PPK2) is used to document the device’s power

use during testing. The PPK2 device is shown in Figure 5.9.

Figure 5.9: Nordic power Profiler Kit Version 2 (Image Courtesy: Nordic Semicon-
ductor) [56].

The PPK2 measures real-time power consumption with up to 100 kilo-samples per

second (ksps) and has a measuring range of 500 nA to 1 A. If the device under test

requires more than 400 mA the PPK2 needs both usb ports connected to supply the

required power. The PPK2 features two measurement modes: source meter mode

acts as a power supply and provides the power to the device; ampere meter mode is

45

placed in the current path between the power source and the device. The connection

setup for both modes are shown in Figure 5.10.

Figure 5.10: Connection diagram for source meter and ampere meter measurement
modes.

The PPK2 is used in conjunction with Nordic’s Power Profiler software where the

mode and voltage output are controlled. The software also charts the power readings

while displaying average window current, max window current, window size, and

charge.

5.5 Flashing and Debugging

When developing and running firmware a way to flash the executable to the device

and debug it is very important. The Probe-Run[57] Rust crate is used as the project

runner, which will flash the executable to the device and run it just like a native

application would. Probe-Run is built on the Probe-RS library[58] which supports

CMSIS-DAP, ST-Link, and Segger J-Link debugger probes. The debugger connects

to the device’s JTAG pin header where the chip is flashed, and any logs are printed

to the console using real-time transfers (RTT). With the development board powered

and the debugger connected, running the application with build an executable, flash

it to the device, and attach the debugger for RTT logs to be printed to the console.

An example of the RTT logs is shown in Figure 5.11.

46

Figure 5.11: Example logs printed to console with Defmt RTT.

CHAPTER 6: RESULTS

All of the hardware components are mounted into an enclosure for testing as shown

in Figure 6.1.

Figure 6.1: Test hardware mounted in enclosure including development board, an-
tennas, LIC, and solar panel.

Any IoT cloud service can be used that supports CoAP and DTLS, in this case,

Golioth is used for its simple interfaces [59]. After the device sends a data transmission

to the cloud, the data can be viewed on their website. An example is shown in Figure

6.2, displaying a timestamp, the device identification, and the data in JSON format.

Seeing the data in the cloud confirms a successful transmission.

48

Figure 6.2: Example LightDB log entry after data transfer (Image Courtesy: Golioth
IoT).

Each transmission with 6 data structures, including the DTLS header data, requires

approximately 348 bytes. The 1nce SIM card being used is prepaid with 500 MB

of data, therefore 500MB
348B

= 1, 436, 781 transmissions can be sent. Assuming one

transmission per hour, the $10 data plan would last for 1,436,781
(24∗365) = 164 years; however,

the data plan is only valid for 10 years. Transmissions could be sent approximately

every 3.6 minutes for 10 years before the data plan expires or runs out of data. At

that point, the SIM card can be reloaded with another 500 MB of data for $10.

The device uses the most amount of energy during a data transfer since the modem

is active. Figure 6.3 shows a power profile during a data transmission with a signal

strength of -105 decibel-milliwatts (dBm). The transmission averaged 32.28 mA of

current at 3.3 V which is 106.52 mW of power for a total of 4.175 seconds.

(32.28mA ∗ 3.30V) = 106.52mW

The signal strength affects the total transmission time, the weaker the signal, the

49

longer it takes to send the data which will use more energy. Figure 6.4 shows a

transmission, with a signal strength of -126 dBm averaged 34.05 mA at 3.3 V which

is 112.37 mW of power for 11.64 seconds.

(34.05mA ∗ 3.30V) = 112.37mW

Figure 6.3: Power profile window during a cellular transmission cycle at -105 dBm.

Figure 6.4: Power profile window during a cellular transmission cycle at -126 dBm.

Between the data transmissions, the device is in sleep mode where the lowest achiev-

able current draw is approximately 115µA at 3.3 V with the firmware’s current setup.

Figure 6.5 displays a 114µA current draw which then spikes to 484µA for 65 ms which

50

represents a sensor sampling operation. During the sample measurement, the device

will require 1597.2 µW of power to use the hall effect sensor and 379.5 µW of power

while sleeping.

(484µA ∗ 3.30V) = 1597.2µW

(115µA ∗ 3.30V) = 379.5µW

Figure 6.5: Power profile window during a transition from sleeping to sensor sampling.

Throughout testing with different signal strengths between -85 dBm and -130 dBm,

the typical transmission time is between 4 seconds and 15 seconds. MOst areas have

a strength of -105 dBm or better, so the energy consumption calculations are figured

assuming this level of signal. Also, since the modem and sensor are not always drawing

current, they must be proportioned according to the time they are used.

106.52mW (4.175s
3600s

) = 123.53µW

1597.5µW (65ms∗6
3600s

) = 173.1pW

379.5µW (3600s−(390ms+4.175s)
3600s

= 379µW

123.53µW + 173.1pW + 379µW = 502.7µW

342mWh
502.7µW

= 680.3 hours

51

The total average instantaneous power the device uses is 502.7 µW. The Vinat-

ech LIC power source has a total energy capacity of 342 mWh, so based on actual

measurements, the device can operate for approximately 680.3 hours, or 28.3 days,

without any solar charging. The energy consumption is dominated by data transfers.

For example, if the signal strength was at a worst case scenario of around -130 dBm,

the device would use 3 times as much energy, cutting the operation time to approxi-

mately 9 days without any charging. These calculations are assuming a transmission

every hour; however, this rate could always be extended if greater periods without

charging are required.

The prototype has been theoretically shown to be able to sustain the device for

at least 10 years with the solar charged LIC, but reliable communications over the

cellular network should be demonstrated. The prototype is relocated to 3 different

areas of varying signal strength to provide a field comparison of networking reliability.

Figure 6.6 shows the prototype deployed in the field attached to an in-ground, 500

gallon tank.

Figure 6.6: Working prototype attached with magnetic feet to an in-ground, 500
gallon tank.

52

The field reliability results are shown in Table 6.1 demonstrating that LTE-M was

able to maintain a success rate of at least 95% in areas of typical signal strengths.

Areas with weaker signals, approximately -120 dBm or worse, had more issues with

connecting to the network. Note that the firmware implements a 30-second timeout

and the modem is completely turned off between transmissions. Keeping the device

connected to the cell tower and using eDRX or PSM to conserve power between

transmissions, instead of turning the modem off, could increase reliability at weaker

signal locations.

Table 6.1: Communication reliability based on signal strength.

Average

signal

Successful

transmissions

Timeouts /

failures

Success

rate

Test 1 -88 dBm 98 2 98 %

Test 2 -104 dBm 95 5 95 %

Test 3 -120 dBm 91 9 91%

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

The purpose of this thesis was to research and validate the use of cellular-based

communications with embedded Rust for IoT use-cases, such as a propane fuel level

monitoring system. Although, cellular modems are much more expensive than Wi-

Fi modems, the turn-key security, reliability, and lack of configuration management

makes cellular a viable choice for many IoT projects. Cellular fits well with station-

ary, mobile, and commercial type applications as demonstrated by the propane tank

monitoring sensor application. The system developed could allow propane suppliers

to offer tracking and filling services based on tank fill levels for their customer’s visi-

bility and satisfaction. Not only were the cellular transmissions reliable with failure

rates of less than 5% with typical signal strength, but was also cost effective at only

$0.02 per MB of transferred data. Security was provided with PSK-authenticated,

DTLS sockets using Nordic’s modem library. It was also demonstrated that powering

the device with a solar-charged LIC provided ample power and energy storage and

is sustainable for at least 10-years. The device can operate for a minimum of 9 days

without any solar charging assistance. The embedded, asynchronous Rust firmware

provide to be a viable and flexible framework that offers memory safety guarantees

without sacrificing efficiency or speed.

The research presented opens the door for future cellular-based IoT research us-

ing a memory-safe programming language in Rust, and the possibility of eliminating

batteries in devices. Areas that can benefit from this research includes agriculture,

wildlife monitoring cameras, hazardous waste areas, and anywhere maintenance-free

operation is a key factor. Specific features that would aid in these areas includes

adding over-the-air firmware updates, GPS functionality, and lowering power con-

54

sumption. Research on the long-term use of lithium-ion capacitors and solar charging

for power sources would also be valuable in further validating battery-less IoT devices.

55

REFERENCES

[1] “Lte fuel level monitor.” https://www.generac.com/specialpages/
lte-lp-fuel-level-monitor. Last accessed 2022-11-14.

[2] “Wireless propane tank level monitor.” https://www.monnit.com/products/
sensors/propane-tank-monitoring/lpg/MNS2-9-IN-HE-MG/. Last accessed
2022-11-14.

[3] Y.-K. Chen, “Challenges and opportunities of internet of things,” in 17th Asia
and South Pacific Design Automation Conference, pp. 383–388, 2012.

[4] S. Cass, “The 2015 top ten programming languages,” IEEE Spectrum, July,
vol. 20, 2015.

[5] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi, “A primer on 3gpp narrowband internet of
things,” IEEE Communications Magazine, vol. 55, no. 3, pp. 117–123, 2017.

[6] “Ericsson mobility report.” https://www.ericsson.com/en/
reports-and-papers/mobility-report/reports. Last accessed 2022-12-
01.

[7] J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, “The en-
vironmental impact of li-ion batteries and the role of key parameters–a review,”
Renewable and Sustainable Energy Reviews, vol. 67, pp. 491–506, 2017.

[8] “Lithium-capacitor.” https://www.vinatech.com/eng/product/
lithium-capacitor.phps. Last accessed 2022-12-01.

[9] M. Noseda, F. Frei, A. Rüst, and S. Künzli, “Rust for secure iot applications:
why c is getting rusty,” in Embedded World Conference 2022, Nuremberg, 21-23
June 2022, WEKA, 2022.

[10] T. Uzlu and E. Şaykol, “On utilizing rust programming language for internet of
things,” in 2017 9th International Conference on Computational Intelligence and
Communication Networks (CICN), pp. 93–96, IEEE, 2017.

[11] K. D. Ballal, R. Singh, L. Dittmann, and S. Ruepp, “Experimental evaluation of
roaming performance of cellular iot networks,” in 2022 Thirteenth International
Conference on Ubiquitous and Future Networks (ICUFN), pp. 386–391, IEEE,
2022.

[12] J. S. E, A. Sikora, M. Schappacher, and Z. Amjad, “Test and measurement
of lpwan and cellular iot networks in a unified testbed,” in 2019 IEEE 17th
International Conference on Industrial Informatics (INDIN), vol. 1, pp. 1521–
1527, 2019.

https://www.generac.com/specialpages/lte-lp-fuel-level-monitor
https://www.generac.com/specialpages/lte-lp-fuel-level-monitor
https://www.monnit.com/products/sensors/propane-tank-monitoring/lpg/MNS2-9-IN-HE-MG/
https://www.monnit.com/products/sensors/propane-tank-monitoring/lpg/MNS2-9-IN-HE-MG/
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports
https://www.vinatech.com/eng/product/lithium-capacitor.phps
https://www.vinatech.com/eng/product/lithium-capacitor.phps

56

[13] B. Reynders and S. Pollin, “Chirp spread spectrum as a modulation technique
for long range communication,” in 2016 Symposium on Communications and
Vehicular Technologies (SCVT), pp. 1–5, 2016.

[14] “Semtech.” https://www.semtech.com/lora. Last accessed 2022-11-18.

[15] “Lora alliance.” https://lora-alliance.org/. Last accessed 2022-11-18.

[16] “Sigfox.” https://www.sigfox.com/en. Last accessed 2022-11-19.

[17] M. Lauridsen, I. Z. Kovacs, P. Mogensen, M. Sorensen, and S. Holst, “Coverage
and capacity analysis of lte-m and nb-iot in a rural area,” in 2016 IEEE 84th
Vehicular Technology Conference (VTC-Fall), pp. 1–5, 2016.

[18] A. Sorensen, H. Wang, M. J. Remy, N. Kjettrup, R. B. Sorensen, J. J. Nielsen,
P. Popovski, and G. C. Madueno, “Modeling and experimental validation for bat-
tery lifetime estimation in nb-iot and lte-m,” IEEE Internet of Things Journal,
vol. 9, no. 12, pp. 9804–9819, 2022.

[19] M. Soltani and S. H. Beheshti, “A comprehensive review of lithium ion capac-
itor: development, modelling, thermal management and applications,” Journal
of Energy Storage, vol. 34, p. 102019, 2021.

[20] B. J. Damslora, “Data collection in a cellular sensor network with nrf9160,”
Master’s thesis, NTNU, 2019.

[21] “The zephyr project.” https://www.zephyrproject.org/. Last accessed 2022-
11-13.

[22] A. Vishnubhatla, “Cellular iot using nrf9160kit,” 2020.

[23] F. Gabelle, “Narrowband-iot power saving modes–a comprehensive study,” 2021.

[24] “Qoitech.” https://www.qoitech.com/. Last accessed 2022-12-01.

[25] N. I. Osman and E. B. Abbas, “Simulation and modelling of lora and sigfox
low power wide area network technologies,” in 2018 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), pp. 1–
5, 2018.

[26] “IoT data plan; pricing - 10 dollars per 10 years: 1nce - IoT SIM.” https:
//1nce.com/en-us/pricing/, Mar 2022.

[27] “How much does internet cost per month?.” https://www.forbes.com/
home-improvement/internet/internet-cost-per-month/. Last accessed
2022-11-14.

[28] “Cellular vs. wifi for IoT: How to choose the right one.” https://www.particle.
io/iot-guides-and-resources/cellular-vs-wifi-for-iot/. Last accessed
2022-11-14.

https://www.semtech.com/lora
https://lora-alliance.org/
https://www.sigfox.com/en
https://www.zephyrproject.org/
https://www.qoitech.com/
https://1nce.com/en-us/pricing/
https://1nce.com/en-us/pricing/
https://www.forbes.com/home-improvement/internet/internet-cost-per-month/
https://www.forbes.com/home-improvement/internet/internet-cost-per-month/
https://www.particle.io/iot-guides-and-resources/cellular-vs-wifi-for-iot/
https://www.particle.io/iot-guides-and-resources/cellular-vs-wifi-for-iot/

57

[29] “Cellular IoT - what is cellular IoT.” https://www.nordicsemi.com/Products/
Low-power-cellular-IoT/What-is-cellular-IoT?lang=en#infotabs.

[30] J. Wirges and U. Dettmar, “Performance of TCP and UDP over narrowband
internet of things (NB-IoT),” in 2019 IEEE International Conference on Internet
of Things and Intelligence System (IoTaIS), pp. 5–11, 2019.

[31] A. S. Sadeq, R. Hassan, S. S. Al-rawi, A. M. Jubair, and A. H. Aman, “A qos
approach for internet of things (IoT) environment using mqtt protocol,” 2019
International Conference on Cybersecurity (ICoCSec), 2019.

[32] A. Parmigiani and U. Dettmar, “Comparison and evaluation of lwm2m and mqtt
in low-power wide-area networks,” in 2021 IEEE International Conference on
Internet of Things and Intelligence Systems (IoTaIS), pp. 8–14, 2021.

[33] S. Mijovic, E. Shehu, and C. Buratti, “Comparing application layer protocols
for the internet of things via experimentation,” in 2016 IEEE 2nd International
Forum on Research and Technologies for Society and Industry Leveraging a better
tomorrow (RTSI), pp. 1–5, 2016.

[34] G. Restuccia, H. Tschofenig, and E. Baccelli, “Low-power iot communication
security: On the performance of DTLS and TLS 1.3,” in 2020 9th IFIP In-
ternational Conference on Performance Evaluation and Modeling in Wireless
Networks (PEMWN), pp. 1–6, 2020.

[35] T. Claeys, M. Vucinic, T. Watteyne, F. Rousseau, and B. Tourancheau, “Perfor-
mance of the transport layer security handshake over 6TiSCH,” Sensors, vol. 21,
no. 6, 2021.

[36] “Boron lte cat-m1 (noram) with ethersim.” https:
//store.particle.io/collections/cellular/products/
boron-lte-cat-m1-noram-with-ethersim-4th-gen. Last accessed 2022-
11-12.

[37] “Conexio stratus.” https://www.conexiotech.com/. Last accessed 2022-11-12.

[38] “Icarus IoT board v2.” https://www.actinius.com/icarus. Last accessed 2022-
11-12.

[39] “Nordic thingy:91.” https://www.nordicsemi.com/Products/
Development-hardware/Nordic-Thingy-91/GetStarted. Last accessed
2022-11-12.

[40] “Particle docs: Libraries.” https://docs.particle.io/firmware/
best-practices/libraries/. Last accessed 2022-11-13.

[41] “4th generation, high-accuracy, ultra-low-power, 16-bit relative humidity and
temperature sensor.” https://sensirion.com/media/documents/33FD6951/
624C4357/Datasheet_SHT4x.pdf. Last accessed 2022-11-13.

https://www.nordicsemi.com/Products/Low-power-cellular-IoT/What-is-cellular-IoT?lang=en#infotabs
https://www.nordicsemi.com/Products/Low-power-cellular-IoT/What-is-cellular-IoT?lang=en#infotabs
https://store.particle.io/collections/cellular/products/boron-lte-cat-m1-noram-with-ethersim-4th-gen
https://store.particle.io/collections/cellular/products/boron-lte-cat-m1-noram-with-ethersim-4th-gen
https://store.particle.io/collections/cellular/products/boron-lte-cat-m1-noram-with-ethersim-4th-gen
https://www.conexiotech.com/
https://www.actinius.com/icarus
https://www.nordicsemi.com/Products/Development-hardware/Nordic-Thingy-91/GetStarted
https://www.nordicsemi.com/Products/Development-hardware/Nordic-Thingy-91/GetStarted
https://docs.particle.io/firmware/best-practices/libraries/
https://docs.particle.io/firmware/best-practices/libraries/
https://sensirion.com/media/documents/33FD6951/624C4357/Datasheet_SHT4x.pdf
https://sensirion.com/media/documents/33FD6951/624C4357/Datasheet_SHT4x.pdf

58

[42] “MEMS digital output motion sensor:ultra low-power high performance 3-axis
femto accelerometer.” https://www.st.com/en/mems-and-sensors/lis2dh.
html. Last accessed 2022-11-12.

[43] “Aem10941 solar energy harvesting.” https://e-peas.com/product/
aem10941/. Last accessed 2022-11-12.

[44] “Revie flex series cellular antennas.” https://www.lairdconnect.
com/internal-antennas/multibandcellular-iot-and-m2m/
revie-flex-series-cellular-antennas. Last accessed 2022-11-13.

[45] “The rust programming language, foreword.” https://doc.rust-lang.org/
book/foreword.html, Aug 2019.

[46] D. M. Ritchie, “The development of the C language,” ACM Sigplan Notices,
vol. 28, no. 3, pp. 201–208, 1993.

[47] L. Cen, R. Marcus, H. Mao, J. Gottschlich, M. Alizadeh, and T. Kraska, “Learned
garbage collection,” in Proceedings of the 4th ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 38–44, 2020.

[48] F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang, “Krust: A formal executable
semantics of rust,” in 2018 International Symposium on Theoretical Aspects of
Software Engineering (TASE), pp. 44–51, 2018.

[49] J. Gjengset, Rust for Rustaceans: Idiomatic Programming for Experienced De-
velopers. No Starch Press, 2021.

[50] S. Klabnik and C. Nichols, The Rust Programming Language. No Starch Press,
2019.

[51] “nrfxlib.” https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.4.
2/nrfxlib/README.html. Last accessed 2022-11-13.

[52] “Jr & Sr R3D dials.” https://rochestersensors.com/product/
jr-and-sr-r3d-dials-lp/. Last accessed 2022-11-13.

[53] M. Majima, S. Ujiie, E. Yagasaki, K. Koyama, and S. Inazawa, “Development
of long life lithium ion battery for power storage,” Journal of Power Sources,
vol. 101, no. 1, pp. 53–59, 2001.

[54] V. Khomenko and V. Barsukov, “Lithium-ion capacitor for photovoltaic energy
system,” in Materials Today: Proceedings, no. 6, pp. 116–120, Elsevier, 2019.

[55] J. Ronsmans and B. Lalande, “Combining energy with power: Lithium-ion ca-
pacitors,” in 2015 International Conference on Electrical Systems for Aircraft,
Railway, Ship Propulsion and Road Vehicles (ESARS), pp. 1–4, IEEE, 2015.

[56] “Solar resource maps and data.” https://www.nrel.gov/gis/
solar-resource-maps.html. Last accessed 2022-11-13.

https://www.st.com/en/mems-and-sensors/lis2dh.html
https://www.st.com/en/mems-and-sensors/lis2dh.html
https://e-peas.com/product/aem10941/
https://e-peas.com/product/aem10941/
https://www.lairdconnect.com/internal-antennas/multibandcellular-iot-and-m2m/revie-flex-series-cellular-antennas
https://www.lairdconnect.com/internal-antennas/multibandcellular-iot-and-m2m/revie-flex-series-cellular-antennas
https://www.lairdconnect.com/internal-antennas/multibandcellular-iot-and-m2m/revie-flex-series-cellular-antennas
https://doc.rust-lang.org/book/foreword.html
https://doc.rust-lang.org/book/foreword.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.4.2/nrfxlib/README.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.4.2/nrfxlib/README.html
https://rochestersensors.com/product/jr-and-sr-r3d-dials-lp/
https://rochestersensors.com/product/jr-and-sr-r3d-dials-lp/
https://www.nrel.gov/gis/solar-resource-maps.html
https://www.nrel.gov/gis/solar-resource-maps.html

59

[57] J. Aparicio, J. Munns, and Knurling-team, “Probe-run.” https://crates.io/
crates/probe-run. Last accessed 2022-11-06.

[58] N. Husser, D. Boehi, A. Greig, and E. Fresk, “Probe-rs.” https://probe.rs/.
Last accessed 2022-11-06.

[59] “Develop connected hardware with a cloud built for you.” https://golioth.io/.
Last accessed 2022-11-13.

https://crates.io/crates/probe-run
https://crates.io/crates/probe-run
https://probe.rs/
https://golioth.io/

DATASHEET AEM10941DATASHEET AEM10941DATASHEET AEM10941

2 Absolute Maximum Ratings

Parameter Rating
Vsrc 5.5V
Operating junction temperature -40 ◦C to +125 ◦C
Storage temperature -65 ◦C to +150 ◦C

Table 2: Absolute maximum ratings

3 Thermal Resistance

Package θJA θJC Unit
QFN28 38.3 2.183 ◦C/W

Table 3: Thermal data

ESD CAUTION

ESD (ELECTROSTATIC DISCHARGE) SENSITIVE DEVICE
These devices have limited built-in ESD protection and damage may thus occur on devices
subjected to high-energy ESD. Therefore, proper ESD precautions should be taken to avoid
performance degradation or loss of functionality.

4 Typical Electrical Characteristics at 25 ◦C
Symbol Parameter Conditions Min Typ Max Unit
Power conversion
PsrcCS Source power required for cold start. During cold start 3 µW

Vsrc Input voltage of the energy source.
During cold start 0.38 5

V
After cold start 0.05 5

VCS Custom cold-start voltage.
During the cold start
(see page 12)

0.5 4 V

Vboost Output of the boost converter. During normal operation 2.2 4.5
V

Vbuck Output of the buck converter. During normal operation 2 2.2 2.5
Storage element

Vbatt Voltage on the storage element.
Rechargeable battery 2.2 4.5 V
Capacitor 0 4.5 V

Tcrit
Time before shutdown after STA-
TUS[1] has been asserted.

400 600 800 ms

Vprim Voltage on the primary battery. 0.6 5 V

Vfb prim u
Feedback for the minimal voltage
level on the primary battery.

0.15 1.1 V

Vovch
Maximum voltage accepted on the
storage element before disabling the
boost converter.

see Table 7 2.3 4.5 V

Vchrdy
Minimum voltage required on the
storage element before enabling the
LDOs after a cold start.

see Table 7 2.25 4.45 V

Vovdis

Minimum voltage accepted on the
storage element before switching to
primary battery or entering into a
shutdown.

see Table 7 2.2 4.4 V

Low-voltage LDO regulator

Vlv
Output voltage of the low-voltage
LDO.

see Table 7 1.2 1.8 V

Ilv
Load current from the low-voltage
LDO.

0 20 mA

High-voltage LDO regulator

Vhv
Output voltage of the high-voltage
LDO.

see Table 7 1.8 Vbatt - 0.3 V V

Ihv
Load current from the high-voltage
LDO.

0 80 mA

Logic output pins

STATUS[2:0] Logic output levels on the status
pins.

Logic high (VOH) 1.98 Vbatt V
Logic low (VOL) -0.1 0.1 V

Table 4: Electrical characteristics

5DS AEM10941 REV1.3 Copyright c© 2018 e-peas SA 5DS AEM10941 REV1.3 Copyright c© 2018 e-peas SA 5DS AEM10941 REV1.3 Copyright c© 2018 e-peas SA

60

APPENDIX A: E-PEAS AEM10941 DATASHEET

B
southnorth

OUT

0 mT

0 V

VCC

VL (MIN)

VL (MAX)

VCC / 2
OUT

DRV5055-Q1

VCC

Controller
VCC

GND

ADC

Product

Folder

Order

Now

Technical

Documents

Tools &

Software

Support &
Community

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.

DRV5055-Q1
SBAS639C –OCTOBER 2017–REVISED JULY 2018

DRV5055-Q1 Automotive Ratiometric Linear Hall Effect Sensor

1

1 Features
1• Ratiometric Linear Hall Effect Magnetic Sensor
• Operates From 3.3-V and 5-V Power Supplies
• Analog Output With VCC / 2 Quiescent Offset
• Magnetic Sensitivity Options (At VCC = 5 V):

– A1: 100 mV/mT, ±21-mT Range
– A2: 50 mV/mT, ±42-mT Range
– A3: 25 mV/mT, ±85-mT Range
– A4: 12.5 mV/mT, ±169-mT Range
– A5: –100 mV/mT, ±21-mT Range

• Fast 20-kHz Sensing Bandwidth
• Low-Noise Output With ±1-mA Drive
• Compensation For Magnet Temperature Drift
• AEC-Q100 Qualified for Automotive Applications:

– Temperature Grade 0: –40°C to 150°C
• Standard Industry Packages:

– Surface-Mount SOT-23
– Through-Hole TO-92

2 Applications
• Automotive Position Sensing
• Brake, Acceleration, Clutch Pedals
• Torque Sensors, Gear Shifters
• Throttle Position, Height Leveling
• Powertrain and Transmission Components
• Absolute Angle Encoding
• Current Sensing

3 Description
The DRV5055-Q1 is a linear Hall effect sensor that
responds proportionally to magnetic flux density. The
device can be used for accurate position sensing in a
wide range of applications.

The device operates from 3.3-V or 5-V power
supplies. When no magnetic field is present, the
analog output drives half of VCC. The output changes
linearly with the applied magnetic flux density, and
five sensitivity options enable maximal output voltage
swing based on the required sensing range. North
and south magnetic poles produce unique voltages.

Magnetic flux perpendicular to the top of the package
is sensed, and the two package options provide
different sensing directions.

The device uses a ratiometric architecture that can
eliminate error from VCC tolerance when the external
analog-to-digital converter (ADC) uses the same VCC
for its reference. Additionally, the device features
magnet temperature compensation to counteract how
magnets drift for linear performance across a wide
–40°C to +150°C temperature range.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)

DRV5055-Q1
SOT-23 (3) 2.92 mm × 1.30 mm
TO-92 (3) 4.00 mm × 3.15 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

Typical Schematic Magnetic Response (A1, A2, A3, A4 Versions)

61

APPENDIX B: DRV5055-Q1 DATASHEET

4

DRV5055-Q1
SBAS639C –OCTOBER 2017–REVISED JULY 2018 www.ti.com

Product Folder Links: DRV5055-Q1

Submit Documentation Feedback Copyright © 2017–2018, Texas Instruments Incorporated

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.2 ESD Ratings
VALUE UNIT

V(ESD) Electrostatic discharge
Human body model (HBM), per AEC Q100-002 (1) ±2500

V
Charged device model (CDM), per AEC Q100-011 ±750

(1) There are two isolated operating VCC ranges. For more information see the Operating VCC Ranges section.
(2) Power dissipation and thermal limits must be observed.

6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

MIN MAX UNIT

VCC Power-supply voltage (1) 3 3.63
V

4.5 5.5
IO Output continuous current –1 1 mA
TA Operating ambient temperature (2) –40 150 °C

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.

6.4 Thermal Information

THERMAL METRIC (1)
DRV5055-Q1

UNITSOT-23 (DBZ) TO-92 (LPG)
3 PINS 3 PINS

RθJA Junction-to-ambient thermal resistance 170 121 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 66 67 °C/W
RθJB Junction-to-board thermal resistance 49 97 °C/W
YJT Junction-to-top characterization parameter 1.7 7.6 °C/W
YJB Junction-to-board characterization parameter 48 97 °C/W

(1) B is the applied magnetic flux density.
(2) VN describes voltage noise on the device output. If the full device bandwidth is not needed, noise can be reduced with an RC filter.

6.5 Electrical Characteristics
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS (1) MIN TYP MAX UNIT
ICC Operating supply current 6 10 mA
tON Power-on time (see Figure 18) B = 0 mT, no load on OUT 175 330 µs
fBW Sensing bandwidth 20 kHz
td Propagation delay time From change in B to change in OUT 10 µs

BND Input-referred RMS noise density
VCC = 5 V 130

nT/√Hz
VCC = 3.3 V 215

BN Input-referred noise BND × 6.6 × √20 kHz
VCC = 5 V 0.12

mTPPVCC = 3.3 V 0.2

VN Output-referred noise (2) BN × S

DRV5055A1,
DRV5055A5 12

mVPPDRV5055A2 6
DRV5055A3 3
DRV5055A4 1.5

5

DRV5055-Q1
www.ti.com SBAS639C –OCTOBER 2017–REVISED JULY 2018

Product Folder Links: DRV5055-Q1

Submit Documentation FeedbackCopyright © 2017–2018, Texas Instruments Incorporated

(1) B is the applied magnetic flux density.
(2) See the Ratiometric Architecture section.
(3) BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and Sensitivity tolerances.
(4) See the Sensitivity Linearity section.
(5) STC describes the rate the device increases Sensitivity with temperature. For more information, see the Sensitivity Temperature

Compensation for Magnets section.

6.6 Magnetic Characteristics
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS (1) MIN TYP MAX UNIT

VQ Quiescent voltage B = 0 mT, TA = 25°C
VCC = 5 V 2.43 2.5 2.57

V
VCC = 3.3 V 1.59 1.65 1.71

VQΔT Quiescent voltage temperature drift B = 0 mT,
TA = –40°C to 150°C versus 25°C ±1% × VCC V

VQRE Quiescent voltage ratiometry error (2) ±0.2%

VQΔL Quiescent voltage lifetime drift High-temperature operating stress for
1000 hours < 0.5%

S Sensitivity

VCC = 5 V,
TA = 25°C

DRV5055A1 95 100 105

mV/mT

DRV5055A2 47.5 50 52.5
DRV5055A3 23.8 25 26.2
DRV5055A4 11.9 12.5 13.2
DRV5055A5 –105 –100 –95

VCC = 3.3 V,
TA = 25°C

DRV5055A1 57 60 63
DRV5055A2 28.5 30 31.5
DRV5055A3 14.3 15 15.8
DRV5055A4 7.1 7.5 7.9
DRV5055A5 –63 –60 –57

BL Linear magnetic sensing range (3) (4)

VCC = 5 V,
TA = 25°C

DRV5055A1,
DRV5055A5 ±21

mT

DRV5055A2 ±42
DRV5055A3 ±85
DRV5055A4 ±169

VCC = 3.3 V,
TA = 25°C

DRV5055A1,
DRV5055A5 ±22

DRV5055A2 ±44
DRV5055A3 ±88
DRV5055A4 ±176

VL Linear range of output voltage (4) 0.2 VCC – 0.2 V

STC
Sensitivity temperature compensation
for magnets (5) 0.12 %/°C

SLE Sensitivity linearity error (4) VOUT is within VL ±1%
SSE Sensitivity symmetry error (4) VOUT is within VL ±1%

SRE Sensitivity ratiometry error (2) TA = 25°C,
with respect to VCC = 3.3 V or 5 V –2.5% 2.5%

SΔL Sensitivity lifetime drift High-temperature operating stress for
1000 hours <0.5%

VINATech Co., Ltd. Tel : +82 63 715 3020 E-mail : hycap@vina.co.kr Web : www.vina.co.kr

Specification

3.8V 250F (1335)

Features

VPC (Vina Pulse Capacitor)

- Low Self Discharge

- Wide Temperature Range

- High Operating Voltage

- High Capacitance

Drawing

Items Characteristics

Rated Voltage (VR) 3.8V

Operating voltage 3.8V ~ 2.5V

Surge voltage 4.0V

Operating temperature -25℃ to +70℃

Capacitance Tolerance -10% +30%

High Temperature

Load Life

After 1,000 hours at VR loaded at 70℃, capacitor shall meet the following limits

Capacitance change ≤ 30% of initial value

ESR change ≤ 200% of initial spec. value

Projected cycle life 20,000 Cycle (100% DoD, at 25℃, cut-off voltage: 2.5V, C/D current: 1.8A)

Capacitance change ≤ 30% of initial value

ESR change ≤ 200% of initial spec. value

Shelf life 3 Years (No electrical charge, Temperature below 25℃)

Capacitance change ≤ 10% of initial value

ESR change ≤ 100% of initial spec. value

#1 : Reference IEC62813 4.2

#2 : 1sec. Discharge to 3.2V

#3 : If the charging voltage is continuously used at 3.85V, the lifespan is reduced by 10%

WARNING : precautions must be taken to ensure that device leads are not shorted

#1
#2

#3

Size 1335

D (Φ) 12.5 +1.0 Max

L (㎜) 35.0 ± 1.5

d (Φ) 0.8 ± 0.1

P (㎜) 5.0 ± 0.5

#1

#2 #3

Part Number
Capacitance

(F)

Capacity

(mAh)

ESR (mΩ) Leakage

Current

(㎂)

Rated

Current

(A)

Pulse

Discharge

Current

(A)

Pulse

Charge

Current

(A)

Max

Charge

Voltage

(V)

Weight

(g)
AC DC

VEL13353R8257G
250 90 50 100 10 0.75 5.0 8.0 3.85 8.2±0.3

@25℃ @25℃ @25℃,

1KHz

@25℃ @25℃,

72hr

@25℃ @25℃ @25℃ @25℃

#1

#2 #3

Version 1.4 2022.10.05.

64

APPENDIX C: VINATECH VEL1335 LIC DATASHEET

65

APPENDIX D: ADC TO TANK LEVEL CONVERSION RAW DATA

Level T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

5 945 948 955 957 954 951 952 959 952 950

10 946 938 944 950 942 942 943 948 945 941

15 1021 1021 1024 1018 1022 1024 1020 1021 1022 1023

20 1109 1105 1107 1107 1109 1105 1109 1106 1103 1104

25 1202 1194 1201 1197 1202 1194 1195 1194 1195 1194

30 1280 1275 1278 1276 1281 1274 1276 1267 1272 1273

40 1460 1458 1460 1455 1460 1452 1459 1455 1453 1456

50 1648 1646 1649 1651 1651 1646 1653 1645 1645 1649

60 1874 1864 1866 1866 1864 1865 1869 1864 1863 1864

70 2069 2069 2064 2065 2065 2062 2062 2066 2068 2059

80 2259 2253 2260 2260 2346 2345 2343 2342 2340 2340

90 2401 2400 2400 2397 2389 2398 2396 2397 2397 2399

95 2490 2495 2496 2493 2492 2496 2494 2494 2495 2494

66

APPENDIX E: BUILD.RS

1 use std::env;

2 use std::fs::File;

3 use std::io::Write;

4 use std::path::PathBuf;

5

6 fn main() {

7 // Put `memory.x` in our output directory and ensure it's

8 // on the linker search path.

9 let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());

10 File::create(out.join("memory.x"))

11 .unwrap()

12 .write_all(include_bytes!("memory.x"))

13 .unwrap();

14 println!("cargo:rustc-link-search={}", out.display());

15

16 // By default, Cargo will re-run a build script whenever

17 // any file in the project changes. By specifying `memory.x`

18 // here, we ensure the build script is only re-run when

19 // `memory.x` is changed.

20 println!("cargo:rerun-if-changed=memory.x");

21

22 println!("cargo:rustc-link-arg-bins=--nmagic");

23 println!("cargo:rustc-link-arg-bins=-Tlink.x");

24 println!("cargo:rustc-link-arg-bins=-Tdefmt.x");

25 }

67

APPENDIX F: CARGO.TOML

1 [package]

2 name = "propane_monitor_embassy"

3 version = "0.4.2"

4 edition = "2021"

5

6 [features]

7 default = ["nightly"]

8 nightly = [

9 "embassy-executor/nightly", "embassy-nrf/nightly",

10 "embassy-nrf/unstable-traits"

11]

12

13 [dependencies]

14 alloc-cortex-m = "0.4.2"

15 at-commands = "0.5.2"

16 coap-lite = {version = "0.11.2", default-features = false}

17 cortex-m = {version = "0.7.6",

18 features = ["critical-section-single-core"]

19 }

20 cortex-m-rt = "0.7.0"

21 defmt = "0.3"

22 defmt-rtt = "0.3"

23 embassy-futures = { version = "0.1.0"}

24 embassy-sync = { version = "0.1.0", features = ["defmt"] }

25 embassy-executor = {

26 version = "0.1.0", features = ["defmt", "integrated-timers"]

27 }

28 embassy-time = {

29 version = "0.1.0", features = ["defmt", "defmt-timestamp-uptime"]

30 }

31

68

32 embassy-nrf = {

33 version = "0.1.0",

34 features = ["defmt", "nrf9160-ns", "time-driver-rtc1",

35 "gpiote", "unstable-pac"]

36 }

37 futures = {

38 version = "0.3.17", default-features = false,

39 features = ["async-await"]

40 }

41 heapless = { version = "0.7.16", features = ["serde"] }

42 nrf-modem = {

43 git = "https://github.com/diondokter/nrf-modem.git",

44 features = ["defmt"]

45 }

46 panic-probe = { version = "0.3", features = ["print-defmt"] }

47 serde = { version = "1.0", default-features = false,

48 features = ["derive"]

49 }

50 serde_json = {

51 version = "1.0", default-features = false, features = ["alloc"]

52 }

53 static_cell = "1.0"

54 tinyrlibc = {

55 git = "https://github.com/diondokter/tinyrlibc.git",

56 branch = "ncs-2.0.1"

57 }

58

59 [patch.crates-io]

60 embassy-futures = { git = "https://github.com/embassy-rs/embassy" }

61 embassy-sync = { git = "https://github.com/embassy-rs/embassy" }

62 embassy-executor = { git = "https://github.com/embassy-rs/embassy" }

63 embassy-time = { git = "https://github.com/embassy-rs/embassy" }

64 embassy-nrf = { git = "https://github.com/embassy-rs/embassy" }

69

65

66 # cargo build/run --release

67 [profile.release]

68 codegen-units = 1

69 debug = 2

70 debug-assertions = false

71 incremental = false

72 lto = true

73 opt-level = 'z'

74 overflow-checks = false

70

APPENDIX G: AT.RS

1 use at_commands::parser::CommandParser;

2 use crate::Error;

3

4 /// Parse AT+CESQ command response and return a signal strength in dBm

5 /// Signal strength = -140 dBm + last int_parameter

6 async fn get_signal_strength() -> Result<i32, Error> {

7 let command = nrf_modem::at::send_at::<32>("AT+CESQ").await?;

8

9 let (_, _, _, _, _, mut signal) = CommandParser::parse(command.as_bytes())

10 .expect_identifier(b"+CESQ:")

11 .expect_int_parameter()

12 .expect_int_parameter()

13 .expect_int_parameter()

14 .expect_int_parameter()

15 .expect_int_parameter()

16 .expect_int_parameter()

17 .expect_identifier(b"\r\n")

18 .finish()

19 .unwrap();

20 if signal != 255 {

21 signal += -140;

22 }

23 Ok(signal)

24 }

25

71

APPENDIX H: CONFIG.RS

1 pub const SERVER_URL: &str = "coap.golioth.io";

2 pub const SERVER_PORT: u16 = 5684;

3

4 pub const PSK_ID: &str = "conexio-stratus-id@propane-monitor";

5

6 pub const PSK: &[u8] = b"";

7

8 pub const SECURITY_TAG: u32 = 1;

72

APPENDIX I: GNSS.RS

1 use super::Error;

2 use defmt::info;

3

4 pub async fn config_gnss() -> Result<(), Error> {

5 // confgiure MAGPIO pins for GNSS

6 info!("Configuring XMAGPIO pins for 1574-1577 MHz");

7 nrf_modem::at::send_at::<0>("AT%XMAGPIO=1,0,0,1,1,1574,1577").await?;

8 nrf_modem::at::send_at::<0>("AT%XCOEXO=1,1,1574,1577").await?;

9 Ok(())

10 }

11

12 /// Function to retrieve GPS data from a single GNSS fix

13 pub async fn get_gnss_data() -> Result<(), Error> {

14 let mut gnss = nrf_modem::gnss::Gnss::new().await?;

15 let config = nrf_modem::gnss::GnssConfig::default();

16 let mut iter = gnss.start_single_fix(config)?;

17

18 if let Some(x) = futures::StreamExt::next(&mut iter).await {

19 info!("{:?}", Debug2Format(&x.unwrap()));

20 }

21 Ok(())

22 }

73

APPENDIX J: PSK.RS

1 use core::fmt::write;

2 use defmt::Format;

3 use heapless::String;

4 use crate::config::{PSK, PSK_ID, SECURITY_TAG};

5 use crate::Error;

6

7 /// Credential Storage Management Types

8 #[derive(Clone, Copy, Format)]

9 #[allow(dead_code)]

10 enum CSMType {

11 RootCert = 0,

12 ClientCert = 1,

13 ClientPrivateKey = 2,

14 Psk = 3,

15 PskId = 4,

16 // ...

17 }

18

19 /// This function deletes a key or certificate from the nrf modem

20 async fn key_delete(ty: CSMType) -> Result<(), Error> {

21 let mut cmd: String<32> = String::new();

22 write(

23 &mut cmd,

24 format_args!("AT%CMNG=3,{},{}", SECURITY_TAG, ty as u32),

25)

26 .unwrap();

27 nrf_modem::at::send_at::<32>(cmd.as_str()).await?;

28 Ok(())

29 }

30

31 /// This function writes a key or certificate to the nrf modem

74

32 async fn key_write(ty: CSMType, data: &str) -> Result<(), Error> {

33 let mut cmd: String<128> = String::new();

34 write(

35 &mut cmd,

36 format_args!(r#"AT%CMNG=0,{},{},"{}""#, SECURITY_TAG, ty as u32, data),

37)

38 .unwrap();

39

40 nrf_modem::at::send_at::<128>(&cmd.as_str()).await?;

41

42 Ok(())

43 }

44

45 /// Delete existing keys/certificates and loads new

46 /// ones based on config.rs entries

47 pub async fn install_psk_id_and_psk() -> Result<(), Error> {

48 assert!(

49 !&PSK_ID.is_empty() && !&PSK.is_empty(),

50 "PSK ID and PSK must not be empty. Set them in the `config` module."

51);

52

53 key_delete(CSMType::PskId).await?;

54 key_delete(CSMType::Psk).await?;

55

56 key_write(CSMType::PskId, &PSK_ID).await?;

57 key_write(CSMType::Psk, &encode_psk_as_hex(&PSK)).await?;

58

59 Ok(())

60 }

61

62 fn encode_psk_as_hex(psk: &[u8]) -> String<128> {

63 fn hex_from_digit(num: u8) -> char {

64 if num < 10 {

75

65 (b'0' + num) as char

66 } else {

67 (b'a' + num - 10) as char

68 }

69 }

70

71 let mut s: String<128> = String::new();

72 for ch in psk {

73 s.push(hex_from_digit(ch / 16)).unwrap();

74 s.push(hex_from_digit(ch % 16)).unwrap();

75 }

76

77 s

78 }

76

APPENDIX K: LIB.RS

1 #![no_main]

2 #![no_std]

3 #![feature(alloc_error_handler)]

4

5 extern crate alloc;

6 extern crate tinyrlibc;

7

8 mod config;

9 pub mod psk;

10 mod at;

11 mod gnss;

12

13 use crate::config::{SECURITY_TAG, SERVER_PORT, SERVER_URL};

14 use alloc_cortex_m::CortexMHeap;

15 use at_commands::parser::ParseError;

16 use coap_lite::error::MessageError;

17 use coap_lite::{CoapRequest, ContentFormat, RequestType};

18 use core::mem::MaybeUninit;

19 use core::sync::atomic::{AtomicBool, Ordering};

20 use defmt::{info};

21 use embassy_nrf as _;

22 use embassy_time::TimeoutError;

23 use heapless::{Vec};

24 use nrf_modem::dtls_socket::{DtlsSocket, PeerVerification};

25 use serde::Serialize;

26 use {defmt_rtt as _, panic_probe as _};

27 use crate::at::*;

28

29 /// Once flashed, comment this out along with the SPM

30 ///entry in memory.x to eliminate flashing the SPM

31 /// more than once, and will speed up subsequent builds.

77

32 ///Or leave it and flash it every time

33 #[link_section = ".spm"]

34 #[used]

35 static SPM: [u8; 24052] = *include_bytes!("zephyr.bin");

36

37 /// Crate error types

38 #[derive(Debug)]

39 pub enum Error {

40 Coap(MessageError),

41 Json(serde_json::error::Error),

42 NrfModem(nrf_modem::error::Error),

43 Timeout(TimeoutError),

44 ParseError(ParseError),

45 }

46

47 impl From<MessageError> for Error {

48 fn from(e: MessageError) -> Self {

49 Self::Coap(e)

50 }

51 }

52

53 impl From<serde_json::error::Error> for Error {

54 fn from(e: serde_json::error::Error) -> Self {

55 Self::Json(e)

56 }

57 }

58

59 impl From<nrf_modem::error::Error> for Error {

60 fn from(e: nrf_modem::error::Error) -> Self {

61 Self::NrfModem(e)

62 }

63 }

64

78

65 impl From<TimeoutError> for Error {

66 fn from(e: TimeoutError) -> Self {

67 Self::Timeout(e)

68 }

69 }

70

71 impl From<ParseError> for Error {

72 fn from(e: ParseError) -> Self {

73 Self::ParseError(e)

74 }

75 }

76

77 /// Payload to send over CoAP (Heapless Vec of Tanklevel Structs)

78 #[derive(Debug, Serialize)]

79 pub struct Payload<'a> {

80 pub data: Vec<TankLevel, 6>,

81 pub signal: i32,

82 pub timeouts: u8,

83 location: &'a str,

84 }

85

86 /// Payload constructor

87 impl Payload<'_> {

88 pub fn new() -> Self {

89 Payload {

90 data: Vec::new(),

91 signal: 0,

92 timeouts: 0,

93 location: "Lowes3",

94 }

95 }

96 }

97

79

98 /// Structure to hold our individual measure data

99 #[derive(Debug, Serialize)]

100 pub struct TankLevel {

101 pub value: u32,

102 pub timestamp: u32,

103 pub battery: u32,

104 }

105

106 /// TankLevel constructor

107 impl TankLevel {

108 pub fn new(value: u32, timestamp: u32, battery: u32) -> Self {

109 TankLevel {

110 value,

111 timestamp,

112 battery,

113 }

114 }

115 }

116

117 /// Create CoAP request, serialize payload, and transimt data

118 /// request path can start with .s/ for LightDB Stream or

119 /// .d/ LightDB State for Golioth IoT

120 pub async fn transmit_payload(payload: &mut Payload<'_>) -> Result<(), Error> {

121 // Create our DTLS socket

122 let mut socket = DtlsSocket::new(PeerVerification::Enabled,

123 &[SECURITY_TAG]).await?;

124 info!("DTLS Socket created");

125 socket.connect(SERVER_URL, SERVER_PORT).await?;

126 info!("DTLS Socket connected");

127

128 let sig_strength = get_signal_strength().await?;

129 payload.signal = sig_strength;

130 info!("Signal Strength: {} dBm", &sig_strength);

80

131

132 let mut request: CoapRequest<DtlsSocket> = CoapRequest::new();

133 request.set_method(RequestType::Post);

134 request.set_path(".s/tank_level");

135 request

136 .message

137 .set_content_format(ContentFormat::ApplicationJSON);

138 let json = serde_json::to_vec(payload)?;

139 // info!("Payload: {:?}", Debug2Format(payload));

140 // info!("JSON Byte Vec: {:?}", Debug2Format(&json));

141 request.message.payload = json;

142

143 socket.send(&request.message.to_bytes()?).await?;

144 info!("Payload done");

145

146 // The sockets would be dropped after the function call ends,

147 // but this explicit call allows them

148 // to be dropped asynchronously

149 info!("deactivate socket");

150 socket.deactivate().await?;

151

152 Ok(())

153 }

154

155 /// Convert sensor ADC value into tank level percentage

156 pub fn convert_to_tank_level(x: i16) -> u32 {

157 let val = ((534 * x as u32) - 39_0634) / 10000;

158 info!("Tank Level: {}", &val);

159 if val > 100 {

160 100

161 } else if val < 10 {

162 10

163 } else {

81

164 val

165 }

166 }

167

168 /// Convert ADC value into a milli-volt battery measurement

169 pub fn convert_to_mv(x: i16) -> u32 {

170 // Stratus: V_bat measurement multiplier = 200/100

171 // Icarus: V_bat measurement multiplier = 147/100

172 ((x * (200 / 100)) as u32 * 3600) / 4096

173 }

174

175 /// Terminates the application and makes `probe-run` exit with exit-code = 0

176 pub fn exit() -> ! {

177 loop {

178 cortex_m::asm::bkpt();

179 }

180 }

181

182 /// An allocator is required for the coap-lite lib

183 #[global_allocator]

184 static ALLOCATOR: CortexMHeap = CortexMHeap::empty();

185

186 static mut HEAP_DATA: [MaybeUninit<u8>; 8196] = [MaybeUninit::uninit(); 8196];

187

188 pub fn alloc_init() {

189 static ONCE: AtomicBool = AtomicBool::new(false);

190

191 if ONCE

192 .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)

193 .is_ok()

194 {

195 unsafe {

196 ALLOCATOR.init(HEAP_DATA.as_ptr() as usize, HEAP_DATA.len());

82

197 }

198 }

199 }

200

201 /// Default alloc error handler for when allocation fails

202 #[alloc_error_handler]

203 fn alloc_error(_: core::alloc::Layout) -> ! {

204 cortex_m::asm::udf()

205 }

83

APPENDIX L: APP.RS

1 #![no_std]

2 #![no_main]

3 #![feature(type_alias_impl_trait)]

4

5 use defmt::{error, info, unwrap};

6 use embassy_executor::Spawner;

7 use embassy_nrf::gpio::{Flex, Level, Output, OutputDrive};

8 use embassy_nrf::interrupt::{self, InterruptExt, Priority};

9 use embassy_nrf::pac::{UARTE0, UARTE1};

10 // use embassy_nrf::pwm::{Prescaler, SimplePwm};

11 use embassy_nrf::saadc::{ChannelConfig, Config, Saadc};

12 use embassy_time::{Duration, Ticker, Timer, with_timeout};

13 use futures::StreamExt;

14 use nrf_modem::{ConnectionPreference, SystemMode};

15 use propane_monitor_embassy::*;

16 use propane_monitor_embassy::psk::install_psk_id_and_psk;

17

18 #[embassy_executor::main]

19 async fn main(_spawner: Spawner) {

20 // Set up the interrupts for the modem

21 let egu1 = interrupt::take!(EGU1);

22 egu1.set_priority(Priority::P4);

23 egu1.set_handler(|_| {

24 nrf_modem::application_irq_handler();

25 cortex_m::asm::sev();

26 });

27 egu1.enable();

28

29 let ipc = interrupt::take!(IPC);

30 ipc.set_priority(Priority::P0);

31 ipc.set_handler(|_| {

84

32 nrf_modem::ipc_irq_handler();

33 cortex_m::asm::sev();

34 });

35 ipc.enable();

36

37 // // Disable UARTE for lower power consumption

38 let uarte0: UARTE0 = unsafe { core::mem::transmute(()) };

39 let uarte1: UARTE1 = unsafe { core::mem::transmute(()) };

40 uarte0.enable.write(|w| w.enable().disabled());

41 uarte1.enable.write(|w| w.enable().disabled());

42

43 // Initialize heap data

44 alloc_init();

45

46 // Run our sampling program, will not return unless an error occurs

47 match run().await {

48 Ok(()) => unreachable!(),

49 Err(e) => {

50 // If we get here, we have problems

51 error!("app exited: {:?}", defmt::Debug2Format(&e));

52 exit();

53 }

54 }

55 }

56

57 async fn run() -> Result<(), Error> {

58 // Handle for device peripherals

59 let mut p = embassy_nrf::init(Default::default());

60

61 // Stratus: Disconnect accelerometer for power savings

62 Flex::new(&mut p.P0_29).set_as_disconnected();

63

64 // Configuration of ADC, over sample to reduce noise (8x)

85

65 let adc_config = Config::default();

66 // Oversample can only be used when you have a single channel

67 // adc_config.oversample = Oversample::OVER8X;

68

69 // Pin 14 can be used on both Stratus and Icarus boards for Analog Input

70 let sensor_channel = ChannelConfig::single_ended(&mut p.P0_14);

71 // Stratus: Pin 20 for V_bat measurement

72 // Icarus: Pin 13 for V_bat measurement

73 let bat_channel = ChannelConfig::single_ended(&mut p.P0_20);

74

75 let mut adc = Saadc::new(

76 p.SAADC,

77 interrupt::take!(SAADC),

78 adc_config,

79 [sensor_channel, bat_channel],

80);

81 adc.calibrate().await;

82 info!("ADC Initialized");

83

84 // Icarus: Has an eSIM and an External SIM.

85 // Use Pin 8 to select: HIGH = eSIM, Low = External

86 // Only change SIM selection while modem is off (AT+CFUN=1)

87 // let _sim_select =

88 Output::new(p.P0_08, Level::Low,OutputDrive::Standard);

89

90 // Hall effect sensor power, must be High Drive to provide enough current (6 mA)

91 let mut hall_effect =

92 Output::new(p.P0_31, Level::Low, OutputDrive::Disconnect0HighDrive1);

93

94 // Stratus: Pin 25 to control VBAT_MEAS_EN, Power must connect to V_Bat to measure correctly

95 // Icarus: Pin 07 to disable battery charging circuit

96 let mut enable_bat_meas = Output::new(p.P0_25, Level::Low, OutputDrive::Standard);

97 // let _disable_charging = Output::new(p.P0_07, Level::High, OutputDrive::Standard);

86

98

99 // Stratus: Pin 3 for blue LED power when data is being transmitted

100 // Stratus: Pin 12 for blue LED power when data is being transmitted,

101 // (red: P_10, green: P_11)

102 let mut led = Output::new(p.P0_03, Level::High, OutputDrive::Standard);

103

104 // Initialize cellular modem

105 unwrap!(

106 nrf_modem::init(SystemMode {

107 lte_support: true,

108 nbiot_support: false,

109 gnss_support: true,

110 preference: ConnectionPreference::Lte,

111 })

112 .await

113);

114

115 // Configure GPS settings

116 // config_gnss().await?;

117

118 // install PSK info for secure cloud connectivity

119 install_psk_id_and_psk().await?;

120

121 // Heapless buffer to hold our sample values before transmitting

122 let mut payload = Payload::new();

123

124 // Create our sleep timer (time between sensor measurements)

125 // Set to 15 seconds for quick testing

126 let mut ticker = Ticker::every(Duration::from_secs(15));

127 info!("Entering Loop");

128 loop {

129 let mut buf = [0; 2];

130

87

131 // get_gnss_data().await?;

132

133 // Power up the hall sensor: max power on time = 330us

134 // (wait for 500us to be safe)

135 hall_effect.set_high();

136 enable_bat_meas.set_high();

137

138 Timer::after(Duration::from_micros(500)).await;

139 adc.sample(&mut buf).await;

140

141 hall_effect.set_low();

142 enable_bat_meas.set_low();

143

144 info!(

145 "Tank level: {}%, Battery: {} mV",

146 convert_to_tank_level(buf[0]),

147 convert_to_mv(buf[1])

148);

149

150 payload

151 .data

152 .push(TankLevel::new(

153 convert_to_tank_level(buf[0]),

154 1987,

155 convert_to_mv(buf[1]),

156))

157 .unwrap();

158

159 // Our payload data buff is full, send to the cloud, clear the buffer

160 if payload.data.is_full() {

161 // info!("TankLevel: {}", core::mem::size_of::<TankLevel>());

162 info!("Payload is full");

163

88

164 // Visibly show that data is being sent

165 led.set_low();

166

167 // If timeout occurs, log a timeout and continue.

168 if let Ok(_) =

169 with_timeout(

170 Duration::from_secs(30), transmit_payload(&mut payload)

171)

172 .await

173 {

174 payload.timeouts = 0;

175

176 info!("Transfer Complete");

177 } else {

178 payload.timeouts += 1;

179 info!(

180 "Timeout has occurred {} time(s), data clear and start over",

181 payload.timeouts

182);

183 }

184

185 payload.data.clear();

186

187 led.set_high();

188 }

189 info!("Ticker next()");

190 ticker.next().await; // wait for next tick event

191 }

192 }

193

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	NETWORKING STACK FOR IOT
	HARDWARE SELECTION
	RUST PROGRAMMING
	EXPERIMENTAL SETUP
	RESULTS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	E-PEAS AEM10941 DATASHEET
	DRV5055-Q1 DATASHEET
	VINATECH VEL1335 LIC DATASHEET
	ADC TO TANK LEVEL CONVERSION RAW DATA
	BUILD.RS
	CARGO.TOML
	AT.RS
	CONFIG.RS
	GNSS.RS
	PSK.RS
	LIB.RS
	APP.RS

