
ANALYSIS AND ENHANCEMENT OF RESOURCE-HUNGRY APPLICATIONS

by

Siqi Huang

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2022

Approved by:

Dr. Jiang Xie

Dr. Tao Han

Dr. Pu Wang

Dr. Aidong Lu

ii

©2022
Siqi Huang

ALL RIGHTS RESERVED

iii

ABSTRACT

SIQI HUANG. Analysis and Enhancement of Resource-Hungry Applications.
(Under the direction of DR. JIANG XIE)

Resource-hungry applications play a very important role in people’s daily lives, such

as real-time video streaming applications and mobile augmented reality applications.

However, there are several challenges to satisfy the user Quality-of-Experience (QoE)

requirements of resource-hungry applications. First, these applications usually require

a vast amount of network bandwidth resources to support the data communication

of different functionalities. However, only limited network bandwidth resources can

be assigned to these applications which leads to long network latency and poor user

QoE. In addition, artificial intelligent (AI) and machine learning (ML) models are

widely adopted in these applications which significantly increases the computation

complexity of these applications. Because of the limited computing resource on mobile

devices, computation-intensive tasks are offloaded to edge servers located at the edge

of the core network. However, additional network latency and bandwidth usage are

introduced which may degrade user QoE. Moreover, base stations (BSs) and edge

servers may be densely deployed to provide high network capacity, thus resulting in

ultra-dense wireless networks. However, a major challenge of the ultra-dense wireless

network is the increased complexity of networking mechanisms.

In this research, the characteristics of popular resource-hungry applications are first

analyzed. Then, based on the analyzed characteristics, we propose several specifically

designed algorithms to enhance the performance of each resource-hungry application.

For real-time video streaming applications, a configuration adaptive video encoding

scheme is proposed to improve the video visual quality of existing real-time video

streaming applications. For ultra-high-definition (UHD) video delivery applications,

we propose a cloud computing based deep compression framework named Pearl, which

iv

utilizes the power of deep learning and cloud computing to compress UHD videos and

reduce the high network bandwidth resource usage of UHD video delivery. For mobile

augmented reality (MAR) applications, a fast model updating algorithm and a smart

task allocation decision algorithm are proposed to overcome the challenges brought

by the high computation complexity and latency-sensitive tasks in MAR applications.

Finally, a real-time network optimization algorithm is proposed to address the high

complexity problem of networking design in ultra-dense wireless networks.

In our proposed algorithms, deep learning techniques (e.g., neural networks, rein-

forcement learning, and incremental learning) and machine learning algorithms (e.g.,

clustering) are adopted. This research will provide important insights for the design of

AI-powered optimization for resource-hungry applications and network management.

v

ACKNOWLEDGEMENTS

Foremost, I would like to express my greatest and deepest gratitude to my advi-

sor, Professor Dr. Jiang Xie, for her continuous support, guidance, and supervision

throughout these years. She has patiently spent countless hours to discuss and refine

my cluttered research ideas and helped me to become an independent researcher. I

could not have imagined having a better advisor than her.

Besides my advisor, I would like to thank my co-advisor Dr. Tao Han, and Ph.D.

committee members: Dr. Aidong Lu, Dr. Pu Wang, and Dr. Yu Wang for their time

and valuable advice. In addition, I appreciate the GASP grant from UNC-Charlotte

and Research Assistantships from National Science Foundation (NSF) as the financial

assistance for this work.

In the end, I would like to thank my family and friends. Their wishes and supports

made the journey easier. Special thanks to my sister, Dr. Xueqing Huang. She has

been extremely supportive.

vi

TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xii

CHAPTER 1: INTRODUCTION 1

1.1. Resource-hungry Applications 1

1.1.1. Ultra-high-definition Video Delivery Applications 1

1.1.2. Real-time Video Streaming Applications 3

1.1.3. Mobile Augmented Reality Applications 5

1.2. Introduction to the Edge Assisted System 7

1.3. Ultra-dense Mobile Networks 8

1.4. Overview of the Proposed Research 10

1.5. Dissertation Organization 13

CHAPTER 2: RELATED WORK 14

2.1. Existing Research on Video Streaming Applications 14

2.1.1. Video Encoding and Decoding 14

2.1.2. Super Resolution 15

2.1.3. Colorization 16

2.1.4. UHD Video Streaming Systems 16

2.1.5. Real-time Video Streaming Systems 17

2.2. Existing Research on Mobile Augmented Reality Applications 18

2.2.1. Image Features and Object Tracking 18

2.2.2. Recognition Tasks 18

vii

2.2.3. Mobile AR Systems 19

2.2.4. Offloading 20

2.2.5. Object Tracking and Feature Matching 21

2.2.6. Fine-tuning and Incremental Learning. 21

2.3. Existing Research on Ultra-dense Mobile Networks 22

2.3.1. Virtual Network Function Placement 22

2.3.2. Big Data Analysis for Wireless Network 22

2.3.3. Wireless Network Optimization Frameworks 23

CHAPTER 3: Proposed DAVE for Real-time Video Streaming 25

3.1. Problem Description 25

3.2. Motivation and Challenges 29

3.3. Characteristics of Video Encoding 31

3.3.1. QoE Metrics 31

3.3.2. Video Encoding Settings 32

3.3.3. QoE vs. Video Encoding Configuration 33

3.4. Proposed Design and Implementation of DAVE 36

3.4.1. System Overview 36

3.4.2. QoE Metrics 37

3.4.3. Reinforcement Learning Model 38

3.4.4. Implementation 40

3.5. Performance Evaluation 41

3.5.1. Experiment Setup 41

3.5.2. Average Simulated System Performance 42

viii

3.5.3. Evaluation of QoE Metrics 43

3.5.4. Average System Performance from the Testbed 45

3.5.5. DAVE vs. Existing ABR Algorithms 45

CHAPTER 4: Proposed Pearl for UHD Video Delivery 47

4.1. Problem Description 47

4.2. Research Motivation and Challenges 49

4.3. Video QoE Study 51

4.4. Proposed Design and Implementation of Pearl 53

4.4.1. System Framework 53

4.4.2. Deep Learning Model 55

4.4.3. Model Versatility 58

4.4.4. Implementation 59

4.5. Performance Evaluation 60

4.5.1. Methodology 60

4.5.2. Video QoE 63

4.5.3. Performance of DCNNs 65

4.5.4. Network Latency 67

4.5.5. Pearl with ABR System 68

4.5.6. Performance of the Improved Colorization Model 68

4.6. Discussion 69

CHAPTER 5: Proposed Research Work on MAR Applications 71

5.1. Problem Description 71

5.2. Research Motivation and Challenges 73

ix

5.3. Characteristic Study of MAR Applications 76

5.3.1. Testbed Setup 76

5.3.2. Characteristics of Object Detection 79

5.3.3. Impact of Miss-Detection on User QoE 80

5.3.4. Impact of User Preference on User QoE 82

5.3.5. Impact of User Movement on User QoE 82

5.4. Improved Frame-level Offloading Decision Algorithm 85

5.4.1. Design Principles 85

5.4.2. Problem Formulation 86

5.4.3. Frame Similarity Index 88

5.5. Proposed Fast Model Updating Scheme 89

5.5.1. The Design of the Proposed Model Updating Scheme 89

5.5.2. Problem Formulation 91

5.5.3. Performance Evaluation 93

5.6. Proposed Smart-Decision Algorithm 98

5.6.1. System Architecture 99

5.6.2. Cache and Matching Module 101

5.6.3. Performance Evaluation 105

CHAPTER 6: Proposed Network Partitioning for Efficient Management
of UDN

109

6.1. Framework Overview 110

6.1.1. Data Processing 111

6.1.2. Offline Machine Learning 112

x

6.1.3. Online Virtual Network Function Placement 113

6.2. Data Processing 114

6.2.1. Data Collection 114

6.2.2. Data Preprocessing 115

6.2.3. Networking Feature Extraction 115

6.3. Offline Machine Learning 121

6.3.1. Network Performance Aware Clustering 121

6.3.2. Cluster Number Prediction Model 124

6.4. Online Virtual Network Function Placement 127

6.4.1. Online Network Partitioning 128

6.4.2. Network Function: Traffic Load Balancer 129

6.5. Performance Evaluation 130

6.5.1. Mobile Traffic Dataset and Simulation Settings 130

6.5.2. Networking Feature Evaluation 131

6.5.3. Network Function Performance 132

6.5.4. Prediction Model Performance 136

6.5.5. Clustering Algorithm Performance 138

CHAPTER 7: CONCLUSION 140

7.1. Completed Work 140

7.2. Future Work 142

7.3. Published and Submitted Work 142

REFERENCES 145

xi

LIST OF TABLES

TABLE 3.1: The performance of the super resolution model 30

TABLE 3.2: The video encoding parameters 33

TABLE 4.1: The comparison of frame data size 52

TABLE 4.2: The performance of DCNN models 58

TABLE 4.3: The comparison performance of UHD video frames 62

TABLE 5.1: The performance of object detection models 79

TABLE 5.2: The detection-failure rate of detection models 79

TABLE 5.3: Feature extraction and matching algorithms 102

TABLE 5.4: The mAP of different models 107

TABLE 6.1: Notations 110

TABLE 6.2: Traffic record samples 114

TABLE 6.3: Networking feature evaluation results 132

xii

LIST OF FIGURES

FIGURE 1.1: The content distributed network system (a) and the adap-
tive bitrate selection algorithm (b).

2

FIGURE 1.2: The live video streaming system. 3

FIGURE 1.3: The cloud/edge-based mobile AR system. 6

FIGURE 1.4: The mobile AR applications challenges. 6

FIGURE 1.5: The system of edge-based MAR applications. 7

FIGURE 1.6: The VNF placement. 9

FIGURE 1.7: The overview of the proposed research. 11

FIGURE 3.1: The live video streaming system. 26

FIGURE 3.2: The performance of the WebRTC system (a) and ABR
based live video streaming system (b).

29

FIGURE 3.3: CDF of bitrate level and frame latency. 30

FIGURE 3.4: The impact of video encoding parameters on QoE metrics. 33

FIGURE 3.5: The proposed system framework. 37

FIGURE 3.6: The quality of videos generated by different configurations. 39

FIGURE 3.7: The topology of the testbed. 42

FIGURE 3.8: The normalized average system performance. 43

FIGURE 3.9: The average reward of different evaluation metrics in the
simulation platform. (L-Net, M-Net, and H-Net refer to three differ-
ent network environments as described in Section 3.5.1)

43

FIGURE 3.10: The average reward of different evaluation metrics in the
testbed.

44

FIGURE 3.11: The normalized average system performance. 44

FIGURE 4.1: The video delivery system. 49

xiii

FIGURE 4.2: The visualization results of SR and CL models. 51

FIGURE 4.3: The GPU memory usage and time consumption. 53

FIGURE 4.4: The system framework. 54

FIGURE 4.5: The video encoding scheme. 55

FIGURE 4.6: The deep compression model. 56

FIGURE 4.7: The framework of super resolution models. 57

FIGURE 4.8: The normalized video frame and chunk data size. 62

FIGURE 4.9: The performance of the SR models on 9 types of 2k videos. 63

FIGURE 4.10: The performance of combined CL+SR models on 9 types
of 2k videos.

64

FIGURE 4.11: The UHD video frame reconstruction performance. 66

FIGURE 4.12: The network latency. 66

FIGURE 4.13: The performance of integrated system. 66

FIGURE 4.14: The performance of improved colorization model. 68

FIGURE 5.1: The demonstration of detection failure and miss-detection. 72

FIGURE 5.2: The system of edge-based MAR applications. 74

FIGURE 5.3: The impact of miss-detection on user QoE. 81

FIGURE 5.4: The impact of user preference on user QoE. 82

FIGURE 5.5: The impact of user movement on user QoE. 84

FIGURE 5.6: The pipeline of a real MAR system. 85

FIGURE 5.7: QoE analysis of FLOD. 93

FIGURE 5.8: The impact of network datarate and user preference on
FLOD.

93

xiv

FIGURE 5.9: QoE analysis of MRS. 95

FIGURE 5.10: The impact of network datarate on the performance of
MRS (P is the percentage of miss-detection).

95

FIGURE 5.11: The impact of user preference on the performance of MRS. 96

FIGURE 5.12: The system framework. 98

FIGURE 5.13: The cache matching system. 102

FIGURE 5.14: The hierarchical cache data base. 103

FIGURE 5.15: The trade-offs in the cache system. 104

FIGURE 5.16: The network topology of the simulated network. 106

FIGURE 5.17: The end-to-end delay of classification application. 106

FIGURE 5.18: The end-to-end delay of object detection application. 108

FIGURE 6.1: The proposed framework with two network functions. 109

FIGURE 6.2: The data-driven virtual network function placement
framework.

111

FIGURE 6.3: The CDF of neighbors’ distances. 117

FIGURE 6.4: The grid map. 117

FIGURE 6.5: The traffic trend analysis. 119

FIGURE 6.6: The CDF of the traffic trend distance. 119

FIGURE 6.7: The common active user analysis. 120

FIGURE 6.8: The visualization of network partitioning. (9 (a), (b) and
(c): BS-based network partition at 8:00, 14:00 and 20:00, respec-
tively; 9 (d), (e) and (f): grid-based network partition at 8:00, 14:00
and 20:00, respectively.)

122

FIGURE 6.9: The structure of the neural network predictor. 125

FIGURE 6.10: Mobile network traffic. 128

xv

FIGURE 6.11: The traffic load balancing function. 130

FIGURE 6.12: Network partitioning performance versus the number of
sub-RANs.

133

FIGURE 6.13: The computation and networking performance analysis. 135

FIGURE 6.14: The CDF of system performance. 136

FIGURE 6.15: The performance of the prediction model. 136

FIGURE 6.16: The prediction error of different predictors. 137

FIGURE 6.17: The computation time of clustering algorithms. 138

FIGURE 6.18: The performance of clustering algorithms. 139

CHAPTER 1: INTRODUCTION

1.1 Resource-hungry Applications

The mobile network data are growing explosively with the proliferation of mobile

devices and resource-hungry applications, and have led to a continuous surge in capac-

ity demand across mobile networks [1]. The bigger data transmission volume and the

higher low-latency requirement are the two main characteristics of resource-hungry

applications. On the other hand, to support advanced functions for mobile users, high

computation complexity artificial intelligent (AI) and machine learning (ML) models

are widely adopted in resource-hungry applications. High computation demand is an-

other characteristic of resource-hungry applications. In this chapter, several popular

resource-hungry applications are introduced.

1.1.1 Ultra-high-definition Video Delivery Applications

Ultra-high-definition (UHD) videos (4K and 8K) are enjoying increased popularity

in people’s daily lives because of the better visual experience compared with HD

videos. However, UHD videos bring much higher pressure on video data transmission

and storage because the data size of 4k and 8k resolution is 4 times and 16 times

larger than 2k resolution for a video, respectively.

Video delivery has been extensively studied. Content Distributed Networks (CDNs)

[2, 3] are the main tools that content providers like Google and Netflix use to improve

the performance of video delivery. As shown in Figure 1.1(a), a CDN consists of a

group of servers that are placed across the world. These servers pull the contents

from the origin server and cache a copy of them allowing visitors to retrieve the

content from the nearest server. CDNs serve a large portion of the video deliveries

2

CDNABR

Origin serverEdge

server

(a)

Server side Network Client side

B
it

ra
te

T
h

ro
u

g
h

p
u

t

Time Time

Time

(b)

Figure 1.1: The content distributed network system (a) and the adaptive bitrate
selection algorithm (b).

across the Internet. One of the main challenges of CDNs is the limited storage of the

distributed servers, which leads to cached videos on the distributed servers frequently

being replaced [4]. This shortage will be amplified with the increasing amount of

UHD videos in CDNs.

Adaptive bitrate (ABR) algorithms [5, 6] are widely used to optimize video trans-

mission. As shown in Figure 1.1(b), a video is encoded into multiple bitrates in ABR

algorithms. Each bitrate video is divided into multiple small video chunks. ABR al-

gorithms will dynamically choose a bitrate for each video chunk. The bitrate selection

is based on various observations such as the network throughput and playback buffer

occupancy. The goal is to maximize user Quality-of-Experience (QoE) by adapting

the video bitrate based on the underlying network conditions. However, limited net-

work bandwidth resource may lead to poor user QoE of UHD video delivery even

state-of-the-art ABR algorithms are adopted.

With the magic of Graphics Processing Units (GPUs) and deep learning tech-

niques, many approaches try to use deep neural networks (DNNs) to improve the

performance of video delivery and user QoE. For instance, a compression framework

based on convolutional neural networks (CNNs) is proposed to achieve high-quality

image compression at low loss rates [7]. Deep reinforcement learning (RL) models

are integrated with ABR algorithms to optimize user QoE. However, these works

are mainly focused on improving the performance of existing ABR systems. The

3

challenges brought by UHD videos are not considered.

1.1.2 Real-time Video Streaming Applications

In recent years, live video streaming has become tremendously popular and will

account for 17% of the Internet video traffic by 2022 [8]. Live video streaming services

allow users to stream live videos over the Internet and to interact with their viewers.

There are many live video streaming applications, such as remote education, live

sports event, game streaming, and journalism. For these applications, viewers will

typically tolerate tens of seconds of delay in video streaming. However, for some

live video streaming applications, such as remote control and video conferencing,

participants require very low latency for interactivity (less than one second [9]). That

is why these applications are called real-time video streaming applications. It is

important but challenging to stream high-quality videos while having very low latency.

NetworkCaputure Video encoding Viewer

Traditional live streaming

Real-time streaming

Figure 1.2: The live video streaming system.

In traditional live streaming applications [10, 11], the captured raw video frames

are encoded into a video according to the setting of several key parameters (e.g.,

bitrate). Adaptive bitrate video encoding algorithms (ABR) are widely used in live

video streaming systems[5, 6, 12]. As shown in Figure 3.1, in ABR based live video

streaming, a video is encoded into multiple tracks. Each track is encoded with a

different bitrate or quality level. Each track video is then divided into multiple small

video chunks, and each chunk contains a few seconds of the video content. These

video chunks are uploaded to the content distributed network (CDN) for a large

4

group of receivers. Traditional live streaming applications can usually tolerate longer

latency, as compared with real-time streaming applications. Thus, the encoding time

of multiple video tracks is usually ignored.

In recent years, many ABR algorithms adopt deep learning techniques to make

the best bitrate selection. Applying these deep-learning based ABR algorithms has

greatly improved the performance of live video streaming systems. Several network

protocols based on ABR are designed for live video streaming, such as DASH, HLS,

and RMTP [13, 14, 15]. These network protocols can dynamically determine which

bitrate to transmit for each chunk position in the video. The bitrate selection is made

based on various observations, such as network throughput and user playback buffer

occupancy. The key idea of these protocols is to maximize the user QoE by adapting

the video bitrate according to different network conditions.

On the contrary, real-time video streaming applications [16] usually use point-to-

point communications or there will be only a small group of participants (CDN based

video streaming structure is unsuitable for real-time video streaming). In this case,

generating multiple video tracks is not necessary and will introduce additional latency.

Instead, only one video stream will be generated. In addition, the video encoding time

cannot be ignored in real-time streaming applications, because a very low latency is

required for real-time interaction between the broadcaster and the viewers. Each

step that introduces latency should be considered. The Real-time Transport Protocol

(RTP) and congestion control algorithms are widely used in these applications [17, 18].

For instance, WebRTC is one of the most popular protocols to achieve real-time video

communications, which uses the google congestion control (GCC) algorithm [19] to

adapt the bitrate of the video stream to the network condition (e.g., change the frame

resolution). However, the main limitation of these approaches is that the quality

of the video streaming will be sacrificed to satisfy the real-time requirement [10].

Therefore, meeting the real-time requirement without sacrificing the video quality,

5

or even further improving the user QoE is an important research issue and has not

been addressed for real-time video streaming applications. In addition, since existing

ABR algorithms are designed for the on-demand streaming of pre-recorded video

applications, directly applying these ABR algorithms to real-time video streaming

applications cannot address the above research issue well and also introduces many

challenges.

1.1.3 Mobile Augmented Reality Applications

Mobile augmented reality (AR) applications attract more and more attention in

recent years. Companies are developing AR platforms and devices such as Google

ARCore and Microsoft HoloLens to encourage developers to create mobile AR ap-

plications. We can see an increasing market size of AR applications. However, one

of the most important challenges is the limited resources on mobile devices, such as

CPU, GPU, memory, battery, and storage.

Mobile AR applications need a large amount of computation resources to support

the scene analysis and interactions with users. For instance, in a smart shopping ap-

plication [20], the mobile device needs to recognize the product, including its shape,

color, and brand. Another example is the virtual tourism application like Holo-

Tour [21]. HoloLens will recognize the gesture or voice commands so that a user

can interact with the virtual objects. To recognize the objects and human actions,

advanced computer vision algorithms will be deployed. Running these algorithms

requires high complexity computation, and a large amount of computation resources

are required.

Existing mobile AR systems can be mainly classified into two categories. The first

one is the cloud/edge-based mobile AR system [22, 23, 24, 25]. They choose to offload

recognition tasks to powerful servers. As shown in Figure 1.3, the mobile device is

used to capture the scenes and visualize the results. The captured data will be

uploaded to servers including both the edge and cloud server. These servers are used

6

Mobile

device
Edge server

Cloud

WIFI

Cellular

Network

Figure 1.3: The cloud/edge-based mobile AR system.

to perform image analysis using computer vision algorithms. The main advantage

of cloud/edge-based mobile AR systems is that we can apply advanced recognition

algorithms with high precision on the servers. However, current cloud/edge-based

mobile AR systems cannot achieve fast response which is a vital feature of mobile

AR applications. The reason is that offloading will cause high network latency.

(a)Low complexity tasks

(b)High complexity tasks (d)Wrong detection location

B
al

l
6
8
.7

5
%

(c)Wrong classification

B
al

l
6
8
.7

5
%

(c)Wrong classification

Figure 1.4: The mobile AR applications challenges.

The second one is the on-device mobile AR system [26, 27, 28]. Before we are able

to implement the deep learning based algorithms, the recognition tasks are achieved

with low complexity methods such as image feature extraction, classification, and

object tracking. The computation complexity of these methods is lower enough to

be supported by mobile devices. However, with the development of the hardware

(GPU on mobile devices) and software (Google MobileNets and Tensorflow Lite), the

simple deep learning based algorithms can be directly deployed on mobile devices for

some recognition tasks such as the classification and object detection. The advantage

7

of the on-device architecture is that we can do the recognition tasks on the device.

There is no network latency involved. However, there are several challenges to apply

the on-device models. As shown in Figure 1.4. The first one is that not all the deep

learning models can be implemented on mobile devices for mobile AR applications.

The low complexity tasks such as image recognition, object detection, and landmark

recognition can be implemented on mobile devices. The high complexity algorithms

such as object segmentation, 3D object detection, and image semantic analysis can

only be supported by the edge server and cloud. Secondly, the recognition perfor-

mance is not robust. For instance, the on-device models produce wrong classification

and detection results very frequently. We can only get satisfied recognition results in

some specific scenes and applications.

1.2 Introduction to the Edge Assisted System

In an edge-based system, as shown in Figure 1.5, tasks are executed on the mobile

device first. If the offloading decision algorithm finds that offloading can bring higher

user QoE, the tasks are offloaded to the edge server. The server then executes the

offloaded tasks and sends back the execution results to the mobile device. The main

advantage of this edge-based system is that it combines the low latency of executing

tasks on mobile devices and the high performance of executing tasks on the edge

server.

Mobile Devices

Edge Server

S t e p 3 . E x e c u t e

of f lo ad ed t as ks w i th

abundant resources on

the edge server
Step 2. Send tasks to the edge

server if offloading can bring

higher user QoE

Step 4. Return the execution

results

Step 1. Execute

tasks on mobile

devices

Cellular Network

Wi-Fi

Mobile Devices

Edge Server

S t e p 3 . E x e c u t e

of f lo ad ed t as ks w i th

abundant resources on

the edge server
Step 2. Send tasks to the edge

server if offloading can bring

higher user QoE

Step 4. Return the execution

results

Step 1. Execute

tasks on mobile

devices

Cellular Network

Wi-Fi

Figure 1.5: The system of edge-based MAR applications.

8

Offloading strategies are widely used in existing edge assisted systems [29, 30, 31].

Existing offloading decision algorithms try to balance the quality and latency of exe-

cuting the tasks on the mobile device or on the edge server. However, a disadvantage

is that if a task is offloaded to the edge server, task offloading and result feeding back

introduce additional network latency. Longer latency not only degrades user QoE,

but also decreases the performance of the offloaded tasks because the location and

the environment of the user may have changed when the mobile device receives the

results.

1.3 Ultra-dense Mobile Networks

In a wireless communication network, a massive number of mobile devices pro-

duce vast amounts of data every day. With the growth of Internet of Things (IoT)

and Virtual Reality (VR)/Augmented Reality (AR) applications, the wireless net-

work data will keep increasing exponentially. This brings both the opportunity and

challenge to wireless networks. The opportunity offered by wireless big data is that

we can improve the network performance by discovering useful information from the

network big data. With the wireless big data analysis, we can predict traffic loads

of wireless networks [32], perform the network planning and optimize the network

resource allocations [33]. On the other hand, the growth of mobile devices and appli-

cations will keep enlarging the demand for wireless network capacity [1]. To carry the

ever-increasing mobile data, radio base stations (BSs) are being densely deployed to

provide high network capacity [34, 35]. Although the ultra-dense network promises

high network capacity, it significantly increases the complexity of networking func-

tions such as the traffic load balancing and BS sleep control because of the large

number of BSs [36, 37]. The rapid growth in complexity stifles existing network func-

tions for ultra-dense mobile networks. For instance, the computational complexity of

the suboptimal traffic load balancing function can be estimated to be O(MaN b) for

some nonnegative integer a and b, whereM and N are the numbers of users and BSs,

9

Network function

VNF1 VNF2 VNF3 VNF4 VNF5

Traditional network

management

NFV-enabled network

management

Network function

Figure 1.6: The VNF placement.

respectively [38]. When BSs are densely deployed, these network functions can incur

long computing time and high communication overhead [36, 39, 40].

Network function virtualization (NFV) is an emerging networking technology for

managing complex communication networks. With NFV, network operators can dy-

namically place network functions to facilitate efficient network management [41, 42,

43]. In an ultra-dense mobile network, a network function cannot efficiently manage

the network because of the high computational complexity. They propose to use a

divide-and-conquer method that partitions the network into multiple sub-networks

and deploys replicas of the network function to manage each sub-network indepen-

dently. The research challenge is how to partition the network into how many sub-

networks.

Figure 1.6 compares the traditional and NFV-enabled network management. In

the traditional network management, a network function manages the whole network,

which will lead to a long computation delay in searching for the optimal network man-

agement solution. With the proposed NFV-enabled network management, the whole

network can be partitioned into multiple sub-RANs, and each sub-RAN is managed

by a replica of the network function. In this way, the computational complexity of

10

the network function can be significantly reduced, and thus the computation delay

is shortened. However, partitioning RAN is challenging for a few reasons. First, the

relationships among BSs cannot be accurately quantified [38]. Hence, it is non-trivial

to define the distance function that quantifies the relationships among BSs for the

partitioning. Second, owing to the dynamic mobile traffic, it is difficult to learn the

optimal network partitioning solution at different time intervals.

1.4 Overview of the Proposed Research

Figure 1.7 shows the overview of the proposed research. We focus on two types

of resource-hungry applications: video streaming and mobile AR. For video stream-

ing applications, a dynamic video encoding configuration protocol is proposed for

real-time video streaming applications, and a cloud computing based deep compres-

sion framework is proposed for UHD video streaming applications. For mobile AR

applications, a smart task allocation decision algorithm, a frame-level offloading de-

cision algorithm, and a fast model updating algorithm are proposed to improve the

performance of MAR applications. Furthermore, a network partitioning algorithm

and an online network optimization framework are proposed to tackle the issues of

ultra-dense mobile networks. These proposed research targets on some unique and

practical issues regarding user QoE in resource-hungry applications.

For video delivery applications, we propose two research works. First, we propose

DAVE, a dynamic video encoding protocol for real-time video streaming applications.

DAVE uses a reinforcement learning based model to study the optimal video encoding

configurations under different network conditions in order to achieve the optimal

performance of real-time video streaming systems and user QoE. DAVE also uses

super resolution algorithms to improve the video perceptual quality without increasing

the video transmission data size and introducing additional latency.

Then, we propose Pearl, a cloud computing based deep compression framework that

applies deep learning techniques to UHD video content compression to maximize UHD

11

Mobile AR
Applications

Proposal Topic

Analysis and Enhancement of Resource-Hungry Applications

Video Streaming
Applications

Pearl: A cloud computing
based deep compression
framework for UHD video

delivery applications

DAVE: A dynamic video
encoding configuration

protocol for real-time video
streaming applications

Smart-Decision: A smart-
decision algorithm for real-

time MAR applications

FARMUS: A fast model
updating algorithm for

MAR applications

Larger video
data size

Higher low-latency
requirement

Resource constraints
on mobile devices

Limited network
bandwidth resource

Research Challenges

Long latency and low visual quality Long latency and poor performance of deep learning models

Proposed Research
UHD video streaming Real-time video streaming General MAR tasks Object detection

Real-time VideoUHD Video

Figure 1.7: The overview of the proposed research.

video delivery performance and user QoE. In pearl, an optimal compact representation

of the original UHD video is learned with two deep convolutional neural networks

(DCNNs): super resolution CNN (SR-CNN) and colorization CNN (CL-CNN). SR-

CNN is used to reconstruct a high resolution video from a low resolution video while

CL-CNN is adopted to preserve the color information of the video. With Pearl, the

data size of UHD videos can be significantly reduced.

For MAR applications, we propose three designs. First, to improve the effectiveness

of on-device object detection, we propose an improved frame-level offloading decision

algorithm (FLOD) that can reduce the occurrence of object detection-failure and

improve the user QoE.

Then, to achieve fast model updating and satisfy the diverse requirements of differ-

ent MAR applications, we propose a new online model updating scheme, FARMUS,

for MAR applications. We formulate a model updating decision problem to determine

the proper moment for model updating and take user preference and user movement

pattern into consideration.

Next, we proposed a smart-decision framework which combines the advantages

12

of the on-device mobile AR system and the edge-based system to achieve real-time

recognition tasks. The framework will decide where to execute the recognition tasks.

To overcome the dynamic changes of network condition and the limitations of the

on-device deep learning models, we design a cache and matching algorithm on mobile

devices. Compared with other related works, we focus on enhancing the performance

of mobile AR applications.

For ultra-dense mobile networks, we propose two specific designs. First, a data-

driven network partitioning algorithm is proposed to address the high complexity

of networking mechanisms. We mined a mobile traffic data set containing billions

of mobile traffic records to analyze the relationships among BSs. Three networking

features are extracted from the mobile traffic data set. These features are the geo-

distance between BSs, the similarity of traffic trends in BSs, and the common active

users shared in BSs during a certain period of time. Based on these networking

features, we design a network partitioning framework.

Then, we propose a data-driven network optimization (DINO) framework which

integrates data analysis and machine learning methods with network optimization

algorithms to enable realtime and efficient ultra-dense network optimization. The

proposed framework is composed of an offline machine learning module and an on-

line BS clustering and a network optimization module. The offline module mines

the mobile traffic dataset and performs BS clustering analysis using the hierarchical

clustering analysis (HCA) method [44]. The analysis results are utilized to train an

artificial neural network (ANN) to predict the optimal number of BS groups at differ-

ent time intervals. Based on the prediction, the online module adopts the K-medoids

clustering algorithm to partition BSs into groups and then optimize the performance

of each group of BSs independently.

13

1.5 Dissertation Organization

The rest of the research is organized as follows. In Chapter 2, related work on

the proposed research is introduced. In Chapter 3, DAVE, a dynamic video encoding

configuration protocol is proposed. Next, Pearl, a cloud computing based deep com-

pression framework for UHD videos is presented in Chapter 4. Then, an improved

frame-level offloading decision algorithm, a fast online model updating scheme, and

a smart-decision algorithm are presented in Chapter 5. After that, an offline network

partitioning algorithm and an online network partition optimization model are pre-

sented in Chapter 6 to address the issues in ultra-dense mobile networks. Following

that, the publications and future work are listed in Chapter 7.

CHAPTER 2: RELATED WORK

In this chapter, existing research on video streaming applications and mobile AR

applications is discussed followed by the existing work on ultra-dense mobile net-

works. Existing research approaches to enhance the performance of resource-hungry

applications and their shortcomings are also described in this chapter.

2.1 Existing Research on Video Streaming Applications

2.1.1 Video Encoding and Decoding

Video is defined as a continuous series of frames. Frame resolution, frames per

second (FPS), bitrate, video compression rate, and video encoding speed are the most

important factors of video encoding. To improve the video transmission QoE, ABR

algorithms are widely adopted to handle the dynamic change of the network in real

world. Traditional ABR algorithms usually fix all other encoding parameters, except

the video compression rate, to encode a video into multiple bitrate tracks [3, 45]. If

the bitrate of these tracks still cannot satisfy the requirements, the resolution of the

video will be downsampled to reduce the bitrate of the video tracks. However, by

configuring other factors, we can achieve higher video quality with the same bitrate or

achieve the same video quality with a lower bitrate. Video Multimethod Assessment

Fusion (VMAF) is a widely used video perceptual quality assessment algorithm. A

VMAF score is between 0 and 100: 0-20 is considered as unacceptable, 20-40 as poor,

40-60 as fair, 60-80 as good, and 80-100 as excellent [46].

For each video frame, the most commonly used color mode is RGB, which means

each frame can be divided into three channels (R, G, and B). However, a video is not

composed of original RGB frames. To save data storage space, video frames need to

15

be compressed and encoded into a video. To achieve better compression performance,

the color mode of video frames is transformed from RGB to YUV in most of the video

codecs, such as H.26x, and VPx [47, 48]. In all of the exiting super resolution based

video delivery systems, video frames are extracted (decoding) from the video with

RGB color mode. After applying the super resolution model, the generated RGB

video frames need to be encoded into video again. Different from these systems,

we proposed using YUV channel-based super resolution model. In Pearl, the results

generated by the super resolution models are channels in YUV color mode. As a

result, Pearl can reduce video processing latency.

2.1.2 Super Resolution

The super resolution algorithm aims to upscale and improve the perceptual quality

within an image [6, 49]. A low-resolution image is taken as an input to the super

resolution algorithm, and a higher resolution image with higher perceptual quality is

the output. Recent research on super-resolution has achieved great progress with the

development of deep convolutional neural networks. The speed of generating a 1080p

resolution frame with the super resolution model proposed in [50] is 34 FPS (larger

than 24 FPS), which means that we can apply the super resolution model on the

low-resolution videos to improve the video quality in the real-time video streaming

system. With the help of model compression techniques, super resolution models can

be deployed on mobile devices.

There are several state-of-the-art super-resolution algorithms, such as EDSR and

ESRGAN [51, 52]. The main obstacle to adopt these algorithms is the time complex-

ity. For example, the inference speed of EDSR for 1020x768 frames is 2.08 frames

per second, which makes it impossible to achieve real-time video processing. To meet

the real-time constraint for upscaling the high-resolution frames, the fastest super

resolution model FSRCNN-S [50] is adopted in this paper. For a super resolution

model, we can choose the scales of up-scaling. {x2, x3, x4, x6} are widely used in

16

super resolution algorithms, where xk means upscaling both the width and height k

times.

2.1.3 Colorization

There have been many studies about video colorization [53, 54]. Colorization can be

used in many popular applications such as colorizing the old black and white photos,

remastering classic black and white film [55, 56]. There are two types of colorization

algorithms: user-guided colorization and data-driven automatic colorization. The

limitation of the automatic colorization model is that we need to train individual

models for different videos. For the user-guided colorization model, the main challenge

is the generated images are closer to the referenced frame as compared with the

original frame.

2.1.4 UHD Video Streaming Systems

There have been many works that apply DNN models on image compression [57,

58, 7]. The results show that DNN-based image compression outperforms traditional

image compression algorithms. However, there are only a few studies about applying

the DNN on video compression [59]. It is very challenging for deep learning models to

achieve the same level of inter-frame compression performance compared with non-

DNN based video encoding algorithms. Recently, Super resolution has been widely

used for video compression [6]. Instead of directly compressing the video content,

the image resolution of the video is downscale to reduce the video data size in these

systems. As a result, lower network transmission latency and less network bandwidth

resource usage can improve user QoE. However, all of these systems are focusing on 2k

videos. The challenges brought by UHD videos are not addressed. To the best of our

knowledge, Pearl is the first framework that applies deep learning driven compression

on UHD videos.

17

2.1.5 Real-time Video Streaming Systems

Adaptive bitrate algorithms are designed for handling the dynamic network through-

put in the real world. Rate-based and buffer-based approaches are the earliest ABR

algorithms. Rate-based ABR algorithms [3, 45] make the bitrate selection based on

the predicted network bandwidth. Buffer-based ABR methods [60, 12] select the

bitrate according to the playback buffer occupancy of the client player. Recently

proposed ABR algorithms combine the rate-based and buffer-based methods. The

state-of-the-art ABR algorithm [5] uses deep learning models to further improve the

performance of ABR systems. However, these ABR algorithms ignore both the im-

pact of the video encoding configuration and the video encoding time, which are

necessary for live video streaming systems. Moreover, the ABR algorithms usually

use the information of future video chunks to optimize the system performance, which

is not practical in real-time video streaming applications. Hence, we need to design

a new protocol for optimizing real-time streaming systems.

Existing live video streaming systems apply several specifically designed network

protocols to improve the system performance [13, 14, 15, 16]. These network protocols

mainly focus on optimizing the video packetization and network transmission (e.g.,

lower packet loss rate and better video bitrate selection). Compared with these works,

DAVE adopts an end-to-end optimization strategy to further improve the performance

of real-time video streaming applications.

There are some works that study the relationship between the video encoding pa-

rameters (e.g., FPS) and video quality [61, 62]. However, they only focus on the video

perceptual quality. The video encoding time and video data size are not considered.

We study the characteristics of video encoding configurations with a rich set of videos.

The tradeoffs among the video data size, video perceptual quality, and video encoding

time are well learned.

Super resolution has been used in a variety of computer vision applications, in-

18

cluding video enhancement, medical diagnosis, and surveillance [51, 52, 63]. The

performance of super resolution algorithms has been greatly improved with the help

of deep convolutional neural networks. However, super resolution models are usually

very time and GPU memory consuming. To overcome this challenge, many light

super resolution models are proposed [50, 6].

2.2 Existing Research on Mobile Augmented Reality Applications

2.2.1 Image Features and Object Tracking

Image Features are numerical descriptors that individually or collectively form

unique signatures to describe the image. Typically, image recognition techniques rely

on discovering multiple interesting points in the image and extracting descriptors for

these points. These interesting points collectively form a signature for the image.

This technique is used by many feature detection and extraction techniques such as

SIFT [64], SURF [65] and ORB [66]. Object tracking is widely used in Mobile

AR/VR systems [22, 23, 25] before the invention of deep learning algorithms. The

advantage of adapting object tracking is that once you recognize the objects, you

don’t need to recognize them again if you can keep tracking the objects based on

their unique features. In this case, a lot of redundant computations are void and

using the tracking algorithm is fast enough to achieve real-time processing.

2.2.2 Recognition Tasks

The recognition is vital for mobile AR applications. Image recognition is used

for identifying the objects in the image and analyzing the semantic information(like

human actions) in the image. It can help the device to understand what you see and

what you want to do, which is the first step to allow the interaction with the envi-

ronment. Recognition can be divided into several small tasks, such as object detec-

tion, object segmentation, semantic analysis, and so on. State-of-the-art recognition

algorithms[67, 68, 69] can achieve high-quality results, and they all use deep convolu-

19

tional neural networks (CNN). Unfortunately, these deep and complicated networks

have significant computation and memory needs. In this case, deploying them on

mobile devices is very challenging. For instance, SSD300 and Faster-RCNN300 need

34.9 and 64.3 billions of Multi-Add calculations; 33.1 and 138.5 millions of parameters

need to be calculated and maintained, respectively.

In the computer vision field, there are some works that try to build light deep

neural networks to balance the latency and accuracy of the detection and recognition

models. For instance, Howard et al. [70] presents an efficient model-MobileNets for

mobile and embedded vision applications. Although it reduces about 80% computa-

tion complexity of current object detection models, it still needs to process millions of

parameters, which cause billions of Muti-Adds calculations. Apte et al. [71] deploys

the tiny-YOLO model on iPhone 7 to achieve the real-time object detection. It can

achieve 8-11 FPS, but the accuracy is low. With the invention of Tensorflow Lite,

some recognition algorithms can be deployed on mobile devices with high accuracy.

The speed of running the object detection task on android mobiles phones is about

5-6 FPS.

2.2.3 Mobile AR Systems

There are a lot of works related to mobile AR systems. Chen et al. [23] proposed

a system called Glimpse which combines tracking and caching to achieve object de-

tection on mobile devices. However, it can only detect the pre-trained objects such

as road signs and human faces. Drolia et al. [24] developed an edge caching solution

for image recognition. It will predict the objects which a user might meet in a short

time and fetch the classification model from the edge server. However, this solution

can not get the locations of the objects, which is an essential function for mobile

AR applications. Zhang et al. [25] proposed a cloud-based framework, CloudAR, to

achieve real-time image detection based on object tracking. They segment and track

the objects on the client side and do the detection on the server. Ran et al. [29]

20

proposed DeepDecision to determine an optimal offloading strategy for AR tasks.

However, these works mainly focus on making the decision of when to offload the

tasks to the edge server, they do not take the performance of the on-device models into

consideration. We focus on enhancing the performance of mobile AR applications. A

cache and matching algorithm will be used when the performance of on-device deep

learning models is poor.

2.2.4 Offloading

Offloading in edge/cloud computing systems is widely used to address the issues

caused by the limited resources on mobile devices and is adopted in most MAR

systems [22, 23, 25, 72]. All of these systems choose to offload object detection

tasks to the edge/cloud server. At the same time, all of these systems adopt tracking

algorithms to reduce the frequency of offloading. However, these systems are proposed

before the development of on-device object detection models. The advantages of the

on-device object detection model are not utilized.

The optimal offloading decision problem has been well studied [73, 74, 75]. Of-

floading decision optimization has also been considered in MAR applications. Deep-

Decision is proposed in [29] to determine an optimal offloading strategy for AR tasks.

The model accuracy, video quality, battery constraints, network data usage, and net-

work conditions are considered to determine whether to execute the recognition tasks

on the mobile device or offload to the cloud server. Another offloading optimization

strategy is proposed in [30] that considers the tradeoffs between the frame resolution

and the object detection model accuracy. However, they all focus on optimizing the

decision to offload or not. In addition, mAP of detection models is used as the accu-

racy of detection for every frame, which may lead to inaccurate offloading decisions.

We aim to reduce the occurrences of offloading caused by object detection-failure and

miss-detection.

21

2.2.5 Object Tracking and Feature Matching

Object tracking is widely used in MAR systems [22, 23, 25]. Once an object is

detected, the object can be tracked based on the image feature matching algorithm.

Image features are the numerical descriptors that individually form the unique signa-

tures of an object. The advantage of object tracking is that once an object is detected,

it is not necessary to detect it again if the object can be tracked based on its unique

features. In this way, repeated computations are avoided. However, there are several

limitations of object tracking algorithms. For instance, it is very challenging to track

multiple objects at the same time, while DNN based object detection algorithms can

detect dozens of objects within one processing. Moreover, object tracking can only

track the same object, but cannot detect a new object which belongs to the same

class of the tracked object. Additionally, in order to track an object, the object needs

to be detected first. When on-device miss-detection occurs, the object detection task

offloading is inevitable.

2.2.6 Fine-tuning and Incremental Learning.

Fine-tuning is widely used for updating a new model based on an existing base

model [76]. The new model can have different configurations from the base model,

such as the number of classes. To incrementally add new object classes into the model,

a straightforward way is to fine-tune the model with training data from both old and

new classes. The challenge of applying fine-tuning is that it will take several hours of

background time to train the new model, which is unacceptable for MAR users. In-

cremental learning is proposed in [77] for training new models for MAR applications.

Compared with fine-tuning, incremental learning is much faster. However, the new

model trained with fine-tuning is more robust. Both methods can be used to update

the object detection model on mobile devices for MAR applications. However, cur-

rently there is no existing work on how to properly adopt a model updating strategy

22

in an MAR system.

2.3 Existing Research on Ultra-dense Mobile Networks

2.3.1 Virtual Network Function Placement

Our research work relates to the virtual network function placement and big wire-

less data analysis. The existing research solutions on virtual network function place-

ments on wireless radio access networks are mainly designed for cloud computing

and resource management [78, 79, 80, 81, 82, 83, 84, 85]. In these solutions, the

network function placement is usually formulated as an optimization problem, which

can be solved by either disciplined optimization problem solvers or heuristic algo-

rithms [42, 86, 87, 88, 89, 90, 91, 92]. For instance, Zhang et al. [86] proposed a

routing algorithm for jointly placing NFVs. The network is defined as a graph, and

then they built an optimization problem to minimize the operational cost. Luizelli et

al. [87] formulated the network function placement and chaining problem and pro-

posed an Integer Linear Programming (ILP) model to solve it. These works can be

used to improve the performance of the NFV systems. However, these optimization

methods cannot be applied in an ultra-dense radio access network because of the

complexity to obtain the optimal solution.

2.3.2 Big Data Analysis for Wireless Network

Big data analysis and machine learning have been applied to manage and optimize

wireless communications networks. Most of the research works on big-data-driven

mobile networks focus on developing big mobile traffic data monitoring and analysis

systems. For example, Liu et al. [93] proposed a Hadoop-based scalable network

traffic monitoring and analysis system for monitoring, collecting, and storing the big

mobile traffic data.

Another research direction in the wireless big data analysis is to discover the pat-

terns of the network usage and user behavior through analyzing big mobile traffic

23

data. For instance, by mining a big mobile network traffic data set, Xu et al. [94]

studied the correlation of the human mobility and mobile traffic data consumption

for a better understanding of human behaviors. Su et al. [95] proposes a framework

for delivering interest information to users by combining the social network analysis

and mobile big data analysis.

2.3.3 Wireless Network Optimization Frameworks

A few research works have applied wireless data analysis to optimize various as-

pect of mobile networks. Wang et al. [32] proposed a cellular network traffic load

prediction model based on big data analysis, in which they focused on using deep

learning to predict traffic loads in order to utilize the network resources efficiently

and effectively. However, they did not investigate how to use the prediction results

to optimize the network performance. Zheng et al. [33] proposed a conceptual frame-

work, which enables big data analysis for the mobile network optimization. They

presented a conceptual framework by using big data and machine learning to op-

timize the network, and illustrated some use cases like network planning, resource

allocation, and interference coordination. Mehraghdam et al. [80] proposed a system

to collect the network traffic statistics, and to conduct application-layer analysis, web

service provider analysis and user behavior analysis. These functions can be used

to improve user QoE. All these works are position papers that describe conceptual

frameworks of data-driven cellular network design. They only stated what functions

can be done, but they did not provide any technical details and analysis on how to

achieve these functions, what kind of data to be processed and what kind of algo-

rithms to be adopted. To our best knowledge, wireless big data analysis has not been

investigated to help place and manage the virtual network functions in ultra-dense

radio access networks.

In our proposed framework, we partition the network into many sub-RANs. Al-

though there are many existing works on wireless network partitioning, most of these

24

works focus on clustering mobile ad hoc and wireless sensor networks [96, 97, 98,

99, 100, 101]. These solutions are designed based on graph theory and node routing

information and not appropriate for clustering cellular networks. Cellular wireless

networks are deployed as infrastructure. A cellular network is a centralized structure.

It consists of central entities known as base stations, and all BSs are connected to a

core network. A base station provides service for a specific area of users. There are

overlapping areas for nearby BSs. Controlling one BS also affects its nearby BSs with

overlapped coverage areas. So, we cannot just simply model a cellular network as a

graph. The existing solutions for cellular network partitioning rely on the geographic

distances among BSs to cluster the BSs into different sub-networks [99, 100]. How-

ever, the relationship among the BSs cannot be accurately measured when different

network functions are considered [38]. In this case, we propose a network partitioning

solution based on wireless big data analysis.

CHAPTER 3: Proposed DAVE for Real-time Video Streaming

In this chapter, we propose a new real-time video streaming protocol, DAVE

(Dynamic Adaptive Video Encoding for real-time video streaming applications). In

DAVE, we propose a super resolution based video encoding configuration selection

algorithm which does not use a fixed strategy to determine the encoding configu-

rations as in existing real-time video streaming systems but uses a reinforcement

learning based model to learn the optimal video encoding configuration that includes

the configuration of both regular video encoding parameters and the up-scale of super

resolution models. As a result, DAVE can enhance the performance of real-time video

streaming systems based on user QoE metrics. To the best of our knowledge, this

is the first work that incorporates super resolution and reinforcement learning in the

protocol design for real-time video streaming systems.

3.1 Problem Description

In traditional live streaming applications [10, 11], the captured raw video frames

are encoded into a video according to the setting of several key parameters (e.g.,

bitrate). These settings are defined as encoding configurations. Adaptive bitrate

video encoding algorithms (ABR) are widely used in live video streaming systems[5,

6, 102, 12, 103]. As shown in Figure 3.1, in ABR based live video streaming, a video

is encoded into multiple tracks. Each track is encoded with different configurations.

Each track video is then divided into multiple small video chunks, and each chunk

contains a few seconds of the video content. These video chunks are uploaded to the

content distributed network (CDN) for a large group of receivers. Traditional live

streaming applications can usually tolerate longer latency, as compared with real-

26

time streaming applications. As a result, the encoding of multiple tracks is usually

done on the server with substantial resources, and the video encoding time is usually

ignored.

Video encoding

ABR based live streaming

Real-time streaming

track 1:

track 2:

track 3:

The only track:

Video chunks with different

encoding configurations

...
A group of frames

Time

Configurations

Figure 3.1: The live video streaming system.

In recent years, many ABR algorithms[102, 5] adopt deep learning techniques to

make the best bitrate selection. Applying these deep-learning based ABR algorithms

has greatly improved the performance of live video streaming systems. Several net-

work protocols based on ABR are designed for live video streaming, such as DASH,

HLS, and RMTP [13, 14, 15]. These network protocols can dynamically determine

which bitrate to transmit for each chunk position in the video. The bitrate selection

is made based on various observations, such as network throughput and user playback

buffer occupancy. The key idea of these protocols is to maximize the user Quality

of Experience (QoE) by adapting the video bitrate according to different network

conditions.

Research Problem: On the contrary, real-time video streaming applications [16]

usually use point-to-point communications or there will be only a small group of

participants (CDN based video streaming structure is unsuitable for real-time video

streaming). In this case, generating multiple video tracks is not necessary and will

introduce additional latency. Instead, only one video stream will be generated. In

addition, because the video has to be encoded in a real-time manner, the video en-

coding process is usually executed on user devices. Without the resources on the

server or cloud, the video encoding time cannot be ignored because a very low la-

27

tency is required for real-time interaction between the broadcaster and viewers. The

Real-time Transport Protocol (RTP) and congestion control algorithms are widely

used in these applications [17, 18]. For instance, WebRTC is one of the most popular

protocols to achieve real-time video communications, which uses the google conges-

tion control (GCC) algorithm [19] to adapt the bitrate of the video stream to the

network condition (e.g., change the frame resolution). However, the main limitation

of these approaches is that the quality of the video streaming will be sacrificed to

satisfy the real-time requirement [10]. Therefore, meeting the real-time requirement

without sacrificing the video quality, or even further improving the user QoE is an

important research issue and has not been addressed for real-time video streaming

applications.

In addition, since existing ABR algorithms are designed for the on-demand stream-

ing of pre-recorded video applications, directly applying these ABR algorithms to

real-time video streaming applications cannot address the above research issue well

and also introduces many challenges:

First, existing real-time video streaming systems usually reduce the video data

size (for instance, reduce the frame resolution) to achieve the real-time requirement.

Thus, the video perceptual quality will be sacrificed. With the help of deep learning

techniques, we can solve this problem by transmitting low-resolution video frames

and recovering them back to the high-resolution frames using super resolution algo-

rithms [51, 52, 50]. The execution speed of a state-of-the-art super resolution model

to recover 1080p videos is 34 frames per second (FPS) which can satisfy the real-time

requirement of real-time video streaming applications [6]. In this case, the quality

of the video streaming is improved. Another advantage of applying the super reso-

lution algorithm is that the transmission data size and transmission latency will be

reduced, since only low-resolution video frames are transmitted. However, the cost of

applying the super resolution algorithm is that the user perception may be degraded.

28

The perception degradation level depends on the scale of the super resolution mod-

els. Larger scales will lead to higher perception degradation levels. Thus, there is a

tradeoff between the video perceptual quality and the scale of the super resolution

model. To integrate the super resolution algorithm with real-time video streaming

applications, the challenge is to carefully configure the frame resolution setting.

Second, because the video has to be encoded in a realtime manner, how to de-

termine the optimal video encoding configuration is a key issue. In traditional live

streaming systems (ABR-based), videos are usually encoded with several fixed param-

eter settings, because of the efficiency and large-scale broadcasting. Thus, multiple

video streams with different bitrates are generated, and the system is aware of all

the video information, such as the data size of each video chunk. However, in real-

time streaming applications, to achieve the low-latency requirement, only one video

stream will be encoded in a real-time scenario. Thus, only a few seconds of the video

can be accessed ahead at any moment, which means that less information can be

utilized to make optimal streaming decisions. The state-of-the-art ABR algorithm

(Pensieve [5]) uses the information of the whole pre-recorded video to achieve the

optimal performance. However, this is not possible in real-time video streaming sys-

tems. Moreover, existing real-time streaming systems (e.g., WebRTC) use several

fixed adaptation strategies to configure the video encoding. For instance, reduce the

video FPS or frame resolution when the network throughput is lower than a certain

level. However, these strategies lead to poor video quality (detailed in Section 3.2).

Therefore, how to determine the optimal video encoding configuration without the

future video information is a challenge.

Third, traditional live video streaming systems use bitrate to control the video

quality: higher bitrate leads to higher video quality. However, according to our

experiments (detailed in Section 4.4.2), the same video quality with a smaller bitrate

can be achieved or the same bitrate can result in a higher video quality using different

29

(a) (b)

0

2

0 100 200 300 400 500 600
Time (s)

2

4

1

B
it

ra
te

(M
b

p
s)

T
h
ro

u
g

h
p
u

t

(M
b

p
s)

0

2

0 100 200 300 400 500 600
Time (s)

2

4

1

B
it

ra
te

(M
b

p
s)

T
h
ro

u
g

h
p
u

t

(M
b

p
s)

R
e
so

lu
ti

o
n

F
P

S

0 60 120 180 240 300 360
Time (s)

420

20

40

0

5

10
x105

VP9

H264
VP8

VP9

H264
VP8

VP9

H264
VP8

VP9

H264
VP8

R
e
so

lu
ti

o
n

F
P

S

0 60 120 180 240 300 360
Time (s)

420

20

40

0

5

10
x105

VP9

H264
VP8

VP9

H264
VP8

Figure 3.2: The performance of the WebRTC system (a) and ABR based live video
streaming system (b).

video encoding configurations. This indicates that the potential of video encoding

parameters is not well utilized. We can further improve the user QoE through dynamic

video encoding configuration.

3.2 Motivation and Challenges

Applying ABR algorithms has greatly improved the performance of traditional live

video streaming systems. However, current frameworks face several challenges when

adopting ABR algorithms in real-time video streaming applications. To illustrate

these challenges, we implement two experiments.

WebRTC is a real-time video streaming protocol that provides browsers and mobile

applications with Real-Time Communication (RTC) capabilities. In WebRTC, the

frame resolution and FPS are dynamically configured. However, the adaptation of

the frame resolution and FPS follows fixed strategies. Following the setting in [10], we

evaluate the performance of a WebRTC system. As shown in Figure 3.2(a), there is

significant room for improvement in the adaptation scheme. For instance, the frame

resolution of the video encoded with H.264 has not changed from 120 to 180 seconds.

At the same time, the FPS is reduced under 5 FPS. For the video encoded with VP8

and VP9, a high frame rate is kept with a very low resolution from 300 to 360 seconds.

The video quality is very poor under these configurations.

In the second experiment, we apply the simulator platform provided by the live

30

Table 3.1: The performance of the super resolution model

Resolution Speed (FPS) VMAF (after SR) VMAF (before SR)
1080p - - 100

540p (x2) 8 94.93 88.04
360p (x3) 36 91.43 74.51
270p (x4) 42 85.56 59.02
180p (x6) 24 67.55 28.77

C
D

F

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

The bitrate level

C
D

F

0
0

0.2

0.4

0.6

0.8

1

The latency (s)
1 2 3 4

52%

41%

43%

Figure 3.3: CDF of bitrate level and frame latency.

video streaming challenge at ACM Multimedia 2019 [104]. This simulator can be used

to evaluate the performance of applying ABR algorithms in real-time video streaming

systems. The ABR algorithm we selected is BBA [105] (one of the most robust ABR

algorithms [106]). The result is shown in Figure 3.2(b). There are 4 video tracks: the

bitrate of each video track is {500.0, 850.0, 1200.0, 1850.0}kbps. With the change

of network throughput, different video chunks from different tracks are selected. As

shown in Figure 3.3, 41% of the chunks are chosen from track 2, and 52% of the

chunks come from track 1 (the lowest quality track). Video chunks from track 4 (the

highest quality track) have never been selected. In addition, the end-to-end latency

of 57% of the video frames are larger than 1-second (the latency requirement for the

real-time video streaming applications [9]). These experimental results indicate that

directly applying ABR algorithms in real-time video streaming systems will result in

poor performance (latency and video quality). Thus, we cannot directly apply the

existing ABR algorithms to optimize the performance of real-time video streaming

applications.

31

According to the above two experiments, we can conclude that the video quality

of the real-time streaming system which adopts ABR algorithms with fixed video en-

coding configurations is poor. These systems cannot achieve the optimal performance

of real-time video streaming applications. Moreover, the end-to-end latency is a vital

factor for real-time video streaming applications. However, the video encoding time is

not taken into consideration in all the existing live video streaming systems. Different

video encoding configurations will result in different encoding times. For instance, for

a 1-second video chunk, the medium encoding time of all the configurations is 0.11

seconds. Since the average transmission time of a video chunk is 0.68 seconds, the

video encoding time accounts for 14% of the end-to-end latency on average. In this

case, we cannot ignore the influence of the video encoding time.

3.3 Characteristics of Video Encoding

In this section, we show a comprehensive study of the tradeoffs between the video

encoding configuration and QoE metrics: video data size (bitrate), encoding time,

and video perceptual quality. With the discovery from these experiments, we can

design an optimal adaptive video encoding configuration selector.

3.3.1 QoE Metrics

The QoE metrics of real-time video streaming systems are mainly composed of

two parts: network performance and video quality performance. The network perfor-

mance is determined by the end-to-end latency. Unlike traditional live video stream-

ing applications, the video encoding time has to be considered in real-time video

streaming applications. So the network performance is defined as:

QoEnetwork =
∑N

n=1(Lencoding(chunkn) + Ltrans(chunkn)). (3.1)

32

If we adopt the super resolution algorithm, the network performance is defined as:

QoEnetwork =
∑N

n=1(Lencoding(chunkn) + Ltrans(chunkn) + LSR(chunkn)). (3.2)

The perceptual quality of a video can be calculated by the VMAF algorithm.

However, two more factors need to be adopted to evaluate the quality of the video

in real-time video streaming systems: rebuffering rate and smoothness. A rebuffering

event will happen when the playback buffer of the client is empty and new content

is still not delivered. This is caused by the cascading effects of bitrate selection (e.g.,

the network throughput decreases unexpectedly while a high bitrate video track is

selected, which will lead to high transmission latency and cause rebuffering). Smooth-

ness is defined as the adaptation frequency of the bitrate selection. Frequent bitrate

changes will lead to poor QoE [5]. Thus, the video quality is defined as (3.3).

QoEvideo =
N∑

n=1

VMAF (chunkn)− µ1

N∑
n=1

Tn

−µ2

N−1∑
n=1

|VMAF (chunkn+1)− VMAF (chunkn)| ,

(3.3)

where Tn is the rebuffering time caused by downloading chunkn. µ1 and µ2 are the

penalty coefficients for rebuffering and smoothness, respectively. When we evaluate

the characteristic of video encoding configurations, the video quality only refers to

VMAF values. The reason is that rebuffering and smoothness are caused by ABR

algorithms.

3.3.2 Video Encoding Settings

To investigate the impact of video encoding configurations on video quality, we

download videos from 9 popular categories on Youtube (1: Beauty, 2: Comedy, 3:

Cook, 4: Entertainment, 5: Game, 6: Music, 7: News, 8: Sports, 9: Technology).

For each of these categories, we download three videos, each cut to 5 minutes in

33

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

z
ed

 Q
o

E

CRF
15 20 25 30 35

Preset
slow medium fast faster ultrafast2k 2Kx1.5 2kx2 2kx3 2kx4 2kx60

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

z
ed

 Q
o
E

Resolution

30 0
FPS

Normalized bitrate

60

12%

7%

VMAF(MaxFPS30)
VMAF(MaxFPS60)

(a) (b)

(d)(c)

Bitrate
VMAF
Encoding time

Figure 3.4: The impact of video encoding parameters on QoE metrics.

length. The video frames within 5 minutes are extracted (30FPS) to build a raw

frame dataset for video encoding.

Table 3.2: The video encoding parameters

R Frame resolution [2k, 2kx2, 2kx3, 2kx4, 2kx6]
F Frames per second [30, 28, 26, 24]
C Video compression rate [15, 20, 25, 30, 35]
P Video encoding speed [slow,med, fast, faster, ufast]
G Chunk interval 1

There will be millions of configurations if we traverse all the possible values for

each video encoding factor, which is not practical. In this case, we select the most

commonly used parameter values to build the configuration map, as shown in Ta-

ble 3.2. To calculate the VMAF value of each configuration, a reference video with

the highest quality is needed. In this paper, video encoded with {R:2k, F:30, C:15,

P:slow, G:1}1 is used as the reference video to measure the video quality of the other

configurations.

3.3.3 QoE vs. Video Encoding Configuration

When we study the influence of each configuration parameter on the video quality,

all other parameters are kept in the same setting. Thus, each parameter can be
1Encoded with FFMPEG: ffmpeg -r 30 -f image2 -s 1920x1080 -start_number 1 -i frame-

folder/frame_%04d.jpg -vframes 9000 -vcodec libx264 -profile:v high -crf 15 -g 30 -preset slow -
pix_fmt yuv420p result.mp4

34

validated independently. In Section 4.4, when we try to learn the optimal video

encoding configurations, the entire configuration (a combination of parameters) will

be evaluated instead of individual parameters.

Frame resolution: As shown in Figure 3.4(a), the video quality decreases with

the downscale of the frame resolution. The VMAF values of video encoded with 2kx4

and 2kx6 are 38.61 and 24.78, respectively, which are classified as poor video quality.

In the current live streaming systems, these poor quality options will be selected

when the network throughput is low. However, we can avoid generating such low-

quality videos by adopting different configurations. For instance, instead of reducing

the frame resolution to an extremely low level, we can reduce the FPS to reduce the

video data size and video encoding time while maintaining high video quality. The

advantage of downscaling the frame resolution is that the encoding time and video

bitrate significantly decrease with the downscale of the video resolution. The reason

is that the video encoding time and data size not only depend on the Preset and

CRF setting, but are also affected by the data that need to be computed. Low frame

resolution videos have much smaller data that need to be encoded.

Preset: The changes of the Preset setting have an extremely small impact on the

video perceptual quality. As presented in Figure 3.4(b), the worst VMAF value is

97, which indicates excellent video quality. The main tradeoff on Preset is between

the video encoding time and video bitrate. Fast encoding options cannot fully utilize

the power of the compression algorithms in the video encoder, which leads to a high

bitrate. The fastest encoding option, ultrafast, almost doubles the bitrate compared

to faster, with only a 6% improvement in the encoding time. Therefore, this option

seems inefficient. However, there are still some special cases in which we can apply this

option. For instance, when the client’s buffer is empty and the network throughput

is high.

CRF: CRF is used to control the compression rate of the video. A high CRF value

35

represents a high compression rate. A video encoded with a high compression rate

will result in a small bitrate and low video quality. Compared with reducing the frame

resolution, increasing the CRF value can reduce the bitrate to a similar level while

keeping a much higher VMAF value. For instance, as shown in Figure 3.4(c), when

the CRF is changed from 15 to 35, the bitrate is reduced by 86%, while the VMAF

is reduced from 100 to 74, which is still classified as good quality. The disadvantage

of CRF is that it requires more encoding time compared with reducing the frame

resolution.

FPS: Compared with other parameters, we cannot directly measure the impact

of FPS on video quality. This is because the VMAF value of a video is defined as

the mean VMAF value of all the frames in the video. When the FPS is changed, the

frame numbers cannot be matched between the encoded video and the reference video.

In this case, we adopt a state-of-the-art algorithm [107] to evaluate the influence of

changing FPS on VMAF. The algorithm is defined as:

Q(f, fmax) =
1− e−β1∗(

f
fmax

)

1− e−β1
1− e−β2∗(

f
fmax

)

1− e−β2
, (3.4)

where β1 and β2 are set to 4 and 5.5, respectively. The most commonly used maximum

FPS is 30 and 60. We plot both cases in Figure 3.4(d). The VMAF is reduced by

12% and the bitrate is reduced by 40% when the FPS decreases from 60 to 30. The

video encoding time is reduced by 9%. According to these observations, it is highly

efficient to reduce the FPS instead of reducing the resolution, if the current FPS in the

real-time streaming system is large than 30. Since the VMAF is lower than 60 (good)

if the FPS is lower than 20. We should try to avoid encoding the video with an FPS

value less than 20. When the maximum FPS is 30, the VMAF will be reduced by only

3% when the FPS decreases from 30 to 24. At the same time, 9% of bitrate and 16%

of encoding time are saved. Therefore, reducing the FPS can contribute to improving

36

the real-time streaming system performance. However, we should be careful of the

boundary value of FPS, because the video player will autofill black frames if there

are not enough frames, which is worse than having enough frames with lower quality.

Summary: Through the tradeoff study, we can obtain guidelines to configure

the video encoding parameters. However, it is still challenging to find the optimal

video encoding configuration because of the dynamically changing network and system

status. Existing systems (e.g., WebRTC) use a fixed strategy to configure the video

encoding. However, there are still large rooms for optimizing the system as analyzed

in Section. 3.2

3.4 Proposed Design and Implementation of DAVE

In this section, we detail the design and implementation of DAVE, a new protocol

that applies reinforcement learning to optimize the video encoding configuration for

real-time video streaming applications.

3.4.1 System Overview

To optimize the performance of real-time video streaming systems, a new optimized

protocol is proposed, namely DAVE (Dynamic Adaptive Video Encoding). In DAVE,

the optimal video encoding configuration will be dynamically adapted to configure the

video encoding. As a result, DAVE can be more adaptive to the fluctuating network

conditions and achieve better performance in real-time video streaming applications.

Sender: As illustrated in Fig. 6.2, the original video frames will be encoded with

video codecs (e.g., H.264) to compress the video data size before packetization. The

captured frames are encoded into a video stream according to the configuration set-

tings. Then, the encoded video stream is packetized with network protocols (e.g.,

RTP). Once the encoded video streaming has been sent to the receiver, the user QoE

and network statistics are collected and filtered. These information will be sent back

to the optimizer at the sender. The optimizer will adopt the reinforcement learning

37

Feedback control

 information
Video streaming

encoder

Optimizer
(r,f,c,p,g)

Offline

analysis

Packetization

Gather statistics

Network and

player statistics
(τ,bt,lt)

QoE metric
(V,S,B)

Video streaming

decoding

D
e-

P
ac

k
et

iz
a
ti

o
n

Super resolution

models

Data paths

Control paths

Optimal

configuration

Pre-trained reinforcement

learning model

Sender Receiver

Figure 3.5: The proposed system framework.

model to predict the optimal video encoding configuration for the next time inter-

val. We put the optimizer on the sender because video encoding is executed on the

sender instead of the server or cloud, and the predicted optimal configurations can

be instantly applied.

Receiver: After receiving the video streaming, the video frames are decoded.

Then, if frames are down-scaled at the sender, the super resolution model is applied

to upscale frames to the original size. The network statistics are collected after the

frame is prepared to be rendered in the video player. The network statistics include

the transmission time and throughput of each video chunk, the delay and the current

buffer of the player. Additionally, the video player at the receiver side will calculate

the video QoE metrics: rebuffering time (B), smoothness (S), and video perceptual

quality (V). All of these measurements are sent back to the optimizer at the sender

side which will predict the optimal video encoding configuration.

3.4.2 QoE Metrics

The QoE metrics of real-time video streaming systems are mainly composed of two

parts: end-to-end latency and video quality. Unlike traditional live video stream-

ing applications, the video encoding time has to be considered in real-time video

38

streaming applications. So the end-to-end latency is defined as:

Latency =
∑N

n=1(Lencoding(chunkn) + Ltrans(chunkn)). (3.5)

If we adopt the super resolution algorithm, the end-to-end latency is defined as:

Latency =
∑N

n=1(Lencoding(chunkn) + Ltrans(chunkn) + LSR(chunkn)). (3.6)

The perceptual quality of a video can be calculated by the VMAF algorithm.

However, two more factors need to be adopted to evaluate the quality of the video in

real-time video streaming systems: rebuffering time and smoothness. A rebuffering

event will happen when the playback buffer of the client is empty and new content

is still not delivered. This is caused by the cascading effects of bitrate selection (e.g.,

the network throughput decreases unexpectedly while a high bitrate video track is

selected, which will lead to high transmission latency and cause rebuffering). Smooth-

ness is defined as the adaptation frequency and adaptation amplitude of the bitrate

selection. Frequent bitrate changes lead to poor user experience [5]. Thus, the video

QoE metrics are defined as:

V =
∑N

n=1 VMAF (chunkn), (3.7)

B =
∑N

n=1 Tn, (3.8)

S =
∑N−1

n=1 |VMAF (chunkn+1)− VMAF (chunkn)| , (3.9)

where Tn is the rebuffering time caused by downloading chunkn.

3.4.3 Reinforcement Learning Model

In this paper, we consider a learning-based approach to generate the optimal video

encoding configuration. Unlike approaches that use fixed rules in the form of fine-

39

4 8 12 16 20

Bitrate (Mbps)

0

20

40

60

80

100

0.2

0.4

0.6

0.8

1

V
M

A
F

N
o

rm
al

iz
ed

 v
id

eo
 e

n
co

d
in

g
 t

im
e

Video configured without SR

Video configured with SR

Figure 3.6: The quality of videos generated by different configurations.

tuned heuristics, we attempt to learn an optimal video encoding policy based on

reinforcement learning (RL) models. In DAVE, the optimizer is composed of a rein-

forcement learning agent, Q-learning [108]. At each time step t, the RL agent observes

a set of metrics including the client playback buffer occupancy, past video encoding

configuration decisions, and several network measurements (e.g., throughput). These

values are defined as state st. The state will be fed in the Q-table, which outputs

the action at (the video encoding configuration for the next interval). After applying

the action, the state of the system transfers to st+1 and the resulting QoE is then

observed and passed back to the RL agent as a reward rt. The RL agent uses the

reward information to train and update its Q-table.

State: After the downloading of each frame t, the RL agent sends the state st =

(~x, ~τ , bt, lt) to the Q-table. ~x is the network throughput measurements for the past

configuration interval; ~τ is the downloading time of the past video frames within the

configuration interval. The mean value of the throughout and downloading time of

the whole configuration interval is used to overcome the frequent fluctuation of the

network condition. bt is the current buffer level of the player, and lt is the currently

used video encoding configuration.

Action: Each action is a video encoding configuration at = (Rt, Ft, Ct, Pt). R,F,C,

and P represent the frame resolution, frames per second, video compression rate, and

video encoding speed, respectively. As mentioned earlier, there are millions of possible

video encoding configurations. In this work, we only adopt the most commonly used

values of each encoding parameter, as detailed in Table 3.2. Thus, there are 500

40

(5× 4× 5× 5× 1) different configurations and the action space is limited to 500.

Some of these actions result in poor video quality. As shown in Fig. 3.6, all the

actions in the lower-left corner will generate extremely poor quality video (the VMAF

is less than 20). Moreover, there are many actions that result in close VMAF values

but different encoding times with the same bitrate. To speed up the training speed

of the RL agent, we eliminate these actions. We can also observe that there are many

configurations result in close VMAF values but different encoding time with the same

bitrate. We cannot determine which action is better until we evaluate it with the real-

time video streaming system. In addition, We apply the super resolution model on

all the videos encoded with down-scaled resolutions. Videos can always achieve the

best video quality at different bitrate levels after applying super resolution.

3.4.4 Implementation

The video QoE and end-to-end latency determine the performance of real-time

video streaming applications. Thus, the reward function of the RL agent is defined

as:

Rewardn = µ0VMAFn − µ1Tn − µ2

∣∣VMAFn+1 − VMAFn
∣∣

−µ3(L
n
encoding + Lntrans + LnSR),

(3.10)

where n represents the video chunk index. Following the setting in [5, 104], the

penalty parameters for rebuffering, smoothness, and latency µ1, µ2, µ3 are set to 1.5,

0.02, and 0.005, respectively. µ0 is set to 0.01 to balance the weight between the video

quality and other QoE factors. The policy is updated as:

Q(s, a)← (1− α) ·Q(s, a) + α · (r + γ ·max
a′
Q(s′, a′)). (3.11)

To train the RL agent, we set the discount factor γ to 0.9. The learning rates for the

RL model α is configured to be 0.001. We use the simulation platform provided by

41

ACM Multimedia 2019 Grand Challenge [104] to train the RL agent. The reason for

using Q-learning instead of neural network based RL models (e.g., Deep Q-learning)

is that our state space is composed of discrete values. Q-learning is a more efficient

and lightweight algorithm for our proposed framework.

3.5 Performance Evaluation

In this section, we provide an extensive performance evaluation of the proposed

dynamic video encoding configuration protocol.

3.5.1 Experiment Setup

Network traces: We use the network traces provided in [104] to train and

evaluate DAVE. All the network traces are collected from a real network environment.

There are three different network environments (low bandwidth, medium bandwidth,

and high bandwidth network), and 40 traces for each network environment. Each

network trace contains the network throughput with a duration of 2400 seconds, at a

0.5 seconds granularity. The average throughput of the three network environments

is 1205 kbps, 1558 kbps, and 1949 kbps, respectively; the standard deviation of the

network throughput is 0.53, 0.79, and 1.09, respectively.

Video traces: Since there are 500 actions in the RL agent, we encode a video into

500 different video tracks and collect 500 video traces. Each track is generated with

a different encoding configuration. We use ffprobe within FFMPEG to extract the

data size of each frame in the generated video to generate the video traces.

Testbed: We build a real testbed to evaluate the performance of DAVE. The

network is simulated with Mini-Net [109]. As shown in Fig. 3.7, there are total 30

nodes in the network and two nodes are bridged with real devices to implement the

real-time video transmission functions. The link data rate is 50Mbps, and the delay

of the links follows the normal distribution with µ = 6ms, σ = 1. There are one video

sender and one video receiver. The video sender is a Jetson Xavier and the video

42

Mininet

Video sender

Video receiver
DAVE

optimizer

Figure 3.7: The topology of the testbed.

receiver is an Alienware Aurora R8 desktop. The DAVE optimizer is located in the

video sender. It will collect the statistic information from the receiver. We adopt the

super resolution model FSRCNN-S implemented with Tensorflow. An NVIDIA RTX

2020 is used to test the performance of the super resolution model.

Baseline algorithms: We compare DAVE with two other real-time video stream-

ing algorithms:

• Baseline: directly sending the video frames captured by the camera, without

any control.

• GCC: using several fixed strategies to configure the video frame resolution and

FPS (following the same settings in [16]. For instance, reduce 1/3 resolution

when the network throughput is lower than a certain level).

To further evaluate the impact of video configuration, we compare DAVE with three

ABR algorithms: BBA, MPC, and robustMPC [12, 103]. We modified these three

ABR algorithms to integrate with the real-time video streaming system.

3.5.2 Average Simulated System Performance

As shown in Fig. 3.8, we present the system performance (the sum of the rewards

of all the video chunks) of each algorithm in each of the three network environments.

For all of the networks considered, DAVE exceeds the performance of the other two

43

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

z
ed

 s
y
st

em

p
e
rf

o
rm

a
n
c
e

Baseline

Low-Network Medium-Network High-Network

GCC DAVE

Figure 3.8: The normalized average system performance.

0.5

0.6

0.7

0.8

V
M

A
F

 r
e
w

a
rd

L-Net M-Net H-Net

Baseline GCC DAVE

15

20

25

30

35

E
n

d
-t

o
-e

n
d

la
te

n
cy

 p
e
n
a
lt

y
x10-3

L-Net M-Net H-Net
0

0.5

1

1.5

R
e
b
u

ff
er

in
g

 p
e
n
al

ty x10-3

L-Net M-Net H-Net
0

2

4

8

S
m

o
o

th
n

es
s

p
e
n
al

ty x10-2

L-Net M-Net H-Net

(a) (b) (c) (d)

Figure 3.9: The average reward of different evaluation metrics in the simulation
platform. (L-Net, M-Net, and H-Net refer to three different network environments as
described in Section 3.5.1)

algorithms. DAVE outperforms GCC by 6%, 12%, and 20% in each network, respec-

tively. The reason for only 6% enhancement in the low-bandwidth network is that

all the three algorithms including DAVE will generate a large amount of low bitrate

videos to avoid rebuffering. The dynamic adaptation of encoding configuration can-

not achieve much improvement with such a low bitrate. However, DAVE can achieve

higher system performance improvement with the increase of the average network

bandwidth.

3.5.3 Evaluation of QoE Metrics

To better understand the QoE gains obtained by DAVE, we analyze the perfor-

mance of DAVE on the individual terms in the reward definition in (3.10): the average

gain of video quality (VMAF), the penalty from end-to-end latency, rebuffering, and

smoothness.

Video quality: as shown in Fig. 3.9(a), with the help of the super resolution

model, the video quality can be significantly improved. For all the three network en-

44

V
id

e
o
 q

u
al

it
y

Baseline GCC DAVE

 L
at

e
n

cy

S
m

o
o

th
n

es
s

(a) (b) (c)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

L-net M-net H-net
0

0.2

0.4

0.6

0.8

1

L-net M-net H-net L-net M-net H-net

Figure 3.10: The average reward of different evaluation metrics in the testbed.

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e

Q
o
E

BBA MPC

Low-Network Medium-Network High-Network

Robust

MPC

DAVE

without SR
DAVE

Figure 3.11: The normalized average system performance.

vironments, DAVE can improve the video quality by 14% on average compared with

the GCC algorithm. The baseline approach uses the fixed video encoding configura-

tion with the highest video quality, thus it can achieve the highest VMAF reward.

However, this will bring poor performance of other evaluation metrics.

End-to-end latency: as shown in Fig. 3.9(b), the baseline approach brings the

highest end-to-end latency penalty. DAVE can achieve a significant reduction in end-

to-end latency compared with the other two approaches. Compared with GCC, 21%,

24%, and 26% of the end-to-end latency can be reduced for the three networks.

Rebuffering and smoothness: DAVE can achieve minor improvement on the

rebuffering penalty compared with GCC. The reason is that GCC will reduce the

video quality to fit the real-time requirement. Thus, it can achieve a high score on

rebuffering. The baseline approach will use the same video from the start to the

end of the streaming, thus the smoothness penalty is 0. DAVE can achieve better

smoothness performance than GCC.

45

3.5.4 Average System Performance from the Testbed

We compare the performance of DAVE with the other two algorithms over a real

testbed under three different network conditions.

Video quality: as shown in Fig. 3.10(a), with the help of super resolution model,

the video quality can be significantly improved. For all the three network environ-

ments, DAVE can improve the video quality by 15% on average compared with the

GCC algorithm.

End-to-end latency: as shown in Fig. 3.10(b), DAVE can achieve a significant

reduction in end-to-end latency compared with all other algorithms. Compared with

GCC, 19.1%, 19.5% 21.5% of the end-to-end latency can be reduced, respectively.

Smoothness: as shown in Fig. 3.10(c), the baseline approach can achieve the

highest smoothness. DAVE can achieve 12% lower smoothness penalty than GCC on

average.

In summary, a significant improvement on end-to-end latency can be achieved by

DAVE, and DAVE can notably improve the video perceptual quality. Additionally,

DAVE can either match or exceed the performance of the other approaches.

3.5.5 DAVE vs. Existing ABR Algorithms

To better understand the QoE gains obtained by the proposed dynamic video

encoding configuration, we compare DAVE to several ABR algorithms that use fixed

video configuration. As shown in Figure 3.11, for all the networks considered, DAVE

exceeds the performance of all other ABR algorithms. The closest competing scheme

is robustMPC. DAVE outperforms robustMPC by 3%, 8%, and 11% for the low,

medium, and high bandwidth network, respectively. If we apply the super resolution

model in DAVE, the system performance will be increased by 6%, 12%, and 20%,

respectively. The reason for only 3% enhancement under the low bandwidth network

is that all the ABR schemes including DAVE will choose a large amount of low bitrate

46

video chunks. The encoding configuration cannot achieve much improvement with

such a low bitrate. DAVE can achieve better system performance improvement with

the increase of the average network bandwidth. In summary, DAVE can either match

or exceed the performance of existing ABR algorithms. Significant improvement on

end-to-end latency and video quality can be achieved by DAVE.

CHAPTER 4: Proposed Pearl for UHD Video Delivery

In this chapter, we propose a cloud computing based deep compression framework

named Pearl, which utilizes the power of deep learning to compress UHD videos.

Pearl compresses UHD videos from two respects: the frame resolution and the colorful

information. In pearl, an optimal compact representation of the original UHD video is

learned with two deep convolutional neural networks (DCNNs): super resolution CNN

(SR-CNN) and colorization CNN (CL-CNN). SR-CNN is used to reconstruct a high

resolution video from a low resolution video while CL-CNN is adopted to preserve the

color information of the video. Moreover, new channel-based super resolution models

are developed to overcome the GPU memory shortage problem. In pearl, instead

of applying the traditional RGB-based super resolution model, three separate super

resolution models are trained based on the Y, U, and V channels of UHD videos.

These super resolution models are used to reconstruct a UHD video from a low-

resolution video. With Pearl, super resolution algorithms can be successfully applied

to UHD videos. Pearl focuses on video content compression in two new directions.

Thus, it can be integrated with any existing video compression system. With Pearl,

the data size of UHD videos can be significantly reduced. At the same time, the

efficiency of video encoding and decoding can also be improved with Pearl. To the

best of our knowledge, Pearl is the first deep learning driven compression framework

on UHD videos.

4.1 Problem Description

Ultra-high-definition (UHD) videos (4K and 8K) are enjoying increased popularity

in people’s daily lives because of the better visual experience. It will take account

48

for 22% of the whole network video by 2022 [8]. However, UHD videos will bring

high pressure on data transmission and storage because the data size of 4k and 8k

resolution are 4 times and 16 times of HD resolution for a video.

In recent years, there are many approaches that try to use deep learning techniques

in the video delivery system [6, 49, 110]. As shown in Figure 4.1, there are main 4

steps in the deep learning driven video delivery system. The first step is to train

the deep neural network (DNN) models for video compression. Because training the

DNN model requires adequate computation resources, especially for UHD videos, this

step can only be done on the cloud. Another limitation is that existing systems need

to train (tuning) one DNN model for each video chunk to overcome the versatility

problem, resulting in a large number of separate models for a long video. This brings

additional storage and bandwidth cost for the video delivery system [111].

The next step is from the cloud to the edge servers which are closed to clients.

Content Distributed Networks (CDNs) [2, 3] are the main tools that content providers

like Google and Netflix use to improve the video delivery performance in this step.

CDN consists of a group of servers that are placed across the world. These servers

pull the contents from the cloud server and cache a copy of them allowing visitors

to retrieve the content from the nearest server. CDN serves a large portion of the

video deliveries across the Internet. One of the main challenges of CDN is the limited

storage space of the distributed servers, which leads to that cached videos on the

distributed servers will be frequently replaced [4]. This shortage will be amplified

with the increasing amount of UHD videos in CDNs.

The third step is from the edge server to the client. The network bandwidth

between servers and clients is the key factor to determine the user quality of experience

(QoE) in this phase. Caused by the dynamic change of wireless networks, the user

QoE suffers directly when the network throughput is low. Adaptive bitrate (ABR)

algorithms [5, 6, 112, 113, 114] are widely used to optimize video transmission in this

49

Figure 4.1: The video delivery system.

phase. There are already several advanced ABR algorithms that apply deep learning

techniques. However, these works are mainly focused on improving the performance

of existing ABR systems. The challenges brought by UHD videos are not solved.

In the last step, the compressed video can be recovered to the original video with

DNN models on the client device. However, most of the existing DNN models are

trained on HD videos. When the model is trained on UHD videos, a challenge is

that the GPU memory required to execute the model is significantly increased, such

a high requirement cannot be satisfied by most of the existing GPU models on the

client device.

4.2 Research Motivation and Challenges

The performance of the video delivery system has been greatly improved by employ-

ing CDN and ABR algorithms. However, current frameworks will face the following

challenges when UHD videos are becoming more and more popular:

• Since the data size of UHD videos is 4-16 times larger than that of HD videos,

there will be frequent replacements of cached videos due to the limited storage

space on the distributed servers. Thus, the efficiency of CDNs will be decreased.

Meanwhile, the large video data size also demands high network bandwidth. As

a result, low bitrate video chunks with a low video quality are frequently selected

50

in the ABR system, which significantly degrades user QoE.

• With the power of deep learning techniques, many new algorithms can be used

to improve the image and video quality, such as the super resolution algorithm.

However, the GPU memory will become the main obstacle in applying these

algorithms to UHD videos.

• Existing systems train separate DNN models for each video trunk to overcome

the versatility problem of deep learning algorithms. However, transmitting such

a large number of models brings additional storage and bandwidth cost.

To address above challenges, we propose Pearl, a system that applies deep learning

techniques on video content compression to maximize video delivery performance and

user QoE. To tackle the versatility problem in the first step, two deep convolutional

neural networks (DCNNs) are designed and trained in Pearl to learn an optimal com-

pact representation from an input video, which preserves the structural information

and color information. These two DCNNs can be widely applied to different types

of videos according to the evaluation results. After the compression, the video data

size is significantly reduced. We can recover high-quality videos with decompression

using the DCNN models. In this case, a large amount of network bandwidth resources

and storage spaces used for video delivery are reserved. Meanwhile, the transmission

latency will also be reduced. As a result, the challenges brought by UHD videos in

steps two and three are solved. To overcome the GPU memory shortage problem in

step four, we design and apply channel-based super resolution models. Note here,

Pearl focuses on video content compression from two new directions: resolution and

color channel. As a result, it can be integrated with existing ABR systems and video

encoding algorithms.

51

Figure 4.2: The visualization results of SR and CL models.

4.3 Video QoE Study

In this section, we show a comprehensive study of the video quality in current

video delivery systems. According to experiment results, our proposed framework

can achieve similar video quality with a smaller data size compared with existing

algorithms. Peak signal-to-noise ratio (PSNR) and the structural similarity index

(SSIM) are used to evaluate the video frame quality in this paper. At first, we

evaluate the video frame quality of the adaptive bitrate video system. A 2k HD video

is encoded with 5 bitrates: 6000k, 4800k, 2400k, 1200k, and 400k. H.264 is the video

codec used here. The 6000k bitrate video is defined as the original video. The PSNR

and SSIM of different bitrate frames are shown in the first row of Figure 4.2. We can

find that the PSNR and SSIM keep decreasing with the decrease of bitrate. When

the bitrate is less than 1000kbps, the frame is blurry.

Then, we study the impacts of super resolution and colorization algorithms on

video quality. We choose a state-of-the-art super resolution and a colorization model

to perform the experiments. For the super resolution model, we choose 4 different

scales:{x2,x3,x4,x6}. After applying the super resolution models with different scales,

we measure the PSNR and SSIM of the generated frames. The results are presented in

the second row of Figure 4.2. Compared with adaptive bitrates, the results generated

52

by the super resolution model are smoother than the frames with different bitrates

from the visual experience. The super resolution model can always achieve higher

SSIM and lower PSNR values. When it comes to the low bitrate, super resolution

can achieve better video quality. The performance of the colorization is close to

the performance of SRx4. To improve the performance of the colorization model,

we adopt a reference frame based colorization algorithm. More details are shown in

Section 4.4.2. Another factor we investigate here is the frame data size. As shown in

Table 4.1, the frame data size of the super resolution and colorization algorithms are

much less than the ABR algorithms.

Table 4.1: The comparison of frame data size

Bitrate Data Size SR Data Size CL+SR Data Size
4800k 5.8MB x2 1.5MB x2 491KB
2400k 5.7MB x3 687.5KB x3 227KB
1200k 5.3MB x4 399.5KB x4 132KB
400k 3.8MB x6 185.9KB x6 62KB

The results of the video quality comparisons prove that we can use the super

resolution and colorization models to compress the video content. The video quality

will not be decreased while the data size of the video will be significantly reduced.

However, we fail to directly apply the existing super resolution model (MDSR [51])

to UHD video frames for all the scales. The frame resolution of 4k and 8k videos

is 3840x2160 and 7680x4320, respectively. As shown in Figure 4.3 (a), the GPU

memory required for 4k and 8k video frames are 9 GB and 13 GB when the scale

is set as x4, which cannot be supported by most of the existing GPU models. Such

high-resolution frames cannot be directly generated by the deep compression models.

To solve this problem, we crop the 4k and 8k video frames into multiple parts. The

4k video frame is divided into four parts and each part is a 2k sub-frame. The

8k video frame is divided into 16 sub-frames. We then can successfully apply the

super resolution model by frame cropping. However, the model execution time will

53

be significantly increased. As shown in Figure 4.3 (b), it takes over 20 seconds to

process an 8k video frame. At the same time, image cropping and combining cause

additional frame processing time.

Figure 4.3: The GPU memory usage and time consumption.

We can conclude that super resolution algorithms can achieve good performance

on video compression. However, existing systems face many challenges when super

resolution algorithms are directly applied to UHD videos. Thus, we propose Pearl,

the first deep learning driven compression framework for UHD videos.

4.4 Proposed Design and Implementation of Pearl

In this section, we detail the design and implementation of Pearl, a system that

applies the super resolution and colorization algorithms for video compression. First,

we describe the whole system framework. Then, the design of the colorization and

super resolution algorithms are presented. After that, we present the studies of the

versatility problem of super resolution and colorization models. Finally, we explain

the implementation details of the deep learning models.

4.4.1 System Framework

Pearl mainly contains two parts: encoder and decoder. As illustrated in Figure 6.2,

the original video frames will be encoded with existing encode algorithms (e.g., H.264)

to compress the video data size before applying our proposed deep compression mod-

els. Then the encoded video will be deeply compressed from a high resolution colorful

54

video to a low resolution gray video with our encoder. The deeply compressed video

will be reconstructed to the high resolution colorful video with the decoder. The

detailed steps are shown in Figure 4.5.

Figure 4.4: The system framework.

Encoder: The video on the cloud server will be down-sampled and gray-scaled

from high resolution colorful videos to low resolution gray videos. The deeply com-

pressed video will be distributed to CDNs. Training a deep learning model normally

takes dozens to hundreds of hours. If the trained model cannot achieve good per-

formance on different types of video, it will be very challenging to widely adopt the

deep compression frameworks. The reason is that we need to train an individual deep

learning model for each kind of video or train separate models for each chunk of a

video, which is not practical, even with the help of fine-tuning techniques. To solve

this problem, we show a comprehensive study of the model performance on different

types of video content. According to experiment results, the super resolution model

trained on a large dataset performs well on different types of videos. However, the

trained colorization model has a poor performance. To solve the versatility problem

of colorization models, we propose a reference-based colorization model.

Decoder: After receiving the deep compressed video from the edge server, we

can reconstruct the video from low resolution gray video to high resolution colorful

55

Figure 4.5: The video encoding scheme.

video. The colorization model is applied before the super resolution model. The

reason is that the colorization model acquires more GPU memory compared with

super resolution models. In addition, the time complexity of the colorization model

is also higher than the super resolution model. Thus, applying the super resolution

model to low resolution colorful video is more efficient than applying the colorization

model to high resolution gray video. To solve the GPU memory shortage problem,

we propose channel-based super resolution models.

4.4.2 Deep Learning Model

As shown in Figure 4.6, the deep learning model consists of two DCNNs: SR-CNN

and CL-CNN. At first, the low resolution (LR) gray frames will be fed into the CL-

CNN model. LR colorful frames will be generated. Then, the SR-CNN will convert

the LR colorful frames to high resolution (HR) colorful frames.

SR-CNN: There are several state-of-the-art super-resolution algorithms, such as

EDSR and ESRGAN [51, 52]. The input of most existing super resolution algorithms

56

Figure 4.6: The deep compression model.

is an RGB video frame. The main obstacle of adopting these algorithms on UHD

video frames is the limited GPU memory. To perform super resolution on UHD video

frames, we propose channel-based super resolution models. As shown in Figure 4.7,

instead of using the whole RGB video frame as the input to the super resolution

model, each separate frame channel is set as the input. In this case, the data size

of the input of the super resolution model is reduced by 3 times. As a result, the

GPU memory shortage problem is solved. We also present the pipeline of the baseline

approach (CropSR) in Figure 4.7. In CropSR, all video frames are extracted from

the received colorized LR video. These RGB image frames are cropped into several

subframes. After applying the super resolution model to each subframe, the generated

results will be combined to generate the upscaled UHD frames. The main advantage

of channel-based SR model is that it only needs to execute 3 times to generate a UHD

video frame. However, 4 executions for a 4k video frame and 16 executions for an 8k

video frame are needed in CropSR.

Another challenge of adopting state-of-the-art SR models is the time complexity.

For example, the inference speed of EDSR for 1020x768 frames is 2.08 frames per

second, which makes it impossible to achieve real-time video processing, especially

for UHD videos because the inference speed is directly affected by the resolution of the

57

input frame. To meet the real-time constraint for the high resolution frame, we adopt

NAS-MDSR (a downscaled SR model), which uses scalable DNN to enable anytime

prediction [6]. With NAS-MDSR, the inference speed can reach 31.34 FPS (Within

1 second, 31 frames can be generated with the super resolution model). The normal

FPS for UHD videos is 30 FPS. Thus, a real-time frame super resolution process can

be achieved. For each scale of super resolution (x2,x3,x4,...), we need to train for

separate SR-CNN models.

Figure 4.7: The framework of super resolution models.

CL-CNN: Colorization is an even more complicated task compared with the

super resolution because of the large learning space of colorful information. We

adopt Pix2pixHD [115], a state-of-the-art colorization algorithm, as our base CL-

CNN model. According to experiment results, the video quality (PSNR and SSIM)

of the colorization model based on Pix2pixHD is not robust. For instance, the PSNR

and SSIM of some frames are 20.55 dB and 0.63, which is worse than the quality of

the smallest bitrate video in the adaptive bitrate encoding approach. To improve the

performance of the colorization model, a dense encoding pyramid network (DEPN)

is adopted [116]. DEPN is a reference frame based colorization algorithm. The main

difference is that the keyframes will keep the colorful information instead of converting

to gray frames when we encode the video. DEPN will use the colorful keyframes as the

58

reference frame to colorize the gray frames. The colorful keyframe will provide guid-

ing information for colorization. Thus, the performance of the colorization model

is improved. Another advantage brought by DEPN is that the colorization model

training by DEPN can be used on the colorization of multiple videos. For Pix2pixHD

based colorization model, we need to train an individual colorization model for each

video. The objects and scenes keep changing in videos. If we only have a few colorful

keyframes, the coloration performance will be poor. A proper interval between the

key colorful frames needs to be chosen.

Table 4.2: The performance of DCNN models

- SR Channel-based CL Reference-based
(x4) SR(x4) CL

PSNR 33.90 32.62 25.47 32.77
SSIM 0.87 0.83 0.72 0.91

4.4.3 Model Versatility

To study the model versatility problem of super resolution and colorization models,

we evaluate the performance of our proposed models with 27 video clips from 9

different categories that are randomly downloaded from the Internet. As shown in

Table 4.2, the average PSNR and SSIM of the original SR model is 33.90 and 0.87. The

proposed channel-based SR model has a slight performance degradation. However,

the performance of both of these two SR models can be classified as good [117]. In

this case, we can conclude that the SR model can be widely adopted on different

types of videos. Training a separate SR model for each video chunk or each video

is not necessary. For the CL model, the average recovery performance is poor. The

reason is that there is no guiding information for colorizing the gray image. For

instance, a vehicle with colora in the first video chunk may be very similar to another

vehicle with colorb in the second video chunk when video frames containing these

two vehicles are converted to gray images. The colorization model fails to correctly

59

colorize these two vehicles at the same time. Therefore, one colorization model cannot

perform well on multiple video chunks and different types of videos. In this paper,

we propose a reference-based colorization model to overcome the versatility problem

of the colorization model. As shown in Table 4.2, the recovery performance of the

reference-based CL model is significantly improved as compared with the original CL

model and it can even achieve better recovery performance on SSIM as compared

with SR models, which indicates that it can be widely adopted on different types of

videos.

We use popular DNN architectures as the backbone of our proposed DNN models.

Instead of designing new models, we focused on solving the challenges of applying

existing models on UHD videos in this work (directly applying the existing state-

of-the-art DNN models fails to address these challenges): the channel-based super

resolution model is designed to solve the GPU memory shortage problem and the

reference-based colorization model is designed to tackle the model versatility issue.

These two models have never been studied in existing video delivery systems.

4.4.4 Implementation

Because there are no 4k and 8k video data sets available for training our super

resolution model, we use the most widely used 2k video data set, DIV2k and Flick2k

[118], to train the proposed channel-based super resolution models. The NAS-MDSR

(SR-CNN) and Pix2pixHD (CL-CNN) are implemented with Pytorch. For training

the SR-CNN model, the frames (1920x1080) are downsampled to {960x540, 640x360,

480x270, 320x180} for {x2, x3, x4, x6}. For the hyperparameters, we adopt the same

setting as in [6]. The batch size is 64, and the learning rate is 10−4. For fine-tuning the

Pix2pixHD model, we extract 1 frame per second as the training dataset of each video.

The video frames (1920x1080) are randomly cropped into 512x512 pixels. Then, these

cropped frames will be converted into gray images as the training dataset. The batch

size is 8, and the learning rate is 2x10−4. The improved colorization algorithms DEPN

60

is based on Caffe [119]. The network was trained with the learning rate of 3x10−5,

and batch size is 5. The optimization algorithm applied in all three deep learning

models is Adam.

4.5 Performance Evaluation

In this section, we provide an extensive evaluation of the proposed video deep

compression framework under two phases of experiments. The first phase experiments

are performed with the video delivery system. We integrate the deep compressed

videos with the state-of-the-art ABR algorithm in the second phase experiments.

The main findings are:

• Video QoE: Pearl can further compress the video data size from 84% to 97%

with existing video encoding algorithms. Compared with existing adaptive bi-

trate encoding algorithms, we can reduce 65% of the video data size with the SR

model, and 84% with the CL+SR model. Considering the video visual quality,

Pearl can improve the PSNR and SSIM (27%, 13%) and (10%, 11%) for the

SR model and the CL+SR model, compared with the adaptive bitrate encoding

algorithm.

• Network transmission latency: We perform the video delivery experiments

under three different network conditions. On average, the network latency can

be reduced by 66%-95% after applying the SR model. 73%-95% of network

latency can be reduced with the CL+SR model.

• ABR system: After integrating Pearl with the state-of-the-art ABR algorithm,

we improve the average QoE of the ABR system from 0.62 to 1.47 and 1.52 for

the SR model and the CL+SR model, respectively.

4.5.1 Methodology

Video: The HD and UHD videos for experiments are downloaded from YouTube.

For HD videos, we download videos from 9 popular categories (1: Beauty, 2: Comedy,

61

3: Cook, 4: Entertainment, 5: Game, 6: Music, 7: News, 8: Sports, 9: Technology).

For each of the nine Youtube channel categories, we download three videos. For UHD

videos, we download 2 videos for 2 categories(1: Beauty, 2: Sports) because of the

limited UHD video resource online. All the videos are cut into 5 minutes length and

re-encoded. The video processing library and encoding codec we used is FFMPEG

and H.264, respectively. The encoding frame resolution, frame chunk size (GOP),

and the frame rate are:

• 2k videos: {1920x1080, 4 seconds, 24 FPS}

• 4k videos: {3840x2160, 4 seconds, 30 FPS}

• 8k videos: {7680x4320, 4 seconds, 60 FPS}

Network: We test the performance of the video delivery under three different

network environments:

• Local − LowBW : local low bandwidth wireless network. It is composed of

one router and two workstations, one is the transmitter and another one is the

receiver, the average bandwidth is 3 Mbps.

• Local−HighBW : local high bandwidth wired network. The videos are stored

on the cloud server. We download the videos with a workstation, the average

bandwidth is 108 Mbps.

• Remote −MediumBW : remote network. We put videos on a remote server,

and fetch videos from a local workstation. The average bandwidth is 7 Mbps.

ABR algorithm and network trace: There are several widely used ABR algo-

rithms, such as BOLA, MPC, robustMPC [60, 12]. However, Pensieve outperforms

all of these algorithms. NAS is another state-of-the-art ABR algorithms. Because the

code of NAS is not released yet, only Pensieve is used to integrate with the proposed

62

deepcompress system during the experiments. We use the HSDPA network trace

dataset provided by [5] to evaluate the performance of the integrated system. There

are total 142 network traces in the dataset. The bitrates used for adaptive bitrate

encoding are (300, 750, 1200, 1850, 2850) kbps, (1, 4, 8, 14, 20) Mbps, (4, 12, 24, 48,

60) Mbps for 2k, 4k, and 8k videos, respectively.

Figure 4.8: The normalized video frame and chunk data size.

Table 4.3: The comparison performance of UHD video frames

Bitrate Size PSNR SSIM SR Size PSNR SSIM CL+SR Size PSNR SSIM
(Mbps) (Mbps) (Mbps) (Mbps)

60 36.49 ∞ 1 8kx1 36.49 ∞ 1 8kx1 11.97 - -
48 33.65 35.40 0.91 8kx2 10.12 44.43 0.98 8kx2 3.69 37.09 0.97
24 31.97 32.97 0.87 8kx3 5.11 42.42 0.97 8kx3 1.81 39.95 0.98
12 29.86 30.15 0.81 8kx4 3.07 39.51 0.96 8kx4 1.07 38.20 0.96
4 28.14 24.91 0.67 8kx6 1.45 34.76 0.91 8kx6 0.5 31.24 0.87
- - - - average gain 84.63% 31.19% 18.38% average gain 94.5% 19.15% 16.9%

20M 9.03 ∞ 1 x1 9.03 ∞ 1 x1 3.23 - -
14M 8.87 40.31 0.96 x2 2.49 49.23 0.99 x2 1.27 34.77 0.96
8M 8.60 38.00 0.94 x3 0.98 42.90 0.98 x3 0.48 37.92 0.98
4M 8.09 34.43 0.90 x4 0.76 39.36 0.96 x4 0.28 35.08 0.96
1M 7.00 25.77 0.76 x6 0.36 35.85 0.92 x6 0.13 30.57 0.89
- - - - average gain 86.5% 23.32% 8.77% average gain 93.7% 2.66% 7.01%

Experiment settings: To evaluate the video QoE and network latency, each 2k

video is encoded into 6000 Kbps. The 6000 Kbps videos are set as the original videos

for down-scaling and gray-scaling. We choose 4 scales {x2,x3,x4,x6} to downscale the

frame resolution. The downscale method is bicubic. Then, we convert each down-

scaled video to gray-scale video. For UHD videos, each video is encoded into 20

Mbps and 60Mbps for 4K and 8K videos. These videos are set as the original video

for down-scaling and gray-scaling. The down-scaling and gray-scaling approaches are

63

the same with 2k videos. To satisfy the requirements of the training of deep learning

models, we use a server with 8 GTX 1080TI GPUs and a workstation with 3 GTX

TITAN X. A computer with an RTX 2080TI GPU is used to execute all the trained

models. The SCP function in SSH is applied to transmit the encoded videos.

QoE metrics: We have two different QoE metrics to evaluate the performance of

Pearl: Video QoE and ABR QoE. Video QoE is used to evaluate video compression

quality. There are three types of metrics: sizef (frame data size), PSNR and SSIM

(frame perceptual quality), and latencyn (network transmission latency). The ABR

QoE defined in Pensieve is used to evaluate the ABR system, which is defined as

following:

QoEABR =
N∑
n=1

q(Rn)− µ
N∑
n=1

TN −
N−1∑
n=1

|q(Rn+1)− q(Rn)| , (4.1)

where Rn represents the bitrate of chunk n. q(Rn) is a function to calculate the

video quality of video chunks n at bitrate Rn. TN is the rebuffering time caused by

downloading chunk n at bitrate Rn. The quality difference between two neighboring

chunks is used to punish the changes of bitrate. Frequently changing of the bitrate

will affect the smoothness of the video.

Figure 4.9: The performance of the SR models on 9 types of 2k videos.

4.5.2 Video QoE

To evaluate the video QoE, we have two granularities: frame and video chunk.

The average frame data size of a video is less than that of an isolated image frame.

64

Figure 4.10: The performance of combined CL+SR models on 9 types of 2k videos.

The reason is that inter-frame compressing is applied by video encoding algorithms.

We use video chunk level to evaluate the performance of combining Pearl with a

video encoding algorithm. Nevertheless, videos are sent frame by frame in some

scenarios, for instance, in augmented reality (AR) applications. The video inter-

frame compression cannot be applied in these applications. Thus, we evaluate the

performance of Pearl in image frame level compression.

Frame: Figure 4.8(a), (b), (c) show the data size of 2k, 4k, and 8k image frames,

respectively. For 5 different down-sampling scales, gray-scaling can reduce the frame

data size by 58.56%, 62.69%, 61.46% on average, for 2k, 4k, and 8k image frames,

respectively.

Video chunk: The video chunk data size of 2k, 4k, and 8k videos are shown

in Figure 4.8(d), (e), (f). Gray-scaling can reduce the data size of video chunks by

50.10%, 62.23%, 53.35% on average, for 2k, 4k, and 8k videos, respectively.

In summary, applying the SR model can reduce 70% to 95% of the frame data size

and 65% to 95% of video chunk data size for UHD videos. 88% to 98% of frame

data size and 84% to 97% of video chunk data size for UHD videos can be reduced

with the CL+SR model. Down-scaling can significantly reduce the frame data size

by reducing the pixel dimension of video frames. However, the frame visual quality

is also decreased. If we recover the frame using up-sampling methods, the frame

visual quality is too poor to satisfy the user visual requirement. Super resolution

models can achieve much higher frame visual quality as compared with up-sampling

65

methods. With our proposed channel-based super resolution model, UHD videos can

be down-sampled and recovered without losing much visual quality.

4.5.3 Performance of DCNNs

As shown in Figure 4.9 and Figure 4.10, we show the PSNR and SSIM of the recon-

structed video frames for 9 types of 2k videos. There are two different approaches:

only applying the SR model (SR-only) and combining the CL model with the SR

model (CL+SR). According to the experiment results, the CL+SR approach brings

more loss on PSNR. However, the CL model can help to keep the structure informa-

tion of the original frame because of the reference frame structure in the colorization

algorithm, which can make it achieve higher SSIM values.

We define the bottom-line construction quality of a video frame as (30 dB, 0.85) for

PSNR and SSIM. The cumulative distribution function (CDF) graphs of the PSNR

and SSIM are shown in Figure 4.11. For the SR-only approach, about 99% recon-

structed frames are above the bottom-line quality for the x2 scale. 97%, 79%, 71%

for x3, x4, and x6 scale, respectively. For the CL+SR approach, there are about 85%

reconstructed frames which are above the bottom-line quality for the x2 scale, and

88%, 78%, 59% for x3, x4, and x6 scale, respectively. Here, the SR model and the CL

model are not fine-tuned with the frame dataset of each video. This proves that the

SR and CL models can be widely used on different types of videos without training

individual models for each video. In this case, we do not need to transmit the deep

learning model with the video, which results in lower network latency. There are

some reconstructed frames with extremely high PSNR and SSIM values. The reason

is that these frames contain a large percentage of pure color blocks. The SR and CL

models can achieve high accuracy for recovering pure color blocks. When we combine

the SR model with the CL model, we can find that the x3 scale can achieve higher

performance than the x2 scale. The reason is that the CL model can only achieve

poor performance on large resolution frames (e.g., x2 frames).

66

Figure 4.11: The UHD video frame reconstruction performance.

Figure 4.12: The network latency.

Figure 4.13: The performance of integrated system.

The reconstruction performances of the SR model and CL model for 4k and 8k

video frames are presented in Table 4.3. We compare Pearl with an adaptive bitrate

encoding algorithm. For the SR-only approach, we can save 84.63% and 86.5% of data

size on average for 4k and 8k videos. The PSNR and SSIM are improved by (31.19%,

18.38%) and (19.15%, 16.9%) for 4k and 8k videos. For the CL+SR approach, we

67

can save 94.5% and 93.7% of data size on average for 4k and 8k videos. The PSNR

and SSIM are improved by (23.32%, 8.77%) and (2.66%,7.01%) for 8k and 4k videos.

In summary, Pearl can improve (27%, 13%) and (10%, 11%) PSNR and SSIM of

UHD videos with the SR model and the CL+SR model. We can conclude that Pearl

can achieve better video quality (higher PSNR and SSIM values) with a smaller frame

data size compared with an adaptive bitrate encoding algorithm for both the SR-only

approach and the CL+SR approach. There are many trade-offs between SR-only

approach and CL+SR approach. For instance, applying the colorization model costs

more frame recovering time. However, the transmission time and the storage space are

reduced, and the frame visual quality can also be enhanced by the colorization model.

In this case, the ABR algorithm needs to be more adaptive to select the optimal video

chunk. Traditional ABR algorithms only consider the tradeoffs between the bitrate

of the video chunk and the transmission latency. However, the reinforcement learning

based ABR algorithm adopted in our system can learn the relationships among all

these factors and predict the optimal selection option.

4.5.4 Network Latency

With Pearl, the video data size will be reduced from 79% to 97% compared with

original videos. A large amount server storage spaces are saved. Meanwhile, the video

transmission latency will also be significantly reduced. We use three different networks

to transmit 2k, 4k, and 8k videos, the network latency results are shown in Figure 4.12.

Applying the SR model can reduce 66.68%-95.89%, 69.70%-94.54%, 64.47%-94.68%,

of network latency for Local-LowBW, Local-HighBW, and Remote-MediumBW net-

work, respectively. 70.07%-96.18%, 75.83%-95.51%, and 75.75%-95.02% of network

latency can be reduced with CL+SR model. On average, 66%-95% and 73%-95 of

network latency can be saved with the SR model and the CL+SR model respectively.

The network latency is defined as the end-to-end video transmission time, which

includes the model execution time.

68

Figure 4.14: The performance of improved colorization model.

4.5.5 Pearl with ABR System

To evaluate the performance of integrating Pearl with ABR systems, we combine

Pearl with Pensieve together. The result of applying the integrated system for 2k,

4k, and 8k videos are shown in Figure 4.13 (a), (b), and (c), respectively. We can

find that the integrated system outperforms the original ABR system. Moreover, the

CL+SR model outperforms the SR model 25%. All the QoE of 4k and 8k videos

are negative numbers. The QoE of UHD video delivery suffered under the network

simulated from the network trace. This proves that applying the deep compression

framework to improve the QoE of UHD video delivery is necessary.

4.5.6 Performance of the Improved Colorization Model

In Figure 4.14, we show the performance of the improved colorization model. The

PSNR and SSIM are decreasing with the increase of the frame sequence index, which

is caused by the scene changing in the video. The average PSNR and SSIM of the

Pix2pixHD colorization model are 26.14 and 0.86. The reference-based colorization

model outperforms the Pix2pixHD model within 10 continuous frames. If we set a

keyframe for every 24 frames, the lowest PSNR and SSIM are 22.01 dB and 0.84. The

main advantage of the improved colorization model is that we can share a colorization

model for a variety of videos instead of training an individual colorization model for

each video. A large amount of training time is reserved. Moreover, it is unnecessary

to transmit it with the video content during the video delivery.

69

4.6 Discussion

Integration of Pearl and ABR: In this work, the deep learning models we

trained are only used for video content compression. They are independent of existing

video compress algorithms and ABR algorithms. However, there is another approach

to integrate the deep learning models and the ABR algorithms, which applies joint-

training on the video compression models with ABR models. For instance, NAS

integrates a super resolution model into a state-of-the-art ABR algorithm that uses a

deep reinforcement learning model. The deep reinforcement learning model is trained

with the effect of the super resolution model. The advantage is that the deep learning

model in the ABR system can make better decisions compared with separate training.

In this paper, we only focus on compressing the UHD video data size and reducing

the network transmission latency of UHD videos in the CDN.

Super resolution or colorization: With super resolution model and colorization

model, 2*K kinds of compressed videos will be generated. K is the number of down-

sampling scales. Compared with the SR model, the CL+SR model can improve 39%

and 18% on the frame and chunk data size compression, and the performance on

PSNR and SSIM will be reduced by 12.8% and 1.33% respectively. If the network

throughput is high, we can only use the SR model during the network transmission to

obtain better video quality. When there are limited network resources, the CL+SR

model can be adopted. Both the SR model and the CL+SR model outperform the

existing adaptive bitrate encoding methods.

Interval of colorful keyframes: For the improved video colorization model, the

keyframe keeps the color information instead of being converted to a gray frame. How

to set the interval between keyframes needs to be carefully considered. If the interval

of the keyframes is too small, the power of the colorization model is not utilized. If

the interval between the keyframes is large, the performance of the colorization model

will be poor. Video scene recognition algorithms can be applied to solve this problem.

70

It can detect the time of scene changing. When the scene changes frequently, we can

choose a small keyframe interval, and vise versa.

CHAPTER 5: Proposed Research Work on MAR Applications

Mobile augmented reality (MAR) applications have drawn more and more attention

in recent years because of the ability to enable users to interact with virtual objects

in a physical environment. With the development of the on-device neural network

models and MAR developing platforms [120, 121, 70], MAR applications can be widely

adopted by mobile devices in different scenarios, such as tourism, advertisement, and

entertainment [122].

5.1 Problem Description

One of the most important and fundamental functions of MAR applications is

object detection. Object detection models can help to detect the category (class)

and location (indicated by a bounding box) of the objects that appear in the view.

The number of classes in one of the most commonly used data sets (Microsoft COCO)

for training object detection models is 80 [123]. The accuracy of one of the state-of-

the-art object detection models (EfficientDet) is 55.1% [124]. However, these object

detection models cannot be directly implemented on mobile devices because of their

limited computation resources. Thus, object detection models need to be compressed

to fit mobile devices. The accuracy of the state-of-the-art on-device object detection

model (MobileNet-V2) is 22.1% [124]. Both original and compressed on-device models

have been widely used in MAR systems [29, 30].

In most MAR systems, mean average precision (mAP) is used as a metric for

evaluating the accuracy of the adopted object detection model. However, mAP can

only indicate the average performance of the object detection model. The effectiveness

of the object detection model at the frame-level is never studied. When executing on-

72

(c) Detection-failure with YOLOv3-Tiny

(b) Correct detection with YOLOv3

(d) Miss-detection with YOLOv3

(a) Original image frame

Figure 5.1: The demonstration of detection failure and miss-detection.

device object detection in a real system, detecting nothing may occur for a large

amount of image frames. These object detection executions with nothing detected

are very inefficient. Object detection-failure and miss-detection are the two main

reasons that lead to ineffective object detection.

With the development of model compression techniques, high complexity deep

neural network (DNN) models can be compressed and deployed on mobile devices.

The main side effect of model compression is that the model accuracy is decreased.

As shown in Figure 5.1(c), the compressed object detection model cannot detect

anything in the image frame because of the limited accuracy, which is defined as

object detection-failure. Object detection-failure leads to poor user QoE even

when the MAR system is optimized. If we adopt an object detection model with a

higher accuracy (less compression) on mobile devices, for instance, Inception-ResNet

[7], the inference time is 442ms per frame which is even longer than the latency of

offloading the detection task to the edge server.

The number of classes most existing on-device object detection models support

is less than 80. Object detection models with more classes training, such as 200

and 600 [125, 126], currently can only be executed on a server because of the high

73

computation complexity. For MAR applications, the objects shown in the scenes are

highly likely to be beyond 80 classes. Therefore, on-device object detection models

will fail to detect objects that belong to new classes beyond the 80 classes on mobile

devices. The failure of detection caused by the limitation of the classes supported

by the on-device object detection model is defined as object miss-detection. As

shown in Figure 5.1(d), a virtual robot has moved into the view. However, the robot

does not belong to the 80 classes supported by the on-device detection model. As

a result, the object detection model fails to detect the robot. Frequent occurrences

of object miss-detection also lead to poor user Quality-of-Experience (QoE) which is

defined in Section 5.3.1.

5.2 Research Motivation and Challenges

Motivation. In an edge-based MAR system [24, 22, 23, 25, 29, 30, 72, 127], as

shown in Figure 5.2, object detection tasks are executed on the mobile device first. If

the offloading decision algorithm in the MAR system finds that offloading can bring

higher user QoE, the captured frame is offloaded to the edge server. The server

then executes the object detection tasks and sends back the detection results to the

mobile device. The main advantage of this edge-based system is that it combines

the low latency of executing object detection tasks on mobile devices and the high

accuracy of the object detection model on the edge server. However, a disadvantage

is that if an object detection task is offloaded to the edge server, frame offloading and

result feeding back introduce additional network latency. Longer latency not only

degrades user QoE, but also decreases the accuracy of the object detection results

because the location of the detected objects may have changed when the mobile device

receives the detection results. According to our testbed measurement results, when

the frequency of offloading increases, user QoE will even degrade (more details are

given in Section 5.3). In other words, offloading cannot always achieve a better QoE.

That is why advanced on-device deep learning models for object detection are being

74

Mobile Devices

Edge Server

S t e p 3 . E x e c u t e

of f lo ad ed t as ks w i th

abundant resources on

the edge server
Step 2. Send tasks to the edge

server if offloading can bring

higher user QoE

Step 4. Return the execution

results

Step 1. Execute

tasks on mobile

devices

Cellular Network

Wi-Fi

Mobile Devices

Edge Server

S t e p 3 . E x e c u t e

of f lo ad ed t as ks w i th

abundant resources on

the edge server
Step 2. Send tasks to the edge

server if offloading can bring

higher user QoE

Step 4. Return the execution

results

Step 1. Execute

tasks on mobile

devices

Cellular Network

Wi-Fi

Figure 5.2: The system of edge-based MAR applications.

developed and adopted. The main problem of adopting on-device object detection

models is that ineffective detection frequently occurs. In this paper, we try to address

this problem from a new perspective: reducing the occurrence of object detection-

failure and miss-detection to improve the effectiveness of object detection.

Challenges. For object detection-failure, the main challenge is that we cannot

reduce the occurrence of object detection-failure on mobile devices because the accu-

racy of the on-device detection models is limited. Only offloading the detection tasks

to the edger server can reduce the object detection-failure rate. Offloading strategies

are widely used in existing MAR systems [29, 30, 31]. Existing offloading decision

algorithms try to balance the accuracy and latency of executing the object detection

tasks on the mobile device or on the edge server. When a detection-failure occurs,

the current accuracy of the on-device object detection model becomes 0. In this case,

offloading is the only option to continue executing the object detection task and to ob-

tain a detection result. However, existing offloading decision algorithms are unaware

of object detection-failure because they use the model mAP as the accuracy of the

detection result for every frame, which may lead to inaccurate offloading decisions.

To tackle this challenge, we propose to use frame-level detection accuracy instead of

model mAP in the offloading decision algorithm.

75

To reduce the occurrence of object miss-detection, one approach is updating the ob-

ject detection model on mobile devices. Incremental learning and fine-tuning [77, 76]

can be used for updating models. Under these methods, new object classes are incre-

mentally added to the original object detection model. The cost of adopting incre-

mental learning is that it will take tens of minutes to complete the model updating

because training the model with new data sets takes background time. Compared

with incremental learning, fine-tuning takes more background time for training the

new model but the new model is more robust (higher mAP). Model customization

can also be used for model updating [128]. However, it focuses on using personal-

ized data to improve the performance of the model for specific applications. To the

best of our knowledge, there is no existing work on how to properly adopt a general

model updating strategy in an MAR system. We are facing the following challenges

to design a new model updating scheme:

(1) How to achieve fast model updating? MAR applications are mostly time-

sensitive because of the interactivity. However, existing approaches such as incre-

mental learning and fine-tuning usually take tens to hundreds of minutes background

time to update a new model. Such a long updating delay significantly degrades user

QoE.

(2) How to meet the diverse requirements of various MAR applications? There

are many different types of MAR applications such as time-sensitive and accuracy-

sensitive MAR applications. Moreover, the user movement pattern varies for different

MAR applications. For each type of MAR applications, the requirements on accuracy

and latency are different. It is challenging to design a model updating strategy that

meets the diverse requirements of various MAR applications.

(3) How to determine when to update the model? To execute object detection

with the updated new model, MAR applications need a few additional seconds to

load the updated new model after completing the training into the GPU memory

76

of the mobile device, during which, all current object detection tasks on the mobile

device are paused. Thus, model updating will add additional latency to all current

object detection tasks. If updating the model whenever an on-device object miss-

detection happens, the average latency of object detection will increase and user

QoE will degrade. On the other hand, updating the model only after object miss-

detection already happened many times will lead to frequent offloading the object

detection tasks to the edge server and as explained previously, user QoE will also

degrade. Therefore, determining the proper moment of model updating to balance

the requirement of latency and accuracy is important and challenging.

Contributions. In this paper, we address the above research challenges and pro-

pose an improved frame-level offloading decision algorithm and an online fast AR

model updating scheme to improve the effectiveness of object detection for MAR

applications. Our solution focuses on reducing the occurrence of on-device object

detection-failure and miss-detection. It is complementary to existing MAR offloading

decision schemes [29, 30] and object tracking schemes [129, 130, 72].

5.3 Characteristic Study of MAR Applications

In this section, we show a comprehensive study on the characteristics of object

miss-detection and detection-failure in MAR applications. With this study, we can

obtain invaluable insights on how to design an MAR system to reduce the occurrence

of object detection-failure and miss-detection and improve the effectiveness of object

detection.

5.3.1 Testbed Setup

To perform the study of MAR applications, we design and implement an edge-

based MAR testbed. The testbed consists of two major components: an MAR client

and an edge server.

Edge Server. The edge server is developed to receive the object detection tasks

77

from the MAR client and send back the object detection results after executing the

tasks with the object detection model on the edge server. Two main functional

modules are implemented on the edge server: communication module and object

detection execution module. The communication module is implemented with TCP

sockect. The object detection execution module is implemented with Tensorflow.

The object detection models used on the edge server are YOLOv3 and FasterRCNN-

Inception-Resnet-V2 [131, 126] which can detect 80 and 600 different classes of objects,

respectively. We implement the edge server on an Alienware workstation with an

Nvidia RTX2020 GPU.

MAR Client. The MAR client is developed to execute the object detection tasks

with an on-device object detection model first. If nothing is detected, it offloads the

tasks to the edge server. To support these functions, we also implement a communi-

cation module on the MAR client which is exactly the same as the one on the edge

server and an object detection execution module. We implement the MAR client on

an Nvidia Jetson Tx2 with an on-device object detection model, YOLOv3-Tiny [131].

Performance Metrics. For MAR applications, three metrics are widely used to

evaluate the performance:

• End-to-end Latency : The end-to-end latency L is defined as the time period

from the scene capturing by the mobile device to the visualization of the result

on the mobile device. It includes the execution time of the object detection

model and the rendering time of the detection results. Thus, for object detection

executed on mobile devices, the end-to-end latency is:

Lmobile = Tmdetection + Trendering. (5.1)

If the object detection task is offloaded to an edge server, the end-to-end latency

is:

78

Ledge = Toffloading + T edetection + Tfeedback

+Trendering.
(5.2)

Toffloading is the offloading time of a frame and Tfeedback is the time needed for

the server to send back the detection results.

• Accuracy : The accuracy of the object detection model, A, is defined as the av-

erage IoU (intersection over union) of objects that have been correctly detected.

Here, we define that an object is correctly detected if the returned bounding

box has an IoU above 0.5 to the ground-truth bounding box (the same as when

mAP equals 50, mAP 50 [123]). The IoU is defined as:

IoU =
area(Boxgt) ∩ area(Boxdetection)

area(Boxgt) ∪ area(Boxdetection)
. (5.3)

• User QoE : For MAR applications, user QoE is defined as the weighted sum

of the accuracy and the end-to-end latency:

QoE = µ1A− µ2L, µ1 + µ2 = 1, (5.4)

where µ1 and µ2 are the weights for the accuracy and latency, respectively. For

different MAR applications, the values of the weights are different. µ1
µ2

is defined

as the user preference factor of an MAR application.

We measure the loading time and inference time of the object detection models

adopted in our testbed and the measurement results are shown in Table 5.1. F-RCNN

and Y-v3 are the abbreviation of Faster-RCNN-Inception-Resnet-v2 and YOLOv3,

respectively.

79

Table 5.1: The performance of object detection models

Model
name

Number
of classes

Device
type

Loading
time (s)

Inference
time (s) mAP

F-RCNN 600 Server 24 0.51 55.5
Y-v3 80 Server 9.49 0.02 57.9
Y-v3 80 Jetson 12.35 0.20 57.9
Y-v3-Tiny 80 Jetson 2.99 0.09 33.1

5.3.2 Characteristics of Object Detection

To study the characteristics of detection-failure, we measure the detection-failure

rate of the object detection models adopted in our testbed with two different datasets.

The image dataset contains 40,000 individual image frames selected from Microsoft

COCO dataset [123]. The video dataset contains randomly selected 10 video clips

from the video object detection challenge [125]. The measurement results are shown

in Table 5.2.

Table 5.2: The detection-failure rate of detection models

Image
Dataset

Video
Dataset

Device
Type

FasterRCNN 7% 6% Server
YOLOv3 10% 7 % Server
YOLOv3-Tiny 44% 32% Mobile

Table 5.2 shows that adopting object detection models on mobile devices brings

a large amount of object detection-failures. The accuracy of all these detection-

failures is 0. When object detection-failure occurs, not only the time but also the

energy consumption of the mobile device spent on executing the detection task is

wasted. Table 5.2 also shows that all the object detection models can achieve a lower

detection-failure rate on the video dataset compared with the image dataset. The

reason is that video frames have a stronger temporal and spatial correlation compared

with individual image frames, which reduces the complexity of the detection scene.

Because the object detection models on the server can achieve a much lower detection-

80

failure rate, offloading can reduce the object detection-failure rate but also introduce

additional latency.

What will happen if the on-device object detection model only detects part of

the groundtruth objects on the frame? To study this, we compare the obtained

detection results with the groundtruth results. There are 4 possible cases: equal,

subset, superset, and overlap. For the image dataset, the distribution of these 4

cases is {0.3, 0.1, 0.4, 0.2}. For the video dataset, the distribution is {0.5, 0.1, 0.3,

0.1}. Therefore, over half of the frames have different detection results compared with

groundtruth results. Thus, we should not only consider frames with a empty detection

result when we design our frame-level offloading decision algorithm. Insight: Existing

MAR systems ignore the existence of object detection-failure. Object detection-failures

significantly degrade user QoE. Thus, we should consider the frame-level effectiveness

of object detection instead of considering mAP for the offloading decision algorithm.

5.3.3 Impact of Miss-Detection on User QoE

Because there is no existing dataset or related work on object miss-detection, we

have to design our own test dataset. The number of classes in the ILSVRC2015

dataset is 200. The on-device object detection model is trained with the Microsoft

COCO dataset which contains 80 classes of objects. When a video snippet is chosen

from the ILSVRC2015 dataset and it contains objects belonging to the 120 classes

that the current on-device detection model cannot detect, object miss-detection oc-

curs. To investigate the impact of miss-detection on user QoE, we manually control

the percentage of object miss-detection by choosing different combinations of video

snippets. For instance, if we want to increase the percentage of miss-detection, more

video snippets that contain the objects the current on-device detection model cannot

detect will be chosen.

To investigate the impact of miss-detection on user QoE, we adjust the frequency

of offloading and calculate user QoE under different network data rates. Note that,

81

Percentage of miss-detection

U
se

r
 Q

o
E

5 Mbps

10 Mbps

25 Mbps

50 Mbps

Figure 5.3: The impact of miss-detection on user QoE.

all the offloadings are caused by the on-device object miss-detection, thus, the fre-

quency of offloading is the same as the percentage of object miss-detection. The user

preference factor µ1
µ2

is set to 1, which means that latency and accuracy have equal

weights for user QoE. As shown in Figure 5.3, user QoE keeps decreasing with the in-

creasing of the miss-detection frequency. In this figure, 100% of object miss-detection

means that all the object detection tasks are offloaded to the edge server, while 0%

of object miss-detection means that all the object detection tasks are executed on

the MAR client. With the increase of the communication data rate, user QoE drops

slower. However, even with 50Mbps, user QoE still decreases by 25% when object

miss-detection changes from 0% to 100%. The impact of detection-failure on user QoE

is the same as miss-detection if all the detection-failure frames are offloaded to the

edge server, because it does not matter whether offloading is caused by miss-detection

or detection-failure.

Insight: Offloading cannot always help to solve the object miss-detection problem

and improve user QoE. When latency and accuracy are equally important to user QoE,

once the object detection task is offloaded to the edge server, user QoE will decrease.

Therefore, we should reduce the frequency of offloading, i.e., reduce the occurrence of

object miss-detection.

82

Percentage of miss-detection

U
se

r
 Q

o
E

5:55:5
7:3

μ1:μ2
8:2

2:8 9:1
1:9

Figure 5.4: The impact of user preference on user QoE.

5.3.4 Impact of User Preference on User QoE

To evaluate the impact of user preference on user QoE, we adjust the percentage

of miss-detection and calculate user QoE with different user preference factor values.

The results are shown in Figure 5.4. Here, the network data rate is 25Mbps. As

shown in the figure, for latency-sensitive applications (i.e., the user preference factor
µ1
µ2
≤ 1), offloading will degrade user QoE. On the other hand, for accuracy-sensitive

applications (µ1
µ2
≥ 7 : 3), offloading can improve user QoE.

Insight: The result that offloading can improve user QoE for accuracy-sensitive

applications is based on the fact that the only way to obtain a higher accuracy is to

offload the task to the edge server when object miss-detection occurs. However, if we

can update the object detection model on the mobile device, we may obtain a similar

accuracy but with a lower latency. In this way, we can also improve user QoE.

5.3.5 Impact of User Movement on User QoE

For MAR applications, accuracy is defined as the IoU of the returned detected

bounding box and the ground-truth bounding box. If object detection tasks are

offloaded to the edge server, additional transmission latency will be involved compared

with executing the tasks on the mobile device. The higher the latency, the higher

the probability that the location of the detected object changes. If the location of

83

the object changes, the correct detection result may turn out to be a wrong result,

because the detected bounding box is at the old location of the object, while the

object has already moved to a new location in the current view. The object detection

accuracy loss caused by user movement is defined as IoUloss.

To study the impact of user movement on user QoE, a straightforward method is to

build a model on the relationship between IoUloss and end-to-end detection latency.

However, this method has a problem: a higher network latency does not necessarily

bring more IoUloss. For instance, if a user is static, no matter how long the end-

to-end latency is, there is no IoUloss. The relationship between latency and IoUloss

is also unpredictable when the user is moving. For instance, the object may move

back to the original location after a few seconds. In this case, a higher end-to-end

latency brings less IoUloss. However, if we can learn the user movement pattern, the

relationship between IoUloss and end-to-end latency latency may be found.

Object movements cause scene changes, and IoUloss is caused by object movement.

Therefore, we can predict IoUloss based on the scene change. The temporal perceptual

Information (TI) is a commonly used metric for quantifying the temporal complexity

of the scenes (motions in the scene) [132, 133]. In this case, we propose a tempo-

ral complexity based regression model to quantify the impact of user movement on

IoUloss. TI is defined as:

TI = std[f(x)− f(y)], (5.5)

where f(x) and f(y) represent the matrix of the pixel values of framex and framey,

respectively. std is the standard deviation. More motions in the scene will result in

higher values of TI and also lead to a higher IoUloss.

Because of lacking theoretical analysis of user movement in MAR applications,

we build an analytical model based on measurement results and regression analysis.

Note that regression-based modeling is one of the most widely used approaches in

predicting user movement [134, 135]. 20 video snippets are randomly chosen from

84

TI

Real
Regression

IoUloss > 0.5 is treated

as wrong detection

Io
U

lo
ss

Figure 5.5: The impact of user movement on user QoE.

the video object detection challenge [125] to discover the relationship between TI and

IoUloss. The results are shown in Figure 5.5. We can observe that a higher value of TI

results in higher IoUloss (lower detection accuracy). If TI equals 0, the current scene

is static and nothing is changed in the scene. As a result, IoUloss equals 0. Based on

our measurement results, the relationship between TI and IoUloss is approximately

exponential. A Gaussian regression model is adopted to learn a function between TI

and IoU loss:

IoUloss = 0.56 · e−(
TI−0.18

0.08
)2 . (5.6)

The root mean square error (RMSE) is applied for calculating the average model-

prediction error [136], which is 0.0085 for our regression model. As mentioned earlier,

if the IoU of the detection result is less than 0.5, the detection result is treated as a

wrong detection result and the accuracy is 0.

Insight: It is very challenging to learn the pattern of user movement in MAR

applications because the user is interacting with virtual objects in a physical environ-

ment. Based on our testbed measurement results, we use a regression-based model to

learn the relationship between the temporal complexity of the scene and the accuracy

loss of the detection result caused by user movement. As a result, when we design an

85

Time (s)

Framet Framet+1 Framet+k

Offloaded

key frame

...

Visualized

frame

Passed frames

Ledge Lmobile

On-device

detected frame

Framet+k+1

Location of objectLocation of bounding box Detection results

Figure 5.6: The pipeline of a real MAR system.

MAR system, we can quantify the impact of user movement.

5.4 Improved Frame-level Offloading Decision Algorithm

In this section, we formulate the offloading decision problem and detail our proposed

improved frame-level offloading decision algorithm, FLOD.

5.4.1 Design Principles

As shown in Figure 5.6, in a real-world MAR system, the object detection tasks

cannot be stacked and processed sequentially because the view of the user dynamically

changes. For offloaded object detection tasks, the received object detection results

of the offloaded framet are visualized on framet+k instead of framet. The value of

k depends on the latency Ltedge. Here, framet+1 to framet+k are defined as passed

frames. For on-device object detection tasks, with the support of mobile GPUs, the

inference time of the on-device object detection model can be shorter than the average

frame interval. For instance, the minimum requirement of real-time MAR applications

is 24FPS. Then, the frame interval is about 40ms. However, the inference time of

the on-device object detection model (MobileNet) is 9ms1. Therefore, the object

detection task can be completed on-device before capturing the next frame, and there

is no passed frame.

In our proposed MAR system, the offloaded frames are defined as key frames. The
1The inference time in all related work is obtained based on CPU performance.

86

next frame of a key frame has to be detected on the mobile device to evaluate the

effectiveness of the on-device detection model, and it will not be fed into the object

detection optimizer, because the on-device detection of this frame and the detection

result evaluation occupy one frame interval. The rest of the passed frames are fed

into the object detection optimizer.

In this work, the detection result from the edge server is defined as the groundtruth

detection result because this is the most accurate result we can achieve. All the key

frames are offloaded to the edge server in our proposed frame-level offloading decision

algorithm. The detection results of these key frames are treated as groundtruth

detection results to evaluate the accuracy of the detection results from the on-device

detection model.

5.4.2 Problem Formulation

The objective of the proposed frame-level offloading decision algorithm is to im-

prove user QoE through reducing the occurrence of on-device object detection-failure.

The first frame frame0 is set as the key frame frameK and offloaded to the edge

server to get accurate detection results. For each new offloaded framet, it is marked

as the new key frame frameK . After receiving the object detection results Boxt of

framet, the end-to-end latency Ltedge, and IoU t
loss are calculated. The next frame

of the key frame, framet+1, is always detected with the on-device object detection

model. Boxt+1 is also obtained. The detection result similarity index St+1
box is defined

as:
St+1
box =

area(Boxt) ∩ area(Boxt+1)

area(Boxt) ∪ area(Boxt+1)
. (5.7)

For two neighboring frames framet+1 and framet+2, the frame similarity index

St+2
frame is used to decide whether a new key frame needs to be set or not. If St+2

frame

is smaller than a threshold Thf , these two neighboring frames are in different scenes.

As a result, framet+2 needs to be set as the new key frame and offloaded to the edge

server. The frame similarity index is defined as:

87

Algorithm 1: The improved frame-level offloading decision (FLOD) algorithm
Input: framet−1, framet, µ1, µ2, Thf , height, width
Output: The object detection decision
while True do

if framet−1 is the key frame then
Detect framet with the on-device detection model ;
Calculate St

box, S
t+1
frame, QoE

t+1
mobile, QoE

t+1
edge ;

if St+1
frame > Thf then
if QoEt+1

mobile > QoEt+1
edge then

Detect framet+1 on the mobile device ;
else

Offload framet+1 to the edge server ;
Set framet+1 as a new key frame ;

else
Offload framet+1 to the edge server ;
Set framet+1 as a new key frame ;

else
if St

frame > Thf then
Calculate QoEt

mobile,QoE
t
edge ;

if QoEt
mobile > QoEt

edge then
Detect framet on mobile device ;

else
Offload framet to the edge server ;
Set framet as a new key frame ;

else
Offload framet to the edge server ;
Set framet as a new key frame ;

t = t+1;

St+2
frame =

Pixel(framet+2) ∩ Pixel(frameK)

height · width
. (5.8)

The height and width are the resolution dimensions of frames, which are the same

for all the frames. If St+2
frame is larger than the threshold Thf , the user QoE of detect-

ing framet+2 on the mobile device or offloading to the edge server is calculated as

following:
QoEt+2

mobile = µ1S
t+1
box · S

t+2
frame − µ2Lmobile, (5.9)

QoEt+2
edge = µ1(1− IOU tloss)− µ2Ltedge. (5.10)

To achieve proposed frame-level offloading decision, St+1
box · S

t+2
frame is used to replace

the mAP of the on-device detection model Amobile, and the accuracy of the model

88

on the server Aedge is set to 1. If QoEt+2
edge is larger than QoEt+2

mobile, framet+2 will

be offloaded to the edge server. Otherwise, framet+2 will be detected on the mobile

device.

Based on the above formulation, we design an improved frame-level offloading de-

cision (FLOD) algorithm, as shown in Algorithm 1. FLOD is online processed on the

MAR client.

5.4.3 Frame Similarity Index

Video frames have strong temporal and spatial correlations between neighboring

frames. Thus, we can detect whether the scene of the MAR applications has changed

or not based on the frame similarity index. The scene has not changed if neighboring

frames have a high frame similarity index. Unlike the TI introduced in Section. 5.3.5,

both temporal and spatial information is needed for the frame similarity index. Frame

similarity detectors (the same as frame change detectors) are widely used in object

tracking systems [22, 23, 25, 130, 72]. The effectiveness of a tracking system is heavily

affected by the accuracy of the detector. Thus, high complexity algorithm (e.g.,

random forest, support vector machine, and neural network) based detectors are

popular choices. However, there is no tracking module in our proposed system. The

performance of the object detection models remains the same even if we fail to detect

the frame change. The frame similarity index is designed to detect whether there are

significant changes in the user view. Since scene change detection is one of the most

fundamental functions of video encoding, we adopt a widely used lightweight scene

change detection method in the video encoding algorithm [47].

In (5.9), the frame similarity and detection similarity of the last frame are used to

predict the accuracy of the on-device detection results of the next frame. According to

the measurement results, 90% of neighboring frames share the same object detection

results if frame similarity index threshold Thf is set to 0.9. Thus, we can use frame

similarity to predict the accuracy of the object detection result of the next frame.

89

5.5 Proposed Fast Model Updating Scheme

In this section, we describe the design of the proposed model updating scheme,

FARMUS. Then, we formulate the model updating decision problem and propose a

model updating algorithm to decide when to update the model.

5.5.1 The Design of the Proposed Model Updating Scheme

To design the proposed model updating scheme, we consider the following questions:

How to identify the occurrence of miss-detection? Without the manual

control of the user, it is difficult to identify the occurrences of miss-detection on the

MAR client. Thus, this function has to be implemented on the edge server. The

offloaded frames are detected on the edge server using the detection model that can

detect more classes. Miss-detection can be identified if a new object is found in the

detection results.

How to determine when to execute model updating and meet the diverse

requirements of different MAR applications? The cost of model updating is

the model reloading time. During model reloading, all the object detection tasks are

paused, which brings user QoE loss. The benefit of model updating is the occurrence

decrease of miss-detection, which brings gains in user QoE. The model should be

updated when the gain from the model updating is larger than the loss. Thus, we need

to quantify the gain and loss caused by model updating. At the same time, we should

consider the impact of user preferences and user movement patterns on user QoE.

We formulate the model updating decision problem to determine the proper time for

model updating and take user preference and movement pattern into consideration

(detailed in Section 5.5.2).

How to achieve fast model updating? Model updating is for reducing the

occurrence of object miss-detection. Thus, the updated model needs to be able to

detect the classes of objects that cause object miss-detection. However, training such

90

a model normally takes tens to hundreds of minutes. Although the training process

is executed in the background and the object detection tasks can still be offloaded to

the edge server during the training time, user QoE will be degraded. To overcome

this challenge, we propose to build a model pool that contains pre-trained object

detection models. In this case, fast model updating can be achieved.

The next question is how many models should be prepared in the model pool? If

there are k classes that cause object miss-detection, the new updated model should

include all k classes. Note that, k can be calculated based on the statistic information

of the offloaded object detection tasks. Assume that there are total N classes of

objects and the number of classes that the on-device object detection model can

detect is M . In addition, considering the usage of MAR applications in real-world,

all object detection models should include m most popular classes. We can calculate

the number of models needed to prepare:

Nummodel =
CkN−m
CkM−m

, (5.11)

where C represents combination. If we set N to 200, M to 80, and m to 20 (these

values are selected based on the most popular object detection datasets), for the

value of k from 1 to 6, the number of models needed to prepare is {3, 10, 28, 87, 273,

868}, respectively. For example, if 28 models are prepared in the model pool, for any

k ≤ 3, an object detection model can be obtained in the model pool that matches

the requirement for model updating. For the case that k > 3, the closest matched

model will be adopted for model updating. If no model in the model pool can match

any class within the k classes, the incremental learning algorithm will be adopted to

train a new model.

Note that, if a model in the model pool is matched, fast model updating can be

achieved because the only delay for model updating is the downloading time of the

model to the mobile device and the loading time of the new model to the mobile

device’s GPU. Even if no model can be matched, our proposed scheme will not cause

91

any user QoE degradation because the MAR client can still obtain the results of

object detection through offloading as before.

5.5.2 Problem Formulation

The objective of the proposed model updating scheme (FARMUS) is to improve

user QoE through reducing the occurrence of on-device object miss-detection.

Assume in an MAR client, the number of object detection tasks per unit time is

Numt and the percentage of object miss-detection is p. Thus, the average number

of tasks executed on the mobile device and offloaded to the edge server is Numm =

(1− p) ·Numt and Nume = p ·Numt, respectively. The average user QoE per unit

time is:

QoEaverage =

Numm∑
i=1

QoEm(i) +

Nume∑
i=1

QoEe(i), (5.12)

QoEm = µ1Amobile − µ2Lmobile, (5.13)

QoEe = µ1Aedge − µ2Ledge. (5.14)

The accuracy of executing the tasks on the edge server will be influenced by the user

movement pattern. Thus,

QoEe = µ1Aedge(1− IoUloss)− µ2Ledge. (5.15)

Denote the model reloading time on the mobile device as tr, during which all the

object detection tasks are paused. The cost of model updating is:

QoEloss = tr ·QoEaverage. (5.16)

For each object detection model and a particular mobile device, the model reloading

time tr is a fixed value.

After model updating, the percentage of object miss-detection is changed to p̂, and

the average number of tasks executed on the mobile device and offloaded to the edge

92

Algorithm 2: The proposed model updating (FARMUS) algorithm
Input: taskn, Numt, µ1, µ2, k, p, tr, tu
Output: The model updating decision
while True do

Receive the offloaded taskn
Execute taskn and send back results
Calculate the TI between taskn and taskn−1

Collect k and p
Search the model that contains the specific k classes in the model pool
if Model found then

Update p̂
Calculate QoEgain and QoEloss using (5.18) and (5.16)
if QoEgain > QoEloss then

Send the matched model to the MAR client
else

Train a new mode
Send the new model to the MAR client

n = n+1

server is changed to Numm̂ = (1 − p̂) · Numt and Numê = p̂ · Numt, accordingly.

Thus, the average gain of model updating per unit time is:

QoEgain =

Numm̂∑
i=1

QoEm̂(i) +

Numê∑
i=1

QoEe(i)−QoEaverage. (5.17)

Unlike the model reloading time, the time of model updating tu is a relatively long

time period. To fairly compare QoEgain with QoEloss, we set tu to the same value of

tr. Then,

QoEgain = tu ·QoEgain. (5.18)

Note that, the value of p̂ depends on the result of the model matching:

p̂ = 1− Classk ∩ Classmodel
k

, (5.19)

where Classk represents the k classes of objects that cause object miss-detection and

Classmodel is defined as the class set that the updated model can support to detect.

Only when the updated model includes all the classes of objects which cause object

miss-detection, the percentage of object miss-detection p̂ will decrease to 0.

Based on the above formulation, we design a model updating algorithm, FARMUS,

93

LD ED LD+ED ED+T FLOD

Figure 5.7: QoE analysis of FLOD.

LD ED LD+ED ED+T FLOD

(a) (b)

Figure 5.8: The impact of network datarate and user preference on FLOD.

as shown in Algorithm 2. FARMUS is online processed on the edge server. For each

offloaded object detection task, FARMUS will decide whether to update the object

detection model for the MAR client or not.

5.5.3 Performance Evaluation

5.5.3.1 Experiment Setup

MAR System. To emulate the usage of MAR applications, we use continuous

video frames to simulate the sequence of object detection tasks. The original res-

olution of the video frames is 1280 × 720. During network transmission, the frame

resolution is resized to 640 × 480. The average data size of each frame is 104 KB.

The network datarate and the user preference factor are set to 25Mbps and 5:5,

respectively.

Test Dataset. 50 video snippets are selected from the video object detection

challenge (ILSVRC2015) [125] to build the test dataset. There are two different

modes of detecting these video snippets. Static: the MAR client starts to detect a

new frame after visualizing the result of the last frame, which means that the frame

94

used for detection and the frame used for visualization are the same; Move: the

frame on the MAR client changes with a 24 FPS speed to simulate a moving scene,

which means the detection result is visualized in a later frame if the detection latency

is larger than the frame interval.

5.5.3.2 Baseline Algorithms

We compare our proposed two algorithms with 4 other algorithms summarized as

follows:

• LD (Local Detection): All the detection tasks are executed on the mobile

device with the on-device detection model.

• ED (Edge Detection): All the detection tasks are offloaded to the edge server.

• LD+ED (baseline): Execute the detection task on the mobile device and

offload the task to the edge server if offloading can bring higher user QoE. The

mAP of detection models is used to calculate user QoE.

• ED+T: Use tracking algorithms on the mobile device and offload the detec-

tion task to the edge server if a tracking failure occurs (a state-of-the-art ap-

proach [72]).

5.5.3.3 QoE Analysis of FLOD

User QoE. As shown in Fig. 5.7, FLOD achieves the highest average user QoE

under both the static and move modes. Except for the LD algorithm, the average

QoE of all other algorithms decreases under the move mode as compared with the

static mode, because the accuracy of the detection results from the edge server is

decreased under the move mode.

Accuracy. The results of the detection model on the edge server are treated as the

groundtruth detection result. Thus, full offloading can achieve the highest accuracy

performance. Under the move mode, the IoUloss causes the accuracy loss of the

95

LD ED LD+ED ED+T MRS

Figure 5.9: QoE analysis of MRS.

Full On-deviceFull On-device FARMUSFARMUSBaselineBaselineFull OffloadingFull Offloading

Ptrigger = 0.39 Ptrigger = 0.53 Ptrigger = 0.64 Ptrigger = 0.67Ptrigger = 0.66

5Mbps 10Mbps 25Mbps 50Mbps 100Mbps

Figure 5.10: The impact of network datarate on the performance of MRS (P is the
percentage of miss-detection).

detection results from the edge server. As a result, the accuracy gain of offloading

is reduced and the frequency of offloading should also be reduced to achieve higher

user QoE. However, the accuracy of detection-failure and tracking failure is 0. In

this case, reducing the detection-failure rate by offloading these tasks to the edge

server can achieve high user QoE. As shown in Fig. 5.7, FLOD achieves 10% and

21% higher accuracy as compared with LD+ED and ED+T because of the reduced

detection-failure rate.

Latency. LD algorithm achieves the minimum average end-to-end latency because

there is no offloading. However, its user QoE is the poorest because of the high object

detection-failure rate of the on-device detection model. ED+T algorithm has a lower

latency as compared with LD+ED and FLOD, because the speed of the tracking

algorithm is much faster than the object detection model. LD+ED algorithm also

has a lower latency as compared with FLOD because it ignores detection-failure and

has fewer offloading tasks.

The impact of network datarate. We compare the performance of FLOD with

other algorithms under different network datarates (user preference factor is 5:5). As

96
Full On-deviceFull On-device FARMUSFARMUSBaselineBaselineFull OffloadingFull Offloading

Ptrigger = 0.01

Ptrigger = 0.09

Ptrigger = 0.64µ1:µ2 = 1:9

µ1:µ2 = 3:7 µ1:µ2 = 5:5 µ1:µ2 = 7:3 µ1:µ2 = 9:1

Figure 5.11: The impact of user preference on the performance of MRS.

shown in Fig. 5.8(a), FLOD can always achieve the highest user QoE under all the

datarates. With the increase of the network datarate, the user QoE keeps increasing.

Higher datarate results in a lower network transmission latency and a lower end-to-

end latency. The network transmission latency ranges from 8 ms to 170 ms under

different datarates. However, the inference time of the powerful object detection

model (FasterRCNN) on the edge server is close to 500 ms. Thus, the contribution of

the low transmission latency to user QoE is limited. This is why when the datarate

is doubled from 50Mbps to 100Mbps, there is very limited QoE improvement.

The impact of user preference. Fig. 5.8(b) presents the user QoE under differ-

ent user preference (µ1
µ2
) settings (network datarate is 25Mbps). The smaller the user

preference factor, the more weight the latency is counted in user QoE. Full offloading

achieves the highest user QoE when µ1
µ2
≥ 7 : 3, because more offloading results in

higher user QoE for accuracy-sensitive applications.

5.5.3.4 QoE Analysis of MRS

Model replacement is triggered when the percentage of miss-detection p increases

to a certain level. The p that triggers model replacement is defined as ptrigger.

User QoE. As shown in Fig. 5.9, MRS can achieve the highest average user QoE

under both the static mode and move mode. Under the move mode, the miss-detection

rate can be significantly reduced after the model replacement. However, all of the

other algorithms have to offload the task to the edge server. As a result, MRS

can reduce a large amount of offloading latency and achieve 74% improvement on

97

the user QoE. Compared with the static mode, ptrigger changes from 64% to 12%

under the move mode. The reason is that the benefit from the high accuracy of the

powerful object detection model on the edge server decreases when user movement

is considered. Thus, model replacement happens earlier as compared with the static

mode.

The impact of network datarate. We evaluate MRS under different network

datarates (user preference factor is 5:5). As shown in Fig. 5.10, with the increase

of the network datarate from 5Mbps to 100Mbps, ptrigger is increased from 39% to

67%. When the network datarate is doubled from 50Mbps to 100Mbps, the increase

of ptrigger is only 1%, because the change on the transmission latency contributes very

limited to user QoE under these datarates. MRS can always achieve the highest user

QoE for all the datarates.

The impact of user preference. Fig. 5.11 presents user QoE under different user

preference settings. With the increase of the user preference factor from 1:9 to 5:5, the

percentage of miss-detection that triggers model replacement ptrigger increases from

1% to 64%. The main advantage of model replacement is to reduce the frequency of

offloading caused by on-device object miss-detection. Latency-sensitive applications

(with a small value of user preference factor) can gain more from model replacement

when the network transmission latency is large. For instance, if the user preference

factor is 1:9, the model replacement decision is made when there is only 1% of ob-

ject miss-detection. After the model replacement, the percentage of offloading will

be largely decreased which brings higher user QoE. On the contrary, for accuracy-

sensitive applications (the user preference factor is 9:1), model replacement cannot

significantly improve the user QoE. The full offloading method can achieve the best

QoE. The reason is that most of the gain brought by model replacement is on the la-

tency. If there is only a limited contribution to user QoE from the latency, the model

replacement decision will not be made. As shown in Fig. 5.11(d) and (e), MRS works

98

exactly the same as the LD+ED algorithm, which means that model replacement is

not performed.

5.6 Proposed Smart-Decision Algorithm

With the development of the hardware and software platforms, we can implement

the deep learning model on the mobile device for mobile augmented reality (AR)

applications. However, not all mobile AR tasks can be finished on mobile devices.

Meanwhile, the limited computation resources on mobile devices are still the main

obstacle to achieve realtime mobile AR applications. To tackle these challenges, we

proposed a smart-decision framework that combines the advantages of the on-device

mobile AR system and the edge-based mobile AR system to achieve real-time object

recognition. High computation complexity tasks will be offloaded to the edge servers.

Low complexity tasks will be executed on mobile devices or the edge server depending

on the network latency. To overcome the dynamic changes of the network condition

and the limitations of the on-device deep learning models, we design a cache and

matching algorithm on mobile devices to enhance the performance of the recognition

tasks.

Update local

cache database

Yes

No

Offloading to

Edge Server

Results from

Edge Server

Mobile Device Edge Server

Update cache

database

Collect task

results

Performance

evaluation

Performance

evaluation

Application Tasks

Light

task

Heavy

task

Results

Visualization

Results

Visualization

Network

bandwidth

estimation

Network

bandwidth

estimation

Good

On-device

deep learning

models

On-device

deep learning

models

Local

Cache system

Local

Cache system

Poor

Receive tasks

and data

Model 1

Deep learning

model pool

Model 2

Model 3 Model 4

Figure 5.12: The system framework.

99

5.6.1 System Architecture

In this section, we present our proposed system in detail. As shown in Figure 6.2,

our system is composed of two parts: mobile device and edge server. We divide all the

recognition tasks into two categories. A task that can be executed on mobile devices

are defined as the light task TL, e.g., classification and detection. A task that has

to be offloaded to edge servers is defined as the heavy task TH , such as the semantic

analysis. The smart decision algorithm is shown in Algorithm. 3.

Algorithm 3: The smart decision algorithm
Input : A set of tasks {T1, T2, ..., Tn}, real-time network throughput B,

network bandwidth threshold Nσ;
Output: The decision of where to execute the tasks;

1 Initialize the task index i = 1;
2 while i <= n do
3 if Ti ∈ TH then
4 Offload the task Ti to edge server;

else
5 Execute the task Ti with the on-device deep learning model;
6 Receive performance feedback P ;
7 if P = Poor then
8 if B > Nσ then
9 Offload the task Ti to edge server;

else
10 Execute the task Ti with the cache system;
11 i=i+1

5.6.1.1 Mobile device

For each mobile AR application, the mobile device will keep capturing the video

frames using the camera. For each video frame, there will be different recognition

tasks needed to be executed. The heavy task will be directly offloaded to the edge

servers because mobile devices cannot provide enough computation resources. The

light tasks will be executed locally with the on-device deep learning models. How-

ever, since the performance of the on-device deep learning models is not robust as

compared with the deep learning models on the servers. In this case, we design a

100

performance evaluation module. If users are not satisfied with the performance of

current recognition tasks, the next task will not be executed with the on-device deep

learning models. First, the network bandwidth will be estimated. If the network

bandwidth is higher than a threshold Tb, the light task will be sent to the edge server.

However, if the network bandwidth is lower than Tb, it means that the user is under

the poor network condition. In this case, if we still do the task offloading, the per-

formance will be even worse. The reason is that the mobile AR application is very

sensitive to the latency. The scene will change a lot when you get the results from

the edge server. To overcome this issue. We design a cache and matching algorithm

on the mobile device, which can help to improve the performance of light tasks on

the device with a lower latency.

In the cache and matching module, we extract the image features using the feature

extraction methods such as SIFT. These features are used to match with the objects

stored in the cache on mobile devices. After a successful matching object is found, the

matching process is ended, and the detection result is presented to the user. There are

many different image feature extraction algorithms, the time cost and result quality

of applying these algorithms are different. In addition, the size of the cache on the

mobile is also vital for the matching system. If the number of objects in the cache is

very large, it will take a long time to find a successful match, and it will neutralize the

advantages of the cache system. In this case, we build a hierarchical cache system.

For each video frame, we match the frame with high-ranked objects for each class.

And once the users offload the tasks to the edge server, the cache system will be

updated. There are several trade-offs between the time and the performance in cache

and matching algorithms. We show more details in Section 5.6.2.

5.6.1.2 Edge server

On the edge server, we will receive the data and tasks from the users. For different

tasks, we have different algorithms and models implemented on the edge server. Edge

101

server can provide the service for both heavy and light tasks. For heavy tasks, the

edge server will execute the tasks and send back the results. At the same time, the

edge server will backup all the recognition results and extract the image features of the

objects. These results and image features will be used to update the cache database.

For the light tasks, if we get poor performance with the on-device deep learning model,

or we cannot get a successful match with the cache and matching module, the image

frame will be sent to the edge server. Besides sending back the results of light tasks

to the mobile device, we will also synchronize the cache on the mobile device with the

database on the edge server. In this case, we can still achieve good performance by

using the cache and matching module when the network bandwidth is low. Another

reason for building the database on the edge server is that we can share this database

with multiple users.

5.6.2 Cache and Matching Module

As shown in Figure 5.13, we propose a feature matching method for the classifi-

cation and object detection tasks. One of the main challenges of mobile AR is the

limited computing capacity of mobile devices. A high network latency will occur

if we offload all the computation to the cloud, or the edge server. We propose a

feature matching method that only needs low complexity computation on the mo-

bile device to achieve classification and object detection tasks. Mobile devices can

support enough computing resources for feature extraction and matching algorithms.

The main process is as following: First, we build a cache data store to store objects

and corresponding feature vector sets on mobile devices. This cache store will be

updated by the edge server. Then, we extract the features of the target image. After

that, we match objects in the cache data store with the target image feature set one

by one. For each feature vector in the vector sets, we measure the closest distance

between it and the features of the target image. If the closet distance is less than

a threshold, we call it a successful match feature vector; if the number of the total

102
Cache Data Store

ObjA Feature SetA

ObjB Feature SetB

ObjC Feature SetC… …

ObjA Feature SetA

ObjB Feature SetB

ObjC Feature SetC… …

Yes

Object MatchObject Match

ImageImage

Feature

Extraction

Feature

Extraction

Object Location

projection

Object Location

projection

ObjC DetectedObjC Detected

Figure 5.13: The cache matching system.
successful match feature vector is large than a threshold K, it means the object is in

the target image. Then, we project the successfully matched feature vectors on the

target image, and a projection box is obtained. In this paper, if the project box cover

over 80% of the object, we treat it as a successful projection. In this case, we can

achieve low complexity object detection.

5.6.2.1 Features extraction and matching algorithms

The image feature is like a signature of the image. For different feature extraction

algorithms, the feature vector dimensions and the matching algorithms are both dif-

ferent. In this paper, we use three feature extraction algorithms, SIFT [64], SURF [65]

and ORB [66]. As shown in Table 5.3, we compare the differences of several popular

feature extraction and matching algorithms. For different feature extraction methods,

the feature extraction and matching time costs are different. For instance, ORB uses

the binary number to construct the feature vector and uses the Hamming method to

measure the distance of the feature vectors for matching. So it is the fastest among

these three methods. However, when we use the same number of feature vectors for

matching, SIFT can achieve higher matching accuracy.

Table 5.3: Feature extraction and matching algorithms

Algorithm Dimension Data type Time(s) Matching method
SIFT 128 uint 0.05 FLANN
SURF 64/128 uint 0.01 FLANN
ORB 256 Binary 0.003 Hamming

103

Except the time cost, the number of image features extracted from each image is

another important factor that we need to take into consideration. Extracting more

image features means a better presentation of the image, and we can get better

performance in the matching process. Meanwhile, it will take more computing time

and matching time. So the number of features should be properly selected.

5.6.2.2 Cache and Object Database

On the edge server, we create a large object database. In the object database, we

store about 10000 objects and the corresponding feature vector sets of each object.

These objects are obtained from 20 classes of images in ImageNet dataset [137]. When

we offload the tasks to the edge server, all the objects detected by the recognition

models will be added into the database with a high rank value. On the mobile device

side, we design a cache system, which will fetch the high ranked list of objects from

the database on the edge server.

ClassA

Feature Set1

ClassB

Feature Set2

…

…

Rank1

Rank2

Rank1

…
…

…

ClassID Object UniqueID Object Feature

Feature Set1

…
…

Figure 5.14: The hierarchical cache data base.

As shown in Figure 5.14, there are three layers in the cache database, and the first

layer is the class label. The objects belong to the same class are collected together.

The second layer is the unique ID of each object. In this paper, the unique ID is

the rank value from the edge server. High ranked objects will have a high priority

to be matched. When the number of objects in the cache data store is larger than

a threshold, the objects with the lowest rank will be removed from the cache data

store. The last layer is the feature set of each object. This feature set composes the

104

fingerprint of the object. We use these object fingerprints to match the feature set of

the video frame.

As mentioned early, we match each object in the cache with the target image until

we get a successful match. If we put the total database into the cache on the mobile

device, the total time for matching is much higher than offloading tasks to the edge

server. If there are only a few objects in the cache mobile device, the successful

matching rate will be reduced.

5.6.2.3 Trade-offs

The speed and accuracy of the cache and matching system are influenced by three

key parameters, the methods of feature extraction, the number of features to be

extracted for each image, and the cache data store size. Considering the robustness

of the system and the time cost, we choose SURF as the main image feature extraction

method. As shown in Figure 5.15, with the increasing of the cache size, the time to

finish the matching keeps increasing. At the same time, the matching time cost will

be much higher if we set the image features size to 800 compared with other settings.

To fit the real time processing requirements for the mobile AR applications. We set

the cache size to 100 and the image feature size to 500.

0 200 400 600 800 1000 1200

Cache size

0

500

1000

1500

2000

2500

3000

3500

100
300
500
800

T
im

e
(m

s)

Figure 5.15: The trade-offs in the cache system.

105

5.6.3 Performance Evaluation

5.6.3.1 Testbed set up

To evaluate the performance of our proposed system. We build a testbed to im-

plement all the modules proposed in our framework. We simulated a network with

MiniNet combined with the SDN controller ONOS. MiniNet is used to generate the

network nodes and links, while the ONOS is used to control the routing and data

flows. The Mininet and the ONOS are implemented on an HP EliteDesk 800 G2

workstation.

As shown in Fig. 5.16, there are are total 30 switch-nodesN = {n1, n2, ..., n30}, and

69 links in the network. The link data rate is 50 Mbps, and the delay of the links

follows the normal distribution with µ = 6ms, σ = 1. The blue node represents the

edge server. It is bridged with the Jetson AGX Xavier to support the recognition

tasks for the users. We have two users in our testbed system. Each user is an ASUS

Zenfone-AR mobile phone. We use Tensorflow Lite to develop an image classification

and an object detection android applications on mobile phones. Since the mobile

phones cannot be directly bridged to the simulated network, we use two Jestons-Tx2

as the mobile device access node, which is represented by the 2 purple nodes in the

simulated network. The mobile phones and Jetson-Tx2s are connected through a

router. The mobile phone application will send the data to the Jetson-Tx2 at first.

Then, the Jetson-Tx2 will send the received data to the edge server. Once Jetson-Tx2

receives the results from the edge server, it will send back the results to the mobile

phone. The time cost between the mobile phone and the Jetson-Tx2 will not be

included in the end-to-end latency. We send total 1500 frames from the two mobile

phones to the edge server.

106

Mobile user

Switchnode

Edge sever②

①

Figure 5.16: The network topology of the simulated network.

5.6.3.2 Experiment Results Analysis

In this section, we evaluate the performance of the proposed smart decision frame-

work through the experiments on our testbed. Since the heavy tasks will be only

executed on the edge server, we do not put the performance of heavy tasks in this

part.

200

400

600

800

1000

1200

1400

L
at

e
n
cy

 (
m

s)

On-device

model

Cache and

match

User1

Offloading

User2

Offloading

Inference time
Mobile IO time

Network latency

Figure 5.17: The end-to-end delay of classification application.

Inference Accuracy: We implement an image classification and an object detec-

tion algorithms on the edge server, and we develop an image classification and an

object detection android applications on two Android phones. As shown in Fig. 5.17

and Fig. 5.18, the end-to-end delay for running the classification and detection appli-

cations on androids phones are 155ms and 224ms, respectively. The inference times

107

are 115ms and 184ms respectively. If we choose to offload the tasks to the server, the

network latency is involved. Since the distances between the users and the edge server

are different, the network latency for two users is different. The network latency is

850ms and 1380ms for user1 and user2, respectively. On the edge server, the inference

times for classification and detection are 64ms and 111ms, respectively. For user1,

the end-to-end delays for classification and detection are 924ms and 961ms respec-

tively. For user2, the end-to-end delays for classification and detection are 1452ms

and 1501ms, respectively.

Table 5.4: The mAP of different models

Model mAP
SSD300(server) 81.2%

SSD +MobileNet(on− device) 72.7%
Cache+matching(on− device) 76.3%

Miss classification happens a lot for the on-device classification and detection ap-

plications. For example, an apple is mistakenly recognized as a ball. When this error

happens, we can choose to do the classification detection with our proposed cache and

matching system. The end-to-end delay for the on-device cache and matching system

is 1039ms. If we do not need to know the location of the project, the delay is 980ms.

We can find that if the network condition is good, using the cache and matching

system is not necessary. The reason is that offloading the task to the edge server is

faster. However, when users are under the poor network condition, like user2, the

cache and matching system can help users to get better accuracy with less time cost

compared to offloading the tasks to the edge server.

End-to-end Latency: The inference accuracy is decided by the deep learning mod-

els. High complexity models can achieve a higher precision. On the mobile object

detection applications, we use the ssd+MobileNet model. On the edge server, we

use the SSD300. The mean Average Precision(mAP) of these models are listed in

Table 5.4. The mAP of the cache and matching system is lower than the model on

108

200

400

600

800

1000

1200

1400

L
at

e
n
cy

 (
m

s)
On-device

model

Cache and

match

User1

Offloading

User2

Offloading

Inference time
Mobile IO time

Network latency

Figure 5.18: The end-to-end delay of object detection application.
the edge server. The reason is that the cache size is limited, not all the objects will

be successfully matched.

CHAPTER 6: Proposed Network Partitioning for Efficient Management of UDN

In this work, we propose a wireless big data-driven virtual network function place-

ment framework which integrates the wireless big data analysis, machine learning,

and network optimization to enhance the performance and efficiency of managing

ultra-dense networks [138]. The proposed framework is composed of a data process-

ing module, an offline machine learning module and an online virtual network function

placement module. The data processing module collects the mobile network records

and extracts the network features. These network features are used for quantify-

ing the relationships among BSs and partitioning the network. We investigate both

BS-based and grid-based network partitioning.

VNF A

VNF B

Figure 6.1: The proposed framework with two network functions.

The offline module performs the network partitioning by using the hierarchical

clustering analysis (HCA) method [44]. The performance of network partitioning

solutions can be evaluated by comparing the performance of network functions applied

on the network partitions (corresponding to different network partitioning solutions).

Moreover, we analyze the relationship between the number of sub-RANs and the

performance of the network function. The analysis results are utilized to train a

110

prediction model to obtain the optimal number of sub-RANs under different traffic

conditions. Based on the prediction results, the online module adopts the K-medoids

clustering algorithm [139] to partition the network into sub-RANs and place the

network function in each sub-RAN. Each sub-RAN will be managed independently by

the network functions. Additionally, our framework can be applied to many network

management functions, such as traffic load balancing, spectrum allocation and so on.

In a wireless network, these network functions should be able to work simultaneously.

Figure 6.1 shows how two network functions simultaneously manage the network.

Each network function uses its own network partitioning solution.

6.1 Framework Overview

In this section, we present an overview of the framework for placing virtual network

functions (VNFs) in an ultra-dense mobile network, as illustrated in Figure 6.2. To

reduce the complexity of network management, the proposed framework partitions

the network into sub-RANs and place the VNFs in each sub-RAN. The framework

consists of a data processing module, an offline machine learning module, and an

online network function placement module. We list the notations in Table 6.1.

Table 6.1: Notations

K The optimal number of sub-RANs
n The number of base stations
B The set of base stations. B = {B1, B2, · · · , Bn}
U The set of users in the network.
P The networking performance of network functions.
V The computation performance of network functions.
F The network features. F = {Fd, Ft, Fu}
Γ The traffic load of the network. Γ = {γ1, γ2, · · · , γn}
T The set of time slots in a day. T = {t1, t2, · · · , t144}
γ The traffic load on a base station.
γG The traffic loads on BSs within a grid.

111

time

Prediction
model

Prediction
model

distant near recent

Traffic
records
Traffic
records

Network function
placement

Network function
placement

Network
partitioning

Network
partitioning

InferenceInference KK

PredictorPredictor

Offline Learning

Online VNF placement

FdFd

Ft

FuFu

Fd

Ft

Fu

Traffic
load

Traffic
load

Optimal KOptimal K

H
C

A
H

C
A

Network
function
Network
function

Network
performance aware

of HCA

Data

preprocessing

Data

preprocessing

Data Processing

Feature

extraction

Feature

extraction

Figure 6.2: The data-driven virtual network function placement framework.

6.1.1 Data Processing

The data processing module mainly includes the mobile traffic data collection,

data processing, and network feature extraction. The mobile traffic records in each

BS are collected and stored in a traffic record database. These data are used for the

network feature extraction and network partitioning analysis. In consideration of the

redundant and conflicting information contained in the original data, we filter the

traffic record data before using them to extract the network features. After having

cleaned up the data, we segment the traffic records into thousands of small chunks.

Each chunk contains a 10-minutes traffic record. The 10-minute segmentation is

chosen because it is the smallest time interval in which a cellular tower can experience

non-zero traffic [94]. These chunks of traffic records will be classified into three parts

according to the time of collection: distant (one month ago), near (2-4 weeks ago)

and recent (now to two weeks ago). Since the prediction model needs to train with a

large amount of data, we use all recent chunks and a portion of the distant and near

chunks to train the prediction model.

In this work, we partition the network for the traffic load balancing function. Three

networking features are extracted from the traffic record database to quantify the re-

lationships among the BSs. For different VNFs, the definition, number, and weight of

112

the network features are different. In this paper, we use Traffic Load balancing(TLB)

as an example of VNF, and three network features are extracted. The first feature

relates to the geo-distances among BSs. The second feature is the similarity of the

traffic trends in BSs. The third feature is the number of common users in BSs during

a given period of time. The extracted features are stored in the feature database

and will be sent to the offline machine learning module to train for the network

partitioning solutions.

6.1.2 Offline Machine Learning

The offline machine learning module consists of two components: the network per-

formance aware clustering analysis and prediction model training. Based on extracted

networking features, we define a distance function to quantify the relationships among

BSs. The hierarchical clustering analysis (HCA) algorithm is adopted to partition the

network. The HCA algorithm generates a clustering tree. Each layer of the clustering

tree represents a network partitioning solution. The index of the layer indicates the

number of BS clusters1 in the corresponding partitioning solution. For example, the

network partitioning solution obtained from the 10th layer of the clustering tree will

partition the network into 10 BS clusters. The network performance of each network

partitioning solution is evaluated by the network functions. After evaluating the net-

work partitioning solutions obtained from each layer of the clustering tree, we can

derive the optimal network partitioning solution. Thus, the optimal number of BS

clusters can be obtained.

The clustering analysis and the performance evaluation of the network partition-

ing solution incur very high computational complexity. They are not appropriate for

realtime network partitioning and optimization. To perform real-time network parti-

tioning, we mine the wireless big data to learn the relationship between the number of
1In the paper, we define a sub-RAN as a cluster of BSs. Hence, we use the sub-RAN and BS

cluster interchangeably.

113

sub-RANs and the performance of the network function, and then train a prediction

model to predict the optimal number of sub-RANs under different traffic conditions.

For different VNFs, the models obtained by offline training are different because the

extracted network features used for one VNF are different from those for another

VNF. Nevertheless, the training procedures are same for all VNFs. The online mod-

ule will use this prediction model to predict the optimal number of sub-RANs, and

perform the network partitioning in realtime. The virtual network functions will be

placed on the partitioned network to manage each sub-RAN.

In this paper, we choose two different granularities to partition the network. The

first one is BS-based network partitioning, in which the BS is the smallest unit for

partitioning the network. We partition the network into several sub-RANs, and each

sub-RAN contains multiple BSs. The second one is grid-based network partitioning,

in which we divide the network into small grids. In this paper, we set the size of each

grid to 100*100 m2. After that, we partition those grids into different sub-RANs.

The grid is the smallest unit in the sub-RAN. There are mainly two motivations of

adopting different scales in network partitioning. The first reason is that considering

a large-scale area like a city or a downtown area, there are tens of thousands of BSs,

in which BS-based network partitioning may not be efficient. Another reason is when

we train the prediction model, each BS is seen as one dimension of the input vectors

in the prediction model. Thus, the dimension of the input vector is very high under

BS-based network partitioning. This may cause a high prediction error rate. The

dimension of the input vector will significantly decrease when we use the grid-based

network partitioning method.

6.1.3 Online Virtual Network Function Placement

Given the offline trained prediction model, the optimal number of clusters can be

derived based on the current network traffic load conditions. Then, the network will

be partitioned into clusters based on low-complexity clustering algorithms such as

114

K-medoids [140], see Section 6.4.1 for more details. Once the network is partitioned

into sub-RANs, a virtual network function is placed for each sub-RAN to optimize

the network performance. The virtual network function should be the same one used

for evaluating the network partitioning solution in the offline training module. In this

paper, we use, as an example, a traffic load balancer [36] as the network function.

The proposed realtime VNF placement scheme consists of four steps. First, the

traffic loads on each BSs in the last 10 minutes is collected. Second, the traffic loads

are fed into the well-trained prediction model and the optimal number of sub-RANs,

K, can be obtained. Third, with this prediction, the BSs are partitioning into K

sub-RANs using K-medoids clustering algorithm. The prediction and partitioning

processes only take less than 1 minute. Fourth, the virtual network function is placed

for managing each sub-RAN.

6.2 Data Processing

The data processing module consists of three functions: data collection, data pre-

processing and the networking feature extraction.

6.2.1 Data Collection

In our framework, mobile traffic records on each BS will be continuously collected

and stored in the traffic record database. As shown in Table 6.2, a mobile traffic

record is composed of six attributes including the identification number of a BS, the

geographical location of the BS (latitude x and longitude y), the identification number

of a user, and the start time Ts and end time Te of the user’s data connection on the

BS.

Table 6.2: Traffic record samples

BS ID x y User ID Ts Te
10027 45.75 126.62 79xxxxx 1210120149 1210120252
13852 46.01 127.39 65xxxxx 1212151547 1212151624
16212 44.77 128.45 61xxxxx 1218124335 1218124357

115

6.2.2 Data Preprocessing

The data preprocessing addresses three problems in the traffic record data set.

First, there is inconsistent and redundant information in the traffic records. For in-

stance, in some records, the data connection ending time is earlier than the starting

time. The data set also contains duplicated traffic records. These records are elim-

inated from the database. Second, there are incomplete data records. In some data

records, some attributes are missing, e.g., BS ID and geo-locations. To solve this

problem, we store all BS’ IDs and their corresponding geo-locations in a database.

Once the geo-location attribute is missing in a traffic record, we can locate the BS

ID in the database and obtain the corresponding geo-location, and vice versa. Third,

to preserve the privacy of the users, we anonymize the user identification numbers in

the traffic records.

6.2.3 Networking Feature Extraction

In this section, we present the networking feature extraction and analysis for net-

work partitioning. To partition the network, a distance function is required to quan-

tify the relationships among the BSs. Therefore, we extract three networking features

to define the distance function.

For BS-based network partitioning, the first feature is the geo-distances among BSs.

The second feature is the similarity of the traffic trends in BSs. The third feature is

the number of common users in BSs during a given period. Here, each networking

feature is defined as one factor that may impact the relationships among BSs. For

grid-based network partitioning, we use the same features, but these features are

calculated in different ways from the BS-based network features.

These networking features are extracted from a mobile traffic data set containing

2.8 billion traffic records collected from an operating mobile network. The extracted

features are stored in the feature database and will be sent to the offline machine

116

learning module for partitioning the network. Since the high mobility of the mobile

network, we update the network features database periodically with the recently

collected network data in response to the network traffic variations.

6.2.3.1 The Geo-Distance Feature: Fd

The geographical distance between two BSs is one important factor to measure the

relationship between the BSs. When the BSs are close to each other, their coverage

areas will be overlapped. A larger overlapped area indicates a tighter coupling since

there will be more users in the overlapped area. From the data set, we can get the

latitude and longitude of each BS. Then, we use the Spherical Law of Cosines formula

to calculate the geo-distance between the two BSs [141]. We define xi and yi as the

latitude and longitude of the ith BS, respectively. ϕi and λi are the corresponding

radians of the latitude and longitude. R is the radius of the earth. The geo-distance

between the ith and jth BSs is expressed as:

dij = arccos(sinϕi sinϕj + cosϕi cosϕj cos ∆λ)R, (6.1)

where ϕi = xiπ
180

and ∆λ = yiπ
180
− yjπ

180
.

We assume that the transmission range of a BS is 1.5 km. The distance between

a BS and one of its neighboring BSs is up to 3 km. The CDF of inter-BS distances

between a BS and its neighboring BSs is derived from the mobile network data set.

As shown in Figure 6.3(a), the geo-distances between BSs and their neighboring BSs

are diversified. This diversity indicates that the geo-distances can be used to measure

the relationships among BSs. For instance, the distances between BS 1 and 35% of

its neighboring BSs are less than 1.5 km. This indicates that BS 1 may have tighter

relationships with these 35% of neighboring BSs. Therefore, the geo-distance between

two BSs is recognized as one of the features for BS-based network partitioning.

In grid-based network partitioning, we adopt a different method to calculate the

117

0 1 2 3
Inter-BS distance (Km)

0

0.2

0.4

0.6

0.8

1

C
D

F

(a)

BS 1

BS 2

0 1 2 3
Inter-Grid distance (Km)

0

0.2

0.4

0.6

0.8

1
(b)

Grid 1

Grid 2

Figure 6.3: The CDF of neighbors’ distances.
geographical distance feature. As shown in Figure 6.4, each grid is identify by its

index (x,y). We use the Euclidean distance to measure the distance among the grids,

i.e., the distance between grid Gi and Gj is:

dGij =
√

(Gi
x −G

j
x)2 + (Gi

y −G
j
y)2 (6.2)

(n,1) (n,2) (n,m-1) (n,m)

(n-1,1) (n-1,m)

(2,1) (2,m)

(1,1) (1,2) (1,3) (1,m)

(n,1) (n,2) (n,m-1) (n,m)

(n-1,1) (n-1,m)

(2,1) (2,m)

(1,1) (1,2) (1,3) (1,m)

Figure 6.4: The grid map.

The CDF of inter-grid distance is shown in Figure 6.3(b). The distances between

grids and their neighboring grids are also diversified. Therefore, the geo-distance

between two grids can be recognized as one of the features for grid-based network

partitioning.

118

6.2.3.2 The Traffic Trend Similarity Feature: Ft

The mobile traffic trend measures the mobile traffic diversity over time in a BS. If

two BSs are tightly coupled, they will have similar traffic trends. Figure 6.5 presents

the traffic trend analysis among three neighboring BSs. We define the duration of

a time slot to be 10 minutes. Then, a day consists of 144 time slots. To derive the

traffic trend, we calculate the cumulative traffic load in a BS in each time slot. Here,

we assume that all users’ traffic data rates are the same. Hence, the traffic load

generated by a traffic record in each time slot is equal to the data rate multiplied by

the duration of the data connection. Since our objective is to measure the similarity

of the traffic trend, we normalize the values of all the traffic loads into the range of 0

to 1.

Denote γi,j as the accumulative traffic load in the ith BS in the jth time slot.

Then, Γi = {γi,1, γi,2, · · · , γi,144} represents the traffic load sequence in the ith BS.

Figure 6.5(a) shows instantaneous traffic loads in these BSs. Traffic loads on different

BSs reach the maximum values at different times. From 13:00 to 16:00, BS3 keeps a

low traffic, but the traffic increases on BS1 and BS2. To analyze their traffic trend in

a BS, its traffic load sequence is transformed into the frequency domain in which the

low-amplitude frequencies are filtered out. The residual high-amplitude frequencies

reflect the traffic trend in the BS. As shown in Figure 6.5(b), BS 1 and BS 2 have

similar traffic trends and their traffic trends are notably different from that in BS3.

Denote γGi,j as the accumulative traffic load in the ith Grid in the jth time slot.

γGi,j is calculated by adding the traffic loads of all BSs inside the ith Grid. ΓGi =

{γGi,1, γGi,2, · · · , γGi,144} represents the traffic load sequence in the ith grid. As shown

in Figure 6.5(c) and 6.5(d), we can find that Grid 1 and Grid 2 have similar traffic

trends, and their traffic trends are notably different from that in Grid 3.

The traffic trend similarity between BSs can be quantified by using the discrete

Fréchect (DF) distance [142], which can calculate the similarity of two curves regard-

119

Time (hour)
0 8 16 24

0

2

4

6

8

10

12

14

T
ra

ff
ic

 lo
a
d

BS1
BS2
BS3

0 8 16 24
0

0.2

0.4

0.6

0.8

1
1010

3
10

3

0
0

4

8

12

16

Grid1
Grid2
Grid3

0 8 16 24
0

0.2

0.4

0.6

0.8

1
1010

3
10

3

20

8 16 24

(a) (b) (c) (d)

Figure 6.5: The traffic trend analysis.

0 0.5 1 1.5 2 2.5 3 3.5

DF distance

0

0.2

0.4

0.6

0.8

1

C
D

F

 BS 1
 Grid 1

Figure 6.6: The CDF of the traffic trend distance.
less of the shift, scale, and rotation of the curves. Denote δi,j = FrechetDist(Γi,Γj)

as the DF distance between the ith and jth BSs. For the traffic trend analysis shown

in Figure 6.5(b), δ1,2 = 0.7 and δ1,3 = 2.6. It is shown that when δi,j is larger than

2, a significant difference can be identified between the traffic trends of the ith and

jth BSs. We use the same method to measure the traffic trend similarity between

Grids. Figure 6.6 shows the CDF of the DF distance between the traffic trend of

BS 1 and that of its neighboring BSs and the CDF of the DF distance between the

traffic trend of Grid 1 and that of its neighboring grids, respectively. For BS 1,

about 90% of neighboring BSs have different traffic trends. The CDF indicates that

the traffic trend similarities vary among BSs. This analysis advocates for using the

traffic trend similarities among BSs as a feature for partitioning ultra-dense mobile

networks. For Grid 1, about 96% of neighboring grids have different traffic trends.

The CDF indicates that the traffic trend similarities also vary considerably among

120

Grids.

6.2.3.3 The Common Active Users Feature: Fu

A common active user in BSs is defined as the user whose data traffic appears in

all these BSs during a certain time period, e.g., 10 minutes. Since a user may have

many traffic records during the time period, we only count the unique user ID on

each BS as its user set. A large number of common active users in BSs indicates

that active users frequently handover among these BSs, implying that these BSs are

tightly coupled. A common active users in grids is defined as the user whose data

traffic appears in all these grids. We analyze the mobile traffic data and derive the

number of common active users of two BSs and two grids.

0 2 4 6 8 10 12

Num. of users

0.94

0.95

0.96

0.97

0.98

0.99

1

C
D

F

(a)

Grid 1

BS 1

0 1 2 3 4 5
0.94

0.95

0.96

0.97

0.98

0.99

1 (b)

Grid 2

BS 2

Figure 6.7: The common active user analysis.

The red line in Figure 6.7(a) shows the CDF of the number of common active users

in BS 1 and its neighboring BSs in 10 mins. The blue line shows the CDF of the

number of common active users in Grid 1 and its neighboring grids. The numbers of

common active users are different under different network partitioning granularities.

BS 1 shares common active users with about 1.34% of its neighboring BSs, and Grid 1

shares common active users with about 5.58% of its neighboring grids. As compared

with the CDFs shown in Figure 6.7(b), we can see that both BSs and Grids at different

locations have different CDFs of common active common users. These observations

verify that the number of common active users can be used as a network feature for

121

network partitioning.

Based on the three network features, the distance function that quantifies the

relationship between the ith and jth BSs is expressed as Di,j =
∑F

k=1 αkd
k
i,j. Here, F

is the number of features used in the distance calculation; αk is the weight of the kth

feature; dki,j is the distance calculated based on the kth feature.

6.3 Offline Machine Learning

The offline learning module consists of two parts: the network performance aware

clustering analysis and the optimal BS cluster number prediction module.

6.3.1 Network Performance Aware Clustering

The objective of the network performance aware clustering analysis is to derive

the optimal network partitioning solution under different mobile traffic conditions

such that the analysis results can be utilized for training the prediction model. The

network clustering analysis contains two parts: the network clustering and clustering

solution evaluation.

6.3.1.1 Hierarchical Clustering Algorithm

Network partitioning aims to divide the entire network into sub-RANs. BSs in the

same sub-RAN have tight connections with each other as compared to BSs in other

sub-RANs. To partition the network, we use the HCA algorithm to agglomerate a

set of objects into a hierarchy of clusters based on the distances of objects [44]. The

advantage of HCA over other clustering algorithms such asK-medoids clustering [139]

is that it does not require a priori knowledge of the number of clusters. Besides, HCA

can flexibly adjust the number of clusters for different network scenarios. Since in

network partitioning, the optimal number of BS clusters cannot be predefined due to

mobile traffic dynamics. For instance, when the network is busy, networking functions

need to be quickly processed. In this case, the network will be partitioned into more

sub-RANs to achieve optimal networking performance. HCA allows us to select a

122

0 1 2 3 4

Distance (Km)

0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0

2

4

6

8

10

Distance (Km)

D
is

ta
nc

e
(K

m
)

D
is

ta
nc

e
(K

m
)

(a) (b)(b) (c)(c)

0 1 2 3 4
0

1

2

3

4

Distance (Km)

Distance (Km)

0 1 2 3 4 0 1 2 3 4

Distance (Km)

0

1

2

3

4

D
is

ta
nc

e
(K

m
)

0

1

2

3

4

D
is

ta
nc

e
(K

m
)

D
is

ta
nc

e
(K

m
)

D
is

ta
nc

e
(K

m
)

0

1

2

3

4

D
is

ta
nc

e
(K

m
)

0 1 2 3 4

Distance (Km)

(d) ((e)) (f)

Figure 6.8: The visualization of network partitioning. (9 (a), (b) and (c): BS-based
network partition at 8:00, 14:00 and 20:00, respectively; 9 (d), (e) and (f): grid-based
network partition at 8:00, 14:00 and 20:00, respectively.)
high layer in the clustering tree without clustering the whole network again. Thus,

the HCA algorithm is adopted in engineering the training data set for the prediction

model.

Based on the features extracted from the mobile traffic data in Section 6.2.3, the

distance between the ith and jth BSs is expressed as Di,j =
∑N

k=1 αkd
k
i,j. Here, N is

the number of features used in the distance calculation; αk is the weight of the kth fea-

ture; dki,j is the distance calculated based on the kth feature. After a round of merging

BSs, a few BSs will be grouped in the same cluster. D(Cm, Cn) = mini∈Cm,j∈Cn Di,j is

defined as the distance between the BS clusters Cm and Cn. Therefore, the distance

between two BS clusters reflects the minimum inter-BS distance for BSs in different

clusters.

The HCA algorithm is illustrated in Algorithm. 4. At the beginning, each BS is

treated as an individual cluster. Based on the distance function, the tightness of the

coupling between clusters can be evaluated. A shorter distance indicates a tighter

coupling between the clusters. Based on the distances between clusters, the HCA

algorithm iteratively merges clusters with the shortest distance into a new cluster.

123

After each round of merging clusters, the distances between clusters are recalculated.

The merging process continues until all BSs are in one cluster. Once the clustering

tree CT is derived, we may select one layer in the tree to partition the network. For

example, if the Kth layer of CT is selected, the entire network is partitioned into K

sub-RANs. For grid-based network partitioning, we use the grid-based feature set to

build the distance function and cluster the grids. Figure 6.8 shows the visualization

of network partitioning based on the BS-based and grid-based network partitioning

solutions. We choose three time slots to partition the network, and partition the

network into 10 sub-RANs, as shown in Figure 6.8(a), 6.8(b) and 6.8(c) corresponding

to 8:00, 14:00, and 20:00, respectively.

Algorithm 4: The Hierachical Clustering Algorithm
Input : A feature set{Fd, Ft, Fu}, a cluster set C;
Output: A cluster tree CT ;

1 Initialize the layer L(0) = 0;
2 Initialize the sequence number m = 0;
3 while |C| > 1 do
4 Append(C) into CT ;
5 Find pair (cr, cs) with D(cr, cs) = min D(ci, cj) ∀ci, cj ⊂ C, i 6= j;
6 m = m +1, L(m)=D(cr, cs);
7 cnew = cr ∪ cs;
8 C = C − {cr, cs};
9 C = C ∪ cnew;

10 Reverse the tree CT ;
11 return CT ;

6.3.1.2 Clustering Evaluation

After partitioning the network, we run the network function on the entire network

and individual sub-RANs, respectively. Since network function is concurrently run-

ning in individual sub-RANs, we use the maximum computing time required in the

sub-RANs to represent the network function computing time after network partition-

ing. Denote τ and {τ̂1, τ̂2, · · · , τ̂K} as the computation time of the network function

before and after the network partitioning, respectively. τ̂i is the computing time

124

of the ith sub-RAN. Hence, the computation performance incurred by the network

partitioning solution is V = max(τ̂)
τ

.

Denote ζ and {ζ̂1, ζ̂2, · · · , ζ̂K} as the network function performance before and

after network partitioning, respectively. ζ̂i is the networking performance of the ith

sub-RAN. Then, the networking performance incurred by the network partitioning

solution is P =
∑K

i=1(ζ̂i)

ζ
. In the network clustering, the networking performance

is traded for the computation performance. It is desirable to limit the networking

performance degradation when partitioning the network. Given P and V , we derive

the performance of network partitioning by calculating ψ = (1− ω)P + ω(1− V).

In the network clustering, multiple parameters may impact the performance of the

clustering. These parameters include the number of clusters and the weights of differ-

ent networking features. With a given ω, in order to guide the HCA algorithm to find

the optimal network partitioning solution, we traverse all kinds of networking feature

weights combinations. For each wights combination, we generate the corresponding

HCA clustering tree and traverse the entire clustering tree to obtain the maximum

ψ and the corresponding number of clusters. After comparing the maximum ψ from

different clustering trees, we get the optimal number of BS clusters K, the so-called

ground truth value. These results are transferred to the predictor for training the

prediction model. The computational complexity to obtain ground truth values is

extremely high, and thus driving the optimal network partitioning solution in real-

time is not practical. To solve this problem, we perform the network partitioning

in two steps. First, we develop BS cluster number prediction methods that predict

the optimal number of the BS cluster under different traffic conditions. Second, we

design a real time network partitioning algorithm based on the prediction result.

6.3.2 Cluster Number Prediction Model

The cluster number predictor aims to predict the optimal number of BS clusters

in realtime based on the traffic condition. In order to accurately predict the optimal

125

number of BS clusters, we choose three widely used machine learning algorithms:

Least-squares regression [143], SVM regression [144] and ANN [145], to build three

predictors. The least-squares regression is one the simplest prediction algorithms,

and we use its performance as the baseline. Both the SVM regression and ANN are

widely used prediction models and have been applied in wireless networks [146, 147].

The main limitation of the ANN model is the requirement of a big training data set.

Otherwise, we may get a poor prediction result. For SVM regression, the limitation

is that we need to determine some key parameters. Since we do not have any priori

knowledge about the relationship between the traffic loads and the optimal BS cluster

number, it is hard to obtain the best value of these parameters.

6.3.2.1 Input Generation

We define the duration of a time slot to be 10 minutes. Denote γi as the accu-

mulative traffic load in the ith BS in one time slot. Assume there are n BSs in the

network. Then, we use Γ = {γ1, γ2, · · · , γn} to represent the network traffic load in

one time slot. The normalized Γ is one of the inputs to the ANN. Then, we use

the network performance aware clustering analysis method to derive the optimal BS

cluster numbers at different time slots. The optimal BS cluster number K acts as the

ground truth value.

6.3.2.2 ANN predictor

Base station(BS)
Cluster of BSs

K=n

K=5

K=2

K=1
HCA Clustering

Input generation

()Max

1Tr

2Tr

3Tr

1nTr

nTr

11

np

1b

pb
qb

b

ANN

11

1

K

q

1b

pq

Figure 6.9: The structure of the neural network predictor.

126

We adopt the back-propagation neural network as the prediction algorithm. As

illustrated in Figure 6.9, our neural network consists of the input layer, two hidden

layers, and the output layer. We assign a sigmoid function ϕ(x) for the neurons in

the hidden layers and a purelin function I(x) for the output layer. The output of the

prediction is expressed as

K = I(
∑
q

ω
′′

qϕ(
∑
p

ω
′

pqϕ(
∑
n

γnωnp + bp) + b
′

q) + b
′′
), (6.3)

where b′′ , b′q and bp are the biases associated with the neurons in different layers. ω′′q ,

ω
′
pq and ωnp denote the weights associated with the inputs of different layers.

6.3.2.3 Least-squares regression predictor

As defined in the previous section, the training data set is composed of (Γ,K),

where Γ is the traffic load for one time slot, and K is the optimal clustering number.

A least-squares regression model can be represented by:

K = f(Γ, β) + ε (6.4)

∑
ε2 =

n∑
i=1

(Ki − f(Γi, β))2 (6.5)

Our goal is to minimize
∑
ε2. Here, ε is the error between the prediction value and

the grand truth value. β is the coefficient set we want to learn.

6.3.2.4 SVR predictor

The support vector machine regression (SVR) can be represented by

f(Γ) =
n∑
i=1

(αn − α∗n)G(Γi,Γ) + b. (6.6)

Here, G(Γi,Γj) is the kernel function. Linear, Gaussian, Polynomial kernels are

widely used. In this paper, we adapt the Linear and Gaussian kernel to build the

127

SVR predictor. f(Γ) is the predicted optimal BS cluster number. αn and α∗n are two

non-negative multipliers.

The performance of networking partitioning depends on the distance function,

which quantifies the relationships between BSs. Since mobile traffic is highly dy-

namic, the distance functions should be revised according to mobile traffic conditions

and the prediction model should be retrained periodically. As shown in Figure 6.10,

mobile traffic loads periodically change in both the macro BS(MBS) and small cell

BS (SCBS). Leveraging the diurnal pattern of the mobile traffic, we periodically val-

idate our prediction model to ensure the accurate prediction. Although the number

of traffic patterns observed from the dataset is limited, the relationships between BSs

are characterized by three network features in the paper rather than solely by the

traffic pattern. For example, the number of common users in BSs is adopted as one

of the network features. Owing to the user mobility, the common users in BSs change

tremendously over time. The network partition solution should consider such changes

in the network. Therefore, we need an online algorithm to dynamically generate net-

work partitions for network management. To validate the predictor, the optimal

number of BS clusters Kg obtained from the clustering analysis will be compared

with the predicted BS cluster numbers K. The prediction model will be retrained if

the performance of the network partitioning with K clusters is less than 90% of that

with Kg clusters. During the retraining process, the latest mobile traffic record data

will be integrated into the dataset for re-training the prediction model.

6.4 Online Virtual Network Function Placement

The online network function placement module consists of the online network par-

titioning and the network function placement. We partition the network into K

sub-RANs, and we place the network functions in each sub-RAN.

128

0 1 2 3 4 5 6 7
Time (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ff
ic

 lo
ad

MBS
SCBS

Figure 6.10: Mobile network traffic.

6.4.1 Online Network Partitioning

The computational complexity of clustering algorithms is vital to achieve the re-

altime network function placement. As compared with the HCA algorithm, the K-

medoids algorithm has lower computational complexity. The complexity of HCA is

o(n2 ∗ logn) [148], where n is the total number of BSs in the network. The complexity

of the K-medoids is o(ikn). Here, k is the number of clusters and i is the number of

iterations required for convergence. In addition, since the optimal number of BS clus-

ters has been predicted by the predictors, there is no need to generate the clustering

tree. Hence, we adopt the K-medoids algorithm as our online network partitioning

algorithm. The pseudo code of the K-medoids algorithm is presented in Algorithm 5.

Algorithm 5: The K-medoids Clustering Algorithm
Input : A feature set {Fd, Ft, Fu}, number of clusters k, a cluster set C;
Output: A cluster CT ;

1 Randomly select k points in the cluster set as k medoids;
2 while k medoids changes do
3 Associate each point to the closest medoid and formulate k clusters Ck;
4 for i=1:k do
5 Find the point xi in Ci that minimizes

∑|Ci|
j∈Ci ‖xi − xj‖

2
2;

6 Set the point as the new medoid;
7 return CT ;

Once the BSs are divided into clusters, each BS cluster is optimized independently

with the network functions. The network partitioning solution will be different when

129

the clustering performance is evaluated under different network functions. In this

paper, we implement a traffic load balancer (TLB) as the network function to evaluate

the performance of the clustering [36].

6.4.2 Network Function: Traffic Load Balancer

TLB solves the following optimization problem [36]:

max
x,y

∑
i∈U

U(Ri) =
∑
i∈U

U(
∑
j∈(B)

yijcij)

s.t.
∑
j∈B

xxj = 1, ∀i ∈ U

∑
i∈U

yij ≤ 1,∀j ∈ B

yij ≤ xij, xij ∈ {0, 1},∀i ∈ U ,∀j ∈ B.

(6.7)

The objective is to maximize the aggregated utilities of all users. The problem involves

finding the indicators xij corresponding to the user-BS association. xij = 1 indicates

that the ith user is associated with the jth BS. yij is the corresponding resource

allocation that maximizes the aggregate utility function. cij = log2(1 + SINRij) is

the achievable data rate between the ith user and the jth BS.

The procedure of the TLB function is illustrated in Figure 6.11. Users measure

their achievable data rates from different BSs and report the measurements to their

serving BSs. The BSs collect these measurements and forward them to the network

controller. The traffic load optimization algorithm runs in the network controller and

optimizes the user-BS association parameter denoted as µ∗j . The network controller

broadcasts the user-BS association parameters via BSs to users. Upon receiving the

user-BS association parameters, users select BSs to maximize their own utility.

We run the TLB function on the entire network and individual sub-RANs, respec-

tively. Then, we calculate the U(Ri) and U(R̂i), which are the ith user’s utility before

and after network partitioning, respectively. The networking performance of network

130

Mobile Users

Network Controller

* *(log(arg ma))x j ij jcj

User Side Algorithm:

1. Measure from BSsijc

2. Receive from BSs
*

j

3. Select BS Based on

*

j

Network Controller:

1. Optimize
* ,j j

ijc *

j

BSs:
1. Collect , broadcast

*

j

ijc

ijc

Figure 6.11: The traffic load balancing function.
partitioning can be derived by calculating P =

∑
i∈U U(R̂i)∑
i∈U U(Ri)

. Since the TLB function

is concurrently running in individual sub-RANs in the network controller, we use the

maximum computation time required in the sub-RANs to represent the computing

time after network partitioning. Hence, the computation performance of network

partitioning is V = max(τ̂)
τ

. Given P and V , we derive the performance of network

partitioning by calculating ψ = (1−ω)P+ω(1−V). Here, 0 < ω < 1 is a parameter,

which can be selected by the network operator. Given ω, the clustering solution that

maximizes ψ is the optimal network partitioning solution.

6.5 Performance Evaluation

In this section, we evaluate the performance of the data-driven network optimiza-

tion framework through data trace-driven network simulations.

6.5.1 Mobile Traffic Dataset and Simulation Settings

Our wireless big data are obtained from an anonymized data trace collected from

an operating mobile network with a duration of two weeks. Each entry in the trace

includes the BS ID, geo-location of the BS, the user ID, and start-end time of the

data connection. The data trace contains 2.8 billion tuples of the information collected

from over 10000 BSs and 500000 users. The greatest density of BSs in the dataset

131

is 15 BSs per 100 square meters, which can be considered as an ultra-dense mobile

network [35]. This large amount of data ensures that our analysis and modeling are

credible.

For network partitioning and predicting the optimal number of BS clusters, we

define the duration of a time slot to be 10 minutes. Then, there are 144 time slots

per day. Γi is defined as the traffic load set of the network at the ith time slot. In

the prediction model training process, 80% of mobile traffic data are used to train

the prediction model, and the remaining 20% are used to evaluate the predictor.

On simulating the traffic load balancing function, we set ω = 0.5. Transmit powers

of macro and small cell BSs are P1 = 46dBm and P2 = 35dBm, respectively. On

modeling the propagation environment, we adopt a path loss L(d) = 34 + 40log(d)

and L(d) = 38 + 30log(d) for macro and small cell BSs, respectively. We adopt the

log normal shadowing fading with a standard deviation σs = 8dB. The thermal noise

power is assumed to be σ2 = −104dBm.

6.5.2 Networking Feature Evaluation

In this section, we justify the effectiveness of the networking features. As shown

in Table 6.3, we partition the network using the HCA algorithm with different com-

binations of the three features. Considering the traffic load variations over time, we

analyze the performance of the network partitioning in three different time slots. In

this simulation, the number of sub-RANs is 10 and ω is set to 0.5.

We compare each individual feature first. According to Table 6.3(numbers with

color are the optimal values in the column), the network partitioning solution based

on Fd allows the TLB function to achieve the maximum ψ; this proves that geo-

distance is a requisite feature. Moreover, the network partitioning solution generated

by using Ft can always allow the TLB function achieve the maximum P . However,

the computation performance is sacrificed. The reason is that when we partition the

network only based on Ft, a big sub-RAN containing most of the BSs in the network

132

Table 6.3: Networking feature evaluation results

8:00 14:00 20:00
Features P V ψ P V ψ P V ψ

Fd 0.9472 0.1855 0.8809 0.9265 0.2213 0.8526 0.9326 0.1341 0.8992
Ft 0.9892 0.9819 0.5036 0.9398 0.8936 0.5231 0.9697 0.9640 0.5029
Fu 0.8678 0.2572 0.8053 0.8302 0.2161 0.8071 0.8695 0.2896 0.7900

Fd + Ft 0.9461 0.1711 0.8875 0.9237 0.2243 0.8497 0.9413 0.2234 0.8589
Fd + Fu 0.9473 0.2156 0.8659 0.9237 0.1981 0.8628 0.9370 0.1942 0.8714
Ft + Fu 0.8737 0.2749 0.7994 0.8467 0.2287 0.8090 0.8697 0.2584 0.8056

Fd+Ft+Fu 0.9459 0.1482 0.8988 0.9364 0.1848 0.8758 0.9400 0.1390 0.9005
will be generated in the partitioning solution. Since the complexity of running TLB

in this big sub-RAN is still very high, partitioning the network solely based on Ft is

not appropriate. The partitioning solution solely based on Fu will lead to a poorer

network performance. However, when combined with other features, the obtained

network partitioning solution can obviously improve V of the TLB function. For

instance, when the network is partitioned based on {Fd, Ft}, the computation perfor-

mance of the TLB function is 0.1711. When the network is partitioned according to

{Fd, Ft, Fu}, the computation performance of the TLB function is 0.1482. Therefore,

by introducing a new network feature Fu, the computation performance of the TLB

function improves 0.0229.

When the network is partitioned with a combination of three networking features,

the network partitioning solution can always enable the TLB function to achieve the

maximum ψ. In addition, the partitioning solution can also significantly improve the

computation performance V of the network function in all of the time slots. This

indicates that when network is partitioned with the combination of three networking

features, the network partitioning solution does not allow a sub-RAN with a large

number of BSs.

6.5.3 Network Function Performance

We evaluate the network clustering performance in three steps. First, we study

the impact of the number of sub-RANs K on the networking and computation per-

133

formance. Second, we analyze the networking and computation performance on each

sub-RAN with two network partitioning granularities. Third, we investigate the net-

working and computation performance of the network function with the partitioning

solution obtained by using the prediction model.

Fig. 6.12 shows the impact of the number of sub-RANs on the performance of the

TLB function. As the number of sub-RANs, K, increases, the computation perfor-

mance is significantly enhanced. The larger K, the less computing time required for

executing the TLB function. However, when K > 8, the improvement of the compu-

tation performance diminishes. The networking performance drops as the number of

sub-RANs increases. A larger number of sub-RANs may constrain more users from

being served by certain BSs. As a result, the aggregated network utility is reduced.

When K increases from 1 to 10, the networking performance P drops 10%. When

K increases from 10 to 20, it only drops 4%. This indicates that the performance

drop also slows down when K is larger than a certain number, e.g., 10 in the simu-

lation. Based on network management strategies, network operators can determine

the tradeoff between the computation performance and the networking performance.

0 2 4 6 8 10 12 14 16 18 20
The number of sub-RANs

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 (

%
)

ω=0.5

Ψ V P

Figure 6.12: Network partitioning performance versus the number of sub-RANs.

We next evaluate the networking and computation performance on each sub-RAN,

respectively. Fig. 6.13 shows cumulative distribution functions (CDFs) of the compu-

134

tation and networking performance in individual sub-RANs. Fig. 6.13(a) shows CDFs

of the computation performance with BS-based and grid-based network partitioning,

respectively. Let Bs be the set of sub-RANs. Denote νi = τi
τ

as the computation

performance of the ith sub-RAN. Based on νi, ∀i ∈ Bs, we derive the CDF of the

computation performance in individual RANs. As shown in Fig. 6.13(a), with BS-

based network partitioning, 70% of the sub-RANs save more than 90% computing

time while the remaining 30% sub-RANs save 80% to 90% computing time after net-

work partitioning. This proves that network partitioning significantly improves com-

putation performance of the network function. With grid-based network partitioning,

90% of the sub-RANs save more than 90% computing time while the remaining 10%

sub-RANs save 85% to 90% computing time after network partitioning. This proves

that grid-based network partitioning can also improve the computation performance

significantly.

Fig. 6.13(b) shows the CDFs of the networking performance in individual sub-

RANs. For the TLB function, Ui and Ûi are denoted as the set of the users associated

with BSs in the ith sub-RAN before and after network partitioning, respectively. Let

pi be the networking performance of the ith sub-RAN. Then, pi =
∑

j∈Ûi
U(R̂j)∑

j∈Ui
U(Rj)

. Based

on pi, ∀i ∈ Bs, we derive the CDF of the networking performance of individual sub-

RANs. As shown in Fig. 6.13(b), with BS-based network partitioning, the networking

performance only decreases less than 10% in more than 40% of sub-RANs. Besides,

about 20% of sub-RANs increase their networking performance. Only 10% of sub-

RANs suffer from network partitioning in terms of the networking performance. The

networking performance of these sub-RANs decreases up to 40%. This analysis shows

that network partitioning can provision computation efficient network management at

a low cost of the networking performance. With grid-based network partitioning, the

networking performance only decreases less than 10% in more than 35% of sub-RANs.

Besides, about 10% of sub-RANs increase their networking performance. About 20%

135

0 0.04 0.08 0.12 0.14
Computation performance

0

0.2

0.4

0.6

0.8

1

C
D

F

(a)

BS

Grid

0 0.04 0.08 0.12 0.14
Computation performance

0

0.2

0.4

0.6

0.8

1

C
D

F

(a)

BS

Grid

0.5 0.6 0.7 0.8 0.9 1 1.1
Networking performance

0

0.2

0.4

0.6

0.8

1
(b)

BS

Grid

0.5 0.6 0.7 0.8 0.9 1 1.1
Networking performance

0

0.2

0.4

0.6

0.8

1
(b)

BS

Grid

Figure 6.13: The computation and networking performance analysis.
of sub-RANs suffer from network partitioning in terms of the network performance,

and they lose more than 30% networking performance.

After training the prediction model, we predict the optimal BS cluster number K

for each time slot in the test data set. We then partition the network intoK sub-RANs

and place the TLB function in each sub-RAN. Fig. 6.14 shows the CDFs of computa-

tion and networking performance of the TLB function for all time slots. Fig. 6.14(a)

presents the computation performance. With BS-based network partitioning, it shows

that using the predicted K to partition the network, the computation time of the net-

work function is less than 10% of that of the optimal networking mechanism in about

95% of the simulated time slots. Here, the optimal networking mechanism is defined

as the network function executed on the entire radio access network without any net-

work partitioning. This result proves that the proposed framework can effectively

improve computation performance of the network function.

Fig. 6.14(b) presents the networking performance, and shows that BS-based net-

work partitioning can achieve at least 85% of the optimal network performance in all

simulated time slots. In 80% of the simulated time slots, our framework can achieve

90% of the optimal network performance. Therefore, the proposed framework can

significantly reduce the computation time of the networking mechanism at a low cost

136

of the networking performance. With grid-based network partitioning, we can achieve

at least 80% of the optimal network performance in all simulated time slots. In 70%

of the simulated time slots, our framework can achieve 90% of the optimal network

performance.

With grid-based network partitioning, the BSs within the same grid cannot be

grouped into different sub-RANs. As a result, grid-based network partitioning has

less flexibility in terms of grouping BSs than BS-based network partitioning.

0 0.2 0.4 0.6 0.8 1
Computation performance

0

0.2

0.4

0.6

0.8

1

C
D

F

(a)

BS

Grid

0 0.2 0.4 0.6 0.8 1
Networking performance

0

0.2

0.4

0.6

0.8

1
(b)

BS

Grid

Figure 6.14: The CDF of system performance.

6.5.4 Prediction Model Performance

0 5 10 15 20 25
K (Number of BS clusters)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

3:20 AM
8:40 AM

11:50 AM
Optimal

Figure 6.15: The performance of the prediction model.

137

To evaluate the performance of the cluster number predictors, we first analyze the

impact of the cluster number on the performance of the network functions. Fig. 6.15

shows the performance of our framework under three different traffic cogitations.

3:20 AM, 8:40 AM, and 11:50 AM represent low, medium, and high traffic load layer,

respectively. We can observe that the optimal cluster number, K∗, with the maximum

ψ for different time slots are 8, 15, and 25, respectively. Denote K̂ as the number of

BS clusters predicted from the ANN predictors, we can see that ψ with the prediction

errors |K̂−K∗| = 1, |K̂−K∗| = 2, and |K̂−K∗| = 3 will only be reduced on average

by 0.5%, 1.5%, and 2%, respectively. In this case, we consider K̂, which satisfies

|K̂ −K∗| = 1, acceptable.

To evaluate the accuracy of our prediction models, we define the predicted result

K̂, which satisfies |K̂ −K∗| = 0 as the accurate prediction. The K̂, which satisfies

|K̂ − K∗| <= 1, as the acceptable prediction. The accuracy rate is defined as the

number of correct predictions divided by the number of all predictions. Fig. 6.16(a)

SVM-Gaussian SVM-Linear ANN Least-Squares
0

10

20

30

40

BS

Grid

SVM-Gaussian SVM-Linear ANN Least-Squares
0

10

30

50

70

90
BS

Grid

C
o
rr

e
ct

 p
re

d
ic

ti
o
n

ra
te

 (
%

)

Accurate prediction Acceptable prediction

Figure 6.16: The prediction error of different predictors.

shows the accurate prediction results performed by three cluster number predictors

in BS-based and grid-based network partitioning. The SVM regression model always

obtains a higher accuracy rate than the Least-squares regression model. The ANN

predictor achieves the highest accuracy rate, 36%. The accurate prediction rates of

all the BS cluster number predictors in grid-based network partitioning is higher than

138

that in BS-based network partitioning. Acceptable prediction results are shown in

Fig. 6.16(b). The SVM regression model always obtains the best accuracy rate in

both BS-based and grid-based network partitioning. In BS-based network partition-

ing, the ANN predictor has the worst prediction accuracy rate, 57%. However its

accuracy rate increases to 70% in grid-based network partitioning. The reason is that

the dimensions of the input vector for the training model are reduced in grid-based

network partitioning, and thus the prediction performance can be improved.

0 5 10 15 20 25

K (Number of BS clusters)

0

5

10

15

20

25
(a) BS-based

HCA

K-medoids

0 5 10 15 20 25
0

5

10

15

20

25
(b) grid-based

HCA

K-medoids

C
lu

s
te

ri
n
g
 t

im
e
 (

s)

Figure 6.17: The computation time of clustering algorithms.

6.5.5 Clustering Algorithm Performance

Fig. 6.17 shows the comparison of the computation time of HCA and K-medoids

algorithms in both BS-based and grid-based network partitioning. The computation

time for clustering BSs using the HCA algorithm does not change with the number

of BS clusters. This is because the HCA algorithm needs to generate the entire

clustering tree no matter what the value of K is. The computation time of the K-

medoids algorithm is linearly proportional to the number of BS clusters. When the

number of BS clusters is small, the computation time of the K-medoids algorithm is

much less than that of the HCA algorithm.

As compared to BS-based network partitioning, grid-based network partitioning

saves about 43% and 46% computation time with the HCA and K-mean algorithms,

139

respectively.

0 5 10 15 20 25

K (Number of the BS clusters)

0.6

0.7

0.8

0.9

HCA

K-medoids

1

P
e
rf

o
rm

a
n
c
e

(%
)

Figure 6.18: The performance of clustering algorithms.

Fig. 6.18 shows the performance comparison of different clustering algorithms. The

performance of the HCA algorithm is only slightly better than that of the K-medoids

algorithm. The HCA algorithm has a better performance because it merges the clus-

ters with the minimal inter-clusters distance in building the clustering tree. However,

the computational complexity of the K-medoids algorithm is significantly lower than

that of the HCA algorithm. Therefore, the K-medoids algorithm is more suitable for

realtime network partitioning.

CHAPTER 7: CONCLUSION

7.1 Completed Work

In this dissertation, two deep learning driven optimization frameworks, Pearl (a

deep learning driven video compression framework) and DAVE (dynamic adaptive

video encoding framework), are proposed to improve the video visual quality and re-

duce the network bandwidth usage of video transmissions for resource-hungry video

streaming applications. Three novel schemes, an improved frame-level offloading de-

cision scheme, a new online model updating scheme, and a smart task allocation

decision scheme, are proposed to satisfy the high computation complexity and low

latency requirement of MAR applications. Furthermore, a data-driven network opti-

mization framework is proposed to enable realtime and efficient ultra-dense network

optimization.

For video delivery applications, we have proposed a deep learning driven compres-

sion framework named Pearl, that utilizes the power of deep learning to compress

UHD videos. An optimal compact representation from the origin UHD videos is

learned with channel-based super resolution models. The super resolution model is

used to reconstruct a UHD video from a low-resolution video. Pearl can compress

up to 95% of video data size during the video transmission, which significantly saves

network bandwidth resources and reduces the network transmission latency.

The video perceptual quality of current real-time video streaming systems is nor-

mally sacrificed to meet the very low-latency requirement, and traditional adaptation

strategies in live video streaming systems cannot be directly applied to the real-time

video streaming system. To overcome these challenges, a new real-time video stream-

ing protocol, DAVE, is proposed. DAVE uses a reinforcement learning model to learn

141

the optimal video encoding configurations under different network conditions, and a

super resolution algorithm is applied in DAVE to improve the video perceptual quality.

Extensive evaluations based on both simulation and a real testbed show that DAVE

substantially improves the performance of existing real-time video streaming systems

in terms of improved video perceptual quality and reduced end-to-end latency.

For mobile augmented reality applications, we have proposed a smart-decision

framework which combines the advantages of the on-device mobile AR system and

the edge-based mobile AR system to achieve real-time recognition tasks. High com-

putation complexity tasks will be offloaded to the edge servers. Low complexity tasks

will be executed on the mobile devices or the edge server depending on the network la-

tency. We design a cache and matching system to enhance the performance of mobile

AR applications when the on-device deep learning models have poor performance.

Executing object detection on mobile devices faces one challenge: poor user QoE

caused by detection-failure. Experimental results from our implemented testbed indi-

cate that existing MAR systems that apply offloading and tracking algorithms cannot

be used to improve the poor user QoE caused by detection-failure. We addressed this

challenge by exploring the characteristics of detection-failure in MAR applications.

A new frame-level offloading decision algorithm and the first online model replace-

ment scheme for MAR systems are proposed. To the best of our knowledge, this is

the first work that addresses this problem. Our proposed designs are complementary

to existing offloading decision optimization schemes. It can substantially reduce the

detection-failure rate and improve user QoE.

For ultra-dense mobile networks, we have proposed a wireless big data-driven net-

work function placement framework, which integrates wireless big data analysis and

network functions, to enable real-time and efficient network management. The pro-

posed framework consists of a data processing module, an offline machine learning

module, and an online network function placement module. We employ big data

142

analytics to extract useful information and use machine learning to achieve near re-

altime VNF placement for ultra-dense wireless networks. Our proposed framework

significantly reduces the computational complexity of network functions.

7.2 Future Work

Based on our analysis of resource-hungry applications, two issues can be considered

in future work:

• More and more AI-enabled applications are deployed on mobile devices. How-

ever, to apply AI-enabled features, high computation complexity tasks (DNN

models) need to be frequently executed. These model executions drain the

battery on mobile devices very fast, which significantly reduces the experience

time of mobile applications. These applications can also be defined as resource-

hungry applications. Offloading the high computation complexity tasks to the

edge server can save energy on mobile devices. However, additional transmission

latency degrades user QoE. We can train an AI agent that will decide where

to execute the task to balance the energy consumption and latency of these

resource-hungry applications.

• DNN models usually have a very high computation complexity, which is very

challenging for mobile devices. Model compression can significantly reduce the

model computation complexity which brings a faster execution speed and less

energy consumption. We can adopt model compression to further enhance the

performance of resource-hungry applications.

7.3 Published and Submitted Work

The following list is a summary of my publications:

• Siqi Huang, Haoxin Wang, and Jiang Xie, “Improving the effectiveness of object

detection for edge-based mobile augmented reality," (submitted).

143

• Siqi Huang, Jiang Xie, and Muhana Magboul Ali Muslam, “Configuration adap-

tive video encoding for real-time video streaming applications," (submitted).

• Siqi Huang, Jiang Xie, and Muhana Magboul Ali Muslam, “A cloud computing

based deep compression framework for UHD video delivery," IEEE Transactions

on Cloud Computing, 2021.

• Siqi Huang and Jiang Xie, “DAVE: Dynamic adaptive video encoding for real-

time video streaming applications," in Proceedings of IEEE International Con-

ference on Sensing, Communication and Networking (SECON), July 2021.

• Siqi Huang and Jiang Xie, “Pearl: A fast deep learning driven compression

framework for UHD video delivery," in Proceedings of IEEE International Con-

ference on Communications (ICC), June 2021.

• Siqi Huang, Tao Han, and Jiang Xie, “A smart-decision system for real-time

mobile AR applications," in Proceedings of IEEE Global Communications Con-

ference (GLOBECOM), December 2019.

• Siqi Huang, Tao Han, and Nirwan Ansari, “Data-driven network Optimization

in ultra-dense radio access networks," in Proceedings of IEEE Global Commu-

nications Conference (GLOBECOM), December 2017.

• Siqi Huang, Tao Han, and Nirwan Ansari, “Big-data-driven network partitioning

for ultra-dense radio access networks," in Proceedings of IEEE International

Conference on Communications (ICC), June 2016.

• Siqi Huang, Xueqing Huang, and Nirwan Ansari, “Budget-aware video crowd-

sourcing at the cloud-enhanced mobile edge," IEEE Transactions on Network

and Service Management, 2021.

144

• Tapang Daniel Kanba, Siqi Huang, and Xueqing Huang, “QoE-based server

selection for mobile video streaming," in Proceedings of IEEE/ACM Symposium

on Edge Computing (SEC), November, 2020.

• Qiang Liu, Siqi Huang, Johnson Opadere, and Tao Han, “An edge network

orchestrator for mobile augmented reality," in Proceedings of IEEE Conference

on Computer Communications (INFOCOM), April 2018.

• Qiang Liu, Siqi Huang, and Tao Han, “Fast and accurate object analysis at the

edge for mobile augmented reality," in Proceedings of the Second ACM/IEEE

Symposium on Edge Computing (SEC), December 2017.

• Qiang Liu, Siqi Huang, Yang Deng, and Tao Han, “Demo abstract: MExR: Mo-

bile edge resource management for mixed reality applications," in Proceedings

of IEEE Conference on Computer Communications Workshops (INFOCOM),

May 2017.

145

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast update,
2015–2020,” Feb. 2016. White Paper.

[2] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, A. Finamore, and T. Zseby, “When
YouTube does not work, Analysis of QoE-relevant degradation in Google CDN
traffic,” IEEE Transactions on Network and Service Management, vol. 11, no. 4,
pp. 441–457, 2014.

[3] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with festive,” IEEE/ACM Transactions
on Networking (ToN), vol. 22, no. 1, pp. 326–340, 2014.

[4] E. Ramadan, A. Narayanan, Z. Zhang, R. Li, and G. Zhang, “Big cache abstrac-
tion for cache networks,” in Proceedings of the IEEE International Conference
on Distributed Computing Systems (ICDCS), pp. 742–752, 2017.

[5] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with
pensieve,” in Proceedings of ACM Special Interest Group on Data Communica-
tion, pp. 197–210, 2017.

[6] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-
aware Internet video delivery,” in Proceedings of 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI)), pp. 645–661, 2018.

[7] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor, and
M. Covell, “Full resolution image compression with recurrent neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 5306–5314, 2017.

[8] C. V. Forecast, “Cisco visual networking index: Forecast and trends, 2017–
2022,” White paper, Cisco Public Information, 2019.

[9] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of real-time
stream processing,” ACM Sigmod Record, vol. 34, no. 4, pp. 42–47, 2005.

[10] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman, “Performance
evaluation of WebRTC-based video conferencing,” ACM SIGMETRICS Perfor-
mance Evaluation Review, pp. 56–68, 2018.

[11] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for adaptive live
video streaming,” in Proceedings of ACM Conference on Multimedia Systems
(MMsys), pp. 145–156, 2011.

[12] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-
based approach to rate adaptation: Evidence from a large video streaming
service,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 4,
pp. 187–198, 2015.

146

[13] T. Stockhammer et al., “Dynamic Adaptive Streaming over HTTP—Design
Principles and Standards,” in Proceedings of the Second Annual ACM Confer-
ence on Multimedia Systems, pp. 2–4, 2011.

[14] “HTTP Live Streaming.” https://developer.apple.com/streaming/.

[15] J. C. Lin and S. Paul, “RMTP: A reliable multicast transport protocol,” in Pro-
ceedings of IEEE Conference on Computer Communications, vol. 3, pp. 1414–
1424, 1996.

[16] “WebRTC: Real-time communication for the web.” https://webrtc.org/.

[17] L. De Cicco, G. Carlucci, and S. Mascolo, “Experimental investigation of the
google congestion control for real-time flows,” in Proceedings of the ACM SIG-
COMM Workshop on Future Human-centric Multimedia Networking, pp. 21–26,
2013.

[18] M. Nagy, V. Singh, J. Ott, and L. Eggert, “Congestion control using FEC
for conversational multimedia communication,” in Proceedings of the 5th ACM
Multimedia Systems Conference, pp. 191–202, 2014.

[19] H. Alvestrand, S. Holmer, and H. Lundin, “A google congestion control al-
gorithm for real-time communication on the world wide web,” IETF Internet
Draft, 2013.

[20] https://www.a9.com/what-we-do/visual-search.html/.

[21] https://www.microsoft.com/en-us/hololens/apps/holotour.

[22] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and L. V. Gool, “Server-
side object recognition and client-side object tracking for mobile augmented
reality,” in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) - Workshops, pp. 1–8, 2010.

[23] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,” in Pro-
ceedings of ACM Conference on Embedded Networked Sensor Systems (SenSys),
pp. 155–168, 2015.

[24] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Prefetching for image recog-
nition applications at the edge,” in Proceedings of IEEE/ACM Symposium on
Edge Computing (SEC), pp. 1–13, 2017.

[25] W. Zhang, S. Lin, F. H. Bijarbooneh, H. F. Cheng, and P. Hui, “CloudAR: A
cloud-based framework for mobile augmented reality,” in Proceedings of The-
matic Workshops of ACM Multimedia, pp. 194–200, 2017.

147

[26] D. Wagner, D. Schmalstieg, and H. Bischof, “Multiple target detection and
tracking with guaranteed framerates on mobile phones,” in Mixed and aug-
mented reality, 2009. ISMAR 2009. 8th IEEE international symposium on,
pp. 57–64, IEEE, 2009.

[27] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg, “Real-
time detection and tracking for augmented reality on mobile phones,” IEEE
transactions on visualization and computer graphics, vol. 16, no. 3, pp. 355–
368, 2010.

[28] M. Shoaib, S. Venkataramani, X.-S. Hua, J. Liu, and J. Li, “Exploiting on-
device image classification for energy efficiency in ambient-aware systems,” in
Mobile Cloud Visual Media Computing, pp. 167–199, Springer, 2015.

[29] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile deep
learning framework for edge video analytics,” in Proceedings of IEEE Conference
on Computer Communications (INFOCOM), pp. 1421–1429, 2018.

[30] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator for
mobile augmented reality,” in Proceedings of IEEE Conference on Computer
Communications (INFOCOM), pp. 756–764, 2018.

[31] A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and offloading
decision in mobile edge computing,” IEEE Communications Letters, vol. 23,
no. 4, pp. 684–687, 2019.

[32] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spa-
tiotemporal modeling and prediction in cellular networks: A big data enabled
deep learning approach,” in IEEE International Conference on Computer Com-
munications (INFOCOM), (Atlanta, GA, USA), May 2017.

[33] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang,
“Big data-driven optimization for mobile networks toward 5G,” IEEE Network,
vol. 30, no. 1, pp. 44–51, 2016.

[34] M. K. Weldon, The Future X Network: A Bell Labs Perspective. Crc Press,
2016.

[35] X. Ge, S. Tu, G. Mao, C. X. Wang, and T. Han, “5G ultra-dense cellular
networks,” IEEE Wireless Comm., vol. 23, no. 1, pp. 72–79, 2016.

[36] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews,
“User association for load balancing in heterogeneous cellular networks,” IEEE
Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.

[37] J. Wu, Y. Zhang, M. Zukerman, and E. K.-N. Yung, “Energy-efficient base-
stations sleep-mode techniques in green cellular networks: A survey,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 2, pp. 803–826, 2015.

148

[38] S. Huang, T. Han, and N. Ansari, “Big-data-driven network partitioning for
ultra-dense radio access networks,” in IEEE International Conference on Com-
munications (ICC), (Paris, France), May 2017.

[39] J. G. Andrews, S. Singh, Q. Ye, X. Lin, and H. S. Dhillon, “An overview of
load balancing in HetNets: Old myths and open problems,” IEEE Wireless
Communications, vol. 21, no. 2, pp. 18–25, 2014.

[40] T. Han and N. Ansari, “A traffic load balancing framework for software-defined
radio access networks powered by hybrid energy sources,” IEEE/ACM Trans-
actions on Networking, vol. 24, pp. 1038–1051, April 2016.

[41] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[42] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization:
Challenges and opportunities for innovations,” IEEE Communications Maga-
zine, vol. 53, no. 2, pp. 90–97, 2015.

[43] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach for ser-
vice function chain routing and virtual function network instance migration
in network function virtualization architectures,” IEEE/ACM Transactions on
Networking, 2017.

[44] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3,
pp. 241–254, 1967.

[45] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinop-
oli, “CS2P: Improving video bitrate selection and adaptation with data-driven
throughput prediction,” in Proceedings of the ACM SIGCOMM Conference,
pp. 272–285, 2016.

[46] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara, “Toward a
practical perceptual video quality metric,” The Netflix Tech Blog, vol. 6, 2016.

[47] “Video codec—H.264 standardization.” https://www.itu.int/rec/T-REC-H.
264.

[48] “Video codec—VP9.” https://www.webmproject.org/vp9/.

[49] Y. Zhang, Y. Zhang, Y. Wu, Y. Tao, K. Bian, P. Zhou, L. Song, and H. Tuo,
“Improving quality of experience by adaptive video streaming with super-
resolution,” in Proceedings of IEEE Conference on Computer Communications
(INFOCOM), pp. 1957–1966, 2020.

[50] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolu-
tional neural network,” in Proceedings of the European Conference on Computer
Vision, pp. 391–407, 2016.

149

[51] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual net-
works for single image super-resolution,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[52] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy, “ESR-
GAN: Enhanced super-resolution generative adversarial networks,” in Proceed-
ings of the European Conference on Computer Vision Workshops (ECCVW),
September 2018.

[53] J.-H. Heu, D.-Y. Hyun, C.-S. Kim, and S.-U. Lee, “Image and video colorization
based on prioritized source propagation,” in Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 465–468, 2009.

[54] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,” ACM
Transactions on Graphics (TOG), vol. 23, no. 3, pp. 689–694, 2004.

[55] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros, “Real-
time user-guided image colorization with learned deep priors,” ACM Transac-
tions on Graphics (TOG), vol. 9, no. 4, 2017.

[56] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134, 2017.

[57] O. Rippel and L. Bourdev, “Real-time adaptive image compression,” in Proceed-
ings of the 34th International Conference on Machine Learning, pp. 2922–2930,
2017.

[58] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R. Timofte, L. Benini,
and L. V. Gool, “Soft-to-hard vector quantization for end-to-end learning com-
pressible representations,” in Proceedings of Advances in Neural Information
Processing Systems (NIPS), pp. 1141–1151, 2017.

[59] M. Tschannen, E. Agustsson, and M. Lucic, “Deep generative models for
distribution-preserving lossy compression,” in Proceedings of Advances in Neu-
ral Information Processing Systems (NIPS), pp. 5929–5940, 2018.

[60] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal bitrate
adaptation for online videos,” in Proceedings of IEEE International Conference
on Computer Communications, pp. 1–9, 2016.

[61] J. Joskowicz and J. C. L. Ardao, “Combining the effects of frame rate, bit
rate, display size and video content in a parametric video quality model,” in
Proceedings of the 6th Latin America Networking Conference, pp. 4–11, 2011.

[62] G. Zhai, J. Cai, W. Lin, X. Yang, and W. Zhang, “Three dimensional scalable
video adaptation via user-end perceptual quality assessment,” IEEE Transac-
tions on Broadcasting, vol. 54, no. 3, pp. 719–727, 2008.

150

[63] L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang, and L. Zhang, “Image super-
resolution: The techniques, applications, and future,” Signal Processing,
vol. 128, pp. 389–408, 2016.

[64] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[65] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
Computer vision–ECCV 2006, pp. 404–417, 2006.

[66] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alter-
native to sift or surf,” in Computer Vision (ICCV), 2011 IEEE international
conference on, pp. 2564–2571, IEEE, 2011.

[67] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[68] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on computer
vision, pp. 21–37, Springer, 2016.

[69] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, pp. 91–99, 2015.

[70] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[71] M. Apte, S. Mangat, and P. Sekhar, “Yolo net on ios,” 2017.

[72] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection for
mobile augmented reality,” in Proceedings of ACM Conference on Mobile Com-
puting and Networking (MobiCom), pp. 1–16, 2019.

[73] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation of-
floading for mobile systems,” Mobile Networks and Applications, vol. 18, no. 1,
pp. 129–140, 2013.

[74] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile edge com-
puting: Task allocation and computational frequency scaling,” IEEE Transac-
tions on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[75] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 3, pp. 1628–1656, 2017.

151

[76] N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa, “Cross-domain weakly-
supervised object detection through progressive domain adaptation,” in Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5001–5009, 2018.

[77] D. Li, S. Tasci, S. Ghosh, J. Zhu, J. Zhang, and L. Heck, “RILOD: near real-
time incremental learning for object detection at the edge,” in Proceedings of
ACM/IEEE Symposium on Edge Computing (SEC), pp. 113–126, 2019.

[78] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network function
placement for nfv chaining in packet/optical datacenters,” Journal of Lightwave
Technology, vol. 33, no. 8, pp. 1565–1570, 2015.

[79] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement of vdpi
functions in nfv infrastructures,” International Journal of Network Manage-
ment, vol. 25, no. 6, pp. 490–506, 2015.

[80] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of vir-
tual network functions,” in IEEE International Conference on Cloud Networking
(CloudNet), pp. 7–13, IEEE, 2014.

[81] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and R. Boutaba,
“Elastic virtual network function placement,” in Cloud Networking (CloudNet),
2015 IEEE 4th International Conference on, pp. 255–260, IEEE, 2015.

[82] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint optimiza-
tion of chain placement and request scheduling for network function virtualiza-
tion,” in Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on, pp. 731–741, IEEE, 2017.

[83] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-optimal
vnf placement at the network edge,” 2018.

[84] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of
virtual network functions,” in Computer Communications (INFOCOM), 2015
IEEE Conference on, pp. 1346–1354, IEEE, 2015.

[85] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Proactive vnf provisioning with multi-
timescale cloud resources: Fusing online learning and online optimization,”
in INFOCOM 2017-IEEE Conference on Computer Communications, IEEE,
pp. 1–9, IEEE, 2017.

[86] S. Q. Zhang, A. Tizghadam, B. Park, H. Bannazadeh, and A. Leon-Garcia,
“Joint nfv placement and routing for multicast service on sdn,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), pp. 333–341, IEEE,
2016.

152

[87] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,
“Piecing together the nfv provisioning puzzle: Efficient placement and chain-
ing of virtual network functions,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), pp. 98–106, IEEE.

[88] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “A distributed nfv orchestrator
based on bdi reasoning,” in IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pp. 107–115, IEEE, 2017.

[89] M. C. Luizelli, D. Raz, Y. Sa’ar, and J. Yallouz, “The actual cost of software
switching for nfv chaining,” in IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), pp. 335–343, IEEE, 2017.

[90] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating
virtual network functions,” in International Conference on Network and Service
Management (CNSM), pp. 50–56, IEEE, 2015.

[91] Y. Li and M. Chen, “Software-defined network function virtualization: A sur-
vey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[92] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,
“Piecing together the nfv provisioning puzzle: Efficient placement and chain-
ing of virtual network functions,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), pp. 98–106, IEEE, 2015.

[93] J. Liu, F. Liu, and N. Ansari, “Monitoring and analyzing big traffic data of a
large-scale cellular network with hadoop,” IEEE Network, vol. 28, no. 4, pp. 32–
39, 2014.

[94] F. Xu, Y. Li, M. Chen, and S. Chen, “Mobile cellular big data: linking cy-
berspace and the physical world with social ecology,” IEEE network, vol. 30,
no. 3, pp. 6–12, 2016.

[95] Z. Su, Q. Xu, and Q. Qi, “Big data in mobile social networks: A QoE-oriented
framework,” IEEE Network, vol. 30, no. 1, pp. 52–57, 2016.

[96] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless networks,”
IEEE Journal on Selected areas in Communications, vol. 15, no. 7, pp. 1265–
1275, 1997.

[97] J. Y. Yu and P. H. J. Chong, “A survey of clustering schemes for mobile ad hoc
networks,” IEEE Communications Surveys & Tutorials, vol. 7, no. 1, pp. 32–48,
2005.

[98] S. Banerjee and S. Khuller, “A clustering scheme for hierarchical control in
multi-hop wireless networks,” in INFOCOM 2001. Twentieth annual joint con-
ference of the IEEE computer and communications societies. Proceedings. IEEE,
vol. 2, pp. 1028–1037, IEEE, 2001.

153

[99] K. H. Wang and B. Li, “Group mobility and partition prediction in wireless
ad-hoc networks,” in Communications, 2002. ICC 2002. IEEE International
Conference on, vol. 2, pp. 1017–1021, IEEE, 2002.

[100] Y. Yu, S. Murphy, and L. Murphy, “A clustering approach to planning base
station and relay station locations in ieee 802.16 j multi-hop relay networks,” in
Communications, 2008. ICC’08. IEEE International Conference on, pp. 2586–
2591, IEEE, 2008.

[101] M. Hong, R. Sun, H. Baligh, and Z.-Q. Luo, “Joint base station clustering
and beamformer design for partial coordinated transmission in heterogeneous
networks,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2,
pp. 226–240, 2013.

[102] D. Ray, J. Kosaian, K. Rashmi, and S. Seshan, “Vantage: optimizing video
upload for time-shifted viewing of social live streams,” in Proceedings of ACM
Special Interest Group on Data Communication (SIGCOMM), pp. 380–393,
2019.

[103] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic approach for
dynamic adaptive video streaming over HTTP,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 325–338, 2015.

[104] G. Yi, D. Yang, A. Bentaleb, W. Li, Y. Li, K. Zheng, J. Liu, W. T. Ooi, and
Y. Cui, “The ACM Multimedia 2019 Live Video Streaming Grand Challenge,”
in Proceedings of ACM International Conference on Multimedia, pp. 2622–2626,
2019.

[105] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A buffer-
based approach to rate adaptation: Evidence from a large video streaming
service,” in Proceedings of ACM SIGCOMM Conference, vol. 44, pp. 187–198,
2014.

[106] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and
K. Winstein, “Learning in situ: a randomized experiment in video streaming,”
in Proceedings of USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI), pp. 495–511, 2020.

[107] Y.-F. Ou, Z. Ma, T. Liu, and Y. Wang, “Perceptual quality assessment of video
considering both frame rate and quantization artifacts,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 21, no. 3, pp. 286–298, 2010.

[108] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[109] “A virtual network simulator: Mininet.” http://mininet.org/.

154

[110] J. Liu, M. Lu, K. Chen, X. Li, S. Wang, Z. Wang, E. Wu, Y. Chen, C. Zhang,
and M. Wu, “Overfitting the data: Compact neural video delivery via content-
aware feature modulation,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 4631–4640, 2021.

[111] R. Lee, S. I. Venieris, and N. D. Lane, “Neural enhancement in content delivery
systems: The state-of-the-art and future directions,” in Proceedings of the 1st
Workshop on Distributed Machine Learning, pp. 34–41, 2020.

[112] Y. Wu and Y. Tian, “Training agent for first-person shooter game with actor-
critic curriculum learning,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[113] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck,
“A learning-based algorithm for improved bandwidth-awareness of adaptive
streaming clients,” in Proceedings of the IFIP/IEEE International Symposium
on Integrated Network Management (IM), pp. 131–138, 2015.

[114] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Confused,
timid, and unstable: picking a video streaming rate is hard,” in Proceedings of
the ACM Internet Measurement Conference, pp. 225–238, 2012.

[115] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-
resolution image synthesis and semantic manipulation with conditional GANs,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2018.

[116] M. He, D. Chen, J. Liao, P. V. Sander, and L. Yuan, “Deep exemplar-based
colorization,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 47,
2018.

[117] Y. Luo and X. Tang, “Photo and video quality evaluation: Focusing on the sub-
ject,” in Proceedings of the European Conference on Computer Vision, pp. 386–
399, Springer, 2008.

[118] E. Agustsson and R. Timofte, “NTIRE 2017 Challenge on Single Image Super-
Resolution: Dataset and Study,” in Processings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

[119] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” in Proceedings of the ACM International Conference on Multimedia,
pp. 675–678, 2014.

[120] “ARCore.” https://developers.google.com/ar/.

[121] “ARkit.” https://developer.apple.com/arkit/.

155

[122] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile augmented reality
survey: From where we are to where we go,” IEEE Access, vol. 5, pp. 6917–6950,
2017.

[123] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proceedings
of European Conference on Computer Vision (ECCV), pp. 740–755, 2014.

[124] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, et al., “Speed/accuracy trade-offs for mod-
ern convolutional object detectors,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7310–7311, 2017.

[125] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F. Li, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[126] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Ka-
mali, S. Popov, M. Malloci, T. Duerig, et al., “The open images dataset v4:
Unified image classification, object detection, and visual relationship detection
at scale,” arXiv preprint arXiv:1811.00982, 2018.

[127] H. Wang and J. Xie, “User preference based energy-aware mobile AR system
with edge computing,” in Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), pp. 1379–1388, 2020.

[128] B. Liu, Y. Li, Y. Liu, Y. Guo, and X. Chen, “Pmc: A privacy-preserving deep
learning model customization framework for edge computing,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4,
no. 4, pp. 1–25, 2020.

[129] S. Huang, T. Han, and J. Xie, “A smart-decision system for realtime mobile aug-
mented reality applications,” in Proceedings of IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, 2019.

[130] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K. Roy-
Chowdhury, “Frugal following: Power thrifty object detection and tracking for
mobile augmented reality,” in Proceedings of ACM Conference on Embedded
Networked Sensor Systems (SenSys), pp. 96–109, 2019.

[131] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018.

[132] ITU Recommendation and P.910, “Subjective video quality assessment methods
for multimedia applications,” 2008.

156

[133] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue,
“ABR streaming of VBR-encoded Videos: Characterization, challenges, and
solutions,” in Proceedings of ACM Conference on Emerging Networking Exper-
iments and Technologies (CoNEXT), pp. 366–378, 2018.

[134] Y. Bao, H. Wu, A. A. Ramli, B. Wang, and X. Liu, “Viewing 360-degree videos:
Motion prediction and bandwidth optimization,” in Proceedings of IEEE Inter-
national Conference on Network Protocols (ICNP), pp. 1–2, 2016.

[135] Y. Bao, T. Zhang, A. Pande, H. Wu, and X. Liu, “Motion-prediction-based mul-
ticast for 360-degree video transmissions,” in Proceedings of IEEE International
Conference on Sensing, Communication, and Networking (SECON), pp. 1–9,
2017.

[136] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average model
performance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005.

[137] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pp. 248–255, IEEE, 2009.

[138] N. Ansari and E. Hou, Computational intelligence for optimization. Springer
Science & Business Media, 2012.

[139] L. Kaufman and P. Rousseeuw, Clustering by means of medoids. North-Holland,
1987.

[140] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids cluster-
ing,” Expert systems with applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[141] W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, “Spherical
trigonometry,” in The VNR Concise Encyclopedia of Mathematics, pp. 261–282,
Springer, 1975.

[142] H. Alt and M. Codau, “Computing the Fréchect distance between two polygonal
curves,” International Journal of Computational Geometry and Applications,
vol. 05, no. 01n02, pp. 75–91, 1995.

[143] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,”
Analytica chimica acta, vol. 185, pp. 1–17, 1986.

[144] V. Cherkassky and Y. Ma, “Practical selection of svm parameters and noise
estimation for svm regression,” Neural networks, vol. 17, no. 1, pp. 113–126,
2004.

[145] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural
networks:: The state of the art,” International journal of forecasting, vol. 14,
no. 1, pp. 35–62, 1998.

157

[146] W.-C. Hong, “Application of seasonal svr with chaotic immune algorithm in
traffic flow forecasting,” Neural Computing and Applications, vol. 21, no. 3,
pp. 583–593, 2012.

[147] T. Srinivasan, V. Vijaykumar, and R. Chandrasekar, “A self-organized agent-
based architecture for power-aware intrusion detection in wireless ad-hoc net-
works,” in IEEE International Conference on Computing and Informatics (IC-
OCI), (Kuala Lumpur, Malaysia), June 2006.

[148] U. Rupapara and G. Mulchandani, “Cancer diagnosis using clustering technique:
A literature survey,” Data Mining and Knowledge Engineering, vol. 8, no. 2,
pp. 44–47, 2016.

