
ACTIVE CYBER DEFENSE PLANNING AND ORCHESTRATION

by

Md Mazharul Islam

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Software and Information Systems

Charlotte

2021

Approved by:

Dr. Jinpeng Wei

Dr. Bei-Tseng Chu

Dr. Badrul Chowdhury

Dr. Matthew Whelan

ii

©2021
Md Mazharul Islam

ALL RIGHTS RESERVED

iii

ABSTRACT

MD MAZHARUL ISLAM. Active Cyber Defense Planning and Orchestration.
(Under the direction of DR. JINPENG WEI)

The overwhelming number of recent data breaches reported that hundreds of ter-

abytes of highly sensitive information, including national, financial, and personal,

have been stolen from different organizations, indicating a clear asymmetric disadvan-

tage that defenders face against cyber attackers. Modern attackers are well organized,

highly stealthy, and stay persistent in the network for years; therefore, they are known

as advanced persistent threats (APT). Existing detection and prevention based cyber

defense techniques usually approach the target for specific, known attack signatures,

descriptions, and behaviors. However, APT attackers can easily avoid such detection

techniques by employing reconnaissance, fingerprinting, and social engineering. It is

often very challenging and sometimes infeasible for defenders to prevent the infor-

mation gathering of the adversary and patch all the vulnerabilities in the system.

Therefore, a proactive defense approach is needed to break such asymmetry.

Active Cyber Defense (ACD) is a promising paradigm to achieve this goal. ACD

can proactively mislead adversaries and enables a unique opportunity to engage with

them to learn new attack tactics and techniques. ACD enhances real-time detection,

analysis, and mitigation of APT attacks. ACD can be achieved through cyber agility

and cyber deception. Cyber Agility, such as moving target defense (MTD), enables

cyber systems to defend proactively against sophisticated attacks by dynamically

changing the system configuration parameters (called mutable parameters) in order to

deter adversaries from reaching their goals. On the other hand, Cyber Deception is an

intentional misrepresentation of the system’s ground truth to manipulate adversaries’

actions.

Although cyber deception and MTD have been around for more than decades, static

iv

configurations and the lack of automation made many of the existing techniques easily

discoverable by attackers and too expensive to manage, which diminishes the value of

these technologies. Sophisticated APTs are very dynamic and thereby require a highly

adaptive and embedded defense that can dynamically create honey resources and

orchestrate the ACD environment appropriately according to the adversary behavior

in real-time.

To overcome these challenges, this dissertation introduced an autonomous resilient

ACD framework, having the following aspects: (1) developing multistrategy ACD

policies that leverage an optimal dynamic composition of various MTD and deception

techniques to maximize the defense utility, (2) a policy specification language and an

extensible rich API integrated with a synthesis engine for developing different MTD

techniques without consulting about the low-level network and system configuration

management, (3) a theoretical framework and implementation for an autonomous

goal-oriented cyber deception planner that optimizes deception decision-making.

v

DEDICATION

To my mom, everything she does is just to bring a little smile to my face.

vi

ACKNOWLEDGEMENTS

I owe a great debt of gratitude to Dr. Ehab Al-Shaer who was my advisor for the

last four years of my Ph.D. career. He moved to the School of Computer Science

at Carnegie Mellon University in June 2020 as a Distinguished Career Professor.

However, he remotely supervised me to finish my dissertation from CMU. His in-

depth knowledge, interests, and passion for network and system security research,

especially in the cyber deception paradigm, make him an exemplary researcher and

mentor. Without his supervision and dedication, I would not succeed in completing

my work in this dissertation. I am very thankful to my current advisor Dr. Jinpeng

Wei, who help me to shape and finalize my dissertation. He continuously helps

me to write and publish papers, especially throughout the whole dissertation writing

process. I would also like to express my sincere gratitude to my dissertation committee

members: Professor Bill Chu, Professor Badrul Chowdhury and Professor Matthew

Whelan, for serving on my dissertation committee and their precious comments and

suggestions.

I want to thank my family, my mom, my brothers, and my sister, who support

me no matter what I have gone through. Ph.D. is a long journey, and I often faced

difficulties that could be unbearable without their support. A big shout out to all

my friends and colleges who are my constant companion in this long journey. Thank

you Ashu, Maruf, Mohi, Purba, Sakib, Madiha and Ehsan. A special thanks to Wasi,

Sazzad vai and Bony vai, who always believe in me.

Last but not least, I would like to thank the faculty members and the Depart-

ment of Software and Information Systems staff in the University of North Carolina

at Charlotte, my fellow graduate students, and my research collaborators for their

academic and administrative support throughout my doctoral study.

vii

TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xii

CHAPTER 1: Introduction 1

1.1. Research Objectives 3

1.2. Background 5

1.2.1. Moving Target Defense 6

1.2.2. Cyber Deception 7

1.2.3. Spear-phishing Attack 7

1.3. Research Challenges 8

1.4. Contributions 10

CHAPTER 2: Email Address Mutation for Proactive Deterrence Against
Lateral Spear-phishing Attack

15

2.1. Motivation 15

2.2. Problem Statement 18

2.3. Related Work 19

2.4. Threat Model 20

2.4.1. Attack Taxonomy 20

2.4.2. Email Mutation Attack Model 21

2.5. Email Mutation System Overview 23

2.5.1. Architecture 23

2.5.2. Algorithm 24

2.5.3. Protocol 25

viii

2.5.4. Identifying Lateral Spear-phishing Attack 26

2.6. Email Mutation Research Challenges 27

2.6.1. Handling Multiple Shadow Email Accounts 27

2.6.2. Improving Email Mutation Usability 28

2.6.3. Preserving User Privacy 28

2.6.4. Adding Custom Email Fields is Insufficient 29

2.6.5. Addressing Asynchronous Ground Truth Problem 29

2.6.6. Handling Insider Attack 30

2.6.7. Minimizing Shadow Email Account Overhead 30

2.7. Scalable Implementation and Security Measurement 31

2.7.1. Email Mutation Agent 31

2.7.2. Email Mutation Gateway 32

2.8. Email Mutation Verification and Evaluation 33

2.8.1. Verification 33

2.8.2. Evaluation 35

2.9. Summary 42

CHAPTER 3: Active Cyber Deception and Agility Synthesis 43

3.1. Motivation 43

3.2. Problem Statement 46

3.3. Related Works 46

3.4. Active Cyber Defense Framework 49

3.4.1. Interface 49

3.4.2. Active Defense Controller 51

ix

3.5. Agility Policy Language specification 55

3.5.1. Ontology 57

3.5.2. Language Specification 57

3.5.3. Policy Examples 61

3.6. Case study and Evaluation 64

3.6.1. Experiment Setup 64

3.6.2. MTD Case Studies 65

3.6.3. IP Mutation 65

3.6.4. Path Mutation 67

3.6.5. Deception Case Studies 69

3.6.6. Adversary Distortion by Anonymity and Diversity 73

3.6.7. Adversary Depletion using Spatio-temporal Mutation 75

3.6.8. Adversary Deflection by redirection 76

3.7. Summary 77

CHAPTER 4: Chimera: Autonomous Planning and Orchestration for
Malware Deception

79

4.1. Motivation 79

4.2. Problem Statement 82

4.3. Related Work 82

4.4. Threat Model and Scope of the Work 83

4.5. Chimera System Design 84

4.5.1. API Sequence to MITRE ATT&CK Technique Map-
ping

85

x

4.5.2. Deception Graph 86

4.5.3. Honey Factory 87

4.6. Deception Planning 88

4.6.1. Deception Decision-making 88

4.6.2. State Transition Matrix 90

4.6.3. Observation & Observation Matrix 91

4.6.4. Reward 92

4.6.5. Belief 93

4.6.6. POMDP Policy Generation 94

4.7. Implementation 95

4.8. Evaluation 96

4.8.1. Dataset 97

4.8.2. Experiment setup 97

4.8.3. Deception Efficiency 97

4.8.4. Quality of Deception 99

4.8.5. Optimal Policy 100

4.8.6. Policy generation overhead 102

4.9. Summary 103

CHAPTER 5: Conclusion 104

REFERENCES 107

xi

LIST OF TABLES

TABLE 2.1: Temporal properties to verify the correctness of Email Mu-
tation system.

35

TABLE 2.2: Detection results of EM. 39

TABLE 2.3: Comparison between existing popular PGP tools and EM. 41

TABLE 2.4: Existing email authentication standards failed to detect lat-
eral spear-phishing (LSP) attacks.

41

TABLE 3.1: Active cyber defense framework sensors, management and
constraint API.

54

TABLE 3.2: Active cyber defense framework sensor, management and
constraint API description.

54

TABLE 3.3: Active cyber defense framework Deception and MTD API 55

TABLE 3.4: Deception API: createHoneyNetwork() 70

TABLE 3.5: ADC deflection API: reDirect() and reRoute() 70

TABLE 3.6: ADC depletion API: spatioTemporalMutation() 71

TABLE 3.7: ADC SMT solver creates honey configuration for critical host
r1 by 2-anonymity and 3-diversity.

72

TABLE 3.8: Ephemeral IP assignment with real IP. 73

TABLE 3.9: Forwarding entry mapping with real IP and eIP. 75

TABLE 4.1: ATT&CK technique to Windows API mapping. Columns
Adversary Action and Deception Action are names given by us to
represent corresponding technique. These action names are used to
describe state transitions in the Deception Graph (Fig. 4.3).

85

TABLE 4.2: Datasets. 4,578 malware samples in total: 3,396 Information
Stealers, 1,030 Ransomware, and 152 RATs.

96

TABLE 4.3: Number of techniques (T) and procedures (P) discovered by
Chimera compared to Cuckoo sandbox and Any.run.

98

xii

LIST OF FIGURES

FIGURE 1.1: IP mutation example. 6

FIGURE 1.2: Active Cyber Defense Framework. 12

FIGURE 2.1: Email Mutation overview. Alice and Bob send emails using
their shadow email addresses (dashed line, single arrow).

22

FIGURE 2.2: Email mutation architecture. 22

FIGURE 2.3: Benign email communication between two VIP members
using EM.

24

FIGURE 2.4: EMA in Google Chrome Browser and Thunderbird, (a)
“Send email with mutation" button in mail.google.com, (b)
EMA in Thunderbird, (c) EMA icon at Chrome Menu Bar, and (d)
EMA in Chrome Extension Panel.

31

FIGURE 2.5: State machine diagrams of different components in EM. 34

FIGURE 2.6: EM gateway performance for mutation-verification of indi-
vidual emails without attachments.

37

FIGURE 2.7: EM gateway performance for mutation-verification of indi-
vidual emails with attachments.

37

FIGURE 2.8: Multiple email processing overhead for mutation. 38

FIGURE 2.9: Multiple email processing overhead for verification. 38

FIGURE 2.10: EMG overhead in cross-enterprise architecture. The in-
creasing number of organization or VIP members do not impact the
overall processing time. The number of emails dealt at a time deter-
mines the overall delay.

38

FIGURE 2.11: EM engineering attack, the minimum number of tries ad-
versary needs to break the EM for sending their first successful phish-
ing email.

38

xiii

FIGURE 2.12: The detection rate of EM over different shadow email
address assigned to a VIP user. Lateral spear-phishing and spoofing
detection rate is 100% for all values of shadow email addresses. The
integrity attack can be detected with 99% accuracy by using 100
shadow email addresses.

40

FIGURE 3.1: MTD Controller Synthesis using MTDSynth. 50

FIGURE 3.2: Cyber agility policy ontology for MTDSynth. 56

FIGURE 3.3: HAPL Syntax for MTDSynth. 58

FIGURE 3.4: Route Mutation Policy. 61

FIGURE 3.5: Spatio Temporal IP Mutation Policy. 63

FIGURE 3.6: Temporal IP Mutation Policy. 63

FIGURE 3.7: Bot Pattern Detection Policy. 64

FIGURE 3.8: IP Mutation Example. 66

FIGURE 3.9: Path Mutation Example. 68

FIGURE 3.10: Adversary adaptive deception by creating honey network
with shadow and decoy hosts.

72

FIGURE 3.11: Nmap scanning finds new host (sh1). 74

FIGURE 3.12: Flow rules for Spatio-temporal mutation. 75

FIGURE 3.13: Honey network creation overhead. 77

FIGURE 3.14: Spatial mutation overhead. 77

FIGURE 4.1: APT kill-chain model. 81

FIGURE 4.2: Chimera Architecture. 84

FIGURE 4.3: Deception Graph mapping with MITRE ATT&CK tech-
niques.

86

FIGURE 4.4: Chimera deception efficiency. 98

xiv

FIGURE 4.5: Unique attack API discovered. 98

FIGURE 4.6: Total trace API coverage. 98

FIGURE 4.7: Optimal policy over cost effectiveness. 100

FIGURE 4.8: Optimal policy over data exfiltration probability. 100

FIGURE 4.9: Depletion time against BasicRAT. 100

FIGURE 4.10: Depletion time against PupyRAT. 100

FIGURE 4.11: Policy generation overhead for different APT. 101

FIGURE 4.12: Policy generation overhead for different malware samples. 101

FIGURE 4.13: Deception delay. 102

FIGURE 4.14: Optimal deception action selection time (online). 102

CHAPTER 1: Introduction

The recent data breaches reports showed that hundreds of terabytes of highly sen-

sitive information, including national, financial, and personal, have been stolen from

more than 150 organizations in 2021 [1]. In 2020, the FBI’s Internet Crime Complaint

Center released a report stating that $13.3B has been lost due to cybercrime where

adversaries stole information from organizations and individuals by spear phishing,

ransomware, and information-stealing malware [2]. These attacks are well organized,

highly stealthy, and stay persistent in the organization for more than a year on aver-

age [3]; therefore, they are known as advanced persistent threats (APTs). A myriad

amount of research has been done from academia and industry to mitigate APT at-

tacks. However, every two seconds in the US, people are losing their sensitive data to

information stealer [4], and every minute almost six malware attack happens [5]. For

instance, the May 2021 ransomware attack in Colonial Pipeline Co. cost them mil-

lions of dollars of losses [6]. This indicates APT attackers are capable of penetrating

existing security systems as they have asymmetric leverage in cyber warfare- defend-

ers require to protect all vulnerabilities, yet; the attackers need a few susceptibilities

to exploit.

Active Cyber Defense (ACD) provides a proactive cyber security technique that

can reverse the asymmetry between adversary and defender in cyber warfare. Tra-

ditional reactive intrusion response depends on adversary engagement, detection of

the attack vectors (finding malicious code, malware, etc.), generating patches, and

finally applying them into the network and systems. This lack of addressing many

key challenges, including advanced adversary adaptation, changes into attack strate-

gies, or small modifications into the malware, leading them to bypass the existing

2

security patches easily. Moreover, patching requires days, weeks or even months and

often, many vulnerabilities remain unpatched because of recourse constraints [7, 8].

Therefore, to precede advanced and sophisticated adversaries in cyber warfare, the

defender must practice proactive and adaptive techniques rather than static reactive

defense. ACD plays a game-changing role in proactive defense. ACD can be leveraged

by moving target defense (MTD) and cyber deception techniques.

MTD enables cyber systems to defend proactively against sophisticated attacks by

dynamically changing the system configuration parameters, often known as mutable

parameters, in order to deter adversaries from reaching their goals. On the other

hand, cyber deception is an intentional misrepresentation of the ground truth of real

systems to manipulate adversaries’ actions [9]. However, developing and deploying

adaptive cyber deception and MTD techniques in real-life operational networks is

an extremely complex and time-consuming task due to the extensive efforts required

to implement the underlying network infrastructure configuration functions that are

necessary to support active deception and mutation operations, including observing,

planning, and deploying honey resources at real-time. Moreover, existing ACD tech-

niques mostly suffer from a single point of failure, which means if one defense action

fails, it is highly likely that adversaries will achieve their goals or discover the honey

resources. Besides, ACD requires expensive infrastructure and management resources

to maintain attraction and believability. ACD techniques frequently change low-level

network and system configurations. These are costly operations because the modified

configuration involves conflict resolution and correctness verification to ensure the

mission’s integrity.

Most importantly, ACD techniques that use static configuration and planning can

be detected and avoided by skilled attackers. Therefore, a dynamic and adversary

adaptive MTD and deception planning need to be incorporated to defeat sophisti-

cated attackers. This requires an intelligent framework that can make defense deci-

3

sions against probable adversary actions by observing the attack actions and make

sequential decisions. Therefore, ACD policymakers in this field often spend signifi-

cant time and effort building such infrastructural functions rather than focusing on

developing sophisticated strategies for MTD and cyber deception applications.

To overcome these challenges, this dissertation introduced an autonomous resilient

ACD framework, having the following aspects: (1) developing multistrategy ACD

policies that leverage an optimal dynamic composition of various MTD and deception

techniques to maximize the defense utility, (2) a policy specification language and an

extensible rich API integrated with a synthesis engine for developing different MTD

techniques without consulting about the low-level network and system configuration

management, (3) a theoretical framework and implementation for an autonomous

goal-oriented cyber deception planner that optimizes deception decision-making.

1.1 Research Objectives

The main objective of this dissertation is to build an ACD framework that can

be used to develop different MTD and deception techniques without considering the

continuous low-level system configuration, optimal planning and safe deployment of

the defense techniques. This section discusses the individual objectives of each chapter

of the dissertation.

• The first objective of this dissertation is to deter the most effective adversary

tactic in the kill chain, which is initial access to the system through spear-

phishing attacks. Most of these spear-phishing attacks happen in the form

of email communication, known as email spear-phishing attacks, where adver-

saries attach malicious links (URL) or files (malware) into the email and send

the phishing email to targeted victims. Email spear-phishing attacks have been

one of the most devastating cyber threats against individual and business vic-

tims in recent years. Using spear-phishing emails, adversaries can manage to

impersonate authoritative identities in order to incite victims to perform ac-

4

tions that help adversaries to gain financial and/hacking goals. Many of these

targeted spear-phishing can be undetectable based on analyzing emails because,

for example, they can be sent from compromised benign accounts (called lat-

eral spear-phishing attacks). The current state of the art for detecting spear-

phishing emails limits by analyzing email payloads/headers. However, adver-

saries can easily evade detection by mimicking users’ behavior and avoiding bad

signatures [10]. To address these limitations, I introduced a novel moving tar-

get technique called sender email address mutation to protect against lateral

spear-phishing and spoofing attacks proactively (chapter 2).

• Cyber agility and deception techniques enable cyber systems to defend proac-

tively against sophisticated attacks by dynamically changing the system con-

figuration parameters in order to deceive adversaries from reaching their goals,

disrupt the attack plans by forcing them to change their adversarial behaviors,

and/or deterring them through prohibitively increasing the cost for attacks.

However, developing and deploying cyber agility such as moving target defense

and adaptive cyber deception techniques in real-life operational networks is ex-

tremely complex and time-consuming tasks due to the extensive effort required

to implement the underlying network infrastructure configuration functions.

These functions are necessary to support active cyber deception and MTD oper-

ations, including real-time observing, planning, and deploying honey resources.

Therefore, developers in this field often spend significant time and effort building

such infrastructural functions rather than focusing on developing sophisticated

strategies for cyber defense applications. The second objective of the disserta-

tion is to address these challenges by providing a framework for automating the

creation of configuration-based defense techniques rapidly and safely. In chapter

3, such a framework is presented that provides a high-level cyber agility pol-

icy language specification and a controller for implementing configuration-based

5

MTD and deception techniques. It also provides an extensible rich API that

can be used to observe adversary actions, compose multi-strategy defense plans,

and ensure safe yet quick deployment of such plans by automatically managing

the network configuration.

• Cyber deception is a promising defense that can proactively mislead adversaries

and enables a unique opportunity to engage with them to learn new attack tac-

tics and techniques. Although cyber deception has been around for more than

a decade, static configurations and the lack of automation made many of the

existing deception techniques easily discoverable by attackers and too expensive

to manage, which diminishes the value of this technology. Sophisticated APT

attackers are highly dynamic and thereby require a highly adaptive and em-

bedded deception that can dynamically create honey resources and orchestrate

the deception environment appropriately according to the adversary behavior

in real-time. The final objective of this dissertation is to provide optimal plan-

ning of deception course of actions and their automatic orchestration in the

production environment in real-time. Therefore, the defender can design spe-

cific deception scenarios to deceive APT attacks in order to achieve different

deception goals. In chapter 4, a framework named CHIMERA is presented

that generates a sequence of optimal deception action planning based on the

APT attacks and deception goals by analyzing the adversary tactics leveraging

MITRE ATT&CK [11] and using Sequential Decision-Making techniques such

as Partially Observable Markov Decision Processes (POMDP).

1.2 Background

ACD is a cyber resiliency capability that dynamically orchestrates security archi-

tectures to prevent attacks proactively, while adapting security policies and configu-

rations based on active investigation of threat observables. This dissertation focuses

6

Server

T = 1

IP1

IP2

Client A

Client B

T = 2

IP3

IP4

Client A

Client B

Server

Figure 1.1: IP mutation example.

on MTD and cyber deception to leverage ACD against APT attacks.

1.2.1 Moving Target Defense

Moving Target Defense (MTD) is a systematic periodical reconfiguration of network

resources parameters in order to dynamically change the available attack surface (such

as IP address, network route, and so on). MTD enables proactive defense by deterring

the adversary from reaching its goal. For example, IP address mutation can deter

network reconnaissance attackers by changing the IP address of the critical resources

in a periodic fashion. Figure 1.1 shows an example of how IP mutation works. In

IP mutation, each critical resource is assigned with an ephemeral IP address, which

periodically gets changed. Thus, the accumulation of IP address information in a

reconnaissance attack gets invalidated after that period. For instance, according to

the figure 1.1, in time T = 1, each client communicates with the server through IP1

and IP2, respectively. However, in T = 2, these ephemeral IP gets changed to IP3

and IP4. Therefore, if any of the clients store the server’s IP address, she cannot

use that information later to reach (attack) the server. Such IP mutation techniques

enforce network scanning attackers to probe the network each time period, making

them less stealthy and eventually get exposed.

7

1.2.2 Cyber Deception

Cyber Deception is an intentional misrepresentation of real systems’ ground truth

to manipulate adversary’s course of actions under the premises of the defenders’

rules [9]. Cyber deception can be used to divert the adversary away from the real

target to a false or no target when the adversary is already in the system—e.g., pro-

viding honey files [12] while the attacker searches for sensitive files. The defender can

distort the adversary’s perception of the infrastructure by adding ambiguity into the

system, e.g., running fake services with obvious vulnerabilities (honey-patches [13]).

Deception can deplete adversary’s computational power and resources to delay the

attack propagation—for example, honey encryption [14] of the credential files, which

the adversary needs to decrypt. Finally, the defender can discover new attack tactics,

techniques, and procedures (TTPs) by letting them execute different attack actions

in contained honey resources.

1.2.3 Spear-phishing Attack

To launch an attack, the first step of the APT actor is to initiate the attack vector

(malware, email attachments, etc.) into the system or victim’s machine. This tactic

is known as initial access, which is often performed by techniques such as a spear-

phishing attachment. In email phishing attacks, adversaries send generic emails with

malicious attachments or links to a massive number of users indiscriminately, hoping

that someone will take the bait. However, spear-phishing attack is more targeted.

In spear-phishing attacks, adversaries impersonate key personnel or authoritative

identities to incite victims to perform such actions that help them gain certain goals.

Adversaries carefully select their targets and send them well-crafted phishing emails

that closely resemble what they usually receive. Mostly, these attack emails mimic a

familiar style and signature of a known person to the victims, where both the email

headers and body merely deviate from benign emails. Yet, the email contains a ‘lure’

8

that is convincing enough to engage the victim into an ‘exploit’ [15].

A common technique for spear-phishing attack is to spoof the name or email address

of the sender, known as source spoofing, to convince the victim that the email is sent

from a trusted source [15]. Solutions like SPF [16], DKIM [17], and DMARC [18] that

verifies the sender authenticity may prevent email source spoofing [19]. However, a

more stealthy variation of spear-phishing attack bypasses such sender authentication

protocols, known as lateral spear-phishing attack, where adversary uses compromised

email accounts of someone either socially or professionally connected with the victim

to initiate the phishing email [10]. These phishing emails are very hard to detect be-

cause of the cleverly crafted content created by deep analyzing the prior conversation

with the victim from that compromised account. Therefore, adversaries inherently

win the cyber game against defenders in the lateral spear-phishing attack by evad-

ing any existing security regarding sender email authentication as the phishing email

coming directly from a legitimate account and defeating behavioral anomaly detec-

tors by accessing human anchoring as the email seemingly composed by a trusted

entity [10].

1.3 Research Challenges

This section describes the research challenges addressed in the dissertation.

• Email spear-phishing attack is the most common tactic adversaries use to launch

an attack because it is hard to detect. Existing spear-phishing detectors de-

pend on either signature or behavioral analysis of the email content/header.

Advanced attackers can easily bypass signature-based analysis by modifying

the attack vector (e.g., changing in malware code) and behavioral analysis by

clearly crafting the phishing email content. Therefore, a proactive approach

is required to provide an alternative solution in detecting email spear-phishing

attacks.

9

• Email security protocols such as SPF, DKIM, and DMARC can verify the

sender’s authenticity. These protocols are effective against email spoofing at-

tacks. However, the lateral spear-phishing email is sent from benign but com-

promised email accounts. Thus, the above protocols can not prevent the lateral

spear-phishing attack.

• Other cryptographic approaches such as PGP [20], S/MIME [21], Two-factor

authentication (2FA) [22] can be used to authenticate email senders and prevent

email account hijacking. However, these techniques are not widely used in

practice due to transparency, usability, and management challenges [23–25].

For instance, PGP signature and encryption obfuscate the plaintext emails into

cyphertext, immediately losing the content’s visibility. Therefore, existing IDS

and content-based behavioral analysis tools can not work with PGP encryption.

Furthermore, PGP requires user training on Public key infrastructure (PKI)

and maintains complex key management systems. Moreover, PGP signatures

in email can be spoofed [26].

• Most of the existing frameworks lack of providing multi-strategy MTD and de-

ception action composition because these policies can conflict with each other.

Moreover, lack of automation may lead to misconfiguration of system parame-

ters that can create new vulnerabilities.

• An efficient ACD composition framework needs continuous network monitor-

ing to observe adversary activities, optimal planning for cost-effective decision-

making, and safe deployment without breaking the mission integrity.

• The framework should provide an extensible rich API to create new defense

strategies. The implementation of the framework needs to be scalable and

easily extendable for integrating future defense techniques.

10

• Designing a deception environment to deceive APT attacks requires consider-

ing both the attacker’s action and deception action. The true strategy of the

attacker is unknown to the defender. In addition, the alerts defender receives

from the system are noisy and often high false positive.

• Synthesizing an optimal deception planning (deception CoAs) under uncertain

attack behavior and with limited observability can incur high state space and

computation complexity.

• The deception environment should be dynamic to cope with adaptive adversaries

in order to provide defense in real-time. Moreover, the risk of a deception action

failure need to be accounted, because if the deception action fails, the adversary

will achieve their goal.

• An embedded deception strategy needs to be implemented to provide real-time

deception in the operational environment because standalone deception envi-

ronments such as Virtual Machisen or Sandbox cannot be used to deceive the

malware if it is already running into a production machine.

1.4 Contributions

This dissertation presents the following key contributions:

• The first chapter presents a novel proactive defense technique using sender

Email address Mutation to protect a group of related users against lateral spear-

phishing. In Email Mutation, the sender email address get frequently changed

randomly that can only be verified by trusted peers, without imposing any over-

head or restriction on email communication with external users. Email mutation

technique is transparent, secure, and effective because it allows users to use their

email as usual, while they are fully protected from stealthy spear-phishing. The

11

Email mutation technique (algorithm and protocol) is well described and a for-

mal model is developed to verify its correctness. The processing overhead due

to mutation is a few milliseconds, which is negligible with the prospective of

end-to-end email transmission delay. A real-world implementation of the Email

mutation technique is also shown which works with any email service providers

such as Gmail, Apple iCloud, Yahoo Mail, and seamlessly integrates with stan-

dard email clients such as Gmail web clients (mail.google.com), Microsoft

Outlook, and Thunderbird.

• The second chapter presents a cyber agility synthesis framework that contains

a formal ontology, MTD policy language, and a controller synthesis engine for

implementing configuration-based moving target defense techniques. The pol-

icy language contains the agility specifications required to model the MTD

technique, such as sensors, mutation triggers, mutation parameters, mutation

actions, and mutation constraints. Based on the mutation constraints, the MTD

controller synthesis engine provides an MTD policy refinement implementation

for SDN configuration with provable properties using constraint satisfaction

solvers. The framework also provides an extensible rich API for developing

advanced cyber deception applications. The API can be used to observe adver-

sary actions, compose multi-strategy deception plans, and ensure safe yet quick

deployment of deception plans by automatically managing the network config-

uration and operational tasks. The framework is developed over OpenDaylight

SDN controller as an open programming environment to enable rapid and safe

development of sense-making and decision-making MTD and deception actions.

• The third chapter presents a theoretical framework and implementation for

an autonomous goal-oriented cyber deception planner, called CHIMERA, that

optimizes deception decision-making. CHIMERA agents can reside in any pro-

12

SDN Netwrok

//

Interface
Defense specification ACD Policy

Active-Defense Controller (ADC)

Policy
Parser

Policy
Translator Job Queue

M
id

dl
ew

ar
e

So
lv

er

POMDP SMT ConfigChecker
R

ES
T

AP
I

//

...
AD

C

AP
I

ActiveSDN Controller
///

Ac
tiv

eS
D

N

AP
I

//

R
ES

T
AP

I

PLD

Chimera Controller
//

Host

M
SD

N

API

Figure 1.2: Active Cyber Defense Framework.

duction machine/server and automatically create and orchestrate the decep-

tion ploys (actions) to steer and mislead the malware or APT to the desired

goal without human interaction. The deception ploys are dynamically com-

posed based on the deception planning while ensuring safe yet fast deployment

and orchestration of deceptive course-of-actions. CHIMERA is evaluated with

real APT attacks for information stealing, ransomware, Remote Access Trojans

(RAT), and others. In different case studies with 4,578 real malware samples,

CHIMERA’s adversary-aware dynamic deception strategies were able to effec-

tively accomplish the deception goals within a few seconds and with minimum

cost.

Figure 1.2 shows an overview of the ACD framework. It has the following compo-

nents:

Interface: The ACD framework provides an interface for ACD policy creation lever-

aging a high level language specification described in figure 3.3. Authentic users can

use the interface to generate defense policies for rapid deployment of MTD defense

or deception with full concurrency and safety. The policy creation interface provides

13

an easy description of how to follow the language specification to create the correct

MTD policy.

Active Defense Controller: The Active Defense controller (ADC) in the frame-

work is the central orchestrator that handles the end-to-end processing of the cyber

deception from initiation by the interface to the safe deployment in the network or

systems. ADC provides an open playground that enables prototyping or building ad-

vanced deception planning rapidly and safely. ADC leverages its facilities by providing

an extensible API, called ADC API, that gives access to sophisticated cyber decep-

tion and system management functions using the distribute controller (ActiveSDN

and Chimera). The ActiveSDN controller incorporates defense actions related to the

software-defined network, and the Chimera controller incorporates defense actions for

an individual machine.

Besides, ADC incorporates with a decision-making synthesis engine called solver,

that is capable of solving computationally hard problems to optimize deception policy

actions. ADC composes the defense triggering by the interface, ensure safe low-level

configuration changes, and deploy the planning into the network.

Middleware: The middleware parses and translates the high-level defense speci-

fication to intermediate controller interfaces (ADC API). It incorporates the solver

through REST for solving constraint problems in order to optimize deception plan-

ning. Middleware creates a back-and-forth communication bridge to ADC with the

user interface through REST API and the network or system through ADC API.

Solver: The solver is to optimize constraint problems to generate a feasible and

practically deployable deception or MTD configuration. The solver is designed as a

plug-and-play model in the architecture. Therefore, various deception and configu-

ration optimization solution can be added with ADC as required. Different solver is

integrated with the framework such as Satisfiability modulo theories (SMT) [27] to

14

optimize anonymity and diversity of concealment configuration [28], ConfigChecker

[29] to solve reachability constraints, partially observable Markov decision process

(POMDP) [30] for sequential decision making, etc. ADC incorporates with the solver

through middleware via REST API.

CHAPTER 2: Email Address Mutation for Proactive Deterrence Against Lateral

Spear-phishing Attack

2.1 Motivation

In recent years, email spear-phishing becomes the most effective cyber threat

against individual and business victims. It has been reported that 90% of data

breaches in 2017-2018 included a phishing element, 74% of public sector cyber-

espionage, and 64% of organizations’ attacks involve spear-phishing attacks, where

30% of these attacks are targeted [31]. Over $26B has been lost to spear-phishing

and account takeover in 2019 [32]. Only in the US, 71.4% of phishing attacks

and data breaches associated with nation-state or state-affiliated actors used spear-

phishing [33].

Unlike phishing, where adversaries send generic emails with malicious attachments

or links to a massive number of users indiscriminately hoping that someone will take

the bait, spear-phishing is more targeted [34]. In spear-phishing attacks, adversaries

impersonate key personnel or authoritative identities in order to incite victims to

perform such actions that help them to gain certain goals. Adversaries carefully

select their targets and send them well-crafted phishing emails that closely resemble

what they usually receive. Mostly, these attack emails mimic a familiar style and

signature of a known person to the victims, where both the email headers and body

merely deviate from benign emails. Yet, the email contains a ‘lure’ that is convincing

enough to engage the victim into an ‘exploit’ [15].

A common technique for spear-phishing attack is to spoof the name or email address

of the sender, known as source spoofing, to convince the victim that the email is sent

from a trusted source [15,35]. Solutions like SPF [16], DKIM [17], and DMARC [18]

16

that verifies the sender authenticity may prevent email source spoofing [19]. How-

ever, adversaries are continuously evolving and adapting their attack strategies. As

a result, a more stealthy variation of spear-phishing attack has been encountered

recently, known as lateral spear-phishing attack, where adversary uses compromised

email accounts of someone either socially or professionally connected with the victim

to initiate the phishing email [10]. These phishing emails are very hard to detect be-

cause of the cleverly crafted content created by deep analyzing the prior conversation

with the victim from that compromised account. Therefore, adversaries inherently

win the cyber game against defenders in the lateral spear-phishing attack by evad-

ing any existing security regarding sender email authentication as the phishing email

coming directly from a legitimate account and defeating behavioral anomaly detec-

tors by accessing human anchoring as the email is seemingly composed by a trusted

entity [10]. These facts motivate our research to develop a proactive mechanism for

protecting the number one targeted attack vector, email.

The current state of the art for detecting lateral spear-phishing emails mainly de-

pends on email headers and body [10, 15, 36–42]. These defense techniques require

users’ historical data to model a behavioral profile for the sender or receiver in order

to detect the anomalous behavior of the phishing email. They also depend on ana-

lyzing the content of phishing emails searching for malicious URLs or attachments,

domains with low reputation, etc. However, spear-phishers can easily evade detec-

tion by mimicking users’ behavior (from previous emails) and avoiding the use of bad

features [10].

To address these limitations, a novel moving target defense technique called sender

Email address Mutation (EM) is developed to proactively protect a group of users

against lateral spear-phishing and spoofing attacks. EM is developed as a cloud-

based service that can be easily integrated with existing email infrastructure for any

organization to offer scalable email protection against spear-phishing with minimal

17

management overhead. It deploys a secure gateway in the cloud that works transpar-

ently between end-users and email service providers. EM defends a group of socially

or professionally connected members, called the VIP users. It creates a number of

random shadow email addresses (accounts) associated with each VIP user besides

their actual email address. These shadow email addresses are used as the sender for

email delivery but are hidden to both end-users.

While two VIP members communicate with each other through EM, the email

first goes to the secure email mutation gateway (EMG) in the cloud, where EMG

translates the sender email address to a shadow email address corresponding to the

sender before forwarding it. Similarly, when the receiver VIP user fetches that email,

the EMG verifies the shadow email address and delivers the email to the recipient,

if the verification is successful. Therefore, knowing the public email address will not

be sufficient to attack the VIP users. Spear-phisher adversaries must correctly guess

the current shadow email being used by each individual user in order to successfully

impersonate a VIP user in an email sent to another VIP user. While EM achieves this

protection between VIP users, it also maintains the email open communication model

by allowing VIP users to receive and send emails to any external users without any

restriction. Thus, EM can protect a group of socially or organizationally connected

(VIP) users from any phishing emails that impersonate a VIP user even if the email

is coming from a compromised VIP email account, without impacting users’ usability

or interaction with external users.

PGP [20], S/MIME [21], Two-factor authentication (2FA) [22] can be used to au-

thenticate email senders and prevent email account hijacking. However, these tech-

niques are not widely used in practice due to many users’ transparency, usability,

and management challenges [23–25]. For instance, PGP signature and encryption

obfuscate the plaintext emails into cyphertext, immediately losing the content’s vis-

ibility. Therefore, existing IDS and content-based behavioral analysis tools can not

18

work with PGP encryption. Furthermore, PGP requires user training on Public key

infrastructure (PKI) and maintains complex key management systems. Moreover,

PGP signatures in email can be spoofed [26]. EM provides an alternative proactive

mechanism for the majority of email users who are not using PGP and/or 2FA to

protect against spear-phishing without compromising transparency, usability, or man-

ageability. Therefore, although EM does not use a cryptographic approach like PGP

or 2FA, it can provide comparable protection while maintaining high usability and

deployability.

Our key contribution is three-fold:

• First, a novel protocol called EM is introduced, as a proactive defense against

highly stealthy lateral spear-phishing attacks.

• Second, the verification of the EM protocol is shown so that it can be integrated

with any existing email service provider.

• Third, the EM system is implemented (code available on GitHub) and deployed

it in a real-world environment without imposing any usability or performance

overhead on users or service providers [43].

2.2 Problem Statement

Given a group of user email accounts associated with organizationally or socially,

the goal of Email Mutation is to protect the users from lateral spear-phishing attacks

(including spear-phishing and spoofing attacks) by changing the sender email address

to shadow email address frequently without breaking reachability and transparency

among them with minimal system overhead.

Shadow Email Address. The shadow emails are a list of pre-created email ac-

counts assigned to all VIP users but being kept hidden from them. These accounts are

only used in email transmission as a sender address. Only EMG conducts with these

email accounts. Depending on the impacts, the number of shadow email addresses

19

assigned to a VIP user varies. EM is flexible to the creation of shadow email accounts

as long as the shadow email domain is the same as the real email domain. However,

in experiment, a prefix “sid" (shadow ID) is used in the shadow email address to

make a clear difference with the real email address. A possible shadow email address

may look like: real.email.address .x@domain, where x is at least 16 byte long random

alphanumeric sequence. For instance, alice.sid8aiy5vgia0ta4uec@org.com can be one

of the shadow email addresses for Alice’s real email address alice@org.com, where x

= sid8aiy5vgia0ta4uec.

Reachability. Reachability ensures that EM does not obstruct email communica-

tion between users. EM users have their regular email communication with all other

users but protected from any lateral spear-phishing attack.

Transparency. Transparency means the EM users do not lose the visibility of their

emails, as EM doesn’t modify the header or body of the email on the client-side.

For instance, PGP encryption encrypts the email body, losing the plaintext email

visibility from the users. Besides, the end-users are oblivious to the whole mutation

techniques.

2.3 Related Work

A vast amount of research has been done to detect phishing [19, 37, 44–46] and

spear-phishing attacks [10, 15, 38–42]. The majority of these works depend on email

content or headers. For instance, Ho et al. presented a learning-based classifier to

detect lateral spear-phishing by seeking malicious URLs embedded in the phishing

email [10, 15]. However, these solutions will not work against motivated adversaries

trying to evade detection simply just by not adding any malicious URL or no URL

at all in the phishing email.

Spear-phishing detectors like EmailProfiler [40] and IdentityMailer [41] also depend

on email headers and body to build behavioral profiles for each sender based on

20

stylometric features in the content, senders writing habits, common recipients, usual

email forwarding time, etc. New emails get compared with the profile to measure the

deviation determining whether they are spear-phishing email or not. These solutions

can not detect lateral spear-phishing emails when the contents are carefully crafted

to avoid deviation from the norm. Moreover, they show a high false-positive rate

(10%), which becomes unacceptable when it comes to the large volume of emails in

a real-world enterprise network.

Gascon et al. [38] proposed a context agnostic spear-phishing email detector by

building behavioral profiles for all senders in a given user mailbox. They create

such profiles from the common traits a sender follows while composing an email, like

attachments types, different header fields, etc. However, in the lateral spear-phishing

attack, email headers do not deviate from the usual structure as it is coming from a

legitimate account. In addition, building profiles for each sender can induce massive

overhead in large scale deployment.

Existing sender authentication protocols such as SPF [16], DKIM [17], and DMARC

[18] can not detect lateral spear-phishing emails because they are not spoofed and

composed from valid email accounts. Other solutions, such as signing emails with

PGP [20], S/MIME [21], or 2FA [22] can prevent the lateral spear-phishing attack.

Unfortunately, these techniques are not widely used because of usability, manage-

ability, and transparency issues [23–25]. Moreover, a recent study showed that PGP

signatures in the email could be spoofed as well [26].

2.4 Threat Model

2.4.1 Attack Taxonomy

In the lateral spear-phishing attack, adversaries send phishing emails to victims

from a compromised account. To make such attacks trustworthy and effective, ad-

versaries carefully choose those compromised accounts that are closely related to the

victims, such as employees from the same organization [10]. Therefore, the attacker

21

From: Alice <alice@org.com>

To: Bob <bob@org.com>

Subject: February, 2020 Meeting Budget (Event venue booking)

Hi Bob,

Process wire transfer of $100,543 to Trudy (account no. 5648132796,

routing no. 026001234) to finalize upcoming event venue bookings.

Send me an invoice of that transaction ASAP, thanks.

Alice

CEO, org.com

Listing 1: A carefully crafted lateral spear-phishing email sends to Bob from a com-
promised account Alice, without any malicious attachments or URLs.

easily bypasses traditional email security systems like sender authentication, as the

email is come from a legitimate account and make the victim fall for the attack, as it

is seemingly composed by a person they already trust. Listing 1 depicts an example

of lateral spear-phishing email. Adversary Trudy compromises the email account of

Alice, CEO of an organization (org.com). By examining her inbox, Trudy obtains

that Alice directed Bob, finance department head of org.com, to make some wire

transactions for arranging an upcoming business meeting. Exploiting this analysis,

Trudy composes a phishing email from Alice’s email account to Bob, directing him

to make a wire transaction in Trudy’s bank account. These types of lateral phishing

are crafted carefully by observing previous emails and may not contain any malicious

attachments or URLs that make it very hard to detect.

2.4.2 Email Mutation Attack Model

The EM protocol detects lateral spear-phishing and spoofing attacks where adver-

saries send phishing emails to the victim from a compromised benign email account

or impersonate a benign person that the victim already trusts. Compromising an

email account means adversary gain access only to that email account, not the phys-

ical machine such as laptop, desktop, or cell phone itself of the user. Moreover, any

compromised account who never communicated with the victim before can hardly be

22

bob@org.comalice@org.com

ron@enterprise.com

alice.sid8aiy5vgia0ta4uec@org.com bob@org.com(1) alice.sid8aiy5vgia0ta4uec@org.com
(2) alice.sid0iqeapz9a9yqylvd@org.com
 ...
(n) alice.sid6o5int4xi00k23s3@org.com

(1) bob.sid7lp14q6mk9itmwfq@org.com
 ...
(m) bob.sid6hao5xs16sz4i1yv@org.com

RCC

RCC

SCC

RCC

SCC
alice@org.com bob.sid7lp14q6mk9itmwfq@org.com

alice@org.com bob@org.com

alice@org.com ron@enterprise.com ron@enterprise.com bob@org.com

Figure 2.1: Email Mutation overview. Alice and Bob send emails using their shadow
email addresses (dashed line, single arrow).

Internet

MTA/SMTP Server

Alice

MUA
EM agent EM agent

MUA

EM agent

MUA

Bob
MUA

EM agent EM agent

MUA

EM agent

MUA

EM gateway

Figure 2.2: Email mutation architecture.

successful in exploiting the victim. Therefore, EM solely focuses on compromised ac-

counts and impersonated entities that are connected with the victim, e.g., employees

from the same organization or different organization, but communicates frequently.

The people who use EM to protect themselves against spear-phishing attacks are de-

noted as VIP users. To launch a lateral spear-phishing attack, an adversary needs to

send the phishing email from a compromised account, Alice, for instance, whom Bob

already connected with. EM can protect Bob against such an attack if both Bob and

Alice are agreed prior to use EM; therefore, they are in the VIP user list. EM also

protects VIP users from spoofing if the adversary impersonates any of the VIP users

in the phishing email.

23

2.5 Email Mutation System Overview

Figure 2.1 depicts an overview of sender email address mutation, where two VIP

users Alice and Bob from an organization (org.com), agreed to use EM to protect

themselves against lateral spear-phishing attacks. Previously, they communicate with

each other using their real email address (double arrow solid line), called Real channel

communication (RCC). However, after EM starts, each VIP user gets a list of shadow

email accounts. For instance, Alice and Bob get n and m number of shadow email

accounts (addresses), respectively. Thus, each new email Alice composes for Bob now

uses a different shadow email address as a sender instead of her real email address,

and the modified (mutated) email is forwarded to Bob (dashed line single arrow).

This is called Shadow channel communication (SCC). Sending an email in SCC by

mutating the sender email address is known as mutation.

When Bob receives such an email, the shadow email address gets verified for lateral

spear-phishing detection. This is called verification. Similarly, when Bob composes

a new email for Alice, the email is forwarded through SCC by mutating Bob’s real

email address to one of his shadow email addresses. Although Alice and Bob use

shadow email addresses as the sender to communicate with each other through SCC,

they use their real email address to communicate with external users (non-VIP), e.g.,

Ron from enterprise.com. VIP users group can comprise people from different

organizations having different domains. For instance, John (not shown in the figure)

from gov.com can be a VIP member with Alice and Bob from org.com.

2.5.1 Architecture

The mutation and verification happens in the cloud by mutation gateways (EMG).

Figure 2.2 illustrates the architecture of EM. Clients can use multiple devices such

as laptops, desktop, or cell phones for accessing emails; therefore, EM provides an

EM agent (EMA) for each of the devices. While sending an email, the agent delivers

24

Figure 2.3: Benign email communication between two VIP members using EM.

the email to the EMG for mutation. After mutation, the EMG forwards the mutated

email to corresponding mail servers (SMTP/MTA). Similarly, while fetching a new

email, the agent receives it from the EMG. The EMG first gets the email from the mail

server and then verifies it to detect a lateral spear-phishing attack before responding

to the agent. In large enterprise networks, multiple EMGs can be used for load

balancing.

2.5.2 Algorithm

The VIP users supposedly send emails to each other, which use as ground truth G

next time they send any new emails. For instance, when a VIP user i sends an email

to another VIP user j, the last l emails between them will be used as ground truth

iGj to generate a mutation ID, mID. By indexing the mID, a shadow email address

gets selected from a secret arrangement of shadow email addresses Si assigned for the

sender i. The shadow email address is then used to forward the email. Similarly, as

the receiver j has the identical ground truth, j can generate the exact mID to find

the same shadow email address from Si for verification.

25

Algorithm 1 Shadow Selection
1: procedure selectShadow(iGj, Si)

2: h← SHA-512(iGj)

3: mID ← h mod len(Si)

4: shadow ← Si[mID]

5: return shadow

6: end procedure

Algorithm 1 shows the pseudocode of shadow email address selection. A hash

function SHA-512 is used to get the digest of iGj, which then modulo with the size

of Si to select the current shadow email index, mID. Although from a compromised

VIP user account, the adversary can achieve the ground truth iGj to calculate mID,

yet can not get the correct shadow email address because of not having the secret

arrangement of Si. Therefore, the adversary can not send an email with the right

shadow email address, which immediately gets detected by the EMG.

2.5.3 Protocol

2.5.3.1 Communication between VIP users.

Figure 2.3 explains the EM protocol through email communication between VIP

users Alice and Bob. (1) Alice composes an email to Bob {from: alice@org.com,

to: bob@org.com}. (2) Alice’s EMA delivers the email to EMG, where EMG uses the

ground truth between them in algorithm 1, to select a shadow email address for Alice.

Assume that the selected address is alice.x@org.com. Therefore, the EMG forwards

the email to the mail server as {from: alice.x@org.com, to: bob@org.com}. (3) When

Bob’s EMA fetches for a new email, EMG receives the email from the mail server and

deduce that the sender address is one of Alice’s shadow email addresses. Therefore,

EMG uses the ground truth between Bob and Alice in algorithm 1 to select the current

shadow email address for Alice. If the retrieved address matches alice.x@org.com, the

26

email is benign. Otherwise, it is phishing. EMG respond the benign email to Bob’s

EMA as {from: alice@org.com, to: bob@org.com}. Bob receives the email as how

Alice composed it, making the whole EM mechanisms transparent to end-users. The

replies from Bob to Alice is similar to the above three steps. The only secret in the

protocol is the arrangement of the sender shadow emails.

2.5.3.2 Communication with External Users.

EM only protects VIP users. Therefore, the EMG bypasses the following emails

with non-VIP users to decrease the overall email traffic processing:

No Mutation. A VIP user sends an email to a non-VIP user. Formally:

{sender : x, recipient : y; where, x ∈ R and y /∈ R}

where R is the list of real email addresses of all VIP users.

No Verification. A VIP user receives an email from a non-VIP user. Formally:

{sender : x, recipient : y; where, x /∈ R and y ∈ R}

2.5.4 Identifying Lateral Spear-phishing Attack

In EM, the legitimate email communication between VIP users happens through

SCC, where the sender address is always a valid shadow email address. Therefore,

EMG detects an incoming email as phishing while fetching new emails that have a real

email address of a VIP member as the sender’s address. However, the adversary may

send phishing emails by guessing or randomly generating a shadow email address to

bypass EM. Such phishing attempts is called as EM engineering attack. To formalize

the detection process, let’s assume that R is the real email address list, and S is the

set of shadow email address lists of all VIP users.

27

Lateral Spear-phishing and Spoofing Attack. By compromising a VIP user’s

email account or impersonating a VIP user, the adversary sends a phishing email to

another VIP user. Formally:

{sender : x, recipient : y;where, x, y ∈ R}

That means both the sender and receiver email address is enlisted in the VIP user

list. EMG immediately detects such an email as a phishing email.

EM Engineering Attack. The adversary sends a phishing email to any VIP user

by randomly guessing a shadow email address as the sender’s address. Formally:

{sender : x, recipient : y;where, x ∈ S and y ∈ R}

To evade EM, adversaries may randomly guess or mimic the mutation mechanism

to generate a legitimate shadow email address. However, EM creates shadow email

addresses from a space of at least 16 byte long alphanumeric sequence. Therefore,

the probability of guessing a correct shadow email address is 1/2128, which is nearly

zero.

2.6 Email Mutation Research Challenges

2.6.1 Handling Multiple Shadow Email Accounts

In EM, each VIP user has a set of shadow email accounts for sending emails to

another VIP user. However, VIP users only discern about their real email account.

Therefore, sending emails from multiple shadow accounts and keeping track of all

sent emails into one real email account is challenging. EM overcome this challenge by

following means. First, shadow email accounts are only used for sending emails while

the receiver email address will always be the real email address. Therefore, each VIP

user receives all emails into their real email account inbox. Second, while forwarding

28

an email from a shadow account, the EMG uses an IMAP APPEND command to

populate that email into the real email sent-box after a successful email delivery to

the recipient. Thus, the real account gets a trace of email delivery. If an email gets

bounced, the EMG sends the bounce email back to the real email account.

2.6.2 Improving Email Mutation Usability

Existing phishing detectors similar to EM mostly suffer because of low usability.

For instance, PGP requires user training on public-key cryptography and the PGP

tool itself [23,24]. PGP encryption removes the visibility of the email from end-users.

Whereas, EM does not distort the generic user experience of using emails. Every

operation such as mutation, verification, and shadow email address communication

is entirely segregated from the end-users and processed by the cloud EMGs. Users

only need to use EMAs, for instance, sending an email by pressing the new “Send

email with mutation" button beside the regular “Send" button in the Gmail web

client (mail.google.com) illustrated in figure 2.4a. EM does not modify or add

anything in the email body or headers makes it transparent to mail servers as well.

Therefore, EM can be used with any email service provider and email clients without

further usability and configuration overhead. The transparency of EM also makes it

compatible to work combining with other email security solutions (even with PGP [20]

or S/MIME [21]) and cyber agility frameworks [47].

2.6.3 Preserving User Privacy

The secure cloud-based gateways in the EM does not violate the end-to-end user

email privacy because of the following reasons. Firstly, EMG does not keep any copy

of the email. It just either mutates or verifies the sender’s email address if the com-

munications happen between two VIP users. All other emails get bypassed. Secondly,

EMA connects with EMGs through secure channels (SSL/TLS) to avoid unauthorized

data access during transmission. Finally, the organization of the VIP members can

29

maintain their own EMGs to preserve data privacy. The secret shadow email lists can

not be retrievable from any EMGs. Therefore, in a cross-enterprise EM system, EMG

from one organization can not reveal the shadow email list of another organization.

In recent days cloud-based secure email gateways are becoming popular because of

their swift, robust, and effective attack detection with minimal management over-

head [48]. Therefore, many organizations are adopting such solutions from Cisco,

Microsoft, Barracuda, Mimecast, and others [49].

2.6.4 Adding Custom Email Fields is Insufficient

Adding just a new field in the email headers (such as X-headers [50]) or custom

trace on the email body for sender authentication will not help to detect the lateral

spear-phishing attack. Because adding any extra information into an email will im-

mediately eliminate its transparency to both the client and the mail server. Second,

adversaries may corrupt such additional data by adding noises into it, which will cause

an interruption in regular email communication, raising high false-positive rates, and

opening new security loopholes into the detection system. Finally, motivated adver-

saries can craft such fields by carefully observing historical emails. To overcome these

challenges, EM uses a random selection of the sender email address (shadow address)

for each new email delivery without adding anything into the email. This makes the

solution transparent to both end-users and mail servers, but hard for adversaries to

guess a correct shadow email address.

2.6.5 Addressing Asynchronous Ground Truth Problem

If a VIP user deletes any email from his inbox/sentbox that was sent by another

VIP user, then the ground truth between them becomes asynchronous. To solve this

problem, EMG keeps the hashed (SHA-512) digest of the last l number of emails

between two VIP users. Therefore, EMG stores a maximum of (v−1) hashed ground

truth for each VIP user, where v is the number of all VIP users, to prevent asyn-

30

chronous ground truth problems. Moreover, sender and receiver EMGs perform this

hash storing operation asynchronously while sending and/or receiving an email. Thus,

the synchronization does not require any communication between EMGs.

2.6.6 Handling Insider Attack

A novel contribution of EM is that it can protect VIP users from insider attacks.

For instance, John is a VIP user who stoles Alice’s email account credentials. Then,

John uses his EMA to send a phishing email to Bob impersonating Alice. Formally,

an attacker i compromises an email account j and uses i’s EMA to send emails to k

impersonating j, where i, j, k ∈ L and L is the list of all VIP users. EM solves this

problem by following: every VIP user’s EMA is synchronized with its corresponding

EMG instance through a unique authentication token (see section 2.7.1 for details).

That means John’s EMA can get only his instance of EMG; therefore, it will work

only for John himself, not for Alice or Bob. The EMG keeps track who is forwarding

the email by examining the authentication token of the EMA, and then verifies if

that EMA is associated with the user or not. If the EMA is not assigned for that

particular user but delivers an email anyhow, then EMG identifies that email as an

insider attack.

2.6.7 Minimizing Shadow Email Account Overhead

The shadow email accounts are only meant to send emails as sender. These accounts

do not receive any emails. Creating multiple shadow accounts for VIP users does not

increase any inbound email traffic. Besides, these accounts do not impose any memory

overhead. Therefore, they create negligible overhead on the service provider. The

shadow email addresses can be selected from a 16-byte long (at least) sequence. This

ensures no collision between shadow email with real email accounts. Additionally,

unique keywords such as “sid" (section 2.2) can be used in shadow accounts creation

to make a fine difference from real email accounts

31

(a) Chrome Extension EMA adds new button for EM

(b) EMA in Thunderbird

(c) EMA icon at Chrome Menu Bar (d) EMA description in Chrome Extension Panel

Figure 2.4: EMA in Google Chrome Browser and Thunderbird, (a) “Send email with
mutation" button in mail.google.com, (b) EMA in Thunderbird, (c) EMA icon
at Chrome Menu Bar, and (d) EMA in Chrome Extension Panel.

2.7 Scalable Implementation and Security Measurement

Evaluating EM in a large scale network requires a scalable implementation that

is compatible with any existing email clients and email service providers. Moreover,

the security measures of each component are necessary to reduce the risk factor in

terms of user privacy and data breach. These matrices are measured for the primary

components of EM: EMA and EMG.

2.7.1 Email Mutation Agent

Security Measures. EMA operates alongside with regular Mail user agent [51] or

email clients only to deliver or receive new emails from EMGs. It does not commu-

nicate with the mail or SMTP server. Therefore, EMAs neither have any storage

to collect emails nor requires the user email account credential. The communication

between EMA and EMGs happens through a secure channel (SSL/TLS) to protect

data breaches during the transaction.

Implementation. Usually, clients use multiple devices, such as cell phones, laptops,

desktop, and more, to access their email accounts. Therefore, EMA needs platform-

oriented implementation to work on different devices as well. Three types of EMA are

implemented for three different platforms, 1) browsers extension for web clients that

will work in laptops and desktop, where a web browser can run. 2) Shell and python

scripts to configure email clients such as Outlook, Thunderbird, etc. and 3) email

client (android/iOS) app for cell phones and tablets. Figure 2.4 shows different imple-

32

mentation of EMAs, such as browser extension (2.4a) and Thunderbird client (2.4b).

The Chrome browser extension adds a new button called “Send email with Mutation"

(figure 2.4a) alongside with the regular “Send" button that mail.google.com pro-

vides.

Distribution of EMA. A VIP user can get an EMA from their system admin or

download it from the web. The admin gives a unique authentication token to each

VIP user for their first use of EMA to subscribe with the EMGs. Later on, using that

token, they can connect with their corresponding EMG from different EMAs. This

ensures users’ flexibility to use EMA from different devices and different locations

(e.g., public networks). Users can reset the token anytime.

2.7.2 Email Mutation Gateway

Security Measures. EMG inspects email for detection and modifies for mutation.

It does not maintain any mailboxes for users. When a VIP user subscribes with EMG,

it creates an instance for that user. So that later on, the same user can connect with

the EMG from EMAs in different devices. EMG keeps the arrangement of the shadow

email lists secret. Therefore, from an EMA, VIP users can not retrieve their shadow

email list. After a certain mutation interval t seconds, EMG rearranges all the secret

shadow email lits of VIP users randomly. Besides, an instance of EMG given to a VIP

user is not shareable by other VIP users through EMAs, meaning Alice can not use the

EMG instance of Bob from her EMA. This protects the insider attacks because using

her EMA and EMG instance, Alice can not send emails as Bob, considering that Alice

compromises Bob’s email account. Cloud-based solutions like EMGs are secured, and

many providers like Amazon, Microsoft, Cisco, Barracuda, Mimecast, and more are

nowadays providing secure cloud email gateways for phishing detection [49].

Implementation. The EMGs are implemented as an inbound and outbound Mail

transfer agent [51] that works as an SMTP relay to mutate outgoing emails and proxy

33

gateway to check incoming emails for spear-phishing detection. Python libraries such

as smtpd and imaplib are used to implement the relay server and Django [52]

framework to make EMG a web service. The code is available on GitHub.

2.8 Email Mutation Verification and Evaluation

2.8.1 Verification

EM is a new technique; therefore, it is necessary to ensure the design correct-

ness before implementation and deployment over real network. Model checkers help

to formally specify, model, and verify a system in the early design phase to find

any unknown behavior if it exists. This section presents the modeling of individ-

ual components, their interaction, and verification of EM using model checking tool

UPPAAL [53]. The comprehensive system is modeled using timed automata and

verified against user-defined temporal properties. The components of EM have been

illustrated by using the state machine diagram of the system modeling language,

where the circle represents the state, and the arrow shows the transition among the

states. The transitions are annotated with channels, guards, and actions. Interaction

between components using channel (!, ?) where, “ !" and “?" means the sending and

receiving signals, respectively.

Modeling of Client and Mail Server. Figure 2.5a illustrates the functional-

ity of a client. The client uses the sending signal Send(i, j)! to forward a newly

composed email to the EMG, where i is the sender address, and j is the receiver

address. Using Fetch_Email(j)!, client j request to fetch any new email from EMG.

As a response, the client receives a new email from EMG by the receiving signal

Receive(i, j)?, where i is the sender address, and j is the receiver address. Figure 2.5b

shows the basic functionality of a mail server. The channels Send_To_Server(i, j)?,

Fetch_From_Server(j)?, and Response_From_Server(i, j)! represent the tran-

sitions for receiving a new email, receiving fetching request for new emails, and re-

34

Verify

Threat

Response_From_Server(i', j)?

if !verify(i')
alert=true

Receive(i', j)!

if verify(i') alert=false

Receive(i, j)!

Ready
Mutate Send_To_Server(i', j)!

mutate(i)

Fetch(j)?

Fetch_From_Server(j)!

Fetch

Receive

Send(i, j)?Receive Send(i, j)!Ready

Fetch(j)!

Receive(i', j)?

Receive

Send_To_Server(i', j)?

Ready

Response_From_Server(i', j)!

Forward

(a) Client

(b) Mail server

Fetch_From_Server(j)?

(c) Email Mutation Gateway

Figure 2.5: State machine diagrams of different components in EM.

sponding new emails respectively.

Modeling of Gateway. Figure 2.5c describes the functionality of the mutation

gateway (EMG). EMG receives a new email from clients through the receiving signal

send(i, j)? and mutates the sender address i to i′ using the function mutate(i). Then

it forwards the email to the mail server using signal Send_To_Server(i′, j)!. EMG

enters the Fetch state after receiving a Fetch(j) signal from client j and seeks new

emails from the mail server by the signal Fetch_From_Server(j)!. As a response,

EMG receives new emails by the receiving signal Response_From_Server(i′, j)?,

where i′ is the (mutated) sender address, and j is the receiver address. After that,

EMG verifies i′ by the function verify(i′). If verification pass, then the email will

be delivered to the client through the Receive(i, j)?, where i is the real address of

i′. Otherwise, the email gets flagged as a threat. In case of suspicious email, the

invariant alert is set to true; otherwise, it is set to false. Here, the state Threat is

presented to flag the email.

Modeling of Adversary. Using channel Send_To_Server(l, j)? adversaries send

email to recipient j, where l is the adversary chosen sender address. If adversaries

35

Table 2.1: Temporal properties to verify the correctness of Email Mutation system.

Property CTL Result
Reachability A[] := ∀ i ∈ all_emg satisfied

(emgi.verify ∧ !emgi.alert)→ (emgi.ready)
Liveness A[] := ∀ i ∈ all_emg (emgi.alert → emgi.threat) satisfied
Deadlock-freeness A[] := ∀ i ∈ all_emg (!emgi.deadlock) satisfied

make a successful guess, their email will be delivered to the client.

Property Verification. UPPAAL takes the model, and user-defined temporal prop-

erties as input to verify the model and generates output, either satisfied or not sat-

isfied. UPPAAL defines temporal properties in the form of computational tree logic

(CTL), which is a branch of symbolic logic. To verify EM, the following temporal

properties have been defined: liveness, reachability, and deadlock-freeness. Table 2.1

describes the properties along with its UPPAAL supported CTL and the results of

these properties. Reachability describes that every good state is reachable, and ev-

ery bad state is unreachable. In EM, every benign email should be delivered to the

destination. Liveness describes the system is progressing to achieve a specific goal.

For instance, every suspicious email should be flagged as a threat. Deadlock-freeness

ensures that the system is not stopped, and it is always progressing. The system is in

deadlock sate when it stops in a state and does not proceed to other states. The CTL

operator A[] represents that every single state on all paths should satisfy the proper-

ties, all benign emails are delivered to the destination and every suspicious email is

flagged. The reachability property ensures that no suspicious email will be delivered

without a threat flag. In reachability and liveness properties, (∀ i ∈ all_emg) is used

for iteration and verification of property against every single email mutation gateway

(emgi).

2.8.2 Evaluation

The performance of EM is measured in terms of overhead added into existing email

infrastructure. EM has a 100% lateral spear-phishing and spoofing detection rate. EM

36

is compared with similar existing solutions to measure the necessity and effectiveness

of the system.

Experiment Setup. EM is evaluated in large scale enterprise networks for more

than six months and protected 5,000 VIP members over five different organizations.

Among them, 46 VIP member was voluntarily from Jet Propulsion Laboratory, NASA

(JPL). The JPL red team sends more than half a million attack emails to evaluate

the system. The VIP members use different mail service providers, including Gmail,

Microsoft Exchange, Apple iCloud, and email clients like mail.google.com, Out-

look, Thunderbird, and so on. The shadow email addresses for each VIP user was

between ten to one hundred. The mutation interval t was set with different values

between 60 seconds to 2 hours to rearrange the secret shadow email lists randomly.

All evaluation metrics have been achieved from real-time email communications.

Shadow Email Selection Overhead. EMG computes shadow email addresses for

mutation and verification using algorithm 1. The selection overhead is measured using

a single email over different email sizes. Figure 2.6a shows the selection overhead for

mutation is 2.5 milliseconds, and verification is 5 milliseconds for email size range

10-20KB without attachments. Figure 2.7a shows the overhead is 3 milliseconds, and

7 milliseconds for email size range 7-12MB with attachments.

Mutation Overhead. While forwarding an email, EMG 1) mutates the email, 2)

delivers the mutated emails to the provider mail server, and 3) populates the real email

account sentbox of the sender to keep track of successful email deliveries. Figure 2.6b

and 2.7b shows the overall forwarding delays over email sizes. Emails in 10-16KB

sizes need 3 milliseconds for mutation, 250 milliseconds for delivery, 650 milliseconds

for sentbox population, and overall 950 milliseconds to forward the email. For email

sizes 7-12MB, mutation delay is 4.5 milliseconds, and overall sending time is 1.5

seconds. In both cases, the mutation overhead is 0.5% compared to the end-to-end

email forwarding delay.

37

(a) Shadow computation. (b) Email mutation time. (c) Email verification time.

Figure 2.6: EM gateway performance for mutation-verification of individual emails
without attachments.

(a) Shadow computation. (b) Email mutation time. (c) Email verification time.

Figure 2.7: EM gateway performance for mutation-verification of individual emails
with attachments.

Verification Overhead. Figure 2.6c and 2.7c shows the end-to-end email receiving

time with verification over different email sizes. Emails in 10-20KB sizes without

attachments have overall 8.5 milliseconds receiving delay where the verification delay

is 4.5 milliseconds, and emails in 7-12MB sizes have overall 10 milliseconds receiving

delay where the verification delay is 7 milliseconds

Email Processing Rate by an EMG. The overall performance of an EMG is

measured by sending more than thousands of emails at a time to a single EMG

to process mutation and verification simultaneously. Figure 2.8 and 2.9 shows the

average processing delay of EM for sending an email with mutation is 1.1 seconds

and receiving an email after phishing detection is 10.9 milliseconds, respectively while

dealing with 5000 emails per second.

Cross-Enterprise Architecture Overhead. Adding different organizations into

the EM system does not increase additional overheads because the operational cost

38

Figure 2.8: Multiple email processing
overhead for mutation.

Figure 2.9: Multiple email processing
overhead for verification.

Figure 2.10: EMG overhead in cross-
enterprise architecture. The increasing
number of organization or VIP mem-
bers do not impact the overall processing
time. The number of emails dealt at a
time determines the overall delay.

Figure 2.11: EM engineering attack,
the minimum number of tries adversary
needs to break the EM for sending their
first successful phishing email.

of each EMG only depends on the total number of emails get processed at a time, not

on the size of the VIP user list. Figure 2.10 depicts that the overall email processing

time is the same for one organization having 1,000 VIP users to five organization

having 5,000 VIP users. The delays increased when the total number of emails dealt

at a time increases. Multiple EMGs can be used to balance these increasing delays.

EM Engineering Attack. If adversaries send a phishing email directly from com-

promised VIP user accounts or by impersonating a VIP user, they have 0% chance

to evade EM. However, adversaries may try to phish by randomly guessing a shadow

email address, known as EM engineering attack. A shadow email address is a 16-byte

long random alphanumeric sequence, which is practically impossible to guess. There-

39

Table 2.2: Detection results of EM.

Metric Data
Total attack emails 516,000
Lateral spear-phishing attack 153,207
Spoofing attack 145,291
EM engineering attack 201,437
Integrity attack 16,065
EM engineering attack missed 3
Integrity attack missed 167
L. spear-phishing detection 100%
Spoofing detection 100%
EM engineering detection 99.99%
EM engineering false negative 0.0015%
Integrity attack false negative 1.04%

fore, for the sake of the evaluation, all valid shadow emails are informed to the red

team before launching the attack. Figure 2.11 depicts the detection results. With dif-

ferent setups of mutation parameter, the minimum number of tries adversary needs to

break EM for sending their first successful phishing email varies. For instance, it takes

7,000 tries to send the first phishing email if a VIP user has 10 shadow emails and

120 minutes mutation interval. However, the tries dramatically increase to 14,500

(probability 0.000069) if the number of shadows and mutation interval changes to

100 and 1 minutes, respectively. This indicates that based on user impact, EM can

increase the level of protection swiftly.

Detection Results. Table 2.2 summarizes the performance metrics for EM. From

a total of 516,000 attacks, EM detected all of the lateral spear-phishing and spoofing

emails with no false positive and false negative rates. Out of 201,437 EM engineering

attacks, three were successful, as I inform prior to the attack generator red team

about all valid shadow email addresses. The purpose of EM is to detect lateral

spear-phishing and spoofing attacks. However, EM can detect any integrity violation

in the email while two VIP user communicates. EM calculates the current shadow

email address based on the hashed value of the email and prior l emails (ground

40

Figure 2.12: The detection rate of EM over different shadow email address assigned to
a VIP user. Lateral spear-phishing and spoofing detection rate is 100% for all values
of shadow email addresses. The integrity attack can be detected with 99% accuracy
by using 100 shadow email addresses.

truth). Therefore, any changes in the email during transmission will desynchronize

the ground truth at the receiver side. Figure 2.12 shows the integrity attack detection

rate is 99% when the shadow address for a user is one hundred. Although this attack

is explicitly out of our attack model, however, I add this into the detection results to

show the capabilities and completeness of EM.

Comparison with Existing System: Learning-based. Existing lateral spear-

phishing detectors are mostly learning-oriented; they learn attack signatures, be-

nign users’ behavior from the historical data, and create a model to detect phishing

emails [10, 15, 38, 40, 41]. These solutions require myriad historical data for training,

distinct attack signature (e.g., malicious URL or attachment), sufficient number of

features, and often shows high false positive and false negative rates because of any

lacking of these requirements. False positive means benign emails detected as phish-

ing and false negative means a phishing email detected as benign. For instance, Ho

et al. [10] trained their model over 25.5 million emails, and their attack model is lim-

ited to malicious URLs embedded in the email body. Gascon et al. [38] showed high

false positive (10%) and high false negative rates (46.8%) against detecting lateral

spear-phishing attacks. EM does not require any training; it is independent from

41

Table 2.3: Comparison between existing popular PGP tools and EM.

Tool Overhead (milliseconds)

PGP GnuPG Autocrypt Enigmail Mailvelope
760.356 680.65 852.12 785.65

EM Mutation Verification
3 7

Table 2.4: Existing email authentication standards failed to detect lateral spear-
phishing (LSP) attacks.

Auth.
protocol

Attack
data

LSP
detect

SPF 100% 0%
DKIM 100% 0%
DMARC 100% 0%
EM N/A 100%

email content or header and can detect lateral spear-phishing and spoofing attacks

with zero false positive and false negative rates.

Agent-based. PGP, S/MIME can ensure sender authenticity by digitally signed the

email. However, these solutions are not widely used because of low usability, low

transparency, and high manageability issues [23, 24]. The end-users require prior

knowledge regarding public-key cryptography and proper training to use PGP tools.

The encrypted cyphertext eliminates the visibility of the emails, making it incompati-

ble to work with other security extensions such as IDS. Moreover, PGP signatures can

be spoofed [26]. In contrast, EM is transparent, has a low management overhead, and

highly flexible to use. The end-users do not need any prior knowledge or training to

use it. Table 2.3 shows a comparison of EM with the existing popular PGP solutions

in terms of overhead added in a generic mail transfer system. The overhead of EM is

negligible (3-7 milliseconds) compared to PGP signature and encryption operations

with RSA 2048 bit keys, which is vital for large scale enterprise networks where email

processing rate is higher.

Authentication-protocol. Standard email spoofing detection protocols such as SPF,

42

DKIM, and DMARC can not detect lateral spear-phishing attacks. Table 2.4 depicts

that, all of our attack data has these security extensions. However, the lateral spear-

phishing emails bypass these standard techniques as they are sent from legitimate

accounts. Nonetheless, EM detects them all. Therefore, in the prevailing lacking

of alternative protection against lateral spear-phishing attacks, the EM system is a

valuable extension to existing defenses.

2.9 Summary

This chapter presented a novel approach using sender email address mutation to

proactively defend against the most devastating and stealthy spear-phishing called

lateral spear-phishing attacks. Our EM system guarantees the phishing emails sent

from trusted users will be immediately detected. EM integrates well with existing

email infrastructures, and it requires no special handling by users. EM requires an

agent to be deployed on the client-side for every user and a central gateway in the

cloud. The agent can be a simple plugin installed in email clients. I implemented

and evaluated EM in a large scale real-world enterprise network with well-known

email service providers (Gmail, for example). The evaluation showed that EM causes

0.5% overhead on overall email transmission while detecting lateral spear-phishing

and spoofing attacks. Moreover, I showed that it is very hard to break EM (proba-

bility 0.000069). Unlike the existing spear-phishing detectors, which are limited on

malicious content or links, our EM can work beyond email content and headers to

detect most stealthy lateral spear-phishing attacks that exploit compromised email

account.

CHAPTER 3: Active Cyber Deception and Agility Synthesis

Dynamic composition for security planning necessitates a framework to enable cy-

ber agility and deception into the system for proactive defense. Therefore, the purpose

of this chapter is to build the core of the framework that leverages the automatic cre-

ation of defense actions rapidly and safely. This chapter focuses on developing a

high-level cyber agility policy language specification and distributed controller archi-

tecture for implementing configuration-based MTD and deception techniques.

3.1 Motivation

In modern cyber warfare, the prevalence of cyber asymmetry between the adver-

sary and the defender is that the defender needs to protect all susceptibilities into the

infrastructure. In contrast, the adversary requires few vulnerabilities to exploit. Ex-

isting reactive cyber defense techniques response after the attack has been launched

and usually approaches the target for specific, known attack descriptions or signa-

tures [54]. This often lets the adversary remain stealthy enough to learn the system

and discover further vulnerabilities and possible lateral movement. In addition, skilled

attackers can easily avoid static signature-based detection through exhaustive recon-

naissance, fingerprinting, and social engineering [28]. Therefore, a proactive approach

must be used by defenders to break this asymmetry. Active Cyber Defense (ACD)

is a promising technology to achieve this goal. ACD can be leveraged through cyber

agility such as moving target defense (MTD) and cyber deception.

Cyber agility allows the system to defend proactively against a wide-scale vector

of sophisticated attacks by dynamically changing the system parameters and defense

strategies in a timely and economical fashion. It can provide robust defense by de-

44

terring attackers from reaching their goals and disrupting their plans via changing

adversarial behaviors. Cyber Deception is an intentional misrepresentation of real

systems’ ground truth to manipulate adversary’s course of actions under the premises

of the defenders’ rules [9]. However, the goal of cyber deception is beyond just to

mislead adversaries. Cyber deception can deflect adversary away from their target to

false or no target, distort their perception of the infrastructure by adding ambiguity

and decoys into the network. Deception can deplete adversary consuming their com-

putational power, delaying attack propagation by storming the static ground truth

to a probabilistic state, for instance, increasing the number of probing by mutating

the static IP addresses of critical resources. Finally, deception can engage with the

adversaries to stir down under defenders’ premises to discover their hidden tactics

and techniques, which leads the defender to protect future zero-day attacks. In sum-

mary, deception is a rising paradigm in cyber defense that works beyond traditional

detect-then-prevent techniques while effectively discovering new adversary tactics,

consuming their resources, slowing down attack propagation, and learn adversary

intention for future defense.

The current state of art depicts the increasing adoption rate of ACD because of its

evident success over the existing reactive defense [9,28,55–60]. By 2022, it is expected

that the global cyber deception market’s expense will grow up to $2.3 billion [61].

However, developing ACD techniques in real networks is a highly complex task. It

requires significant effort in implementation and network configuration management.

Efficient and adaptive deception and MTD needs continuous network monitoring to

observe adversary activities, optimal planning for feasible implementation, and safe

deployment without breaking the integrity of the system. As a result, few ACD

frameworks are developed and validated in the real-life operational environment.

To overcome these challenges, an ACD framework (figure 3.1) is developed in

this chapter. The framework has two part, MTDSynth for cyber agility synthesis

45

and an extensible rich API to build sophisticated MTD and cyber deception appli-

cations. The goal of framework is to make MTD and deception infrastructure as

services through API that shields the defender from all intricate details about the

low-level primitives implementation, orchestration and deployment, which eventually

block them from developing novel and innovative defense applications.

MTDSynth allows Agility developers for creating Agility control programs using a

high-level cyber agility policy language (HAPL) that provides the required constructs

for configuration-based Agility techniques including the following: (1) mutation trig-

gers which can be time-based or event-based using user-defined network sensors, (2)

Agility mutable system parameters that will be dynamically changed based on the

trigger, (3) configuration parameters that depend on the mutable parameters, (4)

mutation functions and mutation constraints that dictates the methodology to com-

pute and optimize the selection of new mutation values, (5) mutation attributes that

can be used to define the mutation scope or domain.

The API creates a new dimension to make cyber deception and MTD as a service.

It is extensible and available on GitHub; therefore, more functions can be added by

the community based on requirements. The high-level API specifies the HoneyThings

(honeypots, decoys, etc.) [9] configuration parameters and misrepresentation mecha-

nisms of the system. While deployment, these parameter configurations can be done

by low-level network management API. Thus, the framework has a comprehensive

low-level network management API. The high-level security API and low-level net-

work configuration API make the framework an easy to develop multi-strategy ACD

composition and deployment in a timely and economical fashion.

The framework is developed over Software-defined Networking (SDN). SDN pro-

vides a robust mechanism for dynamic and disruptive network management. SDN

enables programmatic ability into the network configurations. The fundamental fa-

cility achieved from SDN is to manage the network configuration dynamically from

46

a central controller for quick response and diagnosis. The framework offers the API

through ActiveSDN, a SDN controller developed over OpenDaylight [62] to facilitate

the synthesis process. ActiveSDN supports the implementation of the sensors and

agility actions defined in the HAPL at a high level without the need to focus on

any low-level OpenFlow [63] configuration. In addition, ActiveSDN incorporates the

Satisfiability Modulo Theory (SMT) constraints satisfiability solver [64], to optimize

the Agility and agility actions (selection of parameters and configurations values) at

real-time.

3.2 Problem Statement

Given ACD requirements in terms of deception and MTD techniques, the goal is

to define a specification language and a rich set of API that can be used to design

multi-strategy ACD techniques and deploy them into the network safely and rapidly.

Specification Language: The high-level specification language will give structured

instructions on how to use the HoneyThings in order to create several ACD policies.

The ACD framework provides an extensible list of MTD and deception API. However,

to use them properly in order to create a complete deception or MTD game without

breaking the mission integrity, a structure should be maintained. Using the language,

ACD developers can create multilevel deception and MTD actions without consulting

low-level network or system configurations.

HoneyThings: HoneyThings consist of honey-registry, honey-files, honey accounts,

honey traffic, and fake configurations that resemble real system resources but are

actually fake. The purpose of HoneyThings is to mislead the adversary away from the

real target. The factory that can manage the HoneyThings is known as HoneyFactory.

3.3 Related Works

To illustrate the framework, the following existing MTD techniques are used: (1)

Temporal Random Host IP Mutation (Temporal RHM) [65], (2) Spatial Random Host

47

IP Mutation (Spatial RHM) [66], (3) Random Route Mutation (RRM) [67], and (4)

MTD to disrupting stealthy bots [68].

Temporal RHM. Temporal RHM can turn end-hosts into untraceable moving tar-

gets by mutating their IP addresses in an intelligent and unpredictable fashion without

sacrificing network integrity, manageability or performance. In RHM, moving target

hosts are assigned virtual IP addresses that change randomly and synchronously in a

distributed fashion over time without disrupting active connections.

Spatial RHM. In spatial RHM, to reach each destination host hj, each source

host hi is associated with an ephemeral IP (eIP), such that this eIP could be only

used by hi to reach hj. The distribution based on which these new mappings are

determined can be either uniform or deceptive (adversary-adaptive). The mutation

uses a strategy selection algorithm to determine the appropriate way at any given

time by analyzing the behavior of potential adversaries in the network.

Random Route Mutation (RRM). RRM allows for switch routes in the net-

work periodically or based on feedback from network monitors. The main goal of

RRM is to change the route between a given source and destination address ran-

domly to disable the attack capabilities to launch an effective eavesdropping or DoS

attacks on the specific node or link in the route.

Disrupting Stealthy Bots. Disrupting Stealthy Bots is a MTD approach for

placing detectors across the network in a resource constrained environment and dy-

namically and continuously changing the placement of detectors over time to defend

against stealthy bots.

The notion of mutable networks as a frequently randomized changing of network

48

addresses and responses was initially proposed in [69]. The idea was later extended

as part of the MUTE network which implemented the moving target through random

address hopping and random fingerprinting [70].

Existing IP mutation techniques include Dynamic Network Address Translation

(DYNAT) [71–73], Applications that Participate in their Own Defense (APOD) [74],

Address Routing Gateway (ARG) [75], Network Address Hopping (NAH) [76], Ran-

dom Host IP Mutation (RHM) [65], OpenFlow Random Host IP Mutation (OF-

RHM) [77], etc.

DYNAT is a technique developed to dynamically reassign IP addresses to confuse

any would-be adversaries sniffing the network. They obfuscate the host identity

information (IP and Port) in TCP/IP packet headers by translating the identity

information with preestablished keys. BBN ran series of red-team tests to test the

effectiveness of DYNAT, while Sandia’s DYNAT report [72,73] examines many of the

practical issues for DYNAT deployment.

Spatio-temporal Address Mutation (STORM) [66] can defend against collaborative

scanning worm and APT attacks. It can distort attackers’ view of the network by

causing the collected reconnaissance information to expire as adversaries transition

from one host to another or if they stay long enough in one location.

The work in [67] provided a general formalization for RRM with various operational

and QoS constraints. The route selection is random and the new constraints can be

added conveniently. In practical networks, the number of disjoint paths is usually

very small [78], so the work in [67] analysed the MPE with non-disjoint paths for

RRM. The work in [28] presented a cyber deception framework, called CONCEAL,

as a composition of mutation, anonymity, and diversity to maximize key deception

objectives.

Developing cyber agility framework is a complex task because of the automatic yet

fast orchestration and management of network configuration without breaking the

49

mission integrity [79, 80]. Agility framework requires comprehensive metrics for the

safe deployment of mitigation techniques [81–83].

The current state of the art in cyber deception is enriched due to its effective-

ness over existing reactive defense policies. Different theories and approaches are

being used for optimized and powerful cyber deception planning. Game-theoretic

approaches such as partially observable stochastic games [58], zero-sum Stackelberg

game [84], Bayesian game [85,86] provides adversary adaptive deception.

Sequential decision making such as Partially Observable Markov Decision Process

(POMDP) [87, 88], game theory with Q-learning [89], and MDP [90] provide inter-

active cyber deception planning with the adversary in real-time. Probabilistic logic

deception (PLD) [57], satisfiability modulo theories (SMT) [28,56] provides optimized

deception planning.

Deception framework like [28, 55, 91] provides a practical implementation for op-

timizing complex deception plannings. However, these solutions do not focus on

building a multi-strategy deception goal simultaneously. Software-defined network-

ing (SDN) has been used for developing many cyber deception techniques for network

securities against reconnaissance attacks [28,47,55,59,92–94].

3.4 Active Cyber Defense Framework

Figure 3.1 shows the major components of ACD framework: the user interface to

initiate cyber deception or MTD and the active defense controller (ADC) to deploy

the deception or MTD along with the OpenDaylight ActiveSDN controller over the

SDN network. The Chimera is the deception action pallner, which is described in

chapter 4.

3.4.1 Interface

The interface provides an easy way to play with the deception and MTD API (ADC

API) to build highly complex defense policies. For instance, the admin wants to

50

SDN Netwrok

//

Interface
Defense specification ACD Policy

Active-Defense Controller (ADC)

Policy
Parser

Policy
Translator Job Queue

M
id

dl
ew

ar
e

So
lv

er

POMDP SMT ConfigChecker

R
ES

T
AP

I

//

...

AD
C

AP

I

ActiveSDN for
MTDSynth

///

Ac
tiv

eS
D

N

AP
I

//
R

ES
T

AP
I

PLD

Chimera
//

Host

M
SD

N

API

Figure 3.1: MTD Controller Synthesis using MTDSynth.

initiate a deception strategy to proactively protect critical resources into the network

while also wants to learn the network behavior for any future attacks. Therefore,

she starts a multi-strategy deception technique, such as distort adversary, by creating

anonymity and diversity into the network while diverting malicious traffic to a decoy

machine for unknown attack tactics discovery. Such a multi-strategy deception can

be launch swiftly and effortlessly using the interface shown in listing 2. Listing 2

depicts a JSON request for launching deception by the API createHoneyNetwrok().

The details of the JSON and the API is discussed in section 3.4.2.5. The interface

delivers the deception triggering JSON request to the middleware through REST API.

51

Listing 2 JSON request to launch deception by k-anonymity and l-diversity through
API createHoneyNetwork().

1 {"input": {
2 "api": "createHoneyNetwork",
3 "target": "r1",
4 "impact": "high",
5 "k": 2,
6 "l": 3,
7 "trigger": "activate"
8 }
9 }

3.4.2 Active Defense Controller

The Active defense controller (ADC) in the framework is the central orchestrator

that handles the end-to-end processing of the deception and MTD techniques from

initiation by the interface to the safe deployment in the network. It provides an agility

language specification HAPL to create agility control programs (agility policies for

MTD and cyber deception). ADC enables an open playground that enables proto-

typing or building advanced ACD techniques rapidly and safely using SDN. ADC

leverages its facilities by providing a ADC API that gives access to sophisticated cy-

ber deception, MTD and OpenFlow management functions using the OpenDaylight

controller. Besides, ADC incorporates with a decision-making synthesis engine called

solver, that is capable of solving computationally hard problems using constraint sat-

isfaction solvers (SMT Z3) [27], ConfigChecker [29], etc. to optimize deception policy

actions. ADC composes the deception triggering by the interface, ensure safe low-level

configuration changes, and deploy the ACD technique into the network. Therefore,

ADC makes ACD technique as a service that users can access without taking any

low-level configuration management headaches yet mitigate attacks proactively.

3.4.2.1 Middleware

The middleware translates the high-level ADC API to ActiveSDN (OpenDaylight)

API. It incorporates the solver through REST for solving constraint problems in order

to optimize deception planning. Middleware creates a back-and-forth communication

52

Listing 3 Middleware generates the ActiveSDN (OpenDaylight) API deception event
from user input (Python implementation).
class ActiveDeceptionApiHandler:

def event_generator(self, request):
...

deception_event = EventBuilderFactory
.build(request)

output = ActiveDeceptionServiceImpl
.defenseByDeception(deception_event)

Listing 4 ADC solves optimal deception planning configuration to create honey
network (OpenDaylight Java implementation).
public class ActiveDeceptionServiceImpl implements ActiveDeceptionService

...
public Future<RpcResult<DefenseByDeceptionOutput>>

defenseByDeception(DefenseByDeceptionInput input){
...
DeceptionPlan optimalConfiguration = Solver.solve(input.getConstraints())
Future<RpcResult<CreateHoneyNetworkOutput>> status =

createHoneyNetwork(optimalConfiguration);

bridge to ADC with the user interface through ADC API and the SDN network

through ActiveSDN API. The middleware is developed in python and run as a daemon

server along with the ADC controller. The middleware uses a factory pattern to

interpret user input and create an event correspondingly, shown in listing 3. Then

it invokes the ADC service, which implements the ActiveSDN API to launch the

deception or MTD techniques. Listing 4 shows the ActiveSDN implementation of the

deception deployment.

3.4.2.2 Policy parser

The policy parser is the first step to process the MTD policy created by the inter-

face. It parses the given policy according to the language specification, generates a

parsing tree and checks any syntax error. Then the parse tree is delivered to the trans-

lator. If any error occurs while processing the policy, the parser provides feedbacks

to the interface; therefore, the user can make necessary correction in the policy. The

MTD policy parser also measures the semantic correctness of the given policy from

the parse tree. It checks whether the policy uses any primitives, sensors, mutation

53

functions, or constraints that are not supported by ActiveSDN. Moreover, it checks

the correct use of arguments in different primitives, type mismatch while comparing

the output of different primitive constrains with each other, etc. If the validation

fails, the reason behind the failure is returned to the interface as feedback.

3.4.2.3 Policy translator

The translator module translate the MTD policy to a python script with the Ac-

tiveSDN API. The ADC expose the primitives to create MTD policy from all the

actions, sensors, and constraints ActiveSDN engine has in the ActiveSDN API. The

translator generates a complete python script from the given policy based on that

API, therefore executing the script will deploy the policy into the network through

ActiveSDN engine. The translator knows how to invoke each function the engine

provides correctly and by correct, it means the proper argument selection, providing

appropriate response to any notification, etc. The script can run as a daemon server

to communicate back and forth with the engine. The reason behind that, some API

will generate output that can be used as input to another API (e.g., the output of

getCriticalLink(), l can be used as input in isLinkFlooding(l, ...)). Thankfully, Ac-

tiveSDN engine is developed over OpenDaylight, which supports multi threading to

handle multiple request at a time from the translator program

3.4.2.4 Solver

The solver in ADC is to optimize constraint problems to generate a feasible and

practically deployable ACD configuration. The solver is designed as a plug-in-play

model in the architecture. Therefore, various configuration optimization solution such

as POMDP [30], SMT [27], and more can be added with ADC as required. The SMT

solver is used to optimize anonymity and diversity of concealment configuration [28],

ConfigChecker to solve reachability constraints [29]. ADC incorporates with the solver

through middleware via REST API.

54

Table 3.1: Active cyber defense framework sensors, management and constraint API.

Sensor API Management API Constraints API
isHostScanning() block() getRouteRisk()
isLinkFlooding() inspect() overlap()
chekTrafficRate() throttling() isIncludeSwitch()
checkElephantTCP() splitInspect() getAvailableBandWidth()
getFlowStatistics() priorityForwarding() checkUniqueIP()
checkNewComers() installFlowRule() checkNonRepeateIP()
getCriticalLinks() installNetworkPath() checkSpatialCollision()
getAllFlowRules() sendPacketOut() getMinDetectionProb()
findNeighbors() createTunnel() getAttackUncertainity()
detectBot() subscribeEvent() canReach()
getPortID() removeAllFlows() getShortestPath()

Table 3.2: Active cyber defense framework sensor, management and constraint API
description.

Name Descriptions

Se
ns
or
s

isHostScanning() If any IP address sending SYN packets grater than the threshold th in a certain time window t, this function generates
a true positive alarm.

isLinkFlooding() If the bandwidth consumed by the flows going to that link l, is greater than the the bandwidth threshold th, this will
generate a true positive alarm.

chekTrafficRate() Calculate the average rate of a specific flow f of type (UDP and ICMP) flows.
checkElephantTCP() Calculate the percentage of large-size TCP traffic from a given flow list <f> .

getFlowStatistics() To get the complete information about a flow f such as: number of packets matched with f, bytes captured by f,
time window for those packets, traffic type (ICMP, TCP, UDP) etc.

checkNewComers() Calculate the ratio of new IP source addresses from a given flow list <f> that has not been seen before recently
in a given time window t.

getCriticalLinks() This function returns the critical links may generated in the topology based on the flow data path.
getAllFlowRules() This function retrieves all the flow rules available into a switch s.
findNeighbors() Returns all the neighbor hosts of the given IP address h that connected with the given switch s.
detectBot() If the signature of the examined packets satisfies the condition of bot traffic, return true.

A
D
C

A
P
I

createHoneyNetwork() Dynamically creates a honey network with decoy/shadow hosts and services to analyze adversary for unknown
TTP discover or distort them to delay attack propagation.

reDirect() Redirect traffics to a given destination (can be a decoy or false target) and tunnel the packet to a proxy to
generated trusted response.

reRoute() Change the old path between a source and destination pair to a new path to avoid possible link flooding
or other security measures.

pathMutate() Change the path frequently of active flow(s) to another satisfiable path based on event or time.

ipMutate() Randomizing real src/dst IP addresses to virtual src/dst IP addresses for depletion, so that real IP is used
for routing but end hosts always uses virtual IP to communicate.

migrateService() Create new machine with same services of the current target then migrates all benign traffic to the new machine.

spatialMutation() Randomize the real IP of given hosts so that each host reach the same destination with a different IP address.
Therefore, the view of the network is different for different host.

M
an

ag
em

en
t
A
P
I

block() Block any incoming traffic from the given host IP address.
inspect() Inspect header and limited prefix data (application header), can be redirected to given IDS for advance inspection.
throttling() Policing the rate (traffic shaper) of the given traffic.
splitInspect() Divide the traffic and apply deep packet inspection.
priorityForwarding() Use priority queuing to forward traffic (gold, bronze and silver services)
installFlowRule() This function installs a single flow rule into a switch.
installNetworkPath() This function installs a complete data flow(s) path between source and destination host.
sendPacketOut() Forward the packets to the given destination (switch, host or controller).

createTunnel() Creates a tunnel where gateways at both ends only changes the source IP address to new IP address so that man in
the middle get false information about source IP address.

subscribeEvent() Subscribes an event. An event can be a flow trace having type TCP, particular rate or given src-dst pair.
removeAllFlows() Removes all flow rules from a switch.

C
on

st
ra
in
ts

A
P
I

getRouteRisk() Calculates the risk of a route based on the probability of each risk get attacked.
overlap() Calculates overlapping links between two route.
isIncludeSwitch() Checks if a particular switch available in a route.
getAvailableBandWidth() Checks the assgined bandwidth of a link.
checkUniqueIP() Checks if two sets of IPs are unique or not.
checkNonRepeateIP() Checks if the given IP is not used by other already assigned IP.
checkSpatialCollision() Checks the collisions in eIP in spatial mutation,
getMinDetectionProb() Calculates the minimum probability to detect an event based on given signature or specification.
getAttackUncertainity() Calculates the probability of a host, link or switch in a route that will be attacked with a given probability.
canReach() Find all reachable sources or destinations to/from a specific source s and destination d.
getShortestPath() Calculates the shortest path source s and destination d.

55

Table 3.3: Active cyber defense framework Deception and MTD API

Name Descriptions

createHoneyNetwork() Dynamically creates a honey network with decoy/shadow hosts and services to analyze adversary for unknown TTP
discover or distort them to delay attack propagation.

reDirect() Redirect traffics to a given destination (can be a decoy or false target) and tunnel the packet to a proxy to generated
trusted response.

reRoute() Change the old path between a source and destination pair to a new path to avoid possible link flooding or other
security measures.

pathMutate() Change the route frequently of active flow(s) to another satisfiable route based on event or time.

ipMutate() Randomizing real src/dst IP addresses to virtual src/dst IP addresses for depletion, so that real IP is used for routing
but end hosts always uses virtual IP to communicate.

migrateService() Create new machine with same services of the current target then migrates all benign traffic to the new machine.

spatioTemporalMutation() Randomize the real IP of given hosts so that each host reach the same destination with a different IP address.
Therefore, the view of the network is different for different host.

createShadow() Creates an identical fingerprint (shadow) of a given host in the honeypot.

createDecoy() Creates a decoy host. If the decoy is specified for a target host without specifying any services, then arbitrary but the
same type of services will be created in the decoy, e.g., an FTP server but with a different vendors.

3.4.2.5 ADC Deception and MTD API

ADC provides a comprehensive API for developing complex and multi-strategy

deception and MTD techniques. The API list is divided into four classes: a high-

level public API for deception and MTD known as ADC API. The other three are

low-level APIs. Sensor API for collecting network behavior to observe adversary

actions. Management API to configure cyber resources such as switches, links, hosts,

services, etc. The constraint API calculates risk, overlaps, reachability, availability

while configuring honey networks. Table 3.1 shows the low-level API list, and table 3.2

describes their functionalities.

The novelty of framework is the extensible ADC API that can be used to build

sophisticated multi-strategy deception and MTD techniques in a cost-effective and

timely fashion. It eliminates the challenges of deploying effective cyber deception poli-

cies that require frequent but complex low-level network configuration management.

Because of the robust and expressive ADC API, deception and MTD management

is orchestrated automatically with minimal overhead. Table 3.3 describes a selective

list of active deception API.

3.5 Agility Policy Language specification

The language specification allows defender to program MTD techniques in high-

level and the ADC will deploy that technique into the network safely by orchestrating

56

Mutation
Technique

Mutation
Parameter

Mutation
Function

has-A

has-A

Key Based

Random

is-A

Mutation
Event

Behavioral

Spatial

Temporal

Configuration
Parameter

on

Routes

IP

Mutation
Action

is-A

Asset

has-A

DNSIDSFirewall

is-A

using

has-A

is-Ais-A

is-A

is-A

is-A

is-A

triggers

Fingerprinting

Perform by

Mutation
Constraints

Activity state

Switch

Figure 3.2: Cyber agility policy ontology for MTDSynth.

low-level network configurations (e.g., DNS record, flow rules in switch tables) auto-

matically. By safely, it means that the deployment of MTD techniques doesn’t violate

the mission integrity as the automatic configuration of such sophisticated techniques

can jeopardize the reachability, liveness, and fairness of the network communication.

Therefore, MTDSynth provides minimum effort in the development of MTD tech-

niques and puts safeguard onto it by considering the constraints. To define a fine

grain MTD specification, an ontology is needed that can best describe the formal

syntax of MTD techniques creation. Therefore, I developed an MTD ontology and

an MTD language syntax around it.

57

3.5.1 Ontology

Figure 3.2 shows the ontology for the MTD techniques. The mutation technique

will be triggered by an event which can be temporal, special, or behavioral event.

The temporal or spatial events are time oriented, meaning after a certain period, the

mutation techniques will be triggered or continue triggering. Behavioral events de-

pend on network behavior such as packet dropping, network scanning, link flooding,

etc. Based on the event, an agility specification will be triggered. The agility speci-

fication of mutation depends on several factors like mutation parameters such as the

IP address of specific hosts, configuration parameters like DNS-entry or switch flow

tables, mutation functions like key-based or random distribution etc. The mutation

technique get performed by the mutation actions. The event trigger time interval

can initiate a periodic triggering of the mutation techniques. The ontology enforces

the safety of the MTD techniques by considering the proper declaration of individual

constraints that requires for each mutation strategy.

3.5.2 Language Specification

The specifications of MTD contain the following aspects as shown in Figure 3.3.

MTD name N is a string that can be used to define an MTD rule. Using N, the

same rule can be used later on. Besides, the naming will help the user to keep track

while creating multiple rules.

Mutation Event E is the trigger that initiates the mutation. The triggering

event can be time based or network system behavior oriented. For example, the

system admin can start IP mutation to protect critical resources in a timely fashion.

Therefore after a certain period of time, the mutation technique will start and/or

repeat. Here the triggering event is time interval, ∆. However, the admin may

want to mutate a route if any of the links in the route get flooded. In that case, the

mutation triggering event is network behavior oriented, which is if a link gets flooded.

58

Agility Rule Π ::= N : E → Λ

MTD Name N ::= STRING
Mutation Event E ::= ∆ | α
Time Interval ∆ ::= NUMBER
Sensor Alert α ::= isHostScanning() | isLinkFlooding() | isBotDetected() |

checkUDPICMPPRate() | getAvailableBandwidth() |
checkNewComers() | checkElephantTCP() |
getRouteLength() | getCriticalLink() | getRouteRisk() |
getFlowStatistics() | getAllFlowRules() | getFlowRate()

Agility Spec. Λ ::= MUTATE p id OF {attr} USING f ON g BYm
WHILE c

Mutation Param. p ::= ROUTE | IP | STATE
Identifier id ::= [A− Z]

Attribute attr ::= rattr | ipattr | sattr
Route Attr. rattr ::= id.src→ IPAddress, id.dst→ IPAddress

IP Attr. ipattr ::= id.IP → 〈list of IPAddress〉 | h
Host Name h ::= STRING

State Attr. sattr ::= id.IP → 〈list of IPAddress〉 | s
Activity Status s ::= UP | DOWN
Mutation Func. f ::= random(η, η) | key-based

Numeric η ::= NUMBER
Configuration g ::= r | r , g

Resource r ::= DNS-entry | switch-table | s
Mutation Action m ::= ipMutate | pathMutate | spatioTemporalMutation |

createShadow | reDirect | migrateService
Constraint Spec c ::= β | β ; c

Agility Const. β ::= α | γ | δ | δ op v

Mutation Const. γ ::= idt+1 op η | idt+1 op idt | attrt+1 op η
attrt+1 op attrt

Network Func. δ ::= includeSwitch() | excludeSwitch() | overlap() |
canReach() | getAllPaths() | getShortestPath() |
getMinDetectionProb() | getAttackUncertainity()

Value v ::= η | TRUE | FALSE
Operator op ::= > | < | ≤ | ≥ | = | 6= | ∩ | ∪ | ∀ | ∃ |

+ | − | × | /
IPAddress ::= (([0− 9]|[1− 9][0− 9]|1[0− 9]{2}|2[0− 4][0− 9]|

25[0− 5]) \ .){3}([0− 9]|[1− 9][0− 9]|1[0− 9]{2}
|2[0− 4][0− 9]|25[0− 5])

Figure 3.3: HAPL Syntax for MTDSynth.

59

Sensor Alert α are the sensors in ActivesSDN that can be deployed into the

network to collect and measure any behavioral facts, like host scanning, link flooding,

bot detecting, critical links finding, etc. The sensor primitives are implemented as

functions so that the user can directly use them to trigger MTD events or create

constraints for the safe deployment of MTD techniques.

Agility Specification Λ defines the actions that are taken for the agility technique.

For example, the actions of IP mutation is to mutate the IP address of the hosts in the

valid address space, and the actions of route mutation are to mutate the route of the

specific network flows. Therefore, the agility action specification defines to start an

MTD action (ipMutate, pathMutate etc.) on a parameter (e.g., IP, route) using an

mutation function which requires automated orchestration of network configuration

fulfilling specific constraints to maintain mission integrity.

Mutation Parameters p the mutable parameter can be IP address, route or state

of an service that will be mutated over time. The mutation parameter has attributes

that provides granularity in defining the exact mutation elements. For example, the

IP parameter has attributes like host IP address and host name, the route parameter

has source and destination host, the state parameter has status such as service is

up or down, etc. Therefore, defining a parameter also requires proper setting of its

attributes.

Mutation Function f bounds the mutation space and defines how the mutation

will happen. Providing a range in f will limit the mutation space obtained from the

solution of constraints in that range. Besides, it will also be used to choose the next

mutation parameter from that space. MTDSynth uses two mutation functions from

ActiveSDN, random and key-based. In random function, the mutable parameter (e.g.

IP address) will be chosen in a random fashion. For key-based function, a proper

hash key needs to be provided for selecting the mutation parameter.

Configuration Parameters g include the system parameters that should be

60

correctly configured for the mutation. For instance, the DNS record entry, flow rules

in the switch table, and so on. Note that, MTDSynth orchestrates all these low-level

configurations automatically.

Mutation Action m are the primary functionality MTDSynth uses for MTD

that ActiveSDN provides. Based on an action, that particular class of MTD will

be executed, for example, ipMutate will mutate the IP addresses, pathMutate will

mutate the active route of a given flow, migrateService will dynamically change the

specified services over time, etc. The user does not need to configure these actions,

rather just mention the name in the policy. MTDSynth will handle the corresponding

configuration of such actions. These actions are complicated to configure by hand,

therefore MTDSynth will configure such actions atometically with safety.

Constraints Specification c ensures the safe deployment of the agility rule so

that the mission goal remains uninterrupted. For example, while doing mutation (IP,

route, or any other parameter), the reachability of the network components must

not be interrupted. ActiveSDN provides a comprehensive constraint specification

that can be used to define fully qualified constraints to prohibit any conflict or mis-

configuration which may occur while deploying MTD rules into the network. This

helps the user not to jeopardize the mission integrity while providing maximum se-

curity. To define a complete constraints specification, a series of constraints may

need to be executed sequentially. This includes sensors, mutation parameter, the

attributes of the parameter along with the primitives ActiveSDN API provides. To

define mutation constraints, the current (t) attribute values will be used to determine

the next (t+1) mutation parameter attribute values in the constraints. Therefore, a

constraint specification is a combination of multiple network constraints primitives,

mutation parameters, mutation parameters attributes, numerical or boolean values,

that are combined with arithmetic, relational, or logical operators. MTDSynth pro-

vides a vast number of network constraints primitives from ActiveSDN API; however,

61

Path Mutation :
i sL inkF lood ing (l , 0 . 2) →

MUTATE route R o f {R. s r c → IP1 , R. dst → IP2}
USING random (1 . .N) ON switch - t ab l e BY pathMutate
WHILE

(Rt ∩Rt+1)/Rt ≥ 0.7 ;
inc ludeSwitch (Rt+1, [s2]) = TRUE;
exc ludeSwitch (Rt+1, [s6]) = TRUE;
getRouteLength (Rt+1) ≤ 5 ;
getAvai lableBandwidth (Rt+1) > getFlowRate (IP1 , IP2)×1.2 ;
getRouteRisk (Rt+1) ≤ 0 .25

Figure 3.4: Route Mutation Policy.

user can program any constraint they want with the specification to fulfill the safety

while deploying any MTD techniques.

Network Function δ are the primitives ActiveSDN provides to generate a com-

plete constraint specification for different MTD actions. Note that, different primi-

tives return different values, for example, Boolean, numeric, or list of objects. While

comparing the output of such primitives, the type must be matched, otherwise, se-

mantic error may generate in MTD policy parser module.

3.5.3 Policy Examples

This section describes how MTD policy can be created using the HAPL Syntax

from figure 3.3.

3.5.3.1 Route Mutation

Let’s assume, the user wants to mutate the route between two hosts h1 and h2

if any of the links in the current route of these hosts get flooded. The user has the

following constants: the IP address for source host h1 is IP1 = 10.0.0.1, the IP address

for destination host h2 is IP2 = 10.0.0.2; deep packet inspection node = s2. Assume

there’s a critical link l(s6, s7) that is in the current route h1 and h2 using where l

can be a target that the user wants to avoid. The agility policy for route mutation is

shown in figure 3.4.

62

Rt is the current route and Rt+1 is the next mutated route chosen by MTDSynth

following the Agility Action. The isLinkFlooding(l, th) method will check the packet

drop rate in link l with the threshold th and if the rate is greater than 20%, the

mutation will be triggered. ActiveSDN has a agility primitive called pathMutate for

the route mutation. The pathMutate will mutate the data path of a specified flow

between source h1 and destination h2. The next mutated route Rt+1 will be selected

randomly from the available route space between h1 and h2. The available route

space will be selected by solving the constrains mentioned in the WHILE loop. The

only configuration changes will be done in switch flow rule tables. The framework will

automatically orchestrate this flow rule updates in corresponding switches. To choose

the next mutated route Rt+1, the following constraints will be executed sequentially.

The constraint overlap will find the common link ratio between the current route

Rt and the next chosen route Rt+1 by intersection, isIncludeSwitch check whether

the given route Rt contains the given switches (s2), excludeSwitch ensures the given

route must not contain the given switches (s6), getRouteLength returns the links

count in the next chosen route which helps to define a maximum hop count in a

chosen route, getAvailableBandWidth measures the given link bandwidth and the

getFlowrate checks the number of packets any flow (h1, h2) sends per second. The

primitive getRouteRisk measures the risk of a given route that may get attacked in a

probabilistic way. For example, assume that a route having n number of links, where

the probability of each link get attacked is pi where i ∈ n. Then the risk that a route

will get attacked is:

1−
n∏
i=1

(1− pi)

3.5.3.2 Spatio Temporal IP Mutation

Lets assume the user want to mutate the communication IP between hosts h1, h2,

... hm. The MTD policy is shown in figure 3.5, where N is the size of available address

63

Spa t i a l IP Mutation :
i sHostScanning (100 , 5) →

MUTATE IP P o f {P. IP → [h1 , h2 , . . . , hm] }
USING random (1 . .N) ON DNS-entry , switch - t ab l e BY

spatioTemporalMutation
WHILE

m×(m−1)
N ≤ 0.1 ;

∀i,j∈NPt.hi 6= Pt+1.hi

Figure 3.5: Spatio Temporal IP Mutation Policy.

Temporal IP Mutation :
t ime In t e rva l = 5 s →

MUTATE IP P o f {P. IP → [h1 , h2 , . . . , hn] }
USING random (1 . .N) ON DNS-entry , switch - t ab l e BY ipMutate
WHILE

∀i,j∈(1,N)Pt+1.hi 6= Pt+1.hj ;
∀i,j∈NPt.hi 6= Pt+1.hi

Figure 3.6: Temporal IP Mutation Policy.

space, m is the number of mutating hosts. m×(m−1)
N

is the probability of two distinct

muting hosts will be assigned the same IP to reach the same destination (collision

probability). The equation ∀i,j∈NPt.hi 6= Pt+1.hi means that the address assigned to

a communication pair will be different in two consecutive intervals.

3.5.3.3 Temporal IP Mutation

Lets assume, user wants to mutate IP for hosts h1, h2, ... hn, where h1 can be a

web server running as www.xyz.com, h2 can be a FTP server and so on. The MTD

policy is shown in figure 3.6.

Here the first equation (after the WHILE statement) means that at any fixed

time the IP of any host in the set {h1, h2, ...hn} will be distinct. The second equation

means that for any host in {h1, h2, ...hn}, the IP assigned to a host in an interval will

be different from the next interval.

64

Bot pattern de t e c t i on :
i sBotde t e c t ed (s i g) →

MUTATE s t a t e S o f {S . l o c a t i o n → [IP1 , IP2 , . . . , IPn] }
USING random (1 . .N) ON s t a tu s
WHILE

for a l l t ,
∑N

i=1 St.IPi < TB ;
minDetectionProb (S . l o c a t i o n) > 0 . 9 ;
a t tackUncer ta inty (S . l o c a t i o n) > 0 .8

Figure 3.7: Bot Pattern Detection Policy.

3.5.3.4 MTD against Stealthy Bots

Lets assume the user want to mutate the locations of the detecting service S. The

MTD policy is shown in figure 3.7. Here service S has a set of detectors, and every

detector is located in a specific host. If the status of the detector is UP then it is

used for traffic sensing, and is DOWN when it is not used. Mutate the location of

detectors is equivalent to change the status of the detectors. TB is the upper limit of

the number of detectors at any given time, and St.IPi is 1 if and only if a detector

is located in the ith host at time t. Function isDetectBot(sig) decides if the bot

pattern changes judged from the signature of bot traffic, minDetectionProb() is the

function to calculate the lower bound of the probability of detecting bot traffic, given

the current detector locations, and attackUncertainty() is the function to measure

the uncertainty created against the bots with respect to the location of the detectors.

The details of the functions can be found in [68].

3.6 Case study and Evaluation

The case study is designed in two different ways to show the following capabilities:

1) MTD techniques and 2) Deception techniques.

3.6.1 Experiment Setup

The ActiveSDN controller in ACD framework is built using OpenDaylight controller

in Java and the middleware is developed in python. The framework is launched in

65

an iMac machine having 32GB of RAM and 4 GHz Intel Core i7 processor with ma-

cOS Mojave. A physical EdgeCore SDN Switch having Pica8R PicOS with virtual

SDN Open vSwitch(v1.3) is used in the network. Mininet [95] is used to create the

virtual SDN network and Vagrant [96] for managing dynamic creation of shadow

hosts in the network. The ADC middleware run as a different process alongside with

the ActiveSDN. The middleware provides web service for the Interface and commu-

nicates with the ADC controller through the REST ActiveSDN API(northbound).

ActiveSDN controller use OpenFlow protocol to communicate with the SDN network

switches.

3.6.2 MTD Case Studies

This section illustrates several MTD case studies, such as IP mutation, Path mu-

tation, etc.

3.6.3 IP Mutation

IP mutation is an MTD action in MTDSynth. IP mutation mutates or changed

the source and/or destination IP address to hide the actual/real IP address from the

end-users, whereas the mutation itself is transparent to them. Besides, the mutation

doesn’t hamper any regular communication between hosts. The end host is unaware

of the mutation. IP mutation helps to defend against any scanning attack for col-

lecting network information for reconnaissances. Moreover, the scanner gets detected

immediately.

The ipMutate function has three configurable parameters: the list of the real host

IP address called rIP list that will get new mutated virtual IP address vIP, the virtual

IP address space as vIP list and the mutation function f. For each rIP a vIP will be

chossen from the vIP list using the mutation function f. For a periodic IP mutation,

the event trigger need to be a time interval ∆, so that the rIP will be mutated every

∆ seconds.

66

S5

S6

h4

S4

S3

S2

S1

www.xyz.com

Controller

<www.xyz.com, ?> DNS
<www.xyz.com, IPh8>

<src = *, dst = IPh3, Action = Deny>

<src = IPh1,dst = IPh8;set_dst: IPh3,action= Pass>
<src = IPh3,dst = IPh1,set_src: IPh8,action= Pass>

1
2

1
2
3

h1 h2 h3

Update

Upd
ate

Figure 3.8: IP Mutation Example.

Figure 3.8 shows an example of IP Mutation, where h1, h2, h3, h4 are the the hosts

and s1, s2, ..., s6 are the switches. A web server www.xyz.com is running in h3 and host

h4 is a scanner. Assume that, IP Mutation is activated with rIP as IPh3 , mutation

function f as a random function with a range (1, 10) means the the vIP list contains

a range of ten unused IP addresses (e.g., IPh5 to IPh14). If the mutation time interval

is ∆, then every ∆ seconds, rIP IPh3 will get a random vIP form the vIP list. When

IP Mutation starts, in each mutation interval ActiveSDN installs three (the third rule

is optional) flow rules into corresponding edge switches, switches that are near to the

end hosts and update the DNS entry record. Assume that, for such an interval, the

random vIP is chosen as IPh8 , the corresponding rules are mentioned in figure 3.8.

Now, when host h1 try to reach webserver www.xyz.com, it makes a DNS query to

obtain the IP address of the webserver in step 1. The gateway switch s1 forwards

this request to DNS server. The DNS record is already get updated by the controller

and instead of giving the real IP address IPh3 , in step 2 the DNS server reply the

vIP IPh8 as the DNS query request. After achieving the IP address of the webserver,

h1 sends packets setting the destination IP address as IPh8 , and flow rule (1) get

67

matched in s1. Rule (1) sets the destination IP from IPh8 to IPh3 and forward the

packets. When the reply coming back from the webserver to h1, rule (2) matched

that changes back the source IP from IPh3 to IPh8 . Hence, h1 and h3 continue their

communication withing being known to the mutation.

Scanner h4, it does not go to the DNS server to obtain IP addresses for any host,

rather try to probe by random IP address. When h4 probe h3 by IP IPh3 directly,

rule (3) matches, and the flow gets dropped. Rule (3) denies any communication that

directly forwards to the destination IP address IPh3 . Note that, this rule is optional

in IP mutation.

3.6.4 Path Mutation

The path mutation is another MTD action that mutates the data path based on a

flow between the source and the destination host without interrupting their regular

communication. The existing path will be removed, and a new path will be installed

depending on the mutation parameter. Path mutation is useful to overcome any link

flooding attacks such as the Crossfire Attacks [97] because this technique confused

the attacker to fix a specific critical link to flood. Moreover, path mutation provides

proactive defense ability into the network restraining attacker permanently from link

flooding.

The path mutation API has two main parameters: the flow between a given source-

destination IP addresses and a path profile. The path profile is the constraint user

made while creating the MTD policy for path mutation. The path profile measures

the overlap between current and new mutable path, maximum path length, minimum

bandwidth, and the risk a path can have. Besides, any specific switches can be

included or excluded in the new path. Solving all of these constraints, path profile

will generate a mutable path space from where the next mutation path will be chosen.

Finally, the event trigger defines how frequently the mutation will happen. If it’s a

time interval trigger, the path mutation will happen periodically.

68

s1

h1

Controller

h2 h3 h4

<pathMutate, src=IPh1,dst=IPh3,path=(s1,s3,s4,s6,s8)> 1

s2 s3

s4

s5

s6 s7

s8<removePath, src= IPh1,dst= IPh3,path=(s1,s2,s5,s7,s8)> 2

Figure 3.9: Path Mutation Example.

Figure 3.9 is an example of path mutation. Before the mutation starts, source host

h1 communicates with destination host h3, using path (s1, s2, s5, s7, s8). Then after

path mutation gets triggered, MTD controler get a mutable path(s1, s3, s4, s6, s8) from

path profile and configure pathMutate API using rule (1) src = IPh1 , dst = IPh3 and

path = (s1, s3, s4, s6, s8). This will install a new path for source h1 to destination

h3. After mutation, instead of using the old path (s1, s2, s5, s7, s8), source h1 now

communicates with destination h3 using the new mutated path (s1, s3, s4, s6, s8). This

mutation is transparent to all end hosts while the communication in between them is

uninterrupted.

Now the challenge in path mutation is to make uninterrupted communication be-

tween the end hosts using the new path instead of the old path. To do so I use Priority

and Timeouts of the flow entries. According to OpenFlow specification [63] there are

two fields available in the flow entries, 1) Flow Priority : matching precedence of the

flow entry, if any packet matches with two different flow entries, the packet will follow

the higher priority flow entry and 2) Idle Timeout : if it is set, then the flow entry

will be expired (removed from the flow table) in the specified number of seconds if

69

any packets are not hitting the entry.

To ensure the uninterrupted property of path mutation, there are two options:

1) explicitly call the removePath API that will delete the old path, or 2) install

every flow rules in pathMutation setting the idle timeout with a specific number

of seconds(usually the time interval of the event trigger). In MTDSynth, for each

mutation cycle, to delete the previous path and install a new path, a new set of flow

rules get deployed to the switches with a given idle timeout but higher flow priority

from the previous flow rules. Therefore, if the packets find two sets of matching flow

rules but different flow priorities, they follow the higher priority rules. The lower

priority flow rules become idle and get removed from the flow table after timeout

time, which means the old path get deleted.

3.6.5 Deception Case Studies

This section illustrates several case studies related to cyber Deception. The ADC

API can be used to achieve various deception goal:

3.6.5.1 Anonymity and Diversity

Anonymity and diversity are effective concealments to hide the true identity of a

host [28]. For instance, by randomizing the IP address of critical resources, agile

defenses may fail because skilled attackers can identify their target by the static

fingerprint of that host (e.g., OS, running services, and their versions). Therefore,

deception by k-anonymization places (k−1) shadow host with identical fingerprinting

of the target host. Moreover, to defeat the static fingerprint problem, l-diversity

places (l − 1) decoy host with fake services of the same software type but different

versions/vendors.

The anonymity and diversity can easily be achieved using the createHoneyNet-

work() API shown in table 3.4. The API dynamically creates a honey network with

anonymized shadow hosts and diverse decoy hosts. Listing 2 shows how to invoke

70

Table 3.4: Deception API: createHoneyNetwork()

Param Descriptions
target The critical resources (hosts, services, links, etc.) to defend.
impact Impact of the critical resources. (low, medium or high).

k To anonymize fingerprinting, k-anonymity places (k − 1)
shadow host with identical fingerprinting of the target host.

l To anonymize configuration, l-diversity places (l − 1) fake
services of same software type but different versions/vendors.

trigger activate: Activate generated honey network.
deactivate: Deactivate and remove honey network.

Table 3.5: ADC deflection API: reDirect() and reRoute()

Param Descriptions

re
D
ir
ec
t(
) src Source host IP or flow ID.

dst Destination host IP or flow ID.

to The redirection destination, can be a switch, host, IDS
or even the controller.

re
R
ou

te
() src Source host IP or flow ID.

dst Destination host IP or flow ID.

to A new route consist of switches between src and dst
e.g., s1, s2, s4, s9.

createHoneyNetwork(). The target is the critical resource, impact defines the risk of

being compromised (high means very critical resources), the k and l are integer value

that defines the anonymity and diversity numbers.

3.6.5.2 Deflection by Redirection

The defender can deflect adversaries away from real host to a shadow/decoy host

or an inspection environment to let them run in order to discover unknown attack

techniques. ADC provides deflection API such as reDirect() and reRoute() to serve

this purpose. Table 3.5 shows the APIs. The reDirect() API deflects adversary traffic

to an inspection host based on source IP or source flow ID. The reRoute() API is

useful to deceive any man in the middle listener by changing the active route between

two hosts.

71

Table 3.6: ADC depletion API: spatioTemporalMutation()

Param Descriptions
h Target host list for spatial mutation.
eIP List of ephemeral IP addresses. (Optional)
mi eIP collision rate where i ∈ h
t Lifespan of eIP (temporal period).
how eIP distribution fucntion, can be uniform or random

3.6.5.3 Depletion by Spatio-Temporal Mutation

Depletion means the consumption of adversaries’ resources by increasing its compu-

tation, confusing towards plausible target identification, and delaying in attack prop-

agation. Therefore, the adversary requires to be more interactive with the system;

eventually reveals its identity and hidden tactics. For instance, depleting scanning

attacks can be quantified as the total number of probes required to make a hit to the

target is higher than a certain threshold. Spatio-temporal mutation distorts the ad-

versary views towards the network [93]. It randomizes the static IP binding to hosts

periodically, so that collective reconnaissance information becomes obsolete after that

period. Besides, the adversary requires to probe again if they make a further lateral

movement. Therefore, Spatio-temporal mutation either makes the adversary hit the

wrong target (decoy/shadow in ADF) or increase the total number of probes. The

spatial mutation assigns a host multiple ephemeral IP (eIP) addresses so that each

of the neighbors uses a different IP address to communicate with that host. Table 3.6

shows the ADC API for spatioTemporalMutation(). The parameter h is a list of target

hosts of which IP will be mutated by the given list of ephemeral IP, eIP. If no eIP is

given, ADC selects eIP randomly. Every target host receives a list of eIP ; therefore,

all neighbor reaches that target host by distinct eIPs. However, a target host may

have the same eIP for multiple neighbors, which is defined by the collision rate mi.

72

User
u2

s3

Active Deception
Controller

Proxy
p1

s2

s1

s4

Adversary
a1

S5

User
u1

Critical Resource
r1 Honey Network

Decoy
d1

Shadow
sh1

Decoy
d2

Shadow
sh2

Shadow
sh3

Figure 3.10: Adversary adaptive deception by creating honey network with shadow
and decoy hosts.

Table 3.7: ADC SMT solver creates honey configuration for critical host r1 by 2-
anonymity and 3-diversity.

Host OS Services
r1 Ubuntu Vsftpd-2.3.5 Apache-2.2.22 MySQL-5.5.54
d1 MacOS CrushFTP 9.3.0 Nginx-1.17.8 Postgresql-10.2
d2 Win7 FileZilla-0.9.58 IIS 7.5 SQL Server-13
sh1 Ubuntu Vsftpd-2.3.5 Apache-2.2.22 MySQL-5.5.54
sh2 MacOS CrushFTP 9.3.0 Nginx-1.17.8 Postgresql-10.2
sh3 Win7 FileZilla-0.9.58 IIS 7.5 SQL Server-13

73

Listing 5 Automated shadow host (sh1) configuration script in Vagrant.
Vagrant.configure("2") do |config|

config.vm.define "shadow_1" do |shadow_1|
shadow_1.vm.box = "hashicorp/precise64"
shadow_1.vm.network "public_network", bridge: "Ethernet", ip: "10.38.60.2", netmask:"255.255.224.0"
shadow_1.vm.provision "shell", inline: "sudo apt-get -y install vsftpd=2.3.5"
shadow_1.vm.provision "shell", inline: "sudo apt-get -y install apache2=2.2.22"
shadow_1.vm.provision "shell", inline: "sudo apt-get -y install mysql-server=5.5.54"

...

3.6.6 Adversary Distortion by Anonymity and Diversity

The adversary’s’ views towards the network can be distorted by creating anonymity

and diversity for critical resources. Figure 3.10 shows a network, where there is a prob-

ability that the adversary starts scanning to identify critical resource r1. Therefore,

the defender launches deception by distortion using ADC API createHoneyNetwork().

The API call is shown in listing 2. ADC incorporates ADC solver with the values of

k and l to optimized the honey network configuration. Table 3.7 portrays the opti-

mized results. Real host r1 has OS Ubuntu running on it with three different services.

The solver generates two decoy d1 and d2 for diversity and three shadows sh1, sh2,

and sh3 for anonymity. After that, ADC generates a Vagrant [96] script shown in

listing 5 to create the honey network with shadows and decoys. The honey network

is connected with proxy p1. ADC takes a few seconds to create honey networks with

different sizes. Figure 3.13 shows that it takes around 3.7 seconds to create a honey

network with twenty shadow and decoy hosts.

Table 3.8: Ephemeral IP assignment with real IP.

Real IP eIP

u1 10.0.0.1 10.0.0.10 10.0.0.11

u2 10.0.0.2 10.0.0.8 10.0.0.9

r1 10.0.0.3 10.0.0.6 10.0.0.7

Distortion then Discovery. After the deployment of the createHoneyNetwork(),

adversary probing will yield a distorted view with many possible targets. A Nmap [98]

74

Figure 3.11: Nmap scanning finds new host (sh1).

scanning result is shown in figure 3.11, where the adversary finds a possible target sh1,

which is actually a shadow host. Therefore, adversaries either land in a decoy/shadow

or increase probing to find its real target. Both lead them to engage with the defender,

which makes them get detected.

75

(a) r1(10.0.0.3) reaches u1(10.0.0.1) through eIP (10.0.0.7) as source IP. Similarly, when
u1(10.0.0.1) replies to eIP (10.0.0.7), the destination changes back to r1(10.0.0.3) from
(10.0.0.7).

(b) u1(10.0.0.1) reaches r1(10.0.0.3) through eIP (10.0.0.11) as source IP. Similarly, when
r1(10.0.0.3) replies to eIP (10.0.0.11), the destination changes back to u1(10.0.0.1) from
(10.0.0.11).

Figure 3.12: Flow rules for Spatio-temporal mutation.

Table 3.9: Forwarding entry mapping with real IP and eIP.

u1(10.0.0.1) u2(10.0.0.2) r1(10.0.0.3)

u1(10.0.0.1) - 10.0.0.10 10.0.0.11

u2(10.0.0.2) 10.0.0.8 - 10.0.0.9

r1(10.0.0.3) 10.0.0.7 10.0.0.6 -

3.6.7 Adversary Depletion using Spatio-temporal Mutation

The anonymity and diversity distorted the adversary view towards the network.

However, the defender can deplete adversaries by calling the ADC API spatioTempo-

ralMutation(). Assume that the defender wants spatial mutation for user u1, u2, and

critical resource r1. After the mutation API gets called, ADC assigns eIP for these

hosts shown in table 3.8. Row 2 in table 3.8 means, u1 has real IP (10.0.0.1) and

two ephemeral IP (10.0.0.10) and (10.0.0.11). Table 3.9 shows the forwarding rules

of these host through eIP. For instance, Row 2 in table 3.9 means, u1(10.0.0.1) com-

municates with u2(10.0.0.2) and r1(10.0.0.3) through eIP (10.0.0.10) and (10.0.0.11)

76

respectively instead of its real IP (10.0.0.1).

ADC installs the corresponding flow rules into the SDN switches shown in fig-

ure 3.12. The flow rules in figure 3.12a shows, how r1 sends packets to u1 using eIP

and gets reply. For instance, r1(10.0.0.3) reaches u1(10.0.0.1) through eIP (10.0.0.7)

as source IP instead of its real IP (10.0.0.3). Similarly, when u1(10.0.0.1) replies

to eIP (10.0.0.7), the destination changes back to (10.0.0.3) from (10.0.0.7) and the

replies delivered to the real recipient r1(10.0.0.3). The rules in figure 3.12b similarly

shows how u1(10.0.0.1) reaches r1(10.0.0.3). After time interval t, the eIPs in ta-

ble 3.8 changes to a new sets of eIPs. ADC incurs limited overhead into the system

for deploying spatial mutation. The cost depends on the total number of eIP. For a

spatial mutation with fifty eIP, ADC requires 2.7 seconds to install all necessary flow

rules into the network shown in figure 3.14.

Depletion then Discovery. Following the deployment of spatioTemporalMuta-

tion(), the real IPs for all hosts become obsolete to communicate with each other.

Therefore, adversaries need to probe every after t times for reconnaissance. These

raise the total number of probing significantly, which consumes the adversary re-

sources, makes them less stealthy, and causes the attack costly. If the adversary

directly probes the real IPs to any of the hosts, ADC marks that host as a potential

scanner and redirect him to a shadow/decoy for further inspection.

3.6.8 Adversary Deflection by redirection

Distortion and depletion make stealthy attackers more interactive with the system,

which increases their exposure. When adversaries frequently engage with the system,

for instance, it increases the number of probes to identify targets, and the ADC

sensor observes such unusual activities. Therefore, ADC can whitelist benign users

and mark potential adversaries. ADC deflects such adversaries by redirection using

API reDirect(). The reDirect() API installs the following rules:

77

Figure 3.13: Honey network creation
overhead. Figure 3.14: Spatial mutation overhead.

1. (src=*, dst=IPr1, set_dst:IPp1)

2. (src=IPattacker, dst=IPr1) → (src=IPp1, dst=IPd1)

3. (src=IPd1, dst=IPp1) → (src=IPr1, dst=IPattacker)

The first rule redirects all traffic to the proxy that is direct probing to critical resource

r1, assuming there is a probability that the source is a potential attacker. Because,

after mutation gets started, no benign user probes r1 directly with its real IP. There-

fore, the proxy redirects the traffic to a decoy to inspect the adversary activities. The

next two rules are to make the adversary blind follower. For instance, second rules in

the p1 keep track of the source IP address while redirecting it to a decoy (d1). When

the decoy replies, p1 reverse the source IP back to r1 using the third rule. Therefore,

the adversaries assume that they reach their target r1, but the response is actually

coming from a decoy (d1).

3.7 Summary

This chapter presented an active cyber defense (ACD) framework to develop and

deploy various deception and MTD techniques fast and safely leveraging the open pro-

gramming capability of SDN. A formal ontology is introduced and a MTD language

for agility is provided. Several MTD language examples are showed for temporal and

78

spatial IP mutation, path mutation, etc. The ACD framework enables an open envi-

ronment for developing sophisticated cyber deception and MTD applications. ACD

framework facilitates swift, safe, and effective cyber deception and MTD deployment

into the SDN network. ACD leverages an extensive rich API that can be used to

build multi-strategy deception and MTD policies. ACD provides sensors that ob-

serve adversary activities in real-time, helping to interact with adaptive adversaries

to make active deception and MTD techniques. In addition, the management API

helps to conduct low-level network configurations without human intervention. ACD

framework is flexible; its API can be extended based on requirements. ACD frame-

work is evaluated in the SDN network showing different case studies by developing

various goal-oriented deception and MTD strategies. ACD framework incurs very

little system overhead while providing proactive defense by deception and agility.

CHAPTER 4: Chimera: Autonomous Planning and Orchestration for Malware

Deception

4.1 Motivation

Cyber deception is a paradigm that aims to work beyond traditional detect-then-

prevent approaches. In cyber deception, the defender intentionally conceals or falsifies

the real configuration of the system’s parameters (e.g., network topology, IP addresses,

hardware IDs, registry keys, and more) to create uncertainty and confusion for the

adversary to mislead their perceptions and decision processes [9]. The state of the

art of cyber deception mainly focuses on developing high fidelity decoy systems that

work as a standalone sandbox or virtual machine (VM) [54, 99, 100]. These decoys

have fake files, user accounts, credentials, and more. If the adversary interacts or

exfiltrates such honey resources, the defender gets alerts.

However, the goal of cyber deception is beyond just to catch attackers into VMs

by setting up several traps. For example, if the adversary has already penetrated

the real system or fingerprinted the VMs to avoid, then static and decoy VM based

deception techniques become ineffective [101–103]. Therefore, it is necessary to un-

derstand the distinct goals of deception to design an augmented reality that can be

embedded with real systems. Firstly, cyber deception can be used to divert the ad-

versary away from the real target to a false or no target when the adversary is already

in the system—e.g., providing honey files [12] while the attacker searches for sensitive

files. Secondly, the defender can distort the adversary’s perception of the infrastruc-

ture by adding ambiguity into the system, e.g., running fake services with obvious

vulnerabilities (called honey patches [13]). Thirdly, cyber deception can deplete ad-

versary’s computational power and resources to delay the attack propagation—for

80

example, honey encryption [14] of the credential files, which the adversary needs to

decrypt. Finally, the defender can discover new attack tactics, techniques, and pro-

cedures (TTPs) by letting them execute different attack actions in contained honey

resources.

Existing deception techniques are mainly developed to stop attacker at a particular

kill-chain-phase. For instance, network-level deception techniques like redirecting

malicious traffic to decoys [104], or generating a mystified response to probe [57] can

protect against reconnaissance and lateral movement. However, very few deception

frameworks provide a deception composition strategy to defend APT actors in every

kill chain phase [28, 105]. Nevertheless, most honeypots and decoy systems are left

behind with static deployment and configurations [28, 106], which skilled attackers

can easily evade. Moreover, static planning cannot cope with dynamic APT actors

who can counter-deceive the defenders’ techniques.

To address these limitations, an autonomous framework called Chimera1 is de-

veloped that computes an optimal cyber deception plan dynamically in real-time.

To do this, Chimera relies on observing the attacker behavior based on MITRE

ATT&CK [107] framework that classifies adversary actions into tactics, techniques,

and procedures (TTP), which form a chain called TTP kill-chain. An example of a

TTP kill-chain is shown in Fig. 4.1. Utilizing the knowledge base of existing APT

behaviors from MITRE, Chimera designs a deceptive environment through compos-

ing deception techniques, that achieves 4D deception goals (divert, distort, deplete

and discover). Chimera aims to deceive the APT actor at every kill-chain phase.

Although Chimera can be used to compose deception strategies for sandboxes or

VMs, the novelty of the framework is to design deception environments that can be

embedded with production machines to deceive APT attacks in real-time.
1(In Greek mythology) Chimera is a fire-breathing female monster with a lion’s head, a goat’s

body, and a serpent’s tail. However, I use Chimera to depict an augmented reality into adversaries’
minds, “a thing that is hoped or wished for but in fact is illusory or impossible to achieve."

81

Reconnaissance Initial Access Execution Credential
Access

Privilege
Escalation

Collection

Discovery Lateral
Movement

Command and
Control Exfiltration

Figure 4.1: APT kill-chain model.

Developing such an embedded deception framework is challenging. First, APT ac-

tors are adaptive, who can detect and evade/counter deceive existing static deception

techniques. Therefore, there is a risk associated with the failure of defense actions

in an embedded deception environment, leading to a potential compromise of the

system. Second, APT attackers are strategic, who can follow different attack paths

to achieve their goal. Therefore, deception planning needs to have the capability to

react to the current adopted attack approach. Third, the planning should be correct

by construction, which means, if we lie at the reconnaissance phase (e.g., filename

f), we must lie believably until the end of the exfiltration phase (e.g., honey content

on that filename f). Finally, the deception planning needs to minimize the cost and

system overhead while maximizing the achievement of deception goals.

Consequently, a deception action also depends on the attack action. Therefore,

Chimera considers the strategic reasoning between the attacker and the defender by

integrating the uncertain attack behavior into decision-making. To achieve that, I

introduced a new type of attack propagation graph, called a deception graph (Fig-

ure 4.3). The deception graph models the dependency between the attacker’s ac-

tion and the defender’s deception by embedding two sets of state spaces named

attack states (states where attacker lands by executing a successful attack action)

and deception states (states where attacker lands if the deception action is success-

ful). Therefore, Chimera models the attack progression over time using the deception

graph. Unfortunately, a deception graph for a particular APT such as information

stealer can have many states and transitions because of different attack techniques.

82

Therefore, the defender needs to choose the optimal deception actions regarding ef-

fectiveness, costs, and overhead from an enormous set of choices to achieve his goal.

I formulate the problem of selecting the optimal deception action using Partially Ob-

servable Markov Decision Process (POMDP), that optimizes deception planning by

considering the dynamic attack and environment behaviors.

An embedded deception environment is implemented by hooking system-level APIs

for Windows OS. First, a manual mapping of 50 ATT&CK techniques with 191 dis-

tinct Windows OS APIs is done. Then, hooks are created for all of these APIs to

perform the optimal deception actions (e.g., generating a deceptive response) when

the adversary calls them. The evaluated of Chimera is done in real-time with three

different classes of APTs: Information Stealer, Ransomware, and Remote Access Tro-

jan (RAT). Chimera has high efficiency in deceiving malware in embedded systems

and incurs a very low system overhead. The deception plan generated by Chimera

is better in achieving distinct deception goals compared with state of the art such as

Cuckoo sandbox or Any.run online malware analysis tools.

4.2 Problem Statement

Given the logical topology of the network and systems, assets, deception goal, and

ATT&CK techniques, the goal of Chimera is to generate an optimal sequence of

deception actions planning that will be orchestrated automatically and deployed with

minimal management overhead into the system in real-time.

4.3 Related Work

The state of the art of cyber deception focuses on designing virtual machines (VM)

and sandboxes as a decoy [54, 99, 100]. These decoys have fake resources regard-

ing files [108], software [13], user accounts, passwords [109], credentials [109], web

pages [12], services, processes, servers, email accounts, and more. If the activity is

seen to interacts with these honey resources, an alert is sent to the defender. How-

83

ever, skilled adversaries found unique ways to uncover such decoy VMs [101–103].

Usually, adversaries realize that isolated decoy machines do not initiate traffic, often

responding late because they create complicated deception responses, making them

easy to identify [9].

Research has been done to create network-level deception by malicious packet redi-

rection [103] and a falsified probe response [57] to defense reconnaissance and lateral

movement. System and data level deception such as honey password creation, decoy

file generation, vulnerable software patching, etc., protects the system from internal

attacks [14,99,104]. Many research has been done to measure the efficacy of cyber de-

ception [105]. Static planning and deception framework composing various deception

actions is more efficient to deceive APT actors [28, 106, 110]. To make the attack-

defense battle dynamic, many game-theoretic and probabilistic deception model has

been introduced [87,111].

4.4 Threat Model and Scope of the Work

Chimera aims to design a dynamic deception environment that triggers appropriate

deception actions in real-time to deceive the attacker’s activity in every phase of the

kill chain. For instance, Chimera can be used to set up a production machine against

information-stealing APT so that defenders can analyze malware (divert, deplete

or discover TTPs) that exfiltrates sensitive information. Chimera has two significant

aspects: 1) it can deceive malware already running into the production system because

of the hooking deception techniques that work at the system API level. 2) APTs

with decoy/VM detection capabilities are ineffective as Chimera provides embedded

deception integrated with the real system.

It is important to note that the objective of Chimera is to deceive malware in a

particular way such that defenders can achieve certain deception goals. Therefore,

Chimera does not safelist processes between benign or malicious but deceives a given

process based on the goal. For that, Chimera provides optimal planning, a sequence

84

ObservationsIDS/API
Monitoring

Malware Techniques from
ATT&CK Groups

Malware Traces +
API2Technique

Malware Threat Analysis Reports
(e.g., any.run, hybrid analysis)

Deception
Graph

Generator

Deception Graph
Specification

ATT&CK Tech.

Deception Graph

Deception Policy

Policy
Generation

Engine

Policy
Requirements

Deception
Agent

Attack
Action

Malware
API Hooking

Agent
Production

Machine
Honey Factory

Embedded Deception Environment

Deception
Action

Malicious
activities

Figure 4.2: Chimera Architecture.

of deception actions based on adversary activity, and honey resources which can be

pre-created honey files, credentials, and more. A tremendous amount of research

has been done on creating high fidelity honey resources (such as decoy files [12, 108],

network traffic [57, 104], credentials [109], and systems [28, 106]). Therefore, in this

work, I do not describe the creation of honey resources, but focused on when and how

to use them efficiently.

4.5 Chimera System Design

The architecture of Chimera is illustrated in Fig. 4.2. Chimera takes input as

APT techniques from MITRE ATT&CK, threat reports, and malware API traces

from sandbox (Cuckoo), and other analyzing tools like Hybrid Analysis, Any.run,

and more. Chimera maps API call traces to ATT&CK techniques which are later

used to generate a deception graph. The graph generator requires specification, such

as deception action state space that can defeat certain attack actions. The decep-

tion graph is then used to generate optimal deception action planning, where policy

definition is given as input, e.g., APT type (Information Stealer or Ransomware).

Chimera has a deception agent in the production machine and monitors (IDS/API

monitoring) to observe APT actor’s activity. The sensor alert triggers the agent to

choose an optimal deception action to deceive the attacker’s next action. The decep-

tion actions in Chimera are implemented in system-level API hooking that fetches

honey resources from a Honey Factory to deceive the attacker. The following sections

85

Table 4.1: ATT&CK technique to Windows API mapping. Columns Adversary Ac-
tion and Deception Action are names given by us to represent corresponding tech-
nique. These action names are used to describe state transitions in the Deception
Graph (Fig. 4.3).

MITRE ATT&CK
Technique Windows API Call Sequence Adversary Action Deception Action

Command and Scripting
Interpreter CreatePipe, CreateProcess, CreateFile, ReadFile, CloseHandle execute migrateInHE

Modify Registry RegCreateKeyA, RegSetKeyValueA, RegCloseKey addToRegistryRunKeys doNothing
Query Registry RegOpenKey, RegQueryValue, RegCloseKey queryRegistry honeyRegistry

Process Discovery 1) CreateToolhelp32Snapshot, Process32First, Process32Next
2) EnumProcesses tasklist honeySwList

File and Directory
Discovery

GetCurrentDirectory, CreateFile, ReadFile, CloseHandle,
FindFirstFile, FindNextFile, FindClose listDir redirectToHoneyDir

Clipboard Data OpenClipboard, GetClipboardData copy honeyCopy
Input Capture:
Keylogging

1) GetAsyncKeyState, GetKeyState, GetKeyboardState
2) SetWindowsHookEx, GetKeyState, GetKeyNameText copy honeyCopy

describes each component in detail.

4.5.1 API Sequence to MITRE ATT&CK Technique Mapping

MITRE ATT&CK [107] illustrates the APT lifecycle regarding tactic, technique,

and procedure (TTP). A tactic defines attack objective/goal, whereas, techniques

are actions to accomplish that goal. An attack technique describes the high-level

context explaining why it is executed, what adversary gains from it, and how it

is being performed. Such context helps the defender to design necessary deception

actions. However, the APT actor interacts with the system using low-level procedures,

a sequence of system API calls, to perform an attack technique. For instance, attack

techniques such as sensitive files and directories search can be done by following shell

commands: dir, tree, ls, find, locate, etc.

The defender can collect system log events from an ongoing APT campaign. How-

ever, to understand the attack context, it is necessary to map the API call traces to

high-level attack techniques. Unfortunately, very few works have been done in map-

ping API calls to ATT&CK techniques and they are very limited [3,112]. Therefore,

a mapping is done for the most essential 50 ATT&CK techniques frequently used in

Information Stealer, Ransomware, and RAT with 191 windows API. From 4,578 mal-

ware samples, more than 37000 API traces are collected from Cuckoo sandbox [113]

86

Honey Software
Discovery

honeySwList,
tasklist

Honey Credentials in
Registry

honeyRegistry,
queryRegistry

honeyRegistry,
queryRegistry

Honey File and
Directory Discovery

redirectToHoneyDir,
listDir

redirectToHoneyDir,
listDir

honeySwList,
tasklist

doNothing,
execute

doNothing,
setFileAttribute

doNothing,
addToRegistryRunKeys

doNothing,
setFileAttribute

doNothing,
HTTP

doNothing,
maliciousEmail

Phishing:
Spearphishing

Attachment

User Execution:
Malicious File

Data Staged Exfiltration Over
C2

migrateInHE, execute

User Execution in
HE

Honey Data
Staged

redirectToDecoy/honeyTraffic
/corrouptTraffic/blockTraffic, HTTP

doNothing, HTTP

Credentials in
Registry

Software
Discovery

doNothing,
addToRegistryRunKeys

doNothing,
copy

doNothing,
listDir/tasklist/queryRegistry

doNothing,
setFileAttribute

doNothing,
addToRegistryRunKeys

Deceived
Exfiltration

Deceived
Exfiltration

doNothing, copy

honeyCopy, copy

File and Directory
Discovery

doNothing, tasklist

doNothing, queryRegistry

doNothing, listDir

doNothing,
tasklist/queryRegistry/listDir

delayedResponse, tasklist/queryRegistry/listDirdoNothing, tasklist/queryRegistry/listDir

honeySwList/honeyRegistry/redirectToHoneyDir,
tasklist/queryRegistry/listDir

honeySwList/honeyRegistry/redirectToHoneyDir,
tasklist/queryRegistry/listDir

Start

Honey Hide
Artifacts: Hidden

Files and Directories

Hide Artifacts:
Hidden Files and

Directories

Honey Registry Run
Keys/Startup Folder

Registry Run
Keys/Startup

Folder

doNothing,
setFileAttribute

doNothing,
addToRegistryRunKeys

Figure 4.3: Deception Graph mapping with MITRE ATT&CK techniques.

and their high-level behavior from tools like Any.run [114], Hybrid-analysis [115]

and Malware Behavior Catalog (MBC) [112]. Finally, by going through the MITRE

ATT&CK techniques description a manually map is made with the API call sequences

to ATT&CK techniques. Table 4.1 shows a subset of the mapping. The complete

mapping is published in GitHub to stimulate future research in this area [116,117].

4.5.2 Deception Graph

The deception graph in Chimera is a dependency graph to model the adversary

propagation in the system over time. It is similar to attack graphs, where each

node represents a distinct adversary position, and each edge represents the transition

of attack propagation. A fragment of a deception graph generated for Information

Stealer is shown in Fig. 4.3. Unlike the attack graph, the state transition in the

deception graph depends on the interaction between attack and deception action.

The attacker moves to a state by successfully executing a specific sequence of actions

or getting deceived due to deception actions. For instance, in Fig. 4.3, the attacker has

to successfully act execute, setFileAttribute, and queryRegistry actions to move from

initial position Phishing to position Credentials in Registry. This research considers a

distinct adversary position as a distinct state that comprises state space of POMDP.

The deception graph has two different types of states: (1) honey state (grey in color)

87

where the attacker reaches after being deceived, and (2) real state (white in color)

where the attacker reaches after successful execution of an attack technique. For

example, in Fig. 4.3, the defender may redirect the attacker’s traffic to a fake (decoy)

C2 server, which takes the attacker to a honey state named Deceived Exfiltration.

Whereas, by successfully exfiltrating data towards real C2 server, the attacker moves

to real state Exfiltration Over C2.

The state transitions are represented as (ad1/ad2/.../adn , av1/av2/.../avm), where

adi is a deception action and avj is an attack action separated by “,". Each pair (adi ,

avj) represents a distinct transition. Multiple states inside a dotted box represent

a superstate. A transition to a superstate delegated for its appropriate sub-state

only. For instance, the (doNothing, tasklist) transition means if the defender has no

deception and the adversary does a tasklist, it will jump to the real state Software

Discovery. Similarly, a (doNothing, queryRegistry) will lead him to Credentials in

Registry state.

4.5.3 Honey Factory

Chimera presents all the deceived responses to the attacker in an Honey Factory

(HF). The HF consist of honey files, credentials, passwords, decoy user accounts,

email accounts, web pages, software with honey patches, decoy process lists, registry

files, honey traffic, decoy servers, VMs, and more. In Chimera, the honey resources in

HF can be created offline in remote machines. In the evaluation, three remote VMs

are used as part of HF. Therefore, the deception agent can delegate specific attack

API calls (e.g., download a secondary piece of malware code command) from the

production machine to one of the VMs through API hooking. However, HF resources

can be created online inside the production machine. For instance, a decoy process

list (honeySwList) can be shown in response to the adversary’s tasklist command

through hooking the APIs related to the process discovery technique (see Table 4.1

for deceiving process discovery API lists).

88

4.6 Deception Planning

This section describes how Chimera computes its deception planning to execute

optimal deception action.

4.6.1 Deception Decision-making

To achieve the 4D objectives cost-effectively, Chimera computes a policy that rec-

ommends an optimal deception action considering the current attack position and

behavior.

Formulating Deception Decision-making: The optimal deception strategy at

the current time-sequence t depends on the current adversary position. However,

it is hard to infer the exact sequence of adversary positions from the beginning (at

t = 0) due to dynamic environment and attack behavior. Therefore, I formulate

the decision-optimization problem as Sequential Decision Process (SDP) [118]. The

environment is stochastic due to non-deterministic deception consequences induced

because of uncertain attack behavior.

Due to uncertain attack behavior, Chimera cannot certainly know the next attack

action/move from a particular adversary position. For example, from the Data Staged

position (in Fig. 4.3), the attacker may try to discover more credentials or exfiltrate

data. Without knowing the next attack action certainly, there is a possibility that

the deployed deception may be irrelevant to defend the current attack action. For

example, let assume that Chimera decides to execute honeyCopy (i.e., replacing dis-

covered data with garbage data) to take the attacker to Honey Data Staged position

in Fig. 4.3. However, if the attacker exfiltrates data instead of Copy, honeyCopy

is irrelevant. Against unknown attack processes, Chimera can only probabilistically

know the next attack move. Besides, sophisticated attackers may adapt action plans

based on their observations about previous attack consequences, making any static

action planning ineffective. Chimera formulates the SDP environment considering

89

such deception failure probability.

In the SDP, Chimera executes a deception action and analyzes its consequences

based on recent observations. Each observation specifies a distinct set of APIs called

by the subjected process, based on which, Chimera also infers the current adversary

position. However, the monitored set of APIs cannot be certainly mapped to a spe-

cific adversary position due to constrained monitoring of limited APIs. Hence, the

environment is only partially observable with incomplete and imperfect information.

To address the partial observability, Chimera formulates the decision-making prob-

lem as Partially Observable Markov Decision Process (POMDP) [118]. POMDP is

a sequential decision process of an agent who acts and receives feedback from the

environment synchronously, through addressing uncertainties related to partial ob-

servability. It is a tuple of < S,A, T,Ω, O,R, γ > where:

• S, A, and Ω are the state space, deception action space, and observation space,

respectively,

• T and O represent the state transition function and observation function, re-

spectively,

• γ is the discount factor.

By solving the POMDP model, Chimera computes an optimal policy that recom-

mends the optimal deception action for the current belief (i.e., probabilistic adversary

position).

Among these POMDP parameters, state spaces S are MITRE ATT&CK techniques

represented as real state and honey state in the deception graph (section 4.5.2), and

deception action space, A, consists of unique deception actions considered for this

research. Discount factor γ regulates how far in future Chimera looks to understand

the current action consequences into future, which is static in this work.

90

The following subsections describe the rest of POMDP parameters (Section 4.6.2

to 4.6.4), belief update (Section 4.6.5), and policy generation (Section 4.6.6).

4.6.2 State Transition Matrix

State transition matrix is a POMDP parameter that contains transitional prob-

abilities among states for all considered deception actions. To clarify, it consists of

p(s′|s, ad) that specifies the probability of transition from current state (i.e., adversary

position) s to next state s′ for the deception/defense action ad, for all possible s ∈ S,

s′ ∈ S, and ad ∈ A. While optimizing policy, POMDP solution approaches consider

this parameter mainly to understand action consequence on the environment [118].

Chimera determines p(s′|s, ad) using the following equation:

p(s′|s, ad) =
∑
av∈V

p(s′|s, ad, av)× p(av|s) (4.1)

where, V is the attack space, and p(s′|s, ad, av) is the system behavior that defines

the probability of transition from s to s′ when the attacker executes av in response

to ad. Notably, V consists of unique attack actions. Fig. 4.3 shows some examples of

attack actions by the second parameter across edges.

In Eqn. 4.1, Chimera integrates the expected attack behavior into its decision-

model, in order to formulate the environment from defender’s perspective. This re-

duces the problem from Partially Observable Stochastic Game (POSG) to POMDP.

Thus, Chimera addresses the limitation of POSG in approximating a solution for two

players with different payoffs, which improves the scalability significantly.

To determine the system behavior, the agent uses the following equation:

p(s′|s, ad, av) =

1, if (s′, s, ad, av) is valid

0, Otherwise

(4.2)

91

In Eqn. 4.2, the first factor, (s′, s, ad, av) is valid if deception ad is relevant to attack

av, and (s′, s) is relevant to (ad, av). A defense action ad is relevant to attack action

av if ad can defeat/deceive av. For example, in Fig. 4.3, honeySwList deceives the

adversary action tasklist ; hence, honeySwList is relevant to tasklist. The combination

(s′ =Honey Software Discovery, s =User Execution: Malicious File) is relevant to

(ad =honeySwList, av =tasklist), because the adversary moves to Honey Software

Discovery from User Execution: Malicious File for executing tasklist against hon-

eySwList. Importantly, the attacker always remains at the same state when he does

nothing regardless of other factors.

In Eqn. 4.1, the second factor, p(av|s) specifies the probability of executing action

av at the current state s. This values come from the deception graph.

4.6.3 Observation & Observation Matrix

An observation is a distinct set of API calls that Chimera monitors to infer the

current adversary position (state) in the attack chain. However, it cannot certainly

specify the underlying state due to partial observability. Here, the observation space

Ω is same as state space S. Each observation o ∈ Ω is highly correlated with one

state s ∈ S while having low correlations with other states. For example, based on

recent observed set of API calls, there is high likelihood that the attacker performed

Software Discovery. However, due to not monitoring all API calls, Chimera is not

certain that the attacker has not performed other actions. The probabilities p(s|o)

defining the likelihood of s for the recent observation o, which is computed based on

historical data of malware reports.

Composing Observation Matrix: Observation matrix O is a POMDP parame-

ter that specifies correlations among states and observations. Chimera composes O to

understand the current state from recent observation o ∈ Ω. It contains probabilities

p(o|s) that specifies the probability of observing o when the state is s, for all possible

o ∈ Ω and state s ∈ S.

92

Chimera determines p(o|s) based on recent observation o ∈ Ω and prior probabili-

ties p(s|o), using the following equation:

p(o|s) =
p(s|o)× p(o)∑
x∈Ω p(s|x)× p(x)

=
p(s|o)∑
x∈Ω p(s|x)

(4.3)

where, the probability of observing a symptom p(o) is same for all observations.

4.6.4 Reward

Alongside state transition matrix T , POMDP considers reward to optimize the

policy through understanding the consequences of defense/deception actions for all

possible scenarios. For all possible current state s ∈ S, next state s′ ∈ S, and

deception action ad ∈ A, Chimera quantifies R(s′, s, ad) that defines the payoff of

action ad when the state transits from s to s′. Higher reward due to ad motivates

policy to execute ad. Chimera formulates R(s′, s, ad) using the following equation:

R(s′, s, ad) = −q(s′) +
∑
i∈G

wi × Zd
i − Cd (4.4)

where, q(s) is the risk of data exfiltration imposed due to attacker’s reaching at state

s′, and G is the 4D deception goal that consists of Diversion, Distortion, Depletion,

and Discovery. Additionally, Zd
i defines whether ad achieve the goal i ∈ G or not, and

Cd is the installment cost of ad.

In Eqn. 4.4, q(s) depends on two factors: (1) ρ(s) that defines the probability

of reaching to Exfiltration Over C2 from s, and (2) L that is the loss (in dollars)

due to data exfiltration. Notabaly, Exfiltration Over C2 is actually the attack goal

state sg. The first factor, ρ(s), depends on available paths to reach sg from s, which

are obtained from the deception graph at Fig. 4.3 (without considering the defense

action). For example, from Software Discovery, the attacker can reach to sg by the

path with actions: (copy, HTTP) or by the path with actions: (tasklist, copy, HTTP).

93

The second factor, L, is same for all possible scenarios and considered as user-input.

There are multiple available paths to reach sg from s, and the attacker reaches

sg if he successfully executes all actions of any of available paths. This intuition is

formulated using the following equation:

ρ(s) = 1−
∏
lj∈L

(1− ρj(g)) (4.5)

where, L are available paths to reach to sg from s, and ρj(s) is the likelihood of

reaching sg through the path lj.

ρj(s) depends on probabilities of executing attack actions following the sequence

in lj. Understandably, ρj(s) gets lower with more required actions to reach sg, that

makes the reward higher. To clarify, from a honey state, he has to repeat previous

actions or execute more actions; thus, it reduces the risk of exfiltration and provides

incentive to Chimera.

The second term in Eqn. 4.4 provides incentives to ad for achieving specific decep-

tion goals using wi. Notably, each deception action offers diversified benefits regarding

4D goals. For instance, redirectToHoneyDir provides diversion and discovery but not

distortion and depletion, whereas, Honey Data Staged helps to discover attack be-

havior. Therefore, by wi, the user can emphasize on actions that are more inclined to

his objectives or mission. The last term, Cd, defines deployment cost of ad due to re-

quired configurations, operations, and others. In evaluation, wi and Cd are considered

as user-inputs.

4.6.5 Belief

Belief bt is the probabilistic distribution across all states s ∈ S, that probabilis-

tically specifies the current state during time-sequence t. For instance, bt(Software

Discovery) defines the likelihood of Software Discovery as the current state. Chimera

determines next optimal action based on bt that addresses the imperfect and incom-

94

plete observability of the environment.

To address uncertainties related to observations, Chimera determines bt considering

the recent observation o, probable state transitions (state transition matrix), and

correlations among states and recent observation (observation matrix). Using the

traditional belief update approach [118], Chimera formulates bt using the following

equation:

bt(s) =
p(o|s)

∑
s′′∈S p(s|s′′, a)bt−1(s′′)∑

w∈S p(o|w)
∑

s′′∈S p(w|s′′, a)bt−1(s′′)
(4.6)

where, p(o|s) is the probability of observing o at s′.

4.6.6 POMDP Policy Generation

Chimera computes the optimal deception policy by solving the composed POMDP

model. It recommends the optimal deception action a∗d for current belief bt. To ad-

dress uncertainties associated with the environment, the composed POMDP model

considers not only the probable attack behavior (by state transition matrix), but

also correlations of observations (API traces) with probable attack positions (obser-

vation matrix). Chimera applies Heuristic Search Value Iteration (HSVI) to solve the

POMDP model, which approximates the policy with a bounded (user-given) regret

rate [119]. Regret rate defines the precision of HSVI, and the approximated policy

moves closer to the optimal policy for lowering its value.

HSVI takes an initial belief as the initial probabilistic attack position, in order to

prune irrelevant belief space unreachable from initial attack position. The optimal

deception action recommended by the computed policy maximizes the accumulated

reward for the current belief bt, considering not only the current attack position but

also the probable attack propagation in future. The following equation formulates

the intuition:

95

V π(bt) = E

[
∞∑
t=0

γtR(s′, s, at)|bt, π

]

π∗ = arg max
π

V π(bt)

where, π∗ is the computed policy, V π(bt) is the expected reward value considering

future decision-horizon (defined by γ) by following policy π, and R(s′, s, at) is the

expected reward for transition from s to s′ by defense at at time t. Notably, γt

quantifies the importance of future payoff.

4.7 Implementation

The POMDP model is solved by ZMDP (POMDP solver) [119]. I used python

to create the deception graph from MITRE ATT&CK APT reports. I use API-

to-MITRE (section 4.5.1) mapping to include techniques in deception graphs from

malware traces. For implementing the embedded Honey Factory (HF), system-level

API hooking is used. To scale the deception actions with HF resources, I classified all

deception strategies into four categories; 1) Fake Failure: this strategy always denies

any API calls indicating a failure status, e.g., malware wants to compress a file but

will get denied stating compression mechanism not found. 2) Fake Success : always

return a successful response without performing the task. For instance, Ransomware

wants to encrypt a file; it will return encryption successfully without any encryption.

3) Honey Execute: this strategy delegates the API calls to remote VM that executes

the command, and the VM’s response goes back to the attacker. 4) Native Allow :

always allow any API calls.

Embedded Deception-API Hooking: The idea of embedded deception [120]

strategy is implemented using EasyHook, a free, open-source hooking library for 32-

bit and 64-bit Windows processes released under the MIT license. EasyHook provides

a generic template for APIs hooking. In addition, EasyHook ensures thread safety

96

Table 4.2: Datasets. 4,578 malware samples in total: 3,396 Information Stealers,
1,030 Ransomware, and 152 RATs.

Family InfoStealer Ransomware RAT

Sub
Family

Lo
ki
B
ot

P
on

y

K
ha

le
si

K
eg
ot
ip

R
am

ni
t

G
ro
zl
ex

O
cc
am

y

Fa
re
It

F
lo
xi
f

E
m
ot
et

R
ac
co
n

G
en
er
ic
.P
W

S

Tr
oj
an

.P
W

S

W
an

na
C
ry

R
yu

k

C
er
be

r

G
an

dC
ra
b

G
h0

st

P
up

y

Q
ua

sa
r

Samples 673 294 207 119 385 77 65 42 106 486 54 552 336 256 161 139 159 53 64 35

by using a thread deadlock barrier. When the deception agent in Chimera decides

to deceive the attacker’s next movement (technique), the agent chooses a deception

strategy. Let us assume the attack technique is File and Directory Discovery, and

the defender’s strategy is Honey Execute, which delegates every relevant API call to

remote HF. From the API-to-MITRE mapping, the agent identifies the malware will

invoke the following sequence of API: GetCurrentDirectory - send - recv. After iden-

tifying the relevant APIs, the agent uses Easyhook to inject a Dynamic Link Library

(DLL) into the malware process including the strategy Honey Execute. According

to our example, when the malware calls GetCurrentDirectory API, the current work-

ing directory was supposed to be copied into the parameter lpBuffer. However, the

hook forwards the call to HF, and HF reports back a deceptive directory list, which

gets copied back into the lpBuffer. Eventually, the malware receives the deceptive

directory listing instead of the real one.

4.8 Evaluation

Chimera is evaluated with 4,578 real malware samples from three different fami-

lies: Information Stealer, Ransomeware, and Remote Acces Trojan (RAT). Our key

evaluation criteria were how efficiently Chimera deceives malware to obtain distinct

deception goals in real-time. Further, I evaluate Chimera’s effectiveness of the quality

of deception (in terms of discovery, depletion, and diversion), optimal policy genera-

tion, and overhead due to deception action deployments. Finally, Chimera is run in a

real production machine and discover new TTPs compared to existing APT analysis

97

tools, such as Cuckoo [113] and Any.run [114].

4.8.1 Dataset

Table 4.2 summarizes the datasets used in the evaluation. A collection of 4,578

malware samples from VirusTotal and MalShare are used. I choose 3,396 samples of

Information Stealer from 13 families, 1,030 samples of Ransomware from 4 families,

and 152 samples of RAT from 3 different families. More than 37,000 API traces

are collected from Cuckoo sandbox, DogeTron, and Hybrid-Analysis tool from these

malware samples. Furthermore, the lifecycle of 27 Information stealing APTs, 17

Ransowmare APTs, and 19 RAT APTs from MITRE ATT&CK are used.

4.8.2 Experiment setup

80% of the malware sample data is used randomly to build the model for deception

action planning, and the rest is used for testing. The training malware samples

are run using analyzers such as Cuckoo, DodgeTron, and Any.run to collect traces.

From these traces and API-to-MITRE mapping (Table 4.1), I build three different

deception graphs for Information Stealer, Ransomware, and RAT. Existing works

such as [3, 121] give us insight into calculating the likelihood of adversary transition

from a given state to the next state. Further, I quantify the deception action cost

and effectiveness as low, medium, and high. Chimera then set up into a production

machine with some vulnerable software. A remote Honey Factory with three VMs is

created. Honey resources such as honey files, credentials, registry keys, passwords,

decoy user accounts, process list, honey traffics, etc., are used in the factory VMs.

4.8.3 Deception Efficiency

A random selection of 916 malware samples from the dataset are used to assess

Chimera’s efficiency in deceiving attackers. The results are illustrated in Fig. 4.4.

Chimera successfully deceived 879 malware samples (95.93%) that run to completion

(e.g., exfiltration). Out of them, 781 malware samples took the baits and exfil-

98

Table 4.3: Number of techniques (T) and procedures (P) discovered by Chimera
compared to Cuckoo sandbox and Any.run.

Family Malware
Family Discovery Cuckoo Any.run Chimera

InfoStealer

Fareit T 8 7 8
P 39 126 149

LokiBot T 7 2 11
P 21 173 243

Pony T 8 4 17
P 231 191 582

Racoon T 7 8 16
P 45 23 51

Ransomware
Ryuk T 6 3 6

P 27 32 102

GandCrab T 8 10 10
P 192 109 245

RAT

Gh0st T 2 2 6
P 4 57 69

VanilaRat T 1 0 12
P 1 0 12

Quasar T 5 2 13
P 14 4 16

95.93%

3.18% 0.89%

Successfully
Deceived
Failed to Complete

Failed to Run

Figure 4.4: Chimera deception efficiency.

10%
21%

14%

11%

19%
23%

6%

10%
16%

17%

12%

0

10

20

30

40

50

60

70

80

Khales
i

Kegoti
p

Pony

Ram
nit

Grozle
x

Lokibot
Floxif

Gen
eri

c.P
W

S

Troj
an.PW

S

Occa
my

FareI
t

N
um

be
r

of
 D

ist
in

ct
 A

tta
ck

 A
PI

 C
al

l D
isc

ov
er

ed

Malware Families

Cuckoo Sandbox Chimera

Figure 4.5: Unique attack API discov-
ered.

5% 8%

15%
12%

22%
25%

4%
10% 7%

8%

17%

0

500

1000

1500

2000

2500

3000

3500

Khales
i

Kegoti
p

Pony

Ram
nit

Grozle
x

Lokibot
Floxif

Gen
eri

c.P
W

S

Troj
an.PW

S

Occa
my

FareI
t

To
ta

l N
um

be
r o

f A
PI

 C
al

l D
isc

ov
er

ed

Malware Families

Cuckoo Sandbox Chimera

Figure 4.6: Total trace API coverage.

99

trated the honey resources, which observed by inspecting the plain Command and

Control (C2) communication. However, 98 malware samples send encrypted traf-

fic to C2, which got redirected to the decoy server because I cannot verify whether

they took honey resources or not. I failed to run 8 malware samples (0.89%) be-

cause of either not having the C2 server, or the malware was unable to comply

with system requirements. For instance, I could not run VanillaStub.exe (MD5:

185526401b0a3a083c797cac3598051a) RAT client for not having the master. The

remaining malware samples did not run to completion due to expecting specific C2

commands/responses encrypted with specific keys.

4.8.4 Quality of Deception

I quantify deception quality by discovering new TTPs, unique API calls, distinct

API call traces, and malware depletion to delay the attack propagation. I maintain

the key criteria of successful deception: running malware to completion to reach

its goal. The outcomes are compared with existing popular APT analyzers such as

Cuckoo sandbox and Any.run.

TTP Discovery: Table 4.3 shows Chimera’s performance in discovering technique

(T) and procedure (P). Clearly, Chimera discovers more attack techniques and proce-

dures than Cuckoo and Any.run. For instance, when I run the malware sample with

MD5: 5ce9945d6999c9636c1f49e270382d6b in Chimera, I observed it search for files

“C: \Users \admin\AppData \Roaming\Mozilla\Firefox\Prof-iles\qldyz51w.default

\pkcs11.txt" by calling following APIs: CreateFile, ReadFile, CloseHandle. This

procedure resembles the File and Directory Discovery technique. Later, I discover

another technique "Application Layer Protocol" due to calling following APIs: Inter-

netOpen, InternetConnect, HttpOpenRequest, HttpSendRequest. Cuckoo or Any.run

cannot detect the later technique and corresponding procedures due to not having

a C2 server setup. With decoy C2 server, Chimera discovers more techniques and

procedures. For the same reason, Chimera outperforms the other tools in discovering

100

Figure 4.7: Optimal policy over cost ef-
fectiveness.

Figure 4.8: Optimal policy over data ex-
filtration probability.

Figure 4.9: Depletion time against Basi-
cRAT.

Figure 4.10: Depletion time against
PupyRAT.

RATs.

Unique API Call and Trace Discovery: Fig. 4.5 shows the number of unique

APIs discovered by Chimera compared to Cuckoo. On average, Chimera discovered

14.45% more unique API calls than Cuckoo. In total, Chimera found 78 distinct

API calls that are not even monitored by Cuckoo at all. Fig. 4.6 shows distinct API

trace coverage comparison. Chimera is ahead of 12.09% average trace coverage than

Cuckoo. A trace is considered as distinct by taking the longest common subsequence

from both Chimera and Cuckoo.

4.8.5 Optimal Policy

From the TTP discovery results, it is observed that the deception policy generated

by Chimera is efficient enough to make notable results compared to the state-of-

101

states # 36
dcep. action #57 states # 27

dcep. action #48
states # 21

dcep. action #63

0

100

200

300

400

500

600

700

InfoStealer Ransomware RAT

Ch
im

er
a

Po
lic

y
Ge

ne
ra

tio
n

Ti
m

e
(s

ec
on

ds
)

Figure 4.11: Policy generation overhead
for different APT.

Figure 4.12: Policy generation overhead
for different malware samples.

the-art tools. However, to measure the how optimal Chimera’s policy is, a static

planning is created using the same attack and defense action spaces over the de-

ception graph. Satisfiability Modulo Theories (SMT) is used to create the static

planning. Fig. 4.7 shows that, while running different attack scenarios of an Informa-

tion Stealer, Chimera always best performs choosing the most cost-effective actions,

meaning Chimera chooses low cost actions with high efficiency in deceiving the at-

tacker. Similarly, Fig. 4.8 shows that, the SMT planning mostly fails to prevent data

exfiltration, whereas in Chimera planning, data exfiltration probability is nearly zero.

The scenario (deplete the attacker to delay its progression) is depicted with two

different malware, BasicRat that is called naive RAT, as it does not employ defense

evasion techniques, and PupyRat, which can check the system to discover container

environments (sandbox/VM). Fig. 4.9 shows that the SMT planning is capable of

engaging with the attacker for 10 minutes on average before the BasicRat client quits

because of not receiving the appropriate (deceptive) response. On the other hand,

PupyRat detects the deception environment because of static planning in the minute

mark (Fig. 4.10). In both cases, Chimera deception planning was able to engage with

the attacker for more than an hour.

102

37 37

26

43

37

29

46 47

33

39
36

0

5

10

15

20

25

30

35

40

45

50

Khales
i

Kegoti
p

Pony

Ram
nit

Grozle
x

Lokibot
Floxif

Gen
eri

c.P
W

S

Troj
an.PW

S

Occa
my

FareI
t

D
yn

am
ic

 C
on

fig
ua

ra
tio

n
D

el
ay

 (s
ec

on
d)

Malware Family

Figure 4.13: Deception delay.

states # 36
dcep. action #57

states # 27
dcep. action #48 states # 21

dcep. action #63

0
2
4
6
8

10
12
14
16

InfoStealer Ransomware RAT

De
ce

pt
io

n
Ac

tio
n

Se
le

ct
io

n
Ti

m
e

(m
illi

se
co

nd
s)

Figure 4.14: Optimal deception action
selection time (online).

4.8.6 Policy generation overhead

The overhead of Chimera is measured in two aspects, 1) deception policy generation

overhead and 2) delay due to deception action orchestration and deployment.

Offline Policy Generation Delay: From our datasets, I created three deception

graphs for Information Stealer, Ransomware, and RAT, each having 36, 27, 21 states,

respectively. Fig. 4.11 shows that the maximum policy generation overhead is 600

seconds for Information Stealer, having 37 states. The results also shows that the

number of actions in deception graphs has little influence on the overhead. Fig. 4.12

depicts the deception policy generation delay of individually malware sub-family. The

average policy creation delay is around 250 seconds.

Online Action Selection Delay: From the deception policy, Chimera deception

agent selects an optimal deception action in run-time. Fig. 4.14 shows that the

maximum delay to chose a deception action is 15 milliseconds for Information Stealer.

Dynamic Deception Delay: The dynamic deception delay is calculated by run-

ning a malware sample (to completion) into a machine without Chimera. Then

Chimera is deployed into that machine and run the same malware. Time difference

is calculated as system overhead due to deception action orchestration and deploy-

ment. Fig. 4.13 shows that the maximum orchestration delay is 47 seconds, which is

insignificant compared to an APT campaign running time.

103

4.9 Summary

In this chapter, I introduced a framework named Chimera that provides an optimal

deception plan to deceive APT attacks and achieve the 4D deception goals: diversion,

depletion, distortion, and discovery in real-time. I use POMDP to obtain the optimal

deception action planning. A deception environment is developed using Windows API

hooking, where malicious API calls can be redirected to VM or responded with crafted

honey content. Because of API level deception, Chimera can be used embedding with

the production machine. Chimera is evaluated with 4,578 malware samples from three

different families: Information Stealer, Ransomware, and RAT. Chimera deceives

those malware samples with high efficiency (95.93%) and low system overhead (47s).

The limitation in Chimera is that the deception is done through Windows System

API hooking. If the malware can bypass API hooking or detect it, Chimera cannot

deceive them.

CHAPTER 5: Conclusion

This dissertation focuses on the problems of dynamic orchestration and optimal

planning of deception actions and moving target defense (MTD) techniques. Cy-

ber deception and MTD enable active cyber defense (ACD) to resilient the system

against advanced persistent threats (APT). ACD is a cyber resiliency capability that

dynamically orchestrates security architectures to prevent attacks proactively.

To overcome these challenges, this dissertation focuses on developing an autonomous

resilient ACD framework, having the following objectives: (1) evolving multistrategy

ACD policies that leverage dynamic composition of various MTD and deception tech-

niques, (2) a specification language to design various MTD and deception policies and

an extensible rich API integrated with a synthesis engine for deploying security solu-

tions without consulting the low-level network and system configuration management,

(3) a theoretical framework and implementation for an autonomous goal-oriented cy-

ber deception planner that optimizes deception decision-making. This section sum-

marizes the overall objectives of the dissertation.

The first objective of this dissertation is to develop a proactive moving target de-

fense against email spear-phishing attacks because the spear-phishing attack is the

most utilized and effective adversary tactic that launches the APT campaign. In

spear-phishing attacks, adversaries attach malicious links (URL) or files (malware)

into the email and send them to targeted victims. Using spear-phishing emails, adver-

saries can manage to impersonate authoritative identities to incite victims to perform

specific actions that help them achieve hacking or financial goals. The current state of

the art for detecting spear-phishing emails limits by analyzing email contents which

advanced attacker can easily evade by mimicking users’ behavior and avoiding bad sig-

105

natures. To address these limitations, a novel moving target technique called sender

email address mutation is introduced in chapter 2 to protect against spear-phishing

and spoofing attacks proactively.

The second objective of the dissertation is to develop a framework for automating

the creation of deception actions and configuration-based MTD techniques rapidly

and safely. Existing MTD and deception frameworks mostly provide static configura-

tion. They often do not support multi-strategy defense composition as it can create

conflicts with existing policies and break the system integrity. Moreover, without

automatic, system misconfiguration is inevitable that leads to creating new vulnera-

bilities. In chapter 3, a framework is presented that provides a high-level cyber agility

policy language specification and a controller for implementing configuration-based

MTD and deception techniques. It also provides an extensible rich API that can

be used to observe adversary actions, compose multi-strategy defense plans, and en-

sure safe yet quick deployment of such plans by automatically managing the network

configuration.

The final objective of this dissertation is to provide optimal planning of deception

course of actions and their automatic orchestration in the production environment

in real-time. Such a framework can help the defender to design specific deception

scenarios to deceive APT attacks in order to achieve specific deception goals, like

diversion, distortion, depletion and discovery. In chapter 4, a framework is devel-

oped that generates an optimal deception action planning based on deception goals

and APT groups. The framework leverage MITRE ATT&CK [11] to understand

attack techniques and uses Sequential Decision-Making techniques such as Partially

Observable Markov Decision Processes (POMDP) to formalize the problem.

Limitations & Future Tasks: Although this dissertation addresses many key

challenges to solve the optimization and automation of deception and MTD tech-

niques, it has certain limitations, which opens future research directions.

106

• In the sender email address mutation technique, the threat model does not con-

sider the compromises of a user machine. In that case, the attacker can access

the mutation gateway and launch a phishing email that cannot be detected by

the given solution.

• The deception action optimization requires a mapping between high-level attack

techniques to low-level system API calls, which has been done manually in

this dissertation. In the future, such mapping can be automated using natural

language processing tools and machine learning techniques.

• Measuring the effectiveness of deception action is challenging. Because, in most

of the cases, the defender could not get a response from the command and

control server of the attacker. This dissertation assumes deception actions ef-

fectiveness as user input which can be employed from historical data. In the

future, techniques can be developed to measure the effectiveness of deception

actions.

• The advanced attacker can counter deceive the defender’s deception actions. It

is challenging to determine whether an attacker takes a bait just because the

deception is successful or the attacker is actually counter deceiving the defender.

This dissertation does not focus on detecting counter deception.

REFERENCES

[1] “All data breaches in 2019 - 2021: An alarming timeline.”

[2] “Fbi internet crime report 2020.”

[3] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan,
“Holmes: real-time apt detection through correlation of suspicious information
flows,” in 2019 IEEE Symposium on Security and Privacy (SP), pp. 1137–1152,
IEEE, 2019.

[4] “Identity fraud hits record high with 15.4 million u.s.”

[5] “Ransomware trends in 2020.”

[6] “Colonial pipeline paid hackers nearly $5 million in ransom.”

[7] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, and T. Dumitras, “From patch-
ing delays to infection symptoms: using risk profiles for an early discovery of
vulnerabilities exploited in the wild,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 903–918, 2018.

[8] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The attack of
the clones: A study of the impact of shared code on vulnerability patching,” in
2015 IEEE symposium on security and privacy, pp. 692–708, IEEE, 2015.

[9] E. Al-Shaer, J. Wei, W. Kevin, and C. Wang, Autonomous Cyber Deception.
Springer, 2019.

[10] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage, G. M.
Voelker, and D. Wagner, “Detecting and characterizing lateral phishing at
scale,” in 28th {USENIX} Security Symposium ({USENIX} Security 19),
pp. 1273–1290, 2019.

[11] Adversarial Tactics, Techniques & Common Knowledge. https://attack.
mitre.org/wiki/Main_Page.

[12] P. Karuna, H. Purohit, S. Jajodia, R. Ganesan, and O. Uzuner, “Fake document
generation for cyber deception by manipulating text comprehensibility,” IEEE
Systems Journal, 2020.

https://attack.mitre.org/wiki/Main_Page
https://attack.mitre.org/wiki/Main_Page

108

[13] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinfor-
mation,” in Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, pp. 942–953, 2014.

[14] A. Juels and T. Ristenpart, “Honey encryption: Security beyond the brute-force
bound,” in Annual international conference on the theory and applications of
cryptographic techniques, pp. 293–310, Springer, 2014.

[15] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner, “Detecting credential
spearphishing in enterprise settings,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), pp. 469–485, 2017.

[16] S. Kitterman, “Sender policy framework (spf),” RFC7208, 2014. https://
tools.ietf.org/html/rfc7208.

[17] D. Crocker, T. Hansen, and M. Kucherawy, “Domainkeys identified mail (dkim)
signatures,” RFC6376, 2011. https://tools.ietf.org/html/rfc6376.

[18] M. Kucherawy and E. Zwicky, “Domain-based message authentication, report-
ing, and conformance (dmarc),” RFC7489, 2015. https://tools.ietf.
org/html/rfc7489.

[19] H. Hu and G. Wang, “End-to-end measurements of email spoofing attacks,” in
27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 1095–1112,
2018.

[20] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “Openpgp message for-
mat,” tech. rep., RFC 2440, November, 1998.

[21] B. Ramsdell et al., “S/mime version 3 message specification,” tech. rep., RFC
2633, June, 1999.

[22] “Multi-factor authentication.” https://en.wikipedia.org/wiki/
Multi-factor_authentication, 2020.

[23] S. Ruoti, J. Andersen, S. Heidbrink, M. O’Neill, E. Vaziripour, J. Wu, D. Zap-
pala, and K. Seamons, “ “we’re on the same page" a usability study of secure
email using pairs of novice users,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pp. 4298–4308, 2016.

[24] S. Sheng, L. Broderick, C. A. Koranda, and J. J. Hyland, “Why johnny still can’t
encrypt: evaluating the usability of email encryption software,” in Symposium
On Usable Privacy and Security, pp. 3–4, ACM, 2006.

[25] I. Thomson, “Who’s using 2fa? sweet fa. less than 10% of gmail users enable
two-factor authentication,” The Register, 2018.

https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7489
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://en.wikipedia.org/wiki/Multi-factor_authentication

109

[26] J. Müller, M. Brinkmann, D. Poddebniak, H. Böck, S. Schinzel, J. Somorovsky,
and J. Schwenk, “ “johnny, you are fired!”–spoofing openpgp and s/mime signa-
tures in emails,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), pp. 1011–1028, 2019.

[27] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 337–340, Springer, 2008.

[28] Q. Duan, E. Al-Shaer, M. Islam, and H. Jafarian, “Conceal: A strategy compo-
sition for resilient cyber deception-framework, metrics and deployment,” in 2018
IEEE Conference on Communications and Network Security (CNS), pp. 1–9,
IEEE, 2018.

[29] E. Al-Shaer and M. N. Alsaleh, “Configchecker: A tool for comprehensive
security configuration analytics,” in Configuration Analytics and Automation
(SAFECONFIG), 2011 4th Symposium on, pp. 1–2, IEEE, 2011.

[30] “Pomdp background.” http://www.pomdp.org/tutorial/pomdp-
background.html.

[31] “Spear-phishing email reports..” https://www.phishingbox.com/, 2020.

[32] “Business email compromise: The $26 billion scam.” https://www.ic3.
gov/media/2019/190910.aspx, 2019.

[33] Verizon, “2018 data breach investigations report.” https://enterprise.
verizon.com/resources/reports/DBIR_2018_Report_
execsummary.pdf, 2018.

[34] J. Hong, “The state of phishing attacks,” Communications of the ACM, vol. 55,
no. 1, pp. 74–81, 2012.

[35] B. Parmar, “Protecting against spear-phishing,” Computer Fraud & Security,
vol. 2012, no. 1, pp. 8–11, 2012.

[36] V. Ramanathan and H. Wechsler, “Phishing detection and impersonated en-
tity discovery using conditional random field and latent dirichlet allocation,”
Computers & Security, vol. 34, pp. 123–139, 2013.

[37] S. Aggarwal, V. Kumar, and S. Sudarsan, “Identification and detection of phish-
ing emails using natural language processing techniques,” in Proceedings of the
7th International Conference on Security of Information and Networks, p. 217,
ACM, 2014.

[38] H. Gascon, S. Ullrich, B. Stritter, and K. Rieck, “Reading between the lines:
content-agnostic detection of spear-phishing emails,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses, pp. 69–91, Springer,
2018.

http://www.pomdp.org/tutorial/pomdp-background.html
http://www.pomdp.org/tutorial/pomdp-background.html
https://www.phishingbox.com/
https://www.ic3.gov/media/2019/190910.aspx
https://www.ic3.gov/media/2019/190910.aspx
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report_execsummary.pdf
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report_execsummary.pdf
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report_execsummary.pdf

110

[39] X. Hu, B. Li, Y. Zhang, C. Zhou, and H. Ma, “Detecting compromised email
accounts from the perspective of graph topology,” in Proceedings of the 11th
International Conference on Future Internet Technologies, pp. 76–82, 2016.

[40] S. Duman, K. Kalkan, M. Egele, W. Robertson, and E. Kirda, “Emailprofiler:
Spearphishing filtering with header and stylometric features of emails,” in IEEE
40th COMPSAC, vol. 1, pp. 408–416, IEEE, 2016.

[41] G. Stringhini and O. Thonnard, “That ain’t you: Blocking spearphishing
through behavioral modelling,” in Int. Conf. on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 78–97, Springer, 2015.

[42] M. Khonji, Y. Iraqi, and J. Andrew, “Mitigation of spear phishing attacks:
A content-based authorship identification framework,” in 2011 International
Conference for ITST, pp. 416–421, IEEE, 2011.

[43] M. M. Islam, E. Al-Shaer, and M. A. B. U. Rahim, “Email address mutation for
proactive deterrence against lateral spear-phishing attacks,” in International
Conference on Security and Privacy in Communication Systems, pp. 1–22,
Springer, 2020.

[44] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of machine
learning techniques for phishing detection,” in Proceedings of the anti-phishing
working groups 2nd annual eCrime researchers summit, pp. 60–69, 2007.

[45] J. T. Goodman, P. S. Rehfuss, R. L. Rounthwaite, M. Mishra, G. J. Hulten,
K. G. Richards, A. H. Averbuch, A. P. Penta, and R. C. Deyo, “Phishing detec-
tion, prevention, and notification,” Dec. 15 2009. US Patent 7,634,810.

[46] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature survey,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013.

[47] M. M. Islam, Q. Duan, and E. Al-Shaer, “Specification-driven moving target
defense synthesis,” in Proceedings of the 6th ACM Workshop on Moving Target
Defense, pp. 13–24, 2019.

[48] M. Quadrant, “Magic quadrant for secure email gateways,” 2014.

[49] “Email security gateways..” https://www.expertinsights.com/
insights/top-11-email-security-gateways/, 2020.

[50] D. Crocker, “Rfc0822: Standard for the format of arpa internet text messages,”
1982.

[51] J. Klensin et al., “Simple mail transfer protocol,” tech. rep., rfc 2821, April,
2001.

[52] Django, “Django.” https://www.djangoproject.com/, 2020.

https://www.expertinsights.com/insights/top-11-email-security-gateways/
https://www.expertinsights.com/insights/top-11-email-security-gateways/
https://www.djangoproject.com/

111

[53] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International
journal on software tools for technology transfer, vol. 1, no. 1-2, pp. 134–152,
1997.

[54] C. Wang and Z. Lu, “Cyber deception: Overview and the road ahead,” IEEE
Security & Privacy, vol. 16, no. 2, pp. 80–85, 2018.

[55] J. H. Jafarian, A. Niakanlahiji, E. Al-Shaer, and Q. Duan, “Multi-dimensional
host identity anonymization for defeating skilled attackers,” in Proceedings of
the 2016 ACM Workshop on Moving Target Defense, pp. 47–58, ACM, 2016.

[56] S. Jajodia, V. Subrahmanian, V. Swarup, and C. Wang, Cyber deception.
Springer, 2016.

[57] S. Jajodia, N. Park, F. Pierazzi, A. Pugliese, E. Serra, G. I. Simari, and V. Sub-
rahmanian, “A probabilistic logic of cyber deception,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 11, pp. 2532–2544, 2017.

[58] K. Horák, Q. Zhu, and B. Bošanskỳ, “Manipulating adversary’s belief: A dy-
namic game approach to deception by design for proactive network security,” in
International Conference on Decision and Game Theory for Security, pp. 273–
294, Springer, 2017.

[59] S. Achleitner, T. F. La Porta, P. McDaniel, S. Sugrim, S. V. Krishnamurthy, and
R. Chadha, “Deceiving network reconnaissance using sdn-based virtual topolo-
gies,” IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1098–1112, 2017.

[60] K. Ferguson-Walter, S. Fugate, J. Mauger, and M. Major, “Game theory for
adaptive defensive cyber deception,” in Proceedings of the 6th Annual Sympo-
sium on Hot Topics in the Science of Security, pp. 1–8, 2019.

[61] “Deception technology market research report- forecast 2022.”

[62] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a model-
driven sdn controller architecture,” inWorld of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014 IEEE 15th International Symposium on a, pp. 1–
6, IEEE, 2014.

[63] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[64] L. de Moura and N. Bjørner, “Satisfiability modulo theories: An appetizer,” in
SBMF ’09, Brazilian Symposium on Formal Methods, 2009.

[65] E. Al-Shaer, Q. Duan, and J. H. Jafarian, “Random host mutation for moving
target defense,” in SecureComm, vol. 106, pp. 310–327, Springer, 2012.

112

[66] J. H. H. Jafarian, E. Al-Shaer, and Q. Duan, “Spatio-temporal address mutation
for proactive cyber agility against sophisticated attackers,” in Proceedings of the
First ACM Workshop on Moving Target Defense, MTD ’14, (New York, NY,
USA), pp. 69–78, ACM, 2014.

[67] Q. Duan, E. Al-Shaer, and J. H. Jafarian, “Efficient random route mutation
considering flow and network constraints,” in CNS’13, 2013.

[68] S. Venkatesan, M. Albanese, G. Cybenko, and S. Jajodia, “A moving target
defense approach to disrupting stealthy botnets,” in Proceedings of the 2016
ACM Workshop on Moving Target Defense, MTD ’16, (New York, NY, USA),
pp. 37–46, ACM, 2016.

[69] E. Al-Shaer, “Mutable networks, National cyber leap year summit 2009 partic-
ipants ideas report,” tech. rep., Networking and Information Technology Re-
search and Development (NTIRD), August 2009.

[70] E. Al-Shaer, “Toward network configuration randomization for moving target
defense,” in Moving Target Defense (S. Jajodia, A. K. Ghosh, V. Swarup,
C. Wang, and X. S. Wang, eds.), vol. 54 of Advances in Information Security,
pp. 153–159, Springer New York, 2011.

[71] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic approaches to thwart
adversary intelligence gathering,” DARPA Information Survivability Conference
and Exposition, vol. 1, p. 0176, 2001.

[72] J. T. Michalski, “Network security mechanisms utilising network address trans-
lation,” International Journal of Critical Infrastructures, vol. 2, no. 1, pp. 10–49,
2006.

[73] J. Michalski, C. Price, E. Stanton, E. Lee, C. K. Seah, Y. H. TAN, and
C. Pheng., “Final report for the network security mechanisms utilizing net-
work address translation ldrd project. technical report sand2002-3613,” tech.
rep., Sandia National Laboratories, 2002.

[74] M. Atighetchi, P. Pal, F. Webber, and C. Jones, “Adaptive use of network-
centric mechanisms in cyber-defense,” in ISORC ’03: Proceedings of the
Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, (Washington, DC, USA), p. 183, IEEE Computer Society, 2003.

[75] R. Morehart, “Evaluating the effectiveness of ip hopping via an address rout-
ing gateway,” Master’s thesis, AIR FORCE INSTITUTE OF TECHNOLOGY,
2013.

[76] M. Sifalakis, S. Schmid, and D. Hutchison, “Network address hopping: a mecha-
nism to enhance data protection for packet communications,” in IEEE Interna-
tional Conference on Communications, 2005. ICC 2005. 2005, vol. 3, pp. 1518–
1523 Vol. 3, May 2005.

113

[77] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation:
Transparent moving target defense using software defined networking,” in Pro-
ceedings of the First Workshop on Hot Topics in Software Defined Networks,
HotSDN ’12, pp. 127–132, ACM, 2012.

[78] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A framework for reliable
routing in mobile ad hoc networks,” in IEEE INFOCOM, pp. 270–280, 2003.

[79] L. M. Marvel, S. Brown, I. Neamtiu, R. Harang, D. Harman, and B. Henz, “A
framework to evaluate cyber agility,” in MILCOM 2015-2015 IEEE Military
Communications Conference, pp. 31–36, IEEE, 2015.

[80] D. Bodeau and R. Graubart, “Cyber resiliency engineering framework,”
MTR110237, MITRECorporation, 2011.

[81] J. D. Mireles, E. Ficke, J.-H. Cho, P. Hurley, and S. Xu, “Metrics towards
measuring cyber agility,” IEEE Transactions on Information Forensics and Se-
curity, 2019.

[82] A. Dutta and E. Al-Shaer, “ “what”,“where”, and “why” cybersecurity controls
to enforce for optimal risk mitigation,” in 2019 IEEE Conference on Commu-
nications and Network Security (CNS), pp. 160–168, IEEE, 2019.

[83] A. Dutta and E. Al-Shaer, “Cyber defense matrix: a new model for optimal
composition of cybersecurity controls to construct resilient risk mitigation,”
in Proceedings of the 6th Annual Symposium on Hot Topics in the Science of
Security, pp. 1–2, 2019.

[84] A. Schlenker, O. Thakoor, H. Xu, F. Fang, M. Tambe, L. Tran-Thanh,
P. Vayanos, and Y. Vorobeychik, “Deceiving cyber adversaries: A game the-
oretic approach,” in Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 892–900, International Founda-
tion for Autonomous Agents and Multiagent Systems, 2018.

[85] T. E. Carroll and D. Grosu, “A game theoretic investigation of deception in net-
work security,” Security and Communication Networks, vol. 4, no. 10, pp. 1162–
1172, 2011.

[86] E. Al-Shaer, J. Wei, K. W. Hamlen, and C. Wang, “Dynamic bayesian games
for adversarial and defensive cyber deception,” in Autonomous Cyber Deception,
pp. 75–97, Springer, 2019.

[87] E. Miehling, M. Rasouli, and D. Teneketzis, “A pomdp approach to the dy-
namic defense of large-scale cyber networks,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 13, no. 10, pp. 2490–2505, 2018.

[88] M. Al Amin, S. Shetty, L. Njilla, D. Tosh, and C. Kamouha, “Attacker capa-
bility based dynamic deception model for large-scale networks,” EAI Endorsed
Transactions on Security and Safety, vol. 6, no. 21, 2019.

114

[89] K. Chung, C. A. Kamhoua, K. A. Kwiat, Z. T. Kalbarczyk, and R. K. Iyer,
“Game theory with learning for cyber security monitoring,” in 2016 IEEE 17th
International Symposium on High Assurance Systems Engineering (HASE),
pp. 1–8, IEEE, 2016.

[90] O. Hayatle, H. Otrok, and A. Youssef, “A markov decision process model for high
interaction honeypots,” Information Security Journal: A Global Perspective,
vol. 22, no. 4, pp. 159–170, 2013.

[91] J. H. Jafarian and A. Niakanlahiji, “A deception planning framework for cyber
defense,” in Proceedings of the 53rd Hawaii International Conference on System
Sciences, 2020.

[92] C.-Y. J. Chiang, Y. M. Gottlieb, S. J. Sugrim, R. Chadha, C. Serban,
A. Poylisher, L. M. Marvel, and J. Santos, “Acyds: An adaptive cyber deception
system,” in MILCOM 2016-2016 IEEE Military Communications Conference,
pp. 800–805, IEEE, 2016.

[93] J. H. H. Jafarian, E. Al-Shaer, and Q. Duan, “Spatio-temporal address mutation
for proactive cyber agility against sophisticated attackers,” in Proceedings of the
First ACM Workshop on Moving Target Defense, pp. 69–78, 2014.

[94] M. M. Islam, E. Al-Shaer, A. Dutta, and M. N. Alsaleh, “Clips/activesdn for
automated and safe cybersecurity course-of-actions orchestration,” in Proceed-
ings of the 6th Annual Symposium on Hot Topics in the Science of Security,
pp. 1–3, 2019.

[95] “Mininet: An instant virtual network on your laptop (or other pc).” http:
//mininet.org/.

[96] “Vagrant: Development environments made easy.” https://www.
vagrantup.com/.

[97] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in 2013 IEEE
symposium on security and privacy, pp. 127–141, IEEE, 2013.

[98] “Namp.”

[99] X. Han, N. Kheir, and D. Balzarotti, “Deception techniques in computer secu-
rity: A research perspective,” ACM Computing Surveys (CSUR), vol. 51, no. 4,
pp. 1–36, 2018.

[100] L. Zhang and V. L. Thing, “Three decades of deception techniques in active
cyber defense-retrospect and outlook,” Computers & Security, p. 102288, 2021.

[101] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting low-
and medium-interaction honeypots at internet scale,” in 12th {USENIX}Work-
shop on Offensive Technologies ({WOOT} 18), 2018.

http://mininet.org/
http://mininet.org/
https://www.vagrantup.com/
https://www.vagrantup.com/

115

[102] J. Rrushi, “Honeypot evader: Activity-guided propagation versus counter-
evasion via decoy os activity,” in Proceedings of the 14th IEEE International
Conference on Malicious and Unwanted Software, 2019.

[103] L. Alt, R. Beverly, and A. Dainotti, “Uncovering network tarpits with de-
greaser,” in Proceedings of the 30th Annual Computer Security Applications
Conference, pp. 156–165, 2014.

[104] K. Borders, L. Falk, and A. Prakash, “Openfire: Using deception to reduce net-
work attacks,” in 2007 Third International Conference on Security and Privacy
in Communications Networks and the Workshops-SecureComm 2007, pp. 224–
233, IEEE, 2007.

[105] K. J. Ferguson-Walter, M. M. Major, C. K. Johnson, and D. H. Muhleman,
“Examining the efficacy of decoy-based and psychological cyber deception,” in
30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[106] M. S. I. Sajid, J. Wei, M. R. Alam, E. Aghaei, and E. Al-Shaer, “Dodgetron: To-
wards autonomous cyber deception using dynamic hybrid analysis of malware,”
in 2020 IEEE Conference on Communications and Network Security (CNS),
pp. 1–9, 2020.

[107] “Mitre att&ck.” https://attack.mitre.org/.

[108] J. Lee, J. Choi, G. Lee, S.-W. Shim, and T. Kim, “Phantomfs: file-based decep-
tion technology for thwarting malicious users,” IEEE Access, vol. 8, pp. 32203–
32214, 2020.

[109] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking detectable,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security, pp. 145–160, 2013.

[110] M. M. Islam and E. Al-Shaer, “Active deception framework: an extensible de-
velopment environment for adaptive cyber deception,” in 2020 IEEE Secure
Development (SecDev), pp. 41–48, IEEE, 2020.

[111] A. Dutta, E. Al-Shaer, and S. Chatterjee, “Constraints satisfiability
driven reinforcement learning for autonomous cyber defense,” arXiv preprint
arXiv:2104.08994, 2021.

[112] “Malware behavior catalog.” https://github.com/MBCProject.

[113] “Cuckoo sandbox.” https://cuckoosandbox.org/.

[114] “Any.run.” https://any.run/.

[115] “Hybrid analysis.” https://www.hybrid-analysis.com/.

https://attack.mitre.org/
https://github.com/MBCProject
https://cuckoosandbox.org/
https://any.run/
https://www.hybrid-analysis.com/

116

[116] M. M. Islam, A. Dutta, M. S. I. Sajid, E. Al-Shaer, J. Wei, and S. Farhang,
“Chimera: Autonomous planning and orchestration for malware deception,”
in 2021 IEEE Conference on Communications and Network Security (CNS),
IEEE, 2021.

[117] “Chimera results.” https://anonymous.4open.science/r/Chimera-
D656/README.md.

[118] D. Braziunas, “Pomdp solution methods,” University of Toronto, 2003.

[119] T. Smith, “Zmdp software for pomdp and mdp planning,” 2013.

[120] M. S. I. Sajid, J. Wei, B. Abdeen, E. Al-Shaer, M. M. Islam, W. Diong, and
L. Khan, “Soda: A system for cyber deception orchestration and automation,”
in Annual Computer Security Applications Conference, 2021.

[121] R. Al-Shaer, J. M. Spring, and E. Christou, “Learning the associations of mitre
att & ck adversarial techniques,” in 2020 IEEE Conference on Communications
and Network Security (CNS), pp. 1–9, IEEE, 2020.

https://anonymous.4open.science/r/Chimera-D656/README.md
https://anonymous.4open.science/r/Chimera-D656/README.md

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Research Objectives
	Background
	Moving Target Defense
	Cyber Deception
	Spear-phishing Attack

	Research Challenges
	Contributions

	Email Address Mutation for Proactive Deterrence Against Lateral Spear-phishing Attack
	Motivation
	Problem Statement
	Related Work
	Threat Model
	Attack Taxonomy
	Email Mutation Attack Model

	Email Mutation System Overview
	Architecture
	Algorithm
	Protocol
	Identifying Lateral Spear-phishing Attack

	Email Mutation Research Challenges
	Handling Multiple Shadow Email Accounts
	Improving Email Mutation Usability
	Preserving User Privacy
	Adding Custom Email Fields is Insufficient
	Addressing Asynchronous Ground Truth Problem
	Handling Insider Attack
	Minimizing Shadow Email Account Overhead

	Scalable Implementation and Security Measurement
	Email Mutation Agent
	Email Mutation Gateway

	Email Mutation Verification and Evaluation
	Verification
	Evaluation

	Summary

	Active Cyber Deception and Agility Synthesis
	Motivation
	Problem Statement
	Related Works
	Active Cyber Defense Framework
	Interface
	Active Defense Controller

	Agility Policy Language specification
	Ontology
	Language Specification
	Policy Examples

	Case study and Evaluation
	Experiment Setup
	MTD Case Studies
	IP Mutation
	Path Mutation
	Deception Case Studies
	Adversary Distortion by Anonymity and Diversity
	Adversary Depletion using Spatio-temporal Mutation
	Adversary Deflection by redirection

	Summary

	Chimera: Autonomous Planning and Orchestration for Malware Deception
	Motivation
	Problem Statement
	Related Work
	Threat Model and Scope of the Work
	Chimera System Design
	API Sequence to MITRE ATT&CK Technique Mapping
	Deception Graph
	Honey Factory

	Deception Planning
	Deception Decision-making
	State Transition Matrix
	Observation & Observation Matrix
	Reward
	Belief
	POMDP Policy Generation

	Implementation
	Evaluation
	Dataset
	Experiment setup
	Deception Efficiency
	Quality of Deception
	Optimal Policy
	Policy generation overhead

	Summary

	Conclusion
	REFERENCES

