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ABSTRACT 

SARAH KIMBERLEY LOTZ. Study of the Intracellular Protein Tau and its Relationship with 

Kunjin Virus and Neurodegenerative Diseases. 

(Under the direction of DR. KRISTEN FUNK) 

 

Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and 

amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of 

nervous system function. Neuroinflammation is increasingly recognized to be associated with 

many neurodegenerative diseases but whether it is a cause or consequence of the disease process 

is unclear. Of growing interest is the role of microbial infections in inciting degenerative 

neuroinflammatory responses and genetic factors that may regulate those responses. Microbial 

infections cause inflammation within the central nervous system through activation of brain-

resident immune cells and infiltration of peripheral immune cells. These responses are necessary 

to protect the brain from lethal infections but may also induce neuropathological changes that 

lead to neurodegeneration. The thesis research to follow explores the elaborate relationship 

between the neuroinvasive Kunjin virus and the intracellular protein Tau. Elucidating these 

mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and 

slow the progression of neurodegenerative diseases. 
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CHAPTER 1: Microbial infections are a risk factor for neurodegenerative diseases 
 

Abstract 

Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic 

lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous 

system function. Neuroinflammation is increasingly recognized to be associated with many 

neurodegenerative diseases but whether it is a cause or consequence of the disease process is 

unclear. Of growing interest is the role of microbial infections in inciting degenerative 

neuroinflammatory responses and genetic factors that may regulate those responses. Microbial 

infections cause inflammation within the central nervous system through activation of brain-

resident immune cells and infiltration of peripheral immune cells. These responses are necessary 

to protect the brain from lethal infections but may also induce neuropathological changes that 

lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through 

which microbial infections may increase susceptibility to neurodegenerative diseases.  

                                                 

1.1 Introduction  

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) 

and amyotrophic lateral sclerosis (ALS), are clinically characterized by the progressive decline 

of cognitive, motor, and behavioral functions. Pathologically, these diseases exhibit significant 

neuronal death, brain atrophy, protein aggregation, and neuroinflammation. Despite improved 

understanding of disease progression, the cause or causes that initiate disease processes are not 

well understood.  Recent genome-wide association studies have highlighted the contribution of 

immune molecules in many neurodegenerative diseases. Several genes with polymorphisms that 

increase the risk of neurodegenerative diseases, such as CD33 and TREM2 in AD, PRKN, SCNA, 
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LRRK2, and HLA in PD, and C9ORF72 in ALS have been linked to various immune functions 

including phagocytosis, microglial activation, complement activation, MHC class II expression, 

and hematopoiesis.1–7 Because these genetic risk factors do not cause disease in all carriers, it is 

hypothesized that environmental factors that induce inflammation may contribute to the 

etiopathogenesis of neurodegenerative diseases. Microbial infections have become of increasing 

interest in inciting neurodegenerative pathology, as they can invade the central nervous system 

(CNS) and cause significant neuroinflammation through activation of resident immune cells, 

such as microglia and astrocytes, as well as promote infiltration of peripheral macrophages and T 

cells.8–11 Though these immune responses exist to protect the brain, they can cause critical 

damage in an attempt to clear the invading pathogen (Figure 1).   

 Infectious agents may contribute to neurodegenerative disease pathology by eliciting an 

inflammatory response. Following infection, inflammation prevents damaging pathology and 

promotes tissue repair and regeneration; however, if uncontrolled, inflammation can become 

lethal to healthy cells.12 These inflammatory responses originate locally at the site of infection, 

but can rapidly become widespread, and in some cases, involve the CNS. Increased production 

of inflammatory cytokines and chemokines, including IL-1β, promote breakdown of the blood 

brain barrier (BBB), which typically protects the CNS resident cells from harmful agents and 

inflammatory mediators.13–15 However, if there is a BBB breach, these soluble mediators can 

stimulate CNS resident astrocytes and microglia which, upon activation, amplify inflammatory 

conditions in the CNS that can cause significant damage to both infected and uninfected neurons 

as well as resident glial cells.16–18 Importantly, neurotropic infections can lead to harmful 

neuroinflammation that has been identified as a potential risk factor for neurodegenerative 

diseases.19–22 This review discusses recent studies linking microbial infections to 
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neurodegenerative diseases and the cellular and molecular mechanisms through which they may 

increase susceptibility to disease (summarized in Table 1). 

 

1.2 Alzheimer’s disease 

AD is characterized pathologically by the deposition of two proteinaceous lesions in the 

brain—extracellular senile plaques and intracellular neurofibrillary tangles (NFTs).23 Senile 

plaques are extracellular aggregates composed of insoluble amyloid beta (Aβ) peptides, the 

proteolytic product of amyloid beta precursor protein (APP). Under homeostatic conditions, APP 

is cleaved by a-secretase and γ-secretase, which is facilitated by presenilin 1 (PSEN1).24–26 In 

AD, APP is instead cleaved by β-secretase and γ-secretase, forming the insoluble Aβ peptides, 

which self-aggregate into senile plaques and are believed to be toxic to neurons.27–29 

Neurofibrillary tangles are intracellular aggregates composed of hyperphosphorylated 

microtubule-associated protein Tau. Tau can be phosphorylated by a number of kinases, 

including cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase-3β (GSK-3β).30 

Under homeostatic conditions, phosphorylation modulates the affinity of Tau for microtubules, 

allowing their dynamic growth and retraction.31 In AD, Tau becomes hyperphosphorylated, 

which decreases its affinity for microtubules and increases its propensity to self-aggregate into 

pathogenic neurofibrillary tangles.30,32–34 

While the mechanisms that incite Aβ and Tau aggregation are not fully understood, 

recent studies have suggested a role for inflammatory cytokines, including tumor necrosis factor 

(TNF)-α, interferon (IFN)-γ, interleukin (IL)-1β, IL-6, IL-10, and IL-18.35–39 For example, IL-1β 

is an essential mediator of the inflammatory response and has been found to be elevated near Aβ 

plaques.40,41 Expression of IFN-γ, a pro-inflammatory cytokine, was elevated in transgenic mice 



 

4 

with AD-related pathology 42, though it does not appear to be significantly elevated in human 

patients.43,44 The impact of IFN-γ on AD pathology is apparently diametric, as some reports 

indicate that IFN-γ treatment promoted Aβ clearance by microglia and macrophages, thus 

reducing pathological load.45,46 Also, overexpression of IFN-γ in transgenic mice that develop 

amyloid and Tau pathologies resulted in a significant decrease in Tau pathology and improved 

neurogenesis, suggesting elevated levels of IFN-γ can be beneficial for alleviating AD pathology 

within the brain.47 However, co-stimulation of primary human astrocytes in culture with IFN-γ 

and TNF-a induced Aβ production, and deletion of the IFN-γ receptor reduced gliosis and 

amyloid plaque deposition in APP transgenic mice, which would suggest elevated levels of 

inflammation within the CNS exacerbates AD pathology.48,49 These seemingly conflicting 

observations could be, in part, due to differences in the magnitude of cytokine elevation and 

timeframe of expression as well as other environmental and genetic factors. Altogether, they 

suggest that acute episodes of neuroinflammation, such as those caused by infections, may 

initiate pathological Aβ and Tau deposition.  

Infectious microbes have long been suspected to play a role in the onset of AD, though 

direct evidence is still limited.50–52 Several cohort studies have examined infectious burden in 

patients with AD, indicating a correlation between infections and AD pathology.53–56 Using 

multiscale networks of AD-associated virome data, integrating genomic, transcriptomic, 

proteomic, and histopathological information, Readhead et al. identified evidence of increased 

herpesvirus 6A (HHV-6A) and human herpesvirus 7 (HHV-7) in patients with late-onset AD 

compared to healthy controls.57 Additionally, a strong association was detected between the 

presence of herpes simplex virus 1 (HSV-1) antibodies and patients with AD, specifically in 

women, subjects older than 60 years of age, and when plasma samples were taken at least 6.6 
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years prior to dementia diagnosis.58 The authors proposed that this 6.6 year lag between HSV-1 

antibody detection and AD diagnosis indicates that HSV-1 plays a role primarily in early AD 

development.58 Furthermore, HSV-1 DNA sequences and the functional HSV-1 genome, in its 

entirety, were detected in the brains of patients with AD.59 Similarly, the presence of Chlamydia 

pneumoniae was detected in post mortem brain-tissue samples of patients with AD.53,55  

 

 

 

 

 

 

 

 

Additionally, serum antibody levels to common periodontal microbiota were observed to 

increase risk of developing AD.60,61 More recent studies have identified Porphyromonas 

Figure 1: Infectious agents elicit an inflammatory cyclic cascade associated with neurodegenerative diseases. 
Infectious agents may contribute to neurodegenerative diseases directly or via immune activation. Infection by viral 
or bacterial pathogens can cause pro-inflammatory activation of CNS resident immune cells, including astrocytes 
and microglia, resulting in neuronal death. Additionally, cellular death directly caused by infectious agents and the 
release of damage-associated molecular patterns can exacerbate the inflammatory state through further activation of 
CNS immune cells, perpetuating a cycle of inflammation. In AD, this is often associated with high levels of pro-
inflammatory cytokines, TNF-𝛼 and IL-1𝛽, reduced clearance of infected cells, and accumulation of neurotoxic 
aggregates composed of A𝛽 and Tau. This pro-inflammatory state has also been documented in the context of PD, 
where increased accumulation of neurotoxic 𝛼-synuclein is accompanied by high levels of TNF-𝛼, ICAM-1, LIX, 
RANTES, IFN-𝛼, and IFN-𝛽 produced by infected and activated astrocytes and microglia. Additionally, some 
pathogens can directly infect neurons resulting in alterations in metabolism, enhanced neuronal excitotoxicity and 
enhanced apoptosis, as seen in ALS. Created with BioRender.com.  
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gingivalis in the brains and biofluids of patients with AD.62,63 Very recently, researchers reported 

that in a Swedish cohort of people over the age of 50, untreated herpesvirus infection (either 

HSV-1 or varicella zoster virus (VZV)) increased the risk of dementia by 1.5-fold. Patients 

diagnosed with herpesvirus infection who took antiviral medication showed reduced risk of 

dementia by 25% compared to those with untreated herpesvirus infection.64 Epidemiological data 

cannot prove causation between infections and AD, but collectively these studies support the 

hypothesis that pathogens increase the risk of developing AD. 

Some of the earliest data regarding the microbial etiology hypothesis of AD implicated 

HSV-1, a neurotropic enveloped virus that establishes life-long latent infection in the CNS with 

periodic reactivation cycles. Following resolution of primary infection, HSV-1 can remain 

dormant, predominantly in the trigeminal ganglion, and upon reactivation induce severe acute 

encephalitis in the temporal and frontal cortices of the brain, known as herpes simplex 

encephalitis (HSE).65 Ball first proposed a link between HSV-1 and AD in 1982, recognizing that 

similar brain regions are affected by both HSE and AD, and that people who survived HSE 

exhibited clinical symptoms similar to AD, including memory loss and cognitive impairment.66 

Since then substantial progress has been made to understand the molecular mechanisms by 

which HSV-1 may contribute to the onset of AD. Zambrano et al. showed that infection of 

primary neurons with HSV-1 caused significant neuronal damage and death via 

hyperphosphorylation of Tau, increased acetylation and tyrosination of tubulin, disrupted 

microtubules, and damaged and shortened neurites.67 Similarly, HSV-1 induced glycogen 

synthase kinase 3 β- (GSK3-β) and protein kinase A-mediated Tau hyperphosphorylation.68 All 

of these findings are synonymous with the pathology seen in AD, suggesting that HSV-1 

infection may promote AD onset. 
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Another virus often associated with AD pathology is human immunodeficiency virus 1 

(HIV-1), a retrovirus that can become neuroinvasive and induce severe encephalitic and 

cognitive changes. Patients with HIV-associated neurocognitive disorder (HAND) demonstrate 

increased production of Aβ and development of amyloid plaques.69–71 HIV-1 infection induced 

the expression of RAGE (the receptor for advanced glycation end products) in brain endothelial 

cells and the accumulation of Aβ in a RAGE-dependent manner. Aβ aggregates were then 

transferred from brain endothelial cells to neural progenitor cells, stimulating further aggregation 

and progenitor cell dysfunction.72,73 However, while much research has focused on mechanisms 

of Aβ production and aggregation, the total level of Aβ in the brain also depends on the 

mechanisms of clearance. One clearance mechanism involves the zinc-metalloprotease 

neprilysin, which has been shown to cleave and degrade Aβ monomers in vitro and in vivo.74–79 

In an in vitro assay, the HIV-1 transcription transactivator (Tat) protein inhibited activity of 

neprilysin by 80% and increased the soluble Aβ by 125% when applied to human brain 

cultures.80 HIV-1 Tat also recruited APP in lipid rafts and stimulated its cleavage by β-secretase 

and γ-secretase, yielding higher levels of the Aβ peptides and causing neurotoxicity.81,82 

Furthermore, HIV-1 surface protein, gp120, promoted Aβ secretion in primary embryonic rat 
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hippocampal neurons 83, inhibited apoptosis of infected human neuroblastoma cells via inhibition 

of the Fas-pathway 84, and induced neurotoxicity in human neuroblastoma cells through the 

CXCR4 and CCR5 chemokine receptors.85,86 Additionally, HIV-1 Tat and Nef proteins 

exacerbated the secretion of pro-inflammatory cytokines from surrounding microglia, astrocytes 

and monocytes, causing neurotoxic effects.87–89 Furthermore Nef can mimic TNF-𝛼 signaling by 

activating inflammatory pathways, such as NF-𝜅B, AP1, JNK and AKT.90,91 HIV-1 infection can 

also promote Tau aggregation, as Anthony et al. found elevated levels of hyperphosphorylated 

Tau in the hippocampus of HIV-1-infected individuals compared with age-matched controls.92 

Another study found higher expression levels of the Tau kinase CDK5 in patients with HIV 

encephalitis versus HIV-positive patients without neuroinvasive disease, which correlated with 

increased Tau hyperphosphorylation.93 Furthermore, transgenic mice that express HIV-1 

glycoprotein gp120 exhibited increased brain levels of CDK5, Tau hyperphosphorylation, and 

neurodegeneration, which could be rescued by either genetic knockdown or pharmacological 

inhibition of CDK5.93 Additionally, HIV-1 Tat protein was similarly found to induce 

hyperphosphorylation of Tau in neurons through the CDK5, resulting in accelerated NFT 

deposition in transgenic mice.94 Collectively, these data indicate HIV-1 infection may induce AD 

pathology through several potential mechanisms. 

Periodontitis has been associated with increased risk of developing AD as well as other 

dementias.95,96 Specifically, the bacteria  P. gingivalis and its toxic proteases, called gingipains, 

were identified in the brains of AD patients, and their levels correlated with AD pathology.63 

Studies investigating the mechanism underlying this relationship have identified inflammatory 

processes, including cytokine expression and complement activation, as well as amyloid 

production as mediators of P. gingivalis pathogenesis.97 Murine models of P. gingivalis infection 
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resulted in cognitive impairment in middle-aged (12 month), but not young (4 week) mice. 

Researchers attributed this to elevated production of proinflammatory cytokines including TNF-

a, IL-6, and IL-1β in the brains of aged mice following infection.98 This was supported by 

additional studies in mice and primary cell cultures of microglia and hippocampal neurons, 

which indicated that the lysosomal protease Cathepsin B may be critical in initiating the 

neuroinflammatory response to repeated P. gingivalis lipopolysaccharide exposure.99 Following 

repeated oral application of  P. gingivalis, the bacteria was detected in the hippocampus of 

infected mice, serving as more direct evidence of the role of P. gingivalis in AD pathology.100 

This study also showed significantly elevated expression of inflammatory cytokines IL6, TNFa 

and IL1β, as well as APP and β-secretase, increased Tau phosphorylation, and 

neurodegeneration.100 Together, these data propose a mechanistic link between periodontal 

disease and AD pathology.  

Other evidence suggests that common infectious agents may contribute to AD pathology 

by promoting the deposition of Tau and Aβ. C. pneumoniae is an obligate intracellular bacterium 

that takes residence in the nasal and pulmonary mucosa.101 It has been proposed that C. 

pneumoniae invades the brain through the lateral entorhinal cortex, then disseminates to the 

frontal and temporal cortices, the same regions where Aβ plaques and NFTs are found.102,103 

Subsequent in vitro studied demonstrated that infection of astrocytes with C. pneumoniae 

decreased activity of a-secretase and increased expression of both β-secretase and γ-secretase, 

yielding the aggregation-prone Aβ peptide.104  Similarly, HHV-6A, a neurovirulent pathogen, 

was shown to promote Aβ secretion along with Tau hyperphosphorylation in primary neurons 

and astrocytoma cells by reducing protein degradation via autophagy and activating the unfolded 

protein response.105 Furthermore, HHV-6A infection of microglial cells in vitro induces a pro-
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inflammatory activation status, stimulates the production of Aβ peptides, and promotes Tau 

phosphorylation.106 Human T-cell leukemia virus type 1 (HTLV-1) has also been shown to 

increase Tau phosphorylation via CDK5 and GSK3-β activation, which resulted in neurite 

retraction in a cell culture model.107 These studies suggest that many infectious agents can 

contribute to AD pathology, and it is likely that the composite infectious burden is more 

important than a single microbe.  

Antimicrobial peptides are host-defense mechanisms that defend against infectious 

pathogens and have recently been hypothesized to initiate pathological processes that lead to 

neurodegeneration. Using C. elegans PVD neurons as a model, researchers showed that an 

epidermally-expressed antimicrobial peptide NLP-29 (neuropeptide-like protein 29) causes age-

dependent dendrite degeneration and that fungal infections can induce degeneration through 

similar mechanisms.108 This NLP-29-induced degeneration could be similarly stimulated in 

primary cultured rat neurons, suggesting that this is an evolutionarily-conserved mechanism.108 

A recent hypothesis posits Aβ may act as an antimicrobial peptide, providing innate immune 

defense against infection. Soscia et al. showed that synthetic Aβ exerts antimicrobial activity in 

vitro against eight common, clinically-relevant pathogens, including  seven bacterial and one 

yeast species.109 Aβ also shows neutralizing activity against seasonal (H3N2) and pandemic 

(H1N1) strains of influenza A virus in vitro, inducing viral agglutination and preventing its 

infectivity in epithelial cells.110 Bourgade et al showed that Aβ prevented entry of HSV-1 into 

fibroblast, epithelial, and neuronal cell cultures. They hypothesized that based on the sequence 

homology between Aβ and a proximal transmembrane region of HSV-1 glycoprotein B, Aβ may 

directly interfere with HSV-1 replication via insertion into the viral envelope.111  Kumar et al. 

extended these findings in vivo to mouse and nematode models of disease, demonstrating that Aβ 
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oligomers bind the microbial cell wall of Salmonella typhimurium and Candida albicans to 

prevent adhesion to host cells and reduce S. typhimurium load in the brains of infected mice.112 

They went on to show a similar effect with both HSV-1 and HHV6 infection in a mouse model 

of AD, demonstrating that overexpression of Aβ in mice correlated with longer survival from 

HSE; however, all mice still succumbed to infection within six days, and authors provided no 

evidence of reduced viral burden in the brains Aβ overexpressing mice.113 Altogether, these data 

suggest that Aβ may function in innate immunity against microbial infection. However, its role 

in agglutination may then seed additional amyloid deposition, initiating pathogenic plaque 

formation, causing persistent neuroinflammation, and ultimately, lead to neurodegeneration.   

 

1.3 Parkinson’s disease 

PD is the second most common neurodegenerative disease, following AD, afflicting 

motor functions.114,115 It is characterized by prominent dopaminergic neurodegeneration within 

the substantia nigra pars compacta region of the brain, which is caused by dopamine deficiency, 

and leads to motor neuron dysfunction.114,116,117 Patients with PD present with bradykinesia, 

resting tremors, gait impairment, diminished postural quality, and muscular rigidity.117,118 

Treatments for PD exist to manage symptoms or slow disease progression, but there is no cure. 

As the disease progresses, cognitive function declines and results in dementia.117,119,120 Though 

the mechanisms by which degeneration of dopaminergic neurons occurs are not fully understood, 

it is well established that the aggregation of misfolded a-synuclein protein in the form of Lewy 

bodies is a hallmark of the disease.121 However, whether the a-synuclein aggregates themselves 

are neurotoxic or may be a protective mechanism to sequester the more neurotoxic protofibrils is 

still debated.122 Yet another hypothesis posits that neurodegeneration is due to the loss of 



 

13 

function of a-synuclein when it forms aggregates.123 The physiological function of a-synuclein 

is not clear, but it appears to play an important role in dopamine biosynthesis and dopaminergic 

neurotransmission.124–126 Genetic variants and post-translational modifications, including 

oxidation, nitration, and phosphorylation, influence the propensity of a-synuclein to aggregate; 

however, the physiological factors that incite these aggregation pathways are not well 

understood.127  

Genetic factors that cause or increase risk of developing PD include mutations in SNCA 

(encoding a-synuclein), PRKN, and DJ-1, among others.128 Interestingly, several of these 

genetic factors have been shown to contribute to immune defense against infectious agents. 

Polymorphisms in PRKN, a ubiquitin ligase, have been associated with increased susceptibility 

to intracellular pathogens, Mycobacterium leprae and Salmonella typhi.129,130 Recently PRKN 

was shown to limit replication of bacterial pathogens Mycobacterium tuberculosis and Listeria 

monocytogenes in both mice and flies by targeting them for ubiquitin-mediated autophagy.131 

Also, mice in which SNCA is deleted are more susceptible to West Nile virus and Venezuelan 

equine encephalitis, possibly by modulating ER stress signaling and thereby limiting viral 

replication.132 In contrast, DJ-1 appears to negatively regulate the immune system. When DJ-1 

was deleted in a mouse model of polymicrobial sepsis, mice showed improved survival and 

bacterial clearance. Authors showed this to be due to enhanced phagocytosis and bactericidal 

activity in DJ-1-deficient macrophages, adoptive transfer of which could rescue septic wildtype 

mice.133 Although genetic mutations account for only 5-15% of all PD cases 128, better 

understanding these genetic causes of disease have informed the pathophysiology of the more 

common sporadic disease cases. 

Multiple environmental factors, including chemical exposure, lifestyle, and 
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socioeconomic conditions impact the development of PD, and pathogenic infection is 

increasingly recognized as a possible risk factor for PD.134,135 The infectious etiology hypothesis 

of PD was originally proposed following the presentation of PD-like symptoms in individuals 

infected with influenza.136 A 1963 cohort analysis identified a striking increase in PD incidence 

in Guam, which seemed to recede in patients born after 1920. Authors hypothesized that this 

transient increase in PD incidence may have been due the influenza pandemic of 1918.136 

Another study identified three seemingly random clusters of early-onset PD patients in Canada, 

in which patients lacked typical genetic markers of early-onset disease.137 This suggested that 

environmental factors may have increased risk of PD in these patients, and the authors 

hypothesized that viral infection or other toxic exposure may be an underlying cause for these 

clusters of disease.137 A cohort study examining the antibody titers to common infectious 

pathogens found higher seropositivity to cytomegalovirus (CMV), Epstein Barr virus (EBV), 

HSV-1, Borrelia burdorferi, C. pneumoniae and Helicobacter pylori in PD patients compared 

with healthy controls.134 A recent meta-analysis of cohort and case-controlled studies revealed 

that patients with H. pylori, C. pneumoniae, HCV, or Malassezia yeast may be at an increased 

risk of PD.138 While cohort studies cannot demonstrate that infections caused PD pathogenesis, 

together, they suggest that infection may be an important environmental risk factor for PD.    

Certain viruses directly cause degeneration of dopaminergic neurons, which results in 

decreased dopamine availability in the CNS. Typically considered a hepatotropic virus, Hepatitis 

C virus (HCV) has recently been observed to invade the CNS and disrupt dopaminergic 

neurotransmission, leading to neuronal death.139–141 HCV patients are affected by neurological 

complications, including cognitive impairment and peripheral neuropathy.142 HCV may gain 

entry to the CNS by interacting with receptors expressed by brain microvascular endothelial cells 
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at the BBB, including CD68, CD81, and claudin-1.140,141 Recent studies showed that once in the 

CNS, HCV activated resident microglia and astrocytes. This activation promoted a pro-

inflammatory state through up-regulation of cytokines and chemokines, such as TNF-a and 

intracellular adhesion molecule-1 (ICAM-1), which caused significant damage to dopaminergic 

neurons.140,143,144 Additionally, HCV infection was found to indirectly trigger neurotoxic effects 

seen in PD through IFN-a therapy. IFN-a treatment of HCV-infected murine models inhibited 

transmission through the nigrostriatal dopaminergic pathway, thereby reducing the levels of 

dihydroxyphenylacetic acid and dopamine present in the substantia nigra.145 Furthermore, IFN-γ, 

which is transcriptionally upregulated in HCV-infected human brain microvascular endothelial 

cells 146, caused significant death of dopaminergic neurons in both in vitro murine 

microglia/neuron co-cultures and in vivo murine models.147 PD is generally characterized by 

chronic low-level systemic inflammation; however, individuals with higher infectious burden 

have higher levels of circulating inflammatory cytokines, including IL-1β and IL-6.134 PD 

patients infected with another Herpesviridae virus, CMV, have higher frequencies of circulating 

pro-inflammatory myeloid dendritic cells compared with CMV-positive subjects without PD.148 

Furthermore, When HIV-1 becomes neuroinvasive, it shows specific affinity for dopaminergic 

regions, including the basal ganglia, resulting in their degeneration, decreased availability of 

dopamine, and the development of dementia associated with acquired immunodeficiency 

syndrome (AIDS).149–151 In a mouse model of disease, Theiler’s murine encephalomyelitis virus 

(TMEV) was stereotaxically inoculated into the substantia nigra. TMEV specifically infected 

dopaminergic neurons with minimal infection or destruction to surrounding brain regions.152 

Japanese encephalitis virus (JEV) is recognized to not only target dopaminergic neuron-rich 

brain regions, but can also selectively manipulate dopamine signaling to increase the cell surface 
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expression of the molecules it uses to infect the cell.153 These studies indicate that certain viruses 

can specifically impact populations of neurons that can lead to neurodegeneration of 

dopaminergic neurons directly.  

 Although the CNS is a primary focus of PD research, pathophysiology affects all levels 

of the brain-gut axis, including the autonomic and enteric nervous systems. Mulak and Bonaz 

recently hypothesized that a-synuclein aggregates initiate in the gut and proceed to spread along 

the brain-gut axis to the CNS, resulting in the motor and neuronal deficits characteristic of PD 

154. One pathogen hypothesized to incite a-synuclein aggregation in the gut is EBV. The C-

terminal region of the a-synuclein is molecularly similar to a repeat region of the latent 

membrane protein 1, encoded by EBV.155 This led to their hypothesis that in genetically-

susceptible individuals, antibodies to the critical repeat region of the EBV latent membrane 

protein may cross-react with the homologous epitope on a-synuclein and induce a-synuclein 

oligomerization.155 Following this initial aggregation event, a-synuclein oligomers may spread 

trans-neuronally to the CNS, causing PD neuropathology, as initially proposed by Braak.156 In 

support of the brain-gut trans-neuronal hypothesis, researchers showed that when pre-formed a-

synuclein fibrils were injected into the duodenal and pyloric muscularis layers of a mouse model, 

phosphorylated a-synuclein spread to regions of the CNS affected by PD, such as the locus 

coeruleus and substantia nigra pars compacta.157  

Another gastric microbe that is associated with increased risk of PD is the bacteria H. 

pylori.134,158 H. pylori is found in the intestinal endothelium and afflicts individuals with peptic 

ulcers, gastritis, gastric adenocarcinoma formation, and mucosal inflammation.159 Previous 

studies have linked H. pylori to extra-gastrointestinal diseases, such as ischemic heart disease 

and neurodegenerative diseases, including AD and PD.158,160–163 A Danish population-based 
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study found that prescriptions for H. pylori eradication treatments and proton pump inhibitors 

were associated with an increased risk of PD diagnosis 5 or more years later, suggesting either 

that chronic H. pylori infection may contribute to PD etiopathogenesis or gastritis symptoms may 

precede pathognomonic PD symptoms.164 The mechanism underlying the role of H. pylori in PD 

onset is not well understood; however, the benefit of treating infections in PD patients is well-

documented.  A prospective cohort study found that H. pylori-IgG positivity in PD patients was 

associated with higher daily dose of levodopa and more severe symptoms compared with H. 

pylori-negative patients, and were improved after H. pylori eradication treatment.165 Several 

studies have shown that eradicating H. pylori infection improved motor function of PD patients 

by increasing oral drug absorption.166,167 A recent cohort study showed that PD patients with 

successful H. pylori eradication therapy exhibited improved clinical PD symptoms, including 

tremors, mood, and gastrointestinal distress, compared with patients with failed H. pylori 

eradication therapy.168 Patients with active H. pylori infection had longer mean levodopa onset 

time, suggesting that H. pylori may interfere with the bioavailability of levodopa, possibly 

because of increased gastric inflammation, delayed gastric emptying, and/or impaired active 

transport of levodopa to the site of absorption.168 Though much is still unclear of the involvement 

of H. pylori in the etiopathogenesis of PD, these data indicate that it is prevalent in PD patients 

and may exacerbate the symptoms of PD by interfering with levodopa bioavailability. 

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and its resulting disease (COVID-19) emerged as an unprecedented worldwide 

healthcare crisis. In the flood of viral pneumonia and the overwhelming challenges to the 

healthcare systems, researchers are just beginning to understand the extent to which patients 

develop acute or chronic neurologic manifestations. It was reported early in the pandemic that 
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36% of COVID-19 patients develop neurologic symptoms, but whether these were due to CNS 

infection, systemic inflammatory response, or intensive care unit delirium was unknown.169 More 

recently, a neuropathological study found evidence of viral RNA and/or protein in the brains of 

53% of autopsied COVID-19 patients; however, it is important to highlight that this study 

analyzed only patients who died, and thus, results are probably not generalizable to less severe 

cases of infection.170 In fact, a systematic search of the literature revealed that in COVID-19 

patients, SARS-CoV-2 RNA was detected in only 6.4% of those who underwent CSF PCR 

testing, which is likely still not representative of patients with mild infection.171,172 Nonetheless, 

autopsies of COVID-19 patients revealed uniform presentation of neuroimmune pathology, 

including microglial activation and cytotoxic T lymphocyte infiltration in the brainstem and 

cerebellum. This pathology was independent of the detection of virus in the brain, suggesting 

that CNS damage and neurological symptoms may be due to cytokine storm and neuroimmune 

response rather than direct viral infection.170 Considering the importance of the cerebellum and 

brainstem in coordinating voluntary movement, gait, posture, and motor functions, the 

localization of immune cell infiltration and activation may be of particular significance to the 

parkinsonian symptoms seen in some post-infectious COVID-19 patients.173–175 Post-encephalitic 

parkinsonism has been reported previously for other viruses, but whether these symptoms 

constitute bona fide PD is unclear.176 The three case reports describing parkinsonism following 

COVID-19 exhibited impaired dopaminergic nigrostriatal function, but this is not necessarily 

diagnostic of PD.177 Rather, these may represent a transient syndrome that eventually resolves 

spontaneously instead of the progressive neurodegeneration of PD.178 Alternatively, it is possible 

that SARS-CoV-2 unmasked previously preclinical PD.177 However, given the high rate of 

SARS-CoV-2 infection, especially in the vulnerable aging population, the potential for 
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developing post-infectious PD is of particular concern.  

  

1.4 Amyotrophic Lateral Sclerosis  

ALS is a neurodegenerative disease that is characterized by the loss of upper and lower 

motor neurons. The decrease in motor function starts as muscle weakness in the limbs and 

progresses to eventual paralysis of all muscular motor movements in the body.179 Eventually, the 

motor neuron degeneration prevents proper functioning of the diaphragm, disrupting the proper 

respiratory function needed to survive.180 As there are currently no pathognomonic tests for ALS, 

diagnosis relies on the identification of concomitant progressive upper and lower motor neuron 

dysfunction and the exclusion of mimicking conditions.181 Further complicating ALS diagnosis, 

is the existence of “ALS-like syndrome,” which refers to a heterogenous group of conditions in 

which their clinical presentation is similar to ALS (i.e., motor neuron dysfunction), but in many 

cases, the underlying cause of these symptoms is treatable.182 For example, patients with HIV-1 

infection presenting with ALS-like syndrome that were treated with antiretroviral therapy 

showed partial recovery of their motor deficit.183 In published reports, ALS-like syndromes 

cannot always be distinguished from bona fide ALS, so for the purpose of this review, we do not 

attempt to separate the two conditions.   

There is emerging data that suggests infectious agents, including viruses and fungi, may 

be associated with ALS. Enteroviruses have long been suspected to play a role in ALS due to 

their ability to infect motor neurons in the CNS and cause meningitis and encephalitis.184 

However, clinical data connecting enterovirus infection and ALS have been inconclusive. 

Several studies have identified enterovirus RNA in spinal cord tissue of 70-80% of ALS patients 

185,186; however, others have found no detectable viral RNA in ALS patients.187,188 Therefore, 
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further investigation into the role of enteroviruses in ALS is necessary in order to clarify this 

relationship. Other recent studies have identified DNA from several Candida spp. of fungi, as 

well as fungal antigens in the CSF and brain tissue of ALS patients.189 This, coupled with the 

detection of fungal hyphae within the motor cortex and spinal cord of ALS patients 190, supports 

the idea that infection may contribute to or exacerbate ALS pathology. Numerous cellular 

dysfunctions associated with ALS are impacted by infectious agents, including protein 

aggregation and mislocalization, and glutamate excitotoxicity.191 Better understanding of how 

infectious agents may contribute to these cellular mechanisms that lead to motor neuron deficit 

will improve our understanding of the progressive neurodegeneration associated with ALS. 

The presence of ubiquitinated protein aggregates in affected motor neurons is a central 

hallmark of disease; however, the composition of those aggregates varies among ALS patients.192 

The molecular characteristics and distribution of these protein aggregates, in many cases, are 

linked to the genetic mutations that cause the disease. However, proteinaceous aggregates of 

similar composition are also detected in non-mutation carriers, indicating a convergence of 

underlying cellular and pathological processes in both familial and sporadic cases of ALS.192 The 

identification of ALS-associated mutations in two DNA/RNA binding proteins, TAR DNA-

binding protein 43 (TDP-43) and protein fused in sarcoma (FUS), also implicate alterations in 

RNA processing as a key event in ALS pathogenesis.193 Furthermore, mutations in TDP-43 lead 

to misfolded and truncated proteins, such as TDP-25 and TDP-35, as well as mislocalization 

from the nucleus to the cytoplasm.194 Because the translocation of TDP-43 from the nucleus to 

the cytoplasm is tightly linked to the formation of pathological aggregates in the cytoplasm, it is 

difficult to decouple the consequences of its loss of function as a DNA-binding protein in the 

nucleus from the potentially toxic gain of function effects of the aggregates in the cytoplasm.195 
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However, a similar cytoplasmic translocation occurs during HIV and fungal infection.196,197 It is 

hypothesized that the release of neurotoxins, such as ochratoxin A, during fungal infection 

causes TDP-43 to mislocalize to the cytoplasm, leading to ALS pathogenesis.198 The overall 

structure of TDP-43, along with its propensity to aggregate and mislocalize, is further influenced 

by post-translational modifications.199 It has been demonstrated that infection with TMEV, both 

in vitro and in vivo, caused TDP-43 phosphorylation and cleavage, resulting in its cytoplasmic 

mislocalization and aggregation.200 These data indicate that viral and fungal infections promote 

the neuropathology associated with ALS. 

Interestingly, the relationship between viral infection and TDP-43 aggregation may be 

reciprocal in nature, as TDP-43 aggregation may enhance expression of endogenous retroviruses 

in the CNS. In autopsied samples of cortical and spinal neurons from ALS patients, the 

transcriptional expression of human endogenous retrovirus-K (HERV-K) polymerase was 

enhanced.201 Furthermore, in patients with sporadic ALS, HERV-K reverse transcriptase 

expression was correlated with TDP-43  and HERV-K long terminal repeats have four binding 

sites for TDP-43, which have been shown to regulate its activation.202 In a Drosophila model of 

disease, focal glial expression of human TDP-43 triggered gypsy-ERV replication, as well as 

DNA damage, and neuronal apoptosis.203 Additionally, TDP-43 harbors binding sites for 

interferon regulatory factors (IRF) and kB, which are important inflammatory mediators, causing 

TDP-43 to become transcriptionally upregulated in response to antiviral interferon expression.201 

Together, these data suggest that HERV-K expression may be driven, in part, by TDP-43 as well 

as in response to local neuroinflammation.196,201,202 In fact, TDP-43 was originally found to 

inhibit HIV transcription in cell culture 204, though this function is still debated and may reflect 

differences in cell types and model systems.205–208 Together, these studies indicate that TDP-43 
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aggregation and infectious agents may develop a reciprocal relationship in causing pathogenic 

changes that lead to ALS.   

 A second DNA/RNA binding protein that has been associated with familial ALS is FUS, 

which, when mutated, interferes with RNA metabolism, suppresses protein translation, and 

decreases the nonsense-mediated decay pathway.209 ALS-associated genetic mutations result in 

the formation of stress granules, which are composed, in part, of RNA-binding proteins, 

including TDP-43 and FUS.210 The formation of FUS-containing stress granules can be 

stimulated by respiratory syncytial virus (RSV), as well as by poly(I:C), which is used by 

laboratory researchers to mimic viral double-stranded RNA.211 It was also found that infection of 

induced pluripotent stem cell-derived spinal neurons with either rabies virus (RABV) or HIV-1 

increased the production of FUS and promoted its cytoplasmic mislocalization.212 Furthermore, 

many other viruses have been shown to promote the formation of stress granules.213,214 These 

studies demonstrate a link between viral infection and a key neuropathogenic hallmark of ALS.   

Glutamate is a major excitatory neurotransmitter in the brain; however, excessive 

stimulation due to increased glutamate receptor expression or ligand availability can cause 

excitotoxicity and lead to neuronal death.215,216 Perisynaptic astrocytes express glutamate 

transporters, including excitatory amino acid transporter 2 (EAAT2) and glutamate transporter-1 

(GLT-1), which clear glutamate from neuronal synapses.217 Defects in glutamate transport have 

been found in synaptosomes prepared from neural tissue from ALS patients.218 This is likely due 

to a combined effect of upregulation of genes that transcribe glutamate receptors in the motor 

cortex of ALS patients and selective loss of glutamate transporters in the motor cortex of ALS 

patients.219,220 In transgenic mice expressing mutant SOD1, GLT-1 was found to decrease in 

accordance with disease progression and survival could be extended by increasing expression of 
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EAAT2.221,222 During viral infection, exposure of fetal human astrocytes in vitro to the HIV-1 

envelope glycoprotein, gp120, caused a 40-70% decline in steady-state levels of EAAT2 

RNA.215 This resulted in reduced glutamate transport and may contribute to glutamate 

excitotoxicity following HIV-1 infection.215 Furthermore, exposure of neurons to fungal 

neurotoxins caused the spontaneous release of endogenous glutamate 223, and elevated glutamate 

levels have been shown to increase the toxicity associated with SOD1, as well as to promote 

TDP-43 translocation.224,225 Moreover, EAAT2 expression is downregulated by TNF-a, an 

important cytokine involved in the antiviral response to many viruses including HIV-1, VZV, 

EBV, and CMV, among others.226,227 Thus, this excitotoxic impact from glutamate is likely 

common among many viral infections. Together, these data indicate that infectious diseases 

cause changes in glutamate signaling that can lead to excitotoxicity that is symptomatic of ALS.  

 

1.5 Conclusions and Future Directions 

 Here we have reviewed recent literature linking microbial infections to neurodegenerative 

diseases, including AD, PD, and ALS. Although epidemiological data indicate an association 

between infectious agents and neurodegenerative diseases, in many cases the molecular and 

cellular mechanisms underlying those associations are unclear. Alternatively, patients with 

neurodegenerative diseases may be at increased risk of being infected with a neurotropic agent, 

potentially due to compromised immune systems and/or leaky BBB in affected individuals. 

Further research using in vitro and in vivo models will help elucidate whether infectious agents 

increase the risk of developing neurodegenerative diseases on their own, via anti-microbial 

inflammatory pathways, or other unknown mechanisms. The study of model systems, including 

both rodent and non-rodent models, will also improve our understanding of post-infectious 
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neurologic and cognitive dysfunction that occurs following many systemic and neurotropic 

infections beyond the common neurodegenerative diseases reviewed here. Identification of 

molecular mechanisms common among these neurologic disorders may lead to new diagnostic 

biomarkers to identify individuals that may develop progressive neurocognitive or 

neurodegenerative diseases, as well as new therapeutic options for them.
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CHAPTER 2: Study of the Intracellular Protein Tau and its Relationship with Kunjin Virus and  

Neurodegenerative Diseases 

2.1 Introduction 

Alzheimer’s disease (AD) is the sixth-leading cause of death in the United States—higher 

than breast cancer and prostate cancer combined.228 It is a neurodegenerative disease (NDD) 

characterized by the deposition of two lesions in the brain—extracellular senile plaques and 

intracellular neurofibrillary tangles (NFTs)—resulting in progressive impairment of cognitive 

abilities.229 NFTs are the product of an accumulation of hyperphosphorylated Tau fibrils.230 

Though age and genetic factors have been identified as risk factors for this NDD, microbial 

infections have become of keen interest as they are thought to contribute to NDD pathology 

through eliciting inflammatory responses.231–235 Previous research has identified several 

inflammatory cytokines, such as tumor necrosis factor (TNF)-𝛼, interferon (IFN)-𝛾, interleukin 

(IL)-1𝛽, IL-6, IL-10, and IL-18 to provoke the aggregation of both A𝛽 and Tau.236–239 Though 

inflammatory processes are essential in clearing microbial challenges, they begin to have severe 

consequences when they become systemic.240–242 Widespread activation of inflammatory 

cytokines and chemokines can promote breakdown of the blood brain barrier (BBB), allowing 

entry of damaging agents and inflammatory mediators.242–244 Additionally, breach of the BBB 

promotes stimulation of CNS-resident astrocytes and microglia, further amplifying inflammatory 

conditions capable of causing significant damage to both infected and uninfected 

neurons.240,245,246  

The microbial etiology hypothesis of AD has been of keen interest to researchers for 

decades. Recent studies demonstrated herpes simplex virus 1 (HSV-1) infection directly 

correlated with elevated hyperphosphorylation of Tau.247,248 Tau is an intracellular microtubule 
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associated protein (MAP) that aids in the stabilization of microtubules that line the axonal 

cytoskeleton of neurons.249 In a normal state, phosphorylation activity of kinases and 

phosphatases modulate the affinity of Tau for microtubules, allowing for dynamic growth and 

retraction. However, dysregulation of this activity leads to hyperphosphorylation of Tau resulting 

in a decreased affinity for the microtubules, allowing them to dissociate and increase their 

propensity to self-aggregate into pathogenic NFTs.250,250,251 In a recent study, 

hyperphosphorylated Tau isolated from AD brain samples was injected into the hippocampus of 

human transgenic mice resulting in hyperphosphorylated Tau at Ser202/Thr205, Thr212, Ser214, 

Thr217, Ser262, and Ser422.34 

 

 

 

 

 

Figure 2: Tau phosphorylation regulates normal function in stabilizing microtubules and in a pathological 
aggregation. a, The balance of Tau phosphorylation is maintained by kinases and phosphatases, but can be disrupted by 
toxic factors, resulting in the hyperphosphorylation of Tau. b, Hyperphosphorylation of Tau contributes to the creation of 
Tau aggregates, NFTs, and ultimately neuronal death, further reacting in a cascade manner.  
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The mechanisms that disrupt this balance of phosphorylation remain elusive, however, it 

is thought that inflammatory cytokines as well as infectious agents may play a role in inciting 

neurodegenerative pathology.241,252 We have summarized a microbial infections hypothesis 

linking numerous viral infections to increased Tau hyperphosphorylation as well as deposition of 

NFTs and damage in primary neurons.252 Furthermore, activated immune signaling pathways 

were detected in some of these infection models as well as detection of enhanced pro-

inflammatory cytokine secretion from CNS-resident immune cells including microglia, 

astrocytes, and monocytes.253–257 These findings further support the notion infections may 

promote AD onset.247,258–266 Further research into the role infectious agents may play in the 

accumulation of Tau aggregates is essential to gain a better understanding of the pathogenesis of 

NDDs as well as identifying potential therapeutic targets.  

The focus of this thesis is to gain a comprehensive understanding of the effects of acute 

viral encephalitis on the brain, including the development of AD-related Tau pathology, with the 

use of a novel model of neurotropic viral infection. Previous research has focused on the 

interplay between microbial infection, A𝛽 accumulation and stimulation of inflammatory 

cytokines such as TNF-𝛼, IL-6, and IL-1𝛽.257–260,267 However, not much is known about the 

relationship between neurotropic viral encephalitis, neuroinflammation, and Tau. In addition to 

its role in stimulating chronic inflammation, several researchers have suggested A𝛽 may protect 

against infection by acting as an antimicrobial peptide in a number of models through direct 

binding to the cell wall of the microbe or via insertion into the viral envelope.262,265,268 A 

previous study suggested that A𝛽 acts as an antimicrobial agent in a transgenic AD mouse model 

(5XFAD) following bilateral hippocampal injection of 5	𝑥	10! plaque forming units (PFU) 

HSV-1. Their results showed increased survival in transgenic mice compared to the wild type 
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(WT) littermates, and data suggested that A𝛽 is able to directly bind to HSV-1 and inhibit its 

replication.262 Bourgade et al also demonstrated similar antimicrobial activity of A𝛽 against 

HSV-1 through direct binding, further suggesting that A𝛽 accumulates as an immune defense 

mechanism.268 Furthermore, A𝛽 was shown to protect against Salmonella enterica serotype 

typhimurium (S. typhimurium) in AD mouse models and Candida albicans and S. typhimurium 

in nematode and cell culture models.265 These data present A𝛽 as an antimicrobial peptide; 

however, whether the Tau protein, which forms intracellular aggregates similar in structure to 

A𝛽 aggregates, can also act as an antimicrobial peptide is unknown.  

 The goal of this study was to determine whether the Tau protein may act as an antiviral 

protein. For this we used a murine model of WNV neurotropic infection. WNV has long been 

studied for its ability to cause cognitive impairment. Previous studies utilized models of WNV 

infection with the strain isolated from New York in 1999 (WNV-NY99). However, use of this 

strain poses challenges for the study of neuronal effects of viral infections. Specifically, when 

WNV-NY99 is infected peripherally via footpad inoculation, the level of virus that crosses into 

the CNS is variable; however, when WNV-NY99 is inoculated i.c., 100% of mice die, thus 

limiting the ability to study recovery mechanisms.269 To circumvent this, I utilized a subtype of 

WNV, Kunjin virus (KUNV). Endemic to Australia, KUNV is a naturally attenuated subtype of 

WNV, making it less virulent. Through use of this model, I studied whether neurotropic KUNV 

infection (1) contributes to Tau deposition and (2) whether Tau can act as an antimicrobial 

peptide against KUNV.  
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2.2: Materials and Methods 

2.2.1: Tauopathy and Frontotemporal Dementia Mouse Model 

 Male transgenic mice containing the Tau P301S mutation and female non-carrier (NC) 

mice were purchased from Jackson Laboratory (PS19 line). The PS19 line was kept on a crossed 

background with C57BL/6 and C3H. Mice with the transgene are hemizygous (+/0) and express 

the P301S mutant form of human MAPT (1N/4R) under the direction of the mouse prion 

promoter. Expression of the transgene is 5-fold higher than the expression of the endogenous 

mouse MAPT protein. Male mice carrying the transgene are paired with non-carrier (NC) 

females for breeding. Both male and female mice of both NC and hemizygous genotypes were 

used for experiments, as noted.  

 

2.2.2: Genotyping  

 Ear clips were taken from mice prior to 8 weeks of age and processed via polymerase 

chain reaction (PCR) to determine genotypes. Ear clips were run in ear digest (100 𝜇L Direct 

PCR (Taik) (102-T, Viagen) + 1.5 𝜇L Proteinase K 20 mg/mL (E192-5mL, VWR)) overnight in 

a thermocycler (55℃ for 12 hours, 85℃ for 45 minutes, 4℃ hold). They were then mixed with 

0.1 𝜇LP301S Tg Rev (5’-GGT ATT AGC CTA TGG GGG ACA C-3’, IDT), 0.1 𝜇L P301S Tg 

Fwd (5’-GGC ATC TCA GCA ATG TCT CC-3’, IDT), 0.1 𝜇L P301S Int Post CTRL Fwd (5’-

CAA ATG TTG CTT GTC TGG TG-3’, IDT), and 0.1 𝜇L P301S Int Pos CTRL Rev (5’-GTC 

AGT CGA GTG CAC AGT TT-3’, IDT) primers, 3.6 𝜇L ddH2O, and 5 𝜇L DreamTac Green 

PCR Master Mix (2x) (K1081, Thermo Scientific) and run in a thermocycler (1. 94℃ for 5 

minutes, 2. 94℃ for 1 minute, 65℃ for 1 minute (-0.5℃ per cycle), 72℃ for 1 minute (step 2 is 

repeated for 10 cycles), 3. 94℃ for 1 minute, 60℃ for 1 minute, 72℃ for 1 minute (step 3 is 
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repeated for 28 cycles), 4. 72℃ for 10 minutes, 5. 4℃ infinite hold). Samples were run on a 1.5% 

Agarose gel with 5	𝜇L Sybr Safe DNA gel stain (S33102, Fisher) for 30 minutes at 100 V and 

imaged using BioRad Image Lab.  

  

2.2.2: C636 Cells, Vero Cells, and Kunjin Virus 

2.2.2.1: Isolation of Kunjin Virus 

Vero cells were grown and maintained in Dulbecco modified Eagle medium (DMEM) 

and supplemented with 5% fetal calf serum and antibiotic/antimycotic. Cells were infected with 

KUNV (Clone FLDSX) at a multiplicity of infection (MOI) of 0.5 and incubated at 37℃. 

Supernatant was collected at 40 hours after infection and centrifuged at 1300 x g for 10 minutes, 

then supernatants were pooled together in a sterile flask. To purify virus, 5 mL of cold 25% 

glycerol in Tris/NaCl/Ethylenediaminetetraacetic acid (EDTA) (TNE) was placed in the bottom 

of OptiSeal Polyallomer Tubes (NC9691210, Fisher) and overlayed with 25 mL of viral 

supernatant. The samples were placed in a SW32Ti Beckman Coulter rotor and ultracentrifuged 

at 30,000 rpm for 4 hours at 4℃. Virus remained in the pellet, which was resuspended in 1 mL 

TNE and aliquoted in single-use tubes for quantification by plaque assays.  

 

2.2.2.2: Intracranial Infection with Kunjin Virus  

Mice were heavily anesthetized under 5% isoflurane and injected with 10 𝜇L KUNV 

(100 PFU) (prepared in 1% FBS in HBSS) in the third ventricle of the brain.  
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2.2.2.3: Plaque Assays 

6 well tissue culture treated plates were plated with 2 mL of baby hamster kidney (BHK) 

cells at 600,000 cells/mL mixed with 450 mL EMEM (30-2003, ATCC) + 50 mL HI FBS 

(16140071, Gibco) and incubated overnight at 37℃. 10-fold dilutions were made from KUNV 

viral stock (0: stock virus, 10"#, 10"$, 10"%, 10"&, and 10"') and 150 𝜇L placed in each well 

and incubated at 37℃ for 1 hour. Wells were then overlayed with 3 mL of 2% SeaPlaque 

Agarose (BMA50100, Fisher Scientific) mixed with 2X MEM and allowed to solidify at room 

temperature for 1 hour and transferred to a 37℃ incubator for 3 days. Plates were then fixed with 

10% Formaldehyde for 2 hours, after which plugs were removed and wells were stained with 1 

mL Crystal Violet (10 g Crystal Violet (C581-100, Fisher), 200 mL of 100% Ethanol, and 800 

mL of H$O). 

 

2.2.4.: Tau Aggregation or Phosphorylation Analysis 

2.2.4.1: BCA Assay  

Tissues were homogenized using a Bead Mill 24 Homogenizer (15-340-163, Fisher) at 4 

m/s for 1 minute at 4℃. Homogenized tissue was centrifuged at 16,000 x g for 1 minute, and 25 

𝜇L of lysate supernatant was placed in a well of a 96-well plate, in addition to albumin standards 

made using the Pierce BCA Protein Assay Kit (23227, Thermo Scientific). A working reagent 

was created by adding 50 parts of reagent B to 1 part reagent A. 200 𝜇L of working reagent was 

then added to each well containing lysate samples. The plate was then incubated at 37℃ for 30 

minutes and read on a SpectraMax iD5 Multi-Mode Microplate Reader at 562 nm. Using the 

calculated values of the albumin standards, an equation to determine protein concentration of the 

lysates was created and implemented.  
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2.2.4.2: Sarkosyl Solubility Assay 

 Cortex samples from 8 wk-old KUNV-infected or mock-infected Tau P301S mice 30 dpi 

were homogenized using a Bead Mill 24 Homogenizer at 4 m/s for 1 minute. Homogenized 

tissue was centrifuged at 16,000 x g for 1 minute, and 100 𝜇L of lysate supernatant was mixed 

with 300 𝜇L of a Salt/Sucrose buffer (For a 50 mL volume: 0.8 M of NaCl, 1mM of Sodium 

orthovanadate (J60191, Alfa Aesar), 5 of Piece Protease Inhibitor Mini Tablets, EDTA-Free 

(A32955, Thermo Scientific), 10% Sucrose (J65148, Alfa Aesar), 30 mM of Na F 99% (A13019, 

Alfa Aesar), 10 mM Tris HCl pH 7.4) and spun at 16,000 x g for 20 minutes. The supernatant 

was pulled off and saved. 500 𝜇L of Salt/Sucrose buffer was added to the sample pellet and spun 

at 16,000 x g for 20 minutes. The supernatant was pulled off and pooled with the first 

supernatant. 100 𝜇L of 10% Sarkosyl (S3376, Teknova) was added for a final concentration of 

1%. Samples were placed on a rocker to incubate at room temperature for 1 hour. Samples were 

placed in 1 mL Quick-Seal tubes (348184, Beckman Coulter) and sealed. Samples were placed in 

a Type 25 rotor (Beckman Coulter, 347261) and run at 25,000 rpm at 4℃ for 1 hour. Lysates, 

soluble Tau, were pulled off and stored at -20℃. Pellets, insoluble Tau, were reconstituted with 

250 𝜇L of 50 mM Tris/HCl, transferred to new microcentrifuge tubes, and stored at -20℃.  

 

2.2.4.3: Western Blot  

 Cortex samples from 8 wk-old KUNV-infected or mock-infected Tau P301S mice 30 dpi 

were homogenized using a Bead Mill 24 Homogenizer at 4 m/s for 1 minute. Protein 

concentrations were equalized according to the BCA assay and brought up to 11.25 𝜇L with 

sterile milliQ water. 3.75 𝜇L of 4x Laemmli Buffer (1610747, BioRad) mixed with dithiothreitol 
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(DTT) was added to each sample. Samples were then boiled at 95℃ for 5 minutes and spun at 

16,000 x g for 1 minute. 15 𝜇L of each sample was loaded into Any kD Mini-PROTEAN TGX 

Precast Protein Gels (4569036, BioRad). Precision Plus Protein Kaleidoscope ladder (161-0375, 

BioRad) was used. Chamber was filled with 1X Running Buffer (10X Tris/Glycine/SDS 

(1610772, BioRad)) and run at 80 V for 30 minutes and 150 V for 1 hour. Blots were then 

transferred to PVDF membranes at 0.1 A overnight at 4℃ in 1X Transfer Buffer (10X 

Tris/Glycine (1610771, BioRad)). Membranes were then placed in 5 mL blocking buffer (5% 

NFDM (M17200-100, Research Products International) and 1X TBST (AAJ62938K2, Fisher 

Scientific + 10 mL Tween 20 (BP337-100, Fisher Bioreagents))) and incubated at room 

temperature for 1 hour. Membranes were then placed in 5 mL blocking buffer mixed with 5 𝜇L 

of 0.2 mg/mL Phospho-Tau (Ser202, Thr205) Monoclonal Antibody (AT8) (MN1020, 

Invitrogen), 5 𝜇L of 0.2 mg/mL Phospho-Tau (Thr212, Ser214) Monoclonal Antibody (AT100) 

(MN1060, Invitrogen), 5 𝜇L of 5A6 1° Antibody Mouse IgG (DSHB) (0.2 ug/mL), 5 𝜇L of 0.2 

mg/mL Tau-5 Mouse Monoclonal Antibody (PIMA512808, Fisher Scientific), or GAPDH 

Mouse Antibody (4466S, Cell Signaling Technologies) and incubated at 4℃ overnight. 

Membranes were rinsed three times for ten-minute increments with 1X Tris Buffered Saline + 

Tween (TBST; 1X TBS + 10 mL Tween 20) and placed in 5 mL blocking buffer mixed with 5 

𝜇L of 0.2 mg/mL Anti-Mouse IgG HRP-Linked secondary antibody (7076S, Cell Signaling 

Technologies) and incubated at room temperature for 1 hour. Membranes were once again rinsed 

three times for ten-minute increments with 1X TBST and transferred to 1X TBS (AAJ62938K2, 

Fisher Scientific) for imaging. Membranes were placed in 1 mL western blotting detection 

reagent (RPN3243, GE Healthcare) for 1 minute and imaged using BioRad ChemiDoc Imaging 

System 27444.  
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2.2.4.4: Densitometry  

 Densitometry was performed on the western blots described above using Bio Rad Image 

Lab. Values were then normalized to GAPDH values using the following equation: 

𝑇𝑎𝑟𝑔𝑒𝑡	𝑀𝑜𝑢𝑠𝑒	𝐴	𝑥	 !"#$%	'()*+	"
",+-./+	!"#$%

= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑇𝑎𝑟𝑔𝑒𝑡	𝑀𝑜𝑢𝑠𝑒	𝐴	𝑣𝑎𝑙𝑢𝑒. 

 

2.2.4.5: Immunohistochemistry  

2.2.4.5.1: Tissue Collection and Fixation  

 To collect tissues for immunohistochemistry (IHC), mice were anesthetized with 

isoflurane, and perfused in the apex of the heart with cold phosphate buffered saline (PBS; 

BP3994, Fisher Bioreagents). Brains were post-fixed overnight in 4% paraformaldehyde (PFA; 

100496-496, VWR) in PBS and transferred into 30% sucrose solution the following day and 

changed twice more until sedimented. Once sedimented, brains were embedded in Tissue-Plus 

O.C.T. compound (23-730-571, Fisher Scientific) and kept at -80℃. 

 

2.2.4.5.2: Tissue Sectioning 

 Tissue samples were transferred from -80℃ to -20℃ and allowed to acclimate for one 

hour. Sagittal sections (10 𝜇m) were cut from a frozen block using a cryostat and plated on 

Superfrost Plus slides (12-550-15, Fisher Scientific). Slides were stored at -80℃.  

 

2.2.4.5.3: Immunofluorescence Labeling 

 Sections were prepped with PBST (1X PBS + 10 mL Tween) and tissues circled with a 

PAP pen. Samples were then incubated in 50 𝜇L of blocking buffer (500 𝜇L of goat serum 
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(100241-872, VWR) + 9.5 mL PBST) for 1 hour.  The primary antibody mix was prepared by 

adding 1 𝜇L of 0.2 mg/mL Phospho-Tau (Ser202, Thr205) Monoclonal Antibody (AT8) 

(MN1020, Invitrogen) or 1 𝜇L of 0.2 mg/mL Phospho-Tau (Thr212, Ser214) Monoclonal 

Antibody (AT100) (MN1060, Invitrogen) to 500 𝜇L of blocking buffer and 0.5 𝜇L of NeuN 

(D3S3I) rabbit monoclonal antibody (12943S, Cell Signaling Technologies; used for neuronal 

staining). 50 𝜇L of the primary antibody mix was placed on each sample and incubated at 4℃ 

overnight. Samples were rinsed in PBST for ten minutes twice followed by PBS. The secondary 

antibody mix was prepared by adding 2 𝜇L of 2 mg/mL Alexa Fluor 488 goat anti-mouse IgG 

(H+L) secondary antibody (A11001, Life Technologies Corporation) and 2 𝜇L of 2 mg/mL 

Alexa Fluor 555 goat anti-rabbit IgG (H+L) secondary antibody (A21428, Life Technologies 

Corporation) to 800 𝜇L of blocking buffer. 50 𝜇L of secondary antibody mix was added to each 

sample and incubated at room temperature for 1 hour. Samples were washed in PBST for ten 

minutes followed by PBS. Nuclear staining was done with DAPI (D1306, Life Technologies 

Corporation) by adding 50 𝜇L of diluted DAPI (1 𝜇L of DAPI (1 𝜇g/mL) + 1 mL PBS) to each 

sample and incubated for ten minutes at room temperature. Tissue slides were washed in PBST 

for ten minutes followed by PBS, dried carefully, and mounted with Prolong Gold (P36930, Life 

Technologies). Tissue slides were allowed to cure for at least 24 hours before analyzed using a 

Keyence BZ-X800 Series. Images were taken at 20X magnification, 3 images per tissue sample.   

 

2.2.4.5.4: Immunofluorescent Analysis 

 Images described above were analyzed using FIJI Image J by transforming to 8-bit, 

overlaying a mask, and fluorescent signal quantified. Data was then graphed using GraphPad 

Prism and analyzed for statistical differences via unpaired t-tests.  
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2.3: Results 
 
 
2.3.1: Kunjin Virus Productively Stimulates Tau Hyperphosphorylation in Eight-Week-Old  

Tau P301S Mouse Cortex Eighteen Days Post Infection  

To study Tau hyperphosphorylation and aggregation, I used the PS19 mouse model (Tau 

P301S), as it allows for breeding of hemizygous carriers of the 1N4R human P301S mutation on 

the MAPT gene (Tau P310S +/0) as well as non-carrier (NC) littermates. The P310S mutation 

has been well characterized in human disease models of Frontotemporal Dementia and has been 

shown to cause Tau pathology similar to human AD patients, including Tau aggregates and 

NFTs by 6 months and hind-limb paralysis by 9 months, in mutant mice. Additionally, I used 

KUNV as an infection model to incite neuroinflammation. Previous data in the lab showed 

increased weight in 8 wk-old C57BL/6J mice infected i.c. with 1 or 10 PFU KUNV, whereas 

infection with 100 PFU resulted in decreased weight, indicating 100 PFU is a proper dose to use 

for i.c. inoculation (Fig 3). AD-related Tau pathology can be characterized by the 

hyperphosphorylation of Tau stimulating aggregation of Tau fibrils and NFTs. Therefore, the 

sites of hyperphosphorylation are of immense importance.  

To determine whether infection causes phosphorylation at sites associated with 

aggregation, I examined levels of Tau phosphorylation following i.c. inoculation of KUNV 100 

PFU into 8 wk-old, 11 wk-old and 15 wk-old Tau P301S +/0 mice. Compared to 8 wk-old mice, 

11 and 15 wk-old mice revealed lower amounts of hyperphosphorylated Tau at sites 

Ser202/Thr205 and Thr212/Ser214 within samples of the cortex and spinal cord, at 18 dpi (Fig 

4). This indicates Tau is phosphorylated more at these sites in an infected 8 wk-old model 

compared to infected 11 and 15 wk-old models, further establishing 8 wk-old mice as the optimal 

age of infection.  
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Figure 3. Decreased average weight change observed in 8 wk-old mice post i.c. KUNV 
(100 PFU) infection. Average weight change of 8 wk-old C57BL/6J mice following 
intracranial (i.c.) inoculation with KUNV at 1 PFU, 10 PFU, and 100 PFU doses. Results 
showed consistent weight loss as a measure of illnes following infection with 100 PFU, 
indicating optimal infectious dose.  

Figure 4. Increased Tau phosphorylation observed in KUNV-infected Tau P301S mice. a-b, 18 days post 
i.c. KUNV infection showed increased Tau hyperphosphorylation (a, site Ser202/Thr205, detected by AT8 
antibody; b, Thr212/Ser214, detected by AT100 antibody) in the cortex and spinal cord of the 8 wk-old Tau 
P301S mice compared to the 11 and 15 wk-old models.   
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2.3.2: KUNV Infection Stimulates Tau Hyperphosphorylation in Tau P301S Mouse Cortex 

To ascertain whether KUNV infection induces Tau pathology, 8 wk-old Tau P301S mice 

were infected i.c. with KUNV (100 PFU) or mock-infected and observed for 30 dpi. The cortex 

lysate from each sample was then analyzed via Western Blot Analysis and probed for Tau 

phosphorylation at sites Ser202/Thr205 and Thr212/Ser214 using the AT8 and AT100 

antibodies, respectively (Fig 5A and 5B). Results show that Tau was phosphorylated at 

Ser202/Thr205 and Thr212/Ser214 sites in the KUNV-infected but not in the mock-infected Tau 

P301S mice. Additionally, the cortex lysate was probed for Total Tau, using the 5A6 antibody, 

and GAPDH (Fig 5C and 5D) which showed equal levels in both the KUNV-infected and mock-

infected Tau P301S mice. Western blots were analyzed by densitometry and AT8, AT100, and 

Total Tau signals were normalized to GAPDH. Normalized values were analyzed on GraphPad 

Prism for statistical differences using unpaired t-tests. No statistical difference was observed in 

Total Tau levels (detected by 5A6) between the KUNV-infected and mock-infected Tau P301S 

mouse cortex (p = 0.8113); however, analysis revealed a significant difference (p = 0.0325) in 

the phosphorylation of sites Thr212/Ser214 (detected by AT100) with higher levels seen in the 

KUNV-infected mouse cortex. Additionally, there is a similar trend in the phosphorylation of 

sites Ser202/Thr205 (detected by AT8) with higher levels seen in the KUNV-infected mouse 

cortex, though it was on the cusp on being statistically significant (p = 0.059). Together these 

data show equal levels of Tau (detected by 5A6) and GAPDH between the KUNV-infected and 

mock-infected Tau P301S mice, but elevated Tau phosphorylation in the KUNV-infected Tau 

P301S mice, indicating KUNV incites increased Tau phosphorylation in the Tau P301S mice.  
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Figure 5. Elevated Tau phosphorylation in KUNV– versus mock-infected Tau P301S mouse cortex. a-b, 30 days post i.c. 
KUNV or mock infection of 8 wk-old Tau P301S mice showed significant Tau phosphorylation (a, site Ser202/Thr205, 
detected by AT8 antibody; b, Thr212/Ser214, detected by AT100 antibody) in the cortex of the KUNV-infected Tau P301S 
mice whereas mock-infected Tau P301S mice showed no detectable Tau phosphorylation. c-d, Equal levels of Total Tau, 
detected by 5A6 antibody, and GAPDH were shown in the KUNV-infected and mock-infected mouse cortex. e-g, 
Densitometry was performed on the AT8, AT100, and Total Tau blots, the values normalized to GAPDH and graphed on 
GraphPad Prism, revealing (e) p = 0.059,  
(f) p = 0.0325, and (g) p = 0.8113. 
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2.3.3: KUNV Infection Stimulates Tau Hyperphosphorylation in Tau P301S Mice via 

Immunohistochemistry 

To investigate where Tau hyperphosphorylation occurs within the brain, I performed 

immunohistochemistry on 8 wk-old KUNV-infected and mock-infected Tau P301S mouse brains 

at 30 dpi and probed for the Ser202/Thr205 and Thr212/Ser214 phosphorylation sites using the 

AT8 and AT100 antibodies, respectively. Phosphorylated signal coverage of the samples was 

analyzed using FIJI ImageJ. A significant increase was detected (Fig 6B) at the Thr212/Ser214 

hyperphosphorylation sites (detected by AT100) in the KUNV-infected mice compared to the 

mock-infected (p = 0.0299). However, no statistical difference was detected (Fig 6A) at the 

Ser202/Thr205 hyperphosphorylation sites (detected by AT8) (p = 0.2931). Combined, these 

data suggest KUNV infection induces Tau hyperphosphorylation, with a more notable increase 

occurring at the Thr212/Ser214 sites.  

 

2.3.4: KUNV Infection Induces Proteolytic Cleavage of Tau in Tau P301S Mouse Cortex 

As shown in Fig 7, full length Tau is approximately 60 kDa; however, in my analyses, I 

noticed a second band consistently appearing at lower molecular weights in KUNV-infected 

samples (Fig 4A and 4B). To investigate the identity of this second band, I immunoblotted with 

the Tau 5 antibody, which binds further down the Tau protein at amino acids 210-230 (Fig 7) . 

Interestingly, increased Tau signal at various weights occurred (Fig 8), indicating that proteolytic 

cleavage of Tau may be occurring incited by KUNV.  
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Figure 6: Elevated Tau phosphorylation at Thr212/Ser214 sites in KUNV-infected Tau P301S mice. a-b, 
Immunohistochemistry was performed on 30-day post KUNV-infected and mock-infected 8 wk-old Tau P301S mice. 
Tau phosphorylation signal coverage was assessed using FIJI Image J software and a statistical analysis was run via 
unpaired t-tests showing no statistical difference between the KUNV- and mock-infected Tau P301S mice at the 
Ser202/Thr205 sites (detected by AT8) (a, p=0.2931), but a significant difference at the Thr212/Ser214 sites (detected 
by AT100) (b, p=0.0299). c-d, Depicts AT8 (c) and AT8+DAPI (d) in KUNV-infected Tau P301S mice. e-f, Depicts 
AT8 (e) and AT8+DAPI (f) in mock-infected Tau P301S mice. g-h, Depicts AT100 (g) and AT100+DAPI (h) in 
KUNV-infected Tau P301S mice. i-j, Depicts AT100 (i) and AT100+DAPI (j) in mock-infected Tau P301S mice.  
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Figure 8. Increased Tau protein observed at various molecular weights in KUNV-infected  
Tau P301S mouse cortex. 30 days post i.c. inoculation 100 PFU KUNV of 8 wk-old Tau P301S mice 
revealed increased Tau signal, when probed for the Tau 5 antibody, at various weights compared to 
the mock-infected Tau P301S mice. This is suggestive of proteolytic cleavage of Tau occurring.  

Figure 7. Tau protein structure with antibody epitopes. This study used four different antibodies in 
analyses, two phopho-Tau antibodies (AT8 detects at Ser202/Thr205; AT100 detects at Thr212/Ser214) and 
two non-phosphorylation-dependent Tau antibodies (5A6 detects at amino acids 19-46; Tau 5 detects at 
amino acids 210-230). The purpose of the Tau 5 antibody was to investigate the second band appearing a 
lower molecular weight on the 5A6 blots (seen in Fig 4).  
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2.3.5: KUNV Infection Induces Tau Aggregation in Tau P301S Mouse Cortex 

To determine whether KUNV-infection stimulates Tau aggregation, 8 wk-old Tau P301S 

mice were infected i.c. with KUNV (100 PFU) or mock-infected, then cortical tissue collected at 

30 dpi. The cortex lysate from each sample was then processed with sarkosyl—an anionic 

detergent capable of extracting insoluble Tau from soluble Tau—and analyzed by western blot 

analysis with the Tau 5A6 antibody. Equalized protein concentrations were loaded, revealing 

elevated insoluble (aggregated) and soluble Tau levels in the KUNV-infected Tau P301S mouse 

cortex compared to the mock-infected Tau P301S mouse cortex (Fig 9A and 9B). Densitometry 

and statistical analysis via Dunnett’s T3 multiple comparisons test showed significantly elevated 

levels of the soluble Tau fraction in the KUNV-infected Tau P301S cortex samples compared to 

the mock-infected Tau P301S cortex samples. Visually, Tau appeared to be elevated in the 

insoluble fraction of KUNV-infected versus mock-infected cortices as well, however, 

densitometry and statistical analysis showed no significant differences. Together, these results 

indicates that more Tau is present in the KUNV-infected Tau P301S mice, possibly in 

hyperphosphorylated form, increased Tau production, and possible proteolytic cleavage. Further 

experiments should be conducted to determine the form(s) of Tau present in the soluble fraction.   

 

 



 

44 

 

 

 

  

Figure 9. Elevated levels of soluble Tau in KUNV-infected Tau P301S mouse cortex. a-b, 30 days post i.c. 
inoculation with 100 PFU KUNV or mock-infected Tau P301S mouse cortex was treated with sarkosyl, then 
immunoblotted for 5A6, showing elevated levels of soluble Tau in KUNV-infected Tau P310S mice. c, 
Densitometry analysis was performed, and values normalized to the GAPDH values and graphed in GraphPad 
Prism, revealing p = 0.0063 for the soluble samples and p =0.7960 for the insoluble samples. 
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2.3.6: The Tau P301S Mutation Does Not Improve Survival Against KUNV Infection  

Prior studies have suggested that A𝛽 may function as an antimicrobial peptide and 

improve survival of infected mice. To test this, I infected 8 wk-old Tau P301S and NC mice i.c. 

with KUNV (100 PFU) and assessed survival and weight loss out to 30 days. The recovery data 

was then analyzed with unpaired t-tests for statistical differences between the genotypes (Fig 

10A), including sex specific differences (Fig 10B and Fig 10C), by using Graph Pad Prism 

Software. Analysis showed no statistical genotypic (Fig 10A-10C: p=0.4339, p=0.8159, p=3879) 

or sex-specific difference. However, there appears to be an interesting trend between the Tau 

P301S and NC males, which should be reanalyzed after more samples have been added to 

determine if a difference exists. In addition to monitoring for recovery, weight change in these 

mice was monitored out to 30 dpi as well. The average weight change per day of each genotype 

was calculated and graphed and a statistical analysis on all the mice from this experiment was 

done via a two-way ANOVA revealing a statistically significant difference between the two 

genotypes (p<0.001) (Fig 10D). Additionally, the average weight change per day of each 

genotype was then reanalyzed with only the mice that survived out to 30 dpi and assessed via a 

two-way ANOVA. Analysis revealed a significant statistical difference between the genotypes in 

the mice that recovered post KUNV infection (p<0.001) (Fig 10E). These data suggest Tau 

aggregation does not improve recovery from KUNV infection, but that the Tau P301S mice lose 

significantly more weight on average than NC mice post KUNV infection. 
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Figure 10. Survival and weight change between Tau P301S and NC 8 wk-old mice post i.c. KUNV infection.  
a, 8 wk-old Tau P301S and NC controls were infected i.c. with 100 PFU KUNV and monitored for recovery 30 dpi. b, 
Recovery data from 10a was reanalyzed using only the females from each genotype. c, Recovery data from 10a was 
reanalyzed using only the males from each genotype. d, Weight change was monitored for all mice (survived and those 
who died) shown in 10a and graphed as the average percentage weight loss for each day. e, Weight change for only the 
mice that survived to 30 dpi was graphed as the average percentage weight loss for each day. For a-c, statisical analyses 
were performed using Mantel-Cox test. For d and e, statistical analyses were perfomed by two-way ANOVA. 
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2.3.7: Decreased Viral Burden Observed in KUNV-Infected Tau P301S Mice Compared to Non-

Carriers Six Days Post Infection 

 Recent findings showed A𝛽 acting as an antimicrobial peptide against HSV-1. To 

investigate whether Tau aggregates similarly impair viral replication of KUNV, I infected 8 wk-

old Tau P301S and NC mice i.c. with KUNV (100 PFU) and harvested the olfactory bulb, brain 

stem, cerebellum, cortex, hippocampus, spinal cord, kidney, and spleen from samples at 3dpi and 

6dpi. Viral load was assessed via plaque assays with baby hamster kidney (BHK) cells. 

Decreased viral levels were found in the cortical tissues of the 6-day post KUNV-infected Tau 

P301S mice compared to the KUNV-infected NC mice; however, it was found to not be 

statistically significant by an unpaired t-test (p = 0.1619) (Fig 11A). Although not significant, 

there does appear to be a trend that should be reexamined with more samples and possibly at a 

later time point (e.g., 8 or 9 dpi). This trend suggests that Tau aggregation may inhibit KUNV 

replication. Additionally, viral levels in the hippocampal tissues of the 6-day post KUNV-

infected Tau P301S and NC mice were assessed via plaque assays. Data revealed no statistical 

difference between the two genotypes; however, there is a similar trend of lower viral levels in 

the Tau P301S mice (Fig 11B). Furthermore, it is important to note that higher viral levels were 

detected in the hippocampal tissue compared to the cortical tissue, likely due to inoculation 

occurring in the third ventricle of the brain.  Together these data indicate there is no significant 

difference in viral levels at this time point between the Tau P301S and NC mice.  
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  Figure 11. No statistical difference found in viral levels between 8 wk-old KUNV-infected Tau P301S and 

NC mouse cortex or hippocampus 6 days post infection. a-b, 8 wk-old Tau P301S and NC mice were 
inoculated i.c. with 100 PFU KUNV and tissues taken 6 dpi. Cortical (a) and hippocampal (b) tissues from 6-
day post KUNV infected Tau P301S (n=5) and NC (n=5) mice were homogenized, and lysate assessed via 
plaque assays. Statistical analysis was run via unpaired t-tests showing no statistical difference between the two 
genotypes of KUNV levels 6dpi (a, p=0.1619; b, p=0.4006). 
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2.4: Discussion  

 It has previously been shown that neurotropic infections increase A𝛽 and Tau aggregates, 

hallmarks of AD, in mouse and cell culture models, suggesting infections are a risk factor for 

NDDs.252 In this study, I focused on the relationship between KUNV and the intracellular protein 

Tau. The data presented here showed i.c. infection with KUNV productively increases Tau 

production and phosphorylation in a Tau P301S mouse model. There is significant evidence (Fig 

5 and Fig 6) showing elevated phosphorylation occurring in the KUNV-infected Tau P301S mice 

at sites Thr212/Ser214 (detected by AT100) and a similar trend at sites Ser202/Thr205 (detected 

by AT8). These data correlate with previous data that showed increased phosphorylated Tau in 

the hippocampus of HIV-1-infected individuals compared to age-matched controls.92 The 

mechanisms by which this phosphorylation occurs need to be further explored; however, routes 

such as CDK5 and GSK-3𝛽 activation in a cell culture model of Human T-cell leukemia virus 

type 1 (HTLV-1) infection have been identified.107 Additionally, elevated levels of inflammatory 

cytokines such as IL-6, TNF (formerly known as TNF-𝛼), and IL-1𝛽 have been identified 

alongside increased Tau phosphorylation in Porphyromonas gingivalis infection of mouse 

models, indicating they may play a role in the hyperphosphorylation of Tau.264,270  

In addition to hyperphosphorylation of Tau, elevated levels of soluble Tau seen in the 

KUNV-infected Tau P301S mice (Fig 9) suggests an increase in Tau production and possible 

proteolytic cleavage (Fig 8). Though further examination is required to determine the forms of 

Tau present in this fraction, it has been noted that NFTs are primarily composed of 

hyperphosphorylated Tau as well as truncated forms of Tau.271–273 In a HSV-1 infection of 

neurons and astrocytes, Tau cleavage was observed at D421 by caspase-3.274 Additionally, Tau 

truncated at E391 was present in NFTs in brains of AD patients.272 It is quite evident that 
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cleavage of Tau plays a large role in the deposition of NFTs, however, the mechanisms 

responsible for this toxic cleavage of Tau remain elusive.  

Though the insoluble fractions (Fig 9) were not found to be statistically significant, this 

could be due to the length of time required for Tau aggregates to form. In transgenic rat models 

expressing truncated Tau (t151-391), sarkosyl insoluble Tau complexes within the brains were 

monitored at various time points, revealing a small signal of insoluble Tau in the 3-month-old 

model, with stronger signals occurring in the 9-month-old model, indicative of higher levels of 

aggregated Tau occurring in the 9-month-old model.275 Therefore, this experiment should be 

repeated, and samples taken at later time points post infection (e.g., 45-90 dpi), a genotypic 

distinction of this fraction may become more notable. Formation of these aggregates may be 

done as an immune defense to perhaps trap and inhibit viral replication. Though, this will have to 

be examined further to elucidate whether direct viral binding is occurring. 

Investigating the ability of Tau to act as an antimicrobial peptide yielded interesting 

results. Though not statistically significant, viral titer analysis revealed a consistent trend of 

decreased viral levels in the cortical and hippocampal tissues of KUNV-infected Tau P301S 

mice compared to KUNV-infected NC mice (Fig 11); whereas survival analysis (Fig 10A, 10B, 

and 10C) revealed there is no difference in survival between the two genotypes. Additionally, 

weight change analysis (Fig 10D and 10E) revealed a statistically significant difference between 

the two genotypes post KUNV infection, with the Tau P301S mice losing more weight than the 

NC mice. This suggests overexpression of Tau is exacerbating illness seen in these mice, either 

from an accumulation of Tau pathology, the immune signaling from affected Tau, or a mixture 

of both. Though not heavily researched, the inflammatory response during an infection model 

has shown increased levels of inflammatory cytokines (IL-6, IL-8, TNF, IL-1𝛽) alongside 
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increases of Tau phosphorylation and aggregation, indicating that a cytokine cascade is 

occurring.255–257,264,270 These data suggest Tau may be acting as an antimicrobial peptide to 

inhibit viral replication, however, the immune response generated by the infection and increased 

Tau pathology—cytokine storm and neuronal death—ultimately results in death of the Tau 

P301S mice.   

Altogether these data indicate KUNV incites Tau deposition, suggesting it is a risk factor 

for AD. Additionally, data suggests Tau may be acting as an antimicrobial peptide to inhibit 

KUNV replication, though shown to not be statistically significant.  
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2.5: Conclusions and Future Directions 

 The data presented here yields strong indications that KUNV stimulates Tau aggregation 

and hyperphosphorylation in a Tau P301S mouse model. To further explore this notion, 

experiments should be performed in vitro with KUNV-infected and mock-infected primary 

cortical neurons from day 18 embryonic Tau P301S pups to ascertain whether KUNV similarly 

increases the rate at which these neurons develop tauopathies. Experimentation in this manner 

allows one to examine the direct effect of viral infection on neurons, in the absence of other 

CNS-resident cells such as microglia and astrocytes. An additional model system to explore are 

Induced Pluripotent Stem Cells (iPSCs) containing the same pathogenic MAPT-P301S mutation 

as the mouse model used above. The Karch lab has developed protocols to differentiate iPSCs 

out to cortical neurons.276 Infection with KUNV of these iPSC-derived cortical neurons would 

allow for the impact of KUNV infection on Tau aggregation to be seen in a human cell model. 

Furthermore, this model similarly eliminates the presence of other CNS-resident cells in culture, 

allowing for a direct link between the primary cortical neurons and KUNV to be observed.  

In addition to the assays described, an enzyme-linked immunosorbent assay (ELISA) 

should be performed on lysate from both in vitro models as well as an in vivo model to determine 

specific cytokine and chemokine involvement. Furthermore, the decreased trend in viral levels in 

the hippocampal and cortical tissues of the Tau P301S mice compared to the NC indicates Tau 

may be acting to inhibit viral replication. Investigation into specific cytokine involvement and 

levels present in KUNV-infected mice during peak viral infection (days 8-9) could elucidate 

whether the cause of death in the KUNV-infected Tau P301S mice is from the cytokine storm 

and Tau pathology incited by the virus.  

 Viral titer analysis of hippocampal and cortical tissues (Fig 11A and 11B) showed a 
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consistent trend of decreased viral levels in the KUNV-infected Tau P301S mice compared to the 

NC, though not statistically significant. The viral levels should be assessed in the other tissues 

(olfactory bulb, cerebellum, brains stem, spinal cord, and kidney) collected at this timepoint as 

well to see if this trend holds. Additionally, tissues should be taken at a later timepoint post 

infection.  

To investigate whether Tau directly binds to KUNV, a RNAScope in situ hybridization 

assay should be performed and co-stained via IHC to visualizes if co-localization occurs between 

Tau aggregates and KUNV RNA. Additionally, binding can be explored through 

immunoprecipitation (IP) of tissue and neuronal samples by purification of Tau and analysis via 

quantitative polymerase chain reaction (qPCR) flow through. If Tau is found to co-localize with 

KUNV RNA, this would indicate direct binding, further suggesting Tau is capable of inhibiting 

KUNV replication.  

 In addition to exploring Tau’s ability to inhibit KUNV replication in vivo, exploration in 

vitro with primary cortical neurons should be performed as well. As described above, 

experimentation in this manner would eliminate the presence of other CNS-resident cells, 

allowing for the relationship of Tau and KUNV to be observed.  

 Additional samples should be taken and added to the current data, however, future 

samples should also be assessed for Tau hyperphosphorylation and Total Tau via ELISA.  

 This study has determined that a relationship exists between Tau and KUNV. Through 

further exploration, immense knowledge may be gained regarding the role Tau plays in the 

presence of microbes, such as KUNV, as well as the ability of neurotropic infections to incite 

AD-related Tau pathology. A more thorough understanding into the mechanisms by which these 

events occur would not only add to the knowledge we possess of the risk factors that incite 
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NDDs, such as AD, but it would aid in the understanding of a hallmark, toxic lesion associated 

with AD and perhaps identify potential therapeutic targets to reduce Tau aggregates and NFTs as 

well.    
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