Zhang, Wen
Stress Wave Propagation and Tunability in 1D Granular Systems
1 online resource (169 pages) : PDF
2021
University of North Carolina at Charlotte
Mechanical stress wave propagation in granular materials has attracted much attention for exploring new physical phenomena due to versatile engineering applications. One-dimensional (1D) granular systems, a type of artificially designed granular materials consisting of periodically aligned discrete particles, are demonstrated to produce unprecedented wave properties that are notably different from conventional engineering materials. By designing the critical characteristics of 1D granular systems, a remarkable tunability can be achieved, which yields various engineering applications. However, a systematic understanding of the stress wave behaviors within the system is still lacking. Therefore, in this dissertation, firstly, 1D cylindrical composite granular chains are systematically investigated via experiments, numerical simulations, and theoretical analysis, which is demonstrated to support strongly nonlinear solitary waves. By creating material mismatch within single granular particles, a shell-dominated dynamic response is achieved in 1D composite granular chains. Next, the dynamic properties of solitary waves supported by 1D spherical granular chains are analyzed, making it possible to achieve an equivalent wave transmission among various materials and dimensions. Accordingly, two types of equivalent systems are designed to expand the understanding of governing factors in wave dynamics, including generalized and restricted equivalent systems. Furthermore, two types of highly efficient and controllable stress wave attenuation approaches are developed based on 1D hollow cylindrical particles and kirigami lantern structures. The fundamental mechanisms of the two strategies are strain-softening behaviors of hollow cylindrical particles and unique folding-unfolding responses of kirigami cells during stress wave propagation, respectively. Finally, 1D cylindrical granular systems with various mismatch configurations, including mass, modulus, and thickness mismatch, are tailored to investigate quantitatively solitary wave tuning strategies. Meanwhile, the solitary wave attenuation capability can be further boosted by coupling different strategies or creating a multilayer granular chain. This study comprehensively explores the stress wave propagation and tunability in various 1D granular systems via an integrated methodology, systematically uncovering the fundamental physical relations between wave dynamics and system properties. Results promote the science of stress wave propagation by developing the fundamental stress wave propagation laws and provide design guidance for next-generation impact protection, signal measurement, and monitoring systems.
doctoral dissertations
Mechanical engineering
Ph.D.
Granular SystemOne DimensionalStress Wave PropagationWave Attenuation Wave Tuning
Mechanical Engineering
Xu, Jun
Xu, TerryZheng, NigelUddin, MesbahChen, Shen-en
Thesis (Ph.D.)--University of North Carolina at Charlotte, 2021.
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). For additional information, see http://rightsstatements.org/page/InC/1.0/.
Copyright is held by the author unless otherwise indicated.
Zhang_uncc_0694D_12933
http://hdl.handle.net/20.500.13093/etd:2883