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ABSTRACT

NASHEEN NUR. DEVELOPING TEMPORAL MACHINE LEARNING
APPROACHES TO SUPPORT MODELING, EXPLAINING, AND

SENSEMAKING OF ACADEMIC SUCCESS AND RISK OF
UNDERGRADUATE STUDENTS. (Under the direction of DR. WENWEN DOU)

The main goal of learning analytics and early detection systems is to extract knowl-

edge from student data to understand students’ trends of activities towards success

and risk and design intervention methods to improve learning performance and expe-

rience. However, many factors contribute to the challenge of designing and building

effective learning analytics systems. Because of the complexity of heterogeneous stu-

dent data, models designed to analyze it frequently neglect temporal correlations in

the interest of convenience. Moreover, the performance descriptions gained from the

student data model or prediction results from the analytical models do not always

help explain the "why" and "how" behind it. Furthermore, domain specialists cannot

participate in the knowledge discovery process since it necessitates significant data

science abilities, and an analytical model appears as a black box to them.

This research aims to develop analytical models that enable domain experts to

study their students’ performance behavior and explore trustworthy sources of in-

formation with the help of explanations on the analytics. The work demonstrates

various approaches to using the temporal aspect of heterogeneous student data to

build analytical models: weighted network analysis, unsupervised cluster analysis,

and recurrent neural network analytics. The description, implementation process,

and findings of each method are presented as technical contributions to the tempo-

ral analysis of student data. All these analytical models highlight the complexity of

heterogeneous-temporal data, model building, decision-making tasks, and the need for

a more in-depth focus on visual information of analytics with state-of-art explainable

AI tools and techniques.
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This dissertation work underscores a need for developing a robust way to integrate

the possibilities inherent within each approach. To achieve this goal, a comprehen-

sive yet flexible and empirical framework named FIND is presented to support the

design and development of analytical models to extract meaningful insights about stu-

dents’ academic performance and identify early actionable interventions to improve

the learning experience. The framework is illustrated on three applications (e.g., stu-

dent network model, unsupervised clustering model, and recurrent neural network

analytics) to demonstrate the value of this framework in addressing the challenges of

using student data for learning analytics. These applications present vast opportu-

nities to benefit students’ learning experience by implementing flexible educational

data representations, fitting different predictive models, and extracting insights for

designing prescriptive analytics and building strategies to overcome perceived limita-

tions.

An academic institution’s culture drives its ability to accept, leverage, and deploy

predictive and prescriptive analytics to enhance the workflow of maximizing peda-

gogical outcomes. This dissertation may aid in developing or refining a set of design

standards for learning analytics systems.
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CHAPTER 1: INTRODUCTION

In the educational sector, the recent surge of advances and adoption of data-driven

models(Educational Data Mining) has resulted in the large-scale use of AI approaches

across learning analytics applications. Learning analytics (LA) is a knowledge discov-

ery process that combines data science, theory, and design to measure and analyze the

data related to learners to improve their performance [12, 13]. Over the past decade,

the increase in data volume in this sector emphasizes the need for specialized and rig-

orous analytical techniques to interpret student data better. Poor implementation of

these analytical techniques and failure to collect an adequate amount of institutional

data to support these analyses can lead to flawed interpretation and decision-making

and ultimately lead to the abandonment of the techniques. Learning analytics re-

search has focused on learning analytics in diverse institutions rather than evaluating

a broad framework of its effects on the higher education sector.

This dissertation presents innovative learning analytics and educational data min-

ing techniques to improve students’ performance and learning experience. In partic-

ular, this dissertation addresses how different analytical methods can quantify the

learning experience on the same student data. A framework named FIND is pre-

sented as a structure to explain our objectives with three separate analytical models.

This framework comprises three main building blocks: 1 - student data engineering,

2 - learning model generation, 3 - discovering insights reflection. The three learn-

ing models are weighted student network analysis, unsupervised cluster analysis, and

recurrent neural network on student data.

The findings from this learning analytics research can create interventional mea-

sures to help educational stakeholders guide their students. In this dissertation,
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instructors, students, educational policymakers, and education researchers are all

possible stakeholders who can benefit from the knowledge collected through learn-

ing analytics and educational data mining to enhance their teaching and students’

learning experiences.

1.1 Motivation

Through this dissertation work, two primary challenges were encountered in build-

ing effective analytical systems on student data. Firstly, dealing with the big and

sparse heterogeneous student data with class imbalance is one of the biggest chal-

lenges. Student data is not consistently populated for every student; data can be in-

complete, inconsistent, entered incorrectly, and infrequently. Apart from the problem

of sparsity and incompleteness, the data demonstrates heterogeneity due to several

reasons including the frequent changes in program and curriculum, frequent course

withdrawal, and change of majors. Furthermore, depending on how student risk is

defined, student data is likely biased toward successful students, with a significantly

lower number of students at risk. Academic success or risk can be defined in many

ways by different institutions. It may also vary within an institution with different

disciplines establishing their own criteria for student success. For example, if the risk

factor was defined as a 3.00 CGPA, it might not be very reasonable since many people

would consider that CGPA threshold too high; however, it might divide the class la-

bels of being successful and risky into a 50:50 ratio. An 85:15 proportion of successful

students and students at -risk is noticed with the CGPA threshold set to 2.00 on our

student data. Moreover, the ratio also varies when the ways of defining academic risk

factors are changed. For example, the ratio changes when the risk factor is set to the

"time to graduation" rather than defining the risk with "CGPA."

Identifying the best model and building an effective analytical system to achieve

the best analytical performance on student data is another big challenge. There are

dozens of ready-to-use machine learning and deep learning algorithms to tackle pre-
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dictive analytics. All of these techniques are used to solve supervised classification

or regression analysis issues using a large volume of labeled data. Unsupervised ma-

chine learning and deep learning algorithms are less applicable in production due to

the difficulties of analyzing unlabeled data. However, researchers sometimes apply

unsupervised deep learning or clustering algorithms to discover complex patterns in

unlabelled data [14, 15]. Supervised learning could perform the task of prediction

by having sufficient labeled data. In contrast, unsupervised learning could demon-

strate specific non-trivial dependencies or even complex patterns that lead to deeper

insights [15]. In addition to the diversity of applications of different analytical ap-

proaches, we also experience that both the heterogeneity and complex structure of the

student data contribute to the challenge of selecting a proper analytical model. For

example, student data consists of continuous and discrete numerical features, cate-

gorical features, and sometimes unstructured textual data. This data is also temporal

and varies significantly over time.

Moreover, during the process of selecting appropriate features to formulate the

best performance metrics, domain experts need to be involved. Domain experts

are the educational leaders, teachers, and academic advisers who can evaluate the

students’ performance as well as the efficacy of the tools to analyze the performance.

The necessity of involvement of the domain experts is a perfect example of accuracy

does not equal insights - when machine learning cannot generate insightful outcomes

unless there is involvement of domain knowledge from the domain experts. Domain

experts know the data, the context and the students they interact with; such wealth

of knowledge is critical for data analysis and decision making.

The implications of the challenges mentioned above include:

1. Many features about student academic performance can be sparsely populated.

2. Most Predictive models expect a single data type.
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3. Predictive models demand a consistent feature vector or data structure.

4. Temporal data requires specialized AI models.

5. The volume of data on at-risk students is insufficient for building accurate pre-

dictive models.

6. The involvement of the domain experts is crucial to validate the feature selection

and sensemaking process on the analytical models.

After thoroughly researching the existing challenges, two main gaps are distilled

from the current learning analytic approaches and the existing learning analytics

systems. The first research gap is that most methods do not use temporal models

for predicting students’ at-risk [16, 17, 18]. However, the bottleneck in solving this

challenge is the heterogeneity of the students’ data hinders integrating different data

sources for modeling, and the sparsity of some features could be necessary for some

specific population [3]. The second research gap focuses on the "lack of explainability"

of predictive results and models in the learning analytics system. The practice of

interpretable machine learning has not yet been adopted by learning analytics research

on a large scale. Often, these analytical tools lack the explanations behind a particular

predictive result or a visual report on the working mechanism of the features in an

analytical model. Conati et al. [19] is the first person who emphasizes the need for

eXplainable AI (XAI) in open learner models. The authors believe XAI will help

policymakers and academic advisers to understand their students better.

1.2 Thesis Statement and Research Questions

Thesis Statement: Temporal analysis and providing explainability of

machine learning models on large-scale heterogeneous student data demon-

strate a better prediction and understanding of students’ behavioral pat-

terns towards their performance than black-box or non-temporal machine

learning models.
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This thesis addresses the following research questions for three different building

blocks of our framework:

• Student Data Engineering

– RQ1.1:Leveraging the temporal nature of the student data, what do the

different student data models capture?

– RQ1.2:What is the benefit of addressing heterogeneity of high-volume

student data?

• Learning Models Generation

– RQ2:How do different explainable machine learning methods help produce

better models of student success and risk? (comparison of methods)

• Insight Discovery

– RQ3:How does each model support comprehending students’ performance

and effectively planning interventions? How may the insights gained from

these models aid domain experts in obtaining actionable knowledge?)

The research questions RQ 1.1-1.2 are connected to chapter 4, which discusses

several student data representations. RQ2 and RQ3 are related to chapter 5 and

chapter 6, respectively. All the research questions are answered and reiterated at the

beginning of chapter 7.

This dissertation aims to frame and demonstrate the importance of student data

representations and data preparation on the performance of machine learning algo-

rithms. The research demonstrates an effort to compare different machine learning

models in education on the same student data and understand how these different

models can affect the interpretation of students’ performance via model explanations

and visual analytics.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 reviews the background information crucial to understanding this thesis,

including a brief discussion of current learning analytics techniques and tools. Rele-

vant knowledge discovery or educational data mining approaches are also introduced.

This chapter focuses on the existing challenges in current analytical practices and

discusses the gaps in the decision-making efforts from the predictive outcome of the

prediction models.

In chapter 3, a unifying framework named FIND is presented to consolidate and

abstract the stages and issues for designing and refining learning analytics systems.

The building blocks of the three learning models - weighted student network model,

unsupervised clustering model and recurrent neural network on student data are dis-

cussed as a demonstration of the value of this framework in addressing the challenges

of using student data for learning analytics from chapter 4 to chapter 6.

To benefit from the explanations as a feedback mechanism, it is critical to un-

derstand the interaction between different data formats and analytical models. In

chapter 4, different data representations and feature vectors on the same student

data built for different analytical approaches are discussed.

In chapter 5, we explore different analytical models and how each of them is con-

tributing to understanding the students and their performance. Chapter 6 demon-

strates how the visualization of students’ collaboration networks, model exploration

with explainability tools deepens the understanding and improvement of individual

models.

Chapter 7 summarizes the contributions, findings, and limitations. Finally, some

future directions on this research are mentioned in this chapter.
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1.4 List of Contributions

This dissertation incorporates newer methods in the area of learning analytics to

understand student risk/success and address the aforementioned research gaps by:

1. Developing three analytical models to understand how new analyt-

ical techniques and tools help to gain deeper insights on students’

risks and success: To achieve this goal, three different machine learning and

data models (weighted network analytics, unsupervised clustering and recurrent

neural network based analysis) were developed. Several machine learning algo-

rithms on various student data models to better understand students’ overall

performance and determine the factors that influence the students’ performance

are explored and implemented throughout the process. Even though the objec-

tive is the same, different machine learning algorithms demand different types

of inputs, i.e. prediction and categorization of successful and at-risk students

is a common target for different predictive analysis. Different preprocessing

techniques were applied on the same student data to prepare different inputs of

student data models for the different machine learning algorithms.

2. Incorporating explainable AI and visual analytical results to assist

the understanding of the predictive models: The segregated clusters of

the unsupervised clustering on engineered-temporal features were explored to

identify the behavioral patterns of different student cohorts. In addition, two

different state-of-art explainable AI tools are discussed on the recurrent neu-

ral network models to demonstrate the efficacy of interpretability for model

improvement and actionable decision-making.

3. Designing a prototype for an interactive dashboard to involve domain

experts in the decision making process: In this prototype, a data model,

an aggregate analytics view with visual and tabular explanations and a view to
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understand students individually were incorporated with different attributes.

Furthermore, the originality of this research demonstrates the significance of

explainable AI for educators and policymakers to comprehend model predic-

tions. Student advisors participated in evaluating and providing feedback on

the prototype.

4. Developing an empirical framework named FIND to structure the

whole learning analytics process into actionable insight generation: A

generalizable framework to demonstrate how the three different learning models

help the domain experts and educational policymakers to identify actionable

insights is presented in this dissertation.

Here is a summary of the contributions of this dissertation:

1. This dissertation develops three temporal machine learning models to predict

and analyze students’ behavior towards their performance. The main contribu-

tion of this dissertation is to extract different insights and actionable knowledge

from those models on the same dataset and features. Each model demonstrates

separate things depending on the data model and how the machine learning

models are formulated.

2. The weighted student network model extracted from an offline student database

is an innovative approach to learning analytics.

3. This dissertation presents an innovative approach by using XAI in an inter-

active dashboard to involve the domain experts in proper model training and

understanding the students better.

4. This dissertation first uses recurrent neural networks for degree analytics and

demonstrates the models’ efficacy with SHAP explanations by showing the time-
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wise (semester-wise) performance for both regression and classification prob-

lems.

5. This dissertation presents a framework to compare the innovations across three

learning models from data representations to insight generation to help the

domain experts understand students better.



CHAPTER 2: Background

In computer education research, learning analytics (LA) is the process of evaluating

data about learners to improve their educational attainment, learning experience, and

operational efficiency [20, 21].

Learning analytics is defined by Sclater et al. as "the measurement, collection,

analysis, and reporting of data about learners and their contexts, for purposes of un-

derstanding and optimizing learning and the environments in which it occurs" [22].

Over recent years, characterizing the educational experience became complex and

more complicated since it requires interdisciplinary expertise, starting from data ex-

perts to educational leaders. LA is now a multidisciplinary knowledge discovery pro-

cess that demands to include data science, theory, and design to achieve an optimized

and efficient learning experience to uncover patterns in students’ success or failure out-

comes [20, 12, 13]. Researchers in this field have begun to incorporate newer methods

to gain more insight into learning programs and tools [23]. The operational research

of learning analytics requires knowledge of educational data mining and analytics and

interactive recommender systems for personalized adaptive learning [24].

At first, numerous educational choices by academic policymakers or domain ex-

perts such as faculty, staff, and administrators have been based on instinct. However,

decision-making can be improved when grounded on data, actualities, and factual ex-

amination [22]. As datasets on learners proceed to develop and become more promptly

accessible, the potential for learning analytics grows too. This development of enor-

mous information in big data drives the improvement of the tools and strategies of

learning analytics [22, 25]. Moreover, it should not fundamentally substitute human

qualities such as engagement, ability, and judgment; perhaps they should be supple-
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mented by exposure methods where appropriate [22, 25]. This advance emphasizes

the significance of learning analytics in education.

This chapter will discuss the data science and knowledge discovery aspects of cur-

rent state-of-the-art learning analytics approaches and tools. The discussion will

center on learning analytics workflows and knowledge discovery processes, hurdles in

preprocessing large amounts of heterogeneous student data, addressing the research

gap of implementing different machine learning approaches on the student data model,

and defining sensemaking research interpretation on predictive results. In this thesis,

improving overall learning experiences is emphasized rather than solely focusing on

performance.

2.1 The Overall Workflow of Learning Analytics

Learning analysts and researchers portray the workflow of extensive learning ana-

lytics processes differently. These workflows tend to direct projects from basic infor-

mation to experiences and insights (the method of KDD) and tend to vary on data ex-

amination strategies, including stakeholders and pedagogical practitioners [26]. The

researchers agree that the KDD method profoundly takes after the manner of any

knowledge discovery process. Chatti et al.depict the significant steps of the learning

analytics process as (1) data gathering and preprocessing, (2) analytics and interven-

tion, and (3) post-processing [24]. They claim that the education data is the basis

of the learning analytics (LA) process [24]. Data gathering and preprocessing are

fundamental to perform any analytics on the data related to the learners. Prepro-

cessing step reconstructs the input data into the essential format to be input into

a particular LA model. This step mainly incorporates "data cleaning, integration,

data transformation, data reduction, data modeling, user and session identification,

and path completion" [24]. Based on the preprocessed data, analytics and interven-

tion procedures are used to study the learners’ performance, uncover insights, and

improve the learner experience. Chatti et al. further mention that the analytics step



12

incorporates the study and visualization of data and includes monitoring, analysis,

prediction, mediation, evaluation, and reflection. Post-processing at that point con-

sists of the steps to make strides in the analytics cycle ceaselessly. The process could

incorporate unused or new information, refining the current dataset, or characterizing

new features for the following cycle.

According to Han et al., the workflow of the analytic learning process comprises

four crucial steps: 1) data cleaning, 2) feature extraction, 3) data mining, and 4)

evaluation to learn compelling insights from the student data model [2]. Per the

experience gathered throughout this dissertation in learning analytics research, the

fifth step is considered a post-action or post-processing step called "intervention"

according to the language of Computer Science (CS) education. This section will

describe the five stages of the learning analytics process (see Figure 2.1).

Figure 2.1: The Overall Workflow of Learning Analytics encouraged by Han et al. [2]

2.1.1 Data Collection and Preprocessing

In general, data is collected for learning analytics from a broad range of technologies

and contexts in institutional settings. Student Information Systems (SIS), Intelligent

Tutoring Systems (ITS), Learning Management Systems (LMS), Personal Learning

Environments (PLE), social media logs, survey and interview questionnaires, and

game-based and simulation-based learning environments (PLE) are examples of data

sources.

With the advancement of open-source projects and Internet access via small mo-
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bile devices, learners are yielding to online learning activities. Therefore, learning

management tools have to deal with a lot of data originating from learners’ activities

and growing enrollments. Learners’ data are either protected or private; they are

not openly accessible. Due to the enormous amount of data produced by the overall

system, learning analytical research shifts the focus from traditional data gathering

and processing approaches to "Big Data" techniques [27]. Student tracking data

straight from learning management tools consists of logs from various events, inter-

actions, and academic performance, which need particular attention to collect, and

manipulate. For example, Blikstein [28] presented NetLogo, a framework to observe

students’ behavior while writing codes in their programming assignments. The tool

captures large quantities of events such as keystrokes, button clicks, and changes.

Usual RDBMS(Relational Database Management System) tools are insufficient to

save and prepare the vast amount of data coming from education [23]. MongoDB,

Hadoop, MapReduce, Orange, Weka are some open source ETL (Extract, Transform,

and Load) tools to help store and process the data [29]. Some generic to specific data

preprocessing tasks are necessary to help transform the first bulk of data into proper

analytic research. Preprocessing techniques include data sanitation, user anonymiza-

tion, session and transaction identification, path completion, data transformation,

enrichment, and reduction [30].

2.1.2 Feature Extraction

Collected and preprocessed data for storage purposes is converted to a specific

student data model, which accommodates the features for a particular analytical

approach. For instance, Nur et al. extricate different academic features, including

GPA, high school records, and academic progression features (e.g., number of course

withdrawals, academic standing, credits attempted and earned) to anticipate on time

and delayed graduation in an education institution [1]. The authors in this publica-

tion build student network models with data from students other than interactions
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reported in learning management systems or social media logs. They extracted dif-

ferent network features from the weighted student network model and a fixed point

feature in addition to the classical academic features.

Different data mining techniques, statistical methods, i.e., t-test, ANOVA anal-

ysis, linear or non-linear dimensionality reduction algorithms, i.e., nearest neighbor

analysis, are used to perform feature extraction procedures. The extracted features

are engineered features or basic features directly retrieved from the raw data, entirely

dependent on the individual analytical approach. Different performance features, stu-

dent activities, demographics, and background information are the most commonly

extracted features.

2.1.3 Analysis

In this step, researchers apply a statistical or machine learning method or a set

of analytical or data mining strategies to gauge students’ performance or determine

experiences and insights from the extricated features. Some techniques for analysis

in learning analytics or educational data mining are statistical analysis, regression,

classification, clustering, text mining, nearest neighbor analysis, network analysis,

natural language processing, and model discovery [23]. A supervised machine learning

method, for example, can be used to create a predictive model for classifying students

based on course performance data. Later, this supervised model can be used on unseen

students’ (test data) data to predict their performance earlier in their enrollment.

Chapter 4 compares various analytical methodologies to preprocess the student

data used in this dissertation. Section 2.3 and 2.4 will discuss some of the analytic

methods and their challenges in the existing research.

2.1.4 Evaluation and Visualization

Evaluation of students’ performance is the ultimate locus of the learning analytics

workflow. The data scientists analyze students’ performance, estimated risks, be-
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havior, and skills by different analytical and pattern mining approaches. Various

performance metrics such as accuracy, F1-score are assessed iteratively to optimize

the performance of the analytical method.

Researchers employ visual reports and visualization approaches to detect trends,

insights, and relationships in data. They assess the visual information to find out

the potential of learning analytics practices to predict academic performance [31].

For example, maintaining the size of the learning community and further processing

associated with it is complex, and most of the passive activities may remain unnoticed,

especially in distant learning [32, 31, 33]. Visualization tools help instructors and

administration to extract and visualize actor-specific and group-specific information

exchange and analytics on the performance, which is usually hard to observe from

the abstract level.

Several eXplainable Artificial Intelligence (XAI) tools and methodologies are now

used to visually or textually comprehend the findings of prediction models. It also

assists data scientists with the development and training of machine learning systems.

The usage of XAI is not broadly adopted in learning analytics research. Two XAI tools

are discussed on the neural network model in chapter 6 to illustrate the advantages

of explainable AI in LA and EDM systems and research.

2.1.5 Intervention

Intervention in learning analytics is a set of activities that takes insights from the

analytical evaluation and uses them to attain ultimate pedagogical learning goals [34].

These activities consist of giving intelligent feedback to the appropriate stakehold-

ers like students or parents, course recommendations, course design, planning and

scheduling, and suggesting new group formation to monitor changes in performance.

Most of the learning management tools aim to provide automated or manual feedback

to the learners in response to the engagement with the process to better their perfor-

mance and collaboration [35, 16]. Learning tools integrate recommendation systems
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to automate course suggestions by analyzing students’ past academic performance,

activities, and choices [36]. Different learning analytics visualization tools help in-

structors to analyze student performance and recommend guidance proactively [37].

By analyzing the outcome in the evaluation step, instructors redesign the courses,

schedule, and plan ahead of time. They can also suggest new groups [38] and peda-

gogical activities to improve performance [38, 39].

Although the ultimate purpose of the learning analytics process is to plan interven-

tions to maximize the positive learning experience, this dissertation focuses till the

evaluation step of the analytic learning process.

2.2 Categories of Learning Analytics Techniques and Tools

Many learning analytical tools and techniques are surveyed as part of this disser-

tation. They are categorized into two different dimensions-

1. Based on the target users, and

2. Based on the timeline of analysis on student data

Based on the target users, two types of systems are used. The first type of tools

and techniques are used to improve the learners’ learning experience where the target

users are students. Many learning analytics systems were designed to help individual

students enhance their learning experience and outcomes [40, 17]. Domain experts

such as faculty advisers, practitioners, administrators use the second type of approach

to address attrition in schools. Many predictive and visualization systems have been

developed to address the challenge of attrition in schools [16, 41, 3]. This thesis

focuses on the latter type of learning analytic techniques. Faculty leadership and

advisors use the data sources hosted on this kind of "Learning Analytic Systems" to

help their students achieve better performance in their academic life.

Based on the timeline of analysis on student data, two types of relevant learning an-

alytics systems have been developed in prior research to analyze student data. It can
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be divided into (1) Degree Analytics and (2) Course Analytics. The first type looks at

the students’ progress throughout their whole program [3, 1, 42, 43], and the second

type looks at students’ progress on a course level or course majors [16, 44, 45]. For

example, Romero et al. [40] used Moodle data to develop predictive models coupled

with a visualization platform for advisors to better understand students’ activities on

a course level. Course Signals [16] is a LA tool that uses Backboard Vista to predict

students at-risk and recommends interventions for the advisors to prevent attrition.

Along the same lines of predictive analytics for student achievement, researchers de-

velop the Open Academic Analytics Initiative (OAAI) [41]. They include more data

sources than course grades, such as demographics and the students’ interaction with

course level LMS.

Table 2.1 addressed each of the types of predictive analytics mentioned above.

Three papers focus on using learning analytics to study the curriculum further to

improve learning experiences and results at the degree level [46, 47, 48]. Monroy et

al., for example, investigate how learning analytics might help enhance the curriculum

by better understanding the way and to what extent the teachers and students use

it [46]. Chou et al. focus on visualizing students’ core competencies as they progress

throughout the curriculum [47]. Much additional work has been done to improve

student learning experiences and outcomes at the course level [40, 49, 16, 50, 51].

For example, Arnold and Pistilli created SIGNALS, a dashboard for students and

instructors to view student progress [16]. Dyckhoff et al. emphasize the necessity

of equipping instructors with the tools they need to assess their teaching approaches

and make adjustments [50].

In contrast to the purpose of increasing learning experiences and outcomes, other

works focus on the issue of school attrition. Two degree-level works describe strategies

for predicting student graduation times so that interventions can be conducted for

students who are on the verge of graduating late or not at all [3, 1]. Another work
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Table 2.1: Categorizing Types of Predictive Analytics Done in LA. (Note: A paper’s
related work substantially built on this table is under review)

Target Users and Expected Outcomes
To improve learning

experience and outcomes
To address the challenge of

attrition in schools

Timeline
of

analysis

Degree
Analytics

Monroy et al. [46];
Chou et al. [47];

Snodgrass et al. [48];

Mahzoon et al. [3];
Nur et al. [1];

Demeter et al. [52]

Course
Analytics

Romero et al. [40];
Dorodchi et al. [49];
Arnold et al. [16];
Dyckhoff et al. [50];

Dietz-Uhler et al. [51];

Amnueypornsakul et al. [53];

at the degree level combines academic and financial information to predict student

retention and graduation outcomes [52]. Amnueypornsakul et al. collect data from a

MOOC (massively open online course) and train a model to predict student attrition

in a course [53].

Early warning and student success are two of the most common applications of

learning analytics [22]. Predictive models are constructed utilizing historical data

on past students to classify or predict whether a current student is at risk or not.

It depends on several aspects, including behavior or skill analysis [24, 22]. Learning

analytics tools and approaches can also be classified using early alert and student suc-

cess analysis, course suggestions, adaptive learning, and curricular learning [22]. The

knowledge discovery and data mining techniques for these applications are discussed

in section 2.3.

There are research contributions that focus on discussing a learning analytics frame-

work in addition to specific approaches to learning analytics. Some frameworks con-

centrate on current data, data analysis tools, participating stakeholders or target

consumers, and constraints [26, 54]. Others have pushed for stronger links between

learning analytics and linked data, focusing on semantic web technologies [54, 55].

However, this strategy does not include information on the learner’s history or cur-
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ricular requirements [54]. Some authors focus on social learning analytics while dis-

cussing frameworks. Data mining and visualization tools, for example, have been

used to visualize discussion activities [33, 54]. "Six critical dimensions of a LA frame-

work, including stakeholders, objectives, data, instruments, internal and external

constraints," according to Greller and Drachsler, are all vital for creating and imple-

menting LA applications [26, 54]. A framework of learning analytics named FIND is

presented in chapter 3, covering a broad range of learning analytics goals and meth-

ods. Rather than focusing on the breadth of LA, the approach focuses on the process

and qualities of the process. It covers the various components of data engineering,

model construction, and insight production and how these three processes are com-

bined to improve learning. This dissertation demonstrates three use-cases to explore

the framework.

2.3 Knowledge Discovery & Data Mining Process in Learning Analytics

This dissertation surveys the most common analytical and knowledge discovery

and data mining approaches adopted by learning analytics (LA) and educational

data mining (EDM.) Reviewing data features and their classifications and critical

properties commonly utilized in the area is part of the preparation phase.

Research in learning analytics took off significantly when Massive Open Online

Courses (MOOC) became popular. MOOCs allow for the online development of live

and interactive support using LA [56]. The term "Massive Open Online Course"

(MOOC) was first introduced to describe a twelve-week online course, "Connectivism

and Connected Knowledge," designed by George Siemens and Stephen Downes, of-

fered at the University of Manitoba, Canada, in the fall semester of 2008 [56]. Nowa-

days, MOOC is a famous form of an online education system that involves a highly

diverse student population and various motives for taking the course in the absence of

on-site instructors. MOOC started the journey intending to enroll "Massive" students

in courses and track enormous quantities of participant activity and performance data.
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With an adequate internet connection and low to free cost, this "Open" education

system is becoming a center of attention in learning analytics research. MOOCs are

offered via the Internet on various devices and thus reach out to learners beyond the

traditional campus. Each MOOC (a single course) has a time frame with a beginning

and an endpoint. Learners are provided with a coherent set of resources. An instruc-

tor organizes a regular follow-up on the sequential activities to investigate progress

in the learning and sometimes offers interactive guidance.

To answer a wide range of educational research problems, EDM researchers use a

number of analytical and data mining approaches such as network analysis [1, 57],

text mining [58, 59, 60, 61, 62, 63], supervised machine learning [3, 64, 65], computer

vision [66], curriculum mining [67, 68], and recommender systems [69, 70].

Network analytics became a leading method for studying online social interactions

at an individual level (ego-centric analysis) and group-level (community-wise), as well

as for studying student learning networks in interactive group support [48, 53, 46, 71].

The representations of social interactions provide a robust mechanism for studying

collaborative processes in learning communities, such as knowledge formation, risk

estimation, evaluation, and then suggest influence and assistance to the communi-

ties [72, 73, 26]. Researchers explore offline collaboration and academic data to avoid

the challenge of social media data access, possible missing/irregular interaction logs

and data points in learning management systems, and optimizing the building of

network edges [1, 57].

Text mining, also known as text analytics, is an artificial intelligence (AI) tool that

converts unstructured text from student conversations, comments, discussion forums,

and code submissions into normalized, structured data. Then, the converted data

is analyzed or used to model machine learning algorithms using natural language

processing (NLP). Dorodchi et al. demonstrate how sentiment traits extracted from

student reflections can be used to identify troubled students early on so that the
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instructor can intervene [49]. Besides, sentiment analysis has been used to detect

bad and positive teaching practices to supplement data mining-based educational

techniques.

Grade prediction, graduation outcome(success or risk) prediction are examples of

predictive student analytics and supervised machine learning on student data [3,

64, 52]. Mahzoon et al. convert student institutional data into a sequential data

model consisting of temporal nodes holding data points from sequential semesters

to forecast delayed graduation in a higher education institution [3]. The first node

contains information on the student’s background (such as demographics, high school

records, age, and so on), while the last node contains information about the student’s

graduation.

Innovative computer vision applications explore the relationship between the phys-

ical learning environment and student learning even though researchers reportedly

proclaim hardware limitations for this data mining process [66]. Recommender sys-

tems use feedback, course and material recommendations, and assistance to help stu-

dents choose the best learning paths [69, 70]. In education, these systems frequently

lack a consistent review mechanism for current systems and data sets.

2.4 Challenges and Research Gaps

Numerous studies in the literature go to great lengths about developing proto-

types or executing learning analytics applications and discussing the challenges and

constraints that come with doing so. Data preparation and layout for the machine

learning process are common hurdles in implementing LA approaches. Academic

data evolves due to curriculum changes, internal and external rules, regulations, and

changes to underlying information systems resulting from regulations and policies.

Two main gaps were addressed in the current learning analytic techniques and tools

after a thorough survey of the existing challenges. The first research gap is that most

methods do not use temporal models or temporal aspects of the features for pre-
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dicting students at-risk [16, 17, 18]. Over the last decade, many ways of examining

time-series data to uncover behavioral trends and patterns have been developed by

the data science community. However, more needs to be done in the learning analyt-

ics community to adopt and adapt the temporal aspect of data for performance or

retention analysis. The heterogeneity of the students’ data hinders the integration of

different data sources for modeling, leading to hesitance in using the temporal aspect

of the data [3]. The second research gap addresses the "why" question that faculty

leaders have in mind when analyzing students’ data. Alfred and Hanan [42] emphasize

the need for explanations and interpretation in open learner models. The explana-

tions and interpretations will help the instructors and policymakers to understand

the reasons behind the early performance prediction by the underlying models. This

section will address both research gaps by examining research areas from data mining

communities, which shows us why temporal aspects of analytics and interpretation

of analytical results are two critical gaps to solve for learning analytics research.

2.4.1 Temporal Learning Analytics

Time series analysis is a part of our modern life, starting from forecasting weather to

the stock market. Data scientists believe time series analysis to be superior and more

dependable when there are enough data points than other methods. The developed

methodology proves all the underlying assumptions of the problems [74]. When a

sequential and ordered collection of observations across evenly spaced time intervals

is available, time-series analysis is widely used to forecast future values [74]. Three

primary assumptions in the time-series analysis are - 1) the data points are in numeric

format, 2) the observations close to each other in a time series are correlated, and 3)

the predicted future values depend on the currently available data values while the

present values depend on the values in the past [75, 74].

Because of the complexities of diverse student data, models designed to analyze it

frequently neglect temporal correlations to simplify and improve forecast accuracy.
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Some researchers examine the efficacy of temporality of the student data in computer-

supported collaborative learning (CSCL) and self-regulated learning (SRL) [17, 18,

76]. They emphasized time is an essential factor in analyzing students’ behavior or

performance. They mentioned-

• By aggregating features for the group collaborations does not indicate when or

where a particular pattern occurs

• Self-regulated learning is a series of events that act differently over time and

change contexts

• Students change their strategies and learning patterns over time

Many researchers argued that an extensive analysis of temporal/ sequential student

data would open a new dimension for learning analytics research. They noted that

the temporal features of enormous, varied student data necessitate more attention,

care, and possibilities. However, the time series data assumptions indicated above do

not apply to student data [76].

Student data is not necessarily numeric, according to the first assumption. Student

data include textual and sometimes ordinal data in addition to its diverse nature and

numeric aspects. While several types of temporal data from the learning management

system (i.e., Clickstreams) have been used to model student behavioral trajectories,

there has been little research on the importance of analyzing textual data, which

is available in all students’ records [77, 78]. Byungsoo et al. [79] demonstrate how

incorporating textual information (mentors’ reflecting remarks) increases both the

prediction power of identifying at-risk students and the ability to provide insights

into student course participation processes. Moreover, not much research considers

the textual and temporal aspects of course numbers and course subjects, which might

preserve some meaning of student progression towards their graduation. It is neces-
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sary to consider maximum temporal factors of student data to achieve robust and

more vigorous analytical models.

Furthermore, unlike other time-series data, student data has no seasonality or reg-

ularities within a period, which is another aspect of student data heterogeneity. As

individuals complete more credit hours or take (or are compelled to take) more diffi-

cult courses toward graduation, their progression trajectories gradually shift. More-

over, even while there may be some common trends among students with similar

performance, student data is highly different from one another. The most significant

advantage of using time series analysis is that we can understand the past and pre-

dict the future by using it. Moreover, a student’s whole academic career is a series

of events with irregular changes in strategies and performance. Therefore, ignoring

those temporal effects will be like ignoring patterns and insightful meanings from

their academic career. As a result, addressing temporal trends and anomalies in het-

erogeneous student data is required to construct a model for a better understanding

of student performance.

2.4.2 Interpretable Learning Analytics

We entered a new age of AI applications where predictive analytics with machine

learning plays a core technological role. The current adoptions of AI systems offer

tremendous advantages in our everyday life. Nonetheless, the inability of machines

to explain their choices and actions to people casts doubt on the efficacy of the

treatment. The research of explainability and interpretability is relatively new. We

are seeing hype in this research for the last five years. Because most machine learning

models are opaque, non-intuitive, and difficult to comprehend, explainable predictive

analytics on AI systems will be critical if users understand, trust, accept, and govern

the systems’ outcomes.

The definition of eXplainable AI (XAI) systems profoundly depends on the appli-

cation areas. For example, it can focus on explaining the technical components of
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predictive analytics [80, 81, 82, 83] or more on exhibiting the raw data such as conver-

sations, images, or specific trends or patterns on different media data [84, 81, 85]. The

debate of emphasizing the usage of XAI systems got more vital, especially in the last

three to five years due to the recent legal restrictions act on Data (for example, the

GDPR [86]) and increasing usage of black-box Deep Learning models for analyzing

BigData [87, 88, 89, 90].

Learning analytics dashboards that are difficult to decipher impact learners’ learn-

ing experiences [91]. Alfred and Hanan [42] are two of the first education researchers

who emphasize the need for explanations and interpretation in open learner models.

They offer a comprehensive early warning approach for detecting and treating at-risk

students using data visualizations to get diagnostic insights into the predictive model,

explain students’ performance and behavior, and organize treatments.

According to the authors, implementing a realistic early warning system is very

challenging, and it should meet two assumptions. Firstly, the predictive model should

be generalizable to switch between contexts. Secondly, the underlying mechanism of

prediction should be easily interpretable by educational leaders and practitioners

whose ultimate goal is to design essential and realistic interventions for the students.

Conati et al. claim that interpretable AI systems support and understand students’

cognitive, emotional, and performance behaviors, leading to optimal learning and

teaching experience [19]. Some other researchers, including Conati et al., emphasize

that the LA systems may include one of the following three types of interactivity

and interpretability - 1) scrutable, i.e., users may view the models’ evaluation of

relevant students specific patterns, feature importance, and underlying raw features,

2) cooperative or negotiable, where the user interacts with the system to arrive at an

assessment, and 3) editable, where the user has the full power to change the model

assessment and systems representation of knowledge [92, 93, 19].

This dissertation proposes a prototype for an interactive analytics tool applying the
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same concept on LMS. The novelty of the prototype exhibits the importance of ex-

plainable AI for advisors to understand the model predictions. Although the primary

goal of interactive AI tools is to help educational leaders (e.g., the domain experts)

predict students’ outcomes and plan interventions, tools do not always explain the

"why" behind those predicted outcomes or the results. The goal is to help the do-

main experts better understand their students by exploring the reasoning behind these

predictions by getting involved with building the analytical models themselves. The

proposed tool plans to do this by engaging them in the life-cycle of analytics by giving

them the flexibility to select features to build better analytical models for predicting

student success. This dissertation aims to incorporate explainable machine learning

to create helpful insights by opening the black box model for analytics. Chapter

6 shows how to use two XAI tools to describe the time-series model’s training and

prediction outcomes. The preliminary findings provide promising insights showing

how the users can get directly involved with the analytics and interpretation of the

results. The screenshots of the first published version of the tool are provided in the

appendix (A.2) section of the dissertation.

In summary, a human-centered design approach is used to engage faculty and advi-

sors in developing an interactive knowledge discovery system for a better understand-

ing of student success and students at risk. Human-centered design [also Human-

centered design, as used in ISO standards] is a problem-solving strategy that involves

the human perspective in all stages of the problem-solving process [52]. Observing the

problem in context, brainstorming, conceptualizing, and building the solutions are all

instances of human engagement in the process. The different analytical approaches

discussed in chapter 5 allow faculty and advisors to interact with the data used in an

analytic model, the results of the analysis, and the story of individual students.



CHAPTER 3: FIND: An Unifying Framework for Learning Analytics

Note: A paper substantially building on the chapter is under review

3.1 FIND: A Framework for Discovering Insights from Novel Student Data Models

It is contended that the challenges of complexity in data preprocessing, select-

ing machine learning models, and different student data representations are not ade-

quately addressed in prior works. Most of the previous work focused on the analytical

models and analysis of the outcome without thoroughly examining the representa-

tion and preprocessing techniques needed or done on their data. As the field of

Learning Analytics (LA) grows, researchers have proposed several frameworks, which

focus on methodologies for data analysis, involving stakeholders, and pedagogical pro-

cesses [26]. Aquin et al. emphasize a closer relationship between data representation

in LA and semantic web technologies [55]. On the other hand, his research is missing

crucial information on the learner’s background and curricular requirements. Various

frameworks focus on social learning analytics (SLA), which provides detailed infor-

mation on learning processes in real-time conversation [94]. Participants, goals, data,

tools, internal and external constraints are among the six critical parts of Greller

& Drachsler’s [95] LA framework. When it comes to creating and implementing

LA applications or systems, these dimensions are crucial. Still, holistically validated

learning analytics frameworks are scarce. One of the main limitations of the existing

frameworks is the missing links among data representations (e.g., prior features and

processing), model generation (e.g., predictive models, pattern extraction techniques),

and insights (e.g., competencies, interpretations).

Over years of experience, this dissertation agrees that there is certainly more than
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one way to conduct learning analytics research. One cannot simply apply a series

of regression or predictive models and evaluate which is the best. Because peda-

gogical outcomes differ by educational institutions and the context changes within

institutions, data scientists must make many decisions to develop different techniques

and demonstrate additional insights. In this section, FIND for Learning Analytics,

a framework for addressing data heterogeneity challenges, encouraging diverse data

representations, and comparing different data mining techniques, is presented. FIND

is assessed in a comparative analysis using multiple data mining techniques and mul-

tiple student data representations.

Moreover, this dissertation presents an overall workflow of the learning analytics

process proposed by Han et al. [2] in chapter 2 (See figure 2.1). Han’s framework [2]

provides the answer to the "how-to" question for a learning analytics system. Even

though this framework offers a step-by-step walkthrough in learning analytics systems,

this workflow has different granularity than FIND. For example, this workflow shows

"data collection and preprocessing" and "feature extraction" as two separate modules.

However, FIND presents a holistic approach of these two modules into one module

named "student data engineering" since the process is iterative and involves similar

challenges within this scope. However, FIND furthermore compares the innovations,

insights, and challenges in each module of the workflow.

Fig. 3.1 illustrates an overview of the presented LA framework linking the processes

of engineering student data, building learning models, and discovering insights. This

chapter describes the essential roles of each of the components. Later, the FIND

framework is assessed on three different analytical models with three distinct stu-

dent data representations. This framework was deducted throughout analysis and

experiments and provides a foundational way to conduct learning analytics research.

FIND helps define the processes of learning analytics. The framework consists of

three sub-components - 1) Student Data Engineering, 2) Learning Models Genera-
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Figure 3.1: Our Framework for Learning Analytics. The framework comprises three
main building blocks - 1) Student Data Engineering, 2) Learning Models Generation,
and 3) Insights Discovery

tion, and 3) Insights Discovery leading to an optimal educational outcome. It not only

represents a knowledge discovery cycle. The framework also emphasizes the cyclical

nature of analytical processes and the ongoing need to refine and improve the system

through successive phases of data engineering, processing, building models, and pre-

senting/extracting information and insights through optimization and customization

by exploration. Data engineering involves data selection, capture and processing,

and aggregation of the data. Learning model generation includes the assembly and

reporting of information and making predictions based on that information. Finally,

insights involve the use, refinement, and sharing of knowledge to improve the system.

3.1.1 Student Data Engineering

This component encompasses all one needs to do, from extracting data from in-

stitutional and other databases to providing analytic models. It is one of the most

challenging aspects. The type of data collected or preprocessed differs depending
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on the institution and the objective of existing applications. Nonetheless, it fre-

quently includes information on performance, assessments, and activities from dif-

ferent timelines (semester-wise or weekly). Dealing with the big and sparse hetero-

geneous student data with class imbalance is a big challenge itself. Student data is

not consistently populated for every student; data can be incomplete, inconsistent,

entered incorrectly, and infrequently. Apart from sparsity and incompleteness, the

data demonstrates heterogeneity due to several external reasons, including the fre-

quent changes in program and curriculum, frequent course withdrawal, and change

of majors.

Furthermore, student data is likely biased toward successful students, with much

fewer students at risk, depending on how student risk is measured. Student risk is

defined differently by different institutions. It may also differ within an institution,

depending on the subject of study. Finding meaningful results from machine learning

models and applications is nearly tricky without extensive data engineering and the

discovery of appropriate data science models.

The FIND framework emphasizes the necessity of experimenting with various data

models and representations. Two unique student data models are presented to demon-

strate the importance of student data engineering. They are - 1) a network data model

(see 4.2.1) [1] and 2) a temporal data model (see 4.2.2) [3].

A weighted student network is built from the student records for each semester

recursively in the network data model. It reflects the connections between students.

Six separate rules are used to identify common neighbors or affiliations in the student

network: common courses, activities, advisers, department, majors, and pre-school

information. After building the weighted student network, three different network

features are retrieved besides the conventional academic data for the delayed gradu-

ation prediction. This strategy is unusual because it constructs the network without

gaining entrance to evolving social media or interaction logs data from LMS.
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The student temporal data model contains one temporal sequence per student(as

illustrated in Figure 3.2), where a sequence represents nodes grouped in the sequential

order of the enrolled semesters. Each node in a series represents a single point in time

(i.e., a semester) and contains a vector of features, i.e., all of the students’ data and

activities. The student model mainly consists of three types of nodes:

1. The background node with all demographic, admission, and background infor-

mation,

2. The semester node contains all activities and information for that semester, and

3. The result node contains all information on semester-by-semester aspects for

performance evaluation, such as GPA and enrollment.

A student data model is provided that sorts heterogeneous data sources and creates

information sequences for each student using time. The sequence data model can be

used to assess the interdependence of events in a student’s life. It allows analytics to

uncover unexpected trends over time using student activity sequences.

Figure 3.2: The Architecture of the Sequence Data Model [3]

Features are engineered that sustain temporal links in the student data for the

unsupervised cluster analysis (see sections 4.2.2 and 5.2.1). Student data in semester

nodes is used to generate all of the engineered features.
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3.1.2 Learning Model Generation

The goal of this component is to create or find an analytic model for the student

data. Statistical analysis, regression, classification, clustering, text mining, nearest

neighbor analysis, network analysis, and model creation are some of the techniques

used in learning analytics [23]. In this stage, researchers use one of the methodologies

outlined above to evaluate performance or retrieve a meaningful behavioral pattern

from the extracted characteristics using a statistical or machine learning method. A

supervised machine learning algorithm, for example, can create a predictive model

for classifying students based on course performance data. This trained and super-

vised model can then be applied to test data from unseen students to predict their

performance earlier in their enrollment.

Another major problem in learning analytics research is determining the optimal

model for achieving common goals with the best performance. To maximize out-

comes, learning analytics (LA) analyzes preprocessed or engineered data to bridge

relationships between learning activities and learning results. There are numerous

ready-to-use machine-learning and deep-learning algorithms to handle predictive an-

alytics and behavioral pattern extraction. With a substantial amount of labeled data,

these strategies are utilized to address supervised classification or regression analysis

problems. Due to the difficulty of evaluating unlabeled data, unsupervised machine

learning and deep learning algorithms are less useful in production. Researchers

sometimes use unsupervised clustering techniques to find complicated patterns in

unlabeled data [14, 15]. As a result, using simply some arbitrarily labeled data, su-

pervised learning might fulfill the prediction task. On the other hand, unsupervised

learning may identify different non-trivial dependencies or even complicated patterns

to get deeper insights [15].

Aside from the variety of applications of different analytical approaches, we’ve

found that student data’s heterogeneity and complicated structure add to the diffi-
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culty of choosing a suitable analytical model. Using explainable AI on a recurrent

neural network model is another way to detect patterns and analytical operations

for training and good predictive results. This dissertation uses XAI to compare the

pattern of a single data point (local analysis or with local XAI) or a cohort of data

points (global analysis or with global XAI) to the rest of the data. In other words,

it detects if the learning model makes sense for an individual data point or a group

of data compared to the rest of the data. The rationale behind this technique is the

assumption that individuals in a cohort demonstrate the same behavioral patterns in

the model’s feature space, whereas each individual has some uniqueness.

3.1.3 Insights Discovery

This component focuses on how one can take advantage of learning analytics.

Learning analytics technologies and methodologies can track significantly more data

and underlying patterns than a single instructor, policymaker, or group of policy-

makers could. These tools and strategies can reveal previously unknown aspects of a

student’s learning experience and course or degree completion. Learning analytics is

based on the notion that the data gathered through data engineering and analytics

will aid in gaining insights into students’ learning experiences and activities. LA ana-

lyzes the data to make predictions about students’ performance and develop interven-

tion strategies to improve pedagogical outcomes and learning experiences. Different

analytical and pattern mining methodologies examine students’ performance, esti-

mated risks, behavior, and capabilities. Various performance measures are evaluated

iteratively to improve the analytical method’s performance.

Researchers use visual reports and visualization techniques to identify trends in

data and their relationship to insights. They evaluate visual information and deter-

mine the potential for learning analysis cases to predict academic achievement [31].

For example, maintaining the size of the learning community and being able to do the

additional processing associated with it is complex, especially distance learning can
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continue to be overlooked by most of the passive activities [31, 33, 32]. Visualization

tools assist instructors and administrators in extracting and visualizing actor-specific

and group-specific information exchange and performance analytics, which are typi-

cally difficult to observe at the abstract level.

Narrative results with explainable artificial intelligence are an alternative method

for presenting complex and heterogeneous student data (XAI). The student data and

analytic results are presented to decision-makers in this technique through insightful

visualizations of the student performance pattern: for both individual and group set-

tings. Explainable AI can also help data scientists in the training process of machine

learning models in identifying if the model is improving over time. Explainable visu-

alizations of the results provide a compelling, engaging, and easy way to understand

complex and heterogeneous student data and the predicted results from a black-box

model. Moreover, XAI makes it so effective in presenting complex student data in

that it works for all decision-makers regardless of their level of expertise.

3.1.4 Pedagogic Outcome

The ultimate goal of the learning analytics approach is to devise interventions

that would optimize the pleasant learning experience while also achieving pedagogical

learning objectives. Giving informative feedback to suitable stakeholders like students

or parents, course recommendations, course design, planning and scheduling, and

suggesting new group formation to monitor changes in performance are all part of

this process. Following thorough insight development, we strive to provide learners

with automatic or manual feedback in response to their involvement in improving their

performance and collaboration. Instructors redesign courses, organize, plan ahead of

time based on the evaluation process results. They offer new groups and pedagogical

activities to increase students’ performance.

Chapter 4 to chapter 6 present the research and experimentation on degree-level

analytics from different perspectives on three distinct learning models. The definition
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of a student’s success or risk (the target variable for prediction) is presented in two

ways: 1) by the number of years taken to graduate and 2) by using a Cumulative

GPA threshold of 2.00. All of the models discussed preserve the temporal aspect of

the features. All three approaches validate the three building blocks of the FIND

framework - 1) by utilizing a novel model for student data representation discussed

in Chapter 4, 2) by using innovative analytics models discussed in Chapter 5, and 3)

by generating insights at the aggregate or individual student level discussed in both

Chapter 5 and 6.

Chapters 4, 5 and 6 go over the components for each model, from data representa-

tion to generating insights in more detail.



CHAPTER 4: Student Data Representations

This dissertation evaluates the accuracy, interpretability, and prediction perfor-

mance of several student data representations or models (current chapter: Chapter

4) and machine learning models (Chapter 5). For the various data representations

and model techniques, the same data source is used in this dissertation.

In this chapter, different data models are developed for the different analytical

approaches discussed in chapter 5. The data models change their representations

depending on the input criteria of the analytical models, even though all of them are

temporal, and they preserve the same information on the students.

4.1 The Dataset

For this dissertation research, the data mainly contains degree analytics-related

features. The data consist of different course activities, semester-wise enrollment

information, academic performance, and activities. These data are stored in a student

administration database (Banner) and maintained by the school authority. For this

research purpose and with the IRB approval, a data coordinator with access to the

live database delivers the data as mentioned above on only undergrad students of the

College of Computing Students of UNCC. The data includes the information from

Fall 2004 to the current semester (Spring 2021) for this ongoing research. However,

the analyses use the most recent 10 to 12 years of data to incorporate the upgraded

course curriculum.

The dataset contains demographic, admission, and background information, semester-

wise time-series information, and graduation information. Demographic and back-

ground data mainly consists of the data related to the ethnicity, gender, past and
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present geographic locations, marital and status of children, admission information

while applying for UNCC, background information on the previous educational insti-

tutions. Semester-wise information is mainly temporal and cumulative over time for

a single student. This information consists of the course activities, performance such

as CGPA, individual GPAs of courses, academic standing, and all other information

related to GPA type, instructor type, and course major. This dataset also includes

graduation information such as expected graduation date and the date the student

graduated, graduating CGPA, major, department, and academic advisors’ informa-

tion. We have access to the expected graduation date for ongoing students calculated

from the required credits to graduate, which helps us determine a student’s current

state or progress.

4.2 Different Data Models

Three different data models or data representations are developed with the exact

source of data. The data representations vary since the analytical models’ output

and analyses vary, and each expects a particular type of data representation. For the

three different models, the following three distinct data models or representations are

built-

1. Weighted Student Network Data Model [1]

2. Temporal Data Model with Engineered Features [5]

3. Mixed Data Model with Temporal and Non-temporal Features

4.2.1 Weighted Student Network Data Model

Section 5.1 presents a student network analysis-based prediction model for at-

risk students who do not finish their degrees or graduate on time [1]. One of the

leading hypotheses for this analytical model is that network features, or the students’

connections increase early prediction accuracy on the potential dropout students when
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used with the conventional academic features available with the dataset. A cumulative

(by time) weighted student network is built from the offline Banner database. It

extracts the network features from the weighted network model. Each system in

Banner, Advancement, Human Resources, Student, Financial Aid, and Finance has

a view to an identity formation that allows for the viewing and updating of generic

personal information [96]. For example, in Banner, the General Person Module is a

single collection of data that includes a person’s name, address, phone number, email

address, and biographic information. A person’s record is only produced once.

This analysis includes 13 years of data - from Fall 2004 to Fall 2016, including

2552 graduated undergraduate students. The study included only those students

who have spent at least eight semesters in this school and have chosen a major from

the Computing and Informatics College for at least one semester. On-time graduation

is selected as a marker of success. The prediction algorithms are employed to identify

students who took longer than six years to graduate or who could not finish their

degrees in six years, including the dropped out or those who left the program after

six years. Such at-risk students are approximately 30% of the total 2552 students.

Students who have enrolled in the last six years are not included in the analysis.

Therefore, the target variable for the supervised machine learning model is on-time

graduation, in other words, graduation within six years.

The main contribution is forming a weighted student network model. Student

networks are built based on student records rather than self-reported data from the

learning management system (LMS) or social media logs. In addition to the conven-

tional academic features, the network and fixed point features are extracted and used,

which improve the prediction accuracy of the supervised machine learning model. The

benefit of not using LMS data is that not all educators use the LMS similarly, result-

ing in inconsistent data for all students in a major. Moreover, using social media as a

form of LMS or interactions has not become the norm yet. Therefore, the information
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on connections, collaborations, or interactions is not easy or consistent.

Demographics, pre-admission assessments, and institution information; academic

features, for example, majors, courses attempted and completed, transferred courses,

and advisers; and extracurricular projects, including intra- and interdisciplinary ac-

tivities are collected.

In total, there are 57 features. The following are three kinds of features that were

designed and extracted:

1. Academic features,

2. Student network features extracted from the weighted student network model,

and

3. Fixpoint features

The first kind is already commonly used in learning analytics, but the second and

third forms have only been employed in a few research projects. One of the critical

contributions of this dissertation is feature engineering and academic activities based

on student networks. The extraction of the latter two types of features is described

in detail.

4.2.1.1 Academic Features

Several studies have used academic features such as grade-point average (GPA) to

classify at-risk students [16, 97, 98, 99, 100, 71]. It includes students’ demographic and

personal information (such as age, citizenship, gender, primary ethnicity), high-school

or previous institutional records (school rank, percentile ), and academic progress

over semesters ( such as course-wise and semester-wise GPA, attempted and passed

credits, number of courses taken per semester, information on transferred, withdrawn

and failed courses).
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4.2.1.2 Student Network Features

Each semester, a weighted student network is created. The cumulative intensity

of the edge (or link) between two students is represented by the edge weight value

between them at the semester t. Their intensity will rise over time because it is

cumulative. The edge weight between two students x and y at semester t,

abbreviated as w(x, y, t), is determined as follows:

w(x, y, t) = exp
(∑

i

rescale(normalize(wi(x, y, t)))
)
,

w1(x, y, t) =
∑

t′≤t
C(x,t′)∩C(y,t′)
C(x,t′)∪C(y,t′)

,

w2(x, y, t) =
∑

t′≤t same_activity(x, y, t′),

w3(x, y, t) =
∑

t′≤t same_advisor(x, y, t′),

w4(x, y, t) = same_dept(x, y),

w5(x, y, t) = same_major(x, y),

w6(x, y, t) = same_age_high_school(x, y),

(4.1)

C(x, t) signifies a set of courses taken by student x during semester t in equation 4.1.

The indicator function wi(x, y, t) will return one if x and y are two different students

with the same i) activity, ii) adviser, iii) department, iv) major, or v) high school.

If they do not satisfy these six rules, the weight(wi) will be zero, meaning they are

not connected or are not neighbors. The high school records are non-temporal in-

formation. That is why they are not cumulative (only used once) while calculating

the weights by this rule. All the other five rules are dependent on time. For ex-

ample, the w1(x, y, t) inspired by the Jaccard index [101] calculates the total of the

common course ratio between x and y till t. After normalization, wi ranges from
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[0, 1], and the mean of wi at t becomes 0.5 after rescaling. Jaccard index1 is a sim-

ilarity metric for nodes in a network that defines the number of shared neighbors

divided by the sum of all neighbors. Some weights have bigger scales than others,

and without normalization and rescaling, they may dominate the final weight value.

Edge weights are standardized to prevent this. As a result, each wi becomes equally

essential in our defining the edge weights. The term "activity" refers to most of the

college’s student-focused extracurricular organizations, athletics, and programs. The

exponential function strengthens the significant connections. As a result, a student

network with t edges may have a large number of small-weighted edges and a small

number of large-weighted edges.

For each semester t, a student network is created, with over 40 networks generated

from 13 years of student records. Figure 4.2 depicts a student network with three

different edge colors: orange for successful students, blue for at-risk students, and

dark green for at-risk students for several classes. It’s worth mentioning that many

students at risk lack strong ties with their successful peers.

Figure 4.1: Extracted Network Features extracted from Built Student Network based
on Equation 4.1

1The Jaccard index is a popular node similarity metric in networks based on the number of
common neighbors divided by the sum of all neighbors.
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After successfully building the weighted student network from the student records,

we then extract three types of (See figure 4.1) network features from that network as

follows :

1. Basic Network Features,

2. Community-based Network Features,and

3. Ego-network Based Features

I) Basic Network Features: The term "centrality" under network analysis

refers to approaches for determining the relative importance of nodes (i.e., students

are the nodes in our case).

Figure 4.2: The student network is edge-colored after filtering out weak (90th per-
centile edge weight) connections. Within the dotted red area, many at-risk students
lack deep ties with successful classmates [1]
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Degree centrality [102], closeness centrality [103, 104], betweenness centrality [105,

106], and PageRank [107] are all examples of centrality measurements. The centrality

measurements are chosen after statistical evaluations such as the t-test and histogram,

which provide sufficient and noticeable information to distinguish at-risk students.

Degree centrality, or the amount of links occurring upon a node, is one of the most

basic characteristics. The number of times a node functions as a bridge between

other nodes is determined by its betweenness centrality. Practically every concept of

centrality has an unweighted version and a weighted version. All centrality indicators

adopted in this study are weighted unless otherwise noted. Figure 4.3 demonstrates

some basic network features in a network.

Figure 4.3: Different Centrality Measures (basic network features) [4]

II) Community-based Features: In network analysis, community detection is

a well-established research area. It is occasionally used as a subroutine to solve other

issues, such as the one we’re working on [108, 109, 110, 111]. Because a student

can join many overlapping communities, we use overlapping community detection

methods. For example, a student A can share connections with two different students,

B and C, who took two courses separately with A. Because of its accuracy and

popularity, we chose SLPA [112] as our base community detection approach. We

calculate the following features after identifying several overlapping communities in
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each network at the time t (semester), Nt:

1. Let Com(x) = {Com1, Com2, · · ·} - a collection of communities in which x is

an active student. Finally, min/max/average over the Com(x) communities are

aggregated for each variety of network feature (x)

2. A giant component in each network at the time t (semester t), Nt denotes

the most significant and most prominent community. In many circumstances,

a student is checked if they are a member of that component because it is

one of the most visible student groups. The proportion of such cases is then

calculated over a period. Students with a ratio of 1 are stable members of a

giant component throughout their academic background.

III) Ego-Network-based Features: An ego network is built for each node for

each time point, meaning each student will have an ego network at each semester.

Ego network represents one node’s induced sub-network surrounded by its only neigh-

bors [113]. The ego-network density (see equation 4.2) and clustering coefficient from

each node’s (students’) ego network are extracted as ego network features [103, 104].

For any weighted network (N) at time t, density is defined as follows:

Density(x, t) =
2
∑

(a,b)∈Ego(x,t)w(a, b, t)

|Nei(x, t)| · (|Nei(x, t)| − 1)
, (4.2)

In equation 4.2, Ego(., t) refers to a set of one’s neighbors in Nt, whereas Nei(., t)

refers to the edge set of one’s ego-network in Nt. Recall that the final weight in

Equation 4.1 is cumulative and uses the exponential function. As a result, if long-

term connections for course registration and student activity are not maintained,

ego-network density will have a low value. Therefore, it is speculated from the outset

that successful students may have thick ego networks.
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4.2.1.3 Fix-point Features

A fixed point is a constant feature where the input and output of the stationary

system are the same [114]. For example, a fix-point x signifies x = f(x) when given

a function f(.).

Fix-point calculations are employed in a variety of fields. The stationary distri-

bution of the Markov chain, i.e., π = πP, where P is the transition matrix, is a

good example. The authors created a mutually recursive complex system of vari-

ables [107, 115, 56, 116, 117, 118, 119], and their fix-point values are used to interpret

vertices. Domain-dependent knowledge is required to define such a complicated and

stationary variable system. The educational experiences and access to the available

data provide the domain knowledge. Here, the domain knowledge is based on two

fundamental assumptions:

1. Many students enrolled in the same courses, activities, or undergraduate advis-

ers have similar features or common characteristics.

2. Courses, activities, or advisors that students have taken might be used to char-

acterize their traits [120, 25]. The network features consider the interactions

between students. However, without considering other students, the fix-point

features identify students based on course, activity, or advisor data. Hence,

building a network for extracting fix point features is unnecessary.

val(ci, t) =
∑

cj

#stu(ci,cj ,t)∑
ck

#stu(ck,cj ,t)
val(cj , t),

val(ai, t) =
∑

aj

#stu(ai,aj ,t)∑
ak

#stu(ak,aj ,t)
val(aj , t),

val(vi, t) =
∑

vj

#stu(vi,vj ,t)∑
vk

#stu(vk,vj ,t)
val(vj , t),

val(si, t) =
∑

cj
take(cj , si, t)

1
#stu(cj ,t)

val(cj , t)

+
∑

aj
take(aj , si, t)

1
#stu(aj ,t)

val(aj , t)

+
∑

adj
take(vj , si, t)

1
#stu(vj ,t)

val(vj , t),

(4.3)
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Input: Student network Nt = (V,E), Course and Activity Records
Output: val(si, t) for each student

1 Initialize val(x, t) = 1
n where n is the total number of courses, activities, advisers, or

students depending to the type of x.
2 while until the convergence of val(si, t) do
3 Update val(ci, t); Update val(ai, t); Update val(vi, t); Update val(si, t)
4 return val(si, t)

Algorithm 1: Algorithm for Calculating Fix-points in our Complex Variable
System [1]

It is worth noting that our variable definitions closely reflect our domain knowledge.

Because of the normalization coefficient, if two courses, activities, or advisers have

many students in common, their values will be pretty comparable. The sum of all

course/activity/advisor values determines a student’s value, which is purely based

on the student’s courses/activities/advisors. Numerous variables are defined that are

mutually recursive based on these intuitions. This variable’s value is shared with

nearby variables as equation 4.3.

The letters ci, ai, vi, and si stand for course, activity, adviser, and student, respec-

tively. students(x, y, t) returns the number of students who enrolled in two courses,

activities, or advisers x and y during semester t, where take(x, s, t) ∈ {0, 1} indi-

cates if students enrolled in course, activity, or adviser x during semester t. As a

result, val(x, t) reflects the influence value possessed by each entity x during semester

t. Since we establish a network Nt each semester, these variables are defined for

each semester. Department, major, or degree information is not used in the variable

definition because they are too broad.

The fixpoints of the influence variables are calculated using Algorithm 1. The vari-

ables are updated using an iterative process. The convergence of the student variables

is essential. Additional features are the converged student values. Its convergence is

ensured by the following theorem (Theorem 1), and there is only one solution.

Theorem 1. The proposed complex variable system has one unique convergence point.

Proof. Each course, activity, or advisor variable type has its own Markov chain, with
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Table 4.1: Feature Vector for Predictive Analytics

Type Student
ID

Semester
Number

Academic
Features

Network
Features Label

Train 1 1 GPA, Success Ratio, etc. Degree, Density, etc. S
Train 1 : : : S
Train 1 8 GPA, Success Ratio, etc. Degree, Density, etc. S
Train 2 1 GPA, Success Ratio, etc. Degree, Density, etc. R
Train 2 : : : :
Train 2 20 GPA, Success Ratio, etc. Degree, Density, etc. R
Train : : : : :

Test 2000 1 GPA, Success Ratio, etc. Degree, Density, etc. S
Test 2000 2 GPA, Success Ratio, etc. Degree, Density, etc. S
Test : : : : :

each variable being a state of the Markov chain. The coefficients of the variables

in Equation 4.3 define the transition probability in each Markov chain between two

states. All of the coefficients are normalized, and the sum of their outward transition

probabilities is 1.0. As a result, the entire procedure is the same as calculating the

stationary distribution in a Markov chain.

It is commonly known that if all states are strongly coupled in a finite number

of transitions, a Markov chain has only one unique stationary distribution. Student

values are simply the total of other courses/activities/advisors variables, and they

will converge if the others do. Each semester, the data was evaluated to see if it

corresponded to the strongly connected Markov chain situation, which it did due to

the high population and density. As a result, each semester, the data instance has a

single fixpoint.

After extracting the three types of features, a feature vector is formed with them

(See Table 4.1), where each row represents a studentâs data for a single semester.

It indicates the input data format for the supervised machine learning models on

the network student data representation (See section 5.1) for predicting on-time or

delayed graduation.
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4.2.2 Temporal Data Model

This section presents the data model used for both the unsupervised K- means clus-

ter analysis (See section 5.2.1) and the Long Short Term Memory (LSTM) recurrent

neural network model (See section 5.2.2). A temporal-sequential data model built

by another former Ph.D. student influences this data representation (See figure 4.4)

analysis [3]. One sequence per student is restrained in the student temporal/sequence

data model, where a sequence represents nodes arranged in the sequential order of the

enrolled semesters. Each node in a series represents a single point in time, e.g., a single

semester. It contains a vector of features, such as all of the students’ data and behav-

iors. There are three sorts of nodes in the student sequence data model: 1) the back-

ground node with all demographic, admission, previous education, and background

information, 2) the semester node with all semester-wise(mainly the time-series data)

activities and information (such as individual course performance data, semester-wise

CGPAs, academic standings), and 3) the outcome node with all information on the

semester-wise features for performance evaluation such as GPA, number of years of

enrollment.

This hybrid data model obtains three types of nodes, and the features are tweaked

with upgraded information or more features are added to the model. Temporal engi-

neered features are calculated from them too. The unsupervised cluster analysis and

the RNN model both utilize these engineered temporal features.

Figure 4.4: Student Sequence Data Model [3])
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4.2.2.1 Types of Features in Student Sequence Data Model

There are three sets of available features in the student sequence data model.

Features for each node will be chosen from those sets. First, a student data model is

offered that uses time (in our case, time=semester) to filter heterogeneous sources of

student data and build information sequences for each student. It allows analytics to

examine the interconnection of events in a student’s life and identify unanticipated

patterns based on temporal sequences of student behavior using the sequence data

model. Sorting student behavior through time and aggregating the data in a sequence

style helps account for time dependency in analytics and build data nodes, contextual

information within nodes, improve granularity, and interpret sequences as narratives.

Options are provided to select the features to include in the analytics on the landing

page of our interactive application. The student model is made up of three types

of nodes: the non-temporal background node, which contains all demographic data,

the semester node, which includes all semester-specific activities and data; and the

outcome node, which consists of a mix of temporal (i.e., CGPA for each semester)

and non-temporal (i.e., number of years to graduate) features.

I) Non- temporal Background Features The background features consist of

demographic, admission, and background information of the students. Demographic

and background information consists of gender, ethnicity, past and present demo-

graphic locations, marital status, number of children, etc. Admission information

consists of preschool or previous education information such as the location of the

former education, various performance metrics such as CGPA, percentile, and school

rank. The background information of multiple schools and colleges is from different

times. Since this information does not change for a student and is recorded just once,

these features are considered constant and non-temporal features.

II) Semester-wise Temporal Engineered and Raw Features The semester

features consist of semester-wise information such as all the course information, cumu-
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lative GPA (CGPA), semester-wise class rank, major, progress evaluation, academic

standing, etc. It also includes course performance features such as individual GPAs

earned for courses, credits attempted, credits earned, and GPA types.

Features are engineered that maintain temporal relationships in the student data

for the unsupervised cluster analysis. All of the engineered features are derived from

student data in semester nodes. A 2D feature vector is formed for each feature. It has

temporal values for each student’s engineered features for their first eight semesters

(See figure 4.5). The feature vectors are generated for those students who have been

enrolled for at least eight semesters. The summer semesters are not considered in

the dataset since the summer semesters represent an inconsistent and sparse dataset.

Moreover, students generally retake the courses in the summer semesters, which they

failed or withdrew previously.

CGPA (Cumulative Grade Point Average) is considered as the target variable for

the latter two analytical models. K-means clustering analysis is an unsupervised

machine learning approach. However, the cohorts of students are annotated with

a CGPA threshold of 2.00 in their eighth semester. If the students have a CGPA

greater than 2.00, they are considered as successful. Otherwise, they are considered

as students at risk. The analysis needs to find how the two cohorts (successful and

at-risks) form the clusters with a particular engineered feature.

One of the engineered elements that produce significant student clusters for the

performance criteria (e.g., CGPA of threshold 2.00) is "Course Progression Through

Semesters." This feature displays a normalized value for the sum of all courses taken

in a semester divided by the course level (for example, the course level for ITSC 1200

is 1). The fundamental hypothesis is that this attribute should be either constant

or rising for successful students. If the feature declines from semester to semester,

the student is either not advancing to higher-level courses or is repeating or retaking

some lower-level courses. The other temporal engineered features are listed in the
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following section (Section 4.2.2.2).

Some raw numeric temporal data are employed for the recurrent network analytics

described in section 5.2.2. Some of the engineered features from the unsupervised

learning model are reused as input to the RNN model. Some of the textual or cat-

egorical features such as âacademic standingâ are converted to numerical values as

categories (with One hot encoding) since the neural network model cannot work with

textual data.

Figure 4.5: Input to K-Means Clustering : A feature vector representation for feature
F denoting 8 semesters(t1tot8) of its values vertically and for n number of students
horizontally [5]

III) Hybrid - Temporal and Non-temporal Outcome Features Outcome

features consist of the semester-wise features for performance evaluation such as GPA,

the number of years of enrollment, expected graduation date, total credits attempted,

and total credits passed. It is a hybrid of constant and temporal features. For

example, each student has GPAs for each semester which is temporal, but the total

number of years a student takes to graduate is fixed and does not change over time.

4.2.2.2 Datasets for Student Temporal Model

The same set of features is collected from the same data source for a varying amount

of time. The time lengths vary for the two different learning models as mentioned

above.
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Dataset for Unsupervised Clustering Analysis: The unsupervised K-means

clustering model[5] includes 6203 students. The data is retrieved from the same

Banner data source (See section 4.1). Data throughout ten and a half years are

collected- from Fall 2008 to Fall 2018. The temporal and semester-wise features are

solely used from the data to construct a feature vector for each student in terms of

the engineered temporal features listed below for the unsupervised learning model:

1. Course level progression through semesters

2. Academic standing progression through semesters

3. Percentage of transferred courses to the total number of courses per semester

4. Percentage of courses with an A grade to the total number of courses per

semester

5. Percentage of courses with a B grade to the total number of courses per semester

6. Percentage of failed courses to the total number of courses per semester

7. Percentage of course withdrawals to the total number of courses per semester

For each student’s first eight enrolled semesters, the feature vector contains the

values for one of these engineered features.

Dataset for Supervised Deep Learning Model (RNN): A supervised classi-

fication model with a vanilla LSTM RNN is developed (see section 5.2.2.1) for this

dataset. The dataset includes 6220 students. In addition to the features used in the

unsupervised clustering, some other categorical and raw temporal features are used for

this analysis. Some non-temporal features were used at first, which resulted in model

overfitting and less explainability. Moreover, non-temporal features are irrelevant and

not suitable for temporal models like LSTM RNN.

Due to the limitations and observations found, more data may help this model

not to overfit and have interpretable results. The analysis is changed to a regression
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model with more feature engineering and hyper-parameter tuning. Data from three

more semesters are added, which results in 6491 students in total for the bidirectional

LSTM analytical model.

The features set used in the RNN analysis is provided in appendix A.1. Besides

these, features deducted by sparsity and feature engineering are also listed.



CHAPTER 5: Machine Learning Models for Student Success Prediction

This chapter presents three machine learning approaches to predict success and

risk and analyzes student data models presented in chapter 4. This chapter focuses

on degree-level analytics. The definition of a student’s success or risk (the target

variable for prediction) is presented in two ways: 1) by the number of years taken

to graduate (i.e., six years) and 2) by using a threshold of cumulative grade point

average (CGPA) of 2.00. All of the three models discussed in this chapter preserve

the temporary aspect of the features.

5.1 Network Analytics: Predict On-time Graduation using Temporal and

Weighted Student Network Data Model

To predict the risk of delayed graduation earlier in the academic career and inves-

tigate the patterns of connections and collaborations among those at-risk students,

we extract a feature vector of three different features discussed in section 4.2.1 [1]:

1) Weighted student network features, 2) conventional academic features, and 3) fix-

point features that are extracted from the temporal and cumulative student network

data model.

Only 60% of undergraduate students in the United States complete their bachelor’s

degrees in six years [121]. The rest take more than six years to complete their educa-

tion or never complete it at all, eventually dropping out. A prediction model based on

student network analysis is provided for detecting delayed graduation instances [1].

An innovative network analytic methodology is presented for predicting students at

risk who might drop out of college due to taking longer to graduate (more than six

years). Moreover, the early analysis finds out which students are prone to drop out
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eventually, either early or later, after six years.

The main contributions of our network analytics approach are -

1. The network analytics model is unique and different from other network analyt-

ics approaches. Diverse data from students’ collaboration and activity records

are leveraged to determine student network features besides the typically uti-

lized academic features such as GPA and credits earned, (inconsistent) social

media, and LMS log data.

2. Starting from the fifth semester (early prediction), we identify at-risk students

who might take longer than six years to graduate or who are likely to drop out

sooner or later.

3. Fix-point feature, a special type of feature, is generated in this research (see

Figure 5.1).

4. This analytical approach achieves a better performance than using only conven-

tional academic features. It accomplishes an F-1 score of 0.85 and an AUCROC

of 0.86 by combining the network and fixed point features with the academic

features.

5. The findings include compelling features and risky behavioral patterns in the

cohort of the at-risk students, which will help the domain experts make informed

decisions on guiding the students. At-risk students, for example, have a large

number of weak connections rather than a small number of strong ones.

Network features such as degree centrality and the ego-network density of at-risk

students differ significantly from successful students.

This section will discuss the overall workflow of our analysis, the prediction results,

and the statistical analysis of the weighted network. Throughout the discussion, we

answer some research questions to demonstrate the efficacy of our approach.
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5.1.1 Overall Workflow of the Network Analysis Framework

The whole workflow of the weighted student network analysis is shown in Figure

5.1, from data production through prediction results generation.

Figure 5.1: The Overall Workflow of the Weighted Student Network Analysis Frame-
work [1]

Chapter 4.2.1 already covered how to create the network data model from student

records and extract three types of features: academic features, student network fea-

tures, and fix-point features. The data we collected for this analysis is from a longer

time frame, i.e. over 12 years. Several curriculum changes took place within this

timeframe. The training set includes the students who graduated before Spring 2013,

and the test set includes everyone else. The train’s to test ratio is 77:23. Grid search

with 10-fold cross-validation is used to determine the best model. SVM, Random

Forest, Decision Tree, AdaBoost, RBM, Bagging, Multi-Layer Perceptron, and more

classifiers are all put to test. Two classes in the training set are notably imbalanced,

with 63 percent successful and 37 percent at-risk. Under/oversampling techniques are

employed to solve the imbalance issue[122]. Random Forest succeeds effectively, as

shown by the fact that it generates all of the values shown in Table 5.1. This study

distinguishes between successful students who completed their education in less than
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six years and at-risk students who completed their education in more than six years.

5.1.2 Research Questions

The following research questions are answered throughout the predictive and net-

work analysis:

• RQ-NA1: Does including students’ network features aid in the identification

of at-risk students?

• RQ-NA2: Is it possible to identify at-risk students earlier by using their social

network features?

• RQ-NA3: To what extent do successful students’ network connections differ

from those of at-risk over time?

• RQ-NA4: Who are the active members of student communities, and who are

the peripheral members? How do successful and at-risk students interact in

their communities?

5.1.3 Analysis on Prediction Results

The network features are calculated in a variety of student networks whose edge

weights are determined using either a single rule (i.e., six rules for connecting edges:

shared courses, advisors, activities, department, major, and high school information)

or the combined weight (as indicated in Table 5.1). Prediction results for two different

periods are presented: 1) for their overall academic career from admission to gradua-

tion and 2) early prediction, only until their fifth semester of data. Table 5.1)does not

include three rules for producing edge weights (such as common department, major,

and high school information) since they are sparse and/or perform poorly.

The best performance among them is shown by network features based on the

aggregate weight. The recalls are 56% and 50% of at-risk students across all and

early phase students, respectively, using the academic features only. The addition of
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Table 5.1: Prediction Results (*The definitions of weights are provided in section
4.2.1, where we talked about the building process of network model) [1]

F-1
Overall AUCROC Recall of

At-risk
F-1 of

Successful
For Overall Academic Career( Admission to Graduation)

Academic Features 0.78 0.76 0.56 0.78
Network Features (course only) 0.76 0.72 0.62 0.83

Network Features (activities only) 0.73 0.66 0.51 0.81
Network Features (advisors only) 0.74 0.70 0.61 0.81

Network Features (all weights considered) 0.81 0.8 0.64 0.87
Academic + Network Features 0.84 0.86 0.69 0.89

Academic + Network + Fix point Features 0.85 0.86 0.70 0.89
Early Phase (After 5th Semester)

Academic Features 0.8 0.75 0.5 0.8
Network Features (course only) 0.8 0.71 0.54 0.86

Network Features (activities only) 0.75 0.66 0.51 0.82
Network Features (advisors only) 0.76 0.68 0.55 0.83

Network Features (all weights considered) 0.8 0.77 0.55 0.79
Academic + Network Features 0.84 0.85 0.56 0.9

Academic + Network + Fix point Features 0.85 0.85 0.58 0.9

the network features obtains 69% and 56% recalls for the at-risk student class and

70% and 58% recall after applying all accessible features. On additional criteria like

F − 1 and AUCROC, the prediction model, which contains all academic, network,

and fix-point characteristics, outperform others significantly. These findings strongly

qualify the solutions to our study questions RQ-NA1 and RQ-NA2. Therefore,

network features help with overall prediction and, more specifically, forecast across

shorter periods.

5.1.4 Statistical Analysis on Weighted Student Network

Statistical t-test analysis on both successful and at-risk students is conducted for

each network feature and the fix-point features. Three types of network features are

extracted:

1. Basic network features or centrality measures,

2. Community-based centrality measures obtained by the overlapping community

detection algorithm SLPA, and

3. Ego-network-based features

The findings, in terms of each of these features, are listed here.
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1. Basic Network Features

The total of the edge weights related to a student’s neighbors at the time "t" (or a

semester) is their degree centrality. Previously, the assumption was successful stu-

dents have more connections and thus higher degree centrality scores.

Findings, on the other hand, refute the notion. Degrees from several perspectives

are shown in Table 5.2. Average values are calculated for the best 50% and most

deficient 50% of students in each prediction class in terms of mean degree (successful

vs. at-risks). Their mean values are substantially different, with successful students

scoring 2522.4 and at-risk students scoring 5258.1 (p-value < 0.01). Some students

who are at risk have more interactions than the majority of their peers.

The analysis can be explained in a variety of ways-

• For example, some at-risk students participate in an excessive amount of ex-

tracurricular activities. Similarly, the bottom half of at-risk students had sig-

nificantly fewer degrees than the bottom half of successful students, 557.4 vs.

373.1 (p-value 0.01). It also implies that many at-risk students have fewer

opportunities to interact with their peers.

• Although the significance level of the successful student is low (p-value > 0.01),

they had higher mean values than students at risk in the top 50% and bottom

50% cases of early phase students. However, the average degree of successful

students in the fifth semester is greater than the overall mean degree (3106.5

vs. 25222.4). It’s only conceivable if successful students establish strong bonds

early in their academic careers and ii) don’t build many new connections later.

On the other hand, at-risk students must repeat some courses to pass them,

resulting in many links in our network because they repeat the same courses

more frequently than successful students.

• The mean degree of the top 50% of students at risk is 5392.7 in the fifth



60

semester, but it rises to 10143 when their academic career is considered. It

demonstrates that they interact with many new students for student activities,

courses, and advisers even in their late academic periods. They encounter new

people (classmates) since they retake classes frequently, change advisers, and

their previous successful classmates have already progressed in their academic

careers.

• Surprisingly, the average degree of the most deficient 50% of the low performing

students did not vary significantly over time, ranging from 311.7 after the sixth

semester to 373.1 over the academic year. They are cut off from the rest of the

world regularly.

These findings confirm our research question RQ-NA3 in that successful and at-

risk students behave differently over time. We also believe that successful students

have higher values in terms of other network features.

However, a few of our findings contradict one another, indicating the variety of be-

haviors among at-risk students. For example, at-risk students can serve as community

connectors. For example, the top half of at-risk students in the prior degree central-

ity study continually create new connections (rather than staying in a community).

Therefore, they will have a greater PageRank, betweenness, and eigenvector centrality

than successful students. No significant changes are found in the population’s bottom

half.

Closeness centrality [123], clustering coefficient [124], leverage centrality [125], and

other measures of centrality are also considered. We don’t see any significant differ-

ences between the two student cohorts for some of those centrality features.

2. Community-based Centrality Measures

Table 5.2 shows that successful students have higher mean values for community

features, indicating that they play a more critical role in their communities. It also

corresponds to the high betweenness centrality scores for the low-performing students,



61

Table 5.2: Statistical t-test results for mean centrality, mean community-based fea-
tures, and two student classes. Except for the situations noted with boldface writing,
all p-values are less than 0.01[1]

Successful
(entire period)

At-risk
(entire period)

Successful
(at 5th sem.)

At-risk
(at 5th sem.)

Degree
All 2522.4 5258.1 3106.5 2856.6

Top 50% 4487.3 10143.0 5575.5 5392.7
Bottom 50% 557.4 373.1 634.8 311.7

Page
Rank

All 0.00075 0.00202 0.00072 0.00193
Top 50% 0.00118 0.00365 0.0011 0.00346

Bottom 50% 0.00031 0.00038 0.00032 0.00038
Eigen. All 0.0068 0.02212 0.0058 0.02323
Betw. All 0.00079 0.00456 0.0006 0.00391
Close. All 0.4357 0.4281 0.4372 0.4214

Min Degree All 553.3 498.8 568.8 423.1
Min Eigen. All 0.5348 0.5145 0.5419 0.4719

Giant.
All 0.0674 0.087 0.0665 0.0929

Top 50% 0.1268 0.1606 0.122 0.1713
Bottom 50% 0.0074 0.0131 0.0077 0.0137

Fix
Point

All 0.000601 0.000722 0.001303 0.001793
Top 50% 0.00115 0.00178 0.002344 0.00541

Bottom 50% 2.144450e-81 1.561194e-81 2.511162e-131 1.818025e-131

implying that they are joints between groups rather than center members. Further-

more, they are more likely to be members of the larger communities than successful

students since they engage with numerous groups and thus end up in peripheral posi-

tions in communities. Surprisingly, the average degree centrality of the bottom 50%

of at-risk students is lower than the bottom 50% of successful students. Despite this,

they have a higher average proportion of participation in big communities. At-risk

students may go to many places but build few connections within them.

3. Ego-network-based Feature

The clustering coefficient and the ego-network density are mutually beneficial. Ego-

network density can be high if some edge weights are large. However, some high edge

weights do not always result in a clustering coefficient of one. Only when an ego

network is complete does its clustering coefficient become one. Because of this trait,

larger values of the clustering coefficients are expected from successful students than

from at-risk students. Successful students’ "Ego Networks" are "more comprehensive"

than those of at-risk students. If long-term connections in numerous activities are not

maintained, ego-network density will have lower values. As a result, we hypothesize



62

that successful students have large ego networks. In all cases, successful students had

a higher ego network density than at-risk students (3.634 vs. 3.073 for the entire

period and 3.707 vs. 2.706 at the fifth semester, respectively).

On both community-based and ego network components, all previous investigations

accord with the conclusions. The ego-network density test findings also indicate that

successful students and their peers have strong relationships. These findings in our

investigation support RQ-NA3 and RQ-NA4.

Fixpoint Features: Our data show that at-risk students had higher fix-point

values in general. For the same reason, at-risk students engage in numerous short-

term relationships with others. In the early phases, the pattern is distinct (supporting

research question RQ-NA3). For example, in the early stage of degree centrality,

successful students’ degree values are more significant than at-risk students’ degree

values. On the other hand, at-risk students already have higher fix-point scores.

Therefore, students who have been exposed to too many early connections can be

identified. The p− value in each case is less than 0.01.

Figure 5.2: FIND analysis on student network model [1]
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5.1.5 Insights Discovery

Figure 5.2 demonstrates the three main building blocks of FIND analysis on the

student network model. In this section, we summarize the results of our network

analysis model. We start by presenting some high-level findings and then delivering

the insights learned from this model.

High-level Findings of Network Analysis:

1. The top half of at-risk students have higher centrality values than most success-

ful students, showing that this group of at-risk students have access to more

interactions.

2. The bottom half of low-performing students have a smaller value of degree

centrality than the successful students, showing that many at-risk students do

not connect with their peers as strongly as successful students.

3. The average degree centrality of successful students in the fifth semester is

higher than the average for the entire period, implying that:

(a) During early academic times, successful students can quickly steady their

associations with other students; and

(b) In later academic years, successful individuals do not develop many new

relationships.

4. Successful students have larger mean community feature values than the at-risk

students, indicating that they have a more significant impact on their commu-

nities.

5. In comparison to successful students, at-risk students had higher average values

for betweenness centrality. It means that they mainly participate in forming

bridges and live in the periphery of communities rather than core members.
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6. Students at risk build connections with many groups and, as a result, end up

on the margins of the community, making them more likely than successful

students to be members of significant communities.

7. The Ego Networks of successful students are more intact than those of at-risk

students, implying that successful students and their peers have deep bonds.

The following are conclusions drawn from network analysis:

1. Students at risk form haphazard connections, but successful students maintain

and deepen existing ones from the beginning until their graduation.

2. Successful students are connected with neighbors who have a higher average

GPA, and their bonds are stronger as a result.

3. The Ego-networks of successful students maintains a steady density over time.

4. Some at-risk students continue to form new connections even after graduation,

and their ego networks do not become dense or complete.

5. At-risk students are on the outskirts of the communities, while successful stu-

dents reside in the central area of the communities.

5.1.6 Lessons Learned and Limitations

Finally, this study concludes that incorporating students’ network and fix-point

features in the analysis makes it simpler to find successful intervention spots for at-

risk students at an early stage. Consequently, successful and at-risk students exhibit

different behaviors over time. If the policymakers or faculty advisers can alter or

intervene in the way students connect, they may make a difference in graduating

them on time. The significant challenges and limitations faced while developing the

network analytical model are as follows:

1. Limitations of the Student Network model:
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(a) Extracting and defining the rules for determining the shared neighbors to

build the student network,

(b) Prioritizing and defining weights to each rule for determining the network

is as hard as extracting and clarifying rules. Since we define a student in

many ways with varying features, finding out the critical rules to determine

a cohort or a student individually is harder.

(c) Dealing with the sparsity of the data due to inconsistent usage of LMS or

different nature of instruction and logging student and course information

2. Administrative and Strategic Limitations:

(a) Dealing with the changes in curriculum over the 13 years of data, such as

changes in course names and design: This study requires a vast volume of

data from a more extended period. Since the department rearranges and

changes the curriculum within specific periods, it isn’t easy to aggregate

over the course information.

(b) Unavailability of some critical student demographic information.

(c) Gender, race, ethnicity, generational social class, information on financial

aid availability, student body demographics, institution’s geographic loca-

tion, and students’ socioeconomic position are all inadequate or missing.

It is one of the criteria that go into determining how long a student takes

to graduate.

5.2 Machine Learning Techniques for Performance (CGPA) Prediction

In the following two machine learning models, we will explore successful and at-

risk students’ cohorts using a threshold of cumulative grade point average( CGPA) of

2.00. Section 5.2.1 demonstrates an unsupervised machine learning approach with K-

means clustering to determine segregated-temporal patterns among successful and at-

risk students. A supervised machine learning model with Long Short Term Memory
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Recurrent Neural Network (LSTM RNN) is implemented to predict CGPAs ahead

of time (See section 5.2.2). Chapter 6 demonstrates some eXplainable AI (XAI)

techniques and tools to understand the training and prediction results since RNN is

a black-box model and hard to interpret.

5.2.1 Unsupervised K-Means Clustering

This section explains how to use unsupervised machine learning to evaluate student

temporal data models and locate clusters of students with similar success and risk

patterns [5]. For constructing the feature vectors as input to the K-means clustering,

the engineered features (see section 4.2.2) and semester-level nodes are only applied.

5.2.1.1 Problem Formulation

The clustering was applied only to the students who have at least eight semesters of

information. In this analysis, students with a CGPA greater than or equal to 2.00 are

considered successful, while others are at-risk. Several engineered features are gener-

ated, and the clustering algorithm is applied to them. However, the algorithm cannot

find distinctive and valuable patterns in all of them. Seven significant engineered

features are selected (See section 4.2.2.2) that capture the student data’s temporal

pattern and have a high correlation with the success criterion (e.g., CGPA set to

threshold 2.00). This analysis utilized K-means clustering [126], an unsupervised

learning approach. The dataset is strongly skewed toward successful class. Unless

the model overfits this type of imbalanced data, supervised learning does not provide

high accuracy. As a result, an unsupervised clustering method is utilized to identify

patterns of student behavior.

The data for each aspect in the semester-by-sequence model serves as the founda-

tion for analyzing students’ progress in a major. This dissertation offers a method for

mapping each engineered complicated feature in the sequence model to more straight-

forward signatures (re-representation) and extracting metadata from the signatures
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for unsupervised cluster analysis. A 2D feature vector(see Figure 4.5) is created

for each student’s enrolled semesters at the beginning of the analysis. Then, for all

students who have been enrolled for at least eight semesters, K-means clustering is

applied [126] for each of the seven selected engineered features. However, to acquire

the best clustering results with the k-means clustering algorithm, it is necessary to

know the optimal number of clusters to initialize the cluster centers and clustering

algorithm.

The K-means clustering method is an iterative procedure that attempts to split

a dataset into K separate non-overlapping subgroups (clusters). Each of the data

points belongs to one single cluster. It aims to make intra-cluster data points as

similar as possible while keeping clusters distinct (far) from each other (See Figure

5.3).

Figure 5.3: Concept diagram of k-means clustering [6]

The elbow method is a heuristic for determining the number of optimal clusters in a

data set in cluster analysis. The technique entails plotting the explained variation as

a function of cluster number and selecting the curve’s elbow as the number of clusters

to use (See Figure 5.4). The K-means algorithm is initialized with that number of

clusters. As a result, the Elbow technique [127] estimates the appropriate number of

clusters by clustering inertia before executing the k-means clustering. Each cluster is
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examined to see any discernible pattern for the groups of students (i.e., those classified

as successful or at-risk) based on the success criterion.

Figure 5.4: Elbow Point [7]

EAGER Learning Analytics tool utilizes this unsupervised K-means clustering for

user study purposes (See Appendix A.2). In the user study, participants such as the

academic and faculty advisers gave feedback on the tool and the analytics. There

was a plan to include the students they are advising at the time of the user studies.

However, the analysis consists of only the students who have at least eight semesters

of data. Many students are enrolled for less than eight semesters. A similarity metric

called DTW is extensively used in speech and word recognition [128] to solve this

issue. Dynamic Time Warping calculates the similarity or distance of two arrays or

time series of various lengths (See figure 5.5). It calculates the pointwise distance for
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two unequal time series vectors.

Figure 5.5: Dynamic Time Warping Matching [8]

Suppose for a particular engineered feature there are three optimal clusters ex-

tracted by the K-Means clustering. In that case, the similarity of a student having

less than eight semesters is calculated with each cluster iteratively. The smaller the

distance of the feature vector of a student to a specific cluster, the higher the chance

that the student belongs to that cluster. Then whichever returns the lower distance,

the student is more similar to that cluster.

5.2.1.2 Basic Steps

In summary, the basic steps for the unsupervised cluster analysis are:

• Step 01: Forming a 2D feature vector for each of the features wherein the feature

vector

– Each column represents a student.

– Each row represents the value of the feature in a semester.

• Step 02: Using k-means clustering on the engineered features

– Applying the Elbow method for determining the optimal number of initial

clusters for K-means clustering
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• Step 03: Considering seven significant engineered-temporal features which present

meaningful temporal and behavioral patterns for successful and at-risk students.

• Step 04: Analyzing the behavior of each cluster for each of the engineered

temporal features

– Finding the students in the optimal clusters who are enrolled in less than

eight semesters with a similarity measure (Dynamic TimeWarping - DTW)

– Insight discovery for planning proper intervention

5.2.1.3 Example Cluster Analysis on Engineered Features

Extracting metadata from each cluster of students demonstrates the analytic pro-

cess, allowing the researchers to identify the groups of similar students and outliers.

The cluster analysis results are discussed on two examples of engineered features

among the seven: 1) Course Progression Through Semesters and 2) Progression of

Good Academic Standing through Semesters.

For the feature "Course Progression Through Semesters," the K-means clustering

technique identifies three suitable clusters in Figure 5.6. If the students are performing

well, the value of this characteristic should be steadily growing.

Following are the statistics of the clusters generated by the K-means clustering

algorithm -

• the blue cluster has a total of 483 students where 90.27% of the students are

successful

• the green cluster has a total of 616 students where 84.58% are successful stu-

dents, and

• the orange cluster represents a higher number of at-risk students, where 72.21%

of the total 367 students are successful.
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The successful group is the most dominating cohort in the blue cluster, with 483

students in total. 90.27% of the group’s members are successful. Each semester, this

cluster has a higher course level value than the other two clusters, and the feature

value continuously increases until the eighth semester. Thus, this set of students

appears to have registered in courses with a higher number of course levels. A small

percentage of at-risk students belong to this high-achieving group (only 9.73%). The

green-colored cluster has a higher rate of course level progression than the orange-

colored cluster. The orange cluster has a lower average value of course levels that do

not cross 2000 level courses, even until the eighth semester. Students in the orange

and green clusters follow a similar pattern until the second semester. Students at risk

are higher in number in the orange cluster than the other two clusters. The course

evolution through semesters exhibits distinct patterns of student groupings based on

our success criterion.

Figure 5.6: K-means Clustering Analysis on Course Progression over first Eight
Semesters [5]

A second engineered feature is the mean of good academic standings over the first



72

eight semesters, which depicts an identifiable correlation of groups of students with

the target criterion (See Figure 5.7). The statistics of the clusters as follow:

• the blue contains 1262 students in total, where 14.18

• the green cluster has a higher number of at-risk students where they are 33.10%

of the total 145 students, and

• the orange cluster has 28.81% at-risk students of a total of 59 students

Figure 5.7: K-means Clustering Analysis on Progression of Good Academic Standing
over First Eight Semesters [5]

The blue cluster, which successful students dominate, has a value that rises steadily

until the eighth semester. As a result, a successful student is nearly sure to be in

good academic standing each semester. However, where 28.81% are at risk, the orange

cluster is in good academic standing only once until their fourth semester. In this

cluster, the students are in good standing for a maximum of three times, even until

the eighth semester.
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Figures 5.6 and 5.7 show how the K-means clustering method produces a new

representation of the temporal sequences that distinguish successful students from

at-risk students who do not have a current CGPA higher than 2.00. This new form

is used as the foundation for extracting metadata (features) that provide insight into

a student’s achievement and progress throughout the first eight semesters.

Figure 5.8: FIND on Unsupervised K-means Clustering on Temporal Data [5]

5.2.1.4 Insights Discovery

Figure 5.8 shows the three main building blocks of the unsupervised K-means

clustering on the students’ temporal features. The findings from the unsupervised

learning model led to some insights that can be leveraged to plan intervention.

The main takeaways drawn from this unsupervised learning model are two-folds:

• Throughout their enrollment, the models can take into account the students’

timewise interdependence. Moreover, it allows for greater freedom when deter-

mining the duration of a temporal node, contextualizing information within a

node, and understanding node sequences through time, and
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• The complex and heterogeneous student data can be mapped into a set of

disjoint clusters, making it easier to analyze while also separating successful

and at-risk students. As a result, it is easier to predict students at risk and plan

proper intervention tips for them early.

The findings of the unsupervised model derive the following insights from the stu-

dent data:

• The engineered features in the clusters show a proportional association between

students’ overall performance as successful or at-risk cohorts. With an increas-

ing number of at-risk students in particular clusters, performance suffers (e.g.,

the orange clusters in Figure 5.6).

• In this case, students’ academic success is projected using normalized and tem-

poral course-level progression vectors. The k-means clustering analysis results

reveal three distinct performance patterns (See figure 5.6): 1. Consistently

and rapidly increasing course level progression with almost 100% of successful

students in the blue cluster, 2.Consistently and linearly increasing course

levels with most successful students in the green cluster, 3. Flattened and

inconsistently increasing course levels with most of the at-risk students of

the dataset present in the orange cluster. Tracking such characteristics from

the start of the enrollment period and mentoring students can help students

perform better from the beginning.

5.2.1.5 Lessons Learned and Limitations

The limitations from this unsupervised learning model are three-folds. First, iden-

tifying the engineered features that demonstrate a fine line between the characteristics

of successful or at-risk students is challenging. The model has been examined with a

set of seven features presented in section 3.2.2. However, only a few features (shown
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in Figures 5.6 and 5.7) were able to demonstrate that fine line between the charac-

teristics of successful or at-risk students. Second, there is still a problem with the

imbalanced data since all the clusters have the most successful students. There is

no significant involvement of different demographic populations in the clusters where

at-risk students are higher in number and co-reside with many successful students.

Finally, finding the most likely clusters for students with a small number of semesters

(less than eight semesters) is challenging. Although DTW is handling the issue, it

might not be the most efficient method since this is the only way the similarity is

being extracted. One similar cluster has been selected with this method, where the

distance is the smallest among all other clusters even though the smallest distance

might be an enormous value. It is necessary to navigate other similarity measures for

this analysis.

5.2.2 Long Short Term Memory Recurrent Neural Network for Supervised

Learning

This section will discuss a deep neural network for time series analysis named Long

Short Term Memory (LSTM) Recurrent Neural Network (RNN). The analysis was

formulated with both classification and regression analysis based on CGPA.

5.2.2.1 Application of a Vanilla LSTM RNN for Classification

A recurrent neural network model was developed for the early prediction of at-risk

students based on CGPA. The target variable for the supervised classification model

was to predict students with a CGPA of more than 2.00 and vice versa. This section

starts with the definitions and working mechanism of fundamental recurrent neural

networks and LSTMs.

In an RNN, the training process involves a loop where information cycles. RNN

adds the nearest past to the present input. It considers the current input and what it

has learned from the inputs it received earlier. Therefore, a Recurrent Neural Network
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has two inputs, the present, and the recent past. The data sequence contains crucial

information about what is coming next, so an RNN can do things other algorithms

can not. For a general feed-forward network, outputs are independent of each other.

The output at the time t is independent of the output at time t− 1.

Figure 5.9: Recurrent Vs Feedforward Neural Network [9]

A primary RNN input is a 3D NumPy array, where it can be represented as such

[samples, time steps, features]. The 3D NumPy array consists of several 2D NumPy

arrays, where the number of 2D arrays is the number of instances, meaning in our

case, it will be the number of students. Therefore, the input array to RNN contains a

3D array which consists of N number of 2D arrays, where N= total number of students

(samples). Furthermore, each 2D array, i.e. each student’s data, consists of rows and

columns, rows represent semesters (which is ordered by beginning to current/last

semester if graduated), and columns represent features (See Figure 5.10).

A recurrent neural network cell contains feedforward neural networks because the

data includes time steps for each sample (in our case, each student). The RNN has

four main elements: a sequential input, a sequential output, multiple timesteps, and

multiple hidden layers. The hidden states in the hidden layers are updated after each

prediction, implying that the prediction depends not only on the input values but

also on the input sequence context and earlier hidden state values. After one single

pass in the feedforward step, the model calculates the forward and backpropagation
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error. "Cross-entropy" is used as the cost function to calculate the error and update

the neurons’ weights accordingly.

Figure 5.10: Input Data Representation => [samples,time-steps,features] [10]

In a simple RNN, the final output nodes of the network are less sensitive to the input

at time t(semester) = 1. The vanishing gradient problem causes this issue which

makes the gradient-based learning (GBL) process difficult. In GBLs, in each iteration

of training, each of the neural network’s weights receives an update proportional to

the partial derivative of the error function for the current weight. During the weight

update process, in some cases, the gradient may become vanishingly small. Therefore,

it prevents the weights from changing their values. This scenario may ultimately

stop the neural network from further training and learning. The fading of the color

throughout the layers in figure 5.11 presents the fading effect of the gradients. Long

Short Term Memory (LSTM), a special kind of RNN, solves this issue. LSTM is

considered to avoid the problem of vanishing gradients in RNN. Theoretically, the

information in RNN is supposed to follow for arbitrary large sequences, but this does

not hold up in practice. The information starts to vanish due to a lower value of

gradient.

LSTM networks utilize smarter memory blocks for preserving recent sequences.

Each of these memory blocks contains three types of gates that manage the state and
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Figure 5.11: The vanishing gradient problem for RNNs [11]

output of the sequence - forget, input, and output gates. Each gate inside a block

uses the sigmoid activation units to control whether or not they are triggered, making

the change of state and addition of information flowing through the block conditional.

Each unit is similar to a mini-state machine, with weights learned during the training

phase on the gates. It’s easy to understand how a layer of LSTMs could be used to

achieve complex learning and memory, and it’s not difficult to conceive how higher-

order abstractions could be built with numerous such layers.

Figure 5.12: Preservation of gradient information by LSTM [11]

As the first version, a vanilla Encoder-Decoder LSTM RNN consisting of two recur-
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rent neural networks (RNN) is implemented that act as encoders and decoder pairs

(See Figure 5.13). The encoder maps a variable-length source sequence to a fixed-

length vector, and the decoder maps the vector representation back to a variable-

length target sequence. The input format to the LSTM model is [samples, time −

steps, features]− > [None,None, features]. The student data have varying num-

bers of semesters. A "None" dimension in a shape tuple means that the network will

accept inputs of any number, which will resolve the problem of fitting the data with

a varying number of semesters. The last layer predicts the values of CGPA with a

softmax activation function, and then it calculates if it is below or above the CGPA

threshold (CGPA 2.00).

Figure 5.13: Vanilla Encoder-Decoder LSTM Network

5.2.2.1.1 Data Preprocessing and Hyper Parameter Tuning

For this analysis, we use the same dataset with 6220 undergraduate students as the

unsupervised clustering analysis. Here is a list of data pre-processing steps that are

followed:

1. Pre-processing of the data, which includes
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(a) Selecting salient features: Multiple salient features are chosen based on

multiple rounds of discussions with the domain experts and prior work on

this project [3].

(b) Removing sparse features: Sparse and inconsistently recorded features are

removed. If the feature information is available in less than 50% of records,

they are considered sparse features and removed from the analytics.

(c) Adding engineered temporal features: The analytics only include engi-

neered features from the course information. Later, in the analysis, it

is found that these features are directly correlated to CGPA calculation.

Therefore, the appendix does not include these features since, ultimately,

they are discarded from the final analysis. Such features are -

i. Total number of F

ii. Total number of D

iii. Total number of C

iv. Total number of B

v. Total number of A

vi. Total number of course withdrawals

2. Scaling the features using "Min-Max" scaling. In this technique, values are

shifted and re-scaled so that they end up ranging between 0 and 1.

3. Applying one-hot encoding to the categorical features

Batch-wise Model Building: The data have students enrolled for varying num-

bers of semesters. A recurrent neural network can handle various semesters. One

single model is trained with different batch sizes and different timesteps in the data

without the need to frame the missing timesteps with "zero paddings." In RNN, the

batch size for training means how much data the model will train for each epoch. For
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example, if there are 1000 rows of data and the epoch is 100 and batch size is 10,

then there will be 1000/10 = 100 batches for every single epoch, each with a length

of 10 to train the model. The RNN model is initialized with NONE-type timesteps.

So it will take data with any number of timesteps. The process loops through one

to the highest number of semesters the data has, and in each iteration, the model

is trained with that particular set of data. For example, when the loop counter is

1, the model is trained with all the students’ data in only one semester. This data

contains students with a maximum of 24 semesters. Hence, the model is trained for

one semester of data to a maximum of 24 semesters.

5.2.2.1.2 Results and Discussion with Vanilla LSTM RNN

The model is trained on both ongoing and graduated students with a validation split

of 70:30. The following two tables present the accuracies, false positives, and negatives

for the first ten batches of data with and without the categorical features for CGPA

threshold 2.00. The model achieves a 95.86% accuracy with both the categorical and

numeric data and a 98.98% accuracy with only using numeric data. In Table 5.3, the

number of false positives and false negatives are relatively high. The data is highly

imbalanced, and most of the batches (#semesters) have a percentage of successful

students around 70% to 85%, which is nearly the accuracy of the model for that

particular batch. Therefore, the model is only learning the pattern for the majority

class and failing to predict the minority class, which is the students at risk. As

for a deep learning approach, the model is using a very minimal number of samples.

Therefore, more data will improve the model’s accuracy. It would be easier to observe

the learning (fitting) or unlearning (overfitting or underfitting) process of the model

with more data.

Figure 5.14 demonstrates that the training loss is lower than the validation loss,

and the validation loss fluctuates. This observation suggests the model is overfitting.
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Table 5.3: Performance records with both categorical and numeric data

#
semes-
ters

Accuracy
(%) F1-score False

+ve
False
-ve

Success-
ful:

At-risks
in

training
dataset

Success-
ful:

At-risks
in
test

dataset

Total
#

students
(Success-

ful:
At-risks)

1 87.31 1 17 20 438:145
(75:25)

173:78
(68:32)

834
(76:24)

2 90.91 1 10 5 201:118
(63:37)

80:58
(57:43)

458
(62:38)

3 92.13 0.959 6 14 339:55
(86:14)

150:19
(88:12)

564
(87:13)

4 93.98 1 8 10 230:36
(86:14)

99:16
(86:14)

381
(86:14)

5 93.70 0.987 3 10 308:41
(88:12)

136:14
(90:10)

499
(89:11)

6 90.66 1 4 12 238:19
(92:8)

100:11
(90:10)

366
(93:7)

7 94.90 1 4 8 328:25
(93:7)

143:9
(94:6)

505
(94:6)

8 95.86 0.995 8 13 437:22
(95:5)

182:15
(92:8)

656
(95:5)

9 89.40 0.975 5 14 333:35
(90:10)

145:14
(91:9)

529
(91:9)

10 85.93 0.993 2 18 307:27
(92:8)

132:12
(92:8)

478
(92:8)

Even though the training loss is lower than the validation loss, the training loss is

still too high, and it is not improving over the epochs.

5.2.2.2 Major Takeaways from the Vanilla LSTM RNN and Change of Direction

The primary usefulness of this model is this model can be used in real-time pro-

duction with a selected number of features. This model can deal with students’ data

with varying lengths of semesters. Some limitations of the model are listed below-

• By the predictive results and interpretation of the training and predictive results

analysis (See section 6.2.1), it is hard to conclude why the model reports a higher

number of false positives and false negatives or if the model is overfitting.
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Table 5.4: Performance summary with only numeric data

#
semes-
ters

Accuracy F1-score False
+ve

False
-ve

Success-
ful:

At-risks
in

training
dataset

Success-
ful:

At-risks
in
test

dataset

Total
#students
(Success-

ful:
At-risks)

1 99.60% 0.996 0 1 438:145
(75:25)

173:78
(68:32)

834
(76:24)

2 94.93% 0.9493 3 4 201:118
(63:37)

80:58
(57:43)

458
(62:38)

3 94.71% 0.9471 5 4 339:55
(86:14)

150:19
(88:12)

564
(87:13)

4 98.26% 0.9826 0 2 230:36
(86:14)

99:16
(86:14)

381
(86:14)

5 96.67 0.9667 3 2 308:41
(88:12)

136:14
(90:10)

499
(89:11)

6 98.18% 0.9818 1 1 238:19
(92:8)

100:11
(90:10)

366
(93:7)

7 98.68% 0.9868 2 0 328:25
(93:7)

143:9
(94:6)

505
(94:6)

8 98.98% 0.9898 2 0 437:22
(95:5)

182:15
(92:8)

656
(95:5)

9 97.48% 0.9748 3 1 333:35
(90:10)

145:14
(91:9)

529
(91:9)

10 97.22% 0.9722 0 4 307:27
(92:8)

132:12
(92:8)

478
(92:8)
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Figure 5.14: Diagnostic plot of Vanilla LSTM RNN showing an overfitting model

• Moreover, a small number of samples is used, which is inadequate to train a deep

neural network. Therefore, it may be possible to achieve higher accuracy, lower

false confidence, and better interpret the model and the results by including

more data.

• The model also lacks different analytical insights that involve learning analytics

research. For example, it is necessary to incorporate courses, major CS courses

to observe how the analytics work for different cohorts (Male vs. Female, fresh-

man vs. transfer, etc.).

• Moreover, the domain experts in our research group suspect that the model still

manages to achieve higher accuracy since some of the features are directly cor-

related to the calculation of the CGPA. Examples of such features are academic

standing, quality points, the total number of A, B, etc.

• All the researchers involved in this learning analytics group agreed that the

batch calculation might not be proper. In this analysis, the first batch of stu-
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dents is the students who are only enrolled for one semester. But everyone in

the dataset is at least enrolled for one semester. The analysis is missing those

data for training the model.

The analysis will be improved based on these observations on the limitation-

1. A cumulative approach was incorporated to increase the number of samples or

data and proper batch calculation. For example, all the students enrolled for

at least one semester are considered for the first batch of the semester.

2. The features which are directly correlated with the CGPA calculation were

excluded. Alternatively, engineered, temporal and normalized features such as

"percentage of A Credits," "percentage of B credits," "course level progression"

are reutilized from the unsupervised cluster analysis.

3. Only the model with both categorical and numeric data is considered.

4. Heavy lifting of hyperparameter tuning was done with different types and values

of regularization. The best model was chosen by grid search. Here are some de-

tails on the regularization. The elastic net with input weight regularization [129]

gives the best performance. The results are reported in table ??.

(a) L1 and L2 regularization are used with various values -

i. L1L2(0.0, 0.0) [e.g. baseline]

ii. L1L2(0.01, 0.0) [e.g. L1]

iii. L1L2(0.0, 0.01) [e.g. L2]

iv. L1L2(0.01, 0.01) [e.g. L1L2 or Elastic Net]

(b) Different types of regularization are explored -

i. Recurrent weight regularization

ii. Input weight regularization
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iii. Bias weight regularization

5. The oversampling method SMOTE [130] was used since the data is highly im-

balanced. It up-samples the minority class in the training dataset - so the ratio

of successful and at-risk students in the training dataset is 50 : 50.

Table 5.5: Performance records with regularization and oversampling on cumulative
data

#

semesters
Accuracy

Precision,

recall

and

F1-score

False

+ve

False

-ve

Success-

ful:

At-risks

in

training

dataset

Success-

ful:

At-risks

in

test

dataset

Total

#

students

(Success-

ful:

At-risks)

1 82.52% 1 247 568 93:7 92:8 6220

2 82.60% 1 106 387 93:7 94:6 5386

3 82.34% 0.9588 83 231 93:7 94:6 4929

4 82.49% 1 71 200 93:7 94:6 4366

5 81.06% 0.9867 57 136 94:6 93:7 3985

6 81.15% 1 57 95 93:7 94:6 3486

7 80.48% 1 40 129 94:6 94:6 3118

8 82.38% 0.9949 44 89 94:6 92:8 2613

9 81.85% 0.9748 30 119 93:7 93:7 1957

10 79.43% 0.9931 27 121 94:6 93:7 1430

With the oversampling, regularization, and cumulative approach, the batch sizes are

much larger this time (See Table 5.5. However, the data imbalance induced is much

higher than before. Moreover, there is a higher number of false positives and false

negatives. By using the oversampling method, the process is upsampling the minority
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class. In this case, those are the students at risk, which induces higher false negatives

in the data. Since the oversampling introduces replicated at-risk students, it is dis-

carded from the next iteration. The next version is a bi-directional LSTM RNN for

a regression model discussed in section 5.2.2.3.

5.2.2.3 Application of a Bi-directional LSTM RNN for Regression Analysis

The information stored by the unidirectional LSTM is limited to the past. They

only loop through the past from the future. Using bidirectional will run the inputs

in two directions, one from past to future and the other from future to past. What

distinguishes this approach from unidirectional is that information from the future is

preserved in the LSTM that runs backward. The information flows from both past

and future by using the two combined hidden states at any point in time. Therefore,

BiLSTMs may produce excellent results since they are better at understanding the

context from both sides.

5.2.2.3.1 Data Preprocessing and Heavy Hyper Parameter Tuning

In addition to the hyperparameter tuning discussed in the previous section, differ-

ent types of LSTM were explored for the regression model with a "relu" activation

function in the output layer, such as-

• Vanilla Stacked LSTM (encode-decoder)

• CNN LSTM with different types of pooling, filtering

• Bi-directional LSTM

By the grid-search with thousands of hyperparameter tuning, bidirectional LSTM

produces the best results. Instead of the stacked decoder-encoder LSTM (See figure

5.11), bidirectional LSTM cells and the output layer with a "relu" activation func-

tion are used since this is regression analysis. Additionally, other hyperparameter
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tunings are variations of the batch size, different loss functions, optimizers, learning

rates, drop-out layers, LSTM cells, early stopping, and different techniques to reduce

validation and training loss.

Overfitting can occur when there are a lot of features. Apart from that, it will take

longer to optimize hyperparameters and training methods in general. As a result, it

is essential to initialize with the most relevant features. There are multiple techniques

when it comes to feature selection. The "Univariate Feature Selection" is used [131].

Statistical tests (like χ2) determine how strongly the output feature depends on each

feature in the dataset. Python’s sci-kit-learn library’s SelectKBest selects K best

features using statistical tests (default is χ2). A grid search on finding the best "K" for

the feature selection is conducted. Please see the list of finalized features in appendix

A.1.

This version of RNN tries to solve a regression problem. The model predicts

CGPA and then classifies the output result to one of the following ranges of CGPA-

[2, 2.5, 3, 3.5]. Therefore, there are five classes. Figure 5.15 shows a distribution of

the bins of CGPAs. The x-axis presents the number of students in each category, and

the y-axis represents the batches of the data, which is the number of semesters.

5.2.2.3.2 Results and Discussion with Vanilla LSTM RNN

LSTM RNN allows us to predict with multiple lookback windows. The analysis in-

volves several lengths of lookback windows. Only the results with a lookback window

of size one are reported here.

This time the analysis includes three more semesters with a total of 6466 students

to increase the number of samples. From figure 5.15, it is clear that there is not that

much class imbalance. However, the number of students having a CGPA of less than

or equal to 2.00 is still lower than the other classes. For a standard classification

or regression task, cross-validation is used to get a sense of the model’s skill on new,
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Figure 5.15: Distribution of the bins of CGPAs by number of semesters

unseen data. The order of the numbers is critical when working with time-series data.

The ratio of train and test datasets is 70 : 30.

The LSTM models use the training history to diagnose the behavior of the model.

Creating and examining these charts can help discover new setups to improve the

model’s performance. A model that performs well on the training dataset but poorly

on the test dataset is underfitting. An overfitting model is one in which per-

formance on the train set is good and improves over time, but performance on the

validation set improves to a point before degrading. This can be seen in a plot where

the training loss is lower than the validation loss, and the validation loss is trending

upwards, indicating that more gains are feasible.

When the model’s performance is good on both the train and validation sets, it

is a good fit. To identify this, look at a graph that shows the train and validation

loss dropping and stabilizing around the same position. Diagnostic plots are used to

keep track of the validation and training loss. The EarlyStopping technique stops the
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model training if the validation loss starts to rise. The model was trained with 500

epochs for each of the batches. For most of them, the model does not halt due to the

EarlyStopping. It is a good sign that the model is neither overfitting nor underfitting.

Figure 5.16 shows the training and validation loss for the batch with all students until

their fifth semester. The model starts to learn better and is doing well on both the

training and validation dataset. The value of the validation loss falls to around 0.02.

That is why the accuracy is relatively high reported in Table 5.6.

Figure 5.16: Diagnostic Line Plot Showing a Good Fit for a Model for number of
semesters 5

The model achieved the highest accuracy of 92.16% for the number of semesters of

four. The model also improved precision, recall, and F1-score other than the accuracy

as the performance metric.

From the last versions, in this multiclass classification problem, the accuracy im-

proved a lot. The class having a CGPA from 0 to 2.00 has many misclassifications for

the first batch. It is 270 among 530 students. The number had decreased over batch

sizes. Therefore, the model is not biased toward this imbalance. The proportion of

these students is the same in all batches. For example, in the stacked bar chart in



91

Table 5.6: Prediction performance records with the Bi-directional LSTM

#
seme-
sters

Accuracy
(%) Precision Recall F1

score

#
Mis-

classified

#
missed

in
the
class

0− 2.00

Total
#

students

1 91.76 0.8708 0.9176 0.8824 530 270 6466
2 91.80 0.8844 0.918 0.8863 460 190 5646
3 90.96 0.8613 0.9096 0.8772 518 60 5188
4 92.16 0.8493 0.92161 0.884 362 90 4620
5 91.82 0.8431 0.9182 0.879 340 170 4163
6 91.47 0.8367 0.9147 0.874 318 70 3729
7 89.96 0.8265 0.8996 0.8615 329 60 3278
8 90.58 0.8204 0.9058 0.861 255 30 2711
9 91.39 0.8352 0.914 0.8728 171 40 1993
10 90.98 0.8278 0.9098 0.8669 128 50 1427

figure 5.15, the "0− 2" class is lower in numbers among all five classes. The misclas-

sified instances also did not demonstrate any significant patterns or attributes to be

concluded as the reason behind misclassification.

5.2.2.4 Findings and Observations

This dissertation involves multiple LSTM models with thousands of hyperparame-

ter tuning. Findings from the observations -

• The volume of data samples plays a vital role in training a deep learning model.

The first version of the RNN model demonstrates a low accuracy, high false

positives, and false negatives. A diagnostic plot analysis also shows that this

RNN model was overfitting.

• Moreover, the data imbalance problem does not get resolved if we do not have

enough data to train. The model predicted the majority class, which means the

model is overfitting on the majority class and is failing to predict the at-risk

students.
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• Model’s performance is highly correlated to the features used in training. For

example, the first version of RNN achieves almost 100% accuracy while using

highly correlated features with CGPA calculation, biasing the model outputs.

Removing such features increases the credibility of the model’s accuracy. Sec-

ondly, LSTM cells are built for temporal analysis. Using non-temporal features

with them may corrupt the structure of a time series model.

• Hyperparameter tuning with multiple options and grid search take an extended

amount of time. But, in the end, finding the optimum model for a dataset

pays off. The bidirectional LSTM achieves improved accuracy because of the

meticulous hyperparameter optimization.

• Oversampling or undersampling may corrupt a model. Oversampling created

a replica dataset, and the model overfits towards the replicated data. In the

second version of RNN, oversampling causes higher false positives and false

negatives for the student data (See Table 5.5).

• The same model can work better for a regression problem with tweaking in

the activation function in the output layer. This is another implication of an

imbalanced dataset.

Sections 6.2.1 and 6.2.2 explore both the classification and regression LSTM models

with explainable AI tools. They focus on explaining the predictive results and training

accuracy of the model in more detail.



CHAPTER 6: Interpretable Learning Analytics

This chapter first presents an interactive machine learning prototype that targets

to help the domain experts to understand their students better in section 6.1. Then,

a state-of-the-art explainable AI tool named SHAP is used to explain the classifica-

tion model (discussed in section 5.2.2.1) built to predict student success and risk in

section 6.2.1. SHAP [132] is an integrated visualization approach to explain model

predictions. Finally, two explainable AI tools and techniques named SHAP and Mor-

ris Sensitivity Analysis on the bidirectional LSTM regression model (discussed in

section 5.2.2.3) are presented to better understand the model results in section 6.2.2.

This dissertation uses the words "interpretation"/ "interpretability" and "explana-

tion"/ "explainability" interchangeably for simplicity. But many researchers suggest

a distinction between these words [133]. For example, according to Miller et al., "Ex-

planation" is used to explain individuals or individual predictions, and interpretation

should be used to justify an overall system, cohorts, or aggregated predictions [133].

6.1 Opening the Black Box: A Tool Allowing Advisors to Engage in Knowledge

Discovery

This section will discuss a prototype of an interactive learning analytics tool. This

tool is called "EAGER LEARNING ANALYTICS"[5]. This is the first work under

this dissertation on introducing the idea of explainable AI to learning analytics re-

search and how we can leverage explainable AI to understand a machine learning

model better. The first published and implemented version of the tool is discussed

in the appendix A.2 since the implemented version is a team effort. Other Ph.D.

students implement the majority of the features of that version.
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6.1.1 Motivation

Although the primary goal of many learning analytics tools is to help educational

leaders (the domain experts) predict students’ outcomes and plan interventions, these

tools do not always explain the "why" behind those expected outcomes. One of

the goals of this dissertation is to help the domain experts better understand their

students by exploring the reasoning behind these predictions by getting involved with

building the analytical models themselves. The tool attempts to do this by engaging

them in the life cycle of analytics by providing the flexibility to select features to build

better analytical models for predicting student success. This dissertation also aims to

incorporate explainable machine learning to create helpful insights and intervention

methods by opening the black box model for analytics. Based on these ideas, a

prototype has been developed to conduct pilot user studies on the usefulness of this

tool. The preliminary findings provide encouraging feedback showing how the users

can get directly involved with the analytics and interpretation of results.

This tool will allow domain experts to choose features from a set of provided fea-

tures and investigate which features significantly impact a student’s performance and

behaviors. Moreover, it may help academic advisors better understand their students

and the "why" behind the particular predictive results. This tool incorporates ex-

plainable machine learning with visualization of the features to better understand the

components used for analysis.

The approach of this dissertation differs from the previously developed tools as

follows:

• The intention is to involve domain experts in the knowledge discovery lifecycle

by adjusting the features that will be utilized for analytics to gain greater insight

into the interesting, known, and unknown facts of the outputs.

• The domain experts are directed towards the data analysis by giving visual
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explanations of contributions of the features to a particular decision (success or

failure).

This dissertation addresses two main gaps in the existing tools. The first research

gap is that most tools do not use temporal models for predicting students’ at-risk [16,

17, 18]. However, the bottlenecks in solving this challenge is - 1) the heterogeneity

of students’ data hinders integrating different data sources for modeling and 2) the

sparsity of some features that could be important for specific populations rather than

others [3]. The second research gap addresses the "why" question that faculty leaders

have in mind when analyzing students’ data. Conati et al. [19] emphasize the need

for explainable AI in open learner models, which shows the students the reasons

behind their performance. Applying the same concept to LMS, the novelty of the

prototype exhibits the importance of explainable AI for advisors to understand the

model predictions.

6.1.2 Approach and Uniqueness

Paper prototypes were used first to brainstorm on the tool and then used "Indigo

Design Studio" to build the prototype tool. This chapter discusses the prototype first.

Next, it reviews unique factors of the prototype, including (1) the feature selection

process, allowing domain experts to get directly involved with the model building,

and (2) the use of explainable artificial intelligence.
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(a) The Aggregate Analysis View

(b) Individual Story View

Figure 6.1: Prototype:Eager Analytics.
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6.1.2.1 Prototype

The prototype mainly consists of three main views: (1) the student data model,

(2) aggregated analytics, and (3) individual story.

6.1.2.1.1 Student Data Model

This view allows the user to select the features they wish to include in their model.

These features are of three categories: (1) the background node, (2) semester nodes,

and (3) the outcome node. The background node consists of the students’ background

information, such as demographics.The semester node consists of different features

per semester, such as course information. The outcome node includes features for

their performance evaluation, such as GPA.

6.1.2.1.2 Aggregated Analytics

This view first allows the user to configure additional options before finalizing the

model, such as defining the criteria for student success. Once the model is created,

information regarding the student cohort is presented. That information includes the

predicted outcomes (e.g., percentages of successful versus at-risk students in the given

cohort) and the correlation of various features to these outcomes (see Figure 6.1 (a)).

6.1.2.1.3 Individual Story

This view allows the user to select and explore an individual student, mainly by

displaying the student’s progress over time. This includes visuals on the student’s

background and semester-wise information (see Figure 6.1 (b)). A similar analysis is

displayed as the aggregate analytics view, which describes the correlation of features

for the individual student.
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6.1.2.2 Unique Aspects of Our Tool

We incorporate explainable AI to create a tool to help advisors understand their

students and the "why" behind these success/at-risk predictions. Rather than simply

giving the predicted outcome of a student, our tool involves the users (e.g., advisors)

in the analytics-knowledge discovery loop itself. This helps open up the "black-box"

by allowing them to use their existing domain knowledge by flexibly selecting the

features provided in the tool.

Furthermore, after selecting features, we use explainable AI to help them under-

stand the importance of those features in predicting the outcome. To do this, we

display the correlations of the features to the outcome (called explanations). For this

prototype, we specifically use LIME [12] to generate the aggregated and individual

correlations.

6.1.3 Results and Contributions

While building this prototype, we wanted to evaluate both the usefulness of the

tool and the performance of the analytical models themselves. To evaluate the current

progress of our prototype, we performed preliminary pilot user studies. When devel-

oping and testing our models, we focus on undergraduate students who have declared

a major in computers at some time throughout their academic careers. As a result,

we conduct our research for various periods depending on the data availability (i.e.,

last ten years, previous thirteen years, etc.). On-time graduation was chosen as the

success criterion for the pilot study. A Neural Network (RNN) was implemented as

our predictive model. We achieve an accuracy of 95% for a fixed length of semesters

and a limited set of features. We want to verify the outcomes for eXplainable AI

analysis for this prototype. Therefore, we will not go deeper into this RNN model.

Furthermore, LIME [12] was used to explain the RNN model to get insightful

explanations. For example, LIME presents the correlation values of how previous
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high school rank and GPA per semester influence future semesters’ performance.

6.1.3.1 Pilot Study Design

A pilot study with two individual faculty advisers was conducted to learn what

users find important in a tool to support advising and if they think the explainable

AI makes any sense. We recruited three faculty advisors who are already familiar

with advising students and using different tools to advise. Firstly, we demonstrated

the prototype with a seven-minute training video in the interview session with each

adviser. Then, they were asked to explore the tool with a fixed set of four tasks. Each

task also contains some subtasks. One of us observed their interactions with the tool

and took notes. Finally, they were asked some reflection questions after finishing each

of the tasks. The first three tasks consisted of exploring the individual modules of the

tool - 1)the student data model, 2) aggregate analytics and 3) individual storytelling.

In the fourth task, we asked them to edit different features in the student data model

and observe the changes. We finished our pilot study by asking them about the tasks,

individual features, modules, and how they feel about our technology.

6.1.3.2 Feedback from the Pilot Study

We receive some valuable feedback from the two participants in this user study :

• Overall the student data model page was easy to understand and explore. The

instructions were informative, and users were comfortable exploring the various

features. They also liked that we included "veteran information" and "primary

ethnicity" as the available information.

• By allowing users to define the threshold and evaluation criteria for success,

more flexibility is added. It will enable users to understand better what factors

are going into the predictions.

• Users thought that the progressing storyline in the "individual story" page could

help them design interventions for their students.
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• Both of them liked the explanations with feature importance provided by LIME

in the "aggregate analytics." Using gradient colors to understand the positive or

negative effect of a feature on the model outcome was helpful. But they asked

us to add more features and more training on it.

• Both of them thought that we should have invited some academic advisers, not

only the instructors. They felt that academic advisers have more knowledge on

the features we should use.

• In the study, they also provided us with some guidelines on the tool design.

For example, adding color-blind-friendly color pallets, filtering, sorting, proper

naming, labeling, and searching capability would make the tool more acceptable.

In summary, we used a human-centered design approach to engage faculty and

advisors in developing an interactive knowledge discovery tool to understand student

success and students at risk better. Our method allows faculty and advisors to interact

with the data used in an analytic model, the results of the analysis, and the story of

individual students.

Section 6.2 will demonstrate the usefulness of several eXplainable AI (XAI) tools

and approaches on two types of recurrent neural networks (discussed in section 5.2.2).

6.2 Interpretation of a Black Box Model

Interpreting a neural network model is challenging since the model is a black box.

The data input of a primary neural network passes through many layers of non-linear

transformation and multiplication of learned weights to make a single prediction.

Humans are unable to follow this complex mapping from input to output prediction.

It is impossible to perceive the complex interaction between the millions of weights

within a neural network. To interpret the behavior, concepts, and forecasts of neural

networks, we need interpretation methods.

In section 6.2.1, we discuss a state-of-the-art XAI tool for classification analysis
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using the vanilla LSTM RNN. Section 6.2.2 includes a discussion on the deep neural

network for regression analysis (Bidirectional LSTM RNN) with some eXplainable

AI(XAI) tools and techniques.

6.2.1 SHAP: Analysis of Prediction Results of Vanilla LSTM RNN Classification

Model on Student Data

This section will discuss the feature importance and predictive results analysis on

LSTM RNN classification model with SHAP explainable AI tool.

SHAP (SHapley Additive exPlanations) [132], a game-theoretic approach to un-

derstanding the prediction output of any machine learning model, will be discussed

in this section. It uses the SHapley values from game theory and related extensions

to combine optimum credit allocation with local explanations [134, 73].

Here, we describe the local explanations of the RNN model with SHAP. The authors

integrated many prior works on local illustrations with the concepts of Shapley values

into this tool. Since we are describing a sequential neural network model with the

tool, we will be using the DeepExplainer algorithm, which computes SHAP values

with the combination of the concepts from DeepLIFT [135]. DeepLIFT presents a

framework for learning the critical features in a deep neural network by propagating

the deep layers’ activation differences.

DeepExplainer algorithms cannot handle explanations with categorical data in se-

quence models. We will show different plot representations that may help the data

science practitioner understand the importance and verify if the features are working

as expected.

SHAP (SHapley Additive exPlanations) is a unifying strategy for explaining any

machine learning model’s output. As presented well on the GitHub page, SHAP

connects game theory with local explanations. SHAP can use 3D data as an input,

unlike other black-box machine learning explainers in Python. The output in this

scenario will be 3D data with essential values for [eachsample, timesteps, features] in
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that sequence. We get 2D data with feature importance as columns and time steps as

rows if we sum the output on the 0th dimension (i.e., sample axis). SHAP prioritizes

time-stepwise features in this approach. We have taken 500 random samples from

the training dataset as a test subset to pass in DeepExplainer class as this much

data shows very accurate results. The difficulty of this method rises linearly with

the number of data points. Therefore supplying the complete train data will produce

precise high values but will be prohibitively expensive.

Figure 6.2: Shap values for fifth to eighth semesters of data on a random sample of
500 students

Figures 6.2 and 6.3 are showing feature importance on eight time-steps (eight

semesters). To predict class labels, we looked at data segments with only eight

semesters of data. We can make a conventional bar plot by taking the mean ab-

solute value of each feature’s SHAP values (produces stacked bars for multi-class

outputs). The values displayed here are the output of shap values summed up on the

sample axis. We can explain it step by step with each semester. With this explana-

tion, we can involve domain experts to understand the model’s efficacy by matching

their advising or policy-making experience. The following eight subplots show how
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Figure 6.3: Shap values for first four semesters of data on a random sample of 500
students

the feature importance (SHAP values) changes over semesters.

Even though near future (8th semester) values matter more in success and risk

prediction decisions, these plots show that the more immediate time steps’ features

with higher shap values also demonstrate how the change in shap values occurs from

the beginning to the nearer semester’s features.

To identify which characteristics are most important for a model, we can plot the

SHAP values of each feature for each sample. The total of SHAP value magnitudes

over all samples is used to order features, and SHAP values are used to depict the

distribution of the effects each feature has on the model output. The color represents

the value of the characteristic (red high, blue low). Figure 6.4 shows a summary plot

on how the shap values of all the features reflect on the model. It offers the lower

value of each feature (since there are no red dots) and has zero positive and negative

impacts on the model. It is not showing how the higher values (no red dots) of the

feature will impact the model. This kind of explanation is helping us to decide that

the model needs more careful attention while developing it. But it is still helpful in
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determining how we should design the explanations of the model. We need to see the

effect of features on different cohorts of students. Because if we see the gpa_credits,

the lower values of GPA credits positively and negatively impact the model, making

no sense.

Figure 6.4: Distribution of aggregated SHAP values for the features on the whole
student data

The following force plots are the same as summary plots. But it aggregates the

effect of features on each cohort, i.e., the cohort of at-risk students or successful

students. The red color means the higher value of features, and the blue color indicates

the lower value of the features. We will be describing our understanding along with

the images of the force plots. The force plots show - 1) what kind of effect the feature

has on the cohort by highlighting the color with red or blue and 2) the magnitude of

the effect and the relative value of the feature. For example, with a low magnitude

of blue highlight for credits attempted, a lower number of credits were attempted,

which has a low effect on that particular cohort and the model output.

In figure 6.5, the aggregated value of only quality points on the cohort of successful
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Figure 6.5: Effect of quality points on the successful studentsâ cohort

students shows how at the beginning (at least until the 5th semester), high quality

points significantly impact success. At 5th and 6th semesters, it has both lower and

higher effects meaning that the effect is distributed among the successful students.

In the later semesters, quality points have a softer impact with a lower magnitude on

the prediction.

Figure 6.6: Effect of credits passed on the successful studentsâ cohort

In figure 6.6, credit passed also aligns with the effect as the quality point on the

successful students’ cohort like Figure 6.5. It also proves how quality points are

positively correlated with the credits passed.
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Figure 6.7: Effect of credits passed in at-risk studentsâ cohort

In figure 6.7, we can see that the effect of credit passed is precisely opposite to the

cohort of at-risk students. The lower values of credits passed contribute to the lower

values of CGPA, therefore, contributing to at-risk students.

Figure 6.8: Effect of credits attempted in at-risk studentsâ cohort

Figure 6.8 represents the effect of credits attempted for the first nine semesters

on students’ at-risk cohort. If we combine the analysis in Figure 6.7 and Figure 6.8,

we will see that at-risk students are used to taking a higher number of credits at the

beginning. But since the number of credits passed is lower in the middle, i.e., from 3rd

to 5th-semester, at-risk students will attempt a lower number of credits and a lower

number of credits passed, but both have a softer impact on model prediction. Finally,

from the 5th to 7th semester, the at-risk students try to improve their conditions, so
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they attempt a higher number of credits and eventually, with fewer credits passed.

In this time range, both the credits passed and attempted features have a higher

impact on model prediction. According to both the plots, the behavioral pattern of

attempting higher credits and passing credits positively affects the model to predict

the pattern of at-risk students.

6.2.1.1 Summary of Findings

1. The SHAP explanations demonstrate how the features act on the model, but it

also presents the typical feature patterns for a particular cohort. For example,

Figures 6.5 through 6.8 showed how quality points, credits attempted, and

credits passed are behaving differently for different cohorts (successful and at-

risks). It will also help the decision-maker or the model builder decide if the

model is acting logically (which it is) and if it needs improvement. For example,

Figures 6.5 through 6.8 demonstrate that the model is doing an excellent job

of extracting the student cohorts’ patterns. But figure 6.4 is not that helpful

since it explained the features with lower impact on the model, which cannot

be accurate.

2. We learned from figure 6.4 about what we should expect from explanations and

where explanations might be helpful. After seeing the explanations of figure 6.4,

we understand that identifying feature importance on the whole student data

might not be intuitive since the effects of the features are supposed to be re-

versed for two different cohorts. And it leads us to leverage the explanations in

figures 6.5 to 6.8.

3. Besides showing the feature importance for particular cohorts, SHAP expla-

nations explain how different features play an essential role in the time series

analysis (see Figures 6.2 and 6.3). This kind of explanation is also beneficial to

plan early interventions.
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4. SHAP analysis shows us the exact scenario we want to see. Yet, our vanilla

LSTM classification model is not doing an excellent job since the data is im-

balanced, and the model predicts the majority class. Domain experts in our

research group suspect that the highly correlated features may play a vital role

in the SHAP explanations. We change our analysis to a regression model. We

will see how the SHAP analysis can help us analyze the regression problem in

the next section.

5. SHAP summary plot analysis demonstrates how the behavior of a model changes

over time in terms of feature importance. This will help the data scientists to

decide which features are relevant for building a model and therefore, refining

an existing model.

Since we are determined to involve the non-data scientist decision-makers or domain

experts in learning the model’s efficacy and credibility, SHAP will be the better fit

as the explainable AI technique. Moreover,SHAP will also help the data scientists in

the feature selection process.

6.2.2 Interpretation of A Regression Analysis with Recurrent Neural Network

This section will discuss the SHAP analysis on a regression model to understand

better what features are relevant to our chosen Bi-directional LSTM model. We

discuss Morris Sensitivity Analysis which ranks the features by how much they can

derive the model output variability [136].

6.2.2.1 SHAP Explanations on the Regression Analysis of Bi-directional LSTM

RNN Model

In this regression model, we discard the features which are directly correlated to

calculate the CGPA. Instead of those features, we use some engineered normalized

features, for example, percentage of A, course progression, etc.
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Since it is regression analysis, we cannot demonstrate the force plots (like Fig-

ures 6.5 to 6.8) for two different student cohorts (successful vs. at risk). But we think

the force plots are still helpful to understand the features’ importance throughout a

student’s first eight semesters. For example, as we can conclude by figures 6.2 to 6.4,

the "minimum required credits" do not play any role in the model prediction. This

observation is persistent for the regression model too. The force plots for âminimum

required creditsâ and "GPA Type" show no effect on any force plots.

We will now discuss force plots of some of the features as follows.

Figure 6.9: Effect of "Course Level Progression" on the value of CGPA

Figure 6.9 shows an example of a SHAP force plot on the course level progression

feature. The x-axis represents the time for the analysis. We sampled the students

with at least eight semesters of data. Therefore, the x-axis shows the interaction

of course level progressions with the outcome CGPA through eight semesters. The

y-axis represents the probability of output value, where the value 0.9551 represents

the base value where the x-axis has started. It means 95% of the time course level

progression will demonstrate this pattern with the prediction output.

We see two colors in this plot - one is red, and another is blue. Red means the

feature has a positive effect on the higher value of the model output, and blue has a
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negative impact on it.The magnitude of the blue region also has significance to this

visualization. A higher value of the blue region means at the beginning of the first

semester. The higher magnitude of lower values of course progression is correlated

to having a higher value of CGPA. Our unsupervised clustering analysis shows that

course-level progression has a high correlation with the students’ performance. We see

the clusters having the higher number of successful students show a steady increase

of course level progression. The force plot also supports our hypothesis. It suggests

that a steady rise from lower(with the blue region in the earlier semesters) to higher

values (with the red area in the later semesters) contributes to the higher value of

CGPA.

Figure 6.10: Effect of "Employment Type" on the value of CGPA

We use one-hot encoding for the categorical values such as employmenttype. There

are three encoded values for this feature - 0 (which is a lower value) represents full

time employed, 1 means partiallyemployed, and 2(which is a higher value) illustrates

no employment. From the force plot in Figure 6.10, it is clear that with higher values

(partial or no work) of the employment type, students are more prone to perform

better since they have fewer responsibilities and more time to study. We see a small
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blue region at the beginning coexisting with the red area, which means having or not

having employment at the beginning of the undergraduate career can result in a good

or higher CGPA since at the beginning curriculum is much easier.

Figure 6.11: Effect of "Credits Passed" on the value of CGPA

Figure 6.12: Effect of "Credits Attempted" on the value of CGPA

We see similar effects of credits passed (see figure 6.11) and attempted (see fig-

ure 6.12) in the force plots as our earlier LSTM classification model. A lower value

of credits attempted helps the students to achieve a higher value of credits passed,

and that is how they are both related to achieving a higher CGPA at the beginning

of their career. Around the last semesters, it is required to attempt more credits to

earn a better CGPA if the value of credits passed gets slightly lower.
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Figure 6.13: Effect of âPercentage of A creditsâ on the value of CGPA

Figure 6.14: Effect of "Percentage of B credits" on the value of CGPA

The force plot(see Figure 6.13) of the percentage of A credits is intuitive. Higher

values of the percentage of A credits significantly affect the higher CGPAs at the

beginning semesters. However, at the finishing semesters, both the blue and red

regions coexist together, which means that still, the students can have a higher CGPA

at this time, if at the beginning, they maintain a good percentage of A credits.

Percentage of C, D, and F credits have the exact opposite patterns. We include the

force plots to demonstrate the effect of percentages of C, D, and F in appendix A.3.

However, we see a mixed pattern in the percentage of B credits (see Figure 6.14).

Figures 6.15 and 6.16 show a change of feature importance on eight time-steps (8

semesters) like Figures 6.2 and 6.3 of the classification model. Same as the force plots,
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GPA type and minimum required credits play no roles in forecasting throughout the

eight semesters. In the beginning, many of the features have higher importance. But

over time, their effects diminish. All other features, especially employment type and

course progression, present the same pattern discussed in the force plots. Therefore,

this alternative form of explanation and visualization may help understand the corre-

lation between students’ behavior and performance over time. Furthermore, it allows

us to exclude elements that aren’t necessary for the model to learn.

Figure 6.15: Shap values for first to fourth semesters of data on a random sample of
500 students

6.2.2.2 Morris Sensitivity Analysis on the Regression Model

A combination of methodologies known as sensitivity analysis captures how a model

reacts to changes in its inputs. We use these statistical methods to discover how

variation propagates from inputs to outputs [136]. Saltelli et al. define sensitivity
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analysis as describing the "relative relevance of each input in determining the output

variability." Therefore, the result of such algorithms is a ranking of inputs based on

their sensitivity. Sensitivity analysis can be carried out at both a global and a local

level. Local approaches focus on input variation around a specific point in the input

space. In contrast, global methods provide summary statistics of the effects of input

variation across the entire input space.

For global sensitivity analysis, the Morris technique is used as a statistical method.

This method was designed as a preliminary computational experiment to grasp the

relative influence of each component and is of the "one-factor-at-a-time" type. The

Morris method assigns an individual element to the distribution of elementary effects

(EE). A mean Mu(µ) and a standard deviation sigma (σ) exist for each EE distri-

bution. These two statistics are what allows the features to be mapped into several

classes. When the model is non-monotonic, the mean can be negative. Hence a Mor-

ris method variation accounts for this with absolute values Mu∗(µ∗) to make it easier

to read. We’ll use the variation in our analysis.

Morris sensitivity indices, such as the mean(µ) and standard deviation elementary

effect (σ), as well as the absolute value of the mean(µ∗), are calculated for our Bi-

directional LSTM regression model. It’s easier to visualize these numbers in a tabular

format to sort and color-code them. The factor’s overall importance is denoted by µ∗.

On the other hand, σ demonstrates how much a feature interacts with other features.

µ∗ is the mean of the output variation given the variation of each input, sigma (σ) is

the standard deviation of that variation in the output. Therefore, the Morris analysis

gives us insights on the most critical parameter; credits attempted in this case. But

it also tells us which parameters interact with other parameters, and that is given by

sigma. So credits attempted is the most crucial feature, but it also has interactions

with other parameters, which is why it is non-linear.

For our analysis, we group the normalized GPA credits (i.e., Percentage of A, B, C,
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Figure 6.16: Shap values for fifth to eighth semesters of data on a random sample of
500 students

D, F) into the feature "Normalized GPA" (see Figure 6.17). It’s worth noting that the

"Normalized GPA" grouped feature does not have an absolute mean elementary effect

but an inconclusive interaction effect. Groups are challenging to assess, especially

when they are very sparse. We see the feature credits attempted have the overall

importance influence signified by a highest µ∗. A higher σ that credits attempted is

highly involved in interaction with other features. We do not report the other features

in the figure 6.17 since they have very insignificant values.
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Figure 6.17: The Elementary Effects (EE) decomposition of the features

Figure 6.18: A bar and covariance plot depicting the Elementary Effects (EE)

In Figure 6.18, the bar plot on the left panel ranks the factor by mean µ∗, while

the line sticking out of each bar represents their corresponding confidence bands. The

scatter figure to the right shows the covariance with µ∗ on the x− axis and σ on the

y− axis. As a result, the further right the point is in the plot, the more crucial it is,

but the higher it is in the plot, the more it interacts with other aspects and becomes

less monotonous.

Naturally, this means that features that do not interact much and mostly mono-
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tonic comply with linear regression assumptions, such as linearity and multicollinear-

ity. However, the spectrum between linear and non-linear or non-monotonic is deter-

mined by the ratio between µ∗ andσ. From figure 6.18, we can tell by the preceding

covariance plot that only credits attempted are non-linear or non-monotonic. "Cred-

its attempted" is the most important, with the following two (normalized GPA and

GPA credits) clustered around almost monotonic areas. All the other features fall

into the linear region.

6.2.2.3 Summary of Findings

Here is a summary of the limitations and findings from the analysis and observations

of the explainable AI tools on the regression model.

1. Like the SHAP explanations on the classification model, SHAP explanations on

the regression also demonstrate how the features act on the model and reveal

the typical patterns of a higher CGPA value in the regression model.

2. Since we are working on a regression model, we cannot analyze the force plots

on different students’ cohorts. However, we do not face any problems with

this. The force and summary plots are very intuitive. They demonstrate the

segregated patterns for each feature from first to finishing semesters and how

the patterns relate to the values of CGPA over time.

3. We can even interpret the results for some categorical variables such as "Em-

ployment type" and how these variables impact the students’ performance by

the SHAP explanation.

4. In the Morris sensitivity analysis, elementary effects help us understand how to

classify our features following their impact on model outcomes. However, the

visualizations are less intuitive to quantify their impacts on feature interactions

properly. We need an analysis that can decompose the output’s variance and

trace them back to the inputs.
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5. In Morris sensitivity analysis, most cases agree with SHAP in terms of finding

top or irrelevant features.

(a) Employment type description, Course level Progression - both XAI tools

agree that they are top features

(b) GPA type, Minimum required credits - both XAI tools agree that they are

irrelevant features

6. The order of the feature importance may not agree with each other.

(a) SHAP summary plot orders the features as-

i. Employment type description > Percentage of transferred Credits>

Normalized GPA credits > Current time status description > Course

Level Progression

(b) Morris Sensitivity analysis orders the features as-

i. Credits Attempted > Normalized GPA credits > Current time status

description > Course Level Progression > Employment type descrip-

tion

Morris analysis is a suitable XAI technique for data scientists to train their models.

However, it is not ideal for domain experts. SHAP also presents the feature impor-

tance over time. Therefore, both SHAP and Morris sensitivity analysis can help the

data scientist to extract the relevant features of the model, and to understand and

refine the model better. For example, both the SHAP and Morris analysis methods

show that "GPA type" and "Minimum required credits’ ’ are irrelevant features. We

removed the features and reran our optimal bidirectional model on the other features.

Table 6.1 reports the results of the prediction. It seems after removing those features;

the performance improved a little bit. But still, the number of misclassifications is

high.
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Table 6.1: Prediction performance records with the Bi-directional LSTM after remov-
ing irrelevant features (GPA type and Minimum Required Credits) identified by both
SHAP and Morris Analysis

#
seme-
sters

Accuracy
(%) Precision Recall F1

score
#Mis-

classified

#missed
in the
class

0− 2.00

Total
#students
(Success-

ful:
At-risks)

1 92.39 0.88 0.92 0.891 492 220 6466
2 92.77 0.89 0.93 0.901 408 111 5646
3 91.76 0.8723 0.93 0.881 427 120 5188
4 92.96 0.844 0.935 0.899 325 93 4620
5 92.02 0.85 0.92 0.88 332 131 4163
6 92.79 0.8367 0.9237 0.89 236 65 3729
7 90.03 0.835 0.91 0.87 326 70 3278
8 92.58 0.834 0.913 0.87 201 33 2711
9 92.59 0.842 0.921 0.88 147 43 1993
10 91.93 0.83 0.919 0.873 115 57 1427

6.2.3 Insights Discovery

Figure 6.19 summarizes the three main building blocks of the LSTM RNNs analysis

on the students’ temporal features. We discover some findings on both the classifica-

tion and regression models, and they lead us to some insights we can leverage from

the model to plan intervention.

The main takeaways that can be drawn from these RNN models are:

1. Data imbalance is a significant problem for any machine learning model. We get

poor uninterpretable performance results for the classification model. Moreover,

to train a deep neural network, we need a high volume of data which may reduce

imbalanced data for training on much larger datasets. Later, with the increase

in batch sizes with cumulative data, we provided more data. However, that

induces an increased imbalance of classes in the data.

2. Feature selection is one of the significant steps in training a model for better

performance. While using the highly correlated features with output variables
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Figure 6.19: FIND on Supervised LSTM RNN on Temporal Data

lose credibility, using non-temporal data for temporal LSTM cells in RNN may

corrupt the structure of the time-series model. However, we also have to be

careful about any sampling methods. For example, oversampling increases the

replicas in our data, leading to a higher number of false positives and negatives.

3. The time-consuming and rigorous hyperparameter tuning is ultimately bene-

ficial for finding the best model for a dataset. Therefore, we achieve better

performance and interpretability on our bidirectional LSTM regression model.

The findings of the RNN models and the explainable AI techniques assist us in ex-

tracting the following insights from the student data:

1. More data may help us understand the students’ behavior and performance and

the model’s performance better. Even with interpretable black-box analysis,

lesser volumes of data fail to describe the model performance and the predictive

results.

2. SHAP explanations do a great job explaining the features of student perfor-
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mance by cohort analysis, timewise projection analysis, and incorporating fea-

ture importance. Such explainable AI tools provide the insights and guidance

which are helpful for the domain experts. The visualizations are very intu-

itive and graspable; with a minimal amount of training, non-data scientists will

achieve a better understanding of the model’s predictive results. This helps

put trust in the machine learning systems. The non-data scientist domain ex-

perts can also improve these systems by incorporating their expert knowledge

on students and student data.

3. Explanations provided by the Morris sensitivity analysis are helpful to train and

implement the models. And the data scientists can get help with the relevant

and essential feature selections. But these tools are not suitable for domain

experts since they require expertise in data science and visualization to operate

and utilize.

6.2.4 Lessons Learned and Limitations

The significant limitations and takeaways from these supervised learning models

are three folds:

1. Describing the model’s performance and demonstrating its credibility requires

a high volume of data for the neural network models.

2. The data imbalance makes the analysis challenging to understand the model’s

performance and efficacy.

3. There is still a problem with interpreting results for some features, even with

the XAI tools.

The involvement of the eXplainable AI (XAI) tool in the feature selection process

improves the model’s accuracy. But the visualizations and interpretations by the XAI

tools do not show any significant patterns. Examples of such features are GPA type,
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GPA credits, percentage of transferred credits, etc. Finally, finding the most likely

explainable AI techniques for the data scientist to solve the data imbalance problems

and train a better model without overfitting. The number in the majority class highly

biases our classification accuracy. Although the parallel embeddings and the Morris

sensitivity analysis demonstrate feature importance, features’ interaction with the

output, and other features, they fail to provide insights about model performance on

imbalanced data. In the future, we plan to navigate other XAI tools and techniques

for this analysis.



CHAPTER 7: Summary and Future Direction

7.1 Summary of the Thesis

This section presents the answers to the research questions and summarizes the

contributions, limitations, and significant takeaways of the thesis.

7.1.1 Answers to the Research Questions based on the FIND Analysis

We discuss the three machine learning models in very detail from chapter 4 to

chapter 6. These chapters demonstrate how each learning model satisfies a sequential

process of student data engineering, learning model generation, and insight discovery

in light of the FIND framework discussed in chapter 3. We will answer the research

questions based on our analysis so far.

• RQ1.1: Leveraging the temporal nature of the student data, what do

the different student data models capture? [Student Data Engineering]

One of the significant gaps we try to fill in is that the learning analytics research

has not yet adopted the usage of temporal analysis broadly. All of the three

models are temporal. In our first model network analysis, we build weighted

student networks that are cumulative by time. For example, if a student reg-

isters for two courses in the first semester with thirty other classmates, the

edge weight for the course rule will be 30 for that student in the first semester.

If the student registers for 40 more students in the second semester, the edge

weight in the second semester will be 70. Here, we build our weighted network

by utilizing and capturing the semester-wise time-series information. The fixed

point feature is temporal too. We did predictive and statistical analysis on the

network features extracted from the temporal weighted student network. Each
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of the temporal network and fixpoint features was able to capture how the stu-

dents behavior changes over time for both successful and at-risk students. For

example, for the ego network density we proved that even with newer connec-

tions over time at-risk students networks do not get complete whereas successful

students create complete ego networks very early in their career. The temporal

nature of the student network data model helped to identify at-risk students

earlier in their career whereas only using non-temporal academic features have

a lower performance in identifying them.

The unsupervised clustering and the LSTM models for both classification and

regression models use engineered temporal features too. We engineered some

course-related semester-wise features to cluster the common patterns among

student cohorts. The temporal projection of the course level progression cap-

tures how the at-risk and successful students attempted the courses and how it

affects their performance.

For the LSTM RNN models for both classification and regression, SHAP expla-

nations capture how each feature is relevant to a model outcome and how their

variation or interaction over time changes the model output.

• RQ1.2: What is the benefit of addressing heterogeneity of high-volume

student data? [Student Data Engineering]

A data structure is called heterogeneous if it contains multiple sub-structures

and various types and formats of data. Our data consist of temporal and non-

temporal categorical and numeric variables. This heterogeneous student data

from different data tables and sources are aggregated into weighted student net-

works, engineered for the unsupervised cluster and RNN analysis. Large vol-

umes of aggregated heterogeneous student data can analyze and learn enormous

amounts of unsupervised data. Meanwhile, raw data is primarily unlabeled and
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uncategorized. Moreover, heterogeneity aids in gaining a better understanding

of vast amounts of data and allows for the effective use of such data in pre-

dictive modeling. Even though we maintain consistency while designing the

feature vectors of each student for our analyses, it is typical for one student to

be associated with numerous types of information, each of which corresponds

to different perspectives. For example, only semester-wise course progression

may not help us understand the students better. The additional nontemporal

background or outcome(CGPA) information for a longitudinal volume of data

helped us understand a typical pattern over time.

• RQ2: How do different explainable machine learning methods help

produce better models of student success and risk? [Learning Models Gen-

eration]

Detailed analyses of the explainable AI tools are provided in chapter 6. The

SHAP explanations with force plots demonstrate how the features operate on

the model for a time series analysis. Moreover, it further presents the pattern

fluctuating for different cohorts. With the help of summary plots, we were able

to see which features are essential, which have a constant effect on the model

over time, and which features do not impact the model at all. The feature

importance summary helps us select the relevant features for a proper model

design. Therefore, SHAP is an ideal XAI tool for both domain experts and data

scientists.

Morris sensitivity analysis is an excellent tool for data scientists to understand

and train the models better. It provides the feature importance and demon-

strates how each feature correlates with the output variable by linearity or

non-linearity.

Visualization or visual reports are also a good form of explanation. The vi-
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sualization of clusters for unsupervised K-means clustering provides a better

understanding of the students’ cohort, which is impossible to perceive with the

tabular or non-visual representation.

• RQ3: How does each model support comprehending students’ perfor-

mance and effectively planning interventions? How may the insights

gained from these models aid domain experts in obtaining actionable

knowledge? [Insight Discovery]

Each of the three models plays a different role in understanding the students

better and provides more directions to further analyses. We believe each of them

is important and serves various purposes to improve the research of Learning

Analytics. For example, network analytics demonstrates how the collaboration

among the students influences their performance. With the help of this analysis,

domain experts will classify at-risk students who are prone to drop out or take

a longer time to graduate earlier. Therefore, it can lead us to plan interventions

to help at-risk students earlier in their academic careers. Faculty members can

also incorporate the findings from this analysis to form teams in a course. For

example, since we find the at-risk students are isolated and tend to linger, we

can mix skill levels and expertise while forming teams so that no one will feel

isolated and, therefore, perform worse than others. Moreover, the uniqueness of

this model is that it does not depend on the social network or interaction logs

data. It makes the data gathering process very convenient and consistent.

The cluster analysis helps us find segregated patterns of different student co-

horts and how they perform differently by projecting the temporal clusters from

beginning to their eighth semesters.

Even though the RNN models are black boxes, SHAP and Morris sensitivity

analysis show us a path to interpret predictive results from any model. More-
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over, they teach us how to iteratively train and diagnose a model’s efficacy by

validating feature interactions and importance. These explainable AI tools and

techniques help the domain expert (SHAP analysis) trust the machine learn-

ing systems and incorporate their domain knowledge to verify these systems.

They (Morris Sensitivity research) will also help the data scientists train and

understand their implemented models better.

7.1.2 Contribution and Major Takeaways of the Thesis

The significant contribution of this dissertation is the three temporal analytical

models implemented to gain deeper insights on students’ performance and behavior

analysis. The following three models are developed:

1. Weighted student network analytics [1]

2. Unsupervised k-means clustering [5]

3. Classification and regression analysis with LSTM recurrent neural network

Throughout the whole process, various temporal data models are investigated and

implemented. We apply different preprocessing techniques, including feature selec-

tions and hyperparameter tuning on the same student data to prepare diverse student

data models to address the input structure of the machine learning algorithms. Fi-

nally, we implement machine learning algorithms on these student data models to

improve students’ overall performance and learning experience. Each of the models

teaches us various insights. For example, the temporal weighted student network anal-

ysis demonstrates how the students’ connections influence the students’ performance

and behavior over time. The inclusion of network and fixed-point features improves

early predicting the risky behavior of dropping out or longer time for graduation. The

comprehensive insights from the model built from the offline database will help the

domain experts to plan early interventions. Unsupervised cluster analysis allows us to
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see through the behavioral distinctions of successful and at-risk students throughout

their academic character. The iterative process of building an RNN model teaches us

lessons on practical model training and data. We try various hyperparameters and

setups to develop a model with higher accuracy to predict the CGPAs ahead of time.

The RNN models inform us how the lower data volume, imbalance, and irrelevant

feature selection negatively influence performance accuracy. Explainable AI tools and

techniques provide an insightful understanding of both the models and the student

data.

We explore how to incorporate explainable AI and visual analytical results to as-

sist the understanding mentioned above of the predictive models. Finally, we intro-

duce discussions of different state-of-art explainable AI tools and techniques on our

recurrent neural network models to demonstrate the efficacy of interpretability for

actionable decision-making.

With the idea of incorporating more explainability in machine learning systems

and tool design, I lead a prototype for an interactive dashboard to involve the adviser

in the decision-making process. In this prototype, we propose incorporating a data

model, an aggregate analytics view with visual and tabular explanations, and a view

to understanding students individually with different attributes. I also develop a

student data model in MongoDB, which addresses the heterogeneity of the student

data with ease of usage. Moreover, the novelty of my research exhibits the importance

of explainable AI for educators and policymakers to understand the model predictions.

Finally, we envision optimizing learning analytics research outcomes and learning

experiences by incorporating their expertise in the knowledge discovery and system

design process.

We develop an empirical framework to structure the whole learning analytics pro-

cess into actionable insights generation. We present a generalizable framework to

demonstrate how the three different learning models help the domain experts and
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educational policymakers identify students’ learning patterns and design actionable

insights.

7.1.3 Limitations

As CS educational researchers and practitioners, we struggle the most in gaining

access to the varying data sources throughout the research. For example, our research

on team collaboration with network analytics would be more effective if we could

gather more data on students’ demography, card swipe, dormitory, housing, library,

food, and counseling services. The sources for these data are sometimes unknown, and

very hard to initialize the data gathering process for strict protocols. We understand

the privacy of the student data is a significant concern. However, it is not well

documented where and how to seek help and guidance, especially if it has a larger

staff population. Most of the time, it takes a very lengthy amount of time by which a

researcher or Ph.D. student may change the job or graduate. Moreover, as a team, we

struggle to understand the existing features of the data due to the absence of proper

institutional documentation.

Inconsistent use of LMS and instructional methods leads to data sparsity. More-

over, information on the admission, background, and demography of the students is

also very sparse. We believe this information will help us to gather more actionable

insights. This information will help us guide the diversity of students who struggle

mainly for being a minority or being exceptional demographically.

Learning analytical research is a longitudinal process. From our deep analysis of

the RNN models, we see how a higher volume of data is necessary to build an effective

predictive model. However, due to a frequent change in the curriculum, we cannot

gather data for a longer time since it will include inconsistencies in the data.

Despite the limitations, I believe CS education research and AI in education is one

of the most vibrant research areas where we can be involved in knowledge discovery

and implementation and improve human’s (students’) lives directly.
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7.2 Future Directions

Throughout the research, experience, and extensive survey, it is established that

the learning analytics research focuses on three primary areas (see figure 7.1) â

1. Journey Analytics

2. Self-regulated learning, and

3. Leveraging machine learning and AI tools and techniques into the LMS systems

and learning experience

We leverage the experience and knowledge on machine learning and AI tools and

techniques to do journey analytics with the semester progressions. For example, we

develop the EAGER ANALYTICS tool for Degree Analytics, which analyzes the

degree progression journey throughout the semesters. As part of this, self-regulated

learning can be one of the future researches. It’s a cyclical procedure in which a

student sets a task, checks their progress, and then evaluates them. The cycle then

repeats itself as the learner adjusts and prepares for the next challenge using reflection.

The concept of the prototype we develop already involves self-regulated learning for

the policymakers and domain experts. We regulate their experience through multiple

user studies. The iterative development of the tools and their composition is based

on the feedback from the user studies.

The research group did some preliminary research on the sentiment analysis on

weekly reflections of intro-level programming courses. Researchers find a high corre-

lation between the weekly reviews and students’ performance in the upcoming weeks.

The sentiment analysis on students’ observations of course and an instructor can help

design early intervention plans for course analytics. A plan to research and develop

an automated early alert system for that specific course to minimize the human in-

terruption in the intervention process can use the reflections from the student, which
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Figure 7.1: Three Major Areas of Learning Analytics Research

will not be biased. It will positively drive the students to think about a course, meet

and interact with the TAs and instructors more frequently and effectively. This will

be an excellent area for further research work. Both the graduate and undergraduate

students can participate in the knowledge discovery process by actively participating

in the research and gathering more valuable and exciting data and tool development

to further the research.

The insights and the knowledge from the network analysis can be leveraged to

design effective team collaboration. To continue this research, we need longitudinal

analysis, user studies, and experimentations. After the publication of the network

analytics model, surprisingly, we found that Texas AM University is already lead-

ing a peer teaching (PT) program based on the same concept derived from our

mathematical analysis [137]. Peer teachers (PTs) are high-achieving undergraduates

who want to assist others in achieving in the classes in which they excelled earlier.
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The PTs assist students in comprehending material given in classrooms and labs,

practicing computational thinking and programming skills, and selecting appropriate

courses. Many students prefer to seek assistance from PTs rather than professors and

teaching assistants because they feel better connected to them both academically and

socially.

Since analytics and data mining experiments in education are becoming increasingly

well-known, there is more competition to gain research prospects and implement

practical applications. I plan to explore the research area with realistic plans and

purposes.
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APPENDIX A: List of Features & Eager Learning Analytics

A.1 Features Used in RNN

Table A.1: Numeric vs Categorical features

Numeric Features Categorical Features

GPA Credits

Credits Attempted

Credits Passed

Minimum Required Credits

Maximum Required Credits

Engineered Features-

1. Percentage of F Credits

2. Percentage of W Credits

3. Percentage of Transfered Credits

4. Percentage of A Credits

5. Percentage of B Credits

6. Percentage of C Credits

7. Percentage of D Credits

8. Course Level Progression

GPA Type

Student Population Description

Current Time Status Description

Employment Type Description

Some of the features are common among the features mentioned below since we try

to deduct the unimportant and irrelevant features for the analytical model in different

ways.
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Table A.2: Features Removed for Sparsity and by Feature Engineering from our
Analysis

Sparse Features Features removed by Engineering

Spouse Accompanied Indication

Children Number

Native Language

Nation of Citizenship

Marital Status

Primary Ethnicity

Grad Academic Period Intended

Withdrawal Reason

Class Rank

School Rank

College

Previous School Percentile

School

School GPA

Hours Attended,

Course Title Long

Veteran Category

College

Class size

Enrolled Indication

Enrollment Status

Academic Standing

Student Status

Department

Current Time Status

Student Population

Major

Admissions Population

Progress Evaluation

Residency Indication

Gender

Quality Points

GPA

A.2 Eager Learning Analytics : Interactive Learning Analytics Tool

We used paper prototypes first to brainstorm on the tool and then used "Indigo De-

sign Studio" to build our prototype tool. I led the design of this prototype. Another

Ph.D. student from our learning analytics research group, Aileen Benedict, collab-

orated with me to design the "Indigo Design Studio" to do our pilot study on the

prototype. We used paper prototypes first to brainstorm on the tool and then used
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"Indigo Design Studio" to build our prototype tool.

I collaborated with two other Ph.D. students from our group to develop the prelim-

inary version of the tool. A past Ph.D. student, Dr. Alireza Karduni, built the tool

from scratch with python, React Javascript framework, and MongoDB database. I

collaborated with Dr. Karduni on implementing and generating results for the second

module - aggregated analytics. I also implemented an optimal data model formatted

as a JSON document in the MongoDB database.

Since the tool is a team effort and ultimately implemented by others (the majority

of its features), I did not discuss the tool in the main content of the dissertation. My

main contribution to this tool are :

1. Leading the design of the prototype

2. Designing and Implementing the backend of the tool in MongoDB

3. Implementing the Aggregate Analytics and incorporating the results into the

tool

The current design of the "Eager Analytics" tool is different from the design we

will discuss here. Another Ph.D. student-led the "Individual Story" module and

made it the tool’s primary focus. The current tool is now completely ready to use

professionally.

The following version of the tool is the first published version I work on [5]. This

version is also associated with my second analytical model discussed in section 5.2.1.

Our team also conducted a user study with this analytical model for the publica-

tion [5]. "Eager Analytics" mainly consists of three main views.

1. Student Data Model

2. Aggregated Analytics

3. Individual Story
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A.2.1 Student Data Model

There are three sets of available features in the student data model from which

we will select features for each respective node (See Figure A.1). The nodes are 1)

the background features which consist of demographic, admission and background

information of the students, 2) the semester features, which consist of semester-wise

information such as all the course information, cumulative GPA, class rank, major,

progress evaluation, etc. 3) Outcome features which consist of the features for per-

formance evaluation such as GPA, number of years of enrollment, etc. Users have to

click on each corresponding feature block, and the features will be added to the re-

spective selected block. Users can choose a feature as a salient or contextual feature.

By default, all the features are contextual. Users can choose features as salient by

clicking on the check box on the right side of each feature in the Selected Features

blocks.

There is a navigation panel at the bottom of each view of the prototype to provide

the option to navigate back and forth.

Figure A.1: Student Data Model (After Selection)
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A.2.2 Aggregated Analytics

The aggregated analytics view is mainly divided into two parts. The first part is the

left panel of the page, where there is a configuration module. Users need to configure

some filters according to their needs from the configurations module. For example, it

has three filters representing different features users want to navigate, cluster statistics

for certain features (currently just showing GPA) and a GPA threshold for analytics.

We are doing the analytics for only CGPA threshold 2. For example, if a user selects

GPA as a success measure, they can regulate the threshold scale according to the

need of their query. If they choose the threshold as 2, the aggregated analytics will

be shown, considering successful students will have a GPA of greater or equal to 2

and vice versa.

In the "Aggregate Analysis", at the bottom of the page, we are showing a table.

This table represents the values of the selected features (which are picked earlier in

the data model) to evaluate the decision of being successful or at-risk. Each row of

this table is presenting information on a single student. And the rows are colored

based on the clusters of the students derived by the aggregate analytics in the cluster

analysis. In the top part of this page, there are two graphs. The leftmost graph shows

the results based on the K-means clusters we discussed in section 5.2.1. The clusters

are colored differently. While selecting a student from the table, the corresponding

cluster for that selected student is highlighted in this graph. The rightmost cluster

shows a box plot distribution of the CGPA in the clusters.

We can select some students for further analysis in the individual story tab. The

tool will generate the stories of the selected students on the "Individual Story" page.

A.2.3 Individual Story

On the left side of this view, there is a list of the selected students from the

aggregated analytics page. The top right corner of the page shows three types of
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Figure A.2: Aggregate Analysis

stories for the students chosen. 1) "Default" stories are based on pre-fixed features,

2) "Temporal" stories are generated by the selected features in the student data

model, and 3) "Outcome" stories are generated for the outcome features.

Figure A.3: Individual Stories of Selected Students

The bottom right part of the page shows progress: a timeline that shows the

background and outcome node and all semester nodes for that student. Each node
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contains the values of the selected features in the student data model and some

additional details for each semester.

A.3 Force Plots of SHAP Analysis on Bidirectional LSTM

We include the force plots to demonstrate the effect of percentages of C, D, and F

we discussed in section 6.2.2.1.

Figure A.4: Effect of "Percentage of C credits" on the value of CGPA

Figure A.5: Effect of "Percentage of D credits" on the value of CGPA
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Figure A.6: Effect of "Percentage of F credits" on the value of CGPA


