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ABSTRACT 

ANDREW ROBINSON. Using Downscaled Climate Model Output to Examine Climate Change 

in North Carolina. (Under the direction of DR. BRIAN MAGI) 

 

Climate change is a pressing issue people in North Carolina are already facing, and recent 

decades in North Carolina have exhibited a warming trend at the higher end of projected values. 

Due to North Carolina’s diverse geography, climate is expected to change differently across the 

state. This geography can be broken down into three distinct regions: the Mountains, Piedmont, 

and Coastal Plain. We used downscaled climate model output to examine climate change in the 

largest population centers (Asheville, Charlotte, and Wilmington) in each of these regions to 

examine how climate change is projected to affect these places in the future for a representative 

month in the winter and summer. We examine how maximum temperature, minimum 

temperature, specific humidity, and precipitation change between the present and the end of the 

21st Century using downscaled output from the 20 climate models in the Multivariate Adaptive 

Constructed Analogs (MACA) downscaling project. Climate is expected to warm and become 

more humid in North Carolina in Summer and Winter with wide variability in precipitation 

across the state, noting that the variability is only evident by considering output from multiple 

climate models. By examining North Carolina climate change at such a tangible level, this study 

intends to inform and equip decision makers as we prepare North Carolina and the distinct 

geographical regions for its future.  
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CHAPTER 1: INTRODUCTION 

Climate change is already well underway with nearly 2 degrees Fahrenheit of warming already 

(IPCC, 2021). The impacts of climate change are being felt globally (IPCC, 2022) and in the 

United States (Jay et al., 2018) The future will undoubtedly be warmer (IPCC, 2021), and the 

impacts will be magnified. There are many questions about how large-scale climate change will 

translate to local scales, and also how to decide what to plan for at local scales in terms of how 

much future warming there will be and what impacts it will have on localized environments. 

  

Representative Concentration Pathways (RCPs) are scenarios created as input to Earth system 

models to simulate the climate of Earth into the future. There are four main RCP scenarios that 

are referred to as RCP2.6, RCP4.5, RCP6.0, and RCP8.5, and each scenario presents a future 

with different trajectories and levels of greenhouse gas emissions by the year 2100 (van Vuuren 

et al., 2011). The number (2.6, 4.5, 6.0, and 8.5) refers to the change in radiative forcing (in watts 

per square meter) of the climate in the year 2100 relative to the pre-Industrial period. The higher 

the radiative forcing, the more energy is trapped within the Earth system; this leads to higher 

overall atmospheric temperatures. Warmer atmospheric temperatures lead to changes in many 

other climate variables such as an increase in humidity and changes in precipitation (IPCC, 2021; 

IPCC, 2022), changing the way we live in our environment. For example, increases in heat and 

humidity lead to increased heat stress in climates similar to North Carolina (Barreca, 2012; Diem 

et al., 2017).   

 

RCPs are determined by trends in population growth, resources consumed in developed and 

developing countries, and the growth of the world economy projected into the future (Moss et al., 
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2010; van Vuuren et al., 2011). By the end of the century, projections of climate change from the 

RCPs show broad-ranging impacts that, roughly, scale with the magnitude of greenhouse gas 

emissions (IPCC, 2022). The end-of-century temperatures projected by the RCPs are shown in 

Figure 1.1.  

 

 

 

Figure 1.1. Climate model projections of temperature from the year 2005 to 2100 using the 

different RCP scenarios (green, orange, purple, red), and observed temperatures (black) from 

the year 1980 to 2020 (Representative concentration pathways, 2015). 

 

RCP8.5 is a scenario that looks at how the Earth will change if we increase the radiative forcing 

in the year 2100 to 8.5 watts per square meter relative to the pre-Industrial Era (circa 1850) 
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through continued extensive use of non-renewable sources of energy (Riahi et. al., 2011). 

RCP8.5 is a future world that continues heavy reliance on coal, methane gas, and oil for primary 

energy consumption through the end of the 21st Century.  

 

There is considerable discussion of whether the RCP8.5 scenario is a realistic storyline for the 

future. Many argue that the  “extreme” RCP8.5 is unlikely to happen given that it is a “business 

as usual” projection, meaning there are no further climate policies enforced to protect from 

global warming (Hausfather, 2019; Hausfather & Peters, 2020), but then there are also arguments 

that suggest that the median global temperature predicted by RCP8.5 is worth continued study 

since there are uncertainties in the severity of carbon cycle feedback loops and climate 

sensitivity. For example, even if the world does reduce emissions to a level more similar to 

RCP2.6 or RCP4.5, it is possible that we will see temperatures that are within the range projected 

by RCP8.5 (Figure 1.2). Uncertainty in projected temperature is due to uncertainty in emissions 

(RCP scenarios) (Webster et al., 2002), uncertainty in radiative forcing (Schwartz, 2004) and 

fast-timescale feedbacks such as cloud feedbacks (ie. climate sensitivity; Sherwood et al., 2020), 

and uncertainty in slow-timescale positive feedbacks that include carbon cycle feedbacks, ice 

sheet melt reducing global albedo (Golledge et al., 2019), and the release of greenhouse gasses 

by the thawing of permafrost making the land a net source of CO2 (Huntingford et al., 2009). 

 

On a global scale, the current and future impacts of climate change (IPCC, 2021; IPCC, 2022) 

can feel like a distant issue because climate change is a process that unfolds over decades and 

centuries rather than days, weeks, or months. In a study about how people perceive climate 

change, 72% of Americans believe climate change is happening (Figure 1.3), 61% believe 
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climate change will affect America, and 60% of Americans believe the President and Congress 

should do more to address global warming, but only 54% of Americans believe local officials 

should do more to address global warming and 43% think “global warming will harm them 

personally” (Howe et al., 2015), as shown in Figure 1.4. These polling-based results generally 

suggest that as the spatial scale decreases, Americans feel less endangered by climate change. 

Therefore, climate change seems like a global problem and not a local one even while localized 

climate impacts continue to mount (Jay et al., 2018). There is a clear need for studying and 

reporting on current and future impacts of climate change at a more local scale, noting that 

Figure 1.5 shows the results for counties in North Carolina.  

 

 

Figure 1.2 How different emissions scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5), the climate 

sensitivity, and feedback mechanisms all work together to give a range of temperature 

possibilities for a future world. Figure from Hausfather (2021). 
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Figure 1.3. Displays how 72% of Americans believe in climate change (Howe et al., 2015; figure 

from https://climatecommunication.yale.edu/visualizations-data/ycom-us/ accessed Spring 

2022). 

 
Figure 1.4. Displays how only 43% of Americans believe climate change will affect them (Howe 

et al., 2015; figure from https://climatecommunication.yale.edu/visualizations-data/ycom-us/ 

accessed Spring 2022). 

 

https://climatecommunication.yale.edu/visualizations-data/ycom-us/
https://climatecommunication.yale.edu/visualizations-data/ycom-us/
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Figure 1.5 Displays how 45% of North Carolina residents believe climate change will affect 

them(Howe et al., 2015; figure from  https://climatecommunication.yale.edu/visualizations-

data/ycom-us/ accessed Spring 2022) 

 

Thinking of local scale impacts of climate change, the North Carolina Climate Science Report 

(NCCSR) examines how the climate in North Carolina could change from present to 2040-2060 

using output from the Localized Constructed Analogs (LOCA) statistical downscaling project 

(Pierce et al., 2014) which downscaled output from 32 climate models. LOCA used climate 

model output from the fifth Coupled Model Intercomparison Project (CMIP5; Taylor et al., 

2012), which is roughly one generation older than the climate model output discussed in the 

IPCC AR6 report (IPCC, 2021). NCCSR discussed projections of future climate (such as 

temperature and precipitation changes) in North Carolina to allow time for stakeholders, 

planners, and politicians to plan for a future with more extreme climate outcomes.  

https://climatecommunication.yale.edu/visualizations-data/ycom-us/
https://climatecommunication.yale.edu/visualizations-data/ycom-us/
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NCCSR (Kunkel et al., 2020) showed that the lack of obvious warming trend that the Southeast 

experienced from 1930-1960 is being replaced in the last 50 years by a warming trend (Figure 

1.6) more similar to the higher end of projected values (i.e. RCP8.5). Therefore, the NCCSR 

conclusions suggest that we should not discount the possibility of higher warming projections 

related to RCP8.5 (Kunkel et al., 2020), which is similar to findings at a global scale driven by 

the uncertainties highlighted in Figure 1.2.  

 

Figure 1.6. Warming trend North Carolina has experienced since 1900. Figure from the NCCSR. 

 

My objective is to use downscaled climate model output from the RCP8.5 scenario to study 

changes in the wintertime and summertime climate in North Carolina between the present and 

the year 2100. In contrast to the NCCSR (Kunkel et al., 2020), my work explores North Carolina 

climate at a finer spatial scale and at a seasonal timescale, and focuses on changes expected by 

the year 2100 in CMIP5 RCP8.5. Also, my work uses downscaled climate model output from the 

Multivariate Adaptive Constructed Analogs (MACA) data portal (Abatzoglou and Brown, 2012; 
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Abatzoglou, 2011), which is a different source than what NCCSR (Kunkel et al., 2020) used, 

although the downscaling techniques (Pierce et al., 2014; Abatzoglou and Brown, 2012) are 

related.  

 

In my thesis, we summarize changes evident in the MACA downscaled climate model output 

numerically and visually for North Carolinians to be prepared for local environmental changes 

from future global warming. A cost-benefit analysis of climate change impacts and societal 

resilience is clear: It is more effective and economical to prepare for climate change impacts 

through planning and development than to react to them when they are already here (Williams et 

al., 2020). By providing North Carolina decision makers with climate data specific to our state 

and that encompasses output from multiple climate models, it arms everyone with pertinent 

information to prepare for climate change in North Carolina. In order to plan for the future, we 

start with what the climate of North Carolina is projected to be by the end of the century under 

the RCP8.5 climate scenario. RCP8.5 is a key projection for planners as it sets the upper 

boundary for a warmer North Carolina climate and allows decision makers to prepare for what 

we hope to be the high end of warming scenarios, remembering the upper range of temperatures 

predicted by the more realistic emissions scenarios (e.g. RCP4.5) is the same as the middle of the 

range RCP8.5 (Figure 1.2).   
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CHAPTER 2: METHODS 

I use downscaled fifth phase Coupled Model Intercomparison Project (CMIP5) climate model 

output (Taylor et al., 2012) from the Multivariate Adaptive Constructed Analogs (MACA) data 

portal (Abatzoglou and Brown, 2012; Abatzoglou, 2013). MACA was compiled for the 

contiguous USA, and originally intended to provide gridded downscaled climate model data that 

would be suitable for national wildfire projection as well as ecological and modeling 

applications, but the dataset can also be used to study smaller spatial scales of climate change in 

the USA and practical applications that are relevant to policy-makers, stakeholder groups, and 

local leaders.  

 

The MACA downscaled temperature, humidity, and precipitation compare well with 

independently-compiled reanalysis data (Abatzoglou and Brown, 2012). The MACA 

downscaling procedure pays special attention to dew point temperature and uses analog patterns 

rather than relying solely on mathematical interpolation (Abatzoglou and Brown, 2012). This 

work has already been used to examine climate change in the United States in other work (Dahl 

et al., 2019, Heidari et al., 2021). 

 

CCSM4 NorESM1-M bcc-csm1-1 MRI-CGCM3 

Miroc5 inmcm4 MIROC-ESM BNU-ESM 

GFDL-ESM2G GFDL-ESM2M CanESM2 IPSL-CM5A-LR 

IPSL-CM5A-MR bcc-csm1-1-m MIROC-ESM-CHEM IPSL-CM5B-LR 

HadGEM2-ES365 HadGEM2-CC365 CSIRO-Mk3-6-0 CNRM-CM5 

Table 2.1. Climate and Earth system models used by the MACA downscaling project. 
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MACA compiles ecological and meteorological model output from 20 CMIP5 climate and Earth 

system models (Taylor et al., 2012) and data from existing US weather stations onto a 4 km 

raster grid (Abatzoglou, 2011). MACA downscaled output uses daily timescales and includes 

downscaled 2-m maximum/minimum temperature, 2-m maximum/minimum relative humidity, 

10-m zonal and meridional wind, downward shortwave radiation at the surface, 2-m specific 

humidity, and precipitation (Abatzoglou and Brown, 2012; Abatzoglou, 2011). We used the 

downscaled 2-m maximum/minimum temperature, 2-m specific humidity, and precipitation 

accumulation averaged on a monthly timescale to study future climate at the spatial scale of 

North Carolina. 

 

I used MACA output version 2 with the METDATA option (Abatzoglou, Maca statistical 

downscaling method) for monthly maximum temperatures, minimum temperatures, specific 

humidity, and precipitation totals from the 20 CMIP5 models in Table 2.1. We used the months 

of January and July to study changes for a representative wintertime and summertime month. 

The data from January and July were averaged across two 20-year periods: 2006-2025, which we 

call the “Present”, and 2080-2099, which we call the “Future”. We subtracted the Present from 

the Future such that positive differences meant the Future was warmer, more humid, or 

experienced more precipitation compared to the Present, and vice versa for negative values. We 

studied the MACAv2-METDATA downscaled output for the CMIP5 simulations of RCP8.5, and 

will refer to MACAv2-METDATA downscaled output as simply “MACA” for the remainder of 

this discussion. 

 

These NetCDF difference files of MACA output were named and organized in Google Drive and 
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uploaded to ArcMap using the “make netcdf raster layer” tool. This resulted in maps of climate 

differences for the “greater North Carolina region” which we trimmed down to just North 

Carolina (Figure 2.1-2.2). 

 

 

Figure 2.1. An example of how the maps appeared when initially uploaded into ArcMap. The 

difference in July temperature maximums across the “Greater North Carolina Region” (example 

is from CCSM4 downscaled output from MACA). Color scale is associated with the figure 3.1 in 

the results chapter. 

 

Figure 2.1 is an example of the maps initially generated in Arcmap from the MACA output. To 

focus on North Carolina, we trimmed the difference data to the state of North Carolina (Figure 

2.2) using the Google Earth Pro polygon tool and uploaded this shapefile into Arcmap, as a 

.KML layer file, to overlay the existing data. Using the “trim raster layer with mask” tool the 

data points outside the shape of North Carolina were eliminated from the dataset.  
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Figure 2.2. An example of the same data set as Figure 2.1 (difference in average temperature 

maximums in July from “present” to “future” for CCSM4) but with the excess data trimmed to 

the political boundaries of North Carolina. Color scale is associated with the figure 3.1 in the 

results chapter. 

 

Because North Carolina is a geographically diverse state with multiple climate zones, the state 

was further broken down into smaller subsection areas so that the differences between them can 

be calculated. For this study, we worked with three locations in the state that represent different 

climate types within North Carolina: Asheville, Charlotte, and Wilmington. The Asheville sub-

domain represents the climate of the western North Carolina mountain region, and is the most 

populous city in that part of North Carolina. The Charlotte sub-domain represents the Central 

Piedmont and includes the largest and most populous city in the state. The Wilmington sub-

domain represents the Coastal region of North Carolina, but is also the largest city directly on the 

Atlantic Ocean in North Carolina. So the sub-domains we used are a combination of 

representative climate and population centers.  

 

To partition the sub-domains from the data set that represent the entire state, polygons were 

formed in Google Earth pro to approximately capture each city. When the polygons were 

uploaded in ArcMap, the project once again used the “Trim raster layer with mask” tool to 
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further divide the data set so layers that represent each variable for each individual location were 

formed.  

 

 

Figure 2.3. Displays how these different regions were divided out of the state as a whole. This is 

the same variable set as Figure 2.2, the difference in July max temperature using CCSM4. For 

Charlotte we used the area inside of I-485 since this area contains the city center and the 

majority of the population, development, and infrastructure. Color scale is associated with the 

figure 3.1 in the results chapter. 



14 
 

 

Figure 2.4. Per Figure 2.3, but for the Asheville spatial domain. 

 

 

Figure 2.5. Per Figure 2.3, but for the Wilmington spatial domain 
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I used the statistical analysis tools in Arcmap to compile the numerical values of the differences 

in minimum temperature, maximum temperature, specific humidity, and precipitation for the 

state and the three sub-domains. This process was applied to MACA downscaled output from the 

20 CMIP5 climate models (Table 2.1). We compiled, organized, entered, and saved the results in 

a Google Sheets document where further statistics were compiled. Part of my analysis included 

comparisons of the metrics in a 20-model composite average as well, and we called this output 

the “composite mean model”.  
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CHAPTER 3: RESULTS 

MACA downscaled results from the ensemble of  20 CMIP5 climate models using RCP8.5 

(MACAv2-METDATA) are presented for each of the four physical variables (monthly 

maximum temperature, minimum temperature, specific humidity, and precipitation), the two 

representative months (January and July), and the four spatial domains (North Carolina, 

Asheville, Charlotte, and Wilmington).  

3.1 Summer 

3.1.1. Maximum Temperature  

Summertime maximum temperatures are an important metric in North Carolina climate as that is 

generally the warmest temperature metric. Maximum temperature is often considered when 

defining extreme heat outbreaks (Tan et al., 2009)  

 

According to the composite mean of the 20 models, the statewide average maximum temperature 

in July will rise by 7.63 °F (Figure 3.1). The range across models was quite wide, with one 

model (INMCM4) predicting 4.10 °F of warming while another (HadGEM2-ES365) projected 

12.02 °F. The middle 50% of the data (10 models) fell between 6.70 °F and 8.49 °F of warming. 

 

Asheville is projected to warm 7.70 °F according to the composite mean model (Figure 3.2), 

slightly more than the state overall. The smallest increase in maximum temperature for Asheville 

is 4.09 °F (INMCM4), and the largest increase in maximum temperature is 12.60 °F (HadGEM2-

ES365). The middle 50% of models fell between 6.58 °F and 8.43 °F of warming. 
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Figure 3.1 Change in July maximum temperatures for MACA-downscaled output from the 20 

CMIP5 climate models and the composite mean average of the 20 models. 

 

Charlotte is projected to warm 7.96 °F according to the composite mean model (Figure 3.2), 

slightly more than the state overall and more than Asheville. The minimum warming for 

Charlotte is 4.00 °F (INMCM4) and the maximum is 13.39 °F (HadGEM2-ES365). The middle 

50% of models fell between 6.61 °F and 8.65 °F of warming. 
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Figure 3.2. Change in Minimum, maximum, median, and interquartile range for the change in 

July maximum temperatures across all climate models and as a function of spatial domain 

 

 

Wilmington is projected to warm the least of any spatial domain across models (Figure 3.2). The 

composite mean suggests 6.19 °F of warming, with a minimum of 3.53 °F (INMCM4) and 

maximum of 8.46 °F (MIROC-ESM-CHEM). The middle 50% of data fell between 5.63 and 

6.82 °F, so Wilmington also has the smallest interquartile range. 

3.1.2. Minimum Temperature 

Increases in minimum temperature relates to increased risk of heat related illness due to the lack 

of relief experienced in the nighttime hours (Wilhelmi et al., 2021). According to our composite 

mean model, there will be a mean increase of 7.24 °F across the state for minimum temperatures 

in the month of July (Figure 3.3). The largest increase in minimum temperature is 10.04 °F 
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(HadGEM2-ES365), while the smallest temperature increase is 5.29 °F (GFDL-ESM2M). The 

middle 50% of models fell between 5.92 °F and 8.43 °F of warming. 

 

 

Figure 3.3. Spatial differences & change in July minimum temperatures across all climate 

models. 

 

In Asheville, our composite mean model indicates a change of 7.54 °F, slightly more than the 

state as a whole (Figure 3.4). The largest increase in minimum temperature is 10.78 °F 

(HadGEMES365), while the smallest increase in minimum temperature is 5.60 °F (GFDL-

ESM2M). The middle 50% of models predicted an increase in minimum temperature of 6.09 °F 

to 8.38 °F.  
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Figure 3.4 Change in Minimum, maximum, median, and interquartile range for the change in 

July minimum temperatures across all climate models and across spatial domains. 

 

 

Of the three sub-domains, it is projected that July minimum temperatures will increase the most 

in the Charlotte study area (Figure 3.4). The composite mean indicates an increase in minimum 

temperature of 6.89 °F. The largest increase in minimum temperature is 11.05 °F (HadGEM2-

ES365), while the smallest increase is 5.45 °F (GFDL-ESM2M). The interquartile range across 

models falls between 6.23 °F and 8.54 °F of warming.  

 

Wilmington is expected to see the smallest increase of July minimum temperatures of any of our 

spatial domains (Figure 3.4). The composite mean projects 5.58 °F of warming, averaged over 

the state. The smallest increase is projected at 3.73 °F of warming (inmcm4). The largest 
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increase is projected at 7.11 °F of warming (MIROC-ESM-CHEM). The interquartile range falls 

between 4.81 °F and 6.82 °F of temperature increase.  

3.1.3. Specific Humidity 

Specific humidity (measured in grams of water per kilogram of air or g/kg) is projected to 

increase across the state under the RCP8.5 scenario (Figure 3.5), as expected given the 

temperature increase. This is an important metric as it measures the amount of water vapor that is 

actually in the atmosphere and affects how the atmosphere feels. An increase in specific 

humidity along with an increase in summertime temperatures will lead to increased heat stress 

and morbidity rates (Barreca, 2012; Diem et al., 2017).  

 

 

Figure 3.5. This figure shows the spatial differences and change in July specific humidity 

between all climate models.  

 



22 
 

 

North Carolina is projected to experience an increase of 3.15 g/kg of specific humidity according 

to our composite mean model. The minimum expected increase is projected at 2.26 g/kg (bcc-

csm1-1). The maximum expected increase is projected at 4.59 g/kg (CSIRO-Mk3-6-0). The 

interquartile range falls between 2.73 g/kg and 3.53 g/kg. 

 

The composite mean model projects 2.93 g/kg of specific humidity increase for the Asheville 

spatial domain (Figure 3.6). The maximum projected increase is 4.36 g/kg (CSIRO-Mk3-6-0). 

The projected minimum expected increase is 1.21 g/kg (bcc-csm1-1). The middle 50% of models 

fall between 2.31 g/kg and 3.37 g/kg.  

 

 

Figure 3.6. This figure shows the change in minimum, maximum, median, and inter quartile 

range for July specific humidity between all climate models and across spatial domains. 
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The composite mean model projects Charlotte’s specific humidity will increase 3.06 g/kg (Figure 

3.6). The maximum projected increase across models is 4.58 g/kg (CSIRO-Mk3-6-0)l. The 

minimum projected increase is 1.79 g/kg  (bcc-csm1-1) of specific humidity increase. The 

middle 50% of models fall between 2.52 g/kg and 3.43 g/kg.  

 

Wilmington is expected to see the highest increase of summertime specific humidity across all of 

the spatial domains (Figure 3.6). The composite mean model projects a 3.45 g/kg increase. The 

minimum projected increase in specific humidity is 2.78 g/kg (NorESM1-M). The maximum 

increase is projected at 4.85 g/kg (CSIRO-Mk3-6-0). The interquartile range falls between 3.10 

g/kg and 3.76 g/kg. 

3.1.4. Precipitation 

Change in precipitation across the state in July is variable across models and across locations, but 

generally the state will expect to see slightly more precipitation in the month of July in the future 

than we currently see in the present. Precipitation is an important metric to study since it has so 

many societal scale impacts ranging from water resources to agricultural growing seasons.  

 

For this report precipitation will be reported in inches of monthly precipitation. For the state of 

North Carolina, the composite mean model projects an increase of 0.06 inches of increased 

precipitation. However, there is a lot of variability across models (Figure 3.7). The range of 

precipitation change averaged across the state and across models lies between -2.47 inches and 

+1.53 inches of precipitation. The interquartile range falls within -0.47 and +0.65 inches.  
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Figure 3.7. Spatial differences and change in July precipitation between all climate models.  

 

Figure 3.7 visually represents how diverse the climate models are for summertime precipitation 

across the state. Where some models show increases in precipitation in the east and decreases in 

the west, some models show the opposite. Overall, the median change in precipitation is +0.22 

inches, with median increases in all spatial domains except Asheville (Figure 3.8). 

 

To gain an even better understanding of how precipitation will change across the state as we 

move forward it is important to look at smaller spatial scales given North Carolina’s diverse 

topography and geography (Figure 3.8). According to the composite mean model Asheville is 

projected to receive an extra 0.06 inches of precipitation in the month of July. The minimum 

change in precipitation projected by a model is -1.34 inches of precipitation (HadGEM2-ES365). 
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The maximum increase of rain we could project to see is 1.74 inches (CCSM4). The interquartile 

range falls between -0.25 inches and +0.47 inches of precipitation. 

 

Figure 3.8. This figure shows the minimum, maximum, median, and inter quartile range for July 

precipitation changes between all climate models and across spatial domains. 

 

In Charlotte, the variability is just as evident (Figure 3.8). The composite mean model projects a 

change of +0.16 inches of precipitation in July. The minimum projected change in precipitation 

is -1.86 inches (HadGEM2-ES365). The maximum projected change is +1.30 inches (NorESM1-

M). The interquartile range falls between -0.37 and +0..64 inches of precipitation.  

 

Wilmington also has a large spread of potential precipitation outcomes, the largest in this study, 

and is the only spatial domain in this study that the composite mean model projects a decrease in 

July precipitation (Figure 3.8). The composite mean model projects a change of -0.28 inches of 

precipitation. The range falls within -3.24 inches (HADGEM2-CC365) and 2.38 inches (GFDL-
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ESM2G). The middle 50% of models fall between -2.125 inches and 1.07 inches of precipitation 

change. 

 

Figure 3.8 statistically displays the wide range of potential precipitation changes across the state, 

specifically in Wilmington. This could be because in July much of the precipitation in North 

Carolina is driven by convection and thunderstorms (e.g. Sayemuzzaman and Jha, 2014; Boyles 

and Raman, 2003), which are processes that are not well-captured by climate model simulations 

(Maher et al., 2018; Becker et al., 2009). Given that large scale climate models are the input to 

the MACA downscaling, it may be a challenge for thunderstorm-driven rain to be consistently 

captured across 20 different climate models.  

3.2. Winter 

3.2.1. Maximum Temperature 

Overall the composite mean model projetcs North Carolina maximum temperatures will warm 

5.58 °F in January by the end of the century. The least change is 1.96 °F and the largest increase 

in maximum temperature is 7.88 °F. These increases are predicted by the inmcm4 model and 

BNU-ESM models, respectively. The interquartile range falls between 4.40 °F and 7.45 °F. 

Figure 3.9 visually shows the modeled range of warming outcomes for North Carolina. 

Generally, the further inland one moves the more pronounced the warming becomes. It also 

becomes evident that January is likely to warm less than July across the state when compared to 

Figure 3.1, noting they use the same scale. 
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Figure 3.9. Spatial differences in the change in January maximum temperatures across climate 

models. 

 

Asheville is typically on the cooler end of the state as it lies at a much higher elevation than our 

other two spatial domains. The composite mean model predicts a 5.87 °F increase for Asheville 

(Figure 3.10). The range of increases in maximum January temperature is 1.85 °F (inmcm4) and 

9.14 °F (BNU-ESM). The interquartile range falls within 4.46 °F and 7.83 °F. 

 

Charlotte will also warm in January (Figure 3.10). The composite mean model predicts a 5.83 °F 

increase in January maximum temperatures. The range of increase falls between 1.76 °F and 9.05 

°F. These are predicted by the inmcm4 and the MIROC-ESM models,respectively. The middle 

50% of models fall between 4.67 °F and 7.77 °F.  
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Wilmington is expected to warm as well although it is similar to July in terms of how it will 

likely warm less when compared to other areas of the state (Figure 3.10). The composite mean 

model predicts a warming of 4.88 °F. The smallest expected temperature increase in Wilmington 

is 1.91 °F (inmcm4) and the largest is 6.71 °F (MIROC-ESM-CHEM). The interquartile range of 

models falls between 3.97 °F and 6.28 °F of warming. 

 

Figure 3.10. Minimum, maximum, median, and interquartile range for January maximum 

temperature changes between all climate models and across spatial domains. 

 

It can be seen here, the change in the maximum temperature averaged across NC in January is 

fairly uniform, with proximity to the ocean dictating the most influence on the spatial pattern. It 

should also be noted the smallest increases in maximum temperature across all spatial domains 

are a result of the inmcm4 climate model, which is a consistently low outlier.  
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3.2.2. Minimum Temperature  

Minimum temperatures in January follow the trend of our other temperature metrics with 

increases seen in all spatial domains. Tracking changes in minimum winter temperatures is 

important as it affects precipitation type, the freeze-thaw cycles, and growing seasons. According 

to the composite mean model, North Carolina will warm 5.71 °F as a whole. The range of 

models falls between 2.72 °F (GFDL-ESM2G) and 8.55 °F (BNU-ESM) of increase in the 

minimum temperature. The middle 50% of models fall between 4.39 °F and 6.91 °F.  

 

The composite mean model predicts 5.80 °F of warming for Asheville while the spread around 

the composite mean model falls between 2.75 °F (GFDL-ESM2G) and 9.14 °F (BNU-ESM). 

The interquartile range falls between 3.82 °F and 7.42 °F.  

 

The composite mean model predicts 5.65 °F of warming in the Charlotte spatial domain. The 

minimum increase seen across models is 2.92 °F (GFDL-ESM2G) and the maximum predicted 

temperature change is 8.87 °F (BNU-ESM). The middle 50% of models fall between 3.94 °F and 

6.97 °F.  

 

In Wilmington we once again see slightly less temperature change relative to the rest of the state. 

The composite mean model predicts 5.20 °F of warming across the state. The total range of 

predicted warming outcomes falls between 2.41 °F and 7.31 °F with the interquartile range 

falling between 4.19 °F and 6.46 °F. 
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Figure 3.11. Spatial differences in the change in January minimum temperatures across all 

climate models. 

 

Figure 3.11 shows the spatial differences between climate models. It can also be seen when 

comparing to Figures 3.1, 3.3, 3.9, and 3.11 that January minimum temperatures are expected to 

change the least when taking into account all 20 models. 
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Figure 3.12. Minimum, maximum, median, and interquartile range for January minimum 

temperature changes between all climate models and across spatial domains. 

 

 

It can be seen from Figure 3.12 how the different spatial domains have the potential to change, 

with Asheville having the most warming potential and Wilmington predicted to have more 

moderate warming outcomes.  

3.2.3. Specific Humidity 

Specific Humidity is an important wintertime metric as it helps determine how the air will feel as 

the temperature gets colder. As the temperature drops high humidity will cause the air to feel 

damp and cold.  

 

Across the state we expect to see an increase in specific humidity (measured in grams of 

water/kilogram of air) in January. The composite mean model predicts an increase of 0.77 g/kg 
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across the state. The spread falls between 0.39 g/kg (NorESM1-1) and 1.19 g/kg (BNU-ESM). 

The middle ten models fall between 0.52 g/kg and 1.00 g/kg.  

 

In Asheville, the composite mean model predicts 0.76 g/kg of specific humidity increase (Figure 

3.14). The spread across models ranges from 0.37 g/kg (NorESM1-1) and 1.29 g/kg (BNU-

ESM). The interquartile range falls between 0.58 g/kg and 1.03 g/kg of specific humidity 

increase.  

 

For Charlotte, the composite mean model predicts 0.78 g/kg of specific humidity increase 

(Figure 3.14). The smallest expected increase in specific humidity across models is predicted by 

NorESM1-1 at 0.39 g/kg. The largest expected increase is predicted to be 1.27 g/kg again by 

BNU-ESM. The interquartile range falls between 0.58 g/kg and 1.03 g/kg.  

 

Wilmington is predicted to see 0.81 g/kg of specific humidity increase according to the 

composite mean model (Figure 3.14). The range across models falls between 0.43 g/kg 

(NorESM1-M) and 1.23 g/kg (CSIRO-Mk3-6-0). The interquartile range falls between 0.57 g/kg 

and 1.01 g/kg.  
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Figure 3.13. Spatial differences in the change in January specific humidity across all climate 

models. 

 

Figure 3.13 demonstrates the relative consistency between models when projecting change in 

January specific humidity. It can also be seen when compared to Figure 3.5 that January 

increases in specific humidity will be less than July across the state. Figure 3.14 shows how there 

are relatively uniform specific humidity increases across the state.  
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Figure 3.14. Minimum, maximum, median, and interquartile range for changes in January 

specific humidity across all climate models and across spatial domains. 

 

3.2.4. Precipitation 

Winter precipitation affects regional water supply, school participation, and workforce hours. 

 

Across North Carolina, most of the 20 models predict an increase in winter precipitation. 

According to the composite mean model we are predicted to experience an additional 0.49 inches 

of precipitation across the state. The maximum predicted increase is projected to be 1.52 

(HADGEM2-CC365) inches while the minimum expected increase is -0.75 inches (GFDL-

ESM2M). The interquartile range falls within 0.05 and 1.05 inches of precipitation. The changes 

in precipitation in January are a bit more evenly distributed than the month of July, but due to the 

geographic diversity North Carolina has there is still a bit of variability across the state. 
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In Asheville, the composite mean model predicts an increase of 0.44 inches of precipitation. The 

minimum expected change in precipitation in Asheville is -0.93 inches (HadGEM2-ES365) and 

the maximum predicted increase is 1.78 inches (CCSM4). The interquartile range falls between -

0.15 and 0.74 inches. Asheville has the most model to model variability of any of our spatial 

domains for changes in January precipitation. 

 

The composite mean model predicts a precipitation increase of 0.48 inches for Charlotte in the 

month of January by the end of the century. The smallest expected change is -0.69 inches 

(HadGEM2-ES365) and the largest predicted increase is 1.94 inches (HADGEM2-CC365). The 

interquartile range falls between 0.08 inches and 0.90 inches.  

 

In Wilmington, the composite mean model predicts an increase of 0.55 inches of precipitation in 

the month of January. The smallest expected change is -0.95 inches of precipitation (IPSL-

CM5A-LR) while the largest change is predicted to be 1.79 inches (IPSL-CM5B-LR). The 

interquartile range falls between 0.27 and 1.07 inches. 
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Figure 3.15. Spatial differences in changes in January precipitation across all climate models. 

 

Figure 3.16. Minimum, maximum, median, and interquartile range for changes in January 

specific humidity across all climate models and across spatial domains. 
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Figures 3.15 and 3.16 demonstrate the spatial and statistical relationship across models for 

precipitation in the month of January across the different spatial domains.  
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CHAPTER 4: DISCUSSION 

The future projected by RCP8.5 is warmer and more humid in North Carolina with uncertainties 

surrounding precipitation in both seasons, but there are important differences in the changes for 

all variables depending on what part of North Carolina is considered. For example, Charlotte 

summertime maximum temperatures could increase by up to 11 °F. When combined with 

increases in specific humidity, this could be a dangerous summertime outcome for the highly-

populated Charlotte region (Raymond et al., 2020) because when the temperature of the air and 

moisture content rise, so will the heat index. Heat index is often considered a measurement of 

what the atmosphere actually feels like for the body and is a stronger predictor of how the body 

will respond to heat than simply temperature alone. Heat index factors in both air temperature 

and humidity (Anderson et al.  2013). 

 

Minimum temperatures will also rise according to all 20 models. A rise in minimum temperature 

will rob people of the relief they typically experience from extreme temperatures once the sun 

goes down (Zhang et al., 2012), and research suggests that morbidity is not associated solely 

with anomalously high maximum temperatures (Petitti et al., 2016). 

 

Figure 4.1 displays the statistical relationship between variables in July, testing how one variable 

relates to another variable for each model. For example, does a model that predicts an above-

average increase in maximum temperature also predict an above-average increase in minimum 

temperature? Indeed, Figure 4.1.a shows that models that predict a larger increase in the 

maximum temperature are likely to predict a larger increase in the minimum temperature (R2 = 

0.641). However, the relationship between other variables is not as strong.  
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Humidity and precipitation are more complex than minimum and maximum temperatures. This 

can be seen in maximum temperature and precipitation (R2 = 0.348), minimum temperature and 

precipitation (R2 = 0.276), maximum temperature and specific humidity (R2 = 0), minimum 

temperature and specific humidity (R2 = 0.17), and specific humidity and precipitation (R2 = 

0.003). 

 

Figure 4.1.a. Shows the R2 value of 0.641 for the relationship between the change in minimum 

and maximum temperatures across the 20 models (blue points) in July 
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Figure 4.1.b. Shows the R2 value of 0.348 for the relationship between the change in 

Precipitation and Maximum Temperatures across the 20 models (blue points) in July 

 

 

 

Figure 4.1.c. Shows the R2 value of 0.276 for the relationship between the change in Minimum 

Temperatures and Precipitation across the 20 models (blue points) in July. 
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Figure 4.1.d. Shows the R2 value of 0 for the relationship between the change in Specific 

Humidity and Maximum Temperatures across the 20 models (blue points) in July 

 

 
Figure 4.1.e. Shows the R2 value of 0.170 for the relationship between the change in Minimum 

Temperatures and Specific Humidity across the 20 models (blue points) in July 
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Figure 4.1.f. Shows the R2 value of 0.003 for the relationship between the change in 

Precipitation and Specific Humidity across the 20 models (blue points) in July 

 

 

Summertime rainfall is the variable with the widest possible outcome. While our composite 

mean model suggests there will only be slight increases in summertime precipitation across the 

state and even a decrease along the coast, the predicted changes in precipitation across the 

downscaled model output from the 20 CMIP5 model varies from -2.47 inches to +1.53 inches. 

The 2000-2019 average July precipitation is 5.2 inches (NOAA NCEI, 2022), so the percentage 

change in precipitation ranges from 48% lower to 29% higher than the most recent 20 years. 

Most of the precipitation in North Carolina in July is driven through convection (Sayemuzzaman 

and Jha, 2014; Boyles and Raman, 2003). The statistical methods used to downscale CMIP5 

climate depend on modeled data that itself does not necessarily capture convective precipitation 

consistently (Maher et al., 2018; Becker et al., 2009).  
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Figure 4.2 displays the same information as Figure 4.1 but for our winter season. There was 

more statistical correlation in winter than summer. Changes in minimum and maximum 

temperature were again strongly linked (R2 = 0.809). Changes in precipitation still almost had no 

correlation to changes in minimum (R2 = 0.025) or maximum temperature (R2 = 0.067). Changes 

in specific humidity are correlated with changes in minimum (R2 = 0.533) and maximum (R2 = 

0.555) temperature, which is a stronger correlation than summer. Specific humidity and 

precipitation changes do not correlate well (R2 = 0.021). 

 

 

 
Figure 4.2.a. Shows the R2 value of 0.809 for the relationship between the change in Minimum 

Temperatures and Maximum Temperatures across the 20 models (blue points) in January 
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Figure 4.2.b. Shows the R2 value of 0.067 for the relationship between the change in 

Precipitation and Maximum Temperatures across the 20 models (blue points) in January 

 

 
Figure 4.2.c. Shows the R2 value of 0.021 for the relationship between the change in Specific 

Humidity and Precipitation across the 20 models (blue points) in January 
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.Figure 4.2.d. Shows the R2 value of 0.555 for the relationship between the change in Maximum 

Temperatures and Specific Humidity across the 20 models (blue points) in January. 

 
Figure 4.2.e. Shows the R2 value of 0.025 for the relationship between the change in Minimum 

Temperatures and Precipitation across the 20 models (blue points) in January 
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Figure 4.2.f. Shows the R2 value of 0.533 for the relationship between the change in Minimum 

Temperatures and Specific Humidity across the 20 models (blue points) in January. 

 

 

Figures 4.1 and 4.2 show how well each model performs across different variables in each 

season. A model that predicts a large increase in maximum temperature generally it will also 

predict a large increase in minimum temperature in both January and July. However, not all 

variables are so closely linked, which suggests why studying downscaled output from 20 climate 

models is important. 

 

As air warms, physics tells us that the amount of moisture that can be held in vapor form 

increases. We expected to find that a model that predicted a larger increase in minimum and 

maximum temperatures would have a correspondingly larger increase in specific humidity. 
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While in general this held true in winter (specific humidity vs. maximum temperature R2=0.555, 

specific humidity vs. minimum temperature R2=0.533), summer is a different story (specific 

humidity vs. maximum temperature R2=0.0, specific humidity vs. minimum temperature 

R2=0.17). There was some correlation between a higher minimum temperature and higher 

specific humidity across the state in summer, but statistically no correlation between a higher 

maximum temperature and higher specific humidity (Figure 4.1.d.). The reason for this could be 

that the atmosphere is getting less cloudy and damp, relative to the temperature, and it is able to 

warm more. This could be because of the increase in sunlight and because having less water on 

the surface allows the surface to heat up more.  

 

Figure 4.3.a. Shows the R2 value of 0.631 for for the relationship between the change in 

Minimum Temperatures and Specific Humidity across the 20 models (blue points) in July in 

Wilmington. 
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Figure 4.3.b. Shows the R2 value of 0.055 for for the relationship between the change in 

Minimum Temperatures and Specific Humidity across the 20 models (blue points) in July in 

Charlotte. 

 
 

Figure 4.3.c. Shows the R2 value of 0.063 for the relationship between the change in Minimum 

Temperatures and Specific Humidity across the 20 models (blue points) in July in Asheville. 
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These results agree with the results presented by the NCCSR where the rise in humidity is 

directly correlated to the rise in temperature at the ocean (Kunkel et al., 2020). These results 

indicate that projections of humidity and temperature at the ocean are separate from inland. This 

could be because Wilmington’s main source of atmospheric moisture is essentially unlimited 

coming from the Atlantic Ocean and the moisture for the rest of the state is limited because it 

comes from both the Atlantic and the Gulf of Mexico. This means just because the capacity of 

the atmosphere to hold moisture increases, does not mean the moisture is available in the 

piedmont and the mountains as it depends on flow from these two sources of moisture. 

 

Changes in summer precipitation had almost no statistical correlation with changes in other 

variables. This could be because changes in precipitation had the widest range of possible 

outcomes across models. Summertime precipitation in the Southeastern US is driven by 

convection (Sayemuzzaman and Jha, 2014; Boyles and Raman, 2003), which low spatial 

resolution climate models have difficulty resolving (Maher et al., 2018; Becker et al., 2009). In a 

basic sense, climate models do not simulate thunderstorms. While MACA downscaling produces 

data with a 4 km spatial resolution, the input data is still from low spatial resolution climate 

model output and MACA downscaling does not include any additional physics that would mimic 

higher spatial and temporal resolution convection. In order to more accurately predict convective 

rainfall in North Carolina in the future, we would need to incorporate convection into the 

downscaling method, or have climate model inputs that have more physically realistic 

convection.  

 

The previous 20 year average of January precipitation in North Carolina is 3.3 inches (NOAA 

NCEI, 2022), so our results indicate a possible change of 23% decrease to 46% increase. This 
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large range of possible winter precipitation outcomes indicates a need to prepare for both ends of 

the extreme scenarios. The percentage changes in winter precipitation are similar to the 

percentage changes in summer, but importantly, the magnitudes of the range are much different 

(-0.75 to 1.52 inches in winter, versus -2.47 to 1.53 inches in summer). This wide range could be 

due to the change in position of the jet stream which will have a large effect on midlatitude 

winter storm track. This is the main driver for North Carolina’s winter precipitation. 

The North Carolina Climate Science Report analyzed downscaled precipitation at the daily 

timescale and concluded that precipitation events that are currently considered statistical outliers 

in terms of magnitude will become more frequent in the future of North Carolina climate 

(Kunkel et al., 2020), consistent with larger-scale climate model findings (IPCC, 2021). While 

we looked at total rainfall in January and July, the prediction of the magnitude and frequency of 

sub-monthly events is important for flood forecasting to allow for better hazard mitigation, but 

the monthly results here suggest our winters will become wetter across the state and our 

summers will become wetter with the exception of the coast. Agriculture would also be affected 

because an increase or decrease in monthly precipitation affects crop yield over the course of a 

growing season. Crops grown in North Carolina such as corn can be destroyed by severe 

flooding events (Ali et al., 2017), but also because of drought. My results show a wide range of 

variability across the models, leading to uncertainty in planning.   

 

There is a clear need to prepare for increased climatological temperatures and humidity in our 

major population hubs, especially when combined with the documented urban heat island effect 

(Eastin et al., 2017), and even though changes in precipitation are not clear, our results suggest 

that extremes (either more or less rain in a month) are within the realm of possibilities. Green 
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space (parks, tree canopy) in cities serves to cool the city and also slow stormwater runoff from 

extreme precipitation events (Mukherjee et al., 2018). Infrastructure such as cool roofing, 

concrete road surfaces, and energy efficient buildings can also be used to cool off our population 

centers as the climate warms (Macintyre and Heaviside, 2013). Some of these measures will also 

help with potential flash flooding events in our cities. By reducing the amount of impermeable 

surfaces and increasing the amount of green spaces and green infrastructure we can reduce the 

amount of rapid runoff and flash flooding caused by the impermeable surfaces in our cities today 

(Mukherjee et al., 2018). 

 

Rural spaces require planning as well, and my results show how North Carolina minimum and 

maximum temperature will increase alongside an increase in humidity across the state, and in 

both seasons. Again, precipitation changes are widely variable depending on the region and 

model, but this suggests that both dry and wet extremes in a month will be important to prepare 

for. Agriculture is a huge industry in North Carolina and this takes place mostly in rural areas 

(Figure 4.3). While flooding and extreme precipitation will be of concern here, the most pressing 

issues facing farmers is likely to be summertime temperature increases and the drought driven by 

increased evaporation (Kunkel et al., 2020). Our composite mean predicts the largest maximum 

and minimum temperature increases in the Piedmont region and just away from the coast (Figure 

3.1 and Figure 3.3), where significant agriculture takes place.  
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Figure 4.4. A large portion of North Carolina agriculture falls within the area of higher 

warming in the state. Compare to figure 3.1. Figure retrieved from 

https://ncmepsummercurriculum.wordpress.com/about-nc-migrant-farmworkers/nc-agriculture-

info/  

 

Higher than average growing season temperatures along with drought could reduce crop yield in 

North Carolina (Raza et al., 2019). Strategies to fight this will be different than those 

implemented in our urban areas and should be formulated prior to the largest portion of the 

changes we are expected to see in order to avoid the brunt of their impacts. Better irrigation and 

farming methods could be a potential solution for the droughts North Carolina is likely to face 

over the coming decades (Raza et al., 2019). The use of genetically modified organisms in our 

crops could help mitigate some of the crop losses by making main crops like corn more resistant 

to drought and higher than average growing season temperatures (Poumadère et al., 2011). 

 

https://ncmepsummercurriculum.wordpress.com/about-nc-migrant-farmworkers/nc-agriculture-info/
https://ncmepsummercurriculum.wordpress.com/about-nc-migrant-farmworkers/nc-agriculture-info/


53 
 

Our winters will also become notably warmer as the composite mean model suggests a warming 

of almost 6 degrees across the state for January maximum temperatures. While this outcome may 

seem desirable, an increase in winter temperatures has other effects as well. North Carolina is 

often on the rain/snow boundary and a temperature increase could cause North Carolina to 

receive more rain rather than snow. This could have economic impacts on the ski industry in 

Western North Carolina. Farmers also rely on the winter freeze to kill off crop pests before the 

spring planting (Andreadis et al., 2017). With warmer winter temperatures it stands to reason that 

not as many pests would be terminated by the cold. 

 

While there is a rise in specific humidity in January, it is not as large of an increase as summer. 

This is logical as the atmosphere’s moisture capacity is exponentially related to its temperature 

and the summer temperature is slated to increase more in addition to it already being the 

naturally warmer season. 

 

By using 20 downscaled climate models to predict future climate in North Carolina and major 

cities within three of the state’s geographic regions, it can be projected how each place will 

change independently of each other. This will help understand the future of changes in our 

ecosystems, weather patterns, and growing seasons. By looking at where and how climate shifts 

in North Carolina it will give the state an extra advantage in preparing for the future. If citizens 

and government officials see the localized effects of climate change perhaps they will take 

action. If this project affects any sort of change in these areas, that is a positive outcome. 
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The methods outlined here can be used on any area within the continental United States where 

MACA has compiled data. For future work, any space could be studied to examine what climate 

could look like across models. The only thing that would need to be altered is the spatial domain. 

Perhaps looking at the spaces at the county level could provide more actionable results in terms 

of policy making. In the future, we would like to automate this process more by incorporating a 

coding language such as Python rather than Arcmap. This would allow for rapid processing of 

downscaled climate model output across different spatial domains.  
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CHAPTER 5: CONCLUSIONS 

North Carolina is projected to warm in every spatial domain and both the summer and winter, 

and the atmosphere is also projected to become more humid throughout the state. This has been a 

hallmark of climate change across the globe and is easily understood based on the climate 

models.  

 

What is not as clearly understood, but could have just as large an impact is the changes we could 

experience in precipitation. It is fairly conclusive from the models that precipitation should 

increase in the month of January across North Carolina. While not all models agree on this 

increase, the composite mean model suggests an increase of 0.49 inches of precipitation across 

the state in the month of January. With January maximum and minimum temperature increases 

of 5.58 and 5.71 °F (respectively) across North Carolina, more precipitation is likely to fall as 

rain than snow. July precipitation is unclear as there is such a wide range of possible outcomes. 

The composite mean suggests a slight increase in precipitation across the mountain (Asheville) 

and Piedmont (Charlotte) and actually a slight decrease in the coastal plain (Wilmington). 

Precipitation is a particularly hard variable to resolve given the convective and complex nature of 

summertime thunderstorms in the southeastern United States.  

 

One thing the models are clear about is an increase in specific humidity across the state in both 

months. While January is slated to only see a small increase in specific humidity (0.77 g/kg), 

July is predicted to receive an increase of over four times that of the winter month (3.15 g/kg). 

This is likely because as temperature increases, the atmosphere's ability to hold moisture 

increases at an exponential rate.  
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Overall, the end of century changes in summer and winter that we summarize, suggest that 

planning is imperative. It will be far costlier, both from an economic and morbidity standpoint to 

react to these changes as they happen rather than get in front of them with action in our urban 

and rural communities. The climate is warming and getting more humid and we must be ready 

for periods of heavy precipitation leading to flooding followed by periods of extreme heat and 

drought. It is important to connect these climate projections to meaningful actions in order to 

prevent worst case social outcomes.  

 

This work only touches on the possibilities for the MACA downscaled climate model output. 

This study looked at the two most extreme (hottest and coldest) months of the year to see how 

they would change in North Carolina. In order to build a more complete climate projection for 

North Carolina, every month would need to be considered. MACA also offers daily model 

output. This could be useful to estimate flood risk in North Carolina as it would project 

individual days with extreme precipitation events. Daily data would also allow us to project 

extreme heat waves in the future (e.g. 5 days in a row with temperatures 5 degrees above the 

mean). This is similar to what the NCCSR did with the LOCA downscaling data. A direct 

comparison of LOCA versus MACA using daily data over the shorter time scale (NCCSR 

studied a future defined as 2040-2060) could be useful. If CMIP6 climate models (IPCC, 2021; 

IPCC, 2022) are successfully downscaled, that would provide an updated look at how North 

Carolina climate could look in the future. Other possibilities include examining different spatial 

domains within the CONUS (e.g. every major city or every county), and looking at all of the 

variables contained within the MACA method. 
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APPENDIX A: MODEL OUTPUT 

 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

CCSM4 NC 7.94 6.30 6.32 6.50 0.23 1.38 2.46 1.01 

CCSM4 Asheville 7.96 6.39 6.53 6.80 1.74 1.78 2.21 0.98 

CCSM4 Charlotte 8.39 6.52 6.26 6.53 0.97 1.31 2.37 1.02 

CCSM4 Wilmington 5.94 4.82 5.62 6.05 -2.05 1.03 2.81 1.02 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

NorESM1-M NC 7.88 5.85 3.92 3.51 1.53 0.49 2.58 0.39 

NorESM1-M Asheville 8.41 5.76 4.39 3.64 0.60 0.29 2.14 0.37 

NorESM1-M Charlotte 8.62 5.87 4.45 3.73 1.30 0.51 2.39 0.39 

NorESM1-M Wilmington 5.98 4.68 3.01 2.84 1.29 0.58 2.78 0.43 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

bcc-csm1-1 NC 8.87 7.15 4.48 5.02 -0.35 1.42 2.26 0.74 

bcc-csm1-1 Asheville 10.39 8.32 4.12 4.93 -0.97 1.56 1.21 0.69 

bcc-csm1-1 Charlotte 10.04 7.85 4.70 4.70 -0.64 1.47 1.79 0.74 

bcc-csm1-1 Wilmington 6.32 5.36 4.79 5.13 0.63 1.35 3.11 0.84 



63 
 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

MRI-CGCM3 NC 5.13 5.80 4.72 4.52 0.67 1.24 3.18 0.87 

MRI-CGCM3 Asheville 4.61 5.78 4.77 3.78 0.56 1.04 3.35 0.83 

MRI-CGCM3 Charlotte 5.15 6.28 4.79 3.87 0.34 1.14 3.31 0.88 

MRI-CGCM3 Wilmington 5.13 4.86 4.57 4.48 0.34 1.44 3.26 0.86 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

MIROC5 NC 6.82 5.94 7.70 6.64 0.59 0.34 2.88 0.86 

MIROC5 Asheville 6.28 5.80 8.01 6.48 0.29 0.13 2.87 0.86 

MIROC5 Charlotte 6.91 5.85 7.96 6.28 0.47 0.44 2.88 0.9 

MIROC5 Wilmington 5.67 4.93 6.59 6.52 0.97 0.56 3.07 0.88 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

inmcm4 NC 4.10 5.58 1.96 4.00 -0.12 0.54 2.78 0.47 

inmcm4 Asheville 4.09 5.99 1.85 3.83 -0.18 0.67 2.57 0.46 

inmcm4 Charlotte 4.00 5.74 1.76 3.96 0.16 0.43 2.7 0.49 

inmcm4 Wilmington 3.53 3.73 1.91 3.11 -1.00 0.63 2.83 0.49 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 
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MIROC-ESM NC 8.51 8.17 7.69 7.63 0.20 0.77 4.1 1.07 

MIROC-ESM Asheville 8.32 8.35 9.13 7.97 0.44 0.62 4.17 1.04 

MIROC-ESM Charlotte 8.60 8.30 9.05 7.40 0.24 0.64 4.19 1.03 

MIROC-ESM Wilmington 7.49 6.79 6.46 7.15 -0.62 0.62 4.13 1.18 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

BNU-ESM NC 6.62 6.41 7.88 8.55 1.50 -0.64 3.45 1.19 

BNU-ESM Asheville 6.14 6.25 9.14 9.14 0.82 -0.16 3.2 1.29 

BNU-ESM Charlotte 6.43 6.46 8.55 8.87 1.22 -0.42 3.31 1.27 

BNU-ESM Wilmington 5.90 5.27 6.35 7.31 1.78 -0.93 3.58 1.22 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

GFDL-ESM2G NC 6.48 5.87 2.41 2.72 1.19 0.72 3.35 0.44 

GFDL-ESM2G Asheville 6.91 6.12 2.32 2.75 0.04 0.67 3.03 0.4 

GFDL-ESM2G Charlotte 6.57 6.08 2.63 2.92 0.73 0.88 3.36 0.42 

GFDL-ESM2G Wilmington 5.49 4.79 2.21 2.41 2.38 0.18 3.57 0.46 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

GFDL-ESM2M NC 6.73 5.29 4.18 3.38 0.09 -0.75 2.39 0.58 
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GFDL-ESM2M Asheville 6.79 5.60 4.48 3.28 -0.09 -0.22 2.21 0.6 

GFDL-ESM2M Charlotte 7.06 5.45 4.59 3.40 0.43 -0.58 2.34 0.63 

GFDL-ESM2M Wilmington 6.03 4.39 3.53 3.31 -0.12 -0.79 2.81 0.6 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

CAN-ESM2 NC 7.96 7.63 4.88 5.35 -0.82 0.69 3.42 0.85 

CAN-ESM2 Asheville 7.96 8.19 5.33 5.90 -0.74 0.95 3.04 0.88 

CAN-ESM2 Charlotte 8.37 8.12 5.35 5.89 -0.36 0.45 3.23 0.88 

CAN-ESM2 Wilmington 6.57 5.76 4.37 4.75 -2.35 0.30 3.66 0.88 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

IPSL-CM5A-LR NC 7.34 8.44 7.58 7.61 0.64 -0.65 3.76 0.64 

IPSL-CM5A-LR Asheville 7.36 8.24 8.03 8.42 0.21 -0.34 3.44 0.63 

IPSL-CM5A-LR Charlotte 7.24 8.48 7.81 7.74 0.35 -0.48 3.64 0.62 

IPSL-CM5A-LR Wilmington 6.64 6.91 6.26 6.59 1.05 -0.95 4.2 0.66 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

IPSL-CM5A-MR NC 8.48 9.29 6.25 6.66 0.52 -0.18 4 0.5 

IPSL-CM5A-MR Asheville 8.64 9.65 6.28 6.55 0.12 -0.46 3.57 0.44 
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IPSL-CM5A-MR Charlotte 8.62 9.54 6.44 6.55 0.43 -0.27 3.82 0.49 

IPSL-CM5A-MR Wilmington 7.04 6.91 5.18 5.89 1.14 0.13 4.48 0.62 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

bcc-csm1-1-m NC 7.65 7.36 2.48 3.26 -0.93 1.00 2.9 0.46 

bcc-csm1-1-m Asheville 8.48 7.94 2.23 3.37 -0.47 0.57 2.33 0.41 

bcc-csm1-1-m Charlotte 8.75 8.10 2.48 3.29 -0.39 0.81 2.56 0.45 

bcc-csm1-1-m Wilmington 4.64 4.59 2.57 2.88 -2.87 1.75 3.31 0.53 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

MIROC-ESM-

CH

EM NC 9.20 8.42 7.40 7.90 -1.47 0.39 4.02 1.01 

MIROC-ESM-

CH

EM Asheville 8.24 8.46 7.96 8.44 -0.74 0.52 4.08 1.01 

MIROC-ESM-

CH

EM Charlotte 9.11 8.73 7.76 8.03 -0.80 0.43 4.05 1.03 

MIROC-ESM-

CH

EM Wilmington 8.46 7.11 6.71 7.29 -2.75 0.25 4.07 1.12 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

IPSL-CM5B-LR NC 6.84 6.39 5.60 5.81 0.50 1.18 3 0.67 

IPSL-CM5B-LR Asheville 6.68 6.59 5.24 5.56 -0.11 0.53 2.95 0.59 
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IPSL-CM5B-LR Charlotte 6.62 6.52 5.33 5.35 0.63 0.95 2.98 0.63 

IPSL-CM5B-LR Wilmington 5.71 5.04 4.95 5.35 0.95 1.79 3.25 0.74 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

HadGEM2-ES365 NC 12.02 10.04 5.42 5.02 -2.47 -0.43 2.42 0.53 

HadGEM2-ES365 Asheville 12.60 10.78 6.10 5.47 -1.34 -0.93 2.24 0.63 

HadGEM2-ES365 Charlotte 13.39 11.05 5.99 4.93 -1.86 -0.69 2.1 0.54 

HadGEM2-ES365 Wilmington 8.39 7.07 4.12 4.59 -3.15 0.46 3.33 0.46 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

HADGEM2-

CC

365 NC 10.37 9.79 6.55 7.00 -1.20 1.52 2.97 1.07 

HADGEM2-

CC

365 Asheville 11.09 10.60 6.57 7.40 0.08 1.41 3.14 1.14 

HADGEM2-

CC

365 Charlotte 11.11 10.67 6.79 7.29 -0.60 1.94 2.93 1.16 

HADGEM2-

CC

365 Wilmington 6.89 6.50 5.83 6.30 -3.24 1.20 3.45 1.03 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

CSIRO-Mk3-6-0 NC 7.70 8.60 7.63 5.67 1.31 0.13 4.59 1.13 

CSIRO-Mk3-6-0 Asheville 7.72 9.29 7.79 4.86 1.10 -0.14 4.36 1.02 
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CSIRO-Mk3-6-0 Charlotte 8.15 9.16 7.83 4.84 0.68 0.19 4.58 1.07 

CSIRO-Mk3-6-0 Wilmington 6.79 6.97 6.68 5.74 2.20 0.70 4.85 1.23 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

CNRM-CM5 NC 5.85 6.52 6.07 6.88 -0.31 0.61 3.05 0.98 

CNRM-CM5 Asheville 5.80 6.77 6.44 7.47 -0.25 0.35 3 1.01 

CNRM-CM5 Charlotte 5.85 6.89 6.23 6.86 -0.06 0.38 3.17 1.03 

CNRM-CM5 Wilmington 5.08 5.18 5.69 6.44 -0.27 0.63 3.11 0.99 

Model Spatial Domain Jul Max Temp Jul Min Temp Jan MaxTemp Jan Min Temp Jul Precip Jan Precip Jul Huss Jan Huss 

Composite NC 7.63 7.24 5.58 5.71 0.06 0.49 3.15 0.77 

Composite Asheville 7.70 7.54 5.87 5.80 0.06 0.44 2.93 0.76 

Composite Charlotte 7.96 7.56 5.83 5.65 0.16 0.48 3.06 0.78 

Composite Wilmington 6.19 5.58 4.88 5.20 -0.28 0.55 3.45 0.82 

Appendix A. Shows the differences in NC and Regional Climate across models, seasons, and variables. 
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APPENDIX B: FIGURE SCRIPT 

 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

#------------------------------------------------------------------------------ 

# Begin: Import External Libraries  

#------------------------------------------------------------------------------ 

 

# os provides Operating System tools 

import os 

 

# NumPy provides array management tools 

import numpy as np 

 

# netCDF4 provides tools to work with netCDF4 data 

import netCDF4 as nc 

 

# datetime is used to calculate script runtime 

from datetime import datetime 

 

# matplotlib is the primary tool for constructing plots in python 

import matplotlib.pyplot as plt 

 

# ncdump is an external script to read and report netcdf metadata 

from ncdump import ncdump 

 

# cartopy.crs is used to assign coordinate reference systems to plots 

import cartopy.crs as ccrs 

 

# cartopy.feature is used to download shapefiles for plotting 

import cartopy.feature as cfeat 

 

# matplotlib tool to add halos to any annotations 

import matplotlib.patheffects as PathEffects 
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#------------------------------------------------------------------------------ 

# End: Import External Libraries 

#------------------------------------------------------------------------------ 

 

 

#------------------------------------------------------------------------------ 

# Begin: User-Modfiable Variables 

#------------------------------------------------------------------------------ 

 

# Path to the data (You will need to change this!) 

main_directory = '/Users/rodneyrobinson/Desktop/help_andrew/' 

 

# Path to model data (Should not need to change if following my directory structure) 

data_directory = main_directory + 'data/' 

 

# Path to store finalized figures (Should not need to change if following my directory structure) 

plot_directory = main_directory + 'figures/' 

 

# Variable of interest (Should just need to add additional variables to the list) 

var = [ 'tasmax', 'tasmin', 'huss', 'precip' ] 

var_name = [ 'Maximum Temperature', 'Minimum Temperature', 'Specific Humidity', 

'Precipitation' ] 

 

# Month of interest (Should just need to add additional months to the list) 

month = ['Jul','Jan' ] 

month2 = [ 'jul','jan' ] 

 

# Month name for plot title 

month_name = [ 'July','January' ] 

 

# Model of interest (Output files need to named in an identical manner to these model name 

strings) 

model = [ 

         'CCSM4', 'NorESM1-M', 'bcc-csm1-1', 'MRI-CGCM3', 

         'Miroc5', 'inmcm4', 'MIROC-ESM', 'BNU-ESM', 

         'GFDL-ESM2G', 'GFDL-ESM2M', 'CanESM2', 'IPSL-CM5A-LR', 

         'IPSL-CM5A-MR', 'bcc-csm1-1-m', 'MIROC-ESM-CHEM', 'IPSL-CM5B-LR', 

         'HadGEM2-ES365', 'HadGEM2-CC365', 'CSIRO-Mk3-6-0', 'CNRM-CM5', 

         'Composite' 
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        ] 

 

# BB_Box Coordinates Northern Lat (No need to change) 

y1 = 37.0 

 

# BB_Box Coordinates Eastern Lon (No need to change) 

x1 = -75.1 

 

# BB_Box Coordinates Southern Lat (No need to change) 

y2 = 33.6 

  

# BB_Box Coordinates Western Lon (No need to change) 

x2 = -84.6 

 

# Consolidate BB_Box coordinates into a list for future calling (No need to change) 

bb_box = [ x2, x1, y2, y1 ] 

 

# Map projection (No need to change) 

proj = ccrs.PlateCarree()  

 

# Download and save the state boarder shapefile from Natural Earth Database for plotting (No 

need to change) 

state_borders = cfeat.NaturalEarthFeature(  

                                          category = 'cultural',   

                                          name = 'admin_1_states_provinces_lakes', 

                                          scale = '10m', 

                                          facecolor = 'none' 

                                         ) 

 

# Run ncdump on netcdf file? (Boolean, make true if you want to see netCDF metadata) 

header = False 

 

# Set fontsize for subplot titles  

title_font = 28 

 

# Colormap schema for plotting (May want to change or convert into lists when adding 

additional variables) 

colormap = [ 

            plt.cm.get_cmap( 'gist_heat' ).reversed(), 

            plt.cm.get_cmap( 'gist_heat' ).reversed(), 
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            plt.cm.get_cmap( 'Purples' ) , 

            plt.cm.get_cmap( 'terrain' ).reversed() 

           ] 

 

var_min = [ 3, 3, 0, -1.0 ] 

var_max = [ 9, 9, 4.2, 1.0 ] 

 

 

var_label = [  

             "Temperature Change (\u00b0F)",  

             "Temperature Change (\u00b0F)" ,  

             "Specific Humidity Change (gkg$^{-1}$)", 

             "Precipitation Change (in.)" 

            ] 

 

# Contour increments (Controls contour interval for variable plotting) 

inc = [ 0.25, 0.25, 0.1, 0.1 ] 

 

#------------------------------------------------------------------------------ 

# End: User-Modfiable Variables 

#------------------------------------------------------------------------------ 

 

 

#----------------------------------------------------------------------------- 

# Begin: Main Script ( DO NOT CHANGE ANYTHING BELOW HERE!) 

#----------------------------------------------------------------------------- 

 

 

#----------------------------------------------------------------------------- 

# Begin 1: Set Working Directory 

#----------------------------------------------------------------------------- 

 

# Record Script start time 

startTime = datetime.now() 

 

# Loop through each month of data 

#----------------------------------------------------------------------------- 

for k in range( 0, len( month ) ): 

     

    # Loop through each provided variable 
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    #----------------------------------------------------------------------------- 

    for j in range( 0, len( var ) ): 

         

        # Report program status to terminal 

        print( "\nBegin main program..." ) 

         

        # Create a new directory for plots if it does not exist 

        if( os.path.isdir( plot_directory ) == False ): 

             

            # Report to terminal 

            print( "\nCreating directory to store plots..." ) 

             

            # Create directory 

            os.mkdir( plot_directory )  

         

        # Report to terminal 

        print( "\nChanging working directory to model output location..." ) 

         

        # Change the working directory to the provided path 

        os.chdir( data_directory ) 

         

        # Retrieve the current directory 

        cwd = os.getcwd() 

         

        # Report CWD to terminal 

        print('\nCurrent Working Directory: \n {}'.format(cwd) ) 

         

#----------------------------------------------------------------------------- 

# End 1: Set Working Directory 

#----------------------------------------------------------------------------- 

 

 

#----------------------------------------------------------------------------- 

# Begin 2: Set-up Figure 

#----------------------------------------------------------------------------- 

         

        # Report to terminal 

        print( "\n\tConstructing new plot..." ) 
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        # Representative of the individual plots that compose the figure (Each letter is a separate 

subplot and . skips that position) 

        figure_mosaic = """ 

                         ABCD 

                         EFGH 

                         IJKL 

                         MNOP 

                         QRST 

                         .UU. 

                         .UU. 

                        """ 

         

        # List of subplot position to call during loop                 

        current_fig = [  

                       'a','b','c','d', 

                       'e','f','g','h', 

                       'i','j','k','l', 

                       'm','n','o','p', 

                       'q','r','s','t', 

                       'u' 

                      ] 

         

        # Create figure and axes objects 

        fig, axes = plt.subplot_mosaic(  

                                       mosaic = figure_mosaic,  

                                       figsize = (30,20),  

                                       constrained_layout = True, 

                                       subplot_kw = { 'projection': proj } 

                                      ) 

         

        # Set Main Plot Title 

        fig.suptitle(  

                     '{} {} Difference (2080-2099) - (2006-2025)'.format( month_name[k], var_name[j] 

),  

                     fontsize = title_font + 18, 

                     fontweight = 'bold'  

                    ) 

         

        # Loop through each model output file 

        #----------------------------------------------------------------------------- 



75 
 

        for i in range( 0, len(model) ): 

             

            # Construct axis objects for row one 

            ax = fig.add_subplot( axes[current_fig[i].upper() ], projection = proj ) 

             

             # Titles for each subplot 

            ax.set_title ( model[i], fontsize = title_font, fontweight = 'bold' ) 

             

            # Draw the US state borders on all panels 

            ax.add_feature( state_borders, linestyle = '-', edgecolor = 'black' ) 

             

            # Zoom in on the specified extent on all panels 

            ax.set_extent( bb_box ) 

             

            # Add background images 

            ax.add_feature( cfeat.LAND ) 

            ax.add_feature( cfeat.OCEAN ) 

         

#----------------------------------------------------------------------------- 

# End 2: Set-up Figure 

#----------------------------------------------------------------------------- 

 

 

#----------------------------------------------------------------------------- 

# Begin 3: Read NetCDF 

#----------------------------------------------------------------------------- 

         

            # Construct the filename  

            filename = 'difference_{}_{}_{}.nc'.format( var[j], model[i], month[k] )  

             

            # Open the netCDF file with netCDF4 module 

            data = nc.Dataset( filename, 'r', format = "NETCDF4" ) 

             

            # Report function status to terminal 

            print( "\n{} has been successfully opened...".format( filename ) ) 

             

            # Print out variable info (Requires ncdump.py to be in same directory) 

            if( header == True ): 

                 

                # Report function status to terminal 
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                print( "\n\tRunning ncdump on {}...".format( filename ) ) 

                 

                # Run ncdump on current netcdf file 

                ncdump( data ) 

             

            # Read in netcdf data 

            lon = data[ 'lon' ][:] 

            lat = data[ 'lat' ][:] 

             

            # Variable longname (Comes from netCDF metadata) 

            longname = 'difference_{}_{}_{}'.format( var[j], model[i], month[k] )  

             

            # Logic to read in model data from netCDF file (Required atm due to inconsistent naming 

conventions) 

            if( i == 20 ): 

                 longname = 'Difference_{}_{}_{}'.format( var[j], model[i], month[k] ) 

            try: 

                variable = data[ longname ][:] 

            except: 

                longname = 'difference_{}_{}_{}'.format( var[j], model[i], month2[k] ) 

                variable = data[ longname ][:] 

              

            # Unit conversions based on variable type     

            if( var[j] == 'tasmax' or var[j] == 'tasmin' ): 

                variable = variable * 1.8 

            if( var[j] == 'precip' ): 

                variable = variable / 25.4 

            if( var[j] == 'huss' ): 

                variable = variable * 1000.0 

                 

            # Close the current netCDF file 

            data.close() 

 

            # Report function status to terminal 

            print( "\n{} has been successfully closed...".format( filename ) ) 

                 

#----------------------------------------------------------------------------- 

# End 3: Read NetCDF 

#----------------------------------------------------------------------------- 
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#----------------------------------------------------------------------------- 

# Begin 4: Plot current netCDF data 

#----------------------------------------------------------------------------- 

             

            # Report to terminal 

            print( "\n\tGenerating current plot ( {}_{} )...".format( var[j], model[i]) ) 

             

            # Create a plotting grid 

            lon2d, lat2d = np.meshgrid(lon, lat) 

             

            # Add model data as a filled contour over the plotting grid 

            cf = ax.contourf( 

                              lon2d, lat2d, variable, 

                              levels = np.arange( var_min[j], var_max[j] + inc[j], inc[j] ), 

                              cmap = colormap[j], 

                              transform = proj 

                              ) 

             

            # Add model data as contour lines over the plotting grid (Every other filled contour is 

complimented by a line) 

            c = ax.contour( 

                           lon2d, lat2d, variable, 

                           levels = np.arange( var_min[j], var_max[j] + inc[j]*2, inc[j]*2 ), 

                           colors = 'w', 

                           linestyles = '--', 

                           linewidths = 0.75, 

                           transform = proj 

                          ) 

             

            # Logic to control fontsize between individual model plots and composite plot 

            if( i < 20 ): 

                c_font = 18 

            else: 

                c_font = 24 

             

            # Label the contour lines 

            clab = ax.clabel( c, fontsize = c_font - 2, inline = True ,fmt = '%1.1f' ) 

 

            # Plot Charlotte, NC Location 



78 
 

            clt = ax.text( -80.943054, 35.213890, s = 'CLT', color = 'lightgrey', fontsize = c_font ) 

             

            # Plot Asheville, NC Location 

            ash = ax.text( -82.55176, 35.595009, s = 'AVL', color = 'lightgrey', fontsize = c_font ) 

 

            # Plot Wilmington, NC Location 

            wil = ax.text( -77.944710, 34.225727, s = 'ILM', color = 'lightgrey', fontsize = c_font ) 

             

            # Add a halo around all annotations 

            # plt.setp(  

            #           [ clab, ash, clt, wil  ], 

            #           path_effects=[ PathEffects.withStroke( linewidth = 1.5, foreground = "k", alpha 

= 0.85 ) ] 

            #         ) 

 

            # Include color bar legend at the end of the loop cycle on a new axis  

            if( i == 20 ): 

                 

                # Create a new axis object for the colorbar 

                cb_ax = fig.add_axes( [0.999, 0.15, 0.05, 0.7] )  

                 

                # Construct axis objects for row one 

                cbar = fig.colorbar(  

                                    cf, 

                                    fraction = 0.046, 

                                    pad = 0.04, 

                                    cax = cb_ax 

                                   )  

                 

                # Set colorbar label  

                cbar.set_label( label = var_label[j], fontsize = title_font, fontweight = 'bold' ) 

                 

                # Set colorbar axes labels 

                cb_ax.tick_params( axis = 'y', labelsize = title_font ) 

                 

            # Report to terminal 

            print( "\n\tPlot {}_{} is completed...".format( var[j], model[i]) ) 

             

        # End Model output loop 

        #----------------------------------------------------------------------------- 
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#----------------------------------------------------------------------------- 

# End 4: Plot current netCDF data 

#----------------------------------------------------------------------------- 

 

 

#----------------------------------------------------------------------------- 

# Begin 5: Save current plot 

#----------------------------------------------------------------------------- 

         

        # String for fille name of current plot 

        plot_file = plot_directory + '{}_{}_summary_fig.jpeg'.format( var[j], month[k] ) 

         

        # Create a new directory for plots if it does not exist 

        if( os.path.isfile( plot_file ) == True ): 

             

            # Report to terminal 

            print( "\nDeleting previous version of figure..." ) 

             

            # Create directory 

            os.remove( plot_file )  

         

        # Save the current radar plot 

        fig.savefig( 

                    fname = plot_file, 

                    dpi = 300, 

                    bbox_inches = "tight" 

                    ) 

         

        # Report to terminal 

        print( "\nNew figure succesfully saved..." ) 

            

    # End variable loop 

    #----------------------------------------------------------------------------- 

 

# End month loop 

#----------------------------------------------------------------------------- 

 

   

#----------------------------------------------------------------------------- 
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# End 5: Save current plot 

#----------------------------------------------------------------------------- 

 

 

#----------------------------------------------------------------------------- 

# End: Main Script ( DO NOT CHANGE ANYTHING ABOVE HERE!) 

#----------------------------------------------------------------------------- 

 

# Report the time required to run the function 

print( "\nScript successfully completed!" ) 

print( "\nScript Total Runtime: {}".format( datetime.now() - startTime ) ) 

 

Appendix B. Contains the Python Script used in the multimodel map layouts in Chapter 3. 

 


