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ABSTRACT

RYAN WESSLEN. Cognitive biases in decision-making under uncertainty with
interactive data visualizations. (Under the direction of DR. WENWEN DOU)

In this thesis, we hypothesize that data visualization users are subject to systematic

errors, or cognitive biases, in decision-making under uncertainty. Based on research

from psychology, behavioral economics, and cognitive science, we design five experi-

ments to measure the role of anchoring bias, confirmation bias, belief bias, and myopic

loss aversion under different uncertain decision tasks like social media event detec-

tion, misinformation identification, and financial portfolio allocation. This thesis

makes three major contributions. First, we find evidence of cognitive biases in data

visualization through multiple behavioral trace data including user decisions, user

hover and click interactions, qualitative feedback, and belief elicitation techniques.

Second, we design multiple experiments with interactive data visualization systems

across different design complexities (coordinated multiple views to single plot), data

types (social network, linguistic, geospatial, temporal, statistical), and evaluate them

on user populations that range from novice to expert (crowdsourced, undergraduate,

data scientist, domain expert). Third, we evaluate the experiments using multiple sta-

tistical and probabilistic techniques to measure the effects of cognitive biases including

classical statistical tests, (Bayesian) mixed effects modeling, hierarchical clustering,

natural language processing, and Bayesian cognitive modeling. These experiments

show the promising role data visualizations and human-computer techniques could

mitigate such biases and lead to better decision-making under uncertainty.
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CHAPTER 1: INTRODUCTION

Recent breakthroughs in machine learning, deep learning, and artificial intelligence

has provided ample gains in the emerging field of data science. However, these ad-

vances have also led to many emerging issues surrounding the use of artificial in-

telligence systems like algorithmic bias [6, 7], a need for explainability [8], a lack of

causality [9], privacy concerns on extraction attacks [10], a lack of human control [11],

environmental costs [12], and negative societal impacts of news feed algorithms like

misinformation on social media [13, 14]. To address these concerns, Ben Shneider-

man has introduced a new human-centered artificial intelligence (HCAI) framework

to provide reliable, safe, and trustworthy systems [15, 16]. Whereas much research in

artificial intelligence (AI) systems have focused on ways to replace human decision-

making, a HCAI approach focuses on how to “augment, amplify, empower, and en-

hance humans rather than replace them”. HCAI framework has the primary objective

to achieve both high levels of human control as well as high levels of automation [15].

However, one challenge to integrating more human-control into future AI systems

is that past research in psychology, cognitive science, and behavioral economics has

identified that humans are susceptible to cognitive biases, or systematic errors in

judgement [17, 18, 19, 20, 21]. Recently, research in the fields of visual analytics,

information visualization and human-computer interaction have investigated in how

cognitive biases can affect the decision-making process within interactive data visu-

alization systems [22, 23, 24]. Our purpose in this dissertation is that by expanding

the research in cognitive biases in such systems, HCAI designers can better measure,

avoid, and possibly mitigate such cognitive biases in order to develop more robust

systems in the future.
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This thesis focuses within the fields of visual analytics, information visualization

and human-computer interaction, which forms the basis of the study of interactive

data visualizations. Figure 1.1 outlines the research workflow explored in this thesis.

First, we use research from fields of psychology, cognitive science, and behavioral eco-

nomics have identified cognitive biases that are systematic errors in decision-making.

We use such theories to motivate the platforms we develop to identify and measure

the effects of such cognitive biases within decision-support tasks using interactive

data visualizations. The next step is system development which includes user inter-

face (web) development, machine learning training, and back end engineering (e.g.,

database, API) to develop end-to-end custom interfaces and experiment apparatus.

Third, we carefully design randomized controlled experiments within laboratory or

through crowdsourced platforms (e.g., Amazon’s Mechanical Turk) to identify treat-

ment effects from the experiments. In addition, we use a several techniques in statis-

tics and causal inference to appropriately isolate treatment effects including classical

statistical tests (e.g., ANOVA, t-tests, linear regression) and mixed effects model-

ing. Further, to provide context and user strategies for user behaviors, we also ana-

lyze users’ open-ended feedback using traditional qualitative text analyses as well as

computer-assisted text approaches like topic modeling. In the long term, such exper-

iments would feedback to modify and develop new theories. This thesis focuses more

on the first three steps while newer frameworks [25] provide future work to refine and

develop theories on graphical inference which we discuss in the discussion section.

1.1 Dissertation Outline

Chapter 2 begins with an outline of background and related work. The remainder

of the dissertation is organized into two parts: investigations on the transference of

cognitive biases within visual analytic systems followed by experiments in informa-

tion visualization that study simplified tasks using newer uncertainty visualization

representations.
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Figure 1.1: Thesis research workflow

1.1.1 Cognitive biases in visual analytics systems

Chapters 3-5 consider three different experiments that investigate the role of two

cognitive biases (anchoring [26, 27] and confirmation bias [28, 19]) within two vi-

sual analytics systems. Chapter 3 investigates the role of anchoring bias within a

social media event detection system, Crystal Ball [29], and explores if similar notions

of anchoring can effect users decisions and interactions patterns in a controlled in-

laboratory experiment. Chapter 4 provides an in-laboratory experiment to measure

the effects of confirmation bias on data visualization users decisions regarding misin-

formation detection on social media using the Verifi system [30]. Chapter 5 combines

elements of Chapter 3 and 4 by studying the role of anchoring effects using the Verifi

system for the task of misinformation detection; however, it expands the studies from

Chapter 3 and 4 by examining the role strategy cues provided to participants may

interact with anchoring effects participants view during training.
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1.1.2 Uncertainty visualizations in information visualization representations

Chapter 6 and 7 extend work from Chapters 3-5 but consider simplified user in-

terfaces and test different but related cognitive biases on crowdsourced experiments.

Chapter 6 considers the role of belief bias [20] on participants correlation beliefs

through a controlled experiment and using Bayesian cognitive modeling as an approx-

imate normative judgement to compare how participants should update their beliefs

for given hypothetical correlation variable pairs. Chapter 7 then explores the effect

of uncertainty visualizations [31] on myopic loss aversion for retirement investment

decision-making by replicating a past behavioral economics study [3] and extending

it with newer uncertainty representations to investigate if such representations can

mitigate myopic loss aversion.

We then conclude the dissertation with a discussion on major takeaways from this

thesis as well as ideas of future extension of this research.

1.2 Thesis Statement and Contributions

In this thesis, we hypothesize that data visualization users are subject to systematic

errors, or cognitive biases, in decision-making under uncertainty. Based on research

from psychology, behavioral economics, and cognitive science, we design five exper-

iments to measure the role of anchoring bias, confirmation bias, and myopic loss

aversion under different uncertain decision tasks like social media event detection,

misinformation identification, and financial portfolio allocation. This thesis makes

three major contributions. First, we find evidence of cognitive biases in data visual-

ization through multiple behavioral trace data including user decisions, interactions

logs (hovers, clicks), qualitative feedback, and belief elicitation techniques. Second,

we design multiple experiments with interactive data visualization systems across dif-

ferent design complexities (coordinated multiple views to single plot), data types (so-

cial network, linguistic, geospatial, temporal, statistical), and evaluate them on user
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populations that range from novice to expert (crowdsourced, undergraduate, data

scientist, domain expert). Third, we evaluate the experiments using multiple statis-

tical and probabilistic techniques to measure the effects of cognitive biases including

classical statistical tests, (Bayesian) mixed effects modeling, hierarchical clustering,

natural language processing, and Bayesian cognitive modeling. These experiments

show the promising role data visualizations and human-computer techniques could

mitigate such biases and lead to better decision-making under uncertainty.

1.3 Prior Publications and Authorship

Although I made significant contributions of the research in this dissertation, much

of the work was done in collaboration with my advisor Wenwen Dou and my disserta-

tion committee members Samira Shaikh, Isaac Cho, and Douglas Markant. Significant

contributions were made as well by my co-author Alireza Karduni along with addi-

tional collaborators on the work including Sashank Santhanam, Svitlana Volkova,

and Dustin Arendt. Chapter 3 was published at the IEEE VAST 2017 conference [32]

along with a related co-authored paper [29] published in the same venue. Chapter 4

was published in AAAI ICWSM 2018 [30]. Chapter 5 was published in IEEE EuroVis

2019 [33] as well as in the Journal of Computer Graphics Forum (CGF). Chapter 6

was published in IEEE InfoVis 2020 [34] with an accompanying publication in the

2021 Special Edition of IEEE Transactions on Visualization and Computer Graphics.

Last, Chapter 7 will be published in IEEE Vis 2021 along with a follow up in the 2022

Special Edition of IEEE Transactions on Visualization and Computer Graphics [35].

In this thesis, I use the first person plural to reflect my collaborators’ contributions.



CHAPTER 2: RELATED WORK

2.1 Related Work

2.1.1 Introduction

The cognitive revolution of the 1950s enabled the mathematical formalism of cog-

nitive processes to develop testable hypotheses of human behavior. Unlike most

attempts in computer science to predict behavior based solely on past actions (i.e.,

behaviorism), computation-based approaches to understanding decision-making, and

thus behavior, offer a possible second revolution [36]. One area where such a com-

putation revolution may provide many gains is decision-making [37] with interactive

visualizations for the Information Visualization (InfoVis) [38] and Visual Analytics

(VA) [39] research communities. Developed as an extension of human-computer inter-

action, interactive data visualizations are tools that amplify human cognition through

the use of abstract visual representations of data [40, 41, 42]. While data visualization

research has a long history of studying low-level perception, InfoVis and VA research

rarely study cognition (i.e., high-level, complex decision-making) or use cognitive

modeling to understand how individuals make decisions [43]. Nevertheless, adopting

cognitive modeling for data visualization research can provide many opportunities to

accelerate innovation, improve validity, and facilitate replication efforts [44]. Early

examples to understand cognitive processes while using data visualizations consider

insight-based approaches [45], top-down modeling [46], or visual attention coupled

with decision-making [47].

An important theme to understanding decision-making with visualizations is the

classic exploration-exploitation trade-off [48]. Motivated by foraging theory [49], this
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problem interprets decision-making as a search process between gathering (explo-

ration) and using (exploitation) information [50]. Interactive visualizations are an

application of two such search sub-problems: visual search and information search.

Sometimes linked to the idea of multi-armed bandits [50] (i.e., time allocation prob-

lem where each choice is uncertain), this problem has direct influence in interactive

visualization where the user must decide how to use the interface’s flexible views in

making a decision. However, such flexibility comes at a cost.

A second problem results from the idea that too much flexibility (i.e., degrees of

freedom) in decision-making can result in garden of forking paths. The problem of

forking paths is tied to statistics’ problem of multiple comparisons [51], which is a

reinterpretation of the exploration-exploitation problem as a dual process between

exploratory and confirmatory analysis.1 More recently, this problem has been ex-

tended to a high rate of false positive decisions with interactive visualizations where

the user has too much freedom [52, 53, 54]. The forking paths problem is a question

of how users update their mental model as presented with new data in an interactive

visualization. In this way, Pu and Kay [52] suggest that cognitive biases may explain

user susceptibility to the forking path problem in visualizations.

Cognitive biases are systematic errors in judgment that have been long studied

by cognitive psychologists and social scientists to understand how and why individ-

uals sometimes make consistent errors in decision-making. Recently, visualization

researchers have explored whether cognitive biases transfer to visualization decision-

making [23, 24, 55] and, if such biases can be identified, could such findings inform the

design of visualizations systems to debias or mitigate such effects [56, 57, 58, 59]. If

such well-designed systems can help users to find the right explore-exploit mix, ideally

such a system would safeguard against possible forking path problems and mitigate

systematic biases with the ultimate goal of enabling better overall decision-making.
1Multiple comparisons problem is sometimes referred to as “p-hacking”.
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2.1.2 Cognitive Biases

Classical notions of rational behavior include adherence to expected utility theory,

the laws of logic, and that uncertainty is measured through probability [60]. Under

these definitions, cognitive biases are systematic deviations, or errors, from such nor-

mative behaviors. However, there are multiple perspectives towards understanding

cognitive biases [61].

The cognitive-psychological perspective attributes biases to bounded rationality

[62], or the use of heuristics due to limited time or mental processing ability. Clas-

sical examples extend from work by Tversky and Kahneman include availability bias

[63], anchoring, and representativeness [26]. This approach has been extended to the

dual-process framework of heuristic-deliberate that differentiate between fast, intu-

itive, emotional thinking (type 1) and slow, deliberate and analytic thinking (type

2) [18]. Alternatively, the ecological-perspective on cognitive biases views heuristics

optimistically as effective tools for decision-making [64]. This approach attributes

cognitive biases as the result of heuristics and the applied context. In this view, bi-

ases occur when people apply experience-based heuristics to unfamiliar situations that

conflict with individuals’ mental models [65]. A third framework is the evolutionary

perspective that posits that cognitive biases are a mismatch between evolutionarily

developed heuristics [66] and an agent’s environment [67]. Under this framework,

heuristics that may have provided advantages from an evolutionary perspective may

not longer have relevance to modern environments. This approach is similar to ecolog-

ical perspective but differs in attributing to the origin of cognitive biases: ecological

are gained from experience while evolutionary are acquired through genetics.2

Nevertheless, there are many different examples of cognitive biases [24]
2More recently, a fourth perspective on cognitive biases, a neural network approach, has been

posited by Korteling, Brouer, and Toet [61]. This approach complements and extends the other
three perspectives rather than replaces them.
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2.1.2.1 Anchoring Bias

Anchoring bias is the tendency for an initial piece of information, relevant or

not, to affect a decision-making process. Typically, anchoring bias is associated the

anchoring-and-adjustment heuristic. Anchoring-and-adjustment heuristic consists of

a two step process [27]. In the first step, a person will develop their estimate, or

anchor, of an open-ended question. In the second step, the person will adjust her

estimate as new information is processed. Error occurs when she does fails to make

a sufficient adjustment to the correct answer. In the classical studies by Tversky

and Kahneman [26], participants were asked to estimate the number of African coun-

tries that are members of the United Nations. Using a wheel to generate a random

number to serve as the anchor, participants final estimate was shown to be affected

by the wheel’s random number, even though it had no relevance to the question at

hand. Extending the work by Tversky and Kahneman, psychological studies have

investigated interacting conditions that can modify the effects of anchoring through

modifying financial incentives [27], cognitive load [27], anchor extremity [68], and

uncertainty/knowledge [69, 70]. Yet more recently, anchoring and other cognitive

biases have started to be explored by visualization researchers, who are interested in

whether cognitive biases like anchoring can transfer to decision-making using inter-

active visualizations. This work motivates the experiments in Chapters 3 and 5.

2.1.2.2 Confirmation Bias

Past research in psychology has found that individuals exhibit a tendency to treat

evidence in a biased manner during their decision-making process in an effort to

protect their beliefs or pre-conceived hypothesis [71], sometimes even in situations

where they have no vested interest or personal stake [19]. Research has shown that

this tendency, known as confirmation bias, can cause systematic errors in individual

decision-making [20]. Confirmation bias can be expressed “either as a failure to seek



10

or utilize data which are inconsistent with a single hypothesis under test” or “it may be

expressed as a failure to seek or utilize evidence for alternative hypotheses” [72]. Past

research demonstrates that confirmation bias affects decision making process in con-

texts like policy rationalization, judicial reasoning, medicine, and science [19]. Classic

laboratory experiments to study confirmation bias typically present participants with

a hypothesis and evidence that either confirms or disconfirms their hypothesis, and

may include cues that cause uncertainty in interpretation of that given evidence.

These studies motivate the design of the studies in Chapter 4.

2.1.2.3 Belief Bias

Research in psychology shows that prior beliefs have a strong influence on people’s

interpretation of uncertain data [73, 74, 75, 76], especially for correlations [77, 78]. A

central theory that explains why prior beliefs are important is the dual-process ac-

count of reasoning [79, 18]. This theory posits that fast heuristic processes (System 1)

competes with slower analytic processes (System 2) that can affect logical decisions.

Evans et al. [80] suggested that belief bias [79, 73] could occur as “within-participant

conflict” between the two systems when participants tend to agree with an argument

based on whether or not they agree with the conclusion rather than its logical conclu-

sion. Alternatively, other research focused on theory-motivated reasoning bias based

on “congruent” and “incongruent” evidence relative to an individuals’ belief systems

[74]. These theories motivate design aspects for the studies in Chapter 6.

2.1.2.4 Myopic Loss Aversion

Financial decision-making is central to decisions like retirement investing as typical

investors make decisions about how to allocate funds across a wide range of assets

that vary in risk (e.g., stocks vs. bonds). A seminal study by Mehra and Prescott

[4] found a surprising reluctance to take on risk, in that standard economic models

could not account for the large historical premium for riskier investments (the “equity
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premium puzzle”). Benartzi and Thaler [21] theorized that individuals deviate from

the predictions of neoclassical economic theory due to two factors, an oversensitivity

to the possibility of losses, and evaluation of returns over short time periods, a com-

bination they referred to as myopic loss aversion. Benartzi and Thaler [3] showed

that myopic loss aversion emerges when making investment decisions with simple vi-

sualizations of the distribution of returns (i.e., bar charts). They found that investors

allocated less in stocks when shown returns over a 1-year evaluation period due to

aversion to short-term losses. Their results suggest that the method for visualizing

investment performance can have a dramatic effect on individuals’ willingness to take

on risk. This work motivates the experiment presented in Chapter 7.

2.1.3 Cognitive Biases in Visualizations

Cognitive bias research in visualizations can be divided into frameworks and em-

pirical studies.

2.1.3.1 Empirical

Empirical studies on cognitive biases in data visualizations are relatively new, be-

ginning around 2015-2016. Most studies attempt to demonstrate evidence of tra-

ditional cognitive biases within data visualization user studies. One of the earliest

mentions of cognitive biases within the visualization community comes from Ellis

and Dix [22]. They posit possible cognitive biases relevant to data visualization

decision-making and suggest possible case studies. Following this introduction, data

visualization research on cognitive biases have developed studies to explore biases like

attraction [81, 58], selection [82], availability [83], anchoring [32, 84, 33, 85, 86] and

confirmation bias [30, 87]. However, with the exception of Dimara et al. [58] and Gotz

et al. [82], these studies have largely been exploratory in nature with the attempt to

measure evidence of the existence of such biases, with no experiments on interven-

ing and demonstrating how visualizations can mitigate against such biases. Most of
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these studies were motivated by past psychology studies without theoretical models

on why such biases exist in visualizations. To address this problem, recent theoretical

frameworks have been introduced on tasks, interaction metrics, or different types of

biases (e.g., perceptual and social) with data visualizations.

2.1.3.2 Frameworks

Past explanatory frameworks for cognitive biases by cognitive psychologists divide

biases on why they occur [24]. Two examples of such frameworks include Baron

[88] and Pohl [89]. While beneficial for researchers across disciplines, for the data

visualization community, there’s no comprehensive review of cognitive biases within

that community. In a first attempt to address this problem, Dimara et al. [24] provide

a taxonomy of experimental tasks to measure cognitive biases within visualization

research. Using 176 suggested cognitive biases, they classify these biases into one

of seven task-based categories and qualitatively rated each by its possible impact in

data visualizations.

Three alternative frameworks have been introduced to consider cognitive biases

more broadly across individual biases. Wall et al. [23] provide a framework for mea-

suring cognitive biases within visualizations through the development of metrics for

user’s interaction logs. Specifically, they introduce two broad categories of metrics:

coverage and attribute metrics. Second, Calero Valdez, Ziefle, and Sedlmair [55] pro-

pose a three-tier model of perception, action, and social that corresponds to different

methods in data visualization research to study biases at each tier. Last, Parsons [59]

explored the role external representations [90] can facilitate representational biases

due to differences in individual representational fluency, i.e., knowledge and skills to

understand different representations. In this view, the best mitigate against such

biases is not individual bias-level solutions (e.g., mitigation specifically for anchoring

effects), but instead visualization designers to put more effort in education, training,

and practice to ensure all users have sufficient representational fluency.
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More recently, additional research has expanded to consider the design space of

mitigating biases with additional use cases. Wall, Endert and Stasko [91] introduced

eight dimensions that are part of two core components (system and context) of a

visual interactive system that can be manipulated to mitigate such biases. While

work in mitigating biases has been sparse, this work provides an opportunity for

future studies to assess these strategies.

2.1.3.3 Cognitive Modeling in Visualizations

Cognitive modeling in visualization initially was studied as a subset of visuospa-

tial reasoning in how individuals derive meaning from external visual representations

[92]. Visualization researchers have integrated similar ideas to understand visualiza-

tion cognitive processes through insight-based approaches [45] and top-down modeling

[93, 46]. More recently, InfoVis researchers have used Bayesian models to understand

cognitive processing of visualizations [94, 95]. Cognitive scientists have demonstrated

the importance of Bayesian modeling to understanding individual decision-making

[96, 97]. In this approach, an individual has some prior belief that is updated when the

individual consumes additional data, resulting in their posterior beliefs. Bayesian cog-

nition models have been used to understand deviations from optimal belief updating

due to conservatism, sample-based inference (approximation) and “resource-rational”

interpretations of cognitive bias [60].

Two InfoVis studies [94, 95] have combined belief elicitation with a Bayesian cog-

nitive modeling framework. Wu et al. [94] examined whether people integrated prior

probabilities with data in an optimal manner. They found that priors influenced pre-

dictions in a manner consistent with Bayesian inference, although to a lesser extent

than predicted by the model. However, a limitation to this study was that partic-

ipants were given a prior; therefore, prior beliefs cannot be examined. In contrast,

Kim et al. [95] empirically measured participants’ prior beliefs about the a target pro-

portional quantity and used those priors to calculate the normative posterior given
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the data that was presented. In aggregate, participants’ judgments were consistent

with predictions derived from Bayesian inference, although less so for large data sets.

However, participants expressed greater uncertainty in their judgments than expected

from the Bayesian model. Further, the authors connect such Bayesian modeling and

belief elicitation with recent research on visualizing uncertainty through techniques

like HOPs [98, 99, 100].

2.1.4 Exploration-Exploitation

While new to data visualization research, the rational modeling approach for op-

timal exploration-exploitation decisions within Human-Computer Interaction (user

interfaces) are not new. Early versions appeared in the early 1990s and were exten-

sions of the early rational analysis approach outlined by Anderson [101]. For example,

Rehder et al. [102] used the Anderson decision-making framework to develop a simple

model of how a user will scan through commands until she finds the most relevant

command to execute. In this approach, the authors framed a user’s decision-making

process as a choice between (1) executing the current command (i.e., exploitation)

and (2) exploring another command in the chance of finding a better command (i.e.,

exploration). To model this decision, the authors formalized two cost functions for

either scan (i.e., explore more) or execute (i.e., act) that are a function of the user’s

perceived commands’ relevance, cost of moving and undoing execution, and the condi-

tional probabilities of each hypothesis given its relevance. Under several assumptions,

the user will either scan (explore) or act (exploit) based on whichever function has

the lowest cost.

2.1.5 Decision-Making Framework

Another important factor would be incorporating a decision-theoretic modeling

framework within visualization empirical studies [103].3 Although not new to the vi-
3Hullman et al. [103] recommendation of decision frameworks is in the context of uncertainty in

visualizations however their argument can apply to evaluating any visualization system.
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sualization community (e.g., [5]), decision frameworks offer two significant advantages:

increased participant motivation and utility-maximization frameworks to determine

optimal decisions to use as benchmarks. First, incentives (i.e., extrinsic awards) can

provide higher participation effort and, thus, performance. Such extrinsic motivating

factors generally are monetary awards linked to better performance; however, points

through gamification can provide more subtle incentives as well. Further evidence

from neuroscience has also found that incentive manipulations can improve partic-

ipant motivation [104]. Second, by creating such incentives, it’s easier to quantify

rewards as utility, thus enabling Von Neumann-Morgenstern utility functions [105].

This lends itself to the incorporation of probabilities and infers rational choice in

which behaviors can be interpreted as individual “utility-maximizing.”

2.1.6 Visualizing Uncertainty

A related and important research area is communicating uncertainty to individuals

through visualizations. Recently, a significant amount of research within the Info-

Vis and VA community has gone to better understand different ways to incorporate

uncertainty within visualization systems. To organize such approaches, Hullman et

al. [103] provide a six-level taxonomy for measuring uncertainty in data visualization

literature.

There are three important reasons uncertainty representations are important for

interactive data visualizations. First, visualizations can aid decision-making under

uncertainty by conveying measurements of uncertainty without requiring core statis-

tical knowledge. Tsai, Miller, and Kirlik [106] find empirical evidence for the ability of

interactive visualizations to convey Bayesian reasoning for Bayes-naïve participants

(i.e., individuals who are unfamiliar with Bayes theorem). Second, uncertainty can be

measured as social information based on others’ performance on specified task. Kim,

Reinick, and Hullman [107] provide a controlled experiment to measure the effect of

showing other participants’ expectations on user’s ability to recall the data, the extent
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to which they adjust their expectations to align with the data, and their trust in data

accuracy. Last, a better understanding of how individuals perceive uncertainty can

yield better design guidelines for the development of interfaces that consider uncer-

tainty. For example, Greis et al. [108] provide design guidelines for HCI researchers

on evaluating whether and how to present uncertainty within visualizations.

The study most relevant for this context was Micallef, Dragicevic, and Fekete [109]

in which the authors conducted a controlled crowdsourced experiment to evaluate par-

ticipants’ ability to engage in Bayesian inference through different visualizations. In

their experiment, the authors create a series of variations of Euler diagrams [110, 111]

to test participants’ ability in Bayesian reasoning to the class mammography problem

[112]. In their study, they found that participants’ Bayesian reasoning was lower past

experiments and that visualizations exhibited no measurable benefit. Moreover, in a

second round they found even providing additional text for context to the visualiza-

tion did not provide any additional value. However, they did find some evidence that

visualizations may provide value when text is provided but without explicit numerical

values. Ultimately, the authors’ argued for the need of much more experiments to

better understand the context of this problem, especially when these problems are

applied to non-experts with diverse populations (like crowdsourcing sites like MTurk).



CHAPTER 3: THE ANCHORING EFFECT IN DECISION-MAKING WITH

VISUAL ANALYTICS.

3.1 Introduction

Researchers in multiple fields, including psychology, economics and medicine have

extensively studied the effect of cognitive biases on decision making [113, 114, 115].

Cognitive biases are rules of thumb or heuristics that help us make sense of the world

and reach decisions with relative speed [116]. Decision making, the process of iden-

tifying solutions to complex problems by evaluating multiple alternatives [117] has

been increasingly exacerbated due to explosion of big data [118]. To facilitate hu-

man decision-making processes on large and complex datasets, Visual Analytics (VA)

combines automated analysis techniques with interactive visualizations to increase

the amount of data users can effectively work with [119]. Evidently, the effectiveness

of VA to support decision making is an area that warrants study. Our goal in this

work is therefore to conduct a study which incorporates three complementary strands

of research, given the premises that VA supports decision making, and that decision

making is impacted by cognitive biases. Specifically, we investigate how users’ deci-

sion making processes are impacted by cognitive biases when using VA systems to

analyze large and complex datasets. Moreover, we explore if and how cognitive biases

are reflected in the way that users interact with visual analytic interfaces.

In the context of VA research, many recent VA systems [120, 121, 122, 123, 124]

designed to facilitate the decision making on large and complex datasets contain

coordinated and multiple views (CMV). By presenting different visual representations

that show various aspects of the underlying data and automatically coordinating

operations between views, multiple coordinated views support exploratory analysis
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to enable insight and knowledge discovery [125]. In visual interfaces that employ CMV

design, users often have choices on which views serve as primary vs. supporting views

for their analysis and on the strategies to switch between different views.

The flexibility of visual interfaces with coordinated and multiple views make cogni-

tive biases such as anchoring bias particularly relevant to study. People find cognitive

biases to be useful heuristics when sorting through large amounts of information, when

task constraints or instructions prime them to focus on specific types of information,

or when asked to make quick decisions and analyses. This has been demonstrated for

several biases and shown that biases affect decision-making processes in predictably

faulty ways that can result in decision-making failures when information is discounted,

misinterpreted, or ignored [18]. Additionally, the biases affect not only regular users,

but also expert users, when thinking intuitively [18]. One type of bias, the anchor-

ing effect describes the human tendency to rely too heavily on one/the first piece of

information offered (the “anchor”) when making decisions [115]. Research has demon-

strated that individuals anchor on a readily accessible value and adjust from it to

estimate the true value, often with insufficient adjustments. For instance, if a per-

son is asked to estimate the length of the Mississippi River, following a question on

whether the length is longer or shorter than 500 miles, their answer will be adjusted

from the ‘anchor’ value of 500 miles and will underestimate the true length of the

Mississippi River. The effect of such anchors have been extensively studied in multi-

ple tasks in the laboratory and in the field (for a detailed review see [126]). However,

the effect of anchoring in Visual Analytics interfaces have not been systematically

studied. More importantly, the effect of anchoring bias on the strategies that users

deploy to interact with the visual interface and their analysis outcomes remains an

open question.

In this chapter, we study the effect of anchoring on users’ exploration processes

and outcomes. When interacting with visual interfaces employing CMV design, there
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is a possibility that users rely too heavily on one particular view. The reasons for

such reliance include but are not limited to prior experience, familiarity with certain

visualizations, and different ways they were trained to use the visual interface. The

significance and impact of such anchoring is the subject of our study.

Prior work in the VA community provides empirical data on cognitive costs of

visual comparisons and context switching in coordinated-multiple-view visual inter-

faces [127, 128]. Findings from these experiments inform design guidelines of CMVs.

However, there is little research on how cognitive biases transfer to visualizations,

in particular to visual interfaces with coordinated multiple views. MacEachren [129]

argues that prior efforts in visualization of uncertainty deal with representation of

data uncertainty, but do not address the reasoning that takes place under these con-

ditions. We therefore aim to investigate the impact of anchoring effect on human

decision-making processes when using VA systems, because it has been shown to be

overwhelmingly affect decision-making [115]. Our experiment design addresses sev-

eral challenging requirements that are necessary to derive meaningful implications:

first, the experiments need to be conducted using a VA system with tasks relevant to

decision-making based on large and complex datasets; second, measures and experi-

ment data that reflect users’ decision making processes (beyond task completion time

and accuracy) need to be collected; third, novel analyses methods need to be devel-

oped to tease out the effect of anchoring bias on decision making with VA systems.

Accordingly, our work makes the following original contributions:

• To situate our study in complex decision making tasks with visual interfaces,

the experiments are conducted with a sophisticated visual analytics system [130]

with multiple coordinated views. The design of the visual analytics system

enables the visual anchor on either geo or time related representation through

tutorial/training.

• In order to study the effect of anchoring bias on the decision-making processes
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with greater nuance and granularity, we collect not only quantitative measures

about users’ performance, including questionnaire responses, but we also collect

detailed interaction logs within the visual interface. The interaction logs capture

the decision-making process at a action level. Significant differences in actions

were found between subjects assigned to different visual anchors.

• In addition to running statistical tests on the quantitative measures collected

through pre- and post-questionnaires, we apply two novel methods of analy-

sis - graph analysis and structural topic modeling - to analyze the paths and

patterns of users interactions and identify the effect of anchoring bias. Our

analysis revealed that visual anchors impact users’ decision-making processes

while numerical anchors affect the analysis outcomes.

3.2 Background and Related Work

In this section, we describe literature in the areas relevant to our study.

3.2.1 Background on Anchoring Effect

Humans have the tendency to rely on heuristics to make judgments, which can

lead to efficient and accurate decisions [131], however these heuristics may also lead

to systematic errors known as cognitive biases [18]. Psychologists have long studied

the presence of cognitive biases in human decision making process [132, 18]. The

anchoring and adjustment bias, defined as the inability of people to make sufficient

adjustments starting from an initial value to yield a final answer [132], is one of the

most studied cognitive biases that can lead individuals to make sub-optimal decisions.

In the classic study by Tversky and Kahneman [132], the authors found evidence that

when individuals are asked to form estimates, they typically start with an easily ac-

cessible value or reference point and make adjustments from this value. While such

an approach may not always lead to sub-optimal decisions, research has demonstrated

that individuals typically fail to adjust their estimates away from their initial start-
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ing point the anchor. Research has shown that anchoring affects decision making

in various contexts, including judicial sentencing [133], negotiations [134] and medi-

cal diagnoses [113]. Given this documented prevalence of anchoring bias in various

contexts of decisionmaking activities, we hypothesize that such effects may also be

present when individuals interact with data while using visual analytics.

3.2.2 Visual Analytics and Cognitive Biases

Sacha et al. [135] investigate how uncertainties can propagate through visual ana-

lytics systems and examine the role of cognitive biases in understanding uncertainties,

and also suggest guidelines for the design of VA systems that may further facilitate

human decisionmaking. Similarly, research in the detection of biased decision mak-

ing with VA software is in the early stages [136]. Harrison et al. found through a

crowd-sourcing experiment that affective priming can influence accuracy in common

graphical perception tasks [137]. George et al. [138] examined robustness of anchor-

ing and adjustment effect in the context of decision support systems. Although their

study revealed the presence of anchoring bias in the user’s decision making task of

estimating the price of house, their decision support system did not contain a highly

complex visual interface consisting of coordinated multiple view. Researchers have

also investigated the role of various other biases such as confirmation bias [139] and

attraction effect [81] in the context of visual analytics. Dimara et al. [81] studied

attraction effect using crowdsourcing experiments to determine that attraction bias

did in fact generalize to information visualization and that irrelevant alternatives may

influence users’ choice in scatterplots. Their findings provide implications for future

research on how to possibly alleviate attraction effect when designing information

visualization plots but no study to date has explored the anchoring bias in visual in-

terfaces. Additionally, no research to date has examined the interaction patterns and

activities of users in decisionmaking while these users are explicitly anchored under

controlled experimental conditions.
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In the next section, we describe a novel approach to analyzing the users’ interaction

patterns which is grounded in the analysis of web log data.

3.2.3 Use of Topic Models for Analyzing Web Logs

For our analysis of the interaction logs, we employ a variant of topic models, struc-

tural topic modeling (STM), that facilitates testing the effect of document-level vari-

ables on topic proportions. By characterizing the temporal sequence of actions taken

by the user during their interactions with the interface as a ’text document’ and char-

acterizing actions as ’topics’, we are able to test the effects of several factors, which

include not only demographic variables such as age and gender, but also the effects

of anchoring bias on the user’s actions, and hence their decision-making processes.

Although topic models have been used to analyze web logs previously, our applica-

tion of STM to user interaction logs is novel by providing a mechanism to test the

effect of independent variables on actions (topic proportions). Early applications of

topics models [140, 141] to analyze web log behavior used probabilistic latent seman-

tic indexing (pLSI) [142], a predecessor model to LDA-based topic models [143]. In

the case of analyzing web log data, the pLSI model has been helpful in capturing

meaningful clusters of users’ actions, and found to surpass state-of-the-art methods

in generating user recommendations for Google News [141].

One limitation of this method was that it did not consider time or user-level at-

tributes (independent variables) within the model. To address the issue of time,

Iwata et al. [144] created a LDA-based topic model (Topic Tracking Model) to iden-

tify trends of individuals’ web logs on two large consumer purchase behavior datasets.

In their model, they created a time component to identify the dynamic and tempo-

ral nature of topics. As we will discuss in section 5, we address the same concern

by creating a time component in our STM model. Further, we employ STM’s flexi-

ble causal inference framework as a mechanism to test anchor bias by treating each

anchor group as additional independent variables.
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3.3 User Experiment

In this section, we first describe our research questions and provide a detailed

description of the visual analytic system used in the experiment. We then describe

the experiment design rationale and tasks designed to elicit and test anchoring bias,

and provide details about the experimental procedures and participants next.

3.3.1 Research Questions

Given that our research lies at the intersection of anchoring bias, decision making

processes, and visual analytics systems, we designed two types of anchors, namely

visual and numerical to evaluate their effects in the context of visual analytics systems.

The numerical anchor is based on many psychology studies to test whether the

participants can adjust away from the numerical anchor in their final answers. The

visual anchor is designed specifically to prime people with different views in visual

analytics interfaces with CMV design. The design of the numerical anchors is to

evaluate if users are subject to anchoring bias when using visual analytics interfaces

to aid decision making in a way similar to what’s found by previous experiments

conducted without the use of a visual analytics interface; while the design of the

visual anchors is to test specifically whether users can be anchored visually and how

that affects the analysis process and outcome. More specifically, we seek to answer

the following research questions with respect to the impact of anchoring on decision-

making activities using visual analytics systems:

• RQ1 - Visual Anchor: Can individuals be anchored on a specific view in a CMV?

• RQ2 - Numerical Anchor: Are the effects of numerical priming transferable to

VA?

• RQ3 - Interaction Patterns I: How does anchoring influence the paths of inter-

actions?
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Figure 3.1: Crystal Ball interface: the interface has 4 main views: (A) calender view,
(B) map view, (C) word cloud view, and (D) social network view. The calendar view
shows the future event overview (a) by default. The event list (b) is shown when the
user selects a subset of future events. The tweet panel (E) is shown when the user
clicks the Twitter icon.

• RQ4 - Interaction Patterns II: Are there systematic differences in the interaction

patterns and information seeking activities of individuals primed by different

anchors?

To answer these questions, we designed and conducted a controlled experiment using

a custom VA system, which is described next.

3.3.2 Crystal Ball - a visual analytics system used for the experiment

To study the anchoring effect during complex decision making tasks performed in

a visual analytics system, we conduct the experiment with Crystal Ball, a visual an-

alytics system that facilitates users in identifying future events from Twitter streams

[130]. Detecting future events from tweets is a challenging problem as the signals of

future events are often overwhelmed by the discussion of on-going events. Crystal
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Ball is designed to detect possible future events from streaming tweets by extracting

multiple features and enables users to identify potentially impactful events.

3.3.2.1 Analyzing large and noisy Twitter data

On average, around 500 million tweets are posted on Twitter per day by more than

300 million Twitter users [145]. However, many of them discuss past and ongoing

events, and news headlines. To find, identify and characterize possible future events,

the Crystal Ball system pipeline contains multiple components, including entity ex-

traction, event identification and a visual interface.

The pipeline first extracts location and date from tweets. If the extracted date

refers a future time and the extracted location is valid, then the tweet goes to the

event identification component. Even if a tweet may mention a future time and valid

location, it is possible that the tweet does not contain any informative content. Thus,

in order to determine the quality of tweets as indicators of future events, we employ 7

measures: Normalized Pointwise Mutual Information (NPMI) of time-location pairs,

link ratio, hashtag ratio, user credibility, user diversity, degree centrality and tweet

similarity.

3.3.2.2 Multiple Coordinated views in the Crystal Ball Interface and User

Interactions

Figure 3.1 shows the Crystal Ball interface. The interface has four main views: a

calendar view, map view, word cloud view and social network view. The calendar

view displays a list of future events (Figure 3.1A). By default, it shows overview of

future events (event overview, Figure 3.1a). The event overview shows all identified

events and connections among them. Circles represent identified future events. The

circles are grouped by dates. Events that have a same location are connected with a

solid line and events that have same keywords are connected with a dotted line.

The event view shows detailed event information (event list) when the user selects
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Figure 3.2: Event list. The flower glyph shows 5 measures of the future event and the
number of tweets in the center (A). The three bar charts in the center show hourly
distribution of tweet positing time (B), the number of tweets pointing to the event in
last 30 days (C), and averages of emotion scores of the tweets (D). A list of keywords
that summarize the tweets are displayed next to the bar charts (E). The user can
bookmark the event by clicking the star icon (F).

a subset of the future events as shown in Figure 3.1b. Figure 3.2 shows enlarged

image of Figure 3.1b. A flower glyph visualizes five of seven measures of a future

events with the number of tweets in the center (Figure 3.2A). The five measures are

link and hashtag ratios, NPMI, user diversity and tweet similarity. Two timeline bar

charts visualize distribution of tweet positing time (Figure 3.2B) and the number of

tweets in last 30 days (Figure 3.2C). The bottom bar chart shows average emotion

scores of the tweets (Figure 3.2D). Keywords that summarize tweets of the event is

displayed on the right side of the view (Figure 3.2E). The event can be bookmarked

as favorite by clicking the star icon (Figure 3.2F). The bookmarked events are stored

in database so that the user can review them anytime.

The map view shows identified events on the map to indicate where they will

occur (Figure 3.1B). Events are aggregated based on the zoom level and are shown

as rings. The color of ring proportions represent event dates ranging from tomorrow

(dark blue) to more than a month (light blue). Clicking a ring will show its tweets as

circles. Clicking a circle will show a tooltip showing the tweet.

There are two facilitating views to help users explore and further analyze the future
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events: word cloud view and social network view (Figure 3.1 C and D). The word

cloud view shows keywords extracted from tweets of the identified events. The size

of keywords represent frequencies of the keywords. The word cloud view is updated

when selected events are changed. The social network view represents relationships

between future events and Twitter users. Clusters in the view represent future events

in same locations. In many cases, a cluster has several future events in a same location.

User Interactions: The highly interactive and exploratory nature of the Crystal Ball

interface enables users to start their exploration and analysis of future events from

any of the four main views present in the interface.

A user can start with the calendar view in order to know when the event will occur.

Hovering the mouse over a circle in the event overview will highlight the corresponding

events on the map, word cloud and social network view. The user can find events

that share a same location or keywords by examining links. The user can select a

particular date then the event list will be shown in the calendar view that shows

all events of the date with detailed information. Other views will be automatically

updated to show corresponding events in the views.

Alternatively, the user can start the analysis from the map view to make sense of

where the event will occur first. The map view shows detailed evenets when zooming

into a region of interest. When the zoom factor is lower than a zoom threshold, the

calendar, word cloud and social network views are updated to show the events in the

current map extent. The user can open the event list to show all the events in the

map extent by clicking the “show events” button on the bottom right of the map view.

The interactions implemented in Crystal Ball allows users to perform exploratory

analysis to support decision-making tasks. Consequently, the decision making process

is reflected by the actions participants take within Crystal Ball. In our experiment,

in order to analyze the effect of anchoring bias on a decision making task conducted

in Crystal Ball, we defined and logged 39 unique user interactions. Figure 3.3 lists 36
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Map View:
Cluster Click
Circle Click
Map Zoom
Map Pan

“Legend Change” Button Click
“Find Events” Button Click

Word Cloud View:
Word Click

Word Hover
Navigation

Social Network View:
Node Click

Node Hover
Navigation

Interface Login

Data Selection
Menu Icon Click

Date Select

Tweet View:
Tweet Icon Click

More Button Click
URL Click

Favorite View:
Favorite Icon Click

Calendar Overview:
Circle Hover

Solid Line Hover
Solid Line Click

Dotted Line Hover
Dotted Line Click
Legends Hover
Legends Click

Date Click

Event List View:
Close Button Click
Clear Button Click

Location Click
Location Hover
Favorite Click

Flower Glyph Hover
Data Bar Chart Hover
Emotion Chart Hover

Keyword “more” Hover

Figure 3.3: User interaction logs: the figure displays main user interaction logs of the
Crystal Ball interface. Each view has different interaction logs based on its visual
elements.

user interactions, situated in their corresponding views. The rest of the 3 interactions

were used rarely but our participants during their interactions with Crystal Ball.

The interface records all user interaction logs with a timestamp and a user’s name to

database which are analyzed in Section 3.5 in order to show users’ decision making

process.

3.3.3 Design Rationale

The anchoring effect has been replicated in numerous studies in the laboratory and

in the field [115]. Our experiment design is thoroughly grounded in these best prac-

tices of controlled experimental studies in that we use priming to elicit the anchoring

bias. First, we focused the participant’s experience around a well-defined cognitively

engaging decision-making task - we asked participants to estimate the number of

protest events in a given period of time and in a given location. We conducted our

experiment with the Crystal Ball interface to predict and detect protest events from
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Twitter data. The Calendar View and the Map View as described in Section 3.3.2

serve as the time and geo (visual) anchor. In order to test our hypotheses, we fol-

lowed a 2×2 between-subjects factorial design with two factors (numerical and visual)

and each factor had two levels as described below.

3.3.4 Experimental Stimuli

The visual and numerical anchors for the experiments were devised in order to

prime the participants in two ways. The numerical anchor primed participants on a

number (High or Low) and the visual anchor primed participants on a specific view in

the Crystal Ball interface (map view, representing geo anchor or calendar view, which

represented the time anchor). The decision-making task presented to the participants

is one of the four choices presented below:

Geo + high/low anchor: Do you think that the number of protest events in the

state of California <geo anchor first> was higher or lower than 152 (or 8) <high (or

low) numerical anchor> between November 10, 2016 and November 24, 2016 <time

anchor>?

Time + high/low anchor: Do you think that the number of protest events between

November 10, 2016 and November 24, 2016 <time anchor first> was higher or lower

than 152 (or 8) <high (or low) numerical anchor> in the state of California <geo

anchor>?

As can be noted, the magnitude of the numerical anchor, either high or low, is

subject to the experimental condition. These high and low numerical anchors were

chosen based on the actual number of protest events present in the data (as deter-

mined by trained annotators). Additionally, the order of presentation of the visual

anchors varies in the two questions. The visual anchors were further reinforced

through custom training videos orienting the participants to the use of the Crystal
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Ball interface.1 The two training videos reinforce the visual anchors by starting and

driving the analysis from either the map view (geo) or the calendar view (time).

3.3.5 Experiment Design

3.3.5.1 Procedures

The data collection for this study involved in-person laboratory participation. Par-

ticipants were recruited via in class recruitment, email to listservs and the psychology

research pool at our university. Sessions were conducted between February 10th, 2017

and March 15th, 2017. After signing up for the study, participants were assigned a

unique code for secure identification. Associated with this code, was the random

assignment to one of four experiment conditions (High/Geo, Low/Geo, High/Time,

Low/Time). Participants were asked to come to the lab for the duration of one hour.

The experimenter would first elicit their responses to informed consent. Next, the

participants would view two training videos specifically designed for this experiment.

The first video was a general training video (duration 5 minutes) which oriented them

to the use of the Crystal Ball interface and its basic functionality (e.g., primary and

supporting interactions). This video was shown to all the participants, regardless of

experimental condition. Next, the participants were shown a priming video (duration

of 3 minutes) based on their visual anchoring group. The priming video was designed

to guide the users through a case scenario through either Geo or Time Visual Anchors.

Following the training, the participants were asked to complete a pre-test ques-

tionnaire. The pre-test questionnaire consisted of questions related to participant’s

demographics (age, gender, education), their familiarity with visual analytics systems

and social media, and Big-5 personality questions [146]. The informed consent, train-

ing video and pre-test questionnaire typically took around 20 minutes to complete.

The participants were then assigned the task, and asked to interact with Crystal

Ball for about 25 minutes. We designed and implemented interaction logging with
1Please refer to supplemental materials for the two training videos.
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the Crystal Ball interface to capture their timestamped actions as they proceeded

through the task. The interaction logging is transparent to the participants. At the

end of their interaction, participants were asked to estimate the number of protest

events based on their analyses within Crystal Ball.

Next participants were asked to complete a post-test questionnaire. The com-

pletion of the post-test questionnaire ended their participation in the study. The

post-test contained questions regarding the usability of the system (ease, attention,

stimulation, likability), level of engagement during the task and questions to gauge

their susceptibility to bias. The bias questions consisted of eight questions designed

to measure the level of bias. Participants were compensated by either a $5 gift card

or class credit assigned at the discretion of the class instructor willing to assign extra

credit.

3.3.5.2 Participants

A total of 85 participants completed the study. We discarded the data for four

participants due to usage of incorrect identification codes during the experiment.

Distribution of participants across experiment conditions was relatively even and is

represented in Table 1. Figure 4 shows a summary of the demographic characteristics

of participants across factors including age, gender, education and major. We note

that there is an even balance of participants across various demographic characteris-

tics such as gender (male vs. female), age (different age ranges) and education back-

ground (computing vs. other majors), although there is some skewness in the data

towards students pursuing Masters degrees. Participant demographic characteristics

were also balanced across the four experiment conditions due to random assignment

of participant to experiment condition. Males and females participants were uni-

formly distributed across experiment conditions (25% in each condition, SD = 10%

for males, SD = 6% for females). Average ratio for males to females was 1.02 in

each experiment condition. Average proportion of undergraduate, masters and PhD
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Table 3.1: Distribution of participants in 4 conditions. Row-Numerical anchor;
column-Visual anchor.

Geo Time Grand Total

High 20 21 41
Low 22 18 40
Total 42 39 81

43 38Gender

Male Female

22 36 23Age

18-22 23-27 >=28

25 45 7 4Education

Undegraduate Masters Ph.D Other

7 11 6 11 14 18 14Major

Business Social Sciences Architecture Other non-computing

Data Science Computer Science Other computing

Computing (46)Non-Computing (35)

Figure 3.4: Demographic. A summary of demographic information of the participants
based on gender, age, education and major.

education level in each experiment condition was also 25% (SD = 13%, 10% and 24%

resp.).

3.4 Experiment Results: Analyzing Quantitative Measures

Two types of quantitative analyses are conducted to answer research questions RQ1

and RQ2 introduced in Section 3.3.1.

3.4.1 RQ1 - Visual Anchor: Can individuals be anchored on a specific view?

To quantitatively evaluate whether participants can be anchored on a view in

Crystal Ball, we conducted two types of stastical analysis - two-way ANOVAs and

Bonferroni-corrected pairwise t-tests. We extracted the overall time duration a par-

ticipant spent in geo or time-oriented views from the interaction logs by taking into

account the time stamp of each action occurred in a particular view.
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Figure 3.5: This figure provides a summary of the amount of time spent in calendar
and map views on each of the four different conditions. The red dashed line is the
mean of the amount of time spent in calendar and map view.

A two-way ANOVA was conducted on the influence of two independent variables

(numerical and visual anchor) on the amount of time spent in different views (map

vs. calendar). The main effect for visual anchor was statistically significant and

had an F ratio of F (1, 78) = 11.57, p < .001. The main effect for numerical anchor

indicated that the effect for numerical anchoring did not significantly affect the time

spent in map vs. calendar view (p > 0.05). The interaction effect was not significant,

F (1, 77) = 0.12, p > 0.05.

Bonferroni corrected pairwise t-tests (α=0.05/4) were conducted to compare the

duration of time spent in the different conditions with α=0.0125 level of significance.

We found that visual anchor had significant effect on the time spent in map view vs.

calendar view across both conditions (p < 0.01 in both cases) whereas the numerical

anchor did not (p > 0.05 in both cases).

In Figure 5, we show the duration of time spent in each view for each participant

across all four experimental conditions. The x-axis represents the time in minutes,

with the blue bars representing duration in calender view and the black bar repre-

senting duration in map view; the y-axis are the participant ids in each condition. We

see from charts labeled High/Geo and Low/Geo that participants spent significantly

more time in the map view vs. the calendar view in the geo anchoring conditions. The

charts labeled High/Time and Low/Time reveal that in the Time priming conditions,
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the time spent in each view was variable and no statistical trends can be observed.

We have included four separate charts in Figure 5 to provide sufficient comparative

detail across the experiment conditions.

3.4.2 RQ2 - Numerical Anchor: Are the effects of numerical priming transferable

to VA?

The effect of numerical anchor on time spent within Crystal Ball. As reported in

Section 4.1, two-way ANOVAs conducted in order to determine the effects of numer-

ical anchoring indicated the main effect for numerical anchor did not significantly

affect the time spent in map vs. calendar view (p > 0.05). The interaction effect was

also not significant, F (1, 77) = 0.12, p > 0.05.

These findings indicate that being primed by a numerical anchor did not have an

effect on the amount of time spent in map view compared to the calendar view. We

discuss the implications of these findings further in the discussion section, and suggest

that more investigation is needed to determine the cause of these effects.

The effect of numerical anchor on the decision-making outcome. To further asses

the impact of numerical anchoring, we analyzed the responses given by participants

in the pre- and post-tests. The participants were asked to estimate the number of

protest events, before and after their interactions with the data and the interface.

The findings are shown in Figure 3.6. On the x-axis we show the two groups in the

numerical anchoring condition High and Low. On the y-axis are each participant’s

estimates regarding the number of protest events, before the interaction (in orange)

and after the interaction (in red). Mean post-test responses are in black. Our findings

indicate that participants were consistently anchored on initial number presented to

them in the framing of the questions (p < 0.05). Our findings suggest that the effects

of the classic anchoring bias elicited by priming with numerical anchors in previous

laboratory studies can be replicated in VA. We did not find any effects of the visual

anchoring (geo vs. time) on the final outcome (t(40) = 2.02, p > 0.05), suggesting
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Figure 3.6: The estimated number of geo-political events reported by each participant
is represented by red dots. The orange line represents the anchor value and black line
is the mean of estimated number of political events.

that the effects of the visual anchor may be more subtle than can be determined via

post-test questionnaire responses. We conducted detailed analyses to capture these

effects, which we shall describe in the next section.

3.5 Experiment Results: Analyzing Interaction Logs for User Activity Patterns

To test the hypothesis that user interaction logs reflect the participants’ decision

making processes, we applied two additional types of analyses on the logs in order to

evaluate the impact of anchoring effect on the patterns of user interactions. The two

analyses address research questions RQ3 and RQ4 (Section 3.3.1).

3.5.1 RQ3: How does anchoring effect influence the paths of interactions?

To analyze the paths users take during their analysis with Crystal Ball and the ef-

fect of anchors on these paths, we developed a novel method to study the sequences of

users’ interactions as a network of interaction nodes. We constructed the interaction

network as follows: each interaction is logged with five attributes: time stamp of the

interaction, the view it took place in, the type of interaction, and detailed description
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for each interaction (e.g., 12:56:35.56, Calendar view, Click, Zoom 89.55 36.00). As

shown in Fig 3.3 there are 36 main interactions as well as 3 main secondary interac-

tions over multiple views. Each of these interactions form the nodes in a network. The

edges in the network are chronological pairs of interactions. For example, if a user has

zoomed on the map and then hovered on a particular location in the calendar view,

this would add an edge between the Map Zoom and Calendar Location Hover nodes.

The edge weight would incrementally increase for each additional observed pair. For

visualization purposes, we disregarded self-loops (i.e, repeated actions) because we

are more interested in the relationship between different interactions and the paths of

interactions taken by our users. This method yields a weighted directed graph which

enables us to cluster interactions through community detection, rank each action by

multiple centrality measures and compare aggregate user path differences controlling

for each anchor. The network visualizations in this section were created with Gephi

[147].

In this section, first we take actions of all users into account to get a complete

picture of users’ paths of interactions. We then analyze differences in users’ paths to

detect different user strategies controlling for the two anchors (visual and numerical).

We studied the network of all user logs, as well as our four experiment anchors. We did

not find significant differences in the networks created from logs of users primed on the

two numerical anchors. Hence in this discussion, we will focus on the three remaining

networks: a full network (AllNetwork), a Geo-anchored network (GeoNetwork) and a

Time-anchored network (TimeNetwork).

3.5.1.1 Analyzing the network of all interactions

By adopting an exploratory data analysis method, we started by analyzing different

features of AllNetwork (39 nodes and 640 edges) (Figure 3.7). We first utilized the

community detection algorithm developed by Blondel et al. [148], which resulted in

5 different communities of interactions. Most of these communities are comprised of
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interactions that occur within the same view or have a close semantic relationship to

each other. The community detection results allowed us to categorize nodes in our

network into three main groups that were in line with our initial system design strate-

gies: preliminary interactions, primary interactions, and supporting interactions. The

primary interactions include those that users have to go through in order to find the

events of interest. The supporting interactions are those that users perform in order

to find supporting information to confirm the previously found events. The prelimi-

nary interactions such as login and clicking on the menu bar were used infrequently

as they are not critical to the analysis process. Figure 3.7 shows the network colored

and annotated based on the community detection results.

In order to measure the importance of different interactions, we utilized the Pager-

ank algorithm [149]. Since Pagerank takes into account the weight of edges between

interactions, it is much more powerful than simply calculating the frequency of each

interaction. Pagerank assigns probability distributions to each node denoting the

importance of the node. These probability distributions are appropriate metrics for

importance of the interactions in our system as they show the likelihood of a random

surfer in the network to traverse to a specific end node. The top ranked interactions in

our interface are all from the primary action communities with the exception of Word

Hover. As seen in Figure 3.7, edge weights between important nodes in the same

community are higher than ones between different communities. Furthermore, we

can observe mutual higher weighted paths between these higher ranking interactions.

Some exceptions to this observation is when the users are moving away from a view

to another conduct more in depth analysis. For example, in AllNetwork, the edge

between Events Location Hover to Events Location Click is weighted very strong, but

the path of opposite direction is not. We can interpret Events Location Click as an

interaction that drives users out of this community to others such as Word Cloud and

Social Network to get complementary information of an event ( See Fig 3.7). The
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AllNetwork and the analyses resulting from it serve as a reference for the comparisons

we wish to make across the GeoNetwork and TimeNetwork.

3.5.1.2 Comparing interaction networks of Geo- vs. Time-anchored users

To answer our research questions of whether visual anchor has an effect on the way

different groups of participants interact with the visual interface, we constructed two

networks based on the actions of the geo and time-anchored groups. These networks

consist of the same 39 action nodes but have different edges and weights allowing us

to compare the interactions of participants primed on the two visual anchors through

the lens of their respective networks.

Similar to our analysis of AllNetwork, we first started by detecting communities

within GeoNetwork and TimeNetwork. Interestingly, the results show similar com-

munity structures to AllNetwork. However, there are subtle differences that point

to the differences regarding the usage of Crystal Ball between the two groups. For

example, the action of Favorite Icon Click (through which users can save an event

to view later in the Favorites Menu) in GeoNetwork is part of the preliminary ac-

tions community, but for TimeNetwork it is part of the Time related primary actions

community. This subtle change could indicate that the time primed users had more

interactions between saving an event as a favorite and then viewing the list of favorite

actions in comparison to our Geo primed users.

We calculated Pagerank for interaction nodes in both these networks. Comparing

these values would allow us to understand important interactions within each network

and how they are affected by the visual anchor. Figure 3.8 illustrates significant

differences of the two networks. In the GeoNetwork, the top nodes are a mixture

of interactions from the Map and Event views, with the highest ranked interaction

from the Map view. This pattern is consistent with the strategies shown in the

Geo priming video. In contrast, in the TimeNetwork, the top ranked nodes are

interactions within the Events view and the Calendar View, which is also consistent
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with the strategy shown in the time-anchor video. Other important but lower ranking

actions in TimeNetwork are from the Map View. Furthermore, by observing the paths

between the Events community (colored purple in Figure 3.8) in both GeoNetwork

and TimeNetwork, we see that weight of the edge between Events Location Hover

and Events Location Click is relatively higher in the GeoNetwork in comparison to

the TimeNetwork. This could indicate that our Geo primed users use maps to explore

and primarily use hovering and clicking on a location together to view more details in

the map, word cloud, and social network views. Our time primed users on the other

hand, utilize the hovering on locations to explore events. These differences show

interesting behavioral variations in sequences of interactions between our two groups.

These differences show that time primed users are more likely to use the Calendar

and Events view actions as their primary exploratory tool. Figure 3.8 shows the

comparisons between these two networks and two bar charts comparing the top 5

ranked nodes in each network.

Analyzing the interactions of our participants as a network has many benefits. It

allows us to take into account the sequence of interactions, as well as the paths taken

by users to arrive at the conclusion. The paths taken reflect the strategies users

employ during the decision-making process. Furthermore, we can take an overview

of all interactions within the Crystal Ball interface and analyze what strategies need

to be improved to make the interface more effective.

3.5.2 RQ4: Estimating the effects of anchoring bias on interaction patterns and

information seeking activities

One drawback of the network analysis is that the estimated impact for each an-

chor is measured without standard errors to calculate the statistical significance of

each result. To address this problem, we use structural topic modeling (STM) to

measure the impact of the anchors and user-level attributes on users’ actions [150].

Originally built for text summarization, STM is a generalized topic model framework
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for testing the impact of document-level variables. For our model, topics are clusters

of interactions measured as probability distributions over the action space. We test

our hypotheses of the effect of anchoring on the topic proportions through an embed-

ded regression-component. STM is a consolidation of three predecessor models: the

correlated topic model (CTM) [151], the sparse additive generative model (SAGE)

[152] and the Dirichlet multinomial regression model (DMR) [153]. The CTM model

introduces a correlation structure for topic distributions while the DMR and SAGE

models provide mechanisms to estimate the effect of independent variables on either

topic proportions (via DMR model) or word distributions for each topic (via SAGE

model). 2

Table 3.2: Independent Variables Tested

Type Independent Variable Level

Condi�on
Visual Anchor Time / Geo

Numerical Anchor High /Low

Time Percent of Ac�ons Ac�on Deciles (b-spline)

A�ribute

Gender Make / Female

Major Compu�ng / Non Compu�ng

Age Under 23 / Over 23

Educa�on Undergraduate / Graduate

Personality

Extroversion High / Low

Agreeableness High / Low

Conscien�ousness High / Low

Openness High / Low

Neuro�cism High / Low

However, as with most topic models, STM is built from the bag-of-words (BoW)

assumption that provides a key advantage and disadvantage in our analysis. The
2We used the stm R package [154] for our analysis. This package includes additional tools for

topic modeling including a spectral initialization process that aids in addressing the multi-modality
problem (stability of the results).
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Table 3.3: This table provides the seven actions with the highest probabilities for
three sample topics: Map View, Calendar View and Event List (all tools). Action
combinations (bi- or tri-grams) are denoted by the plus sign.

advantage is that it yields statistical properties (exchangability) that identifies topics

as clusters of co-occurring interactions and facilitates statistical testing through the

DMR (GLM regression) component. On the other hand, a disadvantage of the BoW

assumption is that it ignores the order of interactions. To address this issue, we made

two modifications: extracting bi-/tri-grams and creating a session time variable by

interaction deciles. First, we extracted every bi- and tri-gram as chronological action

pairs and triplets from the interaction logs. Including bi- and tri-grams and the single

actions, we had 237 unique features after removing sparse features. Second, we created

a time variable that divided each user’s session into ten evenly distributed groups

(interaction decile). Given that each user’s session averaged nearly 800 individual

actions, each decile maintained sufficient interactions to facilitate topic inference.

Additionally, inclusion of the time variable had the advantage of increasing our sample
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size (number of documents) from 81 to 810 as the document-level went from each user

to a user’s interaction decile (e.g. first 10% of user X’s interactions).

To test the effect of anchoring bias on users’ interactions, our baseline model to

explain topic proportions (dependent variable) incorporates three independent vari-

ables: the visual anchor, the numerical anchor, and time as interaction deciles. After

analyzing the model, we tested other demographic attributes including gender, major,

age, education level, and the Big-5 personalities. Table 2 above provides a list of the

independent variables tested and the categorical levels. We binned the user attributes

into binary levels. Similarly, we converted the Big-5 personality results into binary

levels in which users who scored above the mean were categorized as High while users

who scored below the mean were categorized as Low.

3.5.2.1 The effect of visual anchor on interaction patterns estimated by topic

proportions

We find the visual anchor has a significant effect on the proportion of users’ inter-

actions as topics clustered automatically in view-based groups (e.g., map, calendar,

events). Figure 3.3 provides the top seven interactions for three sample topics. We

observe that the interactions tend to cluster into groups related to each interaction’s

associated view hierarchy as shown in Figure 3.3. For example, topic 8 includes in-

teractions related to the map view including Map Zoom, Map Pan, Map Circle Click

and Map Click Cluster. Therefore, we gave topic 8 the manual label of Map View

since its interactions are all related to that view. Following this approach, we created

manual labels for the other seven topics. Further, we find that the topics tend to

cluster in groups consistent with our network communities found in Section 5.1. For

instance, the four prominent interactions of the Map View topic (by probability) have

the strongest connections as well as highest PageRank in the Map View community

cluster (green nodes) in Figure 3.7.

Second, we find in Figure 3.9 that the Map View and Flower Glyph topics had
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the largest topic proportions. Alternatively, the social network and word cloud were

the smallest topics. To test our number of topics, we followed the procedure rec-

ommended by [155] by considering multiple topic scenarios (5, 8, 10, 15, 20, 25, 30,

40) and comparing each model’s held-out likelihood and average semantic coherence.

We decided on an eight topic model given a high average semantic coherence and

parsimony of topics (see supplemental materials).

We observe that the visual anchor had a significant effect on the Map View and

Calendar View topics. Figure 3.9 provides the effect the anchors had on the topic

proportions. In this plot, each dot is the estimated topic proportion difference for

each topic by the two levels of each anchor. The line represents a 95% confidence

interval around each estimate. From these figures, we find that the Map View and

the Calendar View topic proportions have the most significant differences between

the two groups. Consistent with our findings in sections 4.1 and 5.1, Geo primed

users are anchored more to the view they were primed on while we see less of an

effect in Time primed users. On the other hand, we found that the visual anchor

had an unexpected effect with the Event List: All Tools (topic 3). Geo primed users

tended to use tools like the Keyword More and Emotion Bar more than Time primed

users. Alternatively, we find that the numerical anchor had only a marginal effect

on two topics (Calendar View (topic 6) and Event List: All Tools (topic 3)). These

results imply that the visual anchor had a more significant impact on the proportion

of users’ interactions than the numerical anchor. This is important as we observed

opposite effect (numerical anchor was significant, visual anchor was not) in the users’

estimation of the event outcome.

3.5.2.2 The effect of visual anchor on interactions used over time estimated by

topic proportions

We find evidence of a temporal effect on the topic proportions. To measure this ef-

fect, we divided each user’s interaction path into interaction deciles (see Section 5.1).
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To aid estimation, we used a b-spline to smooth the values. Figure 3.10 provides the

effect of the visual anchor (line color) and time (x-axis) for the Map View and Calen-

dar View topic proportions. We observe a significant impact of the time of the user’s

session on this topic proportions. For example, Map View topic proportion is nearly

twice during the user’s first twenty percent of interactions than users’ remaining 80

percent of interactions. Moreover, we see this distinct drop for both visual anchor

groups. This observation implies that users tended to use the Map View more in the

beginning of the session as they were getting acclimated to the interface. Alterna-

tively, the Calendar View topic trended down resulting in much lower use by session

end (15% Time, single digits Geo). We found marginal effects of time for the other

six topics, with most nearly flat given already low topic proportions (less than 10%).

3.5.2.3 The effect of demographic variables on interaction patterns estimated by

topic proportions

To test other possible variables, we ran five additional model scenarios replacing

the numerical anchor variable (as it showed only marginal significance) with the de-

mographic variables (gender, major, student level and Big-5 personality). We found

that none of the variables produced significant (95%) changes in topic proportions,

although some produced marginally significant effects (see supplemental materials).

For example, most variation occurs in the secondary view topics (Word Cloud, Social

Network and an interaction topics).

3.6 Discussion and Limitations

In this section, we provide implications of our experiment results on anchoring effect

in visual analytics, and point out possible limitations related to the study design and

analysis.

Experiment implications: As shown by our data analysis (section 4 & 5), our

experimental results indicate that anchoring bias does transfer to visual analytics.



45

Most interesting finding is that the visual anchor seems to significantly impact the

decision-making process, while the numerical anchor has a significant effect on the

decision-making outcome. The decision-making process reflects the way that users

interact with Crystal Ball; the outcome is the final answer that the participants

provided at the end of the decision-making process.

Such findings have implications for user training on visual analytics systems with

CMV, as well as how decision-making tasks are framed. With respect to train-

ing/tutorial, the visual analytic systems development team should provide multiple

scenarios employing strategies that involve the use of different views as the primary

visualization to drive the analysis. As of decision-making task framing, one should

avoid accidentally anchoring the participants on an expected outcome or when pos-

sible, employ measures of cognitive bias (such as in our post-test) to evaluate the

inherent cognitive bias of the users. As noted in Section §3.2.1, the tendency of

humans to rely on heuristics to make judgments does often lead to efficient and accu-

rate decisions. However, we need to determine when such heuristic decision-making

is being applied, in order to ensure that the resulting decisions are optimal.

Experiment sample size limitation: As can be expected with any laboratory

experiment, this research has limitations. One such limitation is the sample size of 81

participants in our experiment. However, the diversity of our sample with respect to

gender, age, educational background and personality factors are steps we have taken

to ensure the validity of our results. Our findings replicate the effects of anchoring

that have been long studied in literature, further attesting to the validity of the

experiment.

Experiment control limitation: Another limitation of our experiment is that

we do not consider a control group , that is, participants who engage in the decision-

making task without being primed by any anchors. While our initial study reported

here was focused on determining whether the effects of anchoring are at all present
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and can be elicited in such experiments, our future work will be aimed at replicating

these findings in more extensive experiments with larger sample size and will include

control groups for comparison.

STM analysis limitations: Fong and Grimmer [156] note that topic models are

susceptible to problems in estimating marginal effects due to the zero-sum properties

of topic proportions. Further, topic models cluster only based on the count and

ignore interaction duration (time spent). To address such limitation, the quantitative

analysis in section 4 explicitly accounted for the duration of each interaction.

3.7 Conclusion

In this chapter, we presented a systematic study and resulting analyses that inves-

tigate the effect of anchoring bias on decision-making processes and outcome using

visual analytic systems. Our experimental results provide evidence on anchoring ef-

fect being transferable to visual analytics in that visual and numerical anchors affect

the decision-making process and outcome respectively. The present study is a first

step in an overarching research agenda of determining the use of heuristics in decision-

making processes from the user interactions and if these decision-making processes

can be reliably inferred then to automatically suggest ways in which to improve the

process.
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Figure 3.7: The directed network of all interactions. Nodes are interactions and edges
are interactions that occur after each other. The size of nodes are proportional to
Pagerank values and width of edges are proportional to the edge weights. Note, if a
line is drawn between a start-node and an end-node, the outgoing edge from the start
node is on the relative left side of that line.
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Figure 3.8: Side by side visualization of GeoNetwork and TimeNetwork. The size of
nodes is proportional to Pagerank values of nodes in each graph, the color of nodes
corresponds to the detected community of each node, and the width of each edges
corresponds to the weight of that edges. The bar charts show the top 5 nodes based on
their Pagerank value and is color coded based the community the nodes community.

Figure 3.9: The figure on the left provides the expected topic (action-cluster) pro-
portions with judgmental labels to aid in interpretation. The figures on the right
provide the estimated effect of the visual and numerical anchors on each of the eight
topics’ proportions. The dot is the point estimate and the line represents a 95 per-
cent confidence interval. The red dots/lines are topics that are significant with 95%
confidence.
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Figure 3.10: This figure provides two charts on the effect between the visual anchors
(line color) and time as measured by interaction deciles (x-axis) for two topics (Map
View and Calendar View). Each line is the estimated topic proportions across the
session and controlling for the visual anchor. The solid line is the point estimate and
the dotted line is a 95 percent confidence interval. For the interaction deciles (time),
we divided users’ sessions into ten evenly distributed groups. A b-spline was used to
smooth the curve across the ten points.



CHAPTER 4: STUDYING UNCERTAINTY AND DECISION-MAKING ABOUT

MISINFORMATION IN VISUAL ANALYTICS.

4.1 Introduction

The spread of misinformation on social media is a phenomena with global conse-

quences, one that, according to the World Economic Forum, poses significant risks

to democratic societies [157]. The online media ecosystem is now a place where false

or misleading content resides on an equal footing with verified and trustworthy in-

formation [158]. In response, social media platforms are becoming “content referees,”

faced with the difficult task of identifying misinformation internally or even seeking

users’ evaluations on news credibility.1 On the one hand, the news we consume is

either wittingly or unwittingly self-curated, even self-reinforced [159]. On the other

hand, due to the explosive abundance of media sources and the resulting informa-

tion overload, we often need to rely on heuristics and social cues to make decisions

about the credibility of information [160, 161]. One such decision-making heuristic is

confirmation bias, which has been implicated in the selective exposure to and spread

of misinformation [162]. This cognitive bias can manifest itself on social media as

individuals tend to select claims and consume news that reflect their preconceived

beliefs about the world, while ignoring dissenting information [160].

While propaganda and misinformation campaigns are not a new phenomenon [163],

the ubiquity and virality of the internet has lent urgency to the need for understanding

how individuals make decisions about the news they consume and how technology can

aid in combating this problem [164]. Visual analytic systems that present coordinated
1https://www.wsj.com/articles/facebook-to-rank-news-sources-by-quality-to-battle-

misinformation-1516394184
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multiple views and rich heterogeneous data have been demonstrably useful in sup-

porting human decision-making in a variety of tasks such as textual event detection,

geographic decision support, malware analysis, and financial analytics [165, 166]. Our

goal is to understand how visual analytics systems can be used to support

decision-making around misinformation and how uncertainty and confir-

mation bias affect decision-making within a visual analytics environment.

In this work, we seek to answer the following overarching research questions: What

are the important factors that contribute to the investigation of misinformation? How

to facilitate decision-making around misinformation by presenting the factors in a

visual analytics system? What is the role of confirmation bias and uncertainty in

such decision-making processes?

To this aim, we first leveraged prior work on categorizing misinformation on social

media (specifically Twitter) [167] and identified the dimensions that can distinguish

misinformation from legitimate news. We then developed a visual analytic system,

Verifi, to incorporate these dimensions into interactive visual representations. Next,

we conducted a controlled experiment in which participants were asked to investigate

news media accounts using Verifi. Through quantitative and qualitative analysis of

the experiment results, we studied the factors in decision-making around misinfor-

mation. More specifically, we investigated how uncertainty, conflicting signals

manifested in the presented data dimensions, affect users’ ability to identify

misinformation in different experiment conditions. Our work is thus uniquely situ-

ated at the intersection of the psychology of decision-making, cognitive biases, and

the impact of socio-technical systems, namely visual analytic systems, that aid in

such decision-making.

Our work makes the following important contributions:

• A new visual analytic system: We designed and developed Verifi2, a new visual
2http://verifi.herokuapp.com; open source data and code provided at
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analytic system that incorporates dimensions critical to characterizing and dis-

tinguishing misinformation from legitimate news. Verifi enables individuals to

make informed decisions about the veracity of news accounts.

• Experiment design to study decision-making on misinformation: We conducted

an experiment using Verifi to study how people assess the veracity of the news

media accounts on Twitter and what role confirmation bias plays in this process.

To our knowledge, our work is the first experimental study on the determinants

of decision-making in the presence of misinformation in visual analytics.

As part of our controlled experiment, we provided cues to the participants so that

they would interact with data for the various news accounts along various dimensions

(e.g.,tweet content, social network). Our results revealed that conflicting information

along such cues (e.g., connectivity in social network) significantly impacts the users’

performance in identifying misinformation.

4.2 Related Work

We discuss two distinct lines of past work that are relevant to our research. First,

we explore cognitive biases, and specifically the study of confirmation bias in the

context of visual analytics. Second, we introduce prior work on characterizing and

visualizing misinformation in online content.

4.2.0.1 Confirmation bias:

Humans exhibit a tendency to treat evidence in a biased manner during their

decision-making process in order to protect their beliefs or pre-conceived hypothe-

sis [71], even in situations where they have no personal interest or material stake

[19]. Research has shown that this tendency, known as confirmation bias, can cause

inferential error with regards to human reasoning [20]. Confirmation bias is the ten-

dency to privilege information that confirms one’s hypotheses over information that

https://github.com/wesslen/verifi-icwsm-2018
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disconfirms the hypotheses. Classic laboratory experiments to study confirmation

bias typically present participants with a hypothesis and evidence that either con-

firms or disconfirms their hypothesis, and may include cues that cause uncertainty

in interpretation of that given evidence. Our research is firmly grounded in these ex-

perimental studies of confirmation biases. We adapt classic psychology experimental

design, where pieces of evidence or cues are provided to subjects used to confirm or

disconfirm a given hypothesis [28, 19].

4.2.0.2 Visualization and Cognitive Biases:

Given the pervasive effects of confirmation bias and cognitive biases in general

on human decision-making, scholars studying visual analytic systems have initiated

research on this important problem.

[168] categorized four perspectives to build a framework of all cognitive biases in

visual analytics. [169] presented a user study and identified an approach to mea-

sure anchoring bias in visual analytics by priming users to visual and numerical an-

chors. They demonstrated that cognitive biases, specifically anchoring bias, affect

decision-making in visual analytic systems, consistent with prior research in psychol-

ogy. However, no research to date has examined the effects of confirmation bias and

uncertainty in the context of distinguishing information from misinformation using

visual analytic systems - we seek to fill this important gap. Next, we discuss what we

mean by misinformation in the context of our work.

4.2.0.3 Characterizing Misinformation:

Misinformation can be described as information that has the camouflage of tradi-

tional news media but lacks the associated rigorous editorial processes [160]. Prior

research in journalism and communication has demonstrated that news outlets may

slant their news coverage based on different topics [170]. In addition, [171] show

that the frequency of sharing and distribution of fake news can heavily favor different
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individuals. In our work, we use the term fake news to encompass misinformation

including ideologically slanted news, disinformation, propaganda, hoaxes, rumors,

conspiracy theories, clickbait and fabricated content, and even satire. We chose to

use “fake news” as an easily accessible term that can be presented to the users as a la-

bel for misinformation and we use the term “real news” as its antithesis to characterize

legitimate information.

Several systems have been introduced to (semi-) automatically detect misinforma-

tion, disinformation, or propaganda in Twitter, including FactWatcher [172], Twit-

terTrails [173], RumorLens [174], and Hoaxy [175]. These systems allow users to

explore and monitor detected misinformation via interactive dashboards. They focus

on identifying misinformation and the dashboards are designed to present analysis

results from the proposed models. Instead, Verifi aims to provide an overview of

dimensions that distinguish real vs. fake news accounts for a general audience.

Our work is thus situated at the intersection of these research areas and focuses

on studying users’ decision making about misinformation in the context of visual

analytics.

4.3 Verifi: A Visual Analytic System for Investigating Misinformation

Verifi is a visual analytic system that presents multiple dimensions related to mis-

information on Twitter. Our design process is informed by both prior research in

distinguishing real and fake news as well as our analysis based on the data selected

for our study to identify meaningful features.

A major inspiration for Verifi’s design is based on the findings of Volkova et al.

[167], who created a predictive model to distinguish between four types of fake news

accounts. They find that attributes such as social network interactions (e.g., mention

or retweet network), linguistic features, and temporal trends are the most informative

factors for predicting the veracity of Twitter news accounts. Our design of Verifi

is inspired by these findings: (i) we included a social network view that shows a
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Figure 4.1: The Verifi interface: Account View (A), Social Network View (B), Tweet
Panel (C), Map View (D), and Entity Word Cloud (E). The interface can be accessed
at Verifi.Herokuapp.com.

visualization of account mentions (which includes retweets) as a primary view to allow

users to investigate relationships between accounts; (ii) we developed an accounts view

with account-level temporal (daily) trends as well as the most predictive linguistic

features to facilitate users’ account-level investigation into the rhetoric and timing

of each account’s tweets; and (iii) to choose the most effective linguistic features, we

created a model to predict which linguistic features most accurately can predict the

veracity of different accounts.

In addition to three different analytical cues inspired by Volkova et al. and our

predictive model, we included visualizations and data filtering functions to allow

participants to qualitatively examine and compare accounts. Based on existing re-

search conducted on the ways news can be slanted and the diffusion of misinformation

[176, 171, 177, 170], we included visual representation of three types of extracted en-

tities (places, people, and organizations) to enable exploration through filtering.



56

Table 4.1: Distribution of types of news outlets

Type	 Real	 Propaganda	 Clickbait	 Hoax	 Sa8re	

Account	 31	 30	 18	 2	 2	

4.3.1 Dataset

To create our dataset, we started with a list of 147 Twitter accounts annotated

as propaganda, hoax, clickbait, or satire by Volkova et al. [167] based on public

sources. We then augmented this list with 31 mainstream news accounts [178] that

are considered trustworthy by independent third-parties.3 We collected 103,248 tweets

posted by these 178 accounts along with account metadata from May 23, 2017 to June

6, 2017 using the Twitter public API.4

We then filtered the 178 accounts using the following criteria indicating that the ac-

count is relatively less active: (i) low tweet activity during our data collection period;

(ii) recent account creation date; and (iii) low friends to follower ratio. In addition

to these three criteria, we asked two trained annotators to perform a qualitative as-

sessment of the tweets published by the accounts and exclude extreme accounts (e.g.,

highly satirical) or non-English accounts. After these exclusions, we had a total of 82

accounts, distributed along the categories shown in Table 4.1.

4.3.2 Data processing and analysis

To analyze our tweet data, we extracted various linguistic features, named entities,

and social network structures. The role of the computational analysis in our approach

is to support hypothesis testing based on social data driven by social science theories

[179].

Language features: Language features can characterize the style, emotion, and
3https://tinyurl.com/yctvve9h and https://tinyurl.com/k3z9w2b
4The Verifi interface relies on a public Twitter feed collected by the University of North Carolina

Charlotte.
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Table 4.2: 34 candidate language features from five sources.

Source Features Example

Bias Language
Lexicon-driven

6 Bias, Factives, Implicatives, Hedges, 
Assertives, Reports

Moral Foundation
Lexicon-driven

11 Fairness, Loyalty, Authority, Care

Subjectivity
Lexicon-driven

8 Strong Subjective, Strong Negative 
Subjective, Weak Neutral Subjective

Sentiment
Model-driven

3 Positive, Negative, Neutral

Emotions
Model-driven

5 Anger, Disgust, Fear, Joy, Sadness, 
Surprise 

sentiment of news media posts. Informed by prior research that identified multi-

ple language features for distinguishing real versus fake news [167], we consider five

language features, including bias language [180], subjectivity [181], emotion [182], sen-

timent [183], and moral foundations [184, 185]. For example, moral foundations is a

dictionary of words categorized along eleven dimensions, including care, fairness, and

loyalty. Table 4.2 provides an overview of the features we used to characterize the

language of the tweets, with each feature containing multiple dimensions.

In total, we test 68 different dimensions (i.e., 34 different language feature dimen-

sions and each with two different normalization methods – either by number of tweets

or number of words) using a supervised machine-learning algorithm (Random Forest)

with a 70/30 training/validation split. We eliminated highly correlated (redundant)

features (see supplemental materials). Figure 4.2 provides the ranking of the top

20 predictive language features.5 Using this ranking, we decided to include eight

language features within Verifi: Bias, Fairness (as a virtue), Loyalty (as a virtue),
5This model had a 100% validation accuracy (24 out of 24) on the 30% validation dataset.
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Figure 4.2: Top 20 most predictive language features of Fake and Real news outlets as
measured by each feature’s average effect on Accuracy. ‘t’ prefix indicates the feature
is normalized by the account’s tweet count and ‘n’ indicates normalization by the
account’s word count (summed across all tweets). Features with borders are included
in Verifi.

Negative sentiment, Positive sentiment, Fear, and Subjectivity to assist users in dis-

tinguishing fake and real news.6

Entity Extraction and Geocoding: Verifi includes a word cloud to display the

top mentioned entities and enable the comparison of how different media outlets talk

about entities of interest. We extract people, organization, and location entities from

the tweets.

Social Network Construction: To present the interactions between the accounts

on Twitter, we construct an undirected social network. Edges are mentions or retweets

between accounts. Nodes represent Twitter news accounts (82 nodes) as well as the

top ten most frequently mentioned Twitter accounts by our selected accounts.
6We averaged Strong-Weak subjectivity measures into one single measure.
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4.3.3 The Verifi User Interface

The Verifi user interface is developed using D3.js, Leaflet, and Node.js. The in-

terface consists of six fully coordinated views that allow users to explore and make

decisions regarding the veracity of news accounts (Figure 4.1).

The Accounts View (Figure 4.1A) provides account-level information including

tweet timeline and language features. The circular button for each account is color

coded to denote whether the account is considered real (green) or fake (red). The

accounts colored in gray are the ones participants are tasked to investigate in our

experiment. The timeline shows the number of tweets per day. The array of donut

charts shows the eight selected language features (scaled from 0-100) that charac-

terize the linguistic content. For example, a score of 100 for fairness means that an

account exhibits the highest amount of fairness in its tweets compared to the other

accounts. Users can sort the accounts based on any language feature. The Account

View provides an overview of real and fake accounts and enables analysis based on

language features and temporal trends.

The Social Network View (Figure 4.1B) presents connections among news ac-

counts (nodes) based on mentions and retweets (edges). The color coding of the nodes

is consistent with the Accounts View (i.e., green for real, red for fake, gray for un-

known). To increase the connectivity of the news accounts, we included ten additional

Twitter accounts. These ten accounts (colored white) are the top-ranked Twitter ac-

counts by mention from the 82 news accounts over the two week period. The Social

Network View allows users to understand how a specific account is connected to fake

or real news accounts on the social network.

Entity Views: The people and organization word clouds (Figure 4.1E) present

an overview of the most frequently mentioned people and organization entities. The

word clouds support the filtering of tweets mentioning certain entities of interest, thus

enabling comparison across accounts. For example, by clicking on the word “Amer-
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ican,” accounts that mention this entity would be highlighted in both the Accounts

View and the Social Network View. In addition, tweets mentioning “American” will

appear in the Tweet Panel View.

Map View: The Map View provides a summary of the location entities (Figure

4.1D). When zooming in and out, the color and count of the cluster updates to show

the tweets in each region. Users can click on clusters and read associated tweets.

Users can also filter data based on a geographic boundary.

Tweet Panel View: (Figure 4.1C) provides drill-down capability to the tweet

level. Users can use filtering to inspect aggregate patterns found in other views.

Within the tweet content, detected entities are highlighted to assist users in finding

information in text. This view is similar to how Twitter users typically consume

tweets on mobile devices.

4.4 Experiment Design

We designed a user experiment to study how people make decisions regarding mis-

information and the veracity of new accounts on Twitter with the help of the Verifi

system.

4.4.1 Research Questions

Situated in the context of decision-making with visual analytics, we organized our

research focus on the following research questions:

RQ1: Would individuals make decisions differently about the veracity of news

media sources, when explicitly asked to confirm or disconfirm a given hypothesis?

RQ2: How does uncertainty (conflicting information) of cues affect performance

on identifying accounts that post misinformation?

4.4.2 Experiment Stimuli

After developing the Verifi interface, we loaded data from all 82 accounts (Table

4.1) into the system. To minimize the effect of preconceived notions, all news outlet
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Table 4.3: Eight accounts with masked account names. Background colors indicate
real (green) and fake (red).

Mask	Name	 Description	

@XYZ	 A	news	division	of	a	major	broadcasting	company	

@GothamPost	 An	American	newspaper	with	worldwide	influence	
and	readership	

@MOMENT	 An	American	weekly	news	magazine	

@Williams	 An	international	news	agency	

@ThirtyPrevent	 A	financial	blog	with	aggregated	news	and	editorial	
opinions	

@ViralDataInc	 An	anti	right-wing	news	blog	and	aggregator	

@NationalFist	 An	alternative	media	magazine	and	online	news	
aggregator	

@BYZBrief	 Anti	corporate	propaganda	outlet	with	exclusive	
content	and	interviews	
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Figure 4.3: Available cues for selected accounts (column) and users’ response regard-
ing the importance of these cues (row, Q1-Q6). Left: Shows each of the eight selected
accounts as well as the cues available for each of them. Right: Shows average of
importance for each cue per account based on participants’ responses. Values in gray
circles below each account name show average accuracy for predicting that account
correctly. The left figure is purely based on the (conflicting) information presented
in the cues and is independent from user responses. The right figure based on the
user responses on the importance of each cue coincides with the information in the
left table.

names were anonymized by assigning them integer identifiers. Given the in-lab nature

of the user studies and time limitations, we selected eight accounts that participants

would investigate and would label as either real or fake based on their own judgments.

The accounts were chosen to cover a range of different cues and degrees of uncertainty.

We based our selection of experiment stimuli on classic studies in confirmation bias

[28, 186].

Due to institutional concerns, we have masked the names of those accounts while

preserving the nature of their naming. The eight selected accounts (4 real and 4 fake)

with their masked names and description are shown in Table 4.3. The source of the

description is Wikipedia and identifying information was removed to anonymize the

accounts. Our goal in selecting the experiment stimuli was to enable participants

to make decisions about a wide range of content with the aid of varied, sometimes

conflicting, cues.



63

4.4.3 Experiment Tasks

To test the effect of confirmation bias, we designed an experiment with three ex-

perimental conditions: Confirm, Disconfirm, and Control. In the Confirm condition,

participants were given a set of six cues about the grayed out accounts (i.e.,the eight

selected accounts shown in Table 4.3) and were explicitly asked to confirm a given

hypothesis that all grayed-out accounts were fake accounts. Similarly, in the Discon-

firm condition, participants were explicitly asked to disconfirm the given hypothesis

that all gray accounts were fake. Our third experiment condition was the Control,

where the participants were simply asked to judge the veracity of the accounts; they

were given neither the initial hypothesis nor the set of six cues. Following classic

psychology studies in confirmation bias [19] where the information presented to the

participants has inherent uncertainty, we added the element of uncertainty to the

cues. We provided six cues (Q1-Q6) to the participant, of which three cues pointed

to the account being real and three cues pointing to the account being fake. Each

cue corresponds to a view in the Verifi interface.

The decisions that participants needed to make for the gray accounts involved an-

swering (True/False/Did Not Investigate) for each of the six statements listed below.

Each statement is the same as the cue presented to the participant in the confirm

and disconfirm condition; the purpose of the statements is to gather information on

which cues the participants relied on when making decisions for a certain account.

Q1 This account is predominantly connected to real news accounts in the social

network graph. This characteristic is typically associated with known real

news accounts.

Q2 The average rate of tweeting from this account is relatively low (less than 70

tweets per day).

Q3 On the language measures, this account tends to show a higher ranking in bias
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measure and fairness measure. This characteristic is typically associated

with known real news accounts.

Q4 This account tends to focus on a subset of polarizing entities (people, organi-

zations, locations) such as Barack Obama or Muslims as compared to focusing

on a diverse range of entities.

Q5 On the language measures, this account tends to show a low ranking in fear

and negative language measures.

Q6 The tweets from this account contain opinionated language. This character-

istic is typically associated with known fake news accounts.

These statements and the cues given to the participants at the beginning of the

experiment (along with the hypothesis) are the same. Based on our data collection

and analysis, statements Q1, Q3, and Q5 point to an account while being a real

account and while the rest of the statements (Q2, Q4, and Q6) point to the account

being fake. For certain statements, we explicitly included information characterizing

whether the cue pointed to the account being real or fake (as shown in Q1, Q3, and

Q6). The presentation of these cues were deliberately chosen to add to the uncertainty

of information presented to the users. In addition to asking participants about their

decision-making process on each statement listed above, we also asked the users to

rate the importance of each view in the Verifi interface in making those decisions

(the Accounts View, Social Network View, Tweet Panel View, and Entity View) on a

scale of 1 to 7. Additionally, we asked participants to indicate the confidence of their

decision on a scale of 1 to 7 for each account, as well as an optional, free-form response

section where participants could provide any additional information as a part of their

analysis. All these questions were part of a pop-up form that was displayed when the

participants clicked the “Choice” button shown alongside the account number in the
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Accounts View (Figure 4.1A). The responses to this form were captured in a database

upon submitting the form during the task.

The information regarding each gray account and its cues is summarized in Figure

4.3 (Left). For simplicity of presentation, green circles indicate a cue pointing towards

account being real, red circles indicate a cue pointing towards account being fake. The

overview of how they score on cues demonstrate how the accounts exhibit different

levels of difficulty for decision-making. For example, all evidence pointed to the

@GothamPost account being real, which means that ideally, upon investigation, a

participant would answer True for Q1, Q3 and Q5 and False for Q2, Q4 and Q6

when making their decision for that account. However, other real accounts chosen for

investigation had more uncertainty in the cues. Notably, the @MOMENT account

was chosen as one of the difficult accounts since it had a misleading social network

cue (Q1) in that it had only one connection to a fake news account. For the fake news

accounts chosen, @ViralDataInc had all evidence pointing towards the account being

fake (except Q4, which means that the tweets from this account covered a diverse

range of entities). This would make @ViralDataInc easier to judge as fake than, for

instance, @ThirtyPrevent, which exhibits many more misleading cues.

4.4.4 Experiment Procedure and Participants

We recruited participants via in class recruitment, email to listservs, and the psy-

chology research pool at our institution. Once signed up, participants came to the

lab for a duration of one hour. After the informed consent procedure, participants

viewed two training videos designed for this experiment. The first video introduced

the interface and explained the different views. The second video provided a task

example to determine the veracity of a sample account not used in the study. Both

videos were identical across all conditions. After this training, participants completed

a pre-questionnaire consisting of questions related to their demographics (age, gen-

der, education), familiarity with visual analytics, social media, and Big-5 personality
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questions [146]. The participants were then assigned the task and asked to complete

the task in 30 minutes. After completing their task, participants completed a post-

test questionnaire which included six vignettes to assess participant’s propensity to

confirmation bias in general [19].

Sixty participants completed the study, evenly split into three treatment groups.

Participant ages were between 18 and 41 (mean=24.7). The gender distribution was

45% male and 55% female. A majority of the participants were undergraduates (65%),

followed by Master’s (16.7%), Ph.D. (8.3%), and others (10%). The distributions of

the participants between computing (48.3%) and non-computing majors (51.7%) was

relatively even.

4.5 Data Analysis Methods

In this section, we introduce the analysis methods applied to our experiment data

to answer the two research questions.

To address RQ1, namely, “are there significant differences in the way partici-

pants interact with the data and their resulting judgments based on the experiment

condition?”, we use one-way analysis of variance (ANOVA) for testing and post-hoc

Tukey’s honest significant difference (HSD) test to determine significance (α=0.05).

Our experiment design is a between-subjects design with one level: the experimental

condition.

To address RQ2 regarding the effects of uncertainty, we used two logistic regres-

sions to explore the effects of uncertainty (in cues, accounts, confidence, and treatment

groups) had on users’ decision-making. Each regression included a different depen-

dent variable: users’ accuracy (1 = correct decision, 0 = incorrect decision) and fake

determination (1 = fake prediction, 0 = real prediction). This analysis allows us to

determine which factors were most important and aligned with our expectation in

terms of direction. For example, as mentioned in the Experiment Stimuli section,

cues Q1, Q3, and Q5 were selected to point to real accounts, suggesting a negative
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relationship with fake prediction (or less than 1 log odds ratios). Alternatively, cues

Q2, Q4, and Q6 were selected to point to fake accounts (i.e., positive relationship

or greater than 1 log odds ratios). In addition, we can also identify which cue was

most important in decision-making as the one with the largest (in absolute magni-

tude) coefficient. In addition to the cues, we also include dummy variables for the

account-level (using @XYZ as the reference level) as well as include users’ confidence

level and treatment group (Control group is the reference level) to understand if these

factors played an additional role in the users’ decisions.

4.6 Analyses Results

In this section, we describe our findings and results. The detailed discussion about

the implications of these findings is in the Discussion section.

4.6.1 RQ1: Testing the Effects of Confirmation Bias

Table 4.4 shows the user accuracy rate and fake prediction rate across all three

experiment conditions. We found no significant differences between the experimental

conditions, on a diverse range of factors. Participants in all three conditions did not

differ on the number of accounts labeled as fake and the number of accounts labeled as

real (p>0.05 for both). We tested the accuracy rate and found no significant difference

in the rate of accuracy across experimental conditions (p>0.05). In addition, we

tested whether the participants interacted differently with the data, depending upon

the experiment condition. To test this hypothesis, we computed the total time spent

for participants in each condition, including time spent interacting with the data

presented in each view in Verifi (e.g., Social Network View, Accounts View). We

found no significant differences in the amount of time spent overall or in any specific

panel on the interface across the three conditions.
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Table 4.4: User accuracy and Fake prediction across conditions.

Control Confirm Disconfirm

Accuracy 60.4% 73.8% 63.1%

Fake Prediction 54.1% 55.0% 51.9%

4.6.2 RQ2: Measuring the Impact of Uncertainty

While we did not find significant differences in users’ decisions (e.g., accuracy)

between experiment conditions, we expect differences in accuracy and fake prediction

given uncertainty in cues for each account. Based on the cues in Figure 4.3 Left, we

categorize accounts into two types: Easy and Difficult. These categories are based on

how each account scores on the six cues and are independent from users’ responses. In

this section, we describe regression analysis to analyze the effect of cues and account

on users’ decision-making. We then present thematic analysis of users’ comments

regarding their decisions.

Regression Analysis: Our results provide evidence that the prevalent factors

in users’ decision-making were the cues and the accounts. Table 4.5 provides the

log odds ratios for the independent variables by each regression. We observe three

findings. First, in general cues have a significant effect on users’ fake prediction and

accuracy. For the cues, we recoded the responses to indicate whether the cue was

used consistent or not (e.g., depending on the direction of the cue relative to fake or

real accounts). We find that the opinionated, fear, and social network cues were the

most important in explaining correct decisions when used consistently. Alternatively

for explaining Fake decisions, we find that log odds ratios align to the cue direction

as mentioned in Figure 4.3. For example, cues Q2, Q4, and Q6 point to the account

being fake and we find the log odds ratios above one, although only Q4 and Q6 are

statistically significant.

Second, we find that certain accounts had a significant effect on both users’ accuracy
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Correct? Type Group Comment category

1 Several language features are consistent with predominantly real accounts quantitative

2 News appears more factual reporting rather than opinionated discussion of events, which leads me to believe it is a real news account. quantitative

3
This account does not seem to deal much with controversial topics, and although it has a lower loyalty score, it has a high fairness score and high bias, which are 
normally indicative of real accounts.

quantitative + qualitative

4
While this account only has one connection and it's to a fake account, I didn't notice anything suspicious in the tweets. The People and Organizations view only 
showed topics that are normally discussed in the news and nothing overly controversial.

quantitative + qualitative

5 A lot of the tweets were not even news but simply them stating their opinions about a variety of issues. qualitative

6 Only follows one account, tends to only tweet about one topic (Trump), and it's all negative and uses opinionated language. quantitative

7
High fairness but low loyalty. Little amount of tweets (seemed inconsistent). Very high anger. When looking at the network, it was associated with a wide range of 
different accounts.

qualitative + qualitative

8 This account is 100% angry, with a low tweet amount. This user also doesn't focus on that many people within their tweets. quantitative + qualitative

9 Compared timeline of tweets as other tweets. The timeline and tweet content about taking Mosul for this account do not match with other "real" news. quantitative

10
For this account, language within the tweets tipped me to believing this is a fake news account, or at least an extremely conservative or right-leaning (with high bias) 
news account. Wordage like "marxist left mainstream media" for instance.

qualitative

11 Contains a lot of opinionated language in it's tweets. qualitative

12
..Despite the high tweet rate, their bias and subjectivity scores were high, which tends to relate to fake accounts. That added to the fact that it's only linked to 
another fake account and some verified accounts led me to believe this is a fake. 

quantitative

13 Though this is very opinionated, it leans towards an overall criticism of America, as opposed to an organization attempting to sway a constituency. qualitative

14
Admittedly, personal bias played a role in deciding the "real"ness of this account as the information in the tweets, though not seemingly produced by big media, appears 
real, though not unbiased.

qualitative

15 Connected to real accounts and has lower subjectivity. quantitative

16 Although there was a high rating of anger, it seems as though none of the tweets expressed any anger or high bias. quantitative + qualitative
difficult

Yes

No

easy

difficult

easy

difficult

easy

difficult

easy

real

fake

real

fake

Figure 4.4: A sample of users’ comments about their decisions. Highlighted text
shows users’ mention of either a qualitative or quantitative reason. Green denotes
reasons/cues pointing to the account being real while red pointing to being fake.

and fake prediction. This observation implies that some accounts were more difficult

and systematically over or under predicted as fake. For example, @MOMENT has

a very low log odds ratio for users’ accuracy as users overwhelmingly incorrectly

predicted @MOMENT, a real-difficult account, as fake (as indicated by its high log

odds ratio for fake prediction).

Last, we find that confidence has no significant relationship in explaining accuracy

or fake decisions. While there may be a univariate relationship between confidence and

user decisions, this may likely be explained through the account level dummy variables

as confidence also varied by accounts. Also, we find the Confirm condition maintains

a weakly significant effect on accuracy relative to the Control group (reference level

for treatments).

Thematic Analysis of Comments: Our regression analysis revealed that cues

played an important role in users’ decision making on misinformation. When cues

point to conflicting directions of an account being real or fake, users are more likely

to arrive at inaccurate decisions. In each decision, users had the option to leave

comments in regards to their decisions. These comments are extremely valuable
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in helping us decipher users’ rationales. We examined all comments (95 total) and

thematically categorized users’ strategies. Our analysis focuses on how different usage

on all or a subset of the cues affect their decision making. Similar to our quantitative

analysis, we evaluate these themes through the lens of cue uncertainty and account

difficulties.

Our thematic analysis classified comments into three categories: Quantitative (32

comments), Qualitative (37), and Qualitative + Quantitative (26). We categorized

mentions of social network connection, language feature score, and tweet timeline as

quantitative. Any mention related to entities and users’ understanding of the text

of tweets such as “opinionated language,” “news-like text,” and “style of text” were

considered qualitative. The quantitative and qualitative dimensions extracted from

the comments aligned well with the six cues provided to the participants.

Easy Accounts: Easy accounts (column 1, 2, 5, 6 in Figure 4.3 left) are the

ones with most cues pointing to the accounts being either real or fake; thus leading

many users to correct decisions. Fifteen comments for the easy accounts mentioned

quantitative cues such as language features scores (Figure 4.4, row 1) and social

network connections (Figure 4.4, row 6) as the basis of their decisions. 12 of these

comments led to correct decisions. Seventeen comments focused on the qualitative

cues such as opinionated language or entities, e.g., one real account decision based

on “factual reporting” and a fake account decision due to seeming “too opinionated”

(Figure 4.4, rows 2 and 5).

Difficult Accounts: Difficult accounts (column 3, 4, 7, 8 in Figure 4.3 left) are the

ones with the cues pointing to contradicting directions, resulting in more uncertainties

in decision making. Seventeen comments focusing on quantitative cues such as fewer

social network connections to other real news accounts for some real-difficult accounts

yielded eleven inaccurate decisions (Figure 4.4, rows 12 and 15). Furthermore, twenty

comments focused on qualitative cues such as users’ notion of opinionated language,
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in which seven cases it drove them to wrong decisions (Figure 4.4, row 11). Finally,

fourteen comments focused on both quantitative and qualitative cues with only three

of them yielding wrong decisions. In two of these cases, users decided to disregard

the account’s anger ranking (Figure 4.4, row 16).

We observe that when users leverage both quantitative and qualitative cues with a

thorough analysis of an account, they are more likely to make an accurate decision.

Most comments contained a mix of qualitative and quantitative analysis (including

language features, social network connections, and opinionated language) helped users

to come to the correct decisions (Figure 4.4, rows 3, 4, 7 and 8).

4.7 Discussion and Future Work

Our goal was to assess the effect of confirmation bias and uncertainties on the

investigation of misinformation using visual analytics systems. Although our post-

questionnaire vignette, based on prior psychology research [19] showed that most of

our users demonstrated a high level of confirmation bias, our experiment did not find

significant differences between the experiment conditions. One explanation would be

the hypothesis (all eight accounts are fake) we gave the participants did not resonate

with them. If we had asked the participants to form their own hypothesis of the

eight accounts being either real or fake by going through an example account, they

may have been more invested in the hypothesis and inclined to confirm or disconfirm

it. Another explanation involves the use of Verifi, the visual analytics system that

empowers users’ decision-making by allowing users to interatively analyze multiple

aspects of the news accounts. Often, people are instructed to ‘slow down’ and inspect

information more critically [18] as an antidote to falling for confirmation bias. The

Verifi interface could have played a role of somewhat mitigating confirmation bias in

our experiments. This will be the subject of our follow-up studies.

We observe that participants’ responses to the cues were consistent with the account

uncertainties/difficulties. Figure 4.3-Right shows how users’ average cue responses
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matched our original understanding of these accounts. Moreover, our regression anal-

ysis shows that certain cues significantly affected our users’ decisions (Q4-Q6) more

than others. Opinionated language which had the strongest effect on users fake pre-

diction stands out as an important lesson learned for future attempts to address

misinformation. The fact that we allowed the opinionated cue to be purely based on

users’ understanding of tweet texts, opens a whole new research question: How can

we help users’ to more objectively identify/quantify opinionated language?

Furthermore, we find that uncertainty affected our users’ prediction accuracy. Our

research shows that when a combination of quantitative and qualitative cues are

presented clearly and with minimal uncertainty, users are successful in correctly dif-

ferentiating between fake and real news accounts. In order to be resilient to these

uncertainties, it is essential to take effective measures to communicate these uncer-

tainties, motivate users to not be anchored on specific cues, and to holistically focus

on a combination of qualitative and quantitative evidence. We plan to conduct a

followup experiment with adding uncertainty of the cues to the visual analytic sys-

tem to test this hypothesis. One limitation of our study was the number of accounts

chosen. Due to the time duration of our study (one hour), we decided to ask each

participant to make decisions about eight accounts with varying difficulties. In order

to test whether our results can be generalized, we plan to conduct a follow-up study

that focuses on annotating a larger number of randomized accounts. The current

study provides guidance on how we would instruct human coders to categorize all

accounts based on the cues into different difficulty levels.

4.8 Conclusion

This chapter introduces a visual analytics system, Verifi, along with an experiment

to investigate how individuals make decisions on misinformation from Twitter news

accounts. We found that the account difficulty as mixed cues indicating real versus

fakeness has a significant impact on users’ decisions. The Verifi system is the first
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visual analytics interface designed to empower people in identifying misinformation.

Findings from our experiment inform the design of future studies related to decision-

making around misinformation aided by visual analytics systems.
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Table 4.5: Log odds ratios for each independent variable in two logistic regressions.
The Accuracy column is 1 = Correct, 0 = Incorrect Decision. The Fake column is
the user’s prediction: 1 = Fake, 0 = Real. The @accounts variables use @XYZ as the
reference level and the Group variables use the Control Group as the reference level.



CHAPTER 5: INVESTIGATING EFFECTS OF VISUAL ANCHORS ON

DECISION-MAKING ABOUT MISINFORMATION.

5.1 Introduction

Visual Analytics (VA) combines statistical and machine learning techniques with

interactive visualizations to facilitate high-level decision-making on large and complex

data. An important attribute of an effective VA system is the support of exploratory

visual analysis [187, 188]. Many VA systems designed for exploratory visual analysis

often employ coordinated multiple views (CMV) to provide functionality including

details-on-demand, linked navigation, and small multiples [189]. These VA systems

offer the user flexibility to use the VA system to solve problems through many possible

strategy paths and “have a dialogue with the data” [125]. However, user flexibility–

like in CMV systems–can introduce trade-offs as well [190]. Zgraggen et al. [53] find

too much freedom in visualization systems can lead to spurious insights and high

rates of false discoveries, also known as the multiple comparisons problem or the

forking paths problem [52]. Pu and Kay [52] define the forking paths problem

in visualizations as “unaddressed flexibility in data analysis that leads to unreliable

conclusions.” They argue cognitive biases may be one reason for users’ susceptibility

to the forking paths problem. In this chapter, we consider the problem within the

scope of one such cognitive bias, anchoring bias, and the possible effect pre-task

training can have on the complex decision-making task of social media misinformation

identification using a CMV VA system.

Cognitive biases are the result of the over-reliance of heuristics, or rules-of-thumb,

for decision-making tasks to make decisions with relative speed [26]. An emerging

topic within the VA community considers the role of cognitive biases in VA decision-
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making [23, 191, 192]. Cognitive biases have been shown to affect decision-making

processes in predictably faulty ways that can result in sub-optimal solutions when in-

formation is discounted, misinterpreted, or ignored [26]. One cognitive bias relevant

to exploratory visual analysis with VA systems is anchoring bias. It refers to the hu-

man tendency to rely too heavily on one and most likely the first piece of information

offered (the “anchor”) when making decisions [193]. Past studies from psychology and

cognitive science have focused on numerical anchoring, in which an initial numerical

value anchors judgment and the subsequent adjustment with updated information

[193, 27, 194]. Cho et al. [32] provided evidence anchoring transfers to VA; specif-

ically visual anchoring, which is the over reliance on a single or subset of views

during exploratory visual analysis.

To situate our experiment in real-world decision-making tasks with VA systems, we

selected the application of misinformation identification. Recently, the topic of com-

bating misinformation has received much attention in many fields including machine

learning, psychology, journalism, and computational social science [195, 196, 164].

While a variety of fully automated techniques have been developed, more direct in-

teraction like laboratory experiments with users on misinformation decision-making

is needed [197].

Our work makes the following salient contributions:

1. We conducted an empirical study on the effects of visual anchoring in decision-

making. Specifically, we investigated misinformation in social media in a between-

subjects design laboratory experiment with 94 participants.

2. Introduction and formalization of strategy cues and visual anchors as treatments

to intervene within the visualization training process.

3. Careful integration of strategy cues from psychology literature as hypotheses

to test the interaction between visual anchoring and providing hypotheses in
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visual decision-making tasks.

4. Quantitative analysis on factors that affect anchoring bias in VA to measure vi-

sual anchors’ impact on user decisions, confidence, time spent, and interactions.

Understanding the effect of cognitive biases like anchoring in visual analysis serve

as an important first step to raising awareness and possibly mitigating cognitive

biases with visual analysis. At the end of the chapter, we connect findings from

our experiment to practices of interacting with participants on a newly designed

visual analytic systems. The findings of our experiments shed more light on how and

when anchoring effects can occur in visual analytic systems and call for more careful

consideration of training users or designing tutorials for a visual analytic system.

5.2 Background

In this section, we review past research on cognitive biases in visualizations. We

also review literature that motivated our experiment design and research questions.

5.2.1 Anchoring & Cognitive Biases in VA

A cognitive bias is a systematic and involuntary cognitive deviation from reality

[198, 192].1 Introduced by Tversky and Kahneman [26], cognitive biases have since

had a long history of investigation by various social scientists [199]. Ellis and Dix [22]

provide an early case on exploring the role of cognitive biases in VA and, more recently,

several papers have provided theoretical frameworks or taxonomies of cognitive biases

in VA [168, 23, 191, 192]. Empirically, VA research on cognitive biases have developed

studies on a variety of biases including attraction [81], selection [82], availability

[83], and confirmation bias [30, 87]. In our study, we explore the phenomenon of

anchoring [26], which is the tendency to focus too heavily on one piece of information

when making decisions. Originally considered in the task of open-ended numerical
1Dimara et al. [192] provide a detailed discussion that “reality” stems from normative models of

decision-making, which in itself leads possible controversies on assessing cognitive biases.
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Figure 5.1: Screenshot of Verifi. Verifi is comprised of four views: (A) Language
Features View, (B) Social Network View, (C) Tweets Panel View, and (D) Entities
View. Progress Bar and Form Submit buttons are at the top.

decisions [26, 27], anchoring has been studied in VA both in MTurk studies using

scatterplots [84] and more complex, lab-based experiments using a CMV system [32].

As one of the first studies on the effect of anchoring in VA, Cho et al. [32] employs

an open-ended task of identifying protest-related events from social media data. They

analyzed the impact of visual anchors on the reliance of views and analysis paths;

however, users decisions were more affected by classical numerical anchors within the

task. The impact of visual anchoring on user performance was not measured and

limited information was captured at the time of each decision.

5.2.2 Strategy Cues in Psychology Experiments

Our motivation for providing strategy cues in the experiment design is rooted in

prior research from psychology [186, 200, 201, 202, 203]. In their influential conceptual

model for exploratory analysis, Pirolli and Card argued that identifying an exploration

strategy or hypothesis is one technique that users of visual analytic systems can

benefit from [204]. To illustrate, research has demonstrated that users preferred to
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devote attention to stimuli that matched a given hypothesis or template, even in

the presence of alternate, more optimal strategies [186]. Amer et al. [200] designed

experiments in which participants were given explicit and implicit spatio-temporal

cues in a visual event coding task and found systematic effects of the explicit and

implicit cues on users’ attention within the visual analytic system and how these cues

affected processing of information.

5.2.3 Possible Training Induced Biases

A recent survey of visualization evaluation practices from the Vis Community high-

lighted that many publications need to observe more evaluation reporting rigor by

providing important methodological details [205]. In particular, there is a lack of

consistent reporting on how the participants were trained (by experimenters, with

or without a script, training videos, example strategies to complete the task, etc.).

In our experiment, visual anchors are introduced during training the participants on

how to use a visual analytic system to investigate misinformation. We will investigate

the impact of the visual anchors on users’ performance and behavior during analy-

sis. In summary, how participants were trained may significantly impact their task

completion, thus we argue for more consistent reporting of these details.

5.3 Experiment

In this section, we outline our experiment design including reviewing Verifi, the VA

system used in the experiment, our research questions, variables, and hypotheses.

5.3.1 The Verifi System

For our study we use Verifi [30] (Figure 5.1), an interactive CMV system for iden-

tifying Twitter news accounts suspected of spreading misinformation. Verifi includes

four views: Social Network, Language Features, Tweet Panel, and Entities. Each

view provides users with different features in detecting misinformation [167]. The

Social Network and the Language Features views are the two primary views; the
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Entity View and Tweet Panel are secondary views. Following Cho et al. [32], we

selected Verifi to test visual anchoring as its an example of a complex CMV system.

CMV systems inherently require users to make choices on which views to use and

strategies to switch between views. Accordingly, visual anchoring may occur in such

systems when a user is biased into over relying on one view and possibly leading to a

sub-optimal decision.

The system includes two weeks of tweets from 82 Twitter news accounts. Each

account name was converted to an integer code (1 to 82) and annotated as a misin-

formation account (red), real news outlet (green), or requiring user decision (grey).

The annotations are based on independent, third-party sources.2 Each user’s task is

to make a decision on the veracity (real or suspected of spreading misinformation) for

eight grey accounts within a one-hour session. Following [30], the eight accounts were

qualitatively selected to provide a range of difficulty level as well as consistent and

inconsistent information to challenge users in their decision-making processes. Table

5.1 provides the actual Twitter handles of the eight gray accounts along with a brief

description.

5.3.2 Experiment Design

We highlight two critical design decisions in our experiment compared to Cho

et al. [32]:

1. We collect direct feedback from users in a submission form (Figure 5.2) to

capture input at the time of each decision (e.g., view importance, strategies,

and open-ended comments). Unlike Cho et al. [32] who captured users’ decision

on paper and after the task, we designed the Form Submit view (Figure 5.2) to

collect information regarding the factors that influenced each decision.
2Suspicious accounts are based on four websites as provided in [167]. 31 real

news accounts are provided through the following links: https://tinyurl.com/yctvve9h and
https://tinyurl.com/k3z9w2b
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Figure 5.2: Form Submit view of Verifi for Account #02 (@ABC). This pop-up pro-
vides an interface for the user decisions and feedback per account (e.g., strategy cues
use, view importance, and open-ended comments (not shown).)

2. We provide strategy cues, or hypotheses, as a secondary condition in the

form of written statements that reinforce functionality for each primary view

in Verifi [30]. Strategy cues are initial hypotheses, provided on paper to users,

of possible relationships between the data elements in a specific view. Strategy

cues align to confirmatory data analysis as they provide a mechanism to control

for possible hypotheses of the task and its functionality with an anchored view

(e.g., real news accounts have lower anger, fear, or negativity). Strategy cues

serve as interaction variables to the visual anchor as they may enhance the

anchor’s effect on a view if the user follows the view’s strategy cues.

To analyze the effects of visual anchors and strategy cues in decision-making, we

conducted a between-subjects, repeated measures laboratory experiment. Figure 5.3

provides the experiment flow. Each user’s task is to make a decision on the veracity

(real or suspicious) of eight grey Twitter accounts (see Table 5.1). Users submit
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Figure 5.3: The experiment flow for each participant session.

their decisions in the Form Submit view (Figure 5.2) along with their ratings of the

visualization views and strategy cues. To control for learning effects, we randomized

the order of the account icons in the Progress Bar per participant.

94 users participated in our study. The gender distribution was 68% male and 32%

female. Users’ ages were between 21 and 56 (M = 28.7). A majority of users were

pursuing a master’s degree (n = 83), followed by undergraduate (n = 5), graduate

certificate (n = 5), and Ph.D. (n = 1). Students were recruited through extra credit

incentives offered in six courses: Visual Analytics (n = 40), Natural Language Pro-

cessing (n = 25), Advanced Business Analytics (n = 14), Human Behavior Modeling
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Table 5.1: Eight Twitter news accounts for users’ decisions (i.e., grey accounts in the
interface). Accounts were anonymized in the study.

News Outlet Descrip�on
@zerohedge A financial blog with aggregated news and 

editorial opinions
@AddInfoOrg An an� right-wing news blog and aggregator
@NatCounterPunch An alterna�ve media magazine and online news 

aggregator
@SGTreport An� corporate propaganda outlet with exclusive 

content and interviews 
@ABC A news division of a major broadcas�ng company
@ny�mes An American newspaper with worldwide 

influence and readership
@TIME An American weekly news magazine
@Reuters An interna�onal news agency

(n = 6), Applied Machine Learning (n = 6), and Social Media Communications (n =

3).

Each participant session was capped at 45 minutes and averaged 27.1 minutes (SD

= 7.524). Each session is identified through a participant ID and interactions (e.g.,

clicks, hovers, and scrolls) were saved to a MongoDB database. Computer speci-

fications (browser, output/zoom) were controlled for to avoid them as confounding

factors. Our study was approved under our institution’s Institutional Review Board

(IRB) policies (IRB #17-0251).

5.3.3 Research Questions

We investigate how users may be visually anchored on different views in a CMV

system and how they might be anchored on specific interaction strategies based upon

the training given to them. How does visual anchoring affect user performance, con-

fidence and data coverage? Accordingly, our main research questions (RQs) are:

RQ1: What is the effect of visual anchors and strategy cues on participant perfor-
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mance (i.e., accuracy, speed, and confidence) and ratings (e.g., view importance and

strategy usage)?

To analyze RQ1 from a participant-level, we use aggregated3 non-parametric boot-

strapped confidence intervals [207]. In our results, we focus on effects sizes rather than

p-values [208] and follow conventions provided by Dragicevic [206]. Then we employ a

hierarchical model to consider both participant and task-level effects on user accuracy

and confidence. Following Kay et al.’s [208] recommendation for Bayesian methods

in HCI, we use Bayesian mixed-effects regressions with weakly-informed priors [5].

RQ2: Can users’ analysis process (e.g., interaction logs) be linked to participant

performance outcomes to infer user strategies?

For RQ2, we estimate condition effect sizes of user time spent per view and cov-

erage metrics [23] using mean bootstrapped confidence intervals. To identify user

behaviors with the coverage and time spent metrics, we used Ward’s D2 Agglomer-

ative Hierarchical Clustering [2] to cluster users and features using the R package

heatmaply [209]. To determine the optimal number of clusters for the rows (fea-

tures) and columns (users), we used the maximal average silhouette width method on

the cophenetic distance of the dendrogram [210]. The algorithm detected five clusters

on the user-level, as identified by the five colors in the horizontal dendrogram. We

then annotated the five clusters based on common attributes shared by users within

a cluster.

5.3.4 Independent Variables (experimental conditions)

For our experiment design, we developed six treatments in three condition groups:

Control, Balanced, and Partial (Table 5.2). The Control group did not receive any

visual anchor (i.e., scenario video). The Balanced group received a visual anchor

that reviewed a strategy using both primary views. The Partial group received a
3Given HCI’s focus on people not tasks, Dragicevic [206] advocates for calcuating confidence

levels on a participant-level, not a task-level.
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Table 5.2: Experiment treatments by condition groups.

visual anchor that covered only one primary view but not the other.

In addition, the difference between each group condition was the strategy cues (or

hypotheses) given to participants that reinforce each primary view. Each strategy

cue is a hypothesis on how to identify real news accounts that aligns to one of the

two primary views in the Verifi: Language Features view (L) and Social Network

view (S). The Language Features view presents predictive linguistic features for each

account, such as fairness, loyalty, anger, and fear. The Social Network view provides

retweet and mention relationships [30]. The cues are:

Cue 1L: “On the language measures, real news accounts tend to show a higher

ranking in loyalty, fairness, and non-neutral.”

Cue 2L: “On the language measures, real news accounts tend to show a lower

ranking in anger, fear and negativity.”

Cue 1S: “In the social network graph, real news accounts are less likely to mention

and retweet content from suspicious accounts (fewer outgoing arrows to red nodes).”

Cue 2S: “In the social network graph, real news accounts tend to receive more

mentions and retweets (more incoming arrows to their nodes).”

5.3.5 Dependent Variables

We have two types of dependent variables: decision and behavioral metrics (see

Figure 5.4). Decision metrics are provided by users and can be divided into two

groups: primary and secondary outcomes.
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Dependent 
Variable

Decision

Primary
accuracy

confidence
session Time

Secondary
view importance rating

strategy use ratings

Behavioral

Time per View
Coverage 

Metric

RQ1 RQ2

Figure 5.4: Dependent variable groups in our experiment.

Primary outcomes: We evaluated user performance based on three primary

outcomes: (1) accuracy in correctly identifying misinformation accounts, (2) confi-

dence of each misinformation decision as range from 100 (perfectly confident) to 1

(perfectly not confident), and (3) session time that is the time of the decision as

minutes from the start of the experiment.

Secondary outcomes refer to the four view importance ratings and four

strategy use ratings provided directly by each user at the time of each decision.

The importance ratings use 1 (unimportant) to 7 (extremely important) Likert scale

and the strategy cue ratings use a True, False, or Did Not Investigate value (see

Figure 5.2).4

In addition to decision metrics, we also consider participants’ actions as dependent

variables in two types of behavioral metrics.

Time spent metrics. We measured users’ time spent per view through a mouse
4Consistent with [30], we recoded strategy cue ratings to ensure whether the cues were consistent

or not, depending on whether the account was Real or Misinformation. In this way, the cues can be
interpreted as 1 = cue used consistently, -1 = cue used inconsistently, 0 = cue not investigated.
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enter-exit log tracking. By using the enter-exit periods and allocating that to each

view, we were able to measure participants time spent in the five views (two primary,

two secondary, and Form Submit view).

Coverage metrics. Following Wall et al. [23], we created coverage metrics to

measure participant use of key interface functionality. Specifically, we consider six

primary actions: progress bar click, LF sort (combined for red/green features), and

SN hovers (for grey, green, and red accounts).5

5.3.6 Hypotheses

Based on the RQ’s, we developed the following hypotheses:

H1: Balanced visual anchor users will have the highest accuracy as users will have

more information on how to use both primary views. These users will use the primary

views more than the secondary views as compared to the Control groups.

H2: Partially visual anchored users will have the worst accuracy as their anchors

are one-sided. These users will disproportionately interact with the view associated

with their anchor. By failing to consider the opposite view, their performance will

diminish.

H3: When given scenario videos that include both primary views (i.e., Balanced

group), order matters. The first view provided will have a larger effect than the

second, leading to an increased use (time, coverage) of the first view introduced. To

evaluate, we compare performance within the two Balanced conditions.

H4: Strategy cues will improve performance, confidence, and shorten session as

more information is helpful. In this hypothesis, we’ll compare treatments to the

Control treatment with no cues.
5We removed hovers less than one second after a previous action to remove unintentional actions.
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5.4 Results

5.4.1 RQ1: Effects of Visual Anchoring and Strategy Cues on User Level

Contrary to H1, we do not find evidence that the Balanced visual anchored groups

(70.2%-71.88%) have the highest accuracy. In fact, we find that the Control groups

(i.e., no visual anchor/scenario video) performed just as well in terms of accuracy.

Figure 5.5 provides the means and bootstrapped confidence intervals for the primary

outcomes relative to the experiments conditions. Alternatively, we find some evidence

in support of H2 as the Partial-Social Network treatment had a lower accuracy (M =

61.3%) than the other groups, but not outside of 95% bootstrapped CIs. We do find

evidence that the visual anchors provide a positive effect on user confidence relative

to the Control conditions.

Accuracy Confidence Level Session Time (min)

0.6 0.7 0.8 70 80 24 28 32 36

Control

Balanced

Partial

 

 

Control
Language Features
Social Network

All Cues
LN Cues
No Cues
SN Cues

Figure 5.5: Primary outcomes means and bootstrapped 95% confidence intervals on
a user-level (n = 94).

For H3, we find little difference in primary outcomes between the two Balanced

groups, indicating that order doesn’t appear to affect final decision outcomes. For

H4, we find no evidence that the strategy cues provided an advantage in accuracy, in

fact the opposite as the Control/no cues condition has the highest average accuracy.

We find the cue groups do tend to have higher accuracy, but their effects may interact

with the visual anchors as we find little difference between the Control groups. Last,

it does seem that cues may shorten the session as the Control/no cues group, the

only without any cues, had the highest average session time (M = 31.7), well above
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Figure 5.6: Secondary outcomes means and bootstrapped 95% confidence intervals on
a user-level (n = 94). The figure uses the same color and shape encodings as Figure
5.

all other groups (ranging from 25.4 to 27.2). We’ll explore this more in RQ2 results

when we decompose the session time by views.

As for the secondary outcomes, we find evidence for H1 that visual anchors seem

to diminish users’ value of the secondary views. For example, Balanced (and Partial)

anchored users tend to rate both the Entities and Tweet view less than Control groups

(Figure 5.6 top row). In fact, we find the Control/no cues condition valued the Tweet

view the highest (M = 6.1), suggesting that without any anchors or cues, users valued

the qualitative secondary view the most (i.e. reading individual tweets).

Last, we find little variance across cue ratings by the six conditions (Figure 5.6

bottom row). Most average ratings range from 0.2 - 0.3, indicating a slightly above

average (0) use of the cue in their decision. The one exception is 1S, in which all but

the Balanced groups average rating was within 0 for its confidence interval.
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Figure 5.7: Accuracy by Twitter account and bootstrapped 95% confidence intervals
on decision-level (n = 748). (R) indicates a "real" news account and (M) indicates
a "misinformation" account. The figure uses the same color and shape encodings as
Figure 5.

5.4.2 RQ1: Effects of Visual Anchoring and Strategy Cues on User & Task Level

One weakness of the user-level analysis is that it ignores the task-level. In Figure

5.7, we find that user accuracy varied drastically by each account (task). For example,

nearly all participants correctly predicted @nytimes while most users incorrectly pre-

dicted @TIME, especially those receiving visual anchors. To consider both the user-

and task-level, we use mixed-effects regressions for both accuracy and confidence.6

We use a Bayesian generalized linear mixed-effects regression for each of the two

outcome values using the R packages brms [211] and tidybayes [212]. Our fixed

effects are each treatment (Table 5.2), time of decision (in minutes), and their in-

teractions.7 For the random effects, we use account (Table 5.1) and participant. We

use account as a random effect given the variability in difficulty from the qualitative
6We did not investigate total session time due to the problem of allocating time to each actions

for each decision. Therefore, we only investigate accuracy and confidence as dependent variables in
regression.

7We do not report the fixed effects of time of decision as we did not have a prior hypothesis to
evaluate. However, these effects can be observed 04-regressions.Rmd | .html in the supplemental
materials.
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ground truth [30].8

For each regression we use a slight variant depending on the outcome variable

format. For accuracy, a binary 1 (correct) or 0 (incorrect) variable, we use a logistic

mixed-effects regression. Alternatively, confidence is a continuous variable between

0 (no confidence) to 1 (perfect confidence) and, hence, we use a linear mixed-effects

model.

Control
+ All Cues

Partial
+ SN Cues

Balanced
+ All Cues

Balanced
+ All Cues

Partial
+ LF Cues

0.4 0.8 1.2
             ... Less Accurate   |  More Accurate ...

 

Accuracy: Odds Ratio to Control

 

 

 

 

 

−10 0 10
... Less Confident |  More Confident ...                    

 

Confidence: Difference to Control

 Control Language Features Social Network

Figure 5.8: Posterior distributions of differences in means of user accuracy and con-
fidence level. For both plots, the conditions are relative to the Control (no cues)
treatment. CIs of differences are at 95% and 66%.

From Figure 5.8, we find that the treatments had a strong effect on user confidence

but a smaller effect on accuracy. For instance, the Partial (LF cues) and the Balanced

(SN) had effects larger than the 66% CI compared to the reference level, Control (no

cues) treatment. This provides evidence that the visual anchors tend to produce

higher user confidence levels. However, for accuracy, we find small effects of the
8We only included participant as a random effects for confidence, not accuracy, following a sig-

nificant effect via ANOVA testing with frequentist mixed-effects modeling. See 04-regressions.Rmd
| .html in the supplemental materials.
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treatments as nearly all odds ratio CIs are within 1 (i.e., as likely as the reference

level). The one exception is the Partial (SN Cues) treatment in which its 95% CI is

nearly out of 1.

5.4.3 RQ2: Time Spent & Coverage Metrics

To evaluate the behavioral effect of visual anchors, we explore effect sizes using

bootstrapped confidence intervals to identify differences in participants’ time spent

and coverage metrics, Figure 5.9 and 5.10). To consider H1 and H2, we compare

the visual anchored groups, Balanced and Partial, to the Control groups. First, we

find that the visual anchored groups tended to spend more time on the Language

View than the Control groups; however, time on the Network View was mixed as the

Control Groups spent around 8-9 minutes on average, nearly the same as the anchored

groups. This provides some evidence for our hypotheses, but only for Language View

anchoring. The one anchored group that spent little time in the Language View was

the Partial-Social Network treatment, where users averaged only 4 minutes (M = 4.01

minutes) as compared 6 to 7.5 minutes for the other anchored groups. This makes

sense given these users’ anchors only included the Social Network cues and videos,

not the Language treatments.

Considering users’ coverage metrics, we consistently find that visual anchored

groups (except the Partial-Social Network treatment) had many more Language in-

teractions (Green and Red sort) than the Control groups. However, Social Network

interactions (i.e., hovers) are similar between the visual anchored groups and the

controls. Both of these points lead to partial evidence for H1 and H2. That is, we

find that users can be visually anchored to the Language View, but not the Social

Network View.
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Figure 5.9: Time spent per view means and bootstrapped 95% confidence intervals
on user-level (n = 94).

5.4.4 RQ2: Clustering Users based on Interactions

We find users’ actions can provide indications of different interaction behaviors

(Figure 5.11). For example, consider the ‘Slow and Steady’ cluster. In Figure 5.11,

these users are mostly yellow, indicating a high rank across all metrics. These users

were very active, exploring the entire interface’s functionality for an extended period

of time. On the other hand, the ‘Fast and Quick’ group is mostly dark blue as

they ranked low in coverage metrics and time spent. The bottom two rows of the

dendrogram provide the treatment conditions for each user. Comparing these rows

to the clusters, we find some evidence for H1 and H2. Take ‘Anchored to Social

Network’ group as an example. Only one user who was treated with a LF visual anchor

(dark blue) is within this cluster. As we would expect, many are SN groups (light

red) that received the SN visual anchors. However, what is peculiar is the number

of Control users (dark blue), particularly those without any strategy cues. Perhaps

one interpretation is that these users are naturally drawn to the social network view
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Figure 5.10: Coverage metrics means and bootstrapped 95% confidence intervals on
user-level (n = 94). The figure uses the same shape and color encodings as Figure 9.

more than other views.

Descriptive statistics can also provide more context on each cluster. We find that

the ‘Slow and Steady’ cluster users averaged much longer session times (M = 36.0

minutes). These users tended to have longer initial exploration periods, as they

averaged nearly 10 minutes before their first decision submission. As context, other

users typically made their first decision between 3 and 7 minutes. We also find

that these users actively used the Progress Bar (M = 21.5 times), indicating a more

organized strategy and using both primary views frequently. Interestingly, this cluster

has, on average, the highest accuracy of 82.8%. Alternatively, we identified two

clusters as users who focus more on either the SN (#1) or LF (#2). For example,

cluster #1 spent 2.3x more time on the Social Network view than the Language

Features view while the opposite holds for cluster #2.

Cluster validation: To validate the clusters, we compared them to post-questionnaire

and decision data that was not included in the clustering process. For instance, we
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Figure 5.11: Heatmap clustering of interaction logs (Ward.D2 [2]) by columns (users)
and rows (metrics). Each column is normalized for its percentile ranks. Users with
a high feature rank are yellow while users with a low rank usage are dark blue. The
bottom two rows indicate user’s group and anchor condition. Both metrics were not
used in clustering and provided for comparison.

find that the clusters provide a range of different ratings for the language features

and social network functionality in the post-questionnaire. Users in the ‘Anchored to

Social Network’ (#1), ‘Highly Confident’ (#3), and ‘Fast and Quick’ (#4) generally

preferred the social network over the language features. However, the ‘Anchored to

Language Features’ cluster (#5) was the only cluster to prefer, on average, the LF

over SN. Alternatively, we find distinct differences in user motivation, interest, and

challenge between clusters like ‘Slow and Steady’ (#2) and ‘Fast and Quick’ (#4).

The ‘Slow and Steady’ cluster tended to be the most motivated, interested, and chal-

lenged out of all of the clusters. This makes sense given their longer session times and

heavy usage. On the other hand, the ‘Fast and Quick’ cluster was the least motivated

and interested. Perhaps lack of interest led to shorter session times and may factor

in their lower accuracy.

Last, we explored the user-level interaction logs through scatter plots to validate

our clusters. Figure 5.12 provides a scatter plots of fifteen user sessions. In each plot,

a dot represents an action for each of the six views across session time (x-axis) and

view (y-axis), with slight y-axis jittering to avoid overlapping actions. Each column

includes three user sessions per cluster and chart row order represents, in descending
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order, highly accurate to inaccurate users.9

We were able to identify general patterns and outliers from these plots. For ex-

ample, the left-most column provides three users who are clustered to the ‘Anchored

to Social Network’ group. These users tend to have many more actions in the So-

cial Network view as compared to the Language Features, Tweet Panel, or Entities

view. They seldomly use the Progress Bar (e.g., S104 and C1 use it somewhat while

S108 never used the Progress Bar). Alternatively, we find examples in the ‘Slow and

Steady’ group to have much longer user sessions, lasting well over thirty minutes

(some even near forty minutes or more). These users tend to use a combination of all

views like the Language Features, Social Network, and even the Tweet Panel views.

Alternatively, we were able to identify outlier behaviors, like L103, who almost exclu-

sively used the Language Features view. Even more interesting, the user waited until

the end of the session to make all decisions.

Post-Questionnaire Feedback. We also evaluated open-ended feedback from

users to assess user strategies. For instance, some participants identified a lack of

trust in the language features because of a lack of clarity of their composition: “I

did not like making a decision based on you saying whether the language measures

were good or bad, I wanted to understand the language measures better.” Others

commented on the need for additional interface features, like a help menu, to aid in

this intensive cognitive process: “it would be beneficial to have a ‘help’ section ON

the platform to look at when needing the reminder of things the video mentioned.”

Some users commented on the usability of views in general, like the Entities and

Tweet View. For example, one user commented “I didn’t really understand the need

of entities to determine fake articles.” While another user admitted that “I did not use

the tweets or entity features of the interface.” Both comments explain users’ limited

use of that view but was expected given the limited training to functionality for these
9See 03-logs.html in the supplemental materials for all 94 users’ plots.
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views.

5.5 Discussion and Limitations

In this section, we discuss implications of our findings on VA evaluation practices

as well as consider limitations of our study along with avenues of future work.

5.5.1 Implications for VA Evaluation Practices

Our findings are informative for guidance on training and tutorial during visual-

ization evaluation with human subjects. Our findings show that visual anchors and

strategy cues can significantly impact users’ confidence and time spent investigating

in each view when performing tasks. Anchoring to a subset of views may lead to

the over-reliance on (often incomplete) information presented in those views, thus

preventing users from getting a comprehensive picture.

Such anchoring effects could occur due to how participants are trained to use the

visual interface before carry out the tasks. First, providing a general training video

is a good idea, however, careful considerations are needed when devising a script

or training video. The experimenter may want to make sure that all important

features/views get equal coverage in the script and video.

Since our experiments show that visual anchors can indeed impact multiple per-

formance metrics (confidence, accuracy, time to decision), we would like to raise

awareness of participants possibly being unintentionally anchored and suggest careful

consideration on how to train users to use a visual interface.

5.5.2 Limitations and Future Work

While we attempted to avoid negative impacts to validity, there are several limita-

tions to generalizing our results.

First, there are limits to studying users’ behavior through interactions. A different

approach to tracking visual anchoring could be through eye tracking to detect users’

attention directly rather than through interactions. However eye tracking too presents
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Figure 5.12: Experiment interaction logs of Verifi. Each plot is a user’s interaction log.
Each dot is a user action: click (red), hover (green), scroll (blue), and submit (purple).
The x-axis is the time of the action. The y-axis is the respective view associated with
that action. The order corresponds to critical functionality (e.g., Form Submit) to
primary view (e.g., Language Features vs. Social Network) to secondary views (e.g.,
Tweet Panel or Entities). Chart columns indicate user-level strategies based on user-
level dendrogram clustering. Chart row order represents, in descending order, highly
accurate users (7+ out of 8, top row), average users (5-6 out of 8, middle row), and
inaccurate users (4 or less of 8, bottom row).

challenges of its accuracy (especially for a multi-view interface). Future work in visual

anchors should consider additional ways to analyze and measure user interactions.

Second, given the complex nature of the interface, we recruited highly trained

students in computer science and data science who had some experience in visual an-

alytics, machine learning, or social media communications. Consequently, our results

may not generalize for a broader population (i.e., no experience in visual analytics).

Future work could develop simpler interfaces that could be more appropriate for test-

ing within broader participants pools like crowdsourcing (e.g., MTurk). Related, the

choice of accounts can affect the difficulty of the decision-making task. If we selected

different Twitter accounts, we may find our treatments have a different effects for our

decision-making task.
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Third, our study did not consider manipulating the interface design. While the

training process differed between groups, all users received the same interface. As

argued by Pu and Kay [52], design may have a significant effect on the forking paths

problem as well. A future study could provide control interface layouts to identify

the marginal value of each view in the decision-making process (e.g., testing whether

the strategy cues with only the Tweet view – which mimics everyday social media

usage – can measure a baseline accuracy). With such a baseline, a more precise

estimate of the effect of the visualizations can be inferred. Another possible design

enhancement could include adding uncertainty, like [5], encoding to the visualization

(e.g., confidence intervals of each account based on past users’ accuracy).

Last, cognitive science has developed Bayesian, rational computational models

for understanding cognitive biases like numerical anchoring [194]. Such theoretical

models–like Wu et al. [94]–can provide testable hypotheses that may aid future stud-

ies of cognitive biases in visual analytics. Two promising avenues to facilitate such

cognitive modeling is through the incorporating prior knowledge [213, 107] and the

addition of incentives and decision-theory within visualization tasks [5].

5.6 Conclusion

In this chapter, we presented an experiment on the role of visual anchoring in

misinformation decision-making in a CMV VA system. We find that providing visual

anchors and strategy cues can greatly affect users’ confidence but have mixed results

on users’ speed and decision accuracy. Visual anchors can also play a role in secondary

outcomes like users’ view importance ratings and use of provided strategy cues. Last,

exploration of user interaction logs can provide hints to users’ strategies and the

effects such treatments can have for certain users. While we find that some users

are susceptible to such anchoring, others can ignore such treatments–perhaps due to

uncertainty or a lack of trust–leading user attributes like motivation or interest can

explain more of the users’ knowledge seeking behaviors.



CHAPTER 6: A BAYESIAN COGNITION APPROACH FOR BELIEF

UPDATING OF CORRELATION JUDGMENT THROUGH UNCERTAINTY

VISUALIZATIONS

6.1 Introduction

Correlation judgement is an important topic and has been recently studied by

the data visualization community [214, 215, 216, 217]. Understanding how people

perceive correlations from data is necessary for the design of effective visualizations

like scatterplots. Visualization researchers have investigated perceptual constraints on

correlation judgment, including the use of Weber’s Law [215, 217], a log-linear model

augmented with censored regression and Bayesian methods [216], and other visual

features [214]. While these empirical studies and models provide valuable insights

and recommendations for correlation visualization design, they can be expanded to

consider other factors that affect people’s understanding of variable relationships.

One such factor is a user’s prior beliefs when interpreting a correlation visualiza-

tion. Previous studies often examine the perception of correlations between unnamed

variables to avoid the effects of prior knowledge [218, 217] so that participants’ be-

liefs about the variables do not influence their judgements. However, in practice,

people rely on prior knowledge when interpreting and learning from correlation vi-

sualizations. As a result, it is important to investigate how prior beliefs affect the

perception and interpretation of correlations. In addition to prior beliefs, another

factor related to correlation judgement that warrants more research is uncertainty

communication. Recently, visualization researchers have argued for the importance

of uncertainty communication in information visualization [219]. Uncertainty commu-

nication techniques like hypothetical outcome plots (HOPs) [98, 99] provide methods
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to visualize uncertain data for general audiences.

The experiments in this chapter build on previous research on correlation judgement

by examining the impact of prior beliefs and uncertainty communication. We explore

the following research questions: (1) how do prior beliefs impact one’s correlation

judgement? (2) how do people adjust their beliefs when the correlation visualization

aligns or conflicts with their prior belief? (3) when uncertainty communication is

incorporated in a correlation visualization, are users more or less likely to adjust

their beliefs based on the conveyed relationship?

We also use Bayesian cognitive modeling [97] to quantitatively model how people

interpret newly observed data in light of existing prior knowledge. Bayesian cognitive

modeling offers a principled framework to understand how people interpret visualiza-

tions in light of prior beliefs [213] and how such beliefs should be updated with new

information from a data visualization through Bayesian reasoning [109, 220, 95]. This

provides a normative framework for evaluating the effects of visualization on beliefs,

including the impact of uncertainty communication on users’ interpretations of data

[103, 5, 213] and the presence of biases that impair data-driven decision making [95].

Building such Bayesian cognitive models requires an accurate understanding of peo-

ple’s prior beliefs. Existing techniques for eliciting priors about correlations have a

number of limitations, including a reliance on expert statistical knowledge related to

correlation coefficients and their relationship to data [221, 222, 223]. In this chapter,

we first evaluate a novel graphical elicitation method, “Line + Cone”, for eliciting

beliefs about the correlation between two variables through interactive data visual-

izations. With the proposed elicitation method, we conduct two experiments to study

how people update beliefs about bivariate relationships when seeing correlation visu-

alization with and without uncertainty representation.

This chapter bridges several areas of past work on correlation judgment, belief

elicitation, and uncertainty visualization, while also drawing on recent methods for
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modeling belief change using the framework of Bayesian inference. Specifically, this

chapter’s contributions are:

• Study 1: Introduce and validate the graphical “Line + Cone” method for eliciting

prior beliefs about bivariate correlations, which is then used in the subsequent

studies to measure belief change.

• Study 2: Compare differences in belief updating across correlation visualization

with and without uncertainty communication.

• Study 3: Explore differences in users’ belief update when the correlation visu-

alization (with and without uncertainty communication) is congruent or incon-

gruent with their prior beliefs.

Analysis of Study 1 showed that the “Line + Cone” belief elicitation method can

be used to estimate peoples’ mental representations of the correlation compared to a

recent, more labor-intensive approach from cognitive science for measuring subjective

belief distributions [224]. Study 2 revealed that participants updated their beliefs

more effectively, and felt more confident, after observing visualizations with repre-

sentations of uncertainty. In Study 3 we found evidence to support the hypothesis

that people exhibit less belief change when seeing correlation visualizations that are

incongruent with their prior beliefs. These results lay the groundwork for quantita-

tive theories of how visualizations guide, and in some cases distort, how people learn

about correlations through data visualization.

6.2 Background

6.2.1 Correlation perception and the effects of prior beliefs

A common task in visual analytics is assessing the relationship between two or

more variables, often as a scatterplot [225]. In statistics, such relationships are typ-

ically quantified as correlations. However, statistics like Pearson correlation can be
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misleading. For example, Anscombe’s quartet [226] demonstrates that hidden pat-

terns in the data are obscured by identical statistics. Even for expert data analysts,

visual data inspection is an important part of the analysis process. Past psychology

studies have considered how perceptual processing of scatterplots can affect an in-

dividual’s understanding of correlations [227, 217, 218]. Building off that research,

InfoVis researchers have identified scatterplots as an effective technique in discrim-

inating correlations [228], testing correlation perception with Weber’s law through

additional techniques [215, 216], and identifying visual features in correlation per-

ception [214]. However, these studies have not considered how prior beliefs affect

individual’s perception of variable relationships.

Research in psychology shows that prior beliefs have a strong influence on people’s

interpretation of uncertain data [73, 74, 75, 76], especially for correlations [77, 78]. A

central theory that explains why prior beliefs are important is the dual-process ac-

count of reasoning [79, 18]. This theory posits that fast heuristic processes (System 1)

competes with slower analytic processes (System 2) that can affect logical decisions.

Evans et al. [80] suggested that belief bias [79, 73] could occur as “within-participant

conflict” between the two systems when participants tend to agree with an argument

based on whether or not they agree with the conclusion rather than its logical conclu-

sion. Alternatively, other research focused on theory-motivated reasoning bias based

on “congruent” and “incongruent” evidence relative to an individuals’ belief systems

[74]. These theories motivate design aspects in Study 2 and 3.

6.2.2 Uncertainty visualizations

Uncertainty visualizations are important as they enable better decision-making

by conveying the possibility that a point estimate may vary [103]. More recently,

research in InfoVis has provided innovative techniques like Hypothetical Outcome

Plots (HOPs) [98, 99], frequency based representations [229, 5], visual semiotics [230],

and design guidelines [108] for visualizing uncertainty. Alternatively, other visualiza-
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tion researchers have studied important application aspects of uncertainty visualiza-

tions including hurricane prediction through ensemble modeling [231, 232], comparing

users’ prior beliefs congruence to social data [213], how uncertainty evaluation is prone

to error [233], and its potential to improve one’s ability to make predictions about

replications of future experiments [234].

6.2.2.1 Eliciting correlation beliefs

Psychologists have used a variety of approaches to elicit beliefs about correla-

tions. Initial research used two-step procedure to elicit participant’s correlation belief

[235, 77]: (1) determine relationship direction (positive or negative) and (2) rate the

strength of the relationship. Later methods expanded on this approach by including

Likert Scales, Spearmans’s correlation, probability of concordance, and conditional

quantile estimates [236, 221, 222, 237, 238]. However, there are several shortcom-

ings with the previous approaches. Some methods only elicit beliefs about central

tendency without capturing degree of uncertainty, while methods which do elicit un-

certainty are labor-intensive [223]. Most methods rely on some background knowledge

of statistics [221, 222], including how to interpret correlation coefficients, thus limiting

their applicability to non-expert populations.

Cognitive scientists have developed a related technique for eliciting subjective belief

distributions named Markov Chain Monte Carlo with People (MCMC-P; [224, 239]).

Inspired by algorithms for MCMC estimation [237], MCMC-P as an approach to

estimate a person’s subjective belief distribution through sampling. In Study 1, we use

MCMC-P as an elicitation benchmark to our proposed Line + Cone belief elicitation

technique and outline this technique in Section 4.

6.2.3 Bayesian cognitive modeling in data visualizations

Cognitive modeling in visualization initially was studied as a subset of visuospa-

tial reasoning in how individuals derive meaning from external visual representations
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[92]. Visualization researchers have integrated similar ideas to understand visualiza-

tion cognitive processes through insight-based approaches [45] and top-down modeling

[93, 46]. More recently, InfoVis researchers have used Bayesian models to understand

cognitive processing of visualizations [94, 95]. Cognitive scientists have demonstrated

the importance of Bayesian modeling to understanding individual decision-making

[96, 97]. In this approach, an individual has some prior belief that is updated when the

individual consumes additional data, resulting in their posterior beliefs. Bayesian cog-

nition models have been used to understand deviations from optimal belief updating

due to conservatism, sample-based inference (approximation) and “resource-rational”

interpretations of cognitive bias [60].

To our knowledge only two previous InfoVis studies [94, 95] have combined belief

elicitation with a Bayesian cognitive modeling framework. Wu et al. [94] examined

whether people integrated prior probabilities with data in an optimal manner. They

found that priors influenced predictions in a manner consistent with Bayesian infer-

ence, although to a lesser extent than predicted by the model. However, a limitation

to this study was that participants were given a prior; therefore, prior beliefs cannot

be examined. In contrast, Kim et al. [95] empirically measured participants’ prior

beliefs about the a target proportional quantity and used those priors to calculate

the normative posterior given the data that was presented. In aggregate, partici-

pants’ judgments were consistent with predictions derived from Bayesian inference,

although less so for large data sets. However, participants expressed greater un-

certainty in their judgments than expected from the Bayesian model. Further, the

authors connect such Bayesian modeling and belief elicitation with recent research

on visualizing uncertainty through techniques like HOPs [98, 99]. Our work extends

their framework but considering correlation beliefs rather than proportional values.
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6.3 Research Questions and Analysis Methods

Our primary research question is the effect of providing uncertainty communica-

tions on users’ belief updating in correlation visualization. In order to address this

research question, we conducted a sequence of three experiments with latter ones

building on the earlier studies.

A key to understanding users’ belief update is the ability to accurately and intu-

itively capture such beliefs. Study 1 evaluates the Line + Cone elicitation method

relative to Markov Chain Monte Carlo with People (MCMC-P) [224], a belief elici-

tation method from cognitive science. After validating the Line + Cone method, we

apply it in the next two experiments to address the main research question. In Study

2, we explore the effect of correlation visualizations with and without uncertainty rep-

resentation on belief updating. Our primary hypothesis is that visualizations with

uncertainty representation will overall lead to less belief updating about the corre-

lation between two variables. Findings from Study 2 provides partial evidence to

support the primary hypothesis. To expand on the findings, we are interested in fur-

ther understanding users’ belief update when the data visualization was deliberately

manipulated based on users’ prior beliefs. Therefore, Study 3 extends Study 2’s

design but introduces a treatment that alters the data provided to participants to be

either congruent or incongruent with their prior beliefs. We then evaluate the degree

to which individuals update their beliefs when data provided either conflicts or aligns

with their prior and whether the presence of uncertainty visualizations interact with

that effect.

To analyze the results of Study 2 and 3, we employ mixed effects models to identify

differences between treatments. The mixed effects models control for individual het-

erogeneity assumed between participants and the datasets (variable pairs) provided

to participants. To explain the findings from the mixed effects models, we evalu-

ate whether Bayesian cognitive models can be used to predict users’ posterior beliefs
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under different experiment treatment.

6.4 Study 1: Evaluating Line + Cone Elicitation

Our goal in Study 1 (see preregistration1) was to develop and validate the Line

+ Cone visual interface for eliciting prior beliefs about the correlation between two

variables. In selecting our approach, we aimed to measure beliefs about both the most

likely correlation between variables and the degree of uncertainty, without a need for

statistics domain knowledge or numerical reasoning (see Section 2.2.1). We assessed

the convergent validity of the Line + Cone method by comparing it to a higher

resolution, but more labor-intensive, approach to eliciting subjective beliefs: Markov

Chain Monte Carlo with People (MCMC-P; [224, 239]). MCMC-P resembles common

sampling-based estimation algorithms such as Metropolis-Hastings in which a chain

of states are sampled from an underlying probability distribution. In MCMC-P, state

transitions are determined by asking participants to make forced-choice comparisons

of the likelihood of possible values of the target parameter in many trials (usually in

the range of 100 or more).

In our experiment we elicited prior beliefs about five sets of variables using both

MCMC-P and the Line + Cone method. We created variable sets to cover a range

of plausible correlationspossible divergent prior beliefs. For example, we expected

that for the relationship Weight x Price of diamonds most participants would believe

there is a strong positive correlation, while there may be less consensus about the

relationship Vaccination rate x Rate of illness. Based on participants’ responses we

estimated the mean and confidence interval of their subjective prior belief (i.e., the

relative likelihood of possible correlations between two variables). We then examined

the degree to which the resulting prior means and CIs were correlated across the two

methods.
1http://aspredicted.org/blind.php?x=zp7hr3
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C. Example results

Figure 6.1: Elicitation methods in Study 1. A: For the Line + Cone elicitation,
participants first recorded the belief about the most likely relationship between two
variables (red line), then adjusted the set of plausible alternatives based on their
uncertainty (gray lines). B: For the MCMC-P elicitation, participants responded to
a series of two-alternative forced choices in which they judged which of two lines was
more likely to represent the true relationship between the variables. C: Example
comparison of elicitation results for a participant in Study 1. Dark blue lines indicate
the chain of chosen alternatives from MCMC-P across 100 trials. Light blue lines
indicate unchosen alternatives. The corresponding mean and CI from the Line +
Cone elicitation is shown at the right of each plot.
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6.4.1 Study Design

The experiment involved a within-subjects manipulation of elicitation method (Line

+ Cone vs. MCMC-P). Participants’ beliefs were elicited for the same set of five

variable sets (Table 6.1) using each method in a blocked presentation. The order

of elicitation methods and variable sets within each block were randomized for each

participant.

6.4.1.1 Line + cone elicitation

We designed a visual interface in which the mean and CI are directly elicited

through the user’s interaction. Each elicitation involves a two-step procedure (Figure

6.1A). First, the user selects the orientation of a red line according to their belief

about the most likely relationship between the variables. Second, the user adjusts

the width of the uncertainty cone. The uncertainty cone was depicted by gray lines

which were draws from a Normal distribution centered on the most likely correlation

(red line) and truncated at -1 and 1. Participants were instructed to adjust the cone

such that the lines captured the range of “plausible alternatives" for the relationship

between the variables.

6.4.1.2 MCMC-P elicitation

Markov Chain Monte Carlo with People (MCMC-P) is used to estimate subjective

belief distributions based on a series of choices between two alternatives. In our task,

each alternative represents a potential correlation between a pair of variables. For each

variable set there were 100 choice trials. On each trial, the participant was shown two

lines representing potential correlations (Figure 6.1B). Participants were instructed to

select the alternative which was more likely to represent the true relationship. On the

first choice trial the alternatives were two randomly selected correlations, one positive

and one negative. In subsequent trials, the choice set included the alternative chosen

on the previous trial and a proposal generated from a Normal distribution centered
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Figure 6.2: Study 2 Design. Each user goes through ten variable sets (five variables
for two rounds) and elicit their belief before and after seeing data visualizations
about each variable set. In Round 1, the user views five variable sets through only
scatterplots. In Round 2, the user is randomly assigned to either Line, Cone, or HOP
visualization treatments and views the remaining five variable sets.

on the previous choice. The width of the proposal distribution was adaptively tuned

based on how often a participant accepted new proposals (see [240]). Each block

resulted in a chain of alternatives that were chosen by the user (Figure 6.1C). The

prior mean was calculated as the mean of the sampling chain, while the CI was the

range between the 2.5% and 97.5% quantiles.

6.4.2 Participants

N = 152 participants were recruited from Amazon Mechanical Turk. Participants

earned $2.00 upon completion of the task, which took an average of 25.4 minutes

(SD = 12.2). Per our pre-registration, we used several measures of task engagement

to decide whether to exclude a participant. We excluded 55 participants who failed

an attention check question and 36 participants who made nonsensical or incomplete

responses to a set of open-ended questions regarding how they would respond to real-

world situations. We also excluded 35 participants who met pre-specified exclusion

criteria based on responses in the MCMC-P elicitation, including response streaks,

response alternation, and response time. After accounting for all exclusions, N = 92
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participants were included in the analysis.

6.4.3 Results and Discussion of Study 1

Table 6.1: Correlations between prior means and CIs elicited through Line + Cone
and MCMC-P methods in Study 1.

Prior mean Prior CI

Variable set Pearson r p-value Pearson r p-value

Weight x Price of diamonds .26 .012 .34 .001
Exercise amount x Body weight .37 < .001 .29 .005
Yearly income x Height .12 .26 .27 .010
Yearly income x Stress .45 < .001 .30 .003
Vaccination rate x Rate of illness .40 < .001 .39 < .001

Our primary question was whether the belief distributions elicited with the Line +

Cone method correlated with those generated using our MCMC-P procedure. We

calculated Pearson correlations between the prior means and CIs for each variable

set (Table 6.1). Elicited prior means were significantly correlated for 4 of the 5

variable sets, with the Yearly income X Height variable set the only exception. Prior

CIs elicited from the two methods were significantly correlated in all 5 variable sets.

These results suggest that our visual Line + Cone elicitation method is able to capture

variation in beliefs about correlations across different variable sets, including beliefs

about the most likely relationship as well as the degree of uncertainty, while being less

labor-intensive than MCMC-P and requiring less statistics domain knowledge than

existing elicitation methods.

6.5 Study 2: Belief updating with and without uncertainty representations

In the second study, we applied the Line + Cone elicitation method to examine be-

lief change in the context of correlation visualization. We evaluated whether the type

of visualization impacted the degree to which people updated their beliefs. Specif-

ically, our Study 2 Main Hypothesis 2 was that correlation visualizations which

include representations of the uncertainty in the true population correlation would
2http://aspredicted.org/blind.php?x=39yn5g
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lead to less belief updating when people’s prior beliefs were inconsistent with the pre-

sented data. This hypothesis is motivated by research on confirmation bias [72, 19]

showing that people overweight evidence that is consistent with their prior beliefs.

Uncertainty visualizations, by giving credence to a range of possible relationships

(including less likely relationships that are more similar to a person’s prior belief)

may lead to less belief updating compared to visualizations that only represent the

most likely a posteriori relationship. As a secondary hypothesis, we hypothesize that

datasets with small and moderate correlations lead to less belief updating compared

to datasets with stronger correlations.

6.5.1 Study Design

We employed a mixed design with a between-subjects manipulation of the visu-

alization type (with and without uncertainty representation) and a within-subjects

manipulation of the sample correlation of data presented to participants. In each trial

participants reported their belief about the relationship between a set of variables,

both before and after they experienced a data visualization All participants completed

two rounds of five trials. In the first round the datasets were visualized as scatter-

plots to all participants (Scatter condition). In the second round the scatterplots

were augmented with a visualization of the predicted population correlation based

on the given dataset. Participants were randomly assigned to one of the following

conditions (Fig 6.2):

• Line: A line representing the most likely population correlation was superim-

posed on the scatterplot 3

• Cone: The line appeared with an uncertainty cone which represents the 95%

confidence interval for the population correlation
3Note that the Line condition does not contain an uncertainty representation while the Cone and

HOP conditions do.
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• HOP: Hypothetical outcome plots (HOPs, [98, 99]) were used to present ani-

mated draws from the 95% confidence interval for the correlation

6.5.1.1 Datasets

We created two groups of five variable pairs that covered a range of population

correlations between -0.9 to 0.9. We then generated 100 random samples for each

variable pair based on the population correlation. The participants were told that

the dataset is a a sample of data collected from the real world. 4 All points were

re-centered with a mean of zero on each variable. All participants saw the same data

points for each variable pair. The order of the variable pairs was randomized for each

participant.

Note that population correlations were specified for each variable pair based on

agreement among the authors (see examples in Figure 6.3). Our assumptions about

the correlations of these variables may not reflect the ground truth relationship, and

may differ from participants’ beliefs. However, because we measure each individual’s

prior beliefs, we can assess whether belief updating was affected by any mismatch

between their prior and the sample correlation.

6.5.1.2 Elicitation, attention check procedures, and collected data

Each trial consisted of a prior elicitation, correlation visualization, and poste-

rior elicitation. For both elicitation steps we used the Line + Cone method vali-

dated in Study 1 (Figure 6.1A). Each elicitation resulted in three measurements: the

most likely correlation (µ) and the lower and upper bounds of the uncertainty cone

(blower, bupper). All three values were bounded between ρ = −1 and ρ = +1.

We designed practice questions to familiarize participants with the Line + Cone

elicitation. Participants answered test questions to ensure that they understood how

to interpret the elicitation interface, including the direction of a correlation and the
4Due to random sampling, the sample correlations differed slightly from the specified population

correlation.



114

degree of uncertainty captured with the cone. We also included attention check

questions (same as in Study 1) to screen inattentive respondents or other invalid

data [241].

In Study 2 and 3, we also collected basic demographic data, duration of each trial,

and the error count of users in the instructions section.

6.5.2 Participants

Participants were recruited from Amazon Mechanical Turk. For all studies we

required that participants were located in the U.S. and had a 95% or above approval

rating. Participants earned $1.80 upon completion of the task, which took an average

of 25.7 minutes (SD = 14.6) to complete. Per our pre-registration, we excluded

any participants due to: failed attention check questions (n = 35); technical errors

(n = 15); or task completion in less than 5 minutes (n = 38). This left n = 212

participants for the analysis (Line: 74; Cone: 64; HOP: 74).

6.5.3 Results

For the analysis we built three mixed effects models using R’s lme4 package for

two linear regressions and R’s glmmTMB for a beta regression. We used the normal

approximation to calculate p-values of fixed effects using t-values produced by lme4.5

Dependent & Independent Variables: We considered three dependent vari-

ables (DV): (1) the absolute belief difference, (2) the difference in uncertainty, and (3)

belief distance from the model’s predicted posterior mean. For our independent vari-

ables (IV), we included the Visualization treatment (Line, Cone, HOP, and Scatter)

and the absolute correlation of the generated data for the variable sets (see Figure 3)

Model Specification: For each model, we included the visualization treatment

and the absolute correlation of the data as fixed effects. For the visualization treat-

ment, the Scatter condition is the omitted reference condition. We treated the sample
5The code used is included in our supplemental materials.
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correlation as a categorical variable and used zero absolute correlation as the omitted

reference condition. We included the unique variable set and the participant id as

random effects.

6.5.3.1 Beliefs about variable pairs

Vaccination rate
x Rate of Illness

Labor union 
participation

x Corporate pro�ts

Income tax rate
x Poverty rate

Immigrant 
population

x Economic growth

Government 
spending 

x Budget de�cit

Figure 6.3: Density plots of means (top row) and CIs (bottom row) of elicited belief
distributions for selected variable sets in Study 2. Dashed lines indicate the sample
correlation of the dataset presented to participants.

We first examined participants’ beliefs before and after experiencing the data vi-

sualization. Figure 6.3 displays pre- and post-treatment judgments about the most

likely correlation (µ, top row) and uncertainty (CI, bottom row) for five of the ten

variable pairs, aggregated across visualization treatments. With respect to the mean

correlation µ, prior judgments (green density plots) were largely consistent with the

relationship that was designated for each variable pair, such that the modal prior

belief was close to the sample correlation. This suggests that the datasets presented

were congruent with most participants’ prior belief about the relationship between

the variables. One notable exception was Income tax rate X Poverty rate, where
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the designated correlation was ρ = 0 but prior beliefs were relatively uniformly dis-

tributed from -1 to +1. Post-treatment beliefs about the same variable sets (blue

density plots) strongly shifted toward the sample correlation of the observed dataset

(dashed lines) for all variable sets. The plots for the CIs reveal that the strength of

the sample correlation also affected changes in uncertainty. CIs decreased after seeing

strongly correlated datasets (ρ = ±0.9) but in some cases increased following data

visualizations with weaker relationships. We report more detailed analysis of how the

uncertainty changed in different treatments in section 5.3.3.
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Estimates
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Figure 6.4: Study 2 fixed effects coefficients for absolute belief difference (left) and
uncertainty difference (right). Error bars indicate 95% confidence intervals. Asterisks
indicate statistical significance than zero using p-values: *** 99.9%, ** 99%, * 95%.
For visTreatment, the reference category is the Scatter condition.

6.5.3.2 Change in beliefs about most likely relationship

We used linear mixed effects regression to model the effect of visualization con-

ditions and population correlation on the absolute change in beliefs about the most

likely correlation (|µpost − µpre|. There were no significant effects (Figure 6.4, left),

though the Cone condition showed marginally smaller changes in beliefs compared to

the Scatter condition (β = −0.07 [−0.14, 0.01], z = −1.779, p = 0.075). Thus,

while participants clearly shifted their beliefs about the most likely correlation in

response to observed datasets (Figure Figure 6.3), contrary to our expectations we
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did not find that the degree of belief change differed by visualization treatment or

population correlation.

6.5.3.3 Change in uncertainty

Mixed effects linear regression was used to model the effects of visualization con-

dition and population correlation on the change in uncertainty (|CIpost − CIpre|).

As shown in Figure 6.4 right, relative to the Scatter condition, the Cone condi-

tion exhibited greater reduction in uncertainty (β = −0.10 [−0.16,−0.03], z =

−2.782, p < .01). In other words, participants assigned to the cone Condition felt

less uncertain (more confident) with their input. There was no difference in the

Line (β = −0.02 [−0.08, 0.05], z = −0.468, p = 0.640) or HOP condition (β =

0.02 [−0.05, 0.08], z = 0.473, p = 0.636). In addition, more extreme sample correla-

tions had a greater impact on belief change: Compared to ρ = 0.0, there was a greater

reduction in uncertainty for ρ = .4 ((β = −0.14 [−0.27,−0.01], z = −2.138, p < .05)

and ρ = .9 (β = −0.29 [−0.42,−0.17], z = −4.513, p < .001) variable sets.

6.5.3.4 Accuracy of posterior beliefs

We examined the accuracy of participants’ posterior mean (µpost) compared to

the sample correlation of the observed datasets. In the Scatter condition, posterior

means were biased to be more extreme for moderately positive and negative sam-

ple correlations. Relative to the ρ = 0 variable sets, absolute error was higher for

ρ = ±0.4 variable sets (β = .29 [.19, .41], z = 5.46, p < .001) but did not differ

from ρ = ±0.9 variable sets (β = .002 [−.11, .11], z = .03, p = .96) The remaining

visualization conditions led to more accurate beliefs across the full range of sample

correlations. Compared to the Scatter condition, the absolute error was lower in all

three visualization conditions (Line: β = −.22 [−.34,−.10], z = −3.50, p < .001;

Cone: β = −.34 [−.47,−.21], z = −4.96, p < .001; HOP: β = −.25 [−.38,−.13], z =

−3.97, p < .001).
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6.5.4 Bayesian belief updating model

Prior

Predicted
Posterior

(Bayesian-Informed)

Predicted
Posterior

(Bayesian-Uniform)

-1 1ᵨ r
Figure 6.5: The Bayesian cognitive models predict how beliefs should change based on
the sample correlation and the participants’ prior beliefs. For a dataset with sample
correlation r, the Bayesian-Informed model predicts the posterior distribution inte-
grates the new evidence with the person’s prior belief according to Bayes rule. The
Bayesian-Uniform model assumes a uniform prior over possible correlations, predict-
ing that the posterior mean will be at r.

In this section we use Bayesian cognitive modeling to investigate the influence

of prior beliefs on the belief updating process. Under the principles of Bayesian

inference, people should integrate new evidence about a correlation with their prior

beliefs about that relationship. Bayesian models provide a normative benchmark for

how beliefs should change depending on the strength of the evidence and participants’

uncertainty. For instance, a person who is confident that variables are negatively

correlated may only shift their beliefs a small amount after seeing a dataset with

a positive sample correlation. A second person who is highly uncertain about the

relationship, however, may be more strongly influenced by the same data and report

posterior beliefs that are closely matched to the sample correlation. This framework

also allows us to identify when people systematically fail to adjust their beliefs as

predicted by the Bayesian model. Returning to the main hypothesis of Study 2, if
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uncertainty representations cause smaller adjustments to beliefs, this will correspond

to larger divergence between participants’ elicited posterior beliefs and the predictions

of the Bayesian model compared to other conditions.

Having elicited prior beliefs about each set of variables, we examined whether

participants’ posterior beliefs (following the data visualization) could be predicted

by a normative Bayesian model. The model uses Bayesian inference to predict a

posterior belief distributions over possible population correlations, ρ, based on an

observed dataset and a particular prior (see [242] for similar model formulation).

We evaluated two variants of the model that differed only in their prior. The

Bayesian-Informed model relied on the participant’s elicited prior to calculate

the normative posterior distribution after observing a dataset. The prior belief was

modeled as a bounded Normal distribution, ρ ∼ BoundedNormal(µpre, σpre, [−1, 1]),

where µpre and σpre are the mean and standard deviation of the participant’s elicited

prior. The observed bivariate data X was modeled as having been generated from a

standardized multivariate Normal distribution with mean of zero and standard devi-

ation of 1 on each dimension (see [242]),

X ∼MultivariateNormal(

[
0 0

]
,

1 ρ

ρ 1


−1

). (6.1)

Under the Bayesian-Uniform model, the prior was a uniform distribution over the

correlation coefficient, ρ ∼ Uniform(−1, 1). The mean and 95% CI of the posterior

distribution for this model is equivalent to the values used for the visualizations in

the Line, Cone, and HOP treatments. Predicted posterior distributions for ρ were

estimated for both models using MCMC with the PyMC3 library [243] with two

chains of 20,000 samples and 1000 burn-in iterations. Lastly, we compared the elicited

posteriors to the elicited priors, absent any belief updating. We refer to this baseline

as the Prior-only model in the results below. Figure 6.5 outlines the difference
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between each model as hypothetical density plots.

The relative fit of the models reflects the weight of prior beliefs in the updating

process, with the Bayesian-Informed model representing the normative integration of

priors with new evidence. If people relied only on the visualization without accounting

for prior beliefs, their elicited posteriors should be best fit by the Bayesian-Uniform

model. In contrast, if they did not adjust beliefs upon observing a dataset, the Prior-

only model should provide the closest match to posterior beliefs.

6.5.4.1 Model comparison

Following [95] we evaluated each model’s performance with two metrics: mean abso-

lute error (MAE) between the predicted and elicited posterior means; and Kullback-

Liebler distance (KLD) (Figure 6.6A). These measures are complementary in that

MAE captures the magnitude of differences in beliefs independently of the amount

of uncertainty, while KLD measures correspondence across the entire belief distribu-

tions. We used mixed effects linear regression to compare MAE and KLD with model

and visualization type as fixed effects and random effects for participants and variable

sets.

In terms of MAE there were significant effects of visualization treatment (χ2(1, 3) =

33.17, p < .001) and model (χ2(1, 2) = 333.97, p < .001), but no interaction

(χ2(1, 6) = 7.55, p = .27). Pairwise comparisons indicated that MAE was lower

under both the Bayesian-Informed and Bayesian-Uniform models than the Prior-only

model in all four visualization treatments (all p < .001). The Bayesian-Uniform model

achieved lower MAE than the Bayesian-Informed model in the Scatter (z = −4.52,

p < .001), Cone (z = −2.8, p = .01), and HOP (z = −2.48, p = .04) conditions,

but the two did not differ in the Line condition (z = −2.22, p = .07). Compar-

ing the best-fitting Bayesian-Uniform model across visualization treatments showed

that MAE was higher in the Scatter group than the Cone (z = 3.14, p = .01) and

Line groups (z = 2.94, p = .02), but not significantly different from the HOP group
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(z = 2.54, p = .05).

For KLD there were significant effects of visualization treatment (χ2(1, 3) = 67.57,

p < .001), model (χ2(1, 2) = 31.64, p < .001), and model × treatment interaction

(χ2(1, 6) = 32.49, p < .001). In the Scatter condition, KLD of the Prior-only model

was lower than the Bayesian-Informed model (z = −3.32, p = .003), but did not differ

from the Bayesian-Uniform conditions (z = −.87, p = .66). This indicates that the

Bayesian model was relatively unsuccessful at predicting the posterior distribution

in the Scatter condition, failing to outperform the baseline Prior-only model. In

the remaining conditions (Line, Cone, HOP), the Bayesian-Uniform model had lower

KLD than both the Prior-only and Bayesian-Informed models (all p < .022). As was

the case for MAE, the KLD of the Bayesian-Uniform model was higher in the Scatter

condition than the other conditions (all p < .001), but did not differ among the

Line, Cone, and HOP groups. This supports the earlier finding that the accuracy of

posterior beliefs was poorer in the Scatter condition compared to the other treatments.

The predictions of the three models diverge most when there is a discrepancy be-

tween participants’ priors and the sample correlation of the observed dataset. We

therefore explored how the fit of each model depended on the absolute distance be-

tween the prior mean and the sample correlation (Figure 6.6B). At small distances the

three models have comparable MAE and KLD, while the advantage for the Bayesian-

Uniform model grows with increasing distance between the prior and sample corre-

lation. The poorer fit of the Bayesian-Informed model indicates that participants

discounted their priors when they observed a dataset with a drastically different cor-

relation. Notably, at small distances KLD was lowest for the Prior-only model. This

result suggests that when people observed a dataset that was consistent with their

prior, they were less likely to update their beliefs as predicted by either Bayesian

model.
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6.5.5 Discussion of Study 2

Results of the regression analysis and cognitive modeling showed that visualizations

with representations of the population correlation (Line, Cone, and HOPs) led to

greater accuracy in posterior beliefs compared to the Scatter condition. In addition,

higher correlations led to larger reductions in uncertainty, potentially because stronger

relationships are easier to detect in scatterplots [217, 218] and are associated with less

uncertainty in the population correlation. We found initial evidence for this updating

process using the Bayesian cognitive model, showing that when the sample correlation

presented to participants was far from their prior mean, they strongly adjusted their

beliefs to reflect the pattern in the data (Figure 6.6B).

We did not find support for our main hypothesis that uncertainty visualizations

would be associated with smaller changes in beliefs. On the contrary, the Cone vi-

sualization (with a cone of “plausible alternatives” representing uncertainty in the

correlation based on the data) led to greater reductions in uncertainty. This result

suggests that the explicit representation of uncertainty provided by the Cone visual-

ization leads to greater confidence about the true relationship compared to the other

visualization types. Interestingly, we did not find a similar effect on uncertainty

change in the HOP condition, possibly due to the transient nature of the animated

uncertainty cone.

There were two shortcomings of the present study that may have limited our ability

to detect differences in belief updating between conditions. First, participant’s prior

beliefs largely aligned with the sample correlation, leading to many cases with little

room for participants to adjust their beliefs. Second, the relatively large sample size

of the datasets (n = 100) meant there was relatively little uncertainty about the

population correlation. This may explain why the Bayesian-Uniform model provided

the best fit to elicited posteriors, such that the sample correlation had a stronger

influence than individuals’ priors. Study 3 was designed to further explore how these
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factors affect belief change. We manipulated the data provided to be either congruent

or incongruent with the user’s elicited prior belief. In addition, we manipulated the

amount of data uncertainty by varying the sample size.

6.6 Study 3: How correlation congruence and uncertainty affect belief updating

The hypothesis of Study 2 was that people would exhibit less belief change when

they experienced visualizations with representations of uncertainty. The main hy-

pothesis for Study 36 extends this further to predict that viewers of uncertainty rep-

resentations would exhibit smaller changes in beliefs when correlation visualizations

are incongruent with users’ prior belief and when the dataset has a smaller sample

size.

6.6.1 Study Design

For Study 3, we extended the design of Study 2 by explicitly manipulating the

congruence of the sample correlation (factor 1) with a user’s prior belief and the

amount of uncertainty (factor 2). Both above factors are within-subjects while the

visualization treatment remains a between-subject factor. Figure 6.7 summarizes the

design of Study 3. For each variable pair, participants saw datasets that were either

congruent or incongruent to their prior beliefs:

• Congruent datasets: Random samples were drawn from a multivariate normal

distribution with correlation 0.25 away from the prior mean. For example, if

a participant’s prior mean was 0.85, the data was sampled from a distribution

with population correlation of 0.6 (0.85− 0.25). In this condition a user always

saw sample correlations with the same sign as their prior belief.

• Incongruent datasets: Random samples from a multivariate normal distribu-

tion with correlation value that is 1.0 away from the prior mean. For example,

if the prior mean was 0.6, the data was sampled from a distribution with a
6http://aspredicted.org/blind.php?x=x7ph2u
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population correlation of -0.4. In this condition, participants saw datasets with

the opposite correlation sign from their prior belief.

We also manipulated the number of samples in the datasets for specific variable

pairs (10 points vs. 100 points). Datasets with 10 points result in greater uncertainty

as measured by the 95% confidence interval. As in Study 2, participants were ran-

domly assigned to visualization conditions of Line, Line + Cone and HOPs. Given

Study 2’s results that users achieved better accuracy with all three visualization types,

we omitted the Scatter condition.

6.6.1.1 Datasets, elicitation, and attention check procedures

For Study 3 we selected variable pairs from the results of a pilot study. With

50 pilot participants, we elicited prior belief and uncertainty about 30 variable pair

candidates, then categorized variables into a 2 X 2 grid of high/low social consensus

on correlation and uncertainty. 7 With lessons learned on users’ beliefs about the

variable pairs from Study 2 (section 5.3.1), we aimed to select pairs that cover a range

of distributions of beliefs about the mean correlation and uncertainty. We selected

four variables with either high / low correlation consensus and high / low uncertainty.

Study 3 used the same elicitation process, instructions, and attention checks as Study

2.

6.6.2 Participants

Participants were recruited from Amazon Mechanical Turk. Participants earned

$1.80 upon completion of the task, which took an average of 22.9 minutes (SD =

12.28) to complete. Per our pre-registration, we excluded any participants who: failed

attention check questions (n = 12); technical errors (n = 95); or completed the entire

task in less than 5 minutes (n = 11). This left n = 267 participants for the analysis

(Line: 89; Cone: 92; HOP: 86).
7Social consensus was measured as the standard deviation of prior means, while average uncer-

tainty was measured as the mean CI.
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6.6.3 Results

Dependent & Independent Variables: Similar to Study 2, we considered three

dependent variables: (1) the absolute belief difference, (2) the difference in uncer-

tainty, and (3) the user’s belief distance from the model’s predicted posterior. For

our independent variables (IV), we created two features based on our variable condi-

tions from Figure 6.7. First, we defined pre-belief distance as the distance between

users’ prior elicitation and the correlation of the provided sample, which is larger

when a participant is provided incongruent datasets. Next, we defined sample un-

certainty as the size of uncertainty shown to users resulting from the sample size.

In doing so, we used continuous IVs ranging from zero to two rather than binary

variables. For reference, we provide kernel density plots (Figure 6.8 and 6.9) for the

two IV’s partitioned by its respective condition categories.

Model Specification: We employed three mixed effects models as in Study 2

(see Section 5.3). For each model, we included the interaction terms between the

visualization treatment, the pre-belief distance, and the sample uncertainty as fixed

effects. For the visualization treatment, the Line condition is the omitted reference

condition.

6.6.3.1 Change in belief about most likely relationship

For absolute belief difference (Figure 6.10, left), we found the largest effect to be

pre-belief distance (β = 0.73[0.64, 0.81], z = 2.40, p < .001), indicating that users

updated their beliefs more when they viewed incongruent datasets.

There were significant interactions between pre-belief distance and visualization

type, such that there were smaller belief changes when the data was incongruent

in both the Cone (β = −0.12 [−0.19,−0.05], z = −3.3, p < .001) and HOPs

(β = −0.11 [−0.18,−0.04], z = −3.16, p < .01) conditions relative to the Line

condition. This finding is in line with our hypothesis that in the incongruent condi-
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tion, users would show smaller update in their belief when uncertainty representations

are present.

Finally, while the HOP condition led to slightly larger changes compared to the

Line condition (β = 0.10 [0.02, 0.17], z = 2.400, p < 0.05), this condition had

a negative interaction with sample uncertainty such that beliefs shifted less after

seeing smaller datasets (β = −0.07 [−0.13,−0.01], z = 2.181, p < .05). We

did not find corresponding effects for the Cone condition. This difference between

the Cone and HOP visualizations might suggest that uncertainty is more evident in

larger uncertainty amounts when using the HOP technique. This is potentially due

to the lack of a fixed representation of most likely correlation in the HOP technique

as opposed to the Cone technique.

6.6.3.2 Uncertainty change

In our regression of the uncertainty difference (Figure 6.10, right), we found that

users in the Cone condition exhibited more reduction in uncertainty than the Line

condition (β = −0.19 [−0.27,−0.10], z = −4.166, p < .001), replicating the

effect seen in Study 2. There was not a significant effect in the HOPs condition

(β = −0.07 [−0.16, 0.02], z = −1.514, p = 0.130).

Pre-belief distance had no effect on the uncertainty difference in any condition.

However, sample uncertainty had a positive effect on changes in uncertainty (β =

0.13 [0.02, 0.23], z = 2.391, p < .05). We also found that the Cone visualization

condition had larger effects on the uncertainty difference when interacting with sam-

ple uncertainty (β = 0.20 [0.12, 0.28], z = 4.784, p < .001). The HOPs condition

also showed a positive interaction with uncertainty difference when interacting with

datasets with larger sample uncertainty (β = 0.13 [0.05, 0.21], z = 3.019, p < .01).

These findings suggest that participants in the Cone condition showed more overall

reduction in posterior uncertainty compared to the Line treatment but the HOP con-

dition did not show similar effects. Interestingly, when dealing with larger uncertainty
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(10 data points), the presence of an uncertainty representation resulted in an increase

in users’ uncertainty. This finding suggests that both visualization techniques convey

uncertainty when uncertainty amounts are larger, but users’ experience of the HOP

condition is similar to the Line condition when dealing with datasets with smaller un-

certainty. Perhaps this is due to users’ inability to perceive small angular movements

of the line.

6.6.3.3 Accuracy of posterior beliefs

We used beta regression to model the effects on the distance of users’ posterior

beliefs from the true sample correlation. We found that pre-belief distance had

the largest positive effect on users’ post-belief distance (β = .34 [0.16, 0.52] z =

17.254, p < .01). In other words, posterior beliefs were less similar to the sam-

ple correlation when the dataset was incongruent with users’ prior beliefs. We

also found that compared to the Line condition, the HOP condition had a pos-

itive effect on posterior distance when viewing a dataset with more uncertainty

(β = 0.29 [0.14, 0.45], z = 2.181, p < .01). This might be due to the lack of

a fixed most-likely correlation representation in the HOPs condition, therefore when

sample uncertainty is larger, users are more prone to larger distances (errors) in their

judgements.

6.6.4 Bayesian belief updating model

We used the models from Study 2 to examine how prior beliefs influenced belief

updating in Study 3. In general, the best fit to elicited posteriors in terms of both

MAE and KLD was achieved by the Bayesian-Uniform model in all conditions (Fig-

ure 6.11). Incongruent trials provide a strong comparison of the Bayesian-Informed

and Bayesian-Uniform models because they involve datasets that conflict with par-

ticipants’ prior beliefs. If people integrate new evidence with their elicited prior,

they should show smaller shifts in beliefs in Incongruent trials than expected under
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the Bayesian-Uniform model. However, as was seen in Study 2, posterior distribu-

tions were best-fit by the Bayesian-Uniform model, suggesting a stronger influence

of the data visualization on posterior beliefs. Notably, the only condition in which

the two models performed comparably on Incongruent trials was the Cone treat-

ment, where there were no differences in MAE (t(722.63) = 1.33, p = 0.18) or KLD

(t(731.98) = 1.78, p = 0.08), indicating that Cone visualizations produced belief

updates that more closely aligned with the normative prediction of the Bayesian-

Informed model.

6.6.5 Discussion of Study 3

We predicted that people exposed to uncertainty visualizations (Cone and HOP

conditions) would exhibit less belief change compared to those without uncertainty

(Scatter and Line conditions). We found strong support for this hypothesis in Study

3 when participants saw data that was incongruent with their prior beliefs. Both the

Cone and HOP treatments were associated with smaller belief updates compared to

the Line condition which did not represent uncertainty about the correlation. Un-

certainty visualizations also affected whether there were shifts in participants’ degree

of uncertainty. Relative to the Line condition, Cone visualizations led to greater re-

ductions in uncertainty for large datasets, whereas uncertainty did not change when

datasets were small. Similar (albeit weaker) effects were present for HOP visualiza-

tions.

Finally, we replicated the modeling results from Study 2, showing that posterior

beliefs were best-fit by the predictions of the Bayesian-Uniform model. Although this

does not imply that participants completely disregarded their prior beliefs, it indicates

that the data visualizations tended to have a stronger influence on posterior beliefs

than expected from a normative Bayesian perspective. The Cone visualization was

the only condition in which the Bayesian-Informed model performed comparably to

the Bayesian-Uniform model. This result suggests an alternative interpretation of the
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smaller degree of belief updating in that condition when faced with incongruent data.

Rather than representing an irrational failure to modify beliefs akin to confirmation

bias, the Cone condition may be most effective for striking the appropriate balance

between new data and prior beliefs.

6.7 Discussion, Future Work, and Conclusion

In this chapter, we study the effect of prior belief and uncertainty representations

on correlation judgement. In Study 1 we developed the Line + Cone method for

eliciting people’s beliefs about the correlation between two variables, including their

degree of uncertainty. The Line + Cone method serves as a good choice for eliciting

users’ beliefs about bivariate relationships for future studies of correlation judgement.

In addition to capturing users’ beliefs about the correlation means (commonly done

in previous correlation judgement studies), results from all three studies demonstrate

that it is also important to capture users’ uncertainties about their judgements. In

Studies 2 and 3, we used the Line + Cone method to investigate belief updating in

the context of data visualization. We found that visualization conditions with uncer-

tainty communication led to less belief updating compared to visualizations without

uncertainty, especially when the presented correlation visualization is incongruent

with users’ prior beliefs. An important conclusion is that judgements are affected

by the existence of uncertainty depictions. How we encode uncertainty (e.g., Cone

vs. HOPs), also affects users’ belief and uncertainty change. As the visualization

community pays more attention to the importance of uncertainty representations and

elicitation, it is important to be cognizant to the affects of such techniques on users’

judgements.

In our studies we applied a Bayesian cognition framework to understand how people

update their beliefs about bivariate correlations with different types of visualizations.

Recent studies have applied insights from Bayesian cognitive modeling to understand

how people integrate new data with their existing knowledge [97, 60]. The Bayesian
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framework provides normative benchmarks that can be used to evaluate whether

people optimally revise their beliefs given their existing uncertainty and the strength

of new evidence conveyed through a visualization [95]. We used Bayesian models to

compare participants’ posteriors to three benchmarks: no change in beliefs (Prior-only

model); the normative posterior when taking into account the elicited prior (Bayesian-

Informed model); and the normative posterior when disregarding the prior (Bayesian-

Uniform model). In both Studies 2 and 3, elicited posterior distributions were best-

described by the Bayesian-Uniform model, suggesting that the characteristics of the

visualized dataset had a stronger influence on posterior beliefs than expected under

the Bayesian-Informed model.

There are several possible explanations for why posterior beliefs appeared to un-

derweight participants’ priors. One possibility is that people have a different interpre-

tation of the cone representation which is used to elicit their uncertainty. In order to

minimize demands on numerical or probabilistic reasoning, participants were simply

instructed to adjust the cone to capture the range of “plausible alternatives” for the

correlation between the variables. In Study 1 we found support for the claim that this

method captures participants’ uncertainty, but there may nevertheless be a mismatch

between the elicited distribution and participants’ subjective beliefs such that people

are more uncertain than indicated by their elicited priors.

We found other evidence that people updated beliefs in a way consistent with

Bayesian inference. In Study 2, users reduced their uncertainty to a greater extent

for more extreme sample correlations. In Study 3, uncertainty increased when people

saw small datasets (n = 10) compared to large datasets (n = 100), even in the

Line condition which lacked an explicit representation of the correlation uncertainty.

Participants also expressed greater uncertainty in the posterior beliefs than predicted

by the Bayesian models, echoing the findings of Kim et al. [95].

These studies provide the groundwork for investigating how people interpret data
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that is relevant to strongly-held or favored beliefs. Prior beliefs can distort the

perception of new evidence, as is seen in widespread evidence of confirmation bias

[72, 19, 244]. Using intuitive, visual belief elicitation methods in conjunction with

Bayesian cognitive models offer a promising path toward understanding the causes of

such biases in data visualization.
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Figure 6.6: A: MAE and KLD between elicited posterior and predictions of Prior-
only, Bayesian-Informed, and Bayesian-Uniform models. B: Model performance as
a function of the absolute distance between the elicited prior mean and the sample
correlation.
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16 variable pairs, predetermined 
through a pilot study, are as-
signed to produce datasets with 
these characteristics:

- Congruent/Incongruent 
- High / Low Uncertainty

Each variable pair is assigned to two treatments that a�ect the data shown based on user’s prior elicitation.
Congruent / incongruent variables result in data aligned/opposite user's prior and low/high uncertainty variables
use either 10 or 100 samples.

Line graph Line + Cone graph HOPs graph
*animated chart

Figure 6.7: Study 3 design. Like Study 2, users elicit their beliefs about correlations of
variable pairs before and after seeing data visualizations. Users are randomly assigned
to Line, Cone, and HOP visualization treatments. The datasets are generated based
on users’ prior elicitation as either congruent/incongruent and 10 or 100 data points.
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Figure 6.8: Kernel density plots for pre-belief distance and sample uncertainty values
by congruent or incongruent conditions (pre-belief distance).
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Figure 6.9: Kernel density plots for pre-belief distance and sample uncertainty values
by data shown (n = 100 or n = 10).
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Figure 6.11: MAE and KLD by model for Study 3.



CHAPTER 7: EFFECT OF UNCERTAINTY VISUALIZATIONS ON MYOPIC

LOSS AVERSION AND THE EQUITY PREMIUM PUZZLE IN RETIREMENT

INVESTMENT DECISIONS

7.1 Introduction

As companies move towards choice-based retirement investment accounts like IRAs

and 401(k) plans, Americans now have $20 trillion dollars in such accounts indicat-

ing the colossal importance of smart retirement investing.1 A recent report by the

National Institute on Retirement Security highlighted that the shift from pensions

to 401(k) plans has pushed more retirement risk onto individual workers [245]. At

the same time, individual investors are increasing their adoption of investing on dig-

ital platforms (e.g., online or mobile retirement account tracking). The combination

of long-term retirement planning and access to short-term trends on digital invest-

ment platforms increases the importance of human-computer interaction in the design

choices for web-based and mobile applications by financial companies.

Financial decision-making is central to retirement investing as typical investors

make decisions about how to allocate funds across a wide range of assets that vary

in risk (e.g., stocks vs. bonds). A seminal study by Mehra and Prescott [4] found

a surprising reluctance to take on risk, in that standard economic models could not

account for the large historical premium for riskier investments (the “equity premium

puzzle”). Benartzi and Thaler [21] theorized that individuals deviate from the pre-

dictions of neoclassical economic theory due to two factors, an oversensitivity to the

possibility of losses, and evaluation of returns over short time periods, a combination

they referred to as myopic loss aversion. Benartzi and Thaler [3] showed that myopic
1https://www.statista.com/statistics/940498/assets-retirement-plans-by-type-usa/

https://www.statista.com/statistics/940498/assets-retirement-plans-by-type-usa/
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loss aversion emerges when making investment decisions with simple visualizations

of the distribution of returns (i.e., bar charts). They found that investors allocated

less in stocks when shown returns over a 1-year evaluation period due to aversion to

short-term losses. Their results suggest that the method for visualizing investment

performance can have a dramatic effect on individuals’ willingness to take on risk.

Recently, the field of information visualization has proposed multiple visualiza-

tion techniques for including uncertainty representations of data. Different visual

encodings can change how users perceive and interpret uncertainty, and in turn, the

decisions they make. Our study aims to measure the effect that different uncertainty

visualizations/representations have on myopic loss aversion in long term (retirement)

financial decision-making. The experiment is motivated by the results of Benartzi and

Thaler [3]; we first try to replicate their findings and further expand it by testing the

effect of a range of new uncertainty visualizations (e.g., quantile dotplot [246, 5, 31]

and hypothetical outcome plot [98, 99, 100]) on myopic loss aversion.

More specifically, our study seeks to address the following research questions: RQ1:

Do crowdsourced investors exhibit myopic loss aversion when presented investment

returns that are aggregated over a range of evaluation periods (1, 5, 10, 15, 20,

25, 30 year)? RQ1 aims to first determine if we can replicate the findings of the

Bernatzi and Thaler [3] study (1 year vs. 30 year). The visual encoding employed

in evaluating RQ1 is a sorted bar chart as in [3]. RQ1 extends [3] by evaluating the

impact of intermediate evaluation periods on myopic loss aversion, providing a more

fine-grained understanding of how decisions change alongside visual representations

of risk. RQ2: Do different uncertainty representations affect myopic loss aversion

in retirement asset allocation? We included six different uncertainty representations,

one bar chart visualization, and one tabular representation for RQ2. In addition to

evaluating the effect of different visual encodings, RQ2 also explores how evaluation

periods and visual encodings may interact.
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To address these research questions, we present findings from a two-round crowd-

sourced online experiment depicted in Figure 1. Round 1 is to see if we can replicate

the findings of Benartzi and Thaler [3] on myopic loss aversion in an online setting.

In round 2 participants were assigned to one of the eight different treatments with

different uncertainty visualizations. Consistent with Bernatzi and Thaler [3], with

bar charts we find evidence of myopic loss aversion as participants opted for much

less stock allocation for 1 year than 30 year evaluation period. Similarly, we observe a

positive monotonic relationship between evaluation period and stock allocation (and

expected return). Interestingly, we found that the type of uncertainty representation

significantly affects participants’ stock allocation and their expected returns. Sim-

pler and more intuitive uncertainty visualizations (with extrinsic annotation [229])

led to higher stock allocation that were closer to optimal. In contrast, uncertainty

representations that draw attention to risk/volatility (e.g. HOPs) yielded lower stock

allocations and tended to increase the equity premium which could amount to hun-

dred of thousands of dollars less at retirement for an average investor. We did not

observe significant interactions between the visual encoding and evaluation period,

except for the density plot. Our qualitative analysis of user comments also sheds light

on their visual reasoning strategies.

Situated in the task of maximizing returns for long-term retirement planning—

a common, high-stakes example of repeated decisions under uncertainty—our results

demonstrate that common uncertainty visualization with simple uncertainty represen-

tations lead to more optimal investment allocation and expected returns. Grounded

in economic theories including prospect theory, myopic loss aversion, and the eq-

uity premium puzzle, these findings shed light on the important role of uncertainty

visualization in financial decision making including retirement planning. Our work

connects behavioral economic theories with information visualization and highlights

the need for more research in the visualization community in order to provide tangible
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recommendations on the use of uncertainty visualization to make better investment

decisions for lay audiences.

7.2 Background Work

7.2.1 Economic Theory in Long Term Investing

Three tenets from modern economic theory provide the motivation for myopic loss

aversion [21, 3]: Samuelson’s gamble [247], lifetime portfolio selection [248, 249], and

the equity premium puzzle [4]. During lunch one day, the noted American economist

Paul Samuelson offered MIT colleagues a gamble: If the colleague guessed a coin flip

correctly they would win $200, but would lose $100 if incorrect. This gamble has a

positive expected value of .5 × $200 + .5 × −$100 = $50. One colleague responded

that he wouldn’t accept the bet once but would accept the bet 100 times. Soon

after Samuelson wrote a mathematical proof [247] showing that such a preference was

irrational and demonstrated loss aversion. For example, the faculty member turned

down the bet because “I would feel the $100 loss more than the $200 gain” [21]. It

seems that for some individuals the fear of a loss outweighed the expected likelihood

of a gain.

Another important tenet from economic theory of investments include theorems by

Merton (1969) [248] and Samuelson (1975) [249] that under certain assumptions like

random walk of asset prices [250] and constant relative risk aversion utility functions,

“asset allocation should be independent of the time horizon of the investor” [3]. This

counter-intuitive notion predicts that a 35 year old and a 64 year old should choose

the same allocation for retirement investing. This idea is directly connected to the

differentiation between the evaluation and investment (horizon) periods, which we

discuss in Figure 7.1.

However, one major issue to economic theory impeded modern financial theory: the

equity premium puzzle. Mehra and Prescott [4] studied the implications of economic

theory for the difference between relatively risk-free government-backed bonds (e.g.,
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US treasury bill) and relatively more risky stocks. They found a surprising “equity

premium” in the form of excess returns for taking on the relatively higher risk of

equity investing. Comparing such implications to historical returns of government

bonds and stocks, Mehra and Prescott [4] found that to account for the average

6% equity premium, such a framework would imply an extremely risk-averse and

implausible representative investor [251]. Such challenges open up new behavioral

explanations for the equity premium puzzle: myopic loss aversion [21].

7.2.2 Investing Decisions in Behavioral Economics

Neoclassical economic theory is grounded on the assumption of a perfectly ratio-

nal decision maker [252, 253]. However, in recent decades the field of behavioral

economics challenged this assumption on three fronts: unbounded rationality, un-

bounded willpower, and unbounded selfishness [254]. Coined by Herbert Simon [62],

bounded rationality refers to the acknowledgment that individual decisions are funda-

mentally constrained by factors like scale, time, and cognitive ability. This work led

to the discovery of heuristics, or mental shortcuts, which people use to find solutions

for decisions otherwise thought to be intractable. Tversky and Kahneman [26] argued

that such heuristics can lead to systematic errors in decision-making, or cognitive bi-

ases. They further extended such work with prospect theory, a descriptive theory of

decision-making under uncertainty [255]. A main assumption of prospect theory is

that utility is derived not from objective metrics of value, but instead as gains and

losses relative to some reference point. Prospect theory captures people’s inherent

risk aversion or “loss aversion”, the notion that individuals are affected more by a loss

than a gain of the same magnitude. A key implication is that changes in the fram-

ing of a choice in terms of gains or losses—despite no differences in the underlying

economic problem—can exert a strong influence on decisions [256].

Benartzi and Thaler [21] proposed that a narrow framing of investment decisions

focused on short-term outcomes rather than long-term (aggregated) returns, in com-
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bination with loss aversion, provides a solution to the equity premium puzzle. Eval-

uating returns over a short time window highlights the possibility of losses and leads

to more risk aversion, even in the context of investment decisions with long time hori-

zons. Using prospect theory, Benartzi and Thaler [21] found that the equity premium

observed by Mehra and Prescott was consistent with an evaluation period of 1 year.

As Benartzi and Thaler noted, while loss aversion might be considered a matter

of individual preference (or a “fact of life”), the evaluation period is often dictated

by the environment or “choice architecture” [257]. Accordingly, subsequent work has

shown that myopic loss aversion is reduced when investors are provided aggregated

returns over longer evaluation periods [3, 258] or when they have less frequent oppor-

tunities to change their allocations [259]. These effects exemplify a common theme in

behavioral economics: Subtle features of the choice architecture can “nudge” people

toward behaviors that are consistent with a policy objective [257], such as maximiz-

ing retirement savings through the use of default contributions [260]. For instance,

in a recent study using a simulated retirement investment task, Camilleri et al. [261]

found that presenting dynamic risk information, such that the evaluation period was

aligned with the time left until retirement, encouraged reliance on a “smart default”

plan which invested more in riskier (higher growth) investments early on. These

results underscore the importance of interaction design in investment platforms. Pro-

viding frequent updates on short-term changes in fund performance and making it

easy to reallocate may increase engagement, but these same factors likely amplify the

harmful effects of myopic loss aversion on long-term returns [262].

7.2.3 Visualization in financial decisions and uncertainty visualization

Past research in data visualization and human-computer interaction has examined

the role of data visualizations in improving financial decision-making [263, 264, 265,

266, 267]. Relevant for our study, Gunaratne and Nov developed a user interface

for retirement decision-making based on endowment effect and loss aversion. They
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Today 30 years

Investment period

Fund X: 1 Year Returns Fund X: 30 Year Returns

The investment period will not 
change during the experiment. 
Your decisions should assume 
you will hold your investment for a 
thirty year period.

The evaluation period is how 
returns are framed and will 
change during the experiment.

You will view the same funds’ 
returns over different evaluation 
periods (1 year to 30 years).

Each bar represents 1 of 33 possible 
rate of returns of this fund over 1 year 
(i.e., evaluation period is 1 year).

Each bar represents 1 of 33 possible rate of the 
returns of the fund over 30 years on a per year 
basis (i.e., evaluation period is 30 years).

Evaluation period

Figure 7.1: Evaluation period versus investment period. We provided this figure
to participants to distinguish between these critical concepts. Participants were in-
structed and incentivized to invest over a 30 year investment period for all decisions.
However, following [3] we manipulate the evaluation period of the returns shown to
participants (e.g., 1 year to 30 years). Benartzi and Thaler [3] argue that economic
theory predicts rational investors would not differ between these two decisions but
that myopic loss aversion could explain why the decisions are not consistent.

showed that highlighting the long-term implications of users’ decisions could lead to

adjustment of their investment allocations and reduction of loss aversion. [268]. Other

research has considered the role of portfolio allocation or financial literacy. Rudolph

et al. designed a financial planning study using a simple visual analytics system

(FinVis) to aid in portfolio allocation [264]. Using a simple table as a control group,

they found university students made more optimal allocation decisions using FinVis

as compared to the control (table of returns and standard deviation). Lusardi et al.

provides visual analytics tools for financial literacy [269]. Additional research has

also considered the intersection of visualization and financial decisions in relation to

cognitive biases [270] and risk premium [271]. But one gap of this research on financial

decision-making in visualization research has been the connection with research on

visualizing uncertainty in which different techniques for encoding uncertainty such as

Hypothetical Outcome Plots [98] or Quantile Dot Plots [5] are shown to have different

effects on users’ belief-updating and decision outcomes [246, 5, 99, 100, 34]. Kay et

al. noted that uncertainty can be intrinsic or extrinsic to the representation [229];
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we found this categorization informative when interpreting our experiment results.

Overall, evaluating uncertainty visualizations are fraught with many challenges [233].

Alternatively, HCI research on the gamification of uncertainty decisions has shown

that too much uncertainty information can lead to unnecessary risk-taking [272].

For a comprehensive survey on uncertainty visualizations, we recommend Padilla,

Hullman, and Kay [31]. Our experiment design is informed by research on uncertainty

visualization and modern behavioral economic theories.

7.3 Research questions and hypotheses

The core research question of this work follows Benartzi and Thaler [3]: “How

do investors think about investment decisions over long horizons, and how do their

choices depend on the way in which risk and return data are presented?” From this

question, we derive two research questions.

RQ1: Replicating Benartzi and Thaler (1999), do crowdsourced investors exhibit

myopic loss aversion when presented with a 1 year versus a 30 year evaluation pe-

riod? More broadly, what is the effect of different evaluation periods on myopic loss

aversion?

Design and Hypothesis: MTurk participants who own at least one financial

asset participate in a within-subject asset allocation decision between stock and bond

returns (both names masked) over seven evaluation periods (i.e. 1, 5, 10, 15, 20, 25,

30 year) for a fixed 30 year investment period. Myopic loss aversion [21, 3] predicts

that individuals are more risk averse for shorter evaluation periods (e.g., 1 year) than

longer periods, resulting in a higher asset allocation to less risky assets (e.g., bonds)

than is optimal for long planning horizons like retirement.

RQ2: Does visualization with uncertainty representation affect myopic loss aver-

sion (i.e., retirement asset allocation) and do uncertainty representations interact with

evaluation periods?

Design and Hypothesis: Consistent with past designs for uncertainty visual-
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izations [229, 5, 31], we design a mixed experiment with between-subjects (different

uncertainty visualization) and repeated measures within-subjects (seven evaluation

periods). We expect that visualizations with intrinsic uncertainty representations

like frequency framing (e.g., dotplot) and animated plots (e.g., hypothetical outcome

plots) will result in better returns and less myopic loss aversion.

7.4 Methods

We designed a pre-registered2 experiment to test how uncertainty visualizations

impact allocation decisions for simulated long term (30 year) retirement investments.

Following Benartzi and Thaler [3], we frame individuals’ decisions as dividing an

investment between two assets. The names of the assets are masked but they corre-

spond to standard benchmarks for bonds (10 year United States Treasury) and stocks

(S&P 500).3 We compared the bar chart visualization from Benartzi and Thaler [3]

with a range of alternative uncertainty representations.

7.4.1 Investment task and experiment design

The experiment included two rounds. The first round was a within-subjects manip-

ulation of evaluation period using the bar chart visualization from [273] (see example

in Figure 7.2). Because we aimed to replicate [3], the first two decisions were based

on 1 year or 30 year evaluation periods presented in random order. The remain-

ing decisions involved five different evaluation periods in a random order (5, 10, 15,

20, and 25 years). In the second round, each user was randomly assigned to one of

eight uncertainty visualization conditions. The presentation order followed the same

scheme as in Round 1 (1 and 30 years in the first two trials, followed by the remaining

evaluation periods). Participants were not provided immediate feedback about their

decisions (i.e., simulated returns based on their allocations) in order to avoid any

learning effects.
2https://aspredicted.org/blind.php?x=sz8j4b
3Data is from Aswath Damodaran and available at http://pages.stern.nyu.edu/~adamodar/

New_Home_Page/datafile/histretSP.html.

https://aspredicted.org/blind.php?x=sz8j4b
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histretSP.html
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/histretSP.html


145

Figure 7.2: A depiction of the experiment interface. This example shows the round 1
(bar chart) and 1 year evaluation period decision. The user inputs their allocation (A)
for each evaluation period (D) that updates chart titles (B) and input is controlled
for invalid responses (C).

We designed a react.js custom web interface that used D3 for visualizations, node.js

for the server, mongoDB for the database and the app was deployed on heroku.4

Figure 7.2 provides a screenshot of the investment task interface for an evaluation

period of 1 year. The charts show the distribution of simulated returns for each

fund over the evaluation period. The left-right position of the two assets (bonds

vs. stocks) was randomized on each trial. The participant inputs an allocation in

either of two boxes (A) that are reactive (i.e., sum of the two boxes always equal

100%). As the user enters valid value (0 to 100 in 1 increments), the “Make Decision”

button becomes active and the user can proceed to the next allocation decision. To

ensure understanding of their decision, each chart’s title updates real time based on

participant’s decision (B). If the user enters invalid input (e.g., “e”), “Between 0% and

100%” is highlighted in red and “Make Decision” becomes inactive, preventing the
4The experiment is available at https://retirement-study-1.herokuapp.com/ and the inter-

face code will be released publicly on github.

https://retirement-study-1.herokuapp.com/
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user from moving to the next decision until a valid response is provided. For each

decision, the interface updates the evaluation period and emphasize it in two places

(D).

There are three intentional deviations from the original experiment by Benartzi

and Thaler [3]. First, we provide incentives to align to performance. This is critical

to ensure participants have a vested interest in performing this task. This change

is especially important given the use of crowd sourced workers. Second, for round

1, we use the bar chart design from [273] which lays out each fund in its own bar

chart horizontally rather than the original design which was one grouped bar chart

with each fund being a different bar. We did this for design preferences. Third, the

original study used 34 bars for the 1 year return and 50 bars for the 30 year return.

For simplicity, we used 33 draws (e.g., bars, dots) for easy mental computation that

each draw is approximately 3% of the data. We also controlled 33 draws across

visualizations and evaluation periods for consistency.

7.4.1.1 Simulating expected returns

Following [3], we showed participants data generated from a historical simulation

using bootstrapped sampling with replacement. To calculate average and annualized

returns by evaluation period N, we used the geometric mean for each sample i :

Geometric Mean =

(
N∏
i=1

(1 +Returnsi)

) 1
n

− 1 (7.1)

Participants decided the allocation between stocks and bonds for a simulated 30

year investment for retirement. Incentives were established by running a 10,000 boot-

strap with replacement sample returns with a 30 year investment period. We then

calculated what the expected return would be for 101 different possible stock alloca-

tions (0 to 100 in integer increments), with the remainder allocated to bonds. When

participants made a decision, we determined their incentive by randomly selecting one
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Figure 7.3: Historical simulation of returns for different stock allocation (S&P500)
decisions over 30 year investment period in 10% increments. Bond allocation (10 year
US Treasury) is 1 minus stock allocation. We use an empirical cumulative density
function with viridis palette to indicate density. 100% stocks is the optimal allocation
for maximizing expected returns and is consistent with the equity premium puzzle
[4].

of the conditional returns given their chosen allocation and the 30-year investment

period.

We used the same two asset simulation across 30 years to derive the distribution

of portfolio outcomes and calculated the average return for each of the possible allo-

cation combinations. Figure 7.3 shows the distribution of simulated returns for stock

allocations in increments of 10%. The color represents density with mean/median

corresponding to the darker areas. Aligned with the equity premium puzzle [4], 100%

stock allocation has the highest expected return and is the optimal decision if maxi-

mizing the expected return. The expected return is also a monotonic function of the

stock allocation decision.

One drawback of using stock allocation as a dependent variable is that it does
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not reflect the participants’ expected returns and how that decision compares to

the optimal strategy of choosing 100% stocks. To address this drawback, we follow

Fernandes et al. [5] and convert stock allocations into the ratio of the expected return

relative to the optimal strategy (i.e., expected return for 100% stocks). We then use

this ratio of expected return to optimal expected return as our decision metric and

dependent variable in our regression analyses.

7.4.1.2 Uncertainty representations

In the second round of the task we evaluated the effect of different uncertainty

representations on retirement financial decision making. Our choices of the uncer-

tainty representations were grounded in prior work [229, 274, 275] such that the

representations were designed to be “glanceable” and to allow “quick in-the-moment

decisions to be made” for mobile devices without significant training. The resulting

uncertainty representations cover a design space characterized by frequency framing

[246, 5], point-interval [100], animation [98, 100], and controls (round 1 bar chart and

table). To ensure consistency across the visualizations, all of the discrete plots use the

same 33 returns from bootstrap sampling with replacement. We discuss the rationale

of our decision to include each of the visualizations below as our eight treatments.

Table: As a control condition, we provided a table of the returns to compare

uncertainty visualizations to a treatment with no data visualization. This enables us

to make measurements of what is the marginal effects of data visualizations over the

raw data itself. The tables provides the data in ascending order from lowest (top left)

to highest (bottom) returns.
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Bar chart: We repeated the same visualization from round 1 (see Figure 7.2)

to enable a between-subjects comparison of the bar chart versus other uncertainty

visualizations.

Dot plot: Past research [229, 5, 100, 31] has shown that frequency framing [276]

can improve the understanding of probabilities better than other representations in

a variety of tasks. We provide a Wilkinson dot plot [277] to display each dot as one

of the 33 possible sampled returns.5

Probability density: A popular data visualization to represent uncertainty on

distribution is the (probability) density plot. The purpose of a density is to visual-

ize an underlying data distribution through an approximate continuous curve. This

enables a smooth representation that is common in probability distributions and can

be used in spatial plots [278].

5While similar to a quantile dot plot[229, 5], we label it a Wilkinson plot instead of a quantile dot
plot as it was generated from a discrete (historical) distribution, not from a continuous distribution.
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Point-Interval: Recent research in uncertainty visualizations on effect size judg-

ments has shown that providing means to uncertainty visualizations has possible

biasing effects [100]. To test for such an effect in our task, we developed the point-

interval condition that showed participants intervals that represent a range containing

66% (dark green) and 95% (light green) of the possible (bootstrapped) outcomes as

well as a point estimate of the mean.

Interval: Similar to the point-interval, we also provided one condition in which

we provided the same intervals (66% and 95%) but without a point (mean) estimate.

In this condition, without a separate point for the mean, users could only mentally

estimate the mean as the midpoint of the intervals.

HOP: While static visualizations like error bars are the most common uncertainty

visualization, hypothetical outcome plots (HOPs) are designed to focus on the user

experiencing uncertainty information through animated draws. HOPs have been stud-

ied in a variety of applications including identifying trends [99], effect size judgments

[100], and correlation judgment [34].

HOP + Strip: We also provide a hybrid HOP that combines a static distribution

(strip plot) overlaid with the HOP. The motivation of this plot is that we expect
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individuals will perform better in this condition than the HOP only as it reduces

the cognitive load to storing into short term memory the sampled distribution and

enables the user to focus attention on the draws relative to the sampled distribution

(strip plot).

7.4.2 Participants

We recruited participants through Amazon Mechanical Turk. Given our focus on

financial decision-making, we targeted MTurk workers who report owning at least

one of four financial products: stocks, bonds, mutual funds, or electronic traded

funds (ETFs). To ensure a high quality of performance, participants were either a

MTurk Master (n = 42) or a non-Master with a HIT acceptance rate of 97% or better

(n = 179). Following [3], we targeted a sample size of 25 participants per condition

(target 200 total across eight conditions). 221 participants completed the study as we

expected exclusions. After applying our pre-registration exclusions, we ended with

198 total participants. The average total compensation (with bonus) was $2.46 and

participants took on average 14.6 minutes to complete the study. The average age

was 37.4 years and 27% identified as female. Out of the entire sample, 67.6% reported

owning a retirement investment account.

7.4.3 Procedure

In addition to the main investment task, the experiment included the following

components:

Pre-questionnaire: We asked five classical questions on risk aversion. The first

two questions ask participants whether they would accept Paul Samuelson’s gamble

[247] (flip a fair coin and guess correctly get $200 or lose $100 if incorrect) either once
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(question 1) or 100 times (question 2). The next two questions measured whether

the participant exhibited behavior aligned with prospect theory from Kahneman and

Tversky [255]. Participants were asked two questions that provide the same possible

payouts but framed as either potential gains (question 3) or losses (question 4). Last,

we asked participants to choose between a gamble between a 50/50 chances of winning

either $100,000 or $50,000 and sure investment of different payouts that aligned to

different coefficients of relative risk aversion (CRRA). Mankiw and Zeldes [251] found

that to account for the levels of equity premium in the past, neoclassical economic

theory predicts that investors would prefer a certain payoff of $51,209 (CRRA = 30)

to a 50/50 bet paying either $50,000 or $100,000.

Post-questionnaire: We required participants to answer six closed ended demo-

graphics questions to measure sex, age, education, ownership of financial asset (e.g.,

stock, bond, ETF, mutual fund), ownership of retirement investment account (e.g.,

401k, IRA, Roth IRA), and satisfaction with the study. We also solicited (optional)

open ended user feedback on the study.

Payment: All participants who completed the study received at least $1.00 (base)

+ a bonus of up to $3.50 based on simulated performance (up to $0.25 per 14 trial).

A participant’s bonus from a trial was based on the quintile of simulated performance

of their allocation, with the bonus increasing by $0.05 at each quintile (i.e., lowest

quintile: $0.05; highest quintile: $0.25).

Attention/Learning Checks: We included a CAPTCHA after the pre-questionnaire

to screen for bots. To check for understanding, we asked three questions following

round 1 instructions: how many years in future is hypothetical investments; what is

the basic task; what leads to higher incentives. Participants could not move forward

if incorrect but could modify their answers until they provided the correct answers.

To check for knowledge of the bar chart interpretation, in round 1 participants are

asked to hover their mouse over the largest bar and provide the value of that bar.
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Figure 7.4: Round 1 mean stock allocation and bootstrapped 95% confidence intervals
(n = 198) by evaluation period by participant. The orange points are the original
values from Benartzi and Thaler [3]. Dotted lines are means for 1 and 30 year evalu-
ation periods and the arrows indicate the allocation difference which we measure as
myopic loss aversion.

Participants could not proceed without the correct answer (rounded to nearest whole

number). Lastly, in the post-questionnaire we asked participants to write a qualitative

response in 1-2 sentences to describe the study’s task.

User strategy feedback: Recent work has shown users having challenges with

uncertainty visualizations through suboptimal strategies or switching strategies [100].

Following [100], we asked participants the following qualitative question to elicit feed-

back on user strategies after each round: “How did you use the charts to complete

the task? Please do your best to describe what sorts of visual properties you looked

for and how you used them?”

7.4.4 Analysis approach

Following Fernandes et al. [5], we use a mixed effects Bayesian beta regression.

We used a beta regression given that the ratio of the expected return to the optimal
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Figure 7.5: Mean and bootstrapped 95% confidence intervals for participants’ ex-
pected / optimal return (left axis) and stock allocation (right axis). We provide
results for both round 1 (bar chart only) and round 2 (visualization treatment). The
dotted line indicates the optimal strategy (100% stocks).

expected return are values between 0 and 1. We included the participant ID as a

random effect given that decisions are repeated by participant. For fixed effects,

we considered both evaluation period and visualization treatment and interaction

between evaluation period and treatment.6 For our priors, we considered both non-

informative priors and priors from Fernandes et al. [5] but there were no substantive

differences. For model fitting and visualization we used R packages tidyverse [279],

brms [211] and tidybayes [280].

To aid in the interpretation of our results, we convert the dependent variable into

the expected investment value for a hypothetical investor at retirement. Consistent

with our average age (37), we assume someone who will retire in 30 years which

typically occurs in the United States between 65 and 67. Also we assume an initial
6Per our pre-registration, we considered two variants with and without the interaction and decided

to include the interaction due to a lower model AIC.
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Figure 7.6: Round 2 posterior mean (mu), mean differences, and standard deviations
by 1 year (blue) and 30 year (orange) evaluation periods by treatment. We provide
multiple conversions of the DV (expected return / optimal return) including the
expected return, the stock allocation, and the retirement balance for a hypothetical
37 year old to with $50,000 initial investment (subject to other assumptions).

investment balance ($50,000) similar to the average retirement savings for that age

group ($48,710). For simplicity, we assume no role of taxes, no need for liquidity

(e.g., cash out), zero discount rate / no inflation, and no additional contributions or

withdrawals. Future work could relax these assumptions.

7.5 Results

RQ1: Consistent with Bernatzi and Thaler [3], we find evidence of myopic loss

aversion with bar chart visualizations (Round 1), as participants had a significantly

lower stock allocation for 1 year versus 30 year evaluation period (Wilcoxon paired

test on the median stock allocation, V = 2020.5, z = −9.188, p < .001). Figure

7.4 provides the bootstrapped 95% confidence intervals (n = 198) for mean stock

allocation. Notably, stock allocations for 1-year and 30-year evaluation periods were

similar to the original study by Bernatzi and Thaler [21], adding support for the

robustness of the effect in our task and with a crowdsourced participant pool.

We also find a positive monotonic relationship between evaluation period and stock

allocation (and expected return) (Figure 7.4). We noticed that the most significant
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allocation is the 1 year evaluation period in which average stock allocation was around

40-60% (or 0.7-0.8 expected ratio). This makes sense as the 1 year had the largest

amount of negative returns for stocks. We also find that participants’ stock alloca-

tion tends to level off around 15 year evaluation period, especially for round 1. Figure

7.5 shows the monotonic relationship between evaluation period and participant’s ex-

pected return normalized by optimal return from both round 1 (bar chart only) and

round 2 (visualization treatment). We grouped the plots based on the similarity of

second round performance and alignment between round 1 and 2. For example, con-

sider the top row (best performing) plots had similar results in round 1 and 2. The

Point + Interval and Interval plots led to the best expected returns comparing to the

other uncertainty visualizations. But in the next two rows we can see a decrease of

means into round 2, indicating that these visualizations may have hurt performance

and increased the equity premium. One interesting exception is the probability den-

sity treatment, in which (especially for round 2) stock allocation was nearly flat across

all evaluation periods. We’ll examine this more carefully in our RQ2 modeling and

in our discussion.

RQ2: Figure 7.6 provides posterior estimates of the effects of each visualization

by the dependent variable and its conditional mean and standard deviation. To

measure the effect of uncertainty visualizations on investment decisions, we provide

each treatment with posterior samples of the mean for the 1 year (blue) and 30 years

evaluation periods. These plots show the credible intervals of the conditional mean

(mu) and standard deviations for each condition. As noted by Fernandes et al. [5],

since these plots are conditional values, they show the mean and standard deviation

for a typical participant given their treatment and evaluation period.

First, we find evidence of differences in performance (equity premium) by visual-

ization. Participants with the point + interval, bar chart, and interval visualizations

had on average higher stock allocations and associated higher expected rates of re-
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turn. Using that expected rate of return for the hypothetical retirement investor (37

year olds), we can estimate those allocations would lead to over $600,000 value at

retirement. Compare this example with participants who used the probability den-

sity. Consistent with results in RQ1, the model predicts decisions for the probability

density with little variation. Those participants choose 60% stocks, which on average

would have led to around $450,000 investment at retirement, a nearly two-thirds less

value at retirement for 30 year evaluation period.

Nevertheless, on average the decisions were still distant from the optimal (dotted

line) as most participants choose the majority stocks but with some bonds. One

interpretation of this distance is the equity premium, or how much investors would

be willing to forgo to not fully invest in stocks (equity). Similarly, we can also measure

myopic loss aversion, which would be the difference between the 1 year (blue) and 30

year evaluation periods (orange). We find that myopic loss aversion can vary between

20% drop in stock for most visualizations. However, for the table and especially the

probability density, we find less evidence of myopic loss aversion.

Figure 7.7 provides the model’s prediction of participant’s decisions for their ex-

pected returns relative to the optimal expected return (i.e., 100% stock allocation)

as well as converted values. Similar to Fernandes et al. [5], we use a Bayesian frame-

work to enable measurements of the marginal posterior predictions to predict how a

random participant would perform in our experiment’s task. The top of Figure 7.7

provides the mean expected return / optimal return (red line). Similar to RQ1, we

find that on average the mean performance increases with the evaluation period (x

axis) as on average participants allocate more stock when viewing returns in a longer

evaluation period. One notable exception is the density plot which exhibits a flat

mean performance, which is consistent with what we observed in Figure 7.5.

In addition to the mean values, the figure also includes the posterior predictive

intervals, or PPIs, for each treatment with three different value ranges: 50% (dark



158

blue band), 80% (light blue band), and 95% (lightest blue band). Let’s consider

the Point + Interval treatment to interpret these values. This treatment exhibited

on average the highest value relative to the optimal strategy in which about 50% of

decisions (dark blue) ranged from 70-90% optimal (1 year evaluation period) to 87-

97% optimal (30 year evaluation period). What’s interesting across all of these plots is

that while optimal (1.00) was possible within 95% PPI values (lightest blue), for most

treatments at best the optimal value was only within the 80% PPI range, especially for

longer evaluation periods. While myopic loss aversion and the visualization treatment

accounts for some of the underallocation to stocks, this result indicates an additional

missing factor that limits participants from making the optimal decision of 100%

stocks.

7.6 Visual Reasoning Strategies

To understand participants’ reasoning in the task, we analyzed participants’ qual-

itative feedback on the strategies they used to arrive at their decisions. These self-

reported descriptions were recorded after each round. To expedite the the analysis,

we used Non-Negative Matrix Factorization (NMF) topic modeling [281] to catego-

rize comments from each round into several topics. Two researchers then qualitatively

evaluated the semantic differences between the topics by reading top representative

documents from each topic. This process resulted in several themes that summarize

participants’ strategies for each round.

In round 1, participants experienced the bar chart visualization of expected per-

centage returns based on different evaluation periods. Based on 10 extracted topics,

we observed three prevailing themes for round 1. The majority of the comments are

related to users’ strategies to allocate funds based on their perceptions of risk, returns,

and balancing trade-offs between the two.

Minimize risk or maximize reward: A group of comments primarily focus on

minimizing risk / losses. For example, one participant wrote: “I looked at the risk
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treatment and evaluation period. These figures are based on Fernandes et al. [5].

and amount of possible losses to make my decision.”. Another participant wrote: ’I

based it on risk. If a fund had a high likelihood of a negative return, I allocated less

money to that fund.’. One participant explicitly mentioned that although they look

at highest returns, they primarily focus on minimizing losses: “I looked to see which

had the best return. I also looked at negative returns. I tended to stay with the option

that had little or no negative returns.”. Another group of comments are related to

the strategy of maximizing returns. For example, a participant mentioned “I used the

charts to determine what my best chances of the highest return would be.” Similarly,

another participant said: “I looked out for which investment on the chart will give the

highest return and allocated a larger percentage of my money to it”.
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Balancing gains and losses: A large portion of the comments described at-

tempts to balance gains versus losses. For example: “I looked for which charts showed

the biggest returns with the least risks of negative returns.” Another participant men-

tioned how they used the safer fund to hedge their losses: “[...] I tried to balance

reward vs risk and allocate accordingly. I tended to invest more with the aggressive

fund in order to maximize profits, but still invested some with the other fund to hedge

my gamble.”

Negative bars as a key decision aspect: Other participants looked specifically

for negative returns and preferred funds without them (e.g., evaluation periods over

15 years) to maximize returns. For example, one participant said: "If there were no

negative years in either chart, I chose the chart that had the higher returns. If there

were negative years in one chart that also had higher returns in other years, I chose

80% or 90% of the riskier chart, with 10% or 20% of the safer chart to balance out the

bad years." Another user had a similar strategy: "I saw whether there are negative

bars. If yes, how many and how long. I tried to imagine the average of an all positive

chart and compare that average with other chart."

In round 2, many responses were consistent with those made in round 1. This

indicates some users replicated their strategies in both rounds. For example, one

user within the density treatment mentioned that "I looked to see how much of the

distribution was below zero. I viewed the larger area of distribution below zero as being

more risky, so I invested more conservatively in those funds. I attempted to invest

more heavily in the less risky funds so that I would have a greater chance of not losing

money.". Another user in the table condition had a similar strategy: "I tended to

go with slow growth again. Better if it didn’t start out in the negatives cause it could

quickly go back in the red zone."

However, since users were randomly assigned to different visualization treatments,

some topics naturally emerged as being related to each visualization treatment. Here
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we will describe some interesting emerging themes about different visualization tech-

niques.

Point plot and average rate of return: Some users in the point treatment

reported allocating more funds to higher (point) mean returns. For example, one

user mentioned: "I looked at the average return dot. I put all money into the fund

with the higher return." Another mentioned that "I always chose the fund with the

higher average return."

Interval plot and confidence intervals: Within the Interval treatment, users

explained how the dark green area with 66% interval had a much larger influence on

their decision, potentially limiting the effects of extreme values in datasets shown to

users. For example, one user simply said: "Wanted the dark green to be highest.".

Similarly, another said: "I tried to see which chart had the larger opportunity for

growth in the dark green zone. I tried to focus more on the dark green zone than the

light green zone."

HOPs and volatility: Within these treatments, some users mentioned they allo-

cated funds with samples with higher returns. For example, one user mentioned: "I

tried to notice if one was higher than the other for most years and allocated more for

that one.". However, some users focused on volatility and made decisions based on

funds that changed less. For example, a user mentioned that: "It was difficult to see

the distribution. So I allocated everything to the one that changed the least." Another

user discussed similar strategies: "I looked at the fluctuations over the period of time

and used that to determine the volatility of each investment. I chose the one that I

felt was safest to protect my investment but I did always put some in both funds."

Table, max-min heuristic: Some users reported using a heuristic to find the

maximum and minimum returns. These comments were mostly from the Table treat-

ment. For example, one participant wrote: "I tried to look for the highest and lowest

rates in the chart. I struggled to get a good mental picture of each fund, so I tended
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to balance a little more.. Similarly, another user said: "I checked the highest and

lowest return value of each chart and compared them to make decision. Middle ones

I ignored."

7.7 Discussion and Limitations

Participants’ performance in the investment task clustered by visualizations with

similar encodings. The bar chart and interval plots (including with point) had the

highest while HOPs and dot plot had on average lower values. Probability density

and table had low myopic loss aversion. But if we consider these plots’ performance

in round 1 to round 2 from Figure 7, participants decreased their stock allocation

indicating that these plots may have increased aversion towards stocks towards more

stable bonds.

7.7.1 Simpler, intuitive plots had higher stock allocation

The point + interval, bar chart, and interval plots had the highest stock allocations

especially for longer evaluation periods (80%+). From Figure 7.6, for the 30 year

evaluation period those conditions also had the lowest standard deviations, which

indicate participant consistency near the mean. Consistent with [3], shorter evaluation

periods like 1 year decreased stock allocation near to 60-65%. However, for these plots

we also find slightly less myopic loss aversion as seen in the difference between the

1 year and 30 year allocations (about 20% less allocation or about 1% less returns)

compared to other conditions. To put it into perspective, Figure 7.6 shows that such

a difference in allocations could amount to approximately $150,000 at retirement for

an average 37 year old investor. We suspect that participants were able to get better

mental models of the averages through either direct encoding (point + interval) or

easy-to-calculate heuristics like mid-range of intervals or identifying the median bar

in the bar charts.
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7.7.2 HOPs and dot plots may amplify risk aversion

We find that HOPs and dot plots had lower mean stock allocation (and thus lower

expected returns) when comparing both within (round 1 bar chart, Fig. 7.5) and

between subjects (round 2 bar chart, Fig. 7.6). We suspect that participants found it

more difficult to estimate means or medians visually. For animated plots like HOPs,

we found in the feedback participants who overly focused on volatility and may have

struggled to identify the mean. However, we think performance with these plots is

likely to be context dependent. For example, one simple remedy for these plots would

be to overlay mean or medians. We believe with a mean, anchor HOPs and dot plot

participants would perform better when optimizing expected returns. Alternatively,

different investment objectives may yield more promise for these techniques (e.g.,

minimum return targets like 5% which may place greater importance on tail risks).

7.7.3 Density and table have mixed results

Similar to HOPs and dot plots, we found that the table and the density plots had

lower mean stock allocation than simpler plots. However, table and the density plot

differ by displaying little myopic loss aversion as participants didn’t change their stock

allocation much with longer evaluation periods (see Figure 7.6). But within these two

plots, we suspect that participants had trouble differentiating either due to cognitive

constraints (table) or continuity smoothing (density).

We find stock allocation (and expected returns) for the table was near the middle

but showed some but not significant myopic loss aversion. Unlike HOPs and dot plots,

table participants could approximate the means with heuristics like (min+max)/2,

which could explain the table’s higher stock allocation. However, the table group

did worse than the simpler plots perhaps because their heuristics weren’t as accurate

as estimates from simpler plots as the raw average calculation was challenging. We

suspect some may have encoded the negative numbers more easily than other plots
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which could increase loss aversion. Alternatively, loss aversion may be reduced as the

table made it hard to visually measure magnitude (i.e., how large are the losses).

Contrary to the other plots, there was no evidence that probability density plots led

to myopic loss aversion. This is despite finding that the same participants exhibited

consistent myopic loss aversion in round 1 when presented with bar charts (50% in

1 year and 80% in 30 year, see Figure 7.5). This is compared to a zero-to-negative

difference for the same periods in round 2 with the density plot. We suspect that

participants may have had difficulty in measuring central tendencies given density’s

smooth distribution, especially for longer evaluation periods. Like HOPs and dot

plot, we suspect overlaying means may increase stock allocation.

7.7.4 Limitations and Future Work

This study focuses on long term retirement investment allocation and makes several

assumptions that may limit the results. First, participants’ incentives are based on

expected results over a thirty year planning horizon. In practice, many retirement

investors may want to plan for a near-term withdrawal (e.g., sell stocks for a major

purchase or emergency). Second, like [3], we consider only two funds that represent

general asset classes (stocks and bonds). This ignores other asset classes like cash, real

estate, or riskier assets (e.g., individual stocks, (crypto)currencies, high yield bonds).

Third, we assume no effects from taxes or inflation (e.g., zero discount rate), which

may affect actual investment behaviors for retirement. Fourth, we use a historical,

non-parametric simulation (bootstrap with replacement) of past returns for stimuli

and incentives. Instead, parametric approaches like monte carlo simulation based on

continuous distributions (e.g., Normal, t-distribution, or fat tail distributions) would

produce more uncertain returns and may benefit from visualizations with continuous

representations of uncertainty [229, 5].

There are multiple avenues of potential future work. First, the goal of maximizing

the expected returns is sensible but in practice retirement investors may have a slightly
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different decision problem. For example, many retirement investments are made to

meet a balance goal, not necessarily to maximize expected return [268]. Future work

could modify the objective and incentivize reaching a simulated goal (e.g., reach 5%

annualized returns). Although simple representations of the mean or median appeared

to aid performance in our task, different visual encodings which bring attention to the

variability in returns or other statistics may be better suited to alternative objectives

[100].

Second, we did not provide users feedback for their decision. Future work could

explore effects of learning through simulated investment feedback. Such a mechanism

could enable measurements of the “explore-exploit” trade-off in allocation decisions.

Recent research in cognitive science [282] has used a similar approach to examine

short versus long-run strategies which either exploit known information (i.e., experi-

enced returns) or explore different allocation strategies. Another possible direction

is the interaction of uncertainty representations with descriptive text that on textual

uncertainty [103] or strategy cues [33] to aid users how to interpret or interact with

uncertainty representations [100, 31].

Last, the study of allocation with uncertainty visualizations could be expanded to

include experts like portfolio managers, shorter investment horizons, or more complex

assets. For example, we could incorporate more advanced financial risk measurements

like VaR (value-at-risk) or Conditional VaR [283] and measure the interaction provid-

ing such metrics can modify the effects of uncertainty representations. Alternatively,

we could expand to allocation across many assets and correlation of basket of n-assets,

which could also be combined with Bayesian approaches in investment management

[284] like Black-Litterman model that incorporate a financial manager’s beliefs into

a Markowitz modern portfolio theory (MPT) framework [285].
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7.8 Conclusion

In this chapter, our contributions include findings from a crowdsourced (MTurk)

incentivized mixed design experiment on the effect of uncertainty visualizations have

on myopic loss aversion and the equity premium in long-term (retirement) invest-

ment decisions. Our results suggest that visualizations could have a large effect in

$100,000’s balances at retirement for a typical long term investor. While myopic loss

aversion has some variation across visualizations, performance remains sub-optimal

(below 100% stocks) which suggest future work in providing feedback and learning

effects.



CHAPTER 8: CONCLUSIONS

This dissertation provides five experiments to investigate the role of cognitive biases

in interactive data visualizations for several tasks for decision-making under uncer-

tainty. This dissertation recasts the importance of a human-centered AI approach

[16, 15] and outlines important considerations in the design of future HCAI systems

and where cognitive biases may become a potential point of failure in the data analysis

process for such interactive data visualization systems.

8.1 Future Work

There is much future work that can be done to further extend the research provided

in this dissertation. We’ll discuss three possible areas of future work.

8.1.0.1 Explore vs Exploit: Role of Multi-play and Learning Effects

As noted previously, one limitation to our study in Chapter 7 for retirement invest-

ment decision-making was that we did not provide users feedback to their decision.

This was a design decision to simplify our first study and avoid feedback effects. How-

ever, future work could consider multi-play decision under a sampling paradigm [282]

in which the system has interactive information foraging functionality like a simulate

button. Participants could be observed to determine at what point do they reach a

sufficient amount of information gathering (i.e., number of times they click the sim-

ulate button for a hypothetical asset simulation) before they’re ready to make an

allocation decision. There may be additional potential to integrate ideas for portfolio

allocation with techniques like reinforcement learning and multi-armed bandits [286]

or Thompson sampling [287, 288].
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8.1.0.2 NLP + Explanability + Uncertainty Visualizations and Elicitation

Techniques

One promising application of future work can be the role of belief bias [20] in

evaluating natural language processing explanations through uncertainty representa-

tions. Gonzales, Rogers, and Sogaard [289] provide a case study for gradient based

explainability approaches in NLP and how argue that belief bias may lead to differ-

ent conclusions from NLP explanations. Future work could integrate belief elicitation

techniques like Line + Range [290] to elicit interval values and the associated uncer-

tainty on those values. In addition, Bayesian cognitive modeling [95] could be used

with graphical inference models like latent dirichlet allocation [143] (LDA) that have

used Bayesian inference may work for cognitive modeling. Related, other work in

NLP [291, 292, 293] have considered labeling for NLP models from a distributional,

or uncertain, approach rather than a traditional binary (1 or 0) label. This work too

may provide opportunities to use belief elicitation techniques and uncertainty repre-

sentations for NLP labels that can enhance both NLP model evaluation as well as

model training.

8.1.0.3 Developing Graphical Inference Theories

In data analysis, a classic trade-off exists between exploratory versus confirmatory

analysis. Exploratory data analysis is more common in interactive data visualization

fields like information visualization and visual analytics. However, recent work has

shown that too much flexibility in interactive data visualization systems can cause

lead to issues of p-hacking or forking paths problems [53, 52] without grounded hy-

potheses that are common in exploratory data analysis. One recent approach by

Hullman and Gelman proposes a more general framework for developing graphical

inference theories by highlighting that the concept of a model check in a Bayesian

statistical framework may provide a mechanism to unite exploratory and confirma-
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tory analysis [25]. They highlight that such an approach provides new opportunities

for data visualization designers and empirical researchers. Further, another promis-

ing approach to developing more theory on visualization user behaviors for cognitive

biases include resource rational approach [60, 294]. Wesslen et al. [295] argue for

the integration of resource-rational analysis through constrained Bayesian cognitive

modeling to understand cognitive biases in data visualizations to provide a more re-

alistic bounded rationality representation of data visualization users. They argue

resource-rationality can provide a quantitative framework that can make theoretical

predictions for visualization users’ decisions that can then be tested empirically. By

empirically testing, the original theory can be modified based on experiments through

further constraints that reflect more realistic phenomenon and bridge the gap from

Marr’s computational to algorithmic level of representations [296].

8.2 Closing Remarks

Recent gains in artificial intelligence and machine learning provide many oppor-

tunities but also pose great risks due to a lack of humans control if they amplify

emerging AI risks like fairness or explainability. Human-centered artificial intelli-

gence [16] provides a promising alternative that aims to increase both automation

and human control by focusing AI algorithms around humans instead of humans

around AI. Interactive data visualizations have shown many opportunities to develop

insight in data analysis through amplifying individual cognition abilities and could

have many benefits in HCAI frameworks. However, past research in psychology,

cognitive science, and behavioral economics has outlined many problems in human

judgment known as cognitive biases that could add noise and problems within HCAI.

This dissertation provides five experiments to explore the role of cognitive biases in

interactive data visualizations and outlines both evidence of and endeavors to find

ways to better harmonize humans’ role to design to better HCAI systems and thus

enable better decision-making.
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