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Abstract

ADAM EARNHARDT Hypercoordinate Silicon CNC-Pincer Complexes for Electronic Devices

(Under the direction of THOMAS A. SCHMEDAKE)

Previous studies have demonstrated hexacoordinate silicon pincer complexes to be
attractive candidates for efficient electron and hole transport layers in organic electronic devices.
This work expands the field by incorporating carbon-nitrogen-carbon (CNC) pincer ligands for
the first time in hypercoordinate silicon complexes and explores the impact of the ligand on
molecular and material properties of the complex. The dianionic 2,6-diphenylpyridine ligand
(DPP) was selected for the CNC-pincer studies. 2,6-Di(bromophen-2-yl)pyridine (DPP) was
used as a precursor forming the known intermediate dilithiodiphenylpyridine dianion. This
dianion was then reacted with either silicon tetrachloride or dichlorodimethylsilane, forming the
respective hypercoordinate silicon complex. For comparison, 2,6-bis(benzimidazol-2-yl)pyridine
(bzimpy) was also reacted with dichlorodimethylsilane in the presence of triethylamine (TEA) to

form the pentacoordinate complex Si(bzimpy)Mex.

The resulting pentacoordinate complexes were not fully isolated nor implemented into
devices due to high reactivity or instability of the Si(pincer)R2 complexes. The hexacoordinate
Si(DPP)2 complex however was quite robust, showing resistance to hydrolysis in NMR solutions
of 50:50 DMSO:H20 and displaying thermally stability to over 420 °C and a high T¢ (263 °C).
CV data shows an oxidation wave and a reduction wave both of which were partially reversible
(Eox.onset = +0.47 V' and Ered,onset = -2.20 V vs. Fc+1/0), E(HOMO) = -5.27 V and E(LUMO) = -
2.60 V and a band gap AELumo-Homo = 2.73 V. Devices were made to test charge mobilities of

Si(DPP), the three best devices (hole only and electron only) were averaged for their respective
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mobilities in the space charge limited current regime resulting in an electron mobility of pe =

1.8x10* cm?/Vs and a hole mobility of ph = 1.1x10° cm?/Vs.
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Chapter 1: Hypercoordinate silicon for organic electronics

1.1 Introduction to organic electronics

The history of organic electronics began with the discovery of acceptable electronic
properties in organic materials between the 1950°s and 1960°s. Shortly after, crystals of organic
compounds were found to be electroluminescent.r:2 The field has expanded rapidly since then, to
the point where organic electronics offer a host of benefits over traditional electronics. Organic
electronics can be printed onto various surfaces, they are often seen as a cheaper alternative, and
many of their properties can be tuned with the inclusion of different substituents. In modern
times organic electronics are found in a variety of products: signage and displays often use
organic light emitting diodes?, solar cells and detectors in biomedical applications have been
made using organic photovoltaics*®, and in some cases organic field-effect transistors have been

put in electronic paper®.

One issue that has been endemic with organic electronics is the inablitiy to design and
synthesize materials that are fully able to utilize both singlet and triplet excitons®. Device
architecture is another issue; as the number and type of material components continues to
increase. These layers can be exchanged for a variety of reasons, however the most basic devices
consist of a metal cathode, an electroluminescence layer (EL), an electron transport layer (ETL)
and a hole transport layer (HTL) on an indium tin oxide (ITO) anode*. The diagram shown in
Figure 1 uses tris(8-hydroxyquinoline)aluminum(lll) (Algs) as an EL, N,N'-Di(1-naphthyl)-
N,N’- diphenyl-(1,1’-biphenyl)-4,4’-diamine (NPB) as a HTL, and a magnesium/silver alloy as
the ETL/cathode. More recent devices have been focused on improving the efficiency and
lifetimes of OLED’s. Modern devices contain all the components essential for basic devices but

with additional materials layered to enhance these qualities. The single emitter device shown on



the left in Figure 2 is typical for commercial products, each layer shown would have multiple

materials’. On the right of Figure 2 is a tandem OLED, which contains multiple emissive layers

% 409

Alqj

allowing for a multi-photon emission®.

ITO

Figure 1: A basic OLED device and some commonly used component compounds.®

Cathode H

Electron transport layer (ETL) EML2 s
Hole blocking layer (HBL) =] | |
Ernissive layer Intiermchaty

Hole transport Layer (HIL) B 7]

Hole injection layer [HIL) EIFII:-:I * Lo

Anode HIL
Substrate B
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Figure 2: Modern device structures, image taken from®. Shown on the left is a single emitter
OLED, on the right is a tandem OLED.

Even with the commercial applications and advancements of OLEDs in recent years, the
lighting and electronic industry needs new materials that improve the lifetime, efficiency, and
sustainability °. Chelated metals have proven to be an invaluable subclass of materials and have
been successful in fulfilling the needs of OLED’s 112, Synthetically, metal centers offer
enhanced tunability for both device properties and molecular properties, as well as regulating
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excited state relaxation, limiting molecular rotations, and influencing the range of charge carrier
delocalization. An industry paradigm for metal chelates is tris(8-hydroxyquinoline) aluminum
(Algg). It offers advantageous optoelectronic properties, a high reliability and can be thermally

deposited as a high-quality thin film.

Metal chelates have also been adopted to overcome the triplet exciton harvesting
problem. When the injected electron and hole recombine in the active region of an OLED, the
resulting exciton can be a singlet (formed 25% of the time) or a triplet exciton (75%). Since the
excited triplet state (T1) is inevitably lower energy than the excited singlet state (S1), and since
the relaxation from the T state to the So state is spin-forbidden and prohibitively slow in organic
compounds, the triplet excitons are wasted. Ir(111) and Pt(Il) complexes have been developed to
serve as triplet based phosphors to utilize the triplet excitons and greatly enhance the overall

device efficiency®31415,

More recently, thermally activated delayed fluorescence (TADF) has been exploited as an
alternative approach to overcoming the triplet exciton harvesting problem?1’, This approach
avoids the use of rare heavy metals (e.g. Pt and Ir) and instead relies on a synthetically designed
small singlet-triplet exciton gap (AEst~= 100 meV or less) in all-organic compounds. In these
materials, thermally induced reverse intersystem crossing converts the non-radiative triplet
excitons to emitting singlet excitons. These TADF materials markedly improve the overall
lifetime and efficiency, however the rest of the OLED stack layers developed for metal chelate
emitters are no longer suitable for the emerging TADF emitters. The need for new electron
transport layer materials is particularly urgent, since all of the leading ETLs used by
manufacturers are incompatible with the TADF-enabled devices due to stability/purity issues,

low triplet exciton energy levels, or low glass transition temperatures (Tg) (Table 1). An ideal



ETL for TADF emitters should be chemically stable and easily purified to very high levels of
purity (sublimation preferred). To enable full spectrum emitters, the T, state should be around 3
eV or greater. The T is a particular challenge for many of the existing ETLs. High resistance of
the organic layer stack can lead to considerable heating during operation. If the temperature
fluctuates around the Tg the resulting phase changes of the ETL lead to strain and dislocation,
and device degradation. Despite its otherwise poor performance metrics, the low-cost and high
Tg of Algs still make it an attractive ETL for commercial grade devices with triplet phosphors.

New ETLs will be needed for the next generation of TADF enabled OLEDs though*®-?°,

Table 1: Properties of commercial grade ETL materials, problematic properties highlighted in

red.18-2°
Stability or Retail price e mobility LUMO Ty, triplet Tg or MP
purity issues (S/g) (x10=cm?/Vs) | (eV) | exciton (eV) (°C)
Algs Isomerizes 45 0.4-1.1 -2.9 2.1 175
T2T Stable 1034 12 -3.0 2.8 55
BPhen Stable 108 52 -3.0 2.5 66
TPBi Stable 566 3.3-8.0 -2.7 2.7 122

Qs
i

Algs T2T BPhen TPBi

1.2 Hypercoordinate silicon

Though most silicon-containing compounds have tetracoordinate, tetravalent silicon

atoms, there are numerous examples of stable pentacoordinate and hexacoordinate species.



While some sources use the term hypervalent to describe compounds or complexes in which a
main-group atom appears to have exceeded its octet, there is some controversy over the used of
this term. Hypercoordinate does not imply a specific type of chemical bonding and side steps
this controversy. For this work the term hypercoordinate will be used. One interesting class of
pentacoordinate silicon complex are the silatranes studied by Voronkov3%-3, The pentacoordinate
silatranes with their transannular nitrogen-silicon bonds are an important class of compounds that
have found use in cross-coupling reactions®, the immobilization of biomolecules®’, and other
pharmacological applications®. Another important class of hypercoordinate silicon compounds
are silicon porphyrin complexes and other similar macrocycles. Silicon porphyrins and
phthalocyanines are hexacoordinate complexes and have been studied in both biological® and
energy-related fields*°. With both the silatranes and the silicon porphyrins (Figure 3), the
polydentate ligand incorporates the formally neutral nitrogen base site and provides both

moisture and thermal stability needed for applications in various other fields.

N \\ =N
[N
e L=
|\0 \ ‘
i N
N = —N

Figure 3: Structural examples of both silatranes (left) and the silicon porphyrins (right).

Non-constrained hemilabile carbon-nitrogen (CN) bidentate ligands or nitrogen-carbon-
nitrogen (NCN) tridentate ligands have weak long-range Si-N interactions at most. Thus existing
SiC4N2 skeleton framework structural studies are rare. The Cambridge Structural Database has
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only one result for this skeleton with a Si-N intramolecular bond of 3 A or less and no results for

2 A or less (Figure 4).

Figure 4: Structures of hypercoordinate silicon compounds with the framework of SiIC4N1 or
SiCAN2 reported from the Cambridge Structural Database.**3

By contrast, the potential for further use of Voronkov’s strategy of a polydentate ligand
containing a constrained nitrogen-silicon bond is extremely attractive for higher coordinate
organosilicon complexes. This suggests that carbon-nitrogen-carbon (CNC) pincer ligands would

be attractive for expanding the SiC4N2 framework (Figure 5).

Figure 5: The general framework of silicon complexes with CNC pincer ligands.

Further review of the literature shows that in recent years hexacoordinate silicon

complexes have found a wide variety of uses. Specifically, a review article written by Peloquin



and Schmedake* (Figure 6) covered many reported uses of various pyridine-containing ligands

in hexacoordinate silicon complexes.
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Figure 6: Some of the various applications of recently reported hexacoordinate silicon
complexes containing pyridine are shown above.

These studies have opened up new avenues of research based on applications that extend
past the struture of complexes. The Shibahara®® paper specifically looked at Shiff base style
complexes and their fluorescent properties, providing the opportunity of a new range of
photo/electroluminescent materials. Portius* studied the potential application of hexacoordinate
silicon complexes as high-energy materials. This style of complex could be a very attractive
alternative to lead azide, a toxic but widely used explosive. Meggers*’ developed hexacoordinate
silicon complexes analogous to some transition metal complexes for biological and
pharmaceutical purposes. These were found to be quite stable and resistant to hydrolysis. Lastly,
Schmedake*® showed that the redox chemistry coupled with the stability of the different

oxidation states provide possibilities for complexes in electronic applications.



As mentioned by Peloquin and Schmedake, “There is very little information on
terpyridine... and other tridentate pyridine-containing ligands that are well known in the
transition metal community, which could be excellent ligands for stable hexacoordinate silicon
complexes.”** The primary focus of the Schmedake research group has since become the study
and manufacture of pincer ligand containing hypercoordinate silicon complexes as potential
electroactive components in organic electronic devices. Pincer ligands were chosen to investigate
ligands common in other areas of coordination chemistry research with Si(pincer). motifs
(Figure 7). There are many additional benefits for using pincer ligands in these complexes: high
thermo/chemical stability, tunability of electronic and optical properties, and a uniform
deposition of thin films. The pincers chosen for further study include at least one pyridine

subunit to assist with stabilization of the complexes.

A =CN,0,8

Figure 7: Shown above is a generalized motif for Si(pincer). complexes; carbon and
heteroatoms may be used in their formation.

One of the first complexes investigated was formed using a 2,6-bis(benzimidazol-2-
yl)pyridine (bzimpy) pincer ligand. The general reaction scheme for bzimpy and substituted
bzimpy compounds can be found in Figure 8, the Si(bzimpy). complex was found to be air and

water stable with potential to be an electron transport or electroluminescent layer. Full
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characterization of the complex included thermogravemetric anaylsis (Figure 9) and cyclic

voltammetry (Figure 10) done by Kocherga and colleagues *°.

R" R
R" | S
Na N
N\ R" N N Rn
NH 0.5 eq. SiCl, \ S
2eq. NEt3 = s“‘ ”
r—{ N —_— R’ 'St R
= CHCl, R \ R"
NH i &
N/ R N NQR“
N, /N l \N
R x
R"
Rl
L1:R'=H, R"=H 1:R'=H, R"=H
L2 R'=MeO, R"=H 2R'=MeO, R"=H
L3:R'=H, R" = Me 3R =H, R" = Me
L4: R' = MeO, R"=Me 4:R'=MeO, R"=Me

Figure 8: The general reaction scheme of Si(bzimpy). complexes.

Mass (mg)

0 S S N — —
0 100 200 300 400 500 600 700 800
Temperature (°C)

Figure 9: The TGA data for the Si(bzimpy). complex.



The TGA shows that the complex is quite stable, only beginning to decompose around
500 °C. One issue with the Si(bzimpy)2 complex is the appearant irreversibility of the reduction
wave shown in Figure 10; this could be due to a multitude of reasons, though the imine position

has potential to form a radical, thus hindering reversibility.

HA

.
.'“-.,|’
.

S

-0.8 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7

Volt vs Fc/Fc*

Figure 10: The cyclic voltammetry (Si(bzimpy)2in 0.1M TBAPFe/CH3CN with a platinum disc
working electrode and a scan rate of 200mV/s).

Despite these potential issues, implementation of the Si(bzimpy). complex into devices
was successful. Intially, Si(bzimpy). was used as an emmisive layer as shown in Figure 11, with

each subsequent device generation showing higher efficeny.
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Generation 1 Generation 2 Generation 3

%
LiF A
il Bphen | LiF
= Si(pincer); —_ Si(pincer)
iy NPB | |
‘» | Si(pincer); | ® MoO; ® MoO;

TO ITO ' ITO I

Figure 11: Generations of device structures with Si(bzimpy). as the emissive layer °.

The Si(bzimpy). motif was further expanded upon recently by targeted functionalization
of the ligand as seen in Figure 8%°. The addition of methoxy substituent onto the pyridine
(MeObzimpy) or methyl substituents onto the outer most carbons on the benzimidazole
(Mezbzimpy) or the combination of the two (MeOMe2bzimpy) allowed for the optoelectronic
properties of the complexes to be tuned to some extent. All derivative complexes maintained
exceptionally high thermal stabilty, with thermogravimetric analysis showing stability of over

400 °C (Figure 12).



80 t
g 60 1 ~—Si(bzimpy),
é —Si(MeObzimpy);
40 . =—Si(Me;bzimpy),
~=Si(MeOMe;bzimpy),
20 —
0 ARy ARy SRR T,

100 200 300 400 500 600 700 800
Temperature (°C)

Figure 12: TGA data for the functionalized bzimpy complexes *°.

The fluorescence and UV-vis absorption spectra show Si(bzimpy). complexes red shifted
with the addition of the methyl groups and blue shifted with the addition of the methoxy group

(Figure 13).

100 +
s
. 8¢ =
£ g 807
o .E
] 5
3 6 g 60 +
= —
3 z
£ 4 2 40 4
@
3 g
g 2 4 20 +
0 + + + t + 0 " + + ¥ ’ =
300 350 400 450 500 550 400 450 S00 S50 600 650 700
Wavelength (nm) Wavelength (nm)

Si(MeObzimpy), Si(MeOMe,bzimpy), Si(bzimpy), Si(Me,bzimpy),

Figure 13: Optical studies of the bzimpy analogs (uv-vis top left, florescence spectra top right)
and appearance in CH,CI2>°.
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Molecular orbital mapping of the complexes show the HOMO is delocalized over the
benzimadizole portion of the ligand while the LUMO is spread over the pyridine. With the
addition of the electron donating methyl substituents onto the benzimadizole the HOMO energies
were raised, thus closing the band gap slightly. Conversly, the methoxy group which was added
only on the pyridine moiety raised the energy levels of the LUMO and widened the band gap.
The LUMO of all substituted complexes was raised when compared to the base Si(bzimpy)2
complex and the HOMO was raised in all cases except the methoxybzimpy which lowered

slightly (Figure 14).

Band Gap Energies

25 .
Si(BZIMPY), Si(MeOBZIMPY); Si{MeOMe;BZIMPY),

LUMO -3.09 eV SilMelBZIMPY), LUMD -3.08 eV

LUMO -2.4 eV LUMO -3.25 eV

-3.5

Energy (eV)

HOMO -5.85 2V HOMO -5.79 2

HOMO-59 eV HOMO -5.95 gV

-6.5

Figure 14: The comparative band gap energies of bzimpy and bzimpy analog complexes.

Devices of the complexes were manufactured to measure the charge mobilities. The
devices were made by vacuum-deposition on an ITO glass substrate, from there device structures
differed: ITO/Si(bzimpy)./Al for electron mobilities and ITO/PEDOT:PSS/Si(bzimpy)2/Au for
hole mobilites. The highest performing devices for electron and hole mobilitiees were made with

the base Si(bzimpy). complex, however the Si(Me2bzimpy). complex performed only slightly
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worse®® (Table 2). Unfortunately, incorporating the LUMO raising methoxy substituent

significantly reduced the charge mobility of the Si(pincer). complexes.

Table 2: Charge mobilities of the Si(bzimpy). complexes.

Complex e (cm?/V/s) Uh (cm?/Vs)
Si(MeObzimpy): 251 X 1078 1.76 X 108
Si(MeOMezbzimpy), 4.89 X 10”7 3.19 X 108
Si(Mezbzimpy), 2.94 X 105 1.44 X 10
Si(bzimpy)2 9.68 X 10 5.31 X 10

1.3 Contents of this work

This thesis explores the development of hypercoordinate silicon pincer complexes as
ETLs for OLED applications, focusing on the CNC-type pincer ligands. The impact of replacing
the NNN-bzimpy type pincer motif with a CNC-diphenylpyridine pincer motif is studied to
deterimine the impact of the new ligand on the stability and the thermal, material, optical, and
electronic properties of the resulting pentacoordinate and hexacoordinate complexes. Prototype
devices containing the more stable compounds are also described and charge mobilities of the
new transport layer materials are determined. Finally, the leading Si(CNC-pincer), complex is
compared to existing commercial grade ETL materials and suggestions for additional

improvements are proposed.
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Figure 15: The complexes synthesized and discussed in this work.
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Chapter 2: Synthesis and characterization of hypercoordinate silicon CNC-pincer
complexes

2.1 Ligand selection and synthesis

The diphenylpyridine (DPP) ligand was selected as the CNC-pincer in this study for
several reasons. First, the dilithiodiphenylpyridine dianion is a known intermediate formed from
the reaction of 2,6-di(bromophen-2-yl)pyridine with LiBu" and should be a suitable precursor for
the formation of pentacoordinate and hexacoordinate silicon pincer complexes (Figure 16).
Secondly, the diphenylpyridine ligand was predicted to be capable of forming a tridentate, pincer
arrangement with a silicon center with only moderate ring strain. Finally, the resulting Si(DPP).
structure would be reminiscent of the spiro-silabifluorene motif, a motif that has been exploited
in a range of hole-transport material due to its high hole mobility and tendency to raise the glass
transition temperature due to the perpendicular arrangement of the fluorene substituents®. It was
anticipated that the Si(DPP). structure would also benefit from high charge mobility and that the

tortuosity resulting from the two perpendicular diphenylpyridine ligands would produce high Tg.
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Si(DPP),

Figure 16: Proposed synthetic scheme for pentacoordinate and hexacoordinate silicon CNC-
pincer complexes.

The ligand precursor 2,6-di(bromophen-2-yl)pyridine can be synthesized by Suzuki
coupling of relatively low-cost reagents 2-bromophenylboronic acid and 2,6-dibromopyridine
following the procedure described by Wan and coworkers (Figure 17)°2. The resulting
compound was isolated with a typical yield of 43% in our hands, while Wan reports yields of
61%.°2 The relative simplicity and versatility of the Suzuki coupling introduces many options for
potential modifications of the Si(DPP). platform, but unfortunately lithiation in the subsequent
steps limits the synthetic versatility. Benzylic hydrogens, halogens and other groups for example

would likely prove problematic with this scheme.

X
OH |
: s AP
N @ oK 1 Toluene, Ethanol. Water N
+ K-CO: N>
I . — >
Z 2.Pd 3)s. 75°C
B e o & Pd(PPh;),, 75°C Br  Br

43%

Figure 17: The synthetic scheme for DBPP.
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2.2 Pentacoordinate complexes®?

Previous research by Jia and coworkers reported rapid decomposition at ambient
temperature for pentacoordinate silicon complexes Si(bip)Ph2 and Si(bap)Ph> (bip = 2,6-bis(2'-
indolyl)pyridine and bap = 2,6-bis[2'-(7-azaindolyl)]pyridine)®4. Since the Si-C bond is less
susceptible to hydrolysis than the Si-N bond, we predicted that the reaction of the
dilithiodiphenylpyridine dianion with dichlorodialkylsilanes or dichlorodiarylsilanes, SiR2Cl,

might provide access to stable, pentacoordinate Si(CNC-pincer)R. complexes.

For comparison, the synthesis of the related complex Si(bzimpy)Me;, was also attempted.
The reaction of the bzimpy ligand with excess dichlorodimethylsilane in deuterated chloroform
and triethylamine as an HCI scavenger produced the pentacoordinate complex Si(bzimpy)Me>
(Figure 18). 2°Si NMR spectroscopy revealed a signal at -74 ppm, consistent with a
pentacoordinate silicon complex. MALDI also produced evidence of formation of
Si(bzimpy)Me2 (m/z = 368.8). The resulting complex was extremely susceptible to solvolysis.
Since hydrolysis/solvolysis regenerates the bzimpy ligand, a large excess of SiMe2Cl, was added
to the NMR tube, and crystals of Si(bzimpy)Me2 were obtained. The NMR tube was shattered
under mineral oil, quickly mounted on a nylon loop, and transferred to a 100 K cooled nitrogen

stream on the x-ray diffractometer for structure determination.
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1. CHCly,
Triethylamine

1. Dichlorodimethylsilane

Figure 19: Crystal structure of Si(bzimpy)Me2*1/2 CHCIs, hydrogen atoms and solvent
molecules excluded for clarity. Space group P1 shown as 50% probability ellipsoids.>?

The crystal structure of Si(bzimpy)Me; (Figure 19) clearly indicates a pentacoordinate
silicon center having a SiC2N3 skeleton, with a planar bzimpy ligand and a distorted trigonal
bipyramidal geometry at silicon with the pyridine and methyl substituents occupying the
equatorial plane (2C20-Si-C21=122.25(7)°, £C20-Si-N3= 120.25(6)°, and £C21-Si-N3=
117.50(6)°) and the benzimidazole substituents occupying distorted axial positions (£N5-Si-N1=
159.28°). The short transannular N3-Si bond 1.9085(13)A is identical to the other two Si-N
bonds (1.9065(13)A and 1.9085(13)A), a consequence of the steric constraint resulting from the

NNN-pincer geometry.53
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Several attempts to synthetize the pentacoordinate species Si(DPP)Me; were
unsuccessful, although there is evidence of transient formation of this species. The reaction of
2,6-di(bromophen-2-yl)pyridine with 2 equivalents of LiBu" at -98 °C in THF under an argon
atmosphere produced the dilithiodianion. This dilithiodianion was subsequently reacted with 1
equivalent of dichlorodimethylsilane (Figure 20). The reaction was allowed to stir and slowly
warm to room temperature. 2°Si NMR indicated a peak at -72 ppm, consistent with the expected
signal for a pentacoordinate silicon complex. MALDI of the solution mixture also provided
evidence of complex formation with 2 strong peaks corresponding to [M(-CHz)]+, m/z = 272.8;

[M]+, m/z = 288.8.5 However, all attempts to isolate the product were unsuccessful.

1. THF, -98 °C, LiBu®

> N
2. Dichlorodimethylsilane
Si
VAN

Figure 21: The hydrolysis product Si(DPP)Me2OSi(DPP)Mex.
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A similar process to retrieving a crystal sample of Si(bzimpy)Me> was followed for
Si(DPP)Me:. Unlike with Si(bzimpy)Mez, hydrolysis doesn’t regenerate a reactive ligand
however, and instead crystal of a partial hydrolysis product were obtained from the reaction
mixture (Figure 21). Interestingly, the C-Si bond (1.89 A) of the hydrolysis product slightly
decreased compared with the C-Si bonds in Si(DPP)2 (1.97 A, described in section 2.3). The
slightly shorter bond length suggests there may be a slight amount of ring strain in the Si-pincer
systems that is relieved upon ring opening. Additionally, the hydrolysis product contains a Si-O-
Si bridge, with an average Si-O bond length of 1.86 A somewhat long for a Si-O bond in a

disoloxane.

It is uncertain at this time if more stringent water exclusion could lead to isolation of
Si(DPP)Me,. On the one hand, the anticipated greater hydrolysis resistance is evident in the fact
that hydrolysis appears to stop following hydrolyis of the first silicon-carbon bond of the
Si(DPP)Me, complex. Presumably the ring strain and steric crowding around the silicon center is
relieved after the first hydrolysis and formation of the disilylether. Nevertheless, the moisture-
sensitivity of both pentacoordinate silicon complexes precludes their development as ETL

materials in OLED devices, and they were not explored further.
2.3 Hexacoordinate complexes®?

Reaction of the dilithiodiphenylpyridine dianion with silicon tetrachloride at -98 °C in
THF produced Si(DPP)2 (Figure 22). Isolated yields tended to be poor (around 17%), perhaps
due to the ring strain of the 2:1 complex and the possibility of open chain alternatives.

Nevertheless, Si(DPP)2 could be isolated as a pale yellow solid. The *H-NMR spectrum of
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Si(DPP). indicates one of the aromatic peaks of the DPP ligand shifted to 6.0 ppm due to
shielding from the aromatic ring current of the pyridine rings consistent with a kinetically inert
hexacoordinate complex in solution. A 2°Si-NMR peak at -150 ppm provides further evidence of
a hexacoordinate silicon complex in solution. X-ray quality crystals of Si(DPP). were obtained
from THF (Figure 23) and from CHCIs (Figure 24) and used for x-ray structure determination.
The hexacoordinate silicon center of Si(DPP). adopts a distorted octahedral geometry with
nearly planar ligands oriented perpendicular to one another. The Si-N bond is within normal Si-
N bonding distances Si1-N1=1.9095(14) A and Si1-N2 = 1.9126(14) A. The four Si-C bonds are

also within conventional Si-C bond lengths at just under 1.97 A 53

o o

N e 1. THF, -98 =C, LiBu® Tk~ . =

L J
!

S N
HH —f,-_ﬂf-;['u._\ .-,-'-L*-h .,-f,-fs-] 2. Silicon tetrachlonde “, g HH.;H..I---"""H

Figure 22: The reaction scheme for Si(DPP)a.

Raman spectroscopy was performed on crystals of Si(DPP)., (Appendix S). The
experimental spectrum matched well with predicted Raman spectrum (calculated in gas phase,
B3LYP/6-31G*). The band 1043 cm™ in the experimental spectrum matches the 1050 cm™ in the
predicted spectrum. This band corresponds to the symmetric stretch (reminiscent of a tetragonal
Jahn-Teller distortion) of the SIC4N2 framework and could be a potential identifier for future
SiC4N2 complexes. Additionally, the close match of the experimental and calculated spectra

provides evidence of the accuracy of the modeling.>
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Figure 23: The crystal structure of Si(DPP).*THF with space group P2, /n 50% probability
ellipsoids. Hydrogen atoms and solvent molecules excluded for clarity. 3

Figure 24: The crystal structure of Si(DPP)2*CHCI350% probability ellipsoids.

Hydrogen atoms and solvent molecules excluded for clarity.>*The Si(DPP), cyclic voltammetry
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data (Figure 25) shows both an oxidation wave and a reduction wave (Eox,onset = +0.47 V and
Ered,onset = -2.20 V vs. Fc+1/0, both partially reversible) these values provide a E(HOMO) = -5.27
V and E(LUMO) =-2.60 V and a band gap AELumo-Homo = 2.73 V. These values were
calculated using the equation E(LUMO/HOMO) = -e[Erediox,onset + 4.8 V). This is a considerable
shift towards higher (less negative) LUMOs and HOMOs compared to Si(bzimpy)., that has a
E(HOMO) =-5.9 V and an E(LUMO) =-3.4 V. This shift was expected from replacing the N-
rich bzimpy ligand with the diphenylpyridine ligand. This shift also makes it possible to directly
observe both the reduction and oxidation waves for the first time in a Si(pincer)2 complex. In
previous studies with Si(bzimpy). analogs, only the reduction potential could be observed and

only the LUMO directly calculated. The HOMO was then estimated from the optical band gap.>
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Figure 25: Cyclic voltammetry data of Si(DPP), in DMSO with TBAPFs and Pt electrode.®
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UV-vis spectroscopy of Si(DPP) indicates a weak absorbance in the visible spectrum
centered at 420 nm, consistent with the pale yellow appearance. To estimate the band gap from
the absorbance spectrum, a tangent is drawn to the absorbance curve on the low energy side of
the lowest energy peak and extended to the base line. Doing so for Si(DPP) indicates an optical
band gap of approximately 460 nm or 2.7 eV. Note that this estimate of the band gap is quite
close to the band gap determined from cyclic voltammetry, AELumo-Homo = 2.73 V.>? This
observation provides further validation of using the optical band gap for the estimation of
HOMOs for Si(pincer). complexes that lack oxidation waves in the solvent window of the cyclic

voltammetry experiments (Figure 26).

2.5

Molar Absorptivity (x104)
=
= n

o
[¥]
1

Fluorescence Intensity (arb. units)

300 400 500 600
Wavelength (nm)

Figure 26: The UV-Vis (red) spectrum and fluorescence (blue) spectrum of Si(DPP); in CH.Cl..
Excitation for the fluorescence spectrum was done at 360 nm.>3
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Despite the low reaction yield, Si(DPP)2 shows remarkable thermal stability.
Thermogravimetric analysis was performed at a heating rate of 5 °C/min from room temperature
to 850 °C under ultrapure nitrogen gas. The TGA plot for Si(DPP)2 is shown in Figure 27, and
the complex appears to be stable up to 420 °C at which point roughly half the mass is loss
suggesting decomposition through loss of one ligand at a time. DSC was carried out using a
heating rate of 5 °C /min from room temperature to 400 °C under ultrapure nitrogen gas. The
DSC curve (Appendix Q) indicates a small endothermic process occurring with an onset at 263
°C, which is interpreted as the glass transition temperature (T4). The complex also appears to be
resistant to hydrolysis, no evidence of hydrolysis was observed in the NMR spectra of samples of

Si(DPP); after 48 hours in a 50:50 mixture of DMSO and water.53
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Figure 27: TGA data recorded for Si(DPP);
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In conclusion, the DPP ligand does not provide adequate stabilization of pentacoordinate

silicon complexes. There is evidence that supports the formation of Si(bzimpy)Mez and

Si(DPP)Mey, but their susceptibility to solvolysis presents a challenge to their utility. Even

accidental exposure of Si(DPP)Me: to air results in partial hydrolysis and ring-opening cleavage

of one of the Si-C bonds. On the other hand, sterically protected Si(DPP). shows remarkable

thermal and chemical stability. Furthermore, the wide bandgap shifted to higher potentials is

attractive for OLED applications. The exploration of the material properties and prototype

device studies of Si(DPP), are explored in Chapter 3.
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2.4 Experimental
2.4.1 General®®

Tetrahydrofuran (THF) was dried using a benzophenone/sodium still and collected fresh
before use. 2,6-bis(benzimidazol-2-yl)pyridine and other reagents were purchased and used

without additional purification.

All guantum chemical calculations were performed using density functional theory
(DFT) 58 realized in Gaussian 16 Rev. C.01 program packages. We have performed
calculations applying Becke three parameter hybrid functional >° which uses the non-local
correlation provided by the Lee, Yang, and Parr expression 896! - B3LYP. As a basis set we have
employed standard basis set 6-31G* based on a gaussian type of functions. The combination of
functional and basis set was selected based on precision of prediction of the electronic spectrum
of silicon hexacoordinated compound Si(bzimpy) using time-dependent DFT approach. For all
calculated structures optimized structures were obtained. Frequencies calculations demonstrated
absence of negative values indicating that all obtained structures correspond to the global
minimum. Single-point energy for structures Si(DPP), and the symmetric dimer

of Si(DPP)2 were —1707.5683 Hartrees and —3415.134410 Hartrees, respectively.

Single crystal X-ray diffraction data of Si(bzimpy)Mez-%2CHCIs was acquired with a
Rigaku Gemini Ultra diffractometer using Cu Ka radiation (A = 1.5418 A), while diffraction data
of Si(DPP)2-THF and Si(DPP), -CHCIz were measured using a Bruker D8 Venture
diffractometer with Mo Ka radiation (A = 0.71073 A). Suitably sized crystals were coated with a
thin layer of oil, mounted on the diffractometer, and flash cooled to 100 K in a nitrogen cold

stream. Data were collected using phi and omega scans. CrysAlisPro 2 and Apex3 3 software
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were used to control the diffractometers and perform data reduction. The crystal structures were
solved with SHELXS and SHELXT %4, Alternate cycles of model-building in Olex2 ®° and
refinement on F? using full-matrix least squares techniques in SHELXL followed. All non-
hydrogen atoms were refined anisotropically. All hydrogen atom positions were calculated based
on idealized geometries and recalculated after each cycle of least squares. During refinement,
hydrogen atom — parent atom vectors were held fixed (riding motion constraint).
Crystallographic data is given in Appendices E, I, P. Crystallographic data of
Si(bzimpy)Mez-%CHCls, Si(DPP).- THF and Si(DPP).-CHCIs have been deposited with the

Cambridge Structural Database, under deposition numbers 2,109,550-2,109,552.
2.4.2 Synthesis®3

2,6-bis(2-bromophenyl)pyridine (DBPP): 2,6-dibromopyridine (8.21g, 34.66 mmol), 2-bromo-
phenylboronic acid (14.6g, 72.70 mmol), and K>COs (28.71g, 207.74 mmol) were added to a
solvent mixture of toluene (500 mL), ethanol (140 mL), and water (140 mL) in a Schlenk flask.
The mixture was stirred and degassed. The flask was then put under a nitrogen environment,
using the counterflow of nitrogen gas Pd(PPhs)s (29, 1.73 mmol) was added quickly before
resealing the system. The solution was heated to ~75°C and stirred at this temperature for 24h.
The reaction mixture was then cooled to room temperature to provide a yellow suspension that
was then put on a rotary evaporator. The resulting solid was then extracted with dichloromethane
and water, the organic layer was separated and dried over MgSOsg, filtered through Celite, and
concentrated down to dryness. The solids were then recrystallized from a DCM/MeOH mixture,
washed with MeOH, and dried under vacuum (5.84 g, 43.3% yield). MW= 389.09 g/mole. NMR

data is consistent with the reported data from Wan et. al.>
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Si(bzimpy)Mez: 2,6-bis(benzimidazol-2-yl)pyridine (62 mg, 0.20 mmol) was added to an NMR
tube with 1 mL of alumina dried CDCls. The tube was then sealed with a septum and an excess
of triethylamine (100 uL, 0.72 mmol) was added, the tube was then flushed with argon.
Dichlorodimethylsilane (100 uL, 0.82 mmol) was then injected. Once finished with the NMR
experiments, the NMR tube was set aside and left undisturbed until crystals were formed. The
contents of the NMR tube were then poured into a Petri dish containing mineral oil, an
appropriate crystal was quickly mounted onto a nylon-loop goniometer head and placed in the
cryostream to obtain the x-ray crystal structure. *tH NMR (CDCls, 500 MHz): § (ppm relative to
TMS) = 0.89 [s, 6H], 7.30 [ddd, 2H, 8.0 Hz, 7.1 Hz, 1.4 Hz], 7.36 [ddd, 2H, 8.0 Hz, 7.7 Hz, 1
Hz], 7.68 [d, 2H, 7.8 Hz], 7.84 [d, 2H, 7.8 Hz], 8.29 [d, 2H, 7.7 Hz], 8.39 ppm [t, 1H]. *C{'H }
NMR (CDCls, 125 MHz): § (ppm relative to TMS) = 5.3, 113.9, 118.6, 121.0, 123.1, 124.6,
137.9, 147.2, 148.1, 148.8, 149.6. 2°Si NMR (CDCl3, 99 MHz): § (ppm relative to TMS) = -73.3.

MS (MALDI-TOF): MH+, m/z = 368.8 (Appendices A-F).

Attempted synthesis of Si(DPP)Mez2: 2,6-bis(2-bromophenyl)pyridine (0.112 g, 0.28 mmol)
was placed into a dry Schlenk flask with a stir bar. The flask was degassed before THF (~50 mL)
was added. The solution was placed under argon and stirred in a methanol slushy (-98 °C) for 10
minutes. LiBu" ( 0.253 mL, 0.63 mmol) was then added to the flask, and stirred at low
temperature for an additional 30 minutes. The solution turned a dark brown/rusty color upon
addition. Dichlorodimethylsilane (0.04 mL, 0.32 mmol) was then added to the flask and stirred at
-90 °C for 1 hour and then gradulally warmed to room temperature. The solution was evaporated
under vacuum and put under nitrogen again. CD,Cl, was added to the reaction flask and the
resulting solution was used for NMR and MALDI. °Si NMR (CD:Cl; -dz, 99 MHz): § (ppm

relative to TMS) =-72. MS (MALDI-TOF): M(-CH3)+, m/z = 272.8; M+, m/z = 288.8
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(Appendices G-J). Crystals recovered from old solutions of Si(DPP)Me> were analyzed by X-ray
diffraction. The resulting structure indicated the expected hydrolysis product (DPP)SiMe2-O-

SiMe2(DPP) (Figure 21).

Si(DPP) 2: 2,6-bis(2-bromophenyl)pyridine (1.22 g, 3.13 mmol) was added into a dry Schlenk
flask with a stir bar. Tetrahydrofuran (100 mL) was added to the flask, the system then being
degassed and put under a nitrogen atmosphere. The solution was cooled to -98°C and stirred. The
2.1 equivalents of LiBu" (2.65 mL, 6.62 mmol) were then added. An aliquot was taken after 10
minutes, the solution being quenched with methanol. The aliquot was then run on GCMS to
check for debromination. Upon full debromination, a half equivalent of neat SiCls (0.18 mL,
1.56 mmol) was injected and stirred. The reaction solution was kept at -90 °C for an additional
hour after injection and then left to warm slowly overnight. The solvent was removed the
following morning. The resulting crude material was redissolved in 400 mL of boiling THF,
filtered and run through a silica gel column (mobile phase: THF). The solution was then
evaporated down, resulting in an orange oil. The oil was then treated with diethyl ether and
sonicated to form a yellow precipitate. The precipitate was then recrystallized from THF, and
washed with chloroform resulting in Si(DPP). as a pale yellow solid (130 mg, 17% yield). *H
NMR (DMSO-de, 500 MHz): & (ppm, relative to TMS) = 6.00 [d, 4H, 7.3 Hz], 6.77 [dd, 4H, 7.3,
7.3 Hz], 6.97 [dd, 4H, 7.3, 7.3 Hz], 8.11 [d, 4H, 7.3 Hz], 8.64, 8.55 [AB2 pattern, 6H, JAB = 7.7
Hz]. BC{*H} NMR (DMSO-ds, 125 MHz): & (ppm relative to TMS) = 116.2, 123.7, 124.7,
126.5, 130.1, 134.3 144.0, 152.3, 162.1. 2°Si NMR (DMSO-ds, 99 MHz): § (ppm relative to
TMS) = -150.3. Anal. Calc. for CzsH22NSi: C, 83.92; H, 4.56; N, 5.76. Found: C, 81.87; H,

4.50; N, 5.67%. MS (MALDI-TOF): MH+, m/z = 487.7 (Appendices K-S).
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Chapter 3: Device studies
3.1 Device measurements of Si(DPP)2

Si(DPP)2 possesses many of the ideal properties of an effective electron transport layer
material, including chemical and thermal inertness, a wide band gap, a high LUMO, and a high
Tg. To determine the carrier mobilities of Si(DPP), electron-only and hole-only devices were
constructed and operated in the space charge limited current regime. The design of the
manufactured carrier mobility devices are illustrated in Figures 28 and 29 with Si(DPP); acting

as the hole transport and electron transport layer respectively.

Au
Si(DPP),

PEDOT:PSS

ITO

Figure 28: Device structure used for hole mobility studies.

Si(DPP),

ITO

Figure 29: Device structure used for electron mobility studies.

32



Thin films of Si(DPP). were successfully deposited on ITO/PEDOT:PSS followed by
gold for hole mobility devices and ITO followed by aluminum for electron mobility devices. For
hole-only devices Si(DPP), was deposited in 173 nm thick films, while the electron-only devices
had 100nm thick films. These devices were manufactured in a glove box containing a thermal
evaporation system. Figure 30 shows the Log(J)-log(V) plots made to confirm that the devices
were operating in a space-charge limited current regime. The best three curves from both sets of
devices, electron only and hole only, were averaged for the their respected mobilities to obtain an
electron mobility of pe = 1.8x10* cm?V-1s and a hole mobility of pn = 1.1x107° cm?V-1st with

standard deviations of 0.92 x 107° cm?V st and 11 x 107° cm?V*s ! respectively.>
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Figure 30: The Log(J)-log(V) charge mobility curves for hole mobility devices (black) and
electron mobility devices (blue). The surface area for all films was 6.0x10°m?2,5

Computataional modeling was utilized to probe the electronic properties and bipolar
charge transport of Si(DPP).. The geomtry of Si(DPP), was optimized with density functional
theory (DFT) using the functional B3LYP and the basis set 6-31G* in Gaussian 16. The resulting
optimized geometry was consistent with the observed crystal structure. The calculated LUMO of
Si(DPP)> is a delocalized pi-orbital spread out over the entire molecule as is tyipcal of other
Si(pincer)2 complexes. Unlike the Si(bzimpy)2. analogs however, the HOMO of Si(DPP)2 has a
delocalized c-orbital symmetry around the SiC4 plane (Figure 31). The orthogonality of the
LUMO and HOMO may account for the weak transitions observed for the So = Si: and So € S

transitions in the UV-Vis and fluorescence spectra.®
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Figure 31: HOMO (left) and LUMO (right) of Si(DPP)>.

The o-based HOMO may also explain why the hole mobility is about an order of
magnitude lower than the electron mobility. To clarify this issue, charge mobilities of Si(DPP)>
were estimated using Marcus-Hush theory for the symmetric case where AG° = 0.86%7 equation 1.
In this equation, Aelectronmole refers to the reorganization energy of the electron or hole
respectively. The reorganization energy is the energy required to convert the nuclear coordinates
of the reactants to the nuclear coordinates of the products without actually transferring an
electron. Generally speaking, the more delocalized the electron or hole, the lower the
reorganization energy is and the faster the rate of electron transfer becomes. Single point energy
calculations were used to determine Aelectron/hole from equations 2 and 3, where E*(A) would
correspond to a single point energy calculation of a +1 charged species (E*) with the optimized
geometry of the neutral molecule (A). Likewise, E(A") would be the single point energy of a

neutral molecule with the optimized geometry of the anionic species (A").5
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Knje = (—Ah/;{B T) X V’% X exp (;i’;/;) eq. 1
Anote = [ET(A)+E(AN]I-[E"(AT)+E(A)] eq. 2
Aelectron = [E-(A)+E(A_)]'[E—(A_)+E(A)] €q. 3

Enomo/Lumo+1 — EHoMo-1/LUMO

Vhre = > eq. 4
D = 0.5kr? eq. 5
u = eD/kgT eg. 6

The electronic coupling (tunneling matrix) Vhe was determined using the method of
energy splitting in dimer and Koopman's theorem (KT-ESD method). In this method, a dimer of
the molecule of interest is optimized and half the difference of the splitting of the HOMO (or
LUMO) is used as the value of Vh (or Ve) as shown in equation 4. To eliminate differences in
site energies, it is better to use a symmetrical dimer (related by an inversion center) (Figure 32).
Once Vhe and Aelectronmole Were calculated, the rates for electron transfer were calculated using
equation 1. The rate was then converted to a diffusion constant using equation 5 and converted to
a mobility using equation 6. The results of all calculations are shown in Table 3 along with the

experimentally determined mobilities.>

The resulting calculated mobilities match up reasonably well with the experimentally
determined mobility values (Table 3). Both calculated results are within an order of magnitude
of the experimental results. As expected, despite the reasonably low hole reorganization energy,
the poor intermolecular overlap of the c-based HOMO results in a very low electronic coupling

term Vh. Consequently, the overall calculated hole mobility is significantly lowered. The low
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hole mobility is not a significant concern for ETL materials, but for other applications where a

higher hole mobility is desired c-based HOMOs should probably be avoided.

On the other hand, the electron mobility pe = 1.8x10 cm?V-1s? (std. dev. 1.1x10* cm?V-
1s1) is the highest electron mobility ever measured for a Si(pincer), complex. Modeling suggests
the high mobility can be attributed to both a moderately low reorganization energy and a
moderately high electronic coupling term. The close match between theory and experiment also
suggests computational modeling could be used to identify additional target compounds for

synthetic efforts in the future.>

Centroid — Centroid = 4.5 A

p S :
N . . e
, %

LUMO (+1) -1.351 LUMO -1.354
HOMO -4.809 HOMO (-1) -4.811

Figure 32: Symmetrical dimer (top) and resulting frontier orbitals (bottom) used for electronic
coupling constant determination.>
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Table 3: Calculated and experimental charge mobility data

h* e
Acalc(hle) 248 meV 345 meV
Vcalc(hle) 0.14 meV 2.0 meV
Hcalc(h/e) 3.5x10® 8.8x10°
cm?Vv-ist cm?V-ist
Hexp(he) 1.1x10° 1.8x10*
st.dev. (9.2x10°) (11x107)
cm?Vv-ist cm?V-ist

3.2 Comparisons with other Si(pincer)2and ETLs

Si(DPP)2 represents a step in the right direction for developing Si(pincer). complexes for
ETL applications. A comparative band edge diagram was constructed using the experimentally
determined HOMO/LUMO values from cyclic voltammetry of Si(DPP)2 and Si(bzimpy):
(Figure 33). The DPP complex has both a higher HOMO and LUMO and a wider band gap than

most bzimpy analogs. An ideal ETL for TADF devices would have a LUMO around -2.0 eV and
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band gap of 4.0 eV. Clearly Si(DPP). does not hit these values yet, but the DPP ligand appears

to be a significant improvement over the NNN-pincer ligands explored previously.

Band Gap Energies

Si(DPP),
s LUMO -2.6 eV
Si(MeOBZIMPY), Si(MeOMe,BZIMPY),
3 Si(BZIMPY), LUMO-3.09eV  Si(Me,BZIMPY), LUMO -3.08 eV
LUMO -3.4 eV LUMO -3.25 eV
-35
i -4
&
g .as -2.44eV
[T}
5
53 HOMO -5.29 eV
HOMO -5.69 eV

HOMO -5.79 eV
HOMO -5.9 eV HOMO -5.95 eV

-6.5

Figure 33: A comparative band edge diagram of Si(DPP), and Si(bzimpy). analogs. **°3

Furthemore, the advantage of Si(DPP)2 is even more clear when comparing the mobility
values (Table 4). Note that previous attempts to raise the LUMO by placing electron donating
substitutents on the pyiridine were successful as seen in Figure 33, but the modification greatly
impacted the mobility by several orders of magnitude to a negative extent. Replacing the NNN-
pincer ligand with the DPP pincer ligand simulateously achieved the desired LUMO-raising
effect while also increasing the electron mobility of the complex —a win-win for ETL

applications.
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Table 4: Si(bzimpy)2 analogs and Si(DPP)2 charge mobilities.>*>3

Complex He (cm?/Vs) Un (cm?/Vs)
Si(MeObzimpy): 251 X 1078 1.76 X 10
Si(MeOMezbzimpy)» 4.89 X 10”7 3.19 X 108
Si(Mezbzimpy); 2.94 X 10 1.44 X 10
Si(bzimpy): 9.68 X 10° 5.31 X 10°®
Si(DPP), 1.8 X 10 1.1 X 10°

Finally, Si(DPP), compares well to the industy grade transport materials currently used
by OLED manufacturers (Table 5). Si(DPP)2 shows as a very promising electron transport
material, having the second highest mobility, falling under BPhen which has the highest at
52x10° cm?/Vs and a very high Ty. However, as mentioned previously, the LUMO still needs to

be raised more and the bandgap increased to be useful for TADF enabled devices.

Table 5: ETL materials comparison with Si(DPP).. Problematic properties highlighted in red.'®-

29,53

Stability or Retail e mobility | LUMO | Ty, triplet | Tgor

purity issues price (x10°cm?/Vs) | (eV) | exciton (eV) | MP

($/9) §9)

Algs Isomerizes 45 04-1.1 -2.9 2.1 175
T2T Stable 1034 12 -3.0 2.8 55
BPhen Stable 108 52 -3.0 2.5 66
TPBI Stable 566 3.3-8.0 -2.7 2.7 122
Si(DPP); Stable ? 18 2.6 <26 262

3.3 Experimental details

Thin film devices were grown by Tyler Adams under the direction of Professor Michael

Walter. Experimental details of the film growth are included.

Construction of devices for SCLC measurement: ITO patterned glass substrates (Ossila) were

sonicated sequentially in DI water, acetone, and isopropyl alcohol for 15 min, dried with N2, and
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treated with UV ozone etch for 20 min. Silicon complexes and aluminum or gold contact
electrodes were thermally deposited at 10 mbar pressure using tungsten evaporation boats.
Devices for measuring hole mobilities were constructed by depositing the silicon complexes onto
PEDOT:PSS-coated ITO electrodes followed by Au thermal evaporation. PEDOT:PSS films S3
were prepared by filtering PEDOT:PSS solutions through a 0.45 um PTFE filter. The filtered
solution and ITO electrode was heated to 75 °C for 15 min prior to spin coating. The
PEDOT:PSS solution was deposited using spin coating (90 mL of solution onto the substrate at
5000 RPM for 50s). PEDOT:PSS was removed from the side ITO conductive strips on the
patterned electrodes using water, and the films were annealed at 130 °C for 15 min on a hot plate
at ambient conditions. Silicon complexes were thermally deposited onto the PEDOT-coated ITO
electrodes at 0.2 A s-1 (173 nm) and Au was deposited at 0.1-0.3 A s-1 (50 nm). Devices for
measuring electron mobilities were constructed in an ITO/Silicon complex/Al configuration. The
patterned ITO glass substrates (Ossila) were sonicated sequentially in DI water, acetone, and
isopropyl alcohol for 15 min, dried with N2, and treated with UV ozone etch for 20 min. The
silicon complex and aluminum contact electrodes were thermally deposited at 10-6 mbar
pressure using tungsten evaporation boats. The 100 nm of silicon complex was deposited at a

rate of 0.2 A/s and the 150 nm of aluminum was deposited at a rate of 0.3 A/s.
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Chapter 4: Conclusions and future work

In this work the attempted syntheses of three hypercoordinate silicon complexes were
discussed; both pentacoordinate complexes proved too prone to decomposition to fully
characterize or to study in devices. In contrast, the hexacoordinate Si(DPP). complex was found
to be both air and water stable and is the first SIC4N2 compound with a Si-N bond length in the
conventional range of 2.0 A or less (1.91 A). Additionally, this complex proved to be thermally
stable to temperatures above 400 °C with a remarkably high Ty onset (263 °C). The complex was
thermally evaporated and deposited in thin films to be studied in devices. The hole mobility of
the o delocalized HOMO and the electron mobility of the « delocalized LUMO of Si(DPP); are
roughly matched, suggesting this complex and other similar Si(CNC). complexes could be strong
candidates for bipolar charge transport layers in organic electrons. Specifically, Si(DPP)2 is also
a strong candidate to act as an electron transport layer, as the comparison with other transport

layers shows.

One consistant issue with the Si(DPP)2 complex has been the low yield and turn around
time. This suggests that there is futher work to be done in optimizing the overall synthesis of the
Si(DPP), complex. Another issue is that the LUMO is low compared to current ETL materials
and needs to be raised. As with the Si(bzimpy). motif, Si(DPP). can potentially have substituents
added to the pincer to change electronic properties of the overall complex. However, although
addition of electron donating groups to the Si(bzimpy). platform did raise the band gaps as
expected, the addition of the electron donating substituents reduced the electron mobility by
orders of magnitude. This result suggests the better strategy for tuning the band edges may be

through judicious design of the heterocycles in the pincer ligands instead.
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Preliminary research is undeway with other targeted pincer ligands to expand the range of
Si(pincer), HOMO-LUMO tuning and to meet the various needs of different organic electronic
device applications (Figure 34). FT1, the pyrazine analog to Si(DPP), is an attractive target for
lowering the LUMO for ETLs better matched for electron injection from silver printed cathodes.
This N-rich analog to Si(DPP)2 is being synthesized using similar methods, but starting with 2,6-
dibromopyrazine instead of 2,6-dibromopyridine. Preliminairy evidence of FT1 via mass spec
indicates the route developed for Si(DPP)2 is compatible for the pyrazine analog. Further
development is needed though to fully characterize the product and to incorporate the complex

into devices with silver electrodes.

Figure 34: Future synthetic targets.

For greater solution processability, N-alkylate benzamadizole analogs such as FT2,
where the R group is a saturated aliphatic (e.g. butyl or 2-ethylhexyl) are being developed. FT2
is expected to retain many of the material, optical, and electronic properties of Si(DPP).;
however, the HOMO is predicted to be ¢ delocalized. We anticipate that this may lead to a

higher hole mobility for FT2 relative to Si(DPP).. More importantly, we anticipate the aliphatic
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substituents will help solubilize FT2 enough to enable solution-processible device fabrication

methods, including spin-coating, printing and eventually roll-to-roll processing.

Finally, methods developed in this thesis are also being modified to explore asymmetric
CNN-pincers like the imidazole-pyridine-phenyl ligand shown in FT3. FT3 is expected to
posses ETL properties similar to Si(bzimpy)2 and Si(DPP).. However, the reduction of symmetry
provided by this ligand system and analogs provides the possibility of introducing greater
intraligand charge transfer over the entire ligand for stronger optical transitions (absorbance and
fluorescence) perhaps for applications as absorbing ETLs in solar cells. A strategy for the pincer
ligand has been developed starting with 6-bromopicolinic acid. Condensation with o-
phenylenediamine in polyphosphoric acid followed by a Suzuki coupling with
bromophenylboronic acid provides a practical route to the ligand. However, subsequent attempts
at lithiation and reaction with SiCls have thus far been unsuccessful. Additional studies are

needed to realize FT3 and to expore its optical and electronic properties.
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impy)Mezin CDCls

'H NMR full spectrum of Si(bzi
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APPENDIX C: 3C NMR spectrum of Si(bzimpy)Me2 in CDCl3
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APPENDIX D: 2°Si NMR spectrum of Si(bzimpy)Mezin CDCls
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Intensity (abt units)

APPENDIX E: MALDI TOF spectrum of Si(bzimpy)Me:2

MALDI TOF data of S{BZIMPy)Me,
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APPENDIX F: Crystallographic data of Si(bzimpy)Me2

Si(bzimpy)Me2*-CHClI3

empirical formula
formula weight (g/mol)
crystal system

space group, Z
temperature (K)
wavelength (A)

crystal size (mm)

a,

c, A

a,o

ﬁ' o

y, o

volume (A3)

Dealc (glcm3)

abs. coeff. (mm™)
F(000)

O range for data
reflections collected
data/restraints/paramete
rs

R(int)

final R [I> 26(1)] R1,
wWR2

final R (all data) R1,
wWR2

goodness-of-fit on F2
larg. diff. peak, hole,
eAs

CCDC Deposition No.

C215H175Cl1.5NsSi
427.17
triclinic

P-1,4
100
1.54184
0.32x0.37x0.48
11.1264(3)
12.2430(4)
15.6147(4)
82.157(2)
86.393(2)
64.811(3)
1906.75(10)
1.488
3.176
884
4.02-66.81
33500

6734/0/528
0.0321
0.0293, 0.0749

0.0321, 0.0773
1.031
0.325, -0.346
2109550
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APPENDIX G: BC NMR spectrum of Si(DPP)Me2 in CD2Cl:
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APPENDIX H: 2°Si NMR spectrum of Si(DPP)Me2 CD2Cl:
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Intensity (abt units)

25000

20000

15000

10000

5000

APPENDIX I: MALDI TOF spectrum of Si(DPP)Me:2

MALDI TOF data of Si(DPP)Me,

272.8

288.8

100

200

300 400 500 600 700 800 900
Mass (Da)

61

1000

=@ Scries|



APPENDIX J: Crystallographic data of Si(DPP)Me20OSi(DPP)Me:2

Si(DPP)Me20Si(DPP)Me;

empirical formula
formula weight (g/mol)
crystal system

space group, Z
temperature (K)
wavelength (A)

crystal size (mm?)

alA

b/A

c/A

o/°

pre

V/°

Volume(A3)

Dealc (glcm3)

abs. coeff. (mm™)
F(000)

O range for data
reflections collected
Data/restraints/paramet
ers

R(int)

final R [I> 26(1)] R1,
wWR2

final R (all data) R1,
wWR2

Goodness-of-fit on F2
larg. diff. peak, hole,
eAs

CCDC Deposition No.

62

C3sH3sN20Si?
592.893
triclinic

pP-1
100
1.54184

0.23x0.24x0.71

12.4394(5)
12.8631(6)
13.0980(6)
62.367(5)
62.040(5)
87.713(4)
1597.25(18)
1.233
1.256
630.6
7.96 to 133.86°
27517
5621/0/393

0.0399
0.0377, 0.0947

0.0455, 0.1021
1.054
0.38/-0.39
NA



APPENDIX K: 'H NMR spectrum of Si(DPP)2in DMSO-ds
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APPENDIX L:*H NMR full spectrum of Si(DPP)2in DMSO-ds
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APPENDIX M: 3C NMR spectrum of Si(DPP)2in DMSO-ds
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APPENDIX N: 2°Si NMR spectrum of Si(DPP)2in DMSO-ds
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Intensity (abt units)
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APPENDIX O: MALDI TOF Spectrum of Si(DPP)2

MALDI TOF data of Si(DPP),
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APPENDIX P: IR spectrum of Si(DPP):

s a0y sBunem fus podal gou op syayD ArEng eyl L0z g1 Jenbiny “Aepssupan A8 go0sdwes yaud ymed yuw Tiddalis
=380 AUEND), uonduasag awey adwes
]
059 Qoo oost 0ooE Q05T oooE 0osE [lin]
—— UL
L-UESE LY geneargey : _...._.n.m__”.”_#..._m_
|-wEgE ELT | _.Euf"z.u.:_.
R A ST R
1 .. _ || .
n (R 1
CURIERI | ywbrpoen|
RTEEE g
_ ..._ | .M..Ewm.ma,
runggsas || ) __ | I -
e T R | &~
M b | ._. _ -
_ Vilesbr B g _.
_ BUCRLGLE L | 1-uney 7
(| __ LA T W08 FHE
W / i _._ _ -
_ ¥ _a ____ \ _ huosssisz N/
P J V| el
L W —
__.___ ¥ _T\L..Eee o B R __f.i} N

68



APPENDIX Q: DSC curve of Si(DPP):
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APPENDIX R: Crystallographic data of Si(DPP):

Si(DPP)2- THF

Si(DPP)2-CHCI3

empirical formula
formula weight
(9/mol)

crystal system

space group, Z
temperature (K)
wavelength (A)
crystal size (mm)

a, A

b, A

c, A

a,o

ﬁ1 o

y, o

volume (A3)

Dcalc (g/cm3)

abs. coeff. (mm™)
F(000)

O range for data
reflections collected
data/restraints/paramet
ers

R(int)

final R [I> 26(1)] R1,
WR2

final R (all data) R1,
WR2

goodness-of-fit on F?
larg. diff. peak, hole,
eAs

CCDC Deposition No.

C3ssH30N20Si
558.73

monoclinic
P2i/n, 4
100
0.71073
0.07x0.14x0.16
12.3940(8)
14.3540(9)
16.3931(13)
90
97.736(3)
90
2889.8(3)
1.284
0.116
1176
2.21-26.50
74489

5975/0/379
0.0552
0.0411, 0.0959

0.0476, 0.1016
1.119
0.435, -0.304
2109551
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C35H23CI3N,Si
605.99

monoclinic
P2i/n, 4
100
0.71073
0.08 x 0.09 x 0.14
12.3708(7)
14.0589(9)
16.5093(12)
90
98.202(3)
90
2841.9(3)
1.416
0.394
1248
2.41-26.77
47388
6031/0/370

0.0644
0.0397, 0.0924

0.0523, 0.1026

1.056
0.372,-0.510

2109552



APPENDIX S: Raman spectrum of Si(DPP)2 crystals (top) predicted spectrum (bottom)
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