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ABSTRACT

MARCUS HUGHES. Access Control Design and Implementation for Direct Memory
Access Attack. (Under the direction of DR. FAREENA SAQIB)

With technology advancements and becoming prevalent in everyday lives, the need

for robust and comprehensive security measures is growing. To defend against brute

force type of attacks, encryption algorithms have been used to keep user informa-

tion on hardware safe from outside influences. However, such counter measures are

vulnerable to non-invasive side-channel attacks. The direct attacks are used to go

after vulnerabilities in algorithm while a side channel attack focuses on analyzing

certain physical characteristics of the hardware and using statistical calculations to

gain access to private information. In this work, we explore a type of side channel

attacks that uses the systems Direct Memory Access (DMA) protocol to compro-

mise the system and later propose a lightweight authentication scheme that identifies

the compromised chips and mitigate such attach and makes the system resilient to

corrupted hardware without modifications to either the physical hardware or the pro-

tocols of the system. The scheme provides protection by generating a unique identifier

for trusted hardware and storing the identifiers in a database on the system, allow-

ing only hardware that matches the identifiers to have access to the system and the

system’s memories.
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CHAPTER 1: INTRODUCTION

One of the important aspects of design is to improve security of the device from

invasive and non invasive attacks. In the recent years the cybercrime has increased

by almost 600% [1]. There are a wide range of attacks from malware to phishing

schemes, as we become more reliant on the internet, the need for security becomes

more important. Several attack vectors are possible at lower level of hardware that can

bypass higher level of security countermeasures. We are studying hardware security

attacks at the architecture level and propose hardware security countermeasures.

Hardware attacks maybe be passive or active attacks to reveal secret information.

The passive attacks listen to the data where the device is operating in normal circum-

stances or the attacker may hijack the operations and introduce the faults to modify

the hardware behavior. The attacks may be direct or invasive attacks that tampers

a system using techniques such as probing attacks after depackaging the device and

reading the signals using probes to readout the memory and registers. The other

form of attack is semi-invasive or non-invasive side channel attacks that uses the side

channels to break in the system using measurements of how the hardware operate.

Protection of one type of attacks does not guarantee security against other types of

attacks, for instance, with direct attacks a processor sends the encrypted data to a

secure processor and to process the secrets in a tamper-proof, authenticated envi-

ronment is secure [2] [3]. However, the same method does not work for side channel

analysis as it has been shown that using a compromised and older Operating System

can still allow an attacker access to the system [4]. One such side channel attack com-

promises the Direct Memory Access (DMA). DMA is an architectural advancement

feature to allow different components of a system to bypass the central processing unit
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(CPU) to directly use the system’s main memory. Attackers can gain access to the

main memory by compromising the DMA and manipulate a systems main memory.

There are several schemes to prevent DMA attacks such as key-based authentication

and memory virtualization [5] [6].

There are many factors to consider to improve security. The objective of security

measures is to have protection against vulnerabilities and attacks from outside forces.

The three pillars of cybersecurity are confidentiality, integrity, and availability.

The idea that the user should have the authority to disclose private information

to entities of their choosing is the definition of confidentiality. When people think

of security, this is probably the most common idea among them, that private data

remains private. The theft of private data could cause irreparable harm to users, such

as banking information being stolen or the leakage of private industry knowledge. One

of the most common methods for attackers to try to break confidentiality is using man

in the middle attacks, where they try to intercept private data authorized users are

sending between each other.

Integrity refers to keeping the system the way that the user wants it and to have

no unauthorized modifications happen without detection. Integrity goes hand in

hand with the other pillars of security because if the system has no integrity and

can be freely modified by anyone, then confidentiality and availability will be next to

impossible to maintain. Some of the more common methods of attacking the integrity

include malware, fault injection attacks, and Trojan attacks.

When talking about availability, one might think that it is the same as confiden-

tiality about keeping private information private, but what availability really focuses

on is authorized users having access to the system when requested. For instance, if a

system has private information that no one, not even the user that put the informa-

tion in there, can access then it has great confidentiality but if the user cannot access

it when they need to, then the system doesn’t have availability. Denial of service
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attacks and ransomware are some of the methods that most attackers use when they

want to deny availability. It is the balance of confidentiality, integrity, and availability

creates good security for a system.

There are some other security aspects such as an access control policy for a system.

An access control policy refers to when a system specifies who can access private

resources and when. It is one of the security aspects that enables the confidential-

ity and protection, as it can keep unauthorized users from private information and

modifications as well as making sure that users only have access to the resources they

have authorization too.

Authentication is process of granting access to use the host system to a user or

component that has been verified as trusted. One of the more widely used forms of

authentication is the use of encryption using a special key to identify a trusted user

or component that has been assigned to them. A Public Key Infrastructure (PKI) is

an example of a key authentication method. Using a private and public key pair, a

PKI assigns them to users to identify where the certificate is used to guarantee the

public key is assigned to the given user [7][8].

Studies have shown that such security measures provide robust protection, they

may also be expensive to incorporate or unfeasible to use in computers that are

consumer grade. Even with security measures, some still have vulnerabilities that

do not protect direct data transfer [9] [10]. There have also been studies using side

channel attacks, specifically power consumption analysis, that show PKI is vulnerable

[8].

In this work we propose an access control methodology for DMA compatible PCIe

devices using variances in delays as a countermeasure for the DMA attack. The

scheme develops a unique identification method that processes measures profiling

time of trusted devices and constructs unique identifiers based and store that for

secure authentication process. The report is organized as follows: The related work
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and literature review is discussed in Chapter 2. The attack model and demonstration

as well as the proposed scheme are shown in the Chapter 3. Chapter 4 covers the

conclusion and Chapter 5 describes future work, that describes possible improvement

to explore architectural vulnerabilities and hardware security initiatives.



CHAPTER 2: BACKGROUND RESEARCH

Encryption is widely used in cybersecurity as it ensures the confidentiality and

availability of user information by encoding the information so that only the autho-

rized users may know the original message. Encryption is achieved as the information

meant to be private, otherwise known as plaintext, is processed through various al-

gorithms and becomes an unreadable ciphertext. To understand what the original

plaintext was from the ciphertext, an authorize user has a key to decrypt the text and

read the original information. An encryption is robust if there is no way to decrypt

the information without the authorized key.

Direct attacks are commonly used against encryption, the attacker using various

values against the target to receive responses from the encryption with the goal to

calculate the algorithms used in the encryption process and determining the private

information. The industry standard for encryption is called Data Encryption Stan-

dard (DES) and was even used by the government for their encryption of data. As

technology and security measures advanced, it also allowed for more powerful CPUs

to be able to analyze a DES encrypted ciphertext and extract the key in less than a

day [11].

2.1 Direct Memory Access (DMA)

The traditional way for transferring data to and from a host machine’s main mem-

ory to an external peripheral component is via the CPU, usually needing several cycles

to do so. This is because the CPU must read every block of data that passes through

it, causing a significant number of resources to be used and impacting the perfor-

mance of the system. A way developed to counteract this resource heavy process
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is by implementation of DMA. DMA allows the peripheral device’s read and write

requests to sidestep the CPU and independently read and write to the main memory.

Without the need of the CPU, the performance of the system increases overall to

allow the CPU to be used for other tasks.

Several different types of bus architectures that can support DMA such as Advanced

Microcontroller Bus Architecture (AMBA), Industry Standard Architecture (ISA),

and Peripheral Component Interconnect (PCI). To perform the process of DMA and

run efficiently, a system needs to have a DMA controller. The basic function of the

DMA controller is to transfer data to different parts of the system to one another,

taking the place of the CPU in data transmission, doing this by using different buses

and channels. When the DMA controller initializes, the memory controller initiates

the memory read or write cycles, depending on what is needed at the time, as well

as provide memory addresses for data transfer. When the process is complete an

interrupt is sent to the CPU to stop data transmission.

2.1.1 DMA Controller

In the host machine, a control unit on the I/O interface contains the DMA con-

troller. The controller receives a signal for a DMA request and then controller the

bus and the signal lines so that the component that sent the signal in the first place

can read or write the data to the main memory [12]. One example of a control unit

is the Intel 8237 which is specifically a DMA controller with four-channels, meaning

that it can store the DMA information in it at once [13]. The data that comprises

the DMA information is all about the transfer meaning the memory address that is

related to it, whether it is reading or writing to that memory, how large the data

transfer is, as well as the status of any ongoing transfers through the controller.



7

2.1.2 DMA Memory Access Protocol

DMA helps improve the efficiency of Peripheral Component Interconnect (PCI)

devices and Peripheral Component Interconnect Express (PCIe) devices. When one

of these devices are connect and powered by the host machine, they usually remain

inactive until they need to respond to configuration transactions that usually deal

with reading the device’s identifiers, such as the vendor ID and the device ID. When

a host machine with PCI/PCIe devices starts its booting process, the devices are

offered access by the BIOS/kernel and then are allocated both address space and I/O

regions. Through this process, when a device driver goes to access the PCI/PCIe

device, the previously allocated addresses and I/O regions for a device are already

mapped to the address space of the CPU [14].

There are 2 different ways that DMA transfers data from the main memory to

the peripheral device, one way is triggered by the process call and then other is

triggered by data acquisition devices. Figure 2.1 demonstrates the different processes

associated with the different ways of triggering DMA. Generating and allocating a

DMA buffer can also be completed two ways, either through coherent DMA mapping

using dma_alloc_coherent and dma_free_coherent or through streaming mapping

with use of dma_map_single and dma_unmap_single [12].
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Figure 2.1: The two processes of data transfer used by DMA.

2.1.3 PCI/PCIe Devices

PCI and PCIe are both buses that connect an external peripheral device to the

host machince, the difference between them is that PCI is a parallel connection while

PCIe is a serial connection, making it faster than PCI [15]. The way that PCI and

PCIe devices are configured gives them several different identifiers. Vendor ID and

device ID are used to identify the manufacturer and the device itself. Another set of

identifiers, Subsystem Vendor ID and Subsystem Device ID are used by the system

to tell similar devices apart. Figure 2.2 demonstrates the typical configuration space

of a PCI/PCIe device. The struct pci_driver is used to structure a PCI driver, which

is made of several variable and function callbacks that let the PCI core to understand

the PCI driver [12].
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Figure 2.2: Memory configuration of a PCI/PCIe device.

Another aspect to take into account is the latency of the PCI/PCIe bridge itself.

When PCIe was first introduced, studies showed PCIe had a negative impact on per-

formance [16]. As the state of art evolved and the landscape of computer architecture

changed, PCIe has become one of the more predominant architectures for I/O con-

nectivity. This is in part that when transitioning to a new generation, PCIe has been

about to double its bandwidth, just recently the fifth iteration of PCIe was able to

achieve 32.0 GT/s while the sixth iteration is able to achieve GT/s [17]. Though

PCIe has adapted and has become more efficient, it is still considered to be a bottle

neck for throughput in some applications. When working with a NIC, studies have

show that PCIe is responsible for 77% of latency for packets measuring 1500 B and

has shown that the percentage increases as the packet size decreases, up to 90% of

the latency for small packets is due to PCIe [18].

2.1.4 DMA Attacks

While DMA transfer does improve efficiency with the CPU needing to perform less

cycles, it does present new avenues of vulnerability, allowing access directly to the

main memory of the system. With vulnerable hardware, attackers can gain access to

a victim machine’s memory and be able to read and write to it easily. In one such
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case with a Firewire vulnerability, it was shown that an attacker could take control

of the DMA controller and gain memory access [19].

With the use of a program called PCILeech an attacker can use a PCIe device

to connect to a victim machine and can read and write the memory without for

hardware drivers and can run on a variety of hardware and OS [20]. With PCILeech,

attackers can bypass password requirements, load unauthorized drivers, have the

victim machine execute code, and can create system shells in the victim machine [21].

Using the Montgomery’s ladder technique can cause privacy leakage from the main,

obtaining secret bits from a 128-byte message with a 64-byte secret exponent [22].

The Intel Advance Threat Research team has also shown that, by modifying a

WiGig dock, they could compromise a laptop by connecting to the dock and perform

a DMA attack wirelessly and dump the victim machine’s memory remotely [23] [24].

There has also been evidence to shoe that the Thunderbolt protocol with access-

control enabled is vulnerable to DMA attacks, an attacker being able to use identity

clone and spoofing to gain access to the main memory through the Thunderbolt port

[9].

2.2 Preventative Measures

One way to mitigate DMA attacks has been developed by Microsoft called Bit-

Locker, introduced in Windows Vista. BitLocker is a pre-boot authentication pro-

cess, performing a full-disk encryption and storing the keys that are generated on to

a Trusted Platform Module (TPM) [5]. During pre-boot, the user provides a unique

identifier, either a specific pin or even a USB startup key, that tells BitLocker to

access the encryption key and store it to memory. While BitLocker does add more

security, it only provides encryption for hard drives and removable data drives, along

with the encryption and decryption processes causing high time overhead. The sys-

tem can also still be compromised through a DMA attack when it finishes the booting

process.
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In Windows 10 version 1709, Microsoft created new features to mitigate BitLocker’s

flaws by blocking hot-pluggable PCI/PCIe ports from the main machine until a

trusted, registered user signed into the system [5]. This method helps with vul-

nerabilities after booting as well as helping to secure the keys generated by BitLocker

from compromised hardware. This approach does present an issue in that a user will

not be able to use PCI/PCIe ports if the system remains locked.

One way to help mitigate the effects of a DMA attack is to make sure that DMA

access is limited to only certain parts of the memory. Intel and AMD both created

their own versions of this method, Intel creating VT-d while AMD designed AMD-Vi,

though both can be referred more generally as Input-Output Memory Management

Unit (IOMMU) [6] [25]. For a IOMMU to restrict DMA to only certain parts of the

memory, it forms a connection from the DMA bus to the main memory, converting

the IO virtual addresses to physical addresses, ensuring that each DMA access are not

allowed to the whole memory. IOMMU does have a harder time protecting systems

with smaller memory sizes, as there is only so much space to allocate to DMA accesses.

It has also been shown that with the IOMMU enabled, the throughput of the DMA

process drops significantly, seeing a drop of 70% for 64B DMA and a 30% drop from

256 DMA [18]

A Trust-On-First-Use (TOFU) as well as encryption-base authentication for ac-

cess control can help mitigate the effects of DMA attacks [26]. In encryption-based

authentication the host machine and each device used in it can have a key-based

certification, however at any time all components must be able to be authenticated

which could make such a scheme costly. When using a TOFU based scheme the sys-

tem records the identifiers for a trusted device when it is first connected to the host

machine. The identifiers for the trusted devices are stored onto a database on the

host machine, any device not recognized in the database are blocked from accessing

the system. There is one flaw with this process as PCIe devices do not have unique
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identifiers generated for them, their Vendor ID, device ID, and the slots ID being the

only thing recorded into the database. This means that if an attacker were to replace

a device with a compromise one of the same model and manufacture into the same

slot, the trusted database would not see it as a new device being connected to the

system.



CHAPTER 3: EXPERIMENT

3.1 Attack Model

As mentioned in Chapter 2, PCIe is a high-speed serial bus for connecting peripheral

devices to the main system to transfer data. What makes a DMA attack possible is

through a flaw of the uppermost layer of PCIe when communicating with the host.

The device and host exchange Transaction Layer Packets (TLP) through this layer,

however the layer itself does not provide any security for data privacy. To demonstrate

threats to security like PCILeech, an attack model was created referencing the work

in [20][21].

The basic flow of the attack is that a compromised PCIe device is installed to a

victim machine and can be connected to the attacker machine using either USB or

Ethernet. When the attacker wants to have access to the main memory, the attacker

machine sends a command to the compromised device to send a TLP for a Memory

Read Request (MRd). When the MRd is read by the victim machine, the victim

machine sends back data to the compromised device in another TLP. When the

compromised device has the data from the memory, the attacker machine can dump

the data from the compromised device received from the memory can even search for

specific memory addresses in the data.

In order to perform and demonstrate a DMA attack, the components were needed:

a victim machine, an attacker machine, and a compromised PCIe device. The PCIe

compatible device used in this experiment was a NeTV2 board, a board with a Xilinx

XC7A35T FPGA chip, and was connected to one of the victim machine’s PCIe ports

as shown in Figure 3.1.
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Figure 3.1: Setup for the PCIleech attack.

The Xilinx chip provides a PCIe Bridge, PCIe DMA, as well as soft IP blocks, in

addition to being able to access a 64-bit memory space while not needing a kernel

module from the victim machine [27]. While the NeTV2 is connected to the victim

machine via the PCIe slot, it is connected to the attacker machine through an ethernet

cable. The attack does not require any additional software or hardware to be carried

out to make the attack undetectable to the victim device. As mentioned earlier in

Chapter 2, the attack simply sends a command to the NeTV2 device which will then

transfer packets and data to the main memory and back for the attacker to then

dump. For the experiment the memory was both probed and dumped, the probe

showed the attacker machine that at least 96% of the victim machine memory space

was readable as shown in Figure 3.2.
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Figure 3.2: Results from PCIleech memory probe of victim machine.

Along with memory probing, PCIleech is also able to perform memory dumping

to the attack as well. Figure 3.3 demonstrates a part of a live memory dump from

the victim machine. On the left side of Figure 3.3 is the packet addresses and on

the right, Google Chrome is clearly listed. This means that the attacker can see that

this piece of memory was used by Google Chrome during the time that the attacker

dumped the memory.

Figure 3.3: Excerpt of memory dump obtained from the victim machine.

3.2 Proposed Scheme

This work offers a proposed method of access control by creating a database of

trusted devices and creating unique identifiers for each device based on profiling time.
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Each device, no matter the manufacturing process, will have variations in current,

IR drop, voltage, and unique delays [28] [29]. These unique delays influence device

response time, which can be measured and can also create cryptographic functions

such as Physical Unclonable Functions (PUFs). Figure 3.4 demonstrates where in the

attack the proposed scheme would be used to deny access to the attacker.

Figure 3.4: Attack flow and proposed scheme.

The proposed method is a two-stage authentication process using a database on

the system for PCIe devices before they can use DMA to access the main memory.

As shown in Figure 3.5, the first phase is done when the device is connected to the

machine for the first time. The system takes sample measurements of the response

time delays of the device. By measuring the delays and computing the profiling time

for the new device when it is first connected to the system, the profiling time, as well

as vendor ID and device ID, of trusted devices is stored in a database on the machine

that authenticates devices before giving them access to the main memory. An issue

with this approach is that the raw data taken from sample measurements of the delays

have high variance to be used for identifying and authenticating devices. To obtain

accurate and stable profiling times to make unique identifiers, this paper offers a
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mathematical process to calculate reliable profiling times from the raw measurements.

The second phase of the proposed process is performed during actual run time, taking

fewer sample measurements from the device requesting DMA and checking the vendor

ID, device ID, and the profiling time of the device with those in the database. If there

is a match within the database, the device will be granted access. Both phases involve

the construction of an identifier based on profiling time, which is constructed from

the Region of Interest (ROI) and Range of Profiling Time (RPT) that are processed

from the raw measurement data.

Figure 3.5: The registration and authentication process of proposed scheme.

3.2.1 Registration

Having a reliable RPT is paramount for the scheme, in order to have a suitable

range and to decrease the amount of noise interfering with the measurements, a

broad range of measurements were taken from the devices. For each device, 30 sub-

datasets were created from the measurements of response time taken and each of



18

those datasets was made up of 10,000 different response times. The measurements

were also organized from the lowest value to the highest for easier processing. Once

all the measurements have been taken, the parameters for the data processing is set

with R representing how many sub-datasets were created having S by the amount of

response time measurements in each sub-dataset [23] [24]. With these parameters the

total number of measurements is calculated to be (R ∗ S) for the algorimths, in this

case 300,000 measurements in total need to be processed.

The aim of processing the profiling time data is to calculate a ROI, in this case to

find a range of measurements that are believed to have the lowest amount of noise

possible. As a demonstration of how much variance there is in one dataset, Figure

3.6 is one dataset of measurements taken from device A. It is clear that there is a

high amount of variance within the response time measurements. To high an identier

be unique and reliable for a specific PCIe device, the proposed scheme makes use of

two different algorithms that looks at two different regions [23] [24]. The regions that

the algorithms find are base on two different mathematical calculations, one being

difference-based and the other being correlation-based.

Figure 3.6: An unprocessed measurement from device A.

The Difference-based ROI (DROI) algorithm, denoted as Algorithm 1 [23] [24],

takes pairs of different sub-datasets and calculate the difference between them for the
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same region, starting with the first measurement and ending with the last one. In this

algorithm, there are C(R, 2) possible combinations of different pairs for comparison

with (S − L) possible regions, where L represents the length of the DROI.

Algorithm 1 DROI Selection
Input: Amount of sub-datasets (R), Amount of measurements in one

sub-dataset (S), Length of DROI (L)
Output: Difference-base ROI (DROI)

Res[]← empty list
for i = 1 to (S − L) do . All possible regions

for j = 1 to (R− 1) do
for k = (j + 1) to R do . All possible combinations

calculate AD . AD is the absolute difference value between
sub-dataset[j][i : i+ L]and sub-dataset[k][i : i+ L]

TD ← TD + AD . TD is the accumulative difference for region i
end for

end forRes[i]← TD TD ← 0
end forDROI ← [d : d+ L] . d is the index of the minimum value Res[]

With the Correlation-based ROI (CROI) algorithm, denoted as Algorithm 2 [23]

[24], a correlation coefficient, a statistical index for the dependency of variables, is

computed for pairs of sub-datasets. Specifically, the Pearson’s correlation coefficient,

which is a measurement of linear correlation, of all the regions in the pairs is computed.

Algorithm 2 CROI Selection
Input: Amount of sub-datasets (R), Amount of measurements in one

sub-dataset (S), Length of CROI (L)
Output: Correlation-base ROI (CROI)

Res[]← empty list
for i = 1 to (S − L) do . All possible regions

for j = 1 to (R− 1) do
for k = (j + 1) to R do . All possible combinations

calculate CC . CC is the correlation coefficient between
sub-dataset[j][i : i+ L]and sub-dataset[k][i : i+ L]

TC ← TC + CC . TC is the accumulative coefficient for region i
end for

end forRes[i]← TC TC ← 0
end forCROI ← [d : d+ L] . d is the index of the minimum value Res[]

Both algorithms use Res to represent a list generated from the data processed
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from the measurements, for Algorithm 1 it contains a list of differences of all points

from the sub-dataset pairs and for Algorithm 2 contains the correlations of different

points from the sub-data sets. Both use L to represent the length of their region,

more specifically [i : i + L], starting from the ith point [23] [24]. For the DROI Res,

only the lowest differences are used, due to the fact that the lower the difference is,

the more similar the points are, which in turn means a lesser amount of noise. For

the CROI Res, the higher the values are the better, as a high correlation coefficient

means higher similarity and in turn means less noise from the measurements. Once

the ranges are calculated from the algorithms, they are used on to a graph of all 30

sub-datasets, sorted, and where the DROI and the CROI intersect with each other,

that is considered to be the ROI and the region that is used for the unique identifier.

For testing the proposed access control scheme, a number of TL-WN881ND wireless

PCIe adapters from TP-LINK were used to get profiling time measurements for both

phases of the scheme [30]. Since the devices are the same model and from the same

manufacturer, they will most likely have the same Vendor ID and Device ID, meaning

that the to tell the apart it will have to be done by measuring the difference in response

times and use it for the profiling times. The delay that was measured for the profiling

time was the time it took to read the configuration space on the PCIe device, which

was used for constructing the identifier.

As shown from Figure 3.6, the variance of one sample measurement from one device

can vary drastically, specifically in device A, the variance is between 11 ms to 23 ms

in response time, from 10,000 samples measured. While the range is fairly consistent

across the 10,000 samples, it could cause aliasing if the other devices have the same

behavior. In order to less the chance of aliasing, the measurements are sorted from

lowest response time, to highest response time.

Not only can the manufacturing process cause the high variations seen, the envi-

ronment, such a temperature and other sources of variation, can also contribute to
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the noise. 30 sub-datasets were taken in order to try to mitigate the effect that envi-

ronmental variations have on the data processing. Figure 3.7 shows 30 sub-datasets

graphed from two devices used in the experiment, which will be known as device

A and device B respectively. From the visuals of the graphs, there is clearly high

variance for both devices, causing a wide range of measurements to be taken and

recorded. If the average profiling times are taken from the wrong region, then the

identifier could be vulnerable to aliasing and bit flips.

(a) Graph of the 30 sub datasets of measurements taken from device A

(b) Graph of the 30 sub datasets of measurements taken from device B

Figure 3.7: Measurements graphed from device A (a) and device B (b).

During test configuration, the algorithms for the DROI and the CROI both used

3000 as their length parameter. Figure 3.8 shows the results of Algorithm 1 and

Algorithm 2 when used to process the data collected from device A and device B.
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(a) The calculated DROI and CROI of device A

(b) The calculated DROI and CROI of device B

Figure 3.8: The DROI and CROI of device A (a) and device B (b) after measurement
data has been processed.

From the results of Figure 3.8, the DROI of device A is found to be within the

6206th point and the 9206th point, while device B seems to have its DROI between

the 652nd point and the 3652nd point. For the CROI, the ideal region for Device A

would be between the 6743rd point and the 9743rd point with the CROI for device B

being the 1776th point and the 4776th point. Already showing that the identifiers for

devices A and B can be vastly different from each other. The lengths of the CROI and
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DROI can be changeable though for the purposes of this experiment they were set to

3000. This was done so that the device could have a sizable ROI because if it was too

narrow then the rate of authentication could be reduced and a trusted device could

be denied access. In contrast, if the length is too large and the profiling times derived

from the ROI could possibly produce non-unique identifiers. From these results, the

calculated regions are used to find where measurements are in both regions at the

same time, as shown in Figure 3.9

(a) Device A datasets with DROI and CROI

(b) Device B datasets with DROI and CROI

Figure 3.9: The DROI (red) and the CROI (blue) calculated from the measurements
taken from device A (a) and device B (b).

From Figure 3.9 it is clear that for both devices, the highlighted section of DROI

and CROI and the overlap. The DROI is made of the lowest differences and the CROI

is made from the highest correlations from the sub-datasets. The region where the
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DROI and the CROI intersect therefore contains both the lowest difference and the

highest correlations, meaning that it is the region with possibly the lowest noise with

the highest reliability over the different points of the sub-data sets. In this case, the

ROI for device A was found to be between the 6743rd point and the 9206th point.

As for device B, the ROI was calculated to be the area ranging from the 1776th point

to the 3652nd point.

Using the ROI that was calculated, the database can use it to identify the RPT for

each device and create a unique identifier. This was done by taking the ROI found

for both devices and looking at all the points in the 30 sub-datasets that were in that

region. All the measurements that fell in the ROI were average for each different

sub-dataset. Those averages were used to construct a RPT in order to be the unique

identifier. Figure 3.10 shows that the RPT of device A extends from 19718.66 µs to

19977.18 µs and that the RPT of device B is across 13330.72 µs to 14249.39 µs. As

there is no overlap between these two devices that were registered, it is possible to

create a unique identifier for both of them in the systems database. The Vendor ID,

Device ID, RPT, and ROI for each device would be stored onto the host machines

trusted database and used to authenticate devices when they ask for access.

Figure 3.10: Comparison of profiling times of device A and device B.
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3.2.2 Authentication

To test the authentication phase, three devices were used to gather response time

data. The devices were device A, device B, and device C respectively. For this process,

10,000 response time measurements were taken from all three devices separately, 30

times to create another 30 sub-datasets. In this process, only the DROI and the

CROI of device A was calculated in order to find the ROI. From the data processing

the CROI was found to be a range of the 6991st point to the 9991st point and the

DROI was calculated to be frome the 5464th point and the 8464th point. From this

data, the ranges overlap from the 6991st point to the 8464th point, which will be

used as the ROI in this case.

Once the ROI was calculated for device A, it was used to create the RPT for all

the devices. Figure 3.11 shows the results of the RPT calculations for each device.

Even though the devices used the same ROI, the RPT still came out to be completely

different with no overlap between the devices.

Figure 3.11: The RPTs from each device using the same ROI.

This highlights the variances between devices that are the same model and from the

same manufacturer. The RPT for device A was found to be 19577.90 µs to 19692.26

µs, device B’s RPT was calculated to be 19865.06 µs to 19994.50 µs, and device C

was found to have a RPT of 19734.17 µs to 19831.31 µs.

Using the RPT calculated, the devices response times were measured 10,000 times

again. The ROI of device A was used yet again to find the average profiling time for

each measurement. For this experiment, a range of profiling times was not calculated,
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rather the average time found and compared to the RPT found for each device. This

measurement and calculation was done 20 times for each device and each device was

able to get averages within the RPT for their respective devices 100% of the time

[23].

Both the registration phase of the experiment and the authentication phase were

timed, specifically the amount of time it took to measure the device response times

and how long it took to construct the unique identifier. The times were recorded in

Table 3.1.

Table 3.1: Time to complete each phase.

Phase Time of

Measurement

Time of

Construction

Registration 100 minutes 3.4 minutes

Authentication 15.7 minutes 4 ∗ 10−7

minutes

For the registration phase it took 100 minutes to measure all the response times

needed for the profiling time averages and took 15.7 minutes to construct the unique

identifier for a device. The authentication phase took 3.4 minutes to measure the

profiling time samples and took 4∗10−7 minutes to construct the identifier to compare

to the database for the device. The large time discrepancy between the registration

phase and the authentication phase comes from the fact that the registration phase

needs a larger amount of response times to create a RPT. Authentication does not

need to construct a range, so the time was based off how long it took to create

an average profiling time from 1 sub-data set. The timing can also vary depending

on the CPU and how efficiently it can perform the necessary calculations. For this

experiment a Core i5-3470 was used for each measuring and identifier construction.



CHAPTER 4: CONCLUSIONS

In this thesis, we have demonstrated the effectiveness of a DMA attack and pro-

posed an ROI based access control method for PCIe devices used in DMA attacks.

The DMA attack has shown that this method of side-channel analysis can be used to

violate confidentiality. With this method, attackers can have full access to a user’s

memory and even perform live illegal memory dumps to extract secret information.

The proposed process used unique delay response times to create identifiers for

the devices that cannot be replicated due to environmental variances during manu-

facturing. The method has also shown that even with similar devices of the same

manufacture and model, there is no overlap between the profiling time of the devices.

The scheme does not require modification to the hardware of the machine nor to the

protocols and was designed in mind to be able to test and check a wide range of

devices, even some that are not programmable. The main idea behind the design was

for it to be lightweight and could be used as a general access control method for a wide

range of PCIe devices. There has also been little to no impact on the performance of

the host machine, a table that is constructed to contain the information of 30 devices

was found to only require 1.81 KB of space [23] [24].



CHAPTER 5: FUTURE WORK

One of the main issues with the proposed scheme is the time overhead due to the

registration process. One possible way to reduce the measurement and construction

time is using machine learning to authenticate the devices [23][24]. Other lines of

research would be to modify the DMA process. One such are to look at in the PCIe

architecture would be the root complex, which is the endpoint that connects the PCIe

device to the RAM and the CPU [31].

To improve the hit rate, more measurements need to be taken during the authenti-

cation phase. The same devices were measure on the same machine, yet the hit rate

was not adequate enough for the pillar of availability. Using a large range of devices

would also help with analyzing the effectiveness of the scheme.

Another way to improve upon the proposed scheme would be to have the PCIe

device be able to calculate its own RPT and send it to the database to check for its

identifiers. This approach could help negate the latency in the PCIe bus to allow

for more accurate readings to create identifiers. There are also devices and software

that are designed to measure and analyze PCIe devices more accurately, but for the

purpose of this experiment, it was to create a general access control scheme that could

be used on a wide range of host machines and register a wide range of PCIe devices.
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