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ABSTRACT 

 

 

RACHEL CUCINOTTA. Diagnosing Thunderstorm Induced Power Outages with the 

Rapid Refresh Model (RAP). (Under the direction of DR. MATTHEW EASTIN) 

 

 

Duke Energy customers frequently experience electrical power outages caused by 

thunderstorms that produce strong surface winds and subsequently damage power 

distribution infrastructure. To better anticipate such outages, forecasters would benefit 

from outage-focused guidance regarding storm strength and timing so proper outage-

mitigation can be initiated prior to each event. This study identified meteorological 

parameters that could best predict total daytime and nighttime power outages across each 

Duke Energy service area using generalized linear models (GLMs). A total of 392 event 

dates were stratified with regard to five service areas, two seasons, six convective modes, 

and three dominant severe weather types. Daytime and nighttime GLMs were attempted 

for each stratification with more than 10 event dates and the resulting GLMs were deemed 

“operational” if predictors remained statistically significant (p-values < 0.05) for ten trials 

using a randomly-selected portion of the training dataset. In total, 58 operational GLMs 

were developed using 24 unique parameters as predictors. The most common predictors 

were low-level vertical velocity and composite parameter used to predict large hail. The 

resulting operational GLMs can be implemented within an ensemble framework to provide 

Duke Energy with a total outage estimate for each service area.  
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CHAPTER 1: INTRODUCTION 

 

 

 Power outages caused by strong and severe thunderstorms frequently affect the 

Midwest and Southeast, especially during the warm season (March 1– October 31 for this 

study). These thunderstorms engender lightning and strong winds that cause whole trees or 

tree limbs to collapse, which consequently disturb power distribution lines. The severity of 

power interruption amplifies with time, as long restoration periods become costly to service 

providers and hinders customers’ ability to return to normalcy after the storm has passed. 

Extreme power outages can even disrupt essential city infrastructure like water, 

transportation, or communication services provoking the city into a temporary fiscal stress. 

 Forecasting such events is challenging because the accurate representation of deep 

convection by existing numerical weather models is limited. Currently, even the most 

sophisticated models limit forecasters to producing broad regional outlooks that leave the 

outage mitigation decision makers with insufficient knowledge on storm severity and storm 

type at the desired spatiotemporal scale. Ideally, the decision makers need to know the 

rough timing, location, and severity of the storms in order to request and pre-position repair 

crews and reduce customer outage times. 

 The broad one-day Convective Outlooks provided by the Storm Prediction Center 

(SPC), when applied by weather forecasters at energy companies, often result in two 

undesired scenarios regarding power outage mitigation. The first scenario, referred to as 

“short-fuse events” entails poorly-forecasted storms, yet numerous storms and/or outages 

occur with insufficient repair crews on standby, leaving dissatisfied customers without 

power for an extended period. In the second scenario, referred to as “non-events”, storms 
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are forecast and repair crews are held in standby, but the storms do not produce the 

anticipated number of outages. Neither scenario is cost-effective for the service provider 

since repair crews are paid overtime during both. It has become clear that traditional severe 

weather forecast tools lack the ability to distinguish outage-producing thunderstorms from 

ordinary thunderstorms, often leaving power companies with dissatisfied customers and/or 

expensive repair costs.  

 This thesis addresses the following research questions. How can we improve our 

forecasting knowledge to better distinguish outage-producing and non-outage-producing 

thunderstorm events? What severe weather types are most likely responsible for power 

outages and what environmental conditions spawn such outage-producing severe weather? 

How can we provide better lead-time of outage location and density to pre-position repair 

crews? 

a. Duke Energy’s Forecasting Process  

 Duke Energy weather forecasters have several objectives, but the primary objective 

relevant to this study is to anticipate the number of power outages 0-3 days in advance (for 

each service area – Midwest, Florida, and Carolinas) so adequate repair crews can be 

requested or dismissed (particularly for weekend storms). Duke forecasters begin their 

process in the early morning (generally 5 am – varies based on service area) and develop 

daily outage forecasts based on current weather observations and numerical guidance. 

Outage forecasts for weekdays are finalized no later than 2 pm. Outage forecasts for the 

weekends are communicated during an 11 am conference call on Thursdays. The outage 

forecast is portrayed as one of four threat levels: (1) Green (isolated) < 10,000 customers 

affected; (2) Yellow (scattered) < 50,000 customers affected; (3) Orange (significant) < 
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100,000 customers affected; and (4) Red (widespread) > 100,000 customers affected. Once 

a threat level is determined, a set of procedures specific to that threat level are applied by 

call centers and followed by repair crews. For reasons of long-term economics, the 

operational mindset at Duke is that it is better to forecast more outages and to experience 

less (e.g., non-events) than to forecast few outages and experience more (e.g., short-fuse 

events).  

 Each service area has an experienced lead forecaster that have identified important 

indictors specialized to their individual service territory. For example, the Florida 

forecaster relies heavily on instability parameters such as the Lifted Index (LI) and 700-

mb temperature to first identify dates with synoptic-mesoscale environments favorable for 

outage-producing storms. Then, precipitable water, low-level convergence (assuming an 

active sea breeze), and convective temperature is used to predict when and where, during 

a given date, any shallow cumulus and deep convection will develop. Finally, the 925-mb 

wind speed, anticipated storm speed, and microburst parameter are used to forecast 

convective outflow strength (i.e. the strong surface winds that damage trees and produce 

the power outage). 

 In the Midwest, the forecaster primarily focuses on shear-based parameters, such as 

helicity and directional shear. Instability parameters, such as LI and CAPE, have also 

proven to be good predictors when identifying outage prone days. In the Carolinas, unless 

there is frontal forcing, the strength of the air mass thunderstorms will vary greatly by the 

amount of daytime heating prior to onset of convection. Often, warm-season summertime, 

thunderstorms will develop in the western Appalachian Mountains and move eastward 

toward the more populated I-85 and I-40 corridors. Thus the Carolina forecaster will focus 
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on storm speed, not only to identify storms with stronger gust fronts, but also to identify 

storms capable of reaching the more populated regions of the state before the daytime 

heating source is eliminated.  

 While each service area is unique in regard to common convective modes and useful 

forecast parameters, the forecasters share a reliance on the SPC Convective Outlooks. For 

example, if the SPC forecasts a slight (SLGT) risk or greater, Duke forecasters instinctively 

place their service territory into a higher threat level (i.e. yellow, orange, or red), leaving 

more repair crews and call center staff in place to mitigate any reported outages.  
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CHAPTER 2: LITERTURE REVIEW 

 

 

 Fujita (1978) described a downburst as “a strong downdraft inducing an outward burst 

of damaging winds on or near the ground.” A microburst is a type of downburst and is 

specified by a horizontal dimension of less than 4 km and are of particular interest due to 

their high destruction rate. Their damage can be compared to that of a F3 tornado with 

winds ranging between 71-92 m s-1, which is capable of removing roofs, tearing the walls 

off well-constructed houses and uprooting or snapping most trees in its path (Fujita and 

Wakimoto 1981; Forbes and Wakimoto 1983). Considering that fallen trees and/or tree 

limbs are major catalysts to power outages, a thorough investigation of microbursts is vital 

to establishing a basis for the types of thunderstorms capable of producing microburst 

strength destruction. Lastly, in addition to investigating the generation and forecast 

techniques of microbursts it will be important to investigate past power outage studies. The 

past power outage studies will bring forward knowledge about what types of models are 

most applicable to power outage prediction and potential predictors to use within said 

models. 

a. Microbursts Generation 

 Thermodynamically speaking, there are multiple processes that work in concert to 

generate a microburst. However, microbursts can be categorized into either wet or dry 

microbursts based on the observational sounding. The study area brings attention to the 

wet microburst because they are more common in humid regions such as the Midwest and 

Southeast. Wet microburst characteristics include shallow sub-cloud layers, high radar 

reflectivity, warm (low) cloud bases and an environmental sounding that is more statically 
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stable (Atkins and Wakimoto 1991). Despite the fact that multiple processes are occurring 

at once, there are a few generalizations that can be made for the physical development of a 

wet microburst.  

 The updraft is forced by the total water mass accumulation from all hydrometeor types 

(cloud water, cloud ice, raindrops, snow, graupel and hail). As the hydrometeors grow, 

gravity will prompt the hydrometeor to fall and accelerate the downdraft (Tuttle et al. 

1989). If the updraft is tilted the precipitation will exit adjacent to the updraft and the 

precipitation core will begin to mix with drier air. If the updraft is not tilted the downdraft 

generated by the precipitation will suppress the updraft and therefore the storm as a whole. 

As the parcel begins to descend adiabatic compressional warming will ensue, combined 

with the mixing of drier environmental air, causing the parcel to become unsaturated and 

induce a combination evaporation, sublimation, and melting that will then dominate the 

parcel (Knupp 1988; Mahoney et al. 2009). The latent heat of absorption associated with 

the evaporation, sublimation, and melting processes causes the air parcel to cool and be 

accelerated downward via the negative buoyancy generated by the temperature difference 

between the relatively cool air parcel and the surrounding warmer environment. The 

temperature of the parcel during this stage can be estimated through the equivalent potential 

temperature (Knupp 1987), which will be important to parameters designed for forecasting 

the strength of the downdraft. 

b. Microburst Forecasting 

 In 1991, Atkins and Wakimoto conducted a study that analyzed environmental 

conditions favorable for wet microbursts to help develop criteria that forecasters could use 

to potentially predict such severe wind events. The most novel findings were associated 
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with the height of the minimum equivalent potential temperature and the precipitation core. 

The thought was that the minimum equivalent potential temperature would be a good proxy 

to estimate the likelihood of a downdraft because it ultimately measures the maximum 

negative buoyancy possible in a given environment. It was found that wet-microburst 

environments had a difference between the minimum equivalent potential temperature and 

surface equivalent potential temperature of 20K or more, whereas that difference was 13K 

or less on non-microburst days, demonstrating that downdrafts can occur for a range of 

values for equivalent potential temperatures. However, the maximum downdraft would 

only be achieved if the precipitation core coexisted at the same level as the minimum 

equivalent potential temperature (since that is where the potential greatest cooling and the 

greatest amount of negative buoyancy could be generated). Most of the microburst days 

analyzed had at least the upper portions of the main precipitation cores reaching the same 

level as the minimum equivalent potential temperature but non-microburst days had 

precipitation cores much lower in the atmosphere. 

 Evans and Doswell (2001) describe another parameter that has been developed to 

specifically estimate the strength of the downdraft, called downdraft convective available 

potential energy (DCAPE). It was developed to estimate downdraft intensity prior to 

downdraft development. Gilmore and Wicker (1998, p. 944) define DCAPE as “the 

maximum increase in kinetic energy (per unit mass) that could result from evaporative 

cooling of the air within hypothetical parcel as it descends from some source height to the 

ground”. This parameter uses equivalent potential temperature to estimate the maximum 

possible downdraft for the given environment via a more comprehensive measure of 
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available potential energy. A DCAPE value of 500 J kg-1 or greater is sufficient to produce 

a strong downdraft (Gilmore and Wicker 1998). 

 Johns and Hirt (1987) conducted a similar study in deciphering common microburst 

environments. They found that 88 percent of microbursts occur three hours after convection 

has been initiated and 57 percent of microbursts develop six hours after the convection 

initiation. In almost every case, warm air advection was occurring at the 850 mb level 

within 320 km of the microburst location. On average, the convective instability, measured 

by the difference between the parcel lifted to 500 mb and the environment at 500 mb (also 

called the Lifted Index) was -6 K. Cold cloud tops found in bulging squall lines are 

associated with microburst and can be found using satellite imagery. The forecasting 

techniques discussed in this section will be utilized to develop spatiotemporal relationships 

between microbursts and power outages. 

c. Past Power Outage Studies 

 A power system's susceptibility to damage during warm season convection varies as 

geographic and climatic factors change. Many studies have found that the severity of 

weather-related impacts is dependent on (but are not limited to) the following: the number 

of customers being served by the utility company; the number of poles, switches and 

transformers; the geography, topography and climate of the region of interest; and finally 

wind characteristics like speed and the duration of exposure to the maximum wind gusts 

(Reed 2008; McRoberts et al. 2016). Most power outage studies have addressed various 

related objectives, such as predicting the number of outages (Guikema et al. 2014), 

modeling power outage duration (Nateghi et al. 2011, 2014) and predicting the number of 

customers affected by each outage (Guikema et al. 2008, 2014; Han et. al 2009; McRoberts 



9 

et al. 2016).  Collectively, these studies address the complexity of the variable and methods 

used to enhance predictive accuracy.  

 Past power outage studies have suggested numerous important potential predictors and 

methods to consider when it comes to diagnosing power outages. Unfortunately, many of 

these studies are geared toward power outages caused by hurricanes (Liu et al. 2005, 2008; 

Han et al. 2009; Guikema et al. 2010; Nateghi et al. 2014; Quiring et al. 2014; McRoberts 

et al. 2016; Tonn et al. 2016) where obtaining a realistic estimate of local winds is possible 

due to hurricanes slow evolution and predictable synoptic-scale wind field associated with 

each hurricane. Although never a main focal point, a few studies consider warm-season 

convection (Cerruti and Decker 2012; Wanik et al. 2015) where strong winds capable of 

producing power outages are much less predictable due to their rapid evolution and smaller 

scale.  With that in mind, the remainder of this section focuses on the warm-season 

convection outage models (methods and most important predictors) without neglecting the 

influential groundwork provided by the tropical-cyclone outage studies. 

 Cerruti and Decker (2012) adopted a “perfect-prognosis” (PP) approach which uses 

predictors derived from observations and/or initial model analyses to develop their 

statistical models. Such an approach minimizes any dependence on model resolution and/or 

physics from influencing the statistical relationships, and thus, minimizes any skill 

degradation to the statistical prediction as a result of regular numerical model updates 

(Wilks 2006). Cerruti and Decker (2012) develop 144 generalized-linear model (GLM; 

also known as a multiple-linear regression model) to predict various infrastructure damage 

events for a large New Jersey utility using predictors derived from surface weather 

observations. The event stratification was based on weather mode (thunderstorm, warm, 
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mix, cold, heat, wind), the region (four sub-regions within the service area), and 

infrastructure-type (transformers, poles, trees, service wires, primary wires, and secondary 

wires). A backwards-elimination method was employed, whereby an initial regression 

equation using all predictors was trimmed by repeatedly removing the predictor with the 

highest p-value (i.e. the least skillful predictor) until all remaining predictors exhibited p-

values below 0.05. Overall, the models were used to predict total outage numbers across 

the service area (with no regard to where within the service area the outages might occur). 

 Regarding predictors, the study identified several custom composite parameters 

(referred to as SFx terms) as the most common optimal predictors (found in 66% of their 

equations). For example, SF1 (the product of the maximum wind gust and daily 

precipitation) was used to gauge overall weather severity, while SF2 (the product of the 

maximum wind gust and 10-day accumulated precipitation) was used to anticipate tree 

damage. Indeed, many studies have agreed that wetter soils increase the chances of trees 

being uprooted (Liu et al. 2008; Han et al. 2009; Nateghi et al. 2014; McRoberts et al 2016). 

Finally, SF3 (the product of the maximum wind gust and maximum temperature) proved 

influential in the thunderstorm mode equations. While high temperatures do not directly 

damage power infrastructure, they are indicative of unstable environments, containing 

steep low-level lapse rates that are favorable for microburst-producing thunderstorms. 

Moreover, note that gust speed was a common component in each SFx in a manner 

consistent with most tropical-cyclone focused outage studies (Guikema et al. 2010; Nateghi 

et al. 2014; McRoberts et al. 2016; Tonn et al. 2016).  

 Wanik et al. (2015) developed multiple models to forecast where an outage would 

occur within a Connecticut service area. The Weather and Research Forecast (WRF) model 
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was used to simulate 89 storms and then relate outage numbers within numerous 2×2 grid 

cells to a multitude of explanatory predictors. Four different statistical model types were 

tested, decision tree (DT), random forest (RF), boosted gradient tree (BT), and an ensemble 

tree (ENS) - using full (weather variables, infrastructure, and land cover) and reduced 

(weather variables only) predictor pools, resulting in eight total models. The DT model 

follows a series of logical “if-then” declarations to relate outages to the explanatory 

variables by partitioning the variables into bins until the sum of squares error is minimized. 

The RF model expands upon the DF by boot-strapping (50% in their case) the data, to 

produce multiple DFs that are later averaged to make a final prediction. The BT model is 

an additive tree, building upon smaller tree residuals to increase the overall model outcome. 

Finally, the ENS model is a simple average of the DF, RF, and BT outage predictions. The 

ENS model using the full dataset proved to be most skillful. Since, their study’s main focus 

was to determine which statistical model type would perform best, the most influential 

explanatory predictors were not discussed in detail; however, the predictor pool included 

the maximum 10-m wind speed, maximum 10-m wind gust, wind duration above 9, 13, 

and 18 m s-1, wind gust duration above 18, 27, 36, and 45 m s-1, surface wind stress, 

maximum precipitation rate, total accumulated precipitation, and soil moisture. 

 Our study differs from previous power outage studies in two ways: (1) hourly three-

dimensional environmental data before and during each power outage was represented 

through the Rapid Refresh Model (RAP) analyses; and (2) focused on warm season, non-

tropical-cyclone-related convection. The following sections explain data and methodology, 

including the full pool of considered environmental predictors and how they were used to 
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build a series of GLMs that predict daily power-outage count for each Duke Energy service 

area. 
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CHAPTER 3: DATA 

 

 

a. Duke Energy Service Areas 

 Figure 1 shows Duke Energy’s five service areas, (1) Duke Energy Ohio-Kentucky/ 

Cincinnati (MWC); (2) Duke Energy Indiana (MWI); (3) Duke Energy Florida (FLA); (4) 

Duke Energy Carolinas (DEC); and (5) Duke Energy Progress (DEP). The service areas 

encompass 24 million customers within 7.5 million households and/or business. Severe 

weather type and frequency allows the service areas to be grouped into three climatological 

territories: (1) Midwest; (2) Florida; and (3) Carolinas. 

b. Storm Prediction Center Convective Outlooks 

 The Storm Prediction Center (SPC), issues broad, multi-day, Convective Outlooks 

(five times each day at 0100, 1200, 1300, 1630, and 2000 UTC) consisting of graphical 

forecasts of categorical severe weather risk. The NWS defines a severe thunderstorm as 

any convective storm that produces measured wind gusts greater than 58 mph, hail of at 

least one inch in diameter, or a tornado. Note that lightning and flooding threats exist with 

all thunderstorms. The utilized risk categories are as follows: (1) Thunderstorms (TSTM) 

no severe thunderstorms expected; (2) Marginal (MRGL) isolated severe thunderstorms 

possible but- limited in duration, coverage and/or intensity; (3) Enhanced (ENH) numerous 

severe storms possible that will be- more persistent and/or widespread with a few intense; 

(4) Moderate (MDT) widespread severe storms likely and will be- long-lived, widespread, 

and intense; and (5) High (HIGH) widespread severe storms expected and will be- long-

lived, very-widespread, and particularly intense. The SPC maintains an online archive 

(/http://www.spc.noaa.gov./) of these convective outlooks. Duke Energy relies heavily on 

http://www.spc.noaa.gov./
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the one-day convective outlooks. As such, the archived convective outlooks were used to 

identify warm season case dates when outage-producing short-fuse thunderstorms were 

anticipated by Duke Energy forecasters (details provided below). 

c. Power Outages 

 Power outage data was provided by Duke Energy for the case dates (also referred to as 

event dates) selected within the warm seasons of 2013-2017. The outage data are geo-

located points with the following information associated: (1) date; (2) time; (3) latitude/ 

longitude; (4) total customers affected; (5) weather at the time of the repair; (6) diagnosed 

reason of outage; and (7) any equipment failure. 

d. Environmental Data: 

 The Rapid Refresh Model (RAP) is an hourly assimilated short-range forecasting 

system designed to help mitigation decision makers in now-casting situations. The RAP 

model replaced the original hourly assimilated now casting model, the Rapid Update Cycle 

(RUC) in 2012 and differs in the model component, assimilation component, and 

horizontal domain (Benjamin et al. 2004, 2016). Updated versions of the RAP became 

operational in 2014 and 2016.  The RAP ingests observations made by surface weather 

stations, buoy/ships, aircrafts, rawinsondes, radars and satellites and then produces four-

dimensional forecast fields of 129 parameters (wind, pressure, temperature, moisture, 

hydrometeor type/concentration, soil moisture, etc.) with 13-km horizontal resolution, 25 

mb vertical resolution and 1 hour temporal resolution forecasted out to 18 hours. Our study 

period (2013-2017) encompasses three versions of the RAP; however, the horizontal, 
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vertical, and temporal resolutions of the model remain consistent throughout all three 

versions.  

 For all case dates, the analysis fields (i.e. forecast hour 00 for each hour initialization) 

falling between 1200 UTC of the event date through 1200 UTC of the following day were 

downloaded. These analysis fields represented the environmental conditions “observed” 

throughout the 24-hour period encompassing an outage event.  

e. Radar Data: 

 The National Centers for Environmental Information has a radar archive of every Next 

Generation Radar System (NEXRAD) and Terminal Doppler Weather Radar (TDRW). 

The NEXRAD system consists of 160 pulse radars that obtain real time radar reflectivity 

and Doppler velocity observations in five-minute intervals at a 240-km radius from the 

radar. The radar scans at 14 different elevations scans ranging from 0.5°- 19.5° above the 

horizontal. The Duke Energy service area is covered by 18 different NEXRAD. The 

NEXRAD offers a multitude of products at two different data levels: Level-II data consists 

of raw volumetric reflectivity, Doppler velocity, and spectral width observations; while 

Level-III data consists of over 50 quality-controlled parameters calculated from the raw 

volumetric data. The Level III Products used for this project are as follows:  (1) the base-

level radar reflectivity [product code “DHR”]; (2) the base-level radial velocity [product 

code “N0V”]; (3) enhanced echo tops [product code “EET”]; (4) the vertically-integrated 

liquid [product code “DVL”]. The base-level velocity data comes in a high resolution 

native polar grid (with azimuthal and radial resolutions of 1 degree and 0.25 km, 

respectively) while the remaining three products come on lower-resolution polar grids 

(with azimuthal and radial resolutions of 1 degree and 1.0-km, respectively).   
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CHAPTER 4: METHODS 

a. Case Date Selection: 

 As a reminder, Duke Energy forecasters struggle predicting “short-fuse events” 

(whereby strong storms are not forecast, yet storms and numerous power outages occur), 

and “non-events” (whereby strong storms are forecast and occur, but outages are minimal). 

To identify these cases, the SPC archive of one-day convective outlooks were used to 

identify warm season (March-October) dates during a recent 5-year period (2013-2017) 

when storms of various severity (via risk categories discussed above) were forecast, along 

with NWS severe weather storm reports as verification of whether or not severe storms 

transpired that day. This information was tabulated for each service area using classic 2×2 

contingency tables that showed how often (1) an event was forecast and the event occurred 

(a “hit”), (2) an event was forecast but the event did not occur - (a “false alarm”), (3) an 

event was not forecast but the event occurred (a “miss”), and (4) an event was not forecast 

and the event did not occur (a “correct negative”). Within this context, short fuse-events 

are equivalent to “misses” and the non-events are equivalent to a “false alarms”.  

 This study examines dates that fall within three of the four contingency table quadrants. 

First, “false alarms” (or non-events) consist of dates when the SPC one-day convective 

outlook forecast SLGT, ENH, MDT or HIGH convection across a Midwest/Carolina 

(Florida) service area, yet less than 10 (less than 5) severe storm reports were made across 

the area. The lower threshold for Florida is due to climatological differences in convection 

and a desire to keep the total number of false alarm dates across the five service areas 

roughly equivalent. Second, the “misses” (or short fuse-events) consist of dates when SPC 

one-day convective outlook forecast NONE, TSTM or MRGL convection across a 
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Midwest/Carolina (Florida) service area, and 10 or more (5 or more) severe storm reports 

were made across the area. Finally, the third category, known as “hits” (or hit-events), 

consists of dates when the SPC one-day convective outlook forecast SLGT, ENH, MOD 

or HIGH convection across Midwest/Carolina (Florida) service area, and 10 or more (5 or 

more) storm reports were made. These hit-events are often well anticipated by Duke 

Energy forecasters and therefore were used as the “control” to which “misses” and “false 

alarms” were compared. Using the above criteria, ~10-15% of all warm-season dates (1225 

total of the 5-year period) were classified as either “hits”, “misses” or “false alarms” in 

each service area. The number of dates per event type can be found in (Table 1). This subset 

of dates provides a sufficiently large sample size for statistical analysis and model 

development within a manageable time frame. 

b. Quality Control of Outage Data: 

 The outage data provided by Duke Energy contains all power outages that occurred on 

that event date, not just outages caused by weather.  To achieve the end goal of determining 

a statistical relationship between storm/-environmental parameters and total weather-

related power outages, it is imperative to remove all non-weather-related outages. First, the 

cause attributed to each outage was screened. All outages directly caused by weather (such 

as lightning or tree limbs collapsing) and outages indirectly caused by weather (such as 

cars running into utility poles) were retained. Outages with no documented causation (most 

likely due to response crews not having time to report the causation of the outage because 

of the high volume of outage repairs to attend to) were also retained. Second, the remaining 

outages were compared to animated radar observations to ensure strong storms were 

present. As a result, a two additional criteria were enforced: (1) the outage had to be 
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reported within four hours of deep convection (maximum radar reflectivity > 20 dBZ and 

maximum echo tops > 15 kft) passing within 10 km of the location; and (2) there must have 

been at least five total reported outages during that hour. The first criterion ensured that the 

reported outage occurred in a region that had recently experienced deep convection, and 

the second criterion reduced the requested radar data to a manageable size (< 20 TB).  

c. Creation of the Spatial Analysis Grid: 

 At the request of Duke Energy forecasters and outage repair crews, a 10 × 10 km grid 

was used for the spatial analysis across the three climatological territories. Duke Energy 

has found that 10 km is a safe distance by which repair crews can be pre-positioned near 

active thunderstorms. Moreover a 10 × 10 km grid is a conservative spatial compromise 

among the various data being analyzed in this study. For example, the spatial resolutions 

of potential environmental and radar predictors range from 30-m (for land cover 

classifications) to 13-km (for the hourly model analyses), while other vary (the local 

population was extracted from census blocks with scale of 1-20 km). Finally, the 10 × 10 

km grid reduced the total observational database to less than 20 TB. The grid was generated 

via the ArcMap Fishnet Spatial Analysis Tool. 

d. Acquisition and Processing of Environmental Observations: 

 The environmental data was obtained through the National Center for Environmental 

Information’s (NCEI) online data portal. A total of 392 case dates during the 2013-2017 

period were identified among the combined five service areas, for a total of 9,408 hours of 

RAP model analyses. The RAP’s native grid was also downloaded for each case date, 

specifically for the extraction of soil moisture. Roughly ~10-15% of the dates were 
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removed for each service area due to missing files. Next, the model analyses grids were 

converted from their original form as a “.grib2” file to a “netCDF” to more easily access 

the data and develop a predictor database for each service area. There were 33 different 

atmospheric parameters chosen to be investigated in this study (Table 2). Custom software 

was developed to extract the meteorological parameters directly from the RAP analyses 

and native grids. Kinematic and thermodynamic variables not readily available through the 

RAP model output were computed using the python library “SHARPpy”- (a sounding and 

hodograph analysis package; Blumberg et al. 2017). All environmental metrics (Table 2) 

were assigned to a 10 km spatial analysis point based on the closest RAP model grid point 

(13-km resolution). As such, metrics computed via SHARPpy used the vertical sounding 

(37 vertical layers) from the closest RAP model grid point.  

 A brief description of each parameter (also referred to as metrics) can be found in Table 

2. Below is a detailed description of each parameter/metric, the typical thresholds used in 

the operational settings, and the relevance of each parameter to this study.  

 Divergence at 500mb [DIV500] (s-1) - is a measure of declining mass of air aloft that 

leads to rising motion at the surface to replace the absent mass. The rising motion at the 

surface can promote convection as well as cyclogenesis (Lackmann 2012). For example, 

Watson and Blanchard (1984) concluded that a steady decrease in divergence of 25 × 10-6 

over the total area (>1500 km2) often produces sufficient surface convergence to initiate 

deep convection. Divergence is hard to implement in now-casting situations, but its 

potential during 3-12 h forecast scenarios lead it to be included a possible predictor in this 

study.  
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 Height of 0°C Isotherm [HGTFRZ] (m) – the height of the freezing level can inform 

a forecaster about the hail/graupel development layer as well as the depth of the warm layer 

in which the hail/graupel can melt before reaching the surface. If the freezing level is closer 

than 650mb then large hail is likely to reach the surface. Moreover, Atkins and Wakimoto 

(1991) showed that wet microburst-producing storms tended to have higher freezing levels, 

and thus downdrafts could experience greater negative buoyancy from melting hail and 

achieve larger magnitudes before reaching the surface. Given that wet microbursts are 

believed to be a significant cause of power outages, the freezing level was included as 

potential predictor in this study.  

 Helicity 3 km [HEL03] (m2 s-2) - is storm relative helicity computed between 0-3km 

AGL via 𝑆𝑅𝐻 =  ∫ 𝑘 ∗ (𝑉 − 𝑐) × 
𝛿𝑉

𝛿𝑧
 𝑑𝑧

ℎ

0
 (Davies-Jones et al. 1990), where  V is the 

horizontal velocity, c is the storm motion vector, and h is the uppermost layer height. This 

parameter is used to measure the potential for a rotating updraft (Thompson et al. 2007). 

Environments supportive of non-severe (supercell) thunderstorm, rarely (often) exhibited 

HEL03 less than (greater than) 100 m2 s-2 (Rasmussen and Blanchard 1998). Given that 

large HEL03 is associated with storms that could produce conditions responsible for power 

outages, the parameter was included in this study.  

 Helicity 1 km [HEL01] (m2 s-2) – is used to measure the potential for updraft rotation 

computed in the lowest 1km AGL (Thompson et al. 2007). Rotating updrafts are defining 

characteristics of supercells that often produce severe straight-line winds, large hail, and 

strong tornadoes. When HEL01 is greater than 75 m2 s-2 the chance that a supercell will 

spawn a strong tornado increases drastically (Thompson et al. 2003). Given that large 
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HEL01 are associated with storms that could produce conditions responsible for power 

outages, the parameter was selected for investigation in this study.  

 Lifted Index [LI] (K) - is the temperature difference between a lifted parcel at 500mb 

and the environmental temperature at 500 mb. As the lifted index becomes more negative 

the atmosphere is considered to be more unstable. In contrast, if the lifted index is positive 

the atmosphere is considered to be stable (Galway 1956). One limitation to this parameter 

is that it only considers buoyancy at one level, which is why this parameter with other 

buoyancy parameters should be used collectively to get a greater understanding of the 

buoyancy and updraft potential within that column of the atmosphere. Given that it does 

provide some indication that convection is possible (i.e. buoyancy exists) the parameter 

was selected for examination in this study. 

 Precipitable Water of the Troposphere [PW] (kg m-2) - is a measure of the total 

water vapor within an atmospheric column. PW is used to estimate water-loading and 

maximum precipitation amounts if convection were to develop. High PW can lead to 

greater precipitation intensities that have been connected to stronger microbursts because 

of the increase in precipitation particles to cool the atmosphere and generate more negative 

buoyancy (Proctor 1989). The range 1.0” – 1.5” is typically used for hail forecasting, 

primarily because the water-loading generated with those values does not immediately 

suppress the updraft, allowing for hail to form. Hail has also been tied to microbursts 

because of the rapid sublimative cooling that takes place as the hailstones begin to fall, 

accelerating the downdraft via negative buoyancy (Proctor 1989). In hopes to identify 

environments conducive for microburst development, this parameter was included in this 

study. 
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 Relative Humidity Difference [RHBLML] (%) - represents the difference in mean 

relative humidity between the boundary layer and the 850-500mb layer. Proctor (1989) 

shows through a series of idealized numerical simulations of microbursts, that the strongest 

microbursts were those occurring from environments composed of a deep dry-adiabatic 

layer in the mid-levels and a relatively moist lower level from the surface to mid-levels and 

relatively moist lower levels. Therefore, large positive (RHBLML) differences (i.e. low-

levels are much moister than mid-levels) would be supportive of strong microburst, while 

small positive or even negative RHBLML difference (i.e. low-levels are drier than mid-

levels) would be less supportive. In hopes to identify environments conducive for 

microburst development, this parameter was included in this study.  

 700 mb Temperature [TMP700] (K) – is often used as an indicator of whether a 

strong capping inversion is present and thus will prevent convective development. 

Forecaster’s generally use the rule of thumb that if TMP700 exceeds 10-12°C then the 

environment is unfavorable for convective development (Bunkers et al. 2010). This is a 

parameter used to decipher whether or not convective initiation will take place and 

therefore seemed to be good fit for this study.  

 700 mb Theta-e [THE700] (K) - is the equivalent potential temperature for a 700 mb 

environmental parcel. Atkins and Wakimoto (1991) showed that wet microburst-producing 

storms tended to have lower THE700, and thus entrainment of environmental air into a 

downdraft could experience greater negative buoyancy from evaporation and achieve 

larger magnitudes before reaching the surface. Given that wet microburst are believed to 

be a significant cause of power outages, the THE700 was included as potential predictor in 

this study.  
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 850 mb Theta-e [THE850] (K) - is the equivalent potential temperature for an 850 mb 

environmental parcel. Atkins and Wakimoto (1991) showed that wet microburst-producing 

storms tended to have lower THE850, and thus entrainment of environmental air into a 

downdraft could experience greater negative buoyancy from evaporation and achieve 

larger magnitudes before reaching the surface. Given that wet microbursts are believed to 

be a significant cause of power outages, the THE850 was included as potential predictor in 

this study. 

 Vertical Velocity [LLVVEL] (Pa s-1) - is the mean vertical velocity in the 850-500mb 

layer, whereby positive (negative) values indicate a mean sinking (rising) motion. If the 

rising motion is great enough, the parcel may become saturated and potentially tap into any 

available CAPE. Thus, large LLVVEL should provide forecasters with insight as to where 

deep convection would most likely develop and/or where deep convection would be 

supported by the synoptic mesoscale environment. Knowing that vertical velocity can 

indicate area of possible convection it became a parameter of interest for this study.  

 Surface Winds [WSPSFC] (m s-1) – is the surface wind speed computed by adjusting 

the wind speed at the lowest model level to 10m AGL. Stronger winds increase the 

likelihood of falling trees and limbs negatively affecting power lines. Moreover, stronger 

pre-existing surface winds will be an added effect when storms produce strong straight-

line winds (via downdrafts). Including surface wind speed a potential predictor seems like 

a wise choice.   

 700 mb Winds [WSP700] (m s-1) – is the environmental wind speed at 700mb. Given 

that strong convective downdrafts (or microbursts) can descend from mid-levels and 
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transport low- and mid-level momentum down to the surface, stronger 700 mb wind speeds 

may result in greater power outage numbers.  

 850 mb Winds [WSP850] (m s-1) – is the environmental wind speed at 850mb. Given 

that strong convective downdrafts (or microbursts) can descend from mid-levels and 

transport low- and mid-level momentum down to the surface, stronger 850 mb wind speeds 

may result in greater power outage numbers. 

 Mean Soil Moisture [SOILMS] (fraction) - is the mean moisture through the 0-300 

cm layer below the surface. SOILMS is controlled by a one-dimensional planetary 

boundary layer scheme implemented in the Rapid Refresh Model that measures heat and 

moisture fluxes between the surface and the atmosphere (Smirnova et al. 1997). Soil 

moisture is important to power outage forecasting because wetter soils increase the chances 

of trees and/or utility poles being uprooted (Han et al. 2009; Nateghi et al. 2014).  

 Bulk Richardson Number [BRN] - is a non-dimensional parameter that incorporates 

both buoyancy and shear represented by the equation 𝐵𝑅𝑁 =  
𝐶𝐴𝑃𝐸

1

2
𝑢2

. The numerator is used 

to represent the potential maximum updraft and the denominator represents the potential 

for an updraft to gain rotational characteristics via the tilting of horizontal vorticity induced 

by the ambient vertical shear in the lowest 6km. This parameter is used for the prediction 

of storm type as different combinations of buoyancy and shear have been proven to result 

in a variety of storm types (Weisman and Klemp 1982). The parameter does have 

limitations (such as only considering speed shear and not directional; and neglecting the 

vertical moisture distribution). BRN values between 10 and 45 have been associated with 

supercells, while smaller (larger) BRN values are symbolic of single cell (multi-cells).  
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Since storm type is an important piece of this study as more intense supercell and multi-

cell storms often yield a larger number of power outages, BRN seemed like a parameter of 

interest for examination.  

 Downdraft Convective Available Potential Energy [DCAPE] (J kg-1) - is a measure 

of the maximum negative buoyancy generated from evaporative cooling that can accelerate 

a descending parcel to surface. Maximum values of DCAPE are generally located between 

2-7 km AGL and will be greater when the mid-levels are extremely dry (Gilmore and 

Wicker 1998). Evans and Doswell (2001) discuss the significant role of large DCAPE in 

convective wind storms occurring in weakly forced environments, whereby 0-6 km mean 

winds are weak and convection is initiated by daytime heating. In these types of events 

DCAPE often exceeds 1000 J kg-1. Due to DCAPE’s direct relation to downdraft strength, 

the parameter was selected for this study.  

 Effective Inflow Depth [EFFDEPTH] (m) – is the lowest contiguous layer of parcels 

that satisfies the criteria of CAPE > 100 J kg-1 and CIN > -250 J kg-1. The first criteria is to 

identify a parcel that contains enough buoyancy to preserve the updraft, while the second 

criteria ensures a parcel that will not endure excessive convective inhibition resulting in 

eradication the updraft (Thompson et al. 2007).  Despite EFFDEPTH not varying amongst 

storm type (i.e. significantly tornadic, weakly tornadic and non-tornadic) the parameter 

was chosen for this study because they have not been tested against different event types.  

 Effective Inflow Base Height [EFFBASE] (m) – is the first parcel moving upward 

from the surface to satisfy the requirement of CAPE > 100 J kg-1 and CIN > -250 J kg-1 

(Thompson et al. 2007).  Despite EFFBASE not varying amongst storm type (i.e. 
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significantly tornadic, weakly tornadic and non-tornadic) the parameter was chosen for this 

study because they have not been tested against different event types. 

 Effective Inflow Top Height [EFFTOP] (m) – is the last parcel that contiguously 

from EFFBASE that meets the requirements of CAPE > 100 J kg-1 and CIN > -250 J kg-1  

from EFFBASE (Thompson et al. 2007). Despite EFFTOP not varying amongst storm type 

(i.e. significantly tornadic, weakly tornadic and non-tornadic) the parameter was chosen 

for this study because they have not been tested against different event types. 

 Microburst Parameter [MBURST] - is a non-dimensional parameter developed at 

the SPC to predict the likelihood of a microburst. It is derived from the weighted sum of 

the SBCAPE, SBLI, 0-3 km lapse rates, vertical totals (850-500 mb temperature 

difference), DCAPE and PW.  SBCAPE is used to identify the possibility of strong 

convection and SBLI is used to infer mid-level instability where downdrafts often 

development. The 0-3 km lapse rates and vertical totals help identify low-level 

environments that can support both strong updraft and downdrafts (i.e. a downdraft will 

accelerate faster if it descends into warmer air). DCAPE is used to identify environments 

supportive of strong evaporatively-driven downdrafts; and PW is used to infer the potential 

water-loading contribution to any microbursts. Environments resulting in a MBURST 

value between 3 and 4 are considered to host a “slight chance” for microburst development. 

If the MBURST value is between 5 and 8 there is a “chance” for microburst development 

and anything greater than 9, microbursts are “likely”. Details about MBURST can be found 

at (https://www.spc.noaa.gov/exper/mesoanalysis/help/help_mbcp.html). 

 Mixed Layer Convective Available Potential Energy [MLCAPE] (J kg-1) - is the 

total area between an environmental temperature and the temperature of parcel being lifted 
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moist adiabatically from the level of free convection to the equilibrium level. The parcel in 

this case is lifted using the average temperature and average dew point temperature 

measurements in the lowest 100 mb. The positive area shows where the parcel is warmer 

than the surrounding environment, thus identifying positively buoyant air capable of 

accelerating an updraft parcel. Evans and Doswell (2001) found that during weakly forced 

thunderstorm events (i.e. daytime heating thunderstorms) that MLCAPE often exceeded 

1500 J kg-1. Given that MLCAPE is a traditional parameter to determine whether 

convection will initiate, the parameter was chosen for investigation in this study. 

 Mixed Layer Convective Inhibition [MLCIN] (J kg-1) – is the total area between the 

environmental temperature and parcel temperature that is being lifted dry adiabatically 

until the lifting condensation level and then moist adiabatically until the level of free 

convection is reached. The parcel in this case is lifted using the average temperature and 

average dew point temperature measurements in the lowest 100 mb. The negative area 

given shows where the parcel is cooler than the surrounding environment, thus identifying 

negatively buoyant air capable of decelerating an updraft parcel. This is a parameter used 

to decipher whether or not convective initiation will take place and therefore seemed to be 

good fit for this study. 

 Most Unstable Convective Available Potential Energy [MUCAPE] (J kg-1) – is the 

total area between an environmental temperature and the temperature of parcel being lifted 

moist adiabatically from the level of free convection to the equilibrium level. The parcel in 

this case is lifted from the temperature and dew point temperature measurements in the 

lowest 300 mb that result in the greatest instability (greatest area). The positive area shows 

where the parcel is warmer than the surrounding environment, thus identifying positively 
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buoyant air capable of accelerating an updraft parcel. Evans and Doswell (2001) found that 

during weakly forced thunderstorm events (i.e. daytime heating thunderstorms) that 

MUCAPE often exceeded 2600 J kg-1. Given that MUCAPE is a traditional parameter to 

determine whether convection will initiate, the parameter was chosen for investigation in 

this study.  

 Most Unstable Convective Inhibition [MUCIN] - is the total area between the 

environmental temperature and parcel temperature that is being lifted dry adiabatically 

until the lifting condensation level and then moist adiabatically until the level of free 

convection is reached. The parcel in this case is lifted from the temperature and dew point 

temperature measurements in the lowest 300 mb that result in the greatest instability 

(greatest area) for MUCAPE. The negative area given shows where the parcel is cooler 

than the surrounding environment, thus identifying negatively buoyant air capable of 

decelerating an updraft parcel. This is a parameter used to decipher whether or not 

convective initiation will take place and therefore seemed to be good fit for this study. 

 Supercell Composite Parameter [SCP] - is a non-dimensional metric designed to 

distinguish between supercell and non-supercell environments. The parameter was derived 

from soundings near supercells exhibited one or more radar reflectivity structures common 

in supercells (i.e. hook echoes, inflow notches, etc.), azimuthal shear of 20 m s-1 or greater 

in the 0.5° - 1.5° elevation angles with a horizontal dimension less than 10 km, and finally 

showed cyclonic shear for greater than 30 minutes. The SCP is a product of (MUCAPE/ 

1000 J kg-1) × (0 – 3 km SRH/ 100 m2 s-2) × (BRN shear/ 40 m2 s-2). The component 

thresholds were determined by the distributions of significantly tornadic, weakly tornadic 

and non-tornadic events in the dataset. Thompson et al. (2003) found that when the SCP 
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value was greater than 1, the environment was extremely conducive for supercell 

development, while SCP values less than 1 were common among non-supercell days 

(Thompson et al 2003). Supercells can cause a significant destruction to infrastructure 

through the rear-flank downdraft and potentially a tornado, therefore this parameter of 

interest for this study.  

 SHERBE [SHERBE] - is a non-dimensional metric used to discriminate between 

severe and non-severe thunderstorms in high shear, low CAPE (HSLC) environments.  

SHERBE is the product of (EBWD / 27 m s-1) × (LLLR / 5.2 K km-1) × (LR75 / 5.6 K km-

1), where EBWD is the effective bulk wind difference, LLLR is the lapse rate 0-3 km, and 

LR75 is the lapse rate from 700-500mb (Sherburn and Parker 2014). One reason as to why 

this parameter is successful in HSLC environments is because the composite is not based 

on CAPE, unlike many other composite parameters designed to predict severe weather. By 

not including CAPE into its calculation it’s able to identify severe potential in low CAPE 

environments. Instead, to identify instability it uses lapse rates. Steeper lapse rates have 

been associated with stronger downdrafts and then damaging winds (Johns and Hirt 1987) 

if combined with stronger winds aloft (represented by EBWD in this case) via downward 

momentum transfer. SHERBE values greater than 1 indicate a chance of severe weather. 

Given that this parameter is particularly helpful discriminating between severe and non-

severe thunderstorms in HSLC environments, which are common across the Carolinas (i.e. 

two of Duke Energy’s service area), it was selected as a parameter of interest for this study.  

 Significant Hail Parameter [SHP] - SHP is a non-dimensional parameter used to 

predict the probability hail sizes considered to be significant hail which is characterized by 

a diameter greater than 2 inches (Hales 1993). The parameter uses the product of 
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MUCAPE, Mixing Ratio of MU-Parcel, the 700-500 mb lapse rate, 500 mb temperature 

and SHR06, all divided by 42,000,000 to predict if there is a chance of hail sizes exceeding 

2 inch in diameter. The product of CAPE and shear have been used as a proxy to estimate 

updraft duration and hail production (Brimelow et al 2002). SHP values greater than 1.0 

indicate locations that are favorable for hail development greater than 2 inches in diameter 

(https://www.spc.noaa.gov/sfctest/help/help_sigh.html). Considering the significant hail is 

indicative of a strong updraft (i.e. strong convection), this parameter becomes of interest 

for this study.  

 Significant Tornado Parameter [STP] - The significant tornado parameter is 

designed to distinguish between significantly tornadic and non-tornadic supercell 

environments (Thompson et al. 2003). The metric is the product of (MLCAPE/ 1000 J kg-

1) × (SHR06 / 20 m s-1) × (HEL01/ 100 m2 s-2) × [(2000 - MLLCL)/1500 m] and values 

of ≥ 1 are a good guideline in identifying an environment conducive for significant tornadic 

supercell development (Thompson et al. 2003). Given that tornadoes are capable of causing 

power outages this parameter was selected for examination in this study.  

 Shear 0-1 km [SHR01] (kts) – the difference between the surface winds and the winds 

at 1 km AGL. Stronger low-level shear tends to be associated with strong convective wind 

storms (Johns and Hirt 1987). Stronger shear also results in a heightened chance of new 

cell development. Given that greater SHR01 can lead to convective wind storms and new 

cell development, it seemed to be a good fit for this study.   

 Shear 0-3 km [SHR03] (kts) – the difference between the surface and the winds at 3 

km AGL. Evans and Doswell (2001) found that SHR03 often ranged between 4-8 kts for 

https://www.spc.noaa.gov/sfctest/help/help_sigh.html
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derechos events. Given that derecho events are a catalyst for power outages (since, by 

definition, they produce widespread microbursts), SHR03 was selected for this study. 

 Shear 0-6 km [SHR06] (kts) – the difference between the surface and the winds at 6 

km AGL. This term can help in the prediction of storm type and strength as shear is a major 

mechanism in storm generation. Low shear environments often result in ordinary cell 

convection, low-to-moderate shear environments generally result in multicellular 

development, and moderate-to-high shear environments typically produce supercells 

(Weisman and Klemp 1982). SHR06 has also been evaluated for derecho events and found 

that values generally range from 5-10 kts (Evans and Doswell 2001). Given that derecho 

events are more than capable of producing power outages, this parameter was selected for 

this study.  

 Wind Damage Parameter [WNDG] - is a non-dimensional composite parameter used 

to identify regions with heighted chances for wind damage outflow from thunderstorms 

(Blumberg et al. 2017). The parameter was designed to address warm season convection 

caused by daytime heating with minimum forcing. The parameter is a product of 

(MLCAPE / 2000 J kg-1) × (LR0-3km / 9°C km-1) × ( �̅�1.0-3.5km / 15 m s-1) × (50 J kg-1 + 

MLCINH / 40 J kg-1). Values greater than one highlight a region of increased wind damage 

potential and values less than one are associated with environments with less wind damage 

potential. Given that strong winds are major cause of power outages, this parameter was 

selected for this study.  
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e. Stratification of Dates: 

 A useful guidance tool for Duke Energy forecasters, who are tasked each day with 

estimating the total number of weather-induced outages within a given service area, would 

be multiple-linear regression model (or equations) developed from prior events when 

particular storm types (i.e. pulse thunderstorms, squall lines, supercell, etc.) or severe 

weather (strong winds, large hail, tornadoes) occurred. To develop such event-specific 

models, the event dates must be stratified accordingly for each of the five service areas. 

The first stratification divided the dates into two seasons, “warm” and “hot”, to account for 

the seasonal difference in this study’s definition of the meteorological warm season (March 

1st – October 31st). The “hot” season is considered to be the traditional meteorological 

summer months, June, July and August. The warm season is comprised of the remaining 

months, March, April, May, September, and October, except in the Carolina service areas 

where August dates are analyzed in both the “hot” and  the “warm” seasons. These seasons 

were adopted to ensure each season contained enough (usually greater than 10) case dates 

to permit meaningful statistical analysis.  

 Next, a second stratification by convective mode was performed since, the storm type 

is largely a function of the atmospheric conditions present. Based on a survey of the 

observed convection in all service areas, six different convective modes were considered: 

pulse thunderstorms (PULSE), front driven thunderstorms (FRNT), scattered multicells 

(SCAT), squall lines (SQLL), supercells (SUPR) and none (NONE). The dominant 

convective mode for a given case date / service area was determined from the animated 

radar reflectivity fields during the 3-h period leading up to and encompassing the hour with 
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the maximum number of outages were reported outages for that area. The criteria to 

distinguish between the six convective modes are as follows. 

 Pulse Convection (PULSE):  Deep convection consisting of multiple distinct 

convective cells with reflectivity maxima > 30-50 dBZ but no clear mesoscale 

organization.  This pattern was most common on hot summer dates when no synoptic-scale 

front passed through/near the service area. 

 Frontal (FRNT):  Deep convection oriented parallel/along an advancing synoptic-

scale front with nearly contiguous reflectivity > 30 dBZ but few embedded convective cells 

exhibiting maximum reflectivity > 50 dBZ. This pattern was most common in the warm 

months (spring and fall) along cold fronts that (a) were moving northwest to southeast 

across the service area; (b) were accompanied by a moderate to strong pre-frontal low-level 

jet. 

 Scattered Multicells (SCAT): Deep convection consisting of multiple distinct cells 

with reflectivity maximum > 40-50 dBZ, but the cells were either (a) not aligned in a quasi-

linear pattern with contiguous reflectivity > 40 dBZ or (b) did not exhibit a major axis 

greater than 100 km in length.  This pattern often occurred when the convection passing 

through the service area was either: (a) in the early organizational stages before upscale 

growth into a squall line; or (b) on the warm side of a synoptic front (that was also located 

in service area). 

 Squall Line (SQLL):  Deep convection consisting of nearly contiguous reflectivity > 

40 dBZ oriented in a quasi-linear pattern with a major axis > 100 km in length.  Individual 

cells embedded within the line often exhibited maximum reflectivities > 50 dBZ.  Most 
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squall lines exhibited a trailing stratiform (TS) or parallel stratiform (PS) structure with 

embedded bowing segments and moved northwest to southeast either ahead of a cold front 

or along a warm/ stationary front. 

 Supercell (SUPER):  Deep convection consists of multiple distinct (isolated) 

supercells with reflectivity maxima > 50 dBZ and clear hook echoes (or inflow notches). 

 No Deep Convection (NONE):  No deep convection passing through the service area 

was observed by radar. Any reported outages were most likely a result of planned repairs 

or accidents and were unrelated to deep convection. 

 Finally, a third stratification was made with regard to the dominant (or most numerous) 

severe weather type (“wind”, “hail”, or “tornado” categories) reported on that event date 

based on the “filtered” storm report archive available from the Storm Prediction Center. If 

no dominant severe weather type occurred on a given day (i.e. no severe weather was 

reported or similar number of reports were made for two or more types), then that date was 

placed in a ‘no dominant severe weather type” category. Table 3 summarizes the dates 

categorized by dominant severe weather type for each service area. The hail and tornado 

categories were combined into one category to provide a large enough sample of case dates 

to maintain the integrity of the statistical analysis. Overall, this stratification process (2 

seasons × 6 convective modes × 3 severe weather type categories, Figure 2) resulted in 36 

different possible classifications for each event date. 

f. Summary Statistics 

 For each metric and case date, a file was created containing the metric’s value at each 

spatial analysis grid point for each hour of the day (from 12 UTC on the case date through 
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12 UTC on the next date). The Midwest service area (MWC and MWI) has 890 grid points, 

the Florida service area (FLA) has 703 grid points and the Carolina service area (DEC and 

DEP) was covered by 1590 spatial analysis grid points. Each Midwest case date file 

contained 21,360 data points (i.e. 890 spatial analysis grid points × 24 hours), while each 

Florida case date files contained 16,872 data points, and each Carolina case date file 

contained 38,160 data points.  The large magnitude of data for event date necessitated 

summary statistics for each of Duke’s service area to represent the entire service area on a 

given event date.  

 In order to consolidate the number of data points and simultaneously identify diurnal 

differences across an area, four summary statistics were computed for each the day (12 - 

24 UTC) and night (00-12 UTC) periods: (1) the day/night maximum of the hourly 

maximum (MAX-MAX); (2) the day/night average of the hourly maximum (AVG-MAX); 

(3) the day/night maximum of the hourly average (MAX-AVG); and (4) the day/night 

average of the hourly average (AVG-AVG). The events were broken into day and night for 

two reasons. First, atmospheric instability exhibits a strong diurnal cycle driven by low-

level daytime solar heating and nocturnal cooling. For example, Gropp and Davenport 

(2018) analyzed changes in thermodynamic and kinematic forecast parameters during the 

nocturnal transition (1-2 hours after sunset), and the most impacted parameter was MUCIN 

(which experienced an increase, reflecting a stabilization of the atmosphere after sunset). 

Second, the day and night separation aligns well with Duke Energy’s forecasters decisions 

as to whether or not to keep repair crews on call through the evening and into the overnight 

hours.  
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g. GLM Development for Total Number of Power Outage Estimation 

 If our stratified database of event dates were infinitely large, 360 unique, optimized, 

multiple linear regression prediction models could be developed for the five service areas 

in each of the seasons (“warm” and “hot”), each dominant convective mode (PULSE, 

FRNT, SCAT, SQLL, SUPER, and NONE), each dominant severe weather type category 

(wind, hail / tornado, and no dominant type) and each time (day/night) using the following 

general form: 

    (1)    𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑘𝑥𝑘+∈   

- where, y is the number of outages for a given event; 𝑥𝑘 are the optimal predictor metrics 

(see Table 2); 𝛽𝑘 are the estimators for each optimal metric; 𝛽0 is the intercept; and ∈ 

represent average residual errors (which under the assumption of normality are assumed to 

be zero; Montgomery et al. 2013).  

 However, our finite database combined with multiple stratifications results in some 

categories containing few (or no) event dates. To address this limitation while maintaining 

statistical integrity with regard to sample size, prediction models were only developed for 

those categories with a sample size of 10 or more. For such categories, a unique model was 

optimized via the backward elimination method outlined in Cerruti and Decker (2012) 

using the JMP statistical software. The process began by randomly removing 20 percent of 

event dates (to be able to repeat the process later to compute average estimator values) and 

then relating the ten predictors most- correlated with outages into one regression equation. 

Then, the least-skillful predictor with the largest p-value was removed, and a new 

regression equation was developed. This process continued until all estimator p-values 
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were below 0.05 (or a confidence level above 95%). Next, the remaining predictors were 

tested for multi-collinearity, which is undesired because it will wrongfully influence the 

coefficient of determination (r-square) and makes it difficult to separate the influence of 

predictors on the response (Wilks 2006). However, because it is common for the metrics 

used in this study to be elevated on severe weather days, the metrics were categorized by 

what they predict (Table 4).  If any two or more predictors within the same category (or as 

an element in a composite parameter) were highly correlated (r > 0.30), only the predictor 

with the highest correlation to the area’s outage count was retained. This process was 

performed for each summary statistic for all categories that qualified for regression 

development (i.e. sample size > 10). The summary statistic that produced a model with the 

greatest r-square for that specific category was chosen as the optimal model. Lastly, a final 

set of mean estimators, p-values, and adjusted r-squares were determined for each optimal 

model by retraining the model a total of ten times (after randomly removing 20% of the 

data). The mean estimators (among the 10 iterations) were adopted for the final 

“operational model” since they should provide a more stable prediction (analogous to an 

ensemble prediction outperforming the prediction of single ensemble member). 

h. GLM Validation 

 The operational models were validated using a technique referred to as reservoir 

sampling where a subset of k samples (approximately 80% of the dataset) is randomly 

selected from n samples (the whole dataset). The random sample, k, was then used to test 

the linear regression equation by calculating the Mean Absolute Error (MAE) (Equation 

2), Root Mean Square Error (RMSE) (Equation 3), Percent Error (Equation 4), and the Bias 

(Equation 5): 
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(2) 𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1  

(3) 𝑅𝑀𝑆𝐸 =  √
1

𝑛
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(4) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
 ∑ (

|�̂�−𝑦|

𝑦
× 100) 𝑛

𝑖=1  

(5) 𝐵𝑖𝑎𝑠 =  
1

𝑛
 ∑ �̂� − 𝑦𝑛

𝑖=1  

-where, y is the observed outages on the event date, �̂� is the predicted outages for the event 

date and 𝑛 is the number of times the reservoir sampling was repeated, which in this case 

was 500 times to construct an array of error statistics for that category’s regression 

equation. The error statistics array was visualized via box-whiskers plots showing the mean 

error statistics and 95% confidence interval about the mean. 
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CHAPTER 5: RESULTS AND DISCUSSION 

 

 

  It is envisioned that the multiple-linear regression equations developed here will 

become a tool for the forecasters at Duke Energy to estimate the total number of power 

outages likely to take place across each of their five service areas. The forecaster will be 

able to choose which equation(s) to use based on the service area, season, anticipated 

dominant convective mode, primary severe weather threat, and diurnal period. All optimal 

operational equations (whereby estimator p-values consistently remained below 0.05 

during repeated trials with different training sets) are displayed in Table 5 along with the 

stratification category, time (D = day or N = night), summary statistic used, mean 

estimators from the ten trials, and the corresponding mean adjusted r-square. Below, all 

optimal models will be discussed within the context of the optimal predictors included in 

each equation, the relative importance among the predictors for a given equation, and the 

physical connection(s) through which each predictor would logically increase/decrease the 

total number of power outages for the given scenario. 

a. Midwest Cincinnati (MWC) 

The full database for the MWC service area consisted of 104 event dates that, when 

stratified by the process discussed in the methods section, led to eight categories (MWC-

HOT-SCAT-WIND, MWC-HOT-SQLL-WIND, MWC-HOT-SCAT, MWC-HOT-SQLL, 

MWC-HOT, MWC-WARM-SCAT, MWC-WARM-SQLL and MWC-WARM) with 

sufficient dates (≥10) to build both day and night multiple-linear regression equation – for 

a total of sixteen possible regression equations. The number of dates for each category are 

listed in Table 6a and 6b.  While four of these categories (MWC-HOT-SCAT, MWC-HOT-



40 

SQLL, MWC-WARM-SCAT, and MWC-HOT) had sufficient sample sizes for model 

development, no statistically significant estimators (i.e. the p-values were not consistently 

below 0.05) could be identified among any of the daytime or nighttime summary statistics 

– reducing the pool of potential regression equations by eight. Also, despite some initial 

success with the MWC-HOT-SCAT-WIND-DAY category using the AVG-MAX, and 

MAX-AVG summary statistics, repeated trials with different training sets could not 

produce statistically significant estimators. The same failure was encountered for the 

MWC-HOT-SQLL-WIND-NIGHT category. 

 As a result, the following discussion focuses on the six remaining categories for 

which statistically significant estimators could be consistently identified. The models 

discussed below used summary statistic that exhibited the largest adjusted r-square in the 

original trial. Often, the disregarded summary statistics identified similar estimators but 

with lower adjusted r-squares. Thus, the reoccurrence of estimators in multiple summary 

statistics increases confidence that a relationship exists between the estimator and power 

outages.  

i. MWC Model Discussion 

Before attempting to develop an equation for the MWC-HOT-SCAT-WIND-

NIGHT events, a log transformation was applied to the power outage counts to reduce 

skewness in the distribution (Figure 3). The nocturnal outages could then be significantly 

estimated using the summary statistics MAX-AVG of WSP850 (Table 5, Index 1) with a 

resulting mean adjusted r-square of 0.510 (indicating that the model approximately 

explains a little more than one-half of the total variability in nocturnal outages). 

Surprisingly, the WSP850 estimator was negative, implying that weaker 850 mb wind 
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speeds, produce more power outages. Given that most power outages are caused by strong 

surface winds, such relationship implies that simple downward advection of strong ambient 

winds from low- to mid-level was not the source of strong surface winds on dates when 

scattered storms were the dominant convective mode. Rather, numerous observational 

studies of wet microbursts (Caracena and Maier 1987; Wakimoto and Bringi 1988; Tuttle 

et al. 1989; Kingsmill and Wakimoto 1991; Atkins and Wakimoto 1991, Straka and 

Anderson 1993) have noted weak vertical shear magnitudes (i.e. weak 850 mb winds) in 

the local environment. Likewise, numerical simulations of wet microbursts (Srivastava 

1987; Proctor 1988, 1989; Straka and Anderson 1993) suggest that weaker vertical shear 

will reduce the net entrainment allowing downdrafts to achieve greater velocities (via 

hydrometeor waterloading, melting, and evaporation cooling) before reaching the surface. 

Moreover, the weaker vertical shear is consistent with the dominant convective made of 

these dates – scattered storms (consisting of single cells and disorganized multicells). 

An optimal model for the MWC-HOT-SQLL-WIND-DAY category was 

identified using the MAX-MAX summary statistics of WNDG, SOILMS, and SHR01 

(Table 5, Index 2) to predict the log-transform of power outages (Figure 4) with a mean 

adjusted r-square of 0.709. Interestingly, the WNDG estimator was negative, suggesting 

that more power outages were observed when the WNDG was small (even though larger 

WNDG are supposed to indicate an increased chance for wind damage). Unfortunately, no 

plausible explanation can be identified for the negative relationship between WNDG and 

power outages. The physical linkages could be explained through a series of carefully-

designed experiments using mesoscale numerical models but that is outside the scope of 

the current project. In contrast, the estimators for SOILMS and SHR01 were both positive, 
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implying that more outages were observed when the soil was moister and low-level wind 

shear was greater. Larger SOILMS positively influences power outages because trees are 

more likely to be uprooted and fall onto power-lines (McRoberts et al. 2016).  The presence 

of larger SHR01 magnitudes promotes initiation and maintenance of intense long-lived 

squall lines. In a manner consistent with RKW theory (Rotunno et al. 1988) larger 

magnitudes of low-level shear (i.e. SHR01) promote greater balance between the horizontal 

vorticity generated by the ambient low-level shear and the horizontal vorticity generated 

by the storm’s cold pool, leading to the regular production of upright updrafts and 

convective line maintenance. Moreover, long-lived squall lines often produce an intense 

mid-level rear inflow jet (RIJ) that collides with the updraft. Upon collision, the RIJ is 

forced downward, creating surface winds strong enough to uproot trees and damage power 

lines (Markowski and Richardson 2010). 

Additionally, a larger SHR01 implies strong low-level winds whereby simple 

downward momentum transport by weak/moderate downdrafts can significantly increase 

surface wind speeds (i.e. increasing the likelihood of power outages). Indeed, numerous 

studies of intense squall lines (Duke and Rogash 1992, Johns 1993; Wakimoto et al. 2006) 

have documented strong low-level shear in the local environments. Finally, it should be 

noted that the magnitude of the SOILMS and SHR01 estimators are one tenth and one third, 

respectively, of the WNDG estimator indicating that their contribution to total power 

outages are less than the WDNG parameter. 

The power outages for the MWC-WARM-SQLL-DAY scenario can best be 

estimated using the AVG-MAX statistics of WNDG and SHR06 (Table 5, Index 3) with 

an adjusted r-square of 0.701. A log transformation was performed on the outage count 
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dataset for this category (Figure 5). In this case, both estimators were positively correlated 

to power outages with WNDG exhibiting the stronger correlation. Given that the WNDG 

parameter is computed from MLCAPE, MLCIN, the 0-3 km lapse rates, and the average 

wind speed in the 1.0 – 3.5 km AGL layer, one would expect larger WNDG values (which 

indicate a greater chance of strong surface winds) during the warm months (i.e. spring and 

autumn) when low-level lapse rates and vertical shear are climatologically larger (Sherburn 

and Parker 2014). Likewise, larger SHR06 magnitudes support squall line growth and 

maintenance by providing sufficient updraft tilt such that cold-pool-producing downdrafts 

will reach the surface well away from the updraft initiation region (Markowski and 

Richardson 2010). As noted above, such long-lived squall lines often produce a strong 

midlevel RIJ and numerous RIJ-driven downdrafts that can significantly increase surface 

winds and power outages. 

Power outages for the MWC-WARM-SQLL-NIGHT events are best estimated 

using the MAX-MAX statistics for PW and HGTFRZ with a mean adjusted r-square of 

0.425 (Table 5, Index 4). In this case, a log transformation was applied to the outage count 

data to reduce skewness (Figure 6). Of the two predictors, PW exhibited the larger 

estimator with a positive correlation to power outages. Numerous observational studies 

(Caracena and Maier 1987; Johns 1993; Atkins and Wakimoto 1991) and numerical studies 

(Srivastiva 1987; Coniglio et al. 2011) have shown the larger PW environments support 

both longer-lived squall lines (due to fewer negative impacts upon increased entrainment 

of dry environmental air) and more intense downdrafts (due to increased hydrometeor 

production and downdraft acceleration via waterloading), thereby increasing the likelihood 

that a given squall line will produce strong surface winds and multiple power outages over 
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a large area. In contrast to PW, the HGTFRZ was negatively correlated with power outages 

meaning more outages occurred when the freezing/melting level was at a lower altitude. 

First given that downdraft accelerations are forced (in part) by the melting and evaporation 

of hydrometeors, Srivastava (1987) demonstrated that lower HGTFRZs in moist 

environments (such as the MWC area) would support stronger/colder downdrafts reaching 

the surface due to complete hydrometeor melting but incomplete evaporation (i.e. the 

downdrafts experience moist-adiabatic descent down to the surface). In contrast, drier 

environments with higher HGTFRZs would support weaker/warmer downdrafts due to 

complete hydrometeor melting and evaporation followed by some dry-adiabatic descent 

before reaching the surface. Second, warm-season squall lines are often initiated and 

maintained by prominent cold or stationary fronts, such that the smaller MAX-MAX 

magnitudes for HGTFRZ may simply serve as an analog for frontal strength (with lower 

HGTFRZ on the cold side). 

 For the broader category of MWC-WARM-DAY, an optimal regression equation was 

identified using the AVG-MAX statistics for WSP700 (Table 5, Index 5) after a log 

transformation was applied to the outage count data (Figure 7). However, with a mean 

adjusted r-square of 0.264, this relationship is less robust than those found for more specific 

convective modes. Nevertheless, WSP700 was positively correlated to power outages, 

meaning more power outages occurred when the mid-level winds were stronger. As 

discussed above, such relationship is consistent with simple downward momentum 

transport by convective downdrafts. 

Finally, for the broad MWC-WARM-NIGHT category, a statistically-significant 

equation was found using the MAX-MAX summary statistic for DIV500 (Table 5, Index 
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6) after a log transformation was applied to reduce skewness in the outage count data 

(Figure 8). As with its daytime counterpart, this relationship (with a mean adjusted r-square 

of 0.175) is less robust than the models developed for specific convective modes. The 

positive correlation between DIV500 and outages counts implies that more outages 

occurred when stronger mid-level divergence was present.  Midlevel divergence stimulates 

rising motion from below, therefore providing an environmental lifting mechanism that 

can support and maintain deep convection. First larger divergence supports stronger and 

wider updrafts, which in turn promotes greater total ice (i.e. ice crystals, graupel and hail) 

production (McCual et al. 2009). As these ice particles begin to fall, melting/evaporation 

induced cooling and hydrometeor water loading will play a significant role in the 

generation of intense downdrafts (Srivastava 1987). Second, stronger and wider updrafts 

promote appreciable charge separation within a given storm (Blyth et al 2001), and thereby 

increase the potential for frequent and intense cloud -to-ground lighting capable of 

damaging energy infrastructure.  

ii. MWC Error Analysis 

 The four error statistics used to evaluate the models are mean absolute error (MAE), 

root mean square error (RMSE), percent error, and bias, each of which of been computed 

500 times using a random 80% of the dataset. Ideally, the distribution of the errors would 

be narrow, indicating consistent errors that can be easily addressed when using models to 

forecast outages. In contrast, wide distributions would indicate the errors were not 

consistent, either due to insufficient sample size that captures the full spectrum of 

environmental variability or outliers affecting the error statistic.  Ideally, the MAE, RMSE, 

percent errors, and biases, values would be as close to zero as possible. However, in 
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accordance with Duke Energy’s outage repair/ staffing protocol (i.e. practical purposes), 

errors and biases on the order of 50 are considered acceptable.  

 When interpreting the MAE (Figure 9a) four of six models displayed acceptable errors 

[MWC-HOT-SCAT-WIND-NIGHT (1), MWC-WARM-SQLL-NIGHT (4), MWC-

WARM-DAY (5), and MWC-WARM-NIGHT (6)]. The two models with unacceptable 

errors were MWC-HOT-SQLL-WIND-DAY (2) and MWC-WARM-SQLL-DAY (3) 

as both distributions were wide with means near 120 and 85 outages, respectively. 

Interestingly, these two models are based on daytime squall line cases and had the largest 

adjusted r-squares.  The RMSE (Figure 9b) showed similar results, however MWC-

WARM-DAY (5) joined MWC-HOT-SQLL-WIND-DAY (2) and MWC-WARM-

SQLL-DAY (3) in the unacceptable category. All nighttime models had acceptable RMSE 

distributions. All mean percent errors (Figure 9c) equaled or exceeded 50%, but means 

were consistently smaller for the nighttime models (ranging from (50-60%) than daytime 

models (ranging from 62% to 75%). Lastly, all biases (Figure 9d) were negative, implying 

a consistent under-prediction, but the mean biases were smaller among the nighttime 

models (ranging from 5-10 outages) than the daytime models (ranging from 25-90 

outages).  

Overall, the error analysis for the six MWC models suggests that the nighttime 

models can predict total outage counts within the acceptable ±50 outage threshold, while 

the daytime models provide less reliable under-predictions of total outage count.  Sample 

sizes were similar among all daytime/nighttime model pairs, so the large (unacceptable) 

daytime errors cannot be attributed to smaller sample sizes.  Rather, it is important to 

recognize that the nighttime outage count distributions were narrow (the majority were less 
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than 50 and few exceeded 100), while the daytime distributions were much wider (a 

majority exceeded 50 with some exceeding 500).  As a result, the daytime models were 

trained to predict more outages over a wider range, and thus, are more susceptible to large 

errors.   

b. Midwest Indiana (MWI) 

 The MWI database comprised 142 event dates, that when stratified, led to twelve 

categories (MWI-HOT-SCAT-WIND, MWI-HOT-SQLL-WIND, MWI-HOT-SCAT, 

MWI-HOT-SQLL, MWI-HOT, MWI-WARM-SCAT-WIND, MWI-WARM-SQLL-

WIND, MWI-WARM-SCAT-HAIL-TOR, MWI-WARM-SQLL-HAIL-TOR, MWI-

WARM-SCAT, MWI-WARM-SQLL, and MWI-WARM) with sufficient events (≥10) to 

construct both day and night multiple-linear regression equations – for a total of twenty-

four possible regression equations. The number of dates for each category are cataloged in 

Tables 7a and 7b. The MWI-WARM-SQLL-HAIL-TOR had a sufficient number of events 

for model development; however no statistically significant estimators could be determined 

for either the daytime or nighttime summary statistics – lessening the pool of potential 

regression equations by two. The same shortcoming was experienced during the trials of 

the MWI-HOT-SCAT-DAY, MWI-HOT-SQLL-DAY, MWI-HOT-DAY, MWI-WARM-

SCAT-NIGHT, and MWI-WARM-NIGHT categories.  

The following discussion is focused on the remaining eighteen scenarios that during 

regression development, consistently produced statistically significant estimators. 

However, for the sake of brevity and avoidance of reiteration, detailed discussion will be 

limited to those models whereby either (1) a plausible physical connection between an 
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optimal predictor and the total number of outages has not been discussed previously, or (2) 

a different potentially-relevant physical connection exists between an optimal predictor and 

the outage count for the specific category. Otherwise, the reader should consult Table 5 

regarding the optimal summary statistic, optimal predictors, and adjusted r-squared value 

for a specific model (event category). Likewise, the relative importance among the optimal 

predictors can be readily determined by comparing respective estimator magnitudes (the 

largest is the most influential) for the given model. 

i. MWI Model Discussion 

 Power outages that occurred in the MWI-HOT-SCAT-WIND-DAY scenario, could 

be significantly estimated using the MAX-AVG summary statistic of SHR01 (Table 5, 

Index 7) with a weak mean adjusted r-square of 0.114. Regardless of the faint relationship, 

a negative dependency ensued between SHR01 and power outages, implying that a larger 

magnitude of SHR01 led to less outages. The weaker vertical shear aids in the 

strengthening of a descending downdraft by reducing the downdrafts exposure to drier 

environmental air and allowing the downdraft to descend moist-adiabatically consequently 

generating stronger winds at the surface that are capable of producing power outages 

(Srivastava 1987). These weaker vertical shear settings are quite common for scattered 

multicells providing some additional insurance for the relationship. 

 Before attempting to estimate power outages in the MWI-HOT-SCAT-WIND-

NIGHT setting, a log transformation was performed on the response dataset to reduce 

skewness (Figure 10). The nocturnal outages were significantly estimated by MAX-MAX 

summary statistics WNDG and HEL03 (Table 5, Index 8) with a mean adjusted r-square 

of 0.487. A positive relationship was observed between both the WNDG and HEL03 
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parameters with power outages, indicating that in the event that there were larger 

magnitudes of either parameter, more power outages transpired. A WNDG parameter 

greater than 1 indicates an increased chance of wind damage at the surface so it is not 

surprising that larger values of WNDG caused more power outages. Larger HEL03 values 

indicate regions with large amounts of potential streamwise vorticity can be tilted and 

stretched to develop mid-level rotation (Davies-Jones 1984). Rotating updrafts tend to be 

more resilient, supporting longer-lived storms that increase the likelihood of 

strong/frequent downdraft formation through a combination of water-loading and 

evaporative/melting cooling (Thompson et al. 2007).  

 The next scenario evaluated was the MWI-HOT-SQLL-WIND-DAY events. The 

power outages in this setting were best estimated using the MAX-MAX summary statistic 

of LLVVEL and DCAPE with a mean adjusted r-square of 0.301 (Table 5, Index 9). A 

positive relationship was found between LLVVEL and outage count (recall LLVVEL has 

units of Pa s-1, such that positive values imply sinking motion and a negative value imply 

rising motion). Given that the statistical model is based on the MAX-MAX statistics, such 

a relationship implies that strong mesoscale descent was present somewhere in the service 

area. When strong ambient descent interacts with convection, the mesoscale descent can 

become locally enhanced through evaporative cooling, increasing the likelihood of 

downdrafts reaching the surface and negatively impacting trees and utility infrastructure. 

As for DCAPE, by definition greater values indicate greater negative buoyancy available 

to accelerate air down to the surface (Gilmore and Wicker 1998), and thus DCAPE’s 

physical connection to increased outages numbers is straightforward.   
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 MWI-HOT-SQLL-WIND-NIGHT outages underwent a log transformation to reduce 

skewness prior to model development (Figure 11). This led to statistically significant 

relationships between power outages and both SHP and HEL01 using MAX-MAX 

summary statistics (Table 5, Index 10) with a mean adjusted r-square of 0.457. The SHP 

and HEL01 parameters both expressed positive relationships with power outages. While 

larger values of SHP indicate a greater chance of large diameter hail, it also indicates an 

environment supportive of strong updrafts capable of maintaining large amounts of lofted 

hydrometeor mass, and thus, the formation of strong downdrafts enhanced through water-

loading. Proctor (1989) showed that hail-driven microbursts are more intense (upon 

reaching the surface) than “ordinary” hydrometeor-driven microbursts for two reasons.  

First, hail has such a large terminal velocity and particle density, thus the negative 

buoyancy generated by melting occurs over a deeper. Second, because melting occurs more 

quickly at the warmer low-levels, less depletion of negative buoyancy (due to 

compressional warming) occurs within the descending microburst. With regard to HEL01, 

positive influence on power outages was discussed above for Equation 8, and will not be 

reiterated here. 

 The power outages that occurred during a MWI-HOT-SCAT-NIGHT situation could 

best be estimated by the MAX-MAX summary statistics of WNDG and LLVVEL, with a 

mean adjusted r-square of 0.491 (Table 5, Index 11). Both parameters were positively 

related to power outages numbers. The positive influence of WNDG and LLVVEL on 

power outages was discussed above for Equations 3 and 9, respectively.  

 When examining the power outages generated during an MWI-HOT-SQLL-NIGHT 

scenario a log transformation was applied to the outage count dataset to reduce skewness 
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(Figure 12). After transformation, power outages could be predicted by the MAX-MAX 

summary statistics of SHP and HEL03 (Table 5, Index 12). Interestingly, similar 

parameters were identified for MWI-HOT-SQLL-WIND-NIGHT (Index 10, which used 

SHP and HEL01), however this linear regression model performed slightly better with a 

mean adjusted r-square of 0.472.  The larger sample size may have improved the model fit. 

The positive relationships exhibited by SHP and HEL03 were explained above for 

Equations 10 and 8, respectively. 

 In the broad category of MWI-HOT-NIGHT power outages were best identified by 

the AVG-MAX statistics of LLVVEL and HEL01 with a mean adjusted r-square of 0.418 

(Table 5, Index 13). Both parameters were positively related to outages, and physical 

explanations for such relationships were provided above in discussions of Equations 9 and 

8, respectively. 

 Switching to the warm season events, the MWI-WARM-SCAT-WIND-DAY power 

outages were best predicted by the AVG-MAX of MBURST with a mean adjusted r-square 

of 0.462 (Table 5, Index 14). The positive relationship between MBURST and power 

outages demonstrates that MBRUST can perform well (as designed) under certain 

circumstances. However, it should be noted that MBURST was identified as an optimal 

predictor for only 7% (4 of 58) of developed regression models among the five service 

areas. Therefore, the MBURST parameter should be used judiciously by Duke Energy 

forecasters.  

 The power outages that resulted on the dates within the MWI-WARM-SCAT-HAIL-

TOR-DAY category were best predicted by the MAX-MAX statistics of SHP and resulted 

in a mean adjusted r-square of 0.316 (Table 5, Index 15). The resulting positive relationship 
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implies that elevated SHP values support a larger number of outages. A full discussion of 

its physical description can be found above with Equation 10. The fact the SHP performs 

well for the case dates when large hail was the dominant severe weather type, despite using 

SHP to forecast power outages, provides further support for the physical explanation. 

 When evaluating the nocturnal outages for MWI-WARM-SCAT-HAIL-TOR-

NIGHT, a log transformation was applied to reduce the skewness (Figure 13), and a robust 

optimal regression equation was identified using the AVG-AVG statistics of the LLVVEL 

with 0.808 mean adjusted r-square (Table 5, Index 16). In contrast to previous models, a 

negative relationship between LLVVEL and outages and LLVVEL was identified, 

implying greater area-averaged ascent supports more power outages. As a result, the 

physical explanation is rather straightforward and consistent with classic convective 

theory. Low level rising motion is an important contributor to convection initiation as it 

allows for warm-moist air in the boundary layer (or just above the nocturnal boundary) to 

be lifted to saturation and more-readily procure positive buoyancy by reaching the Level 

of Free Convection (LFC) (Markowski and Richardson 2010). Such environments tend to 

produce numerous intense storms with strong updrafts, downdrafts, and frequent cloud-to-

ground lightning, increasing the likelihood of power infrastructure damage. 

 The next category examined was MWI-WARM-SQLL-WIND-DAY, where the 

AVG-AVG statistics of MUCIN provided the best prediction of power outages (Table 5, 

Index 17) after a log transformation was applied to reduce skewness (Figure 14). The 

negative relationship, whereby CIN corresponded to more outages, exhibited a mean 

adjusted r-square of 0.320. At first glance, this relationship seems counter-intuitive because 

greater MUCIN should limit convective development and thus minimize outage numbers. 
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However, the model is based on the AVG-AVG statistic (i.e. the average of the hourly 

average over the whole study area) and thus encompasses locations where the severe-wind-

producing squall line has already passed. Behind each squall line is a large statically-stable 

cold pool (i.e. large negative CIN) that has been cultivated by an ensemble of cold 

convective downdrafts (and microbursts) that both maintain that squall line (Markowski 

and Richardson 2010) and produce significant damage to power infrastructure. 

 In the nighttime version of this setting (MWI-WARM-SQLL-WIND-NIGHT), a log 

transformation was applied to reduce the skewness (Figure 15), and outages could be best 

predicted by the AVG-MAX statistic of the SHP, LI, and HEL01 (Table 5, Index 18) with 

a mean adjusted r-square of 0.551. The LI and HEL01 both manifested a negative 

relationship, while SHP expressed a positive relationship, with power outages. As for the 

positive SHP relationship, a plausible explanation was discussed above with Equation 10. 

The LI was negatively correlated to outages, meaning more negative LI values were 

associated with more outages. A negative LI also suggests the presence of midlevel 

instability that can amplifying updrafts and hydrometeor production, which subsequently 

supports strong downdrafts and microbursts via water-loading and melting/evaporational 

(Srivastava 1987). Regarding the negative HEL01 relationship (implying smaller HEL01 

corresponds to more outages), smaller HEL01 magnitudes often coincides with weaker 

low-level shear. As noted above, downdraft entrainment is reduced when vertical shear is 

weak (Proctor 1989), allowing stronger downdrafts to reach the surface.  

 Power outages for MWI-WARM-SCAT-DAY can be best estimated by a linear 

regression equation relating the MAX-AVG statistics of SHP with a mean adjusted r-
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square of 0.301 (Table 5, Index 19). The physical explanation supporting a positive 

relationship between SHP and power outages was explained above with Equation 10. 

 An optimal model for the MWI-WARM-SCAT-NIGHT category was determined 

using the MAX-AVG statistics of the LLVVEL (Table 5, Index 20) after a log 

transformation was applied to the outage dataset to reduce skewness (Figure 16). The 

model’s mean adjusted r-square was 0.342. Discussion on the physical explanation 

supporting a negative relationship between LLVVEL and power outages can be found with 

Equation 16. 

 In the case of MWI-WARM-SQLL-DAY, power outages could be best predicted by 

the AVG-AVG statistics of WSP700 and RHBLML (Table 5, Index 21) with an adjusted 

r-square of 0.279 for the optimal model. The positive relationship between WSP700 and 

power outages can be explained through simple downward momentum transfer via 

convective downdrafts. The relationship between RHBLML is less straightforward. Large 

RHBLML magnitudes signify relatively moist low-levels (which supports convective 

development) and dry mid-levels (which supports evaporational cooling and stronger 

downdrafts). Moreover, a numerical simulation by Proctor (1989) demonstrated that 

convective environments with dry mid-level often exhibit a more dry-adiabatic layer near 

the mid-level melting layer (mid-levels), which would enhance mid-level downdraft 

acceleration and increase the likelihood that downdrafts reach lower levels. Then, upon 

reaching the moister low-levels, the instability between a downdraft parcel and the ambient 

environment is enhanced via the virtual temperature effect (Srivastava 1987, Proctor 1989, 

and Atkins and Wakimoto 1991).  
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 The successful linear regression equation developed for the MWI-WARM-SQLL-

NIGHT category relied on a log transformation of outage counts to remove skewness 

(Figure 17). The power outages in this scenario were estimated best by the MAX-AVG 

summary statistics of MUCIN and MLCAPE, resulting in a mean adjusted r-square of 

0.333 (Table 5, Index 22). Both estimators exhibited positive relationships with power 

outages meaning when MLCAPE was larger and MUCIN was smaller (closer to zero) more 

outages transpired. MLCAPE represents the positive buoyancy to sustain an updraft needed 

for convection development. Greater values of MLCAPE lead to stronger updrafts that 

promote greater hydrometeor production needed for intense downdraft generation (McCaul 

et al. 2009). Likewise, the smaller value of MUCIN allow deep convection to be more 

easily achievable (Markowski and Richardson 2010). Bluestein et al. (1987) showed that 

there was a significant difference between severe and non-severe squall lines, whereby 

severe squall lines were associated with larger CAPE and smaller CIN.  

 For the vast category of MWI-WARM-DAY, power outages were best estimated by 

the MAX-AVG statistics of WSP700, SHP, and RHBLML (Table 5, Index 23) with a mean 

adjusted r-square of 0.323 for the optimal model.  All predictor exhibited positive 

relationships with power outages, and the corresponding physical explanations can be 

found above with Equations 5, 10, and 21, respectively. 

 The final scenario investigated for the Midwest Indiana service area was MWI-

WARM-NIGHT, where power outages were best predicted using the MAX-MAX 

statistics for THE850, SHR06, and MUCIN (Table 5, Index 24) resulting in mean adjusted 

r-square of 0.216. All estimators were positively-correlated with power outages. For 

THE850, Atkins and Wakimoto (1991) found that larger differences between the 
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equivalent potential temperatures at the surface and the midlevel minimum (generally 

located between 650-500 mb) would produce the strongest microbursts (assuming the 

downdraft emanated from the minimum potential temperature level). Such equivalent 

potential temperature difference is analogous to DCAPE in that it provides a measure of 

the available negative buoyancy a downdraft parcel would experience upon descent. While, 

the 850 mb level is often above the surface, large THE850 often coincides with large 

surface values (and thus large differences from the midlevel minimum) revealing an 

unstable atmosphere supportive of strong downdrafts. The physical explanations for the 

positive relationships between SHR06 and MUCIN with power outages has been discussed 

above with Equations 3 and 22, respectively.  

ii. MWI Error Analysis 

 For the MWI service area, 16 of 18 models exhibited mean MAEs less than the 50-

outage threshold and are deemed acceptable (see Figures 18a, 19a, and 20a). Most 

impressive were the MWI-HOT-SCAT-WIND-NIGHT (8), MWI-HOT-SCAT-

NIGHT (11), MWI-WARM-SAT-HAIL-TOR-DAY (15), MWI-WARM-SCAR-

HAIL-TOR-NIGHT (16), MWI-WARM-SQLL-WIND-DAY (17), and MWI-

WARM-SCAT-NIGHT (20) models, with means less than 25 outages and interquartile 

ranges less than 5 outages. Note that two of the six are daytime models with relatively 

small sample sizes. The two unacceptable models were MWI-HOT-SQLL-WIND-DAY 

(9) and MWI-WARM-SQLL-WIND-NIGHT (18) with mean MAEs near 70 and 90 

outages, respectively. Most notably, these two models consisted of case dates when squall 

line convection and severe winds were dominant, but were developed from opposite 
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summary statistics (MAX-MAX and AVG-AVG, respectively) using relatively small 

sample sizes (30 and 10, respectively). 

 Regarding the RMSE (see Figures 18b, 19b, and 20b), 14 of 18 models exhibited 

acceptable mean errors less than the 50-outage threshold. As before, the same six models 

exhibited exceptionally small mean errors (less than 30 outages). The four models that 

failed to produce acceptable RMSE were the MWI-HOT-SQLL-WIND-DAY (9), MWI-

HOT-NIGHT (13), MWI-WARM-SQLL-WIND-NIGHT (18), and MWI-WARM-

SQLL-NIGHT (22) with means near 90, 75, 125, and 55, respectively. Common 

characteristics among this unacceptable group were that (a) three are nighttime models and 

(b) three are squall line models. The only unacceptable model in which the larger RMSE 

could be attributed to a relatively smaller sample size is MWI-WARM-SQLL-WIND-

NIGHT (18), the rest had adequate sample sizes.  

 Regarding the percent error (see Figures 18c, 19c, and 20c), 15 of 18 models exhibited 

means less than 60%. Yet again, MWI-WARM-SCAT-HAIL-TOR-NIGHT (16) out-

performed the other models in this service area with a mean of 23% and an interquartile 

range less than 5%. Of the three models with percent errors greater than 70%, MWI-HOT-

SQLL-WIND-DAY (9), MWI-HOT-SCAT-NIGHT (11), and MWI-WARM-SQLL-

WIND-NIGHT (18) two exhibited large interquartile ranges exceeding 15% (about means 

70-80%), suggesting the models suffer from inconsistency. The MWI-WARM-SQLL-

WIND-NIGHT (18) had an extremely narrow distribution, which usually is a good sign 

but not when the mean percent error is 99%. As noted above, the poor error statistics for 

this model is likely from the small sample size.  
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 Most MWI models (16 of 18) exhibited mean biases smaller than ±50 outages (see 

Figures 18d, 19d, and 20d). Of the two models with an unacceptable bias, MWI-HOT-

NIGHT (13) exhibited a narrow distribution centered on a mean under-prediction of 50 

outages, while MWI-WARM-SQLL-WIND-NIGHT (18) had a wide asymmetrical 

distribution with a mean near -95 outages. A bias is not a huge issue because it is easy for 

a forecaster to account for it by adding or subtracting outages based on the bias but when 

there is inconsistency on what that bias is, it makes discouraging to implement in an 

operational setting.  

Overall, based on all four error statistics, the best performing daytime and nighttime 

models were MWI-WARM-SQLL-WIND-DAY (17) and MWI-WARM-SCAT-HAIL-

TOR-NIGHT (16), respectively. For both models not only were the MAE, RMSE, and 

percent errors small, but bias distributions were narrow and centered on -10 and zero, 

respectively. In contrast, the worst performing daytime and nighttime models were MWI-

HOT-SQLL-WIND-DAY (9) and MWI-WARM-SQLL-WIND-NIGHT (18), and these 

two models should be used with caution in an operational setting. 

c. Florida (FLA) 

The entire FLA database had a total of 130 event dates, that when classified, 

resulted in eleven categories (FLA-HOT-PULSE-WIND, FLA-HOT-SCAT-WIND, FLA-

HOT-PULSE, FLA-HOT-SCAT, FLA-HOT, FLA-WARM-SCAT-WIND, FLA-WARM-

SQLL-WIND, FLA-WARM-PULSE, FLA-WARM-SCAT, FLA-WARM-SQLL, FLA-

WARM) with enough dates to attempt regression development on both day and nighttime 

summary statistics (Tables 8a and 8b). Of the twenty-two regression attempts, only sixteen 

regression models were developed for the FLA region owing to the lack of statistically 
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significant estimators in the FLA-HOT-PULSE-WIND (DAY and NIGHT), FLA-HOT-

PULSE (DAY and NIGHT), FLA-HOT-NIGHT, FLA-WARM-PULSE-NIGHT. For this 

reason, the remaining discussion focuses on the sixteen scenarios that produced statistically 

significant estimators. 

i. FLA Model Discussion 

The first successful model was developed based off of the events in FLA-HOT-

SCAT-WIND-DAY where power outages shared a positive relationship with the MAX-

AVG of SHR06 (Table 5, Index 25). This relationship ensued a mean adjusted r-square of 

0.493. Larger magnitudes of SHR06 help aid in separating the updraft and the downdraft, 

consequently increasing the longevity of the deep convection. Due to the separation of the 

opposing vertical drafts the multicell system can develop a strong, evaporatively-cooled 

driven gust front (i.e. damaging winds) triggering new cell development and thus the 

cyclical strengthening of the cold pool occurs (Markowski and Richardson 2010).  

The nocturnal power outages of this scenario (FLA-HOT-SCAT-WIND-NIGHT) 

underwent a log transformation prior to regression development to reduce the skewness of 

the dataset (Figure 21). After the transformation, a linear equation was determined using 

the AVG-AVG of DCAPE, with a mean adjusted r-square of 0.546 (Table 5, Index 26). 

Surprisingly, a negative correlation between DCAPE and power outages existed. The likely 

cause of this negative relationship is moist mid-levels (consistent with the more tropical 

character of the service area), which would result in smaller DCAPE (a parameter designed 

to estimate the intensity of an evaporatively-cooled downdraft originating from a drier 

midlevel; Gilmore and Wicker 1998). As a result, the dominant downdraft forcing shifts to 

water-loading, which is consistent with the greater precipitable water and hydrometeor 
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concentrations often observed in tropical climates. It should be noted that the proficiency 

of precipitation drag in forcing strong downdrafts was first noted by Byers and Braham 

(1948) during the Florida-based Thunderstorm Project. 

 The FLA-HOT-SCAT-DAY events required a log transformation to the power outage 

dataset to reduce the skewness (Figure 22). The transformed outages were best estimated 

by the MAX-AVG of SHP and resulted in a mean adjusted r-square of 0.316 (Table 5, 

Index 27). The positive relationship explanation between power outages and SHP can be 

found in the explanation for Equation 10. 

 The following scenario investigated was FLA-HOT-SCAT-NIGHT where a log 

transformation was performed in order to reduce skewness in the power outage dataset 

(Figure 23). The power outages were then appraised by the MAX-MAX of MUCAPE 

(Table 5, Index 28). The correlation was summarized by a mean adjusted r-square of 0.303. 

A negative relationship was established between power outages and MUCAPE, suggesting 

that more power outages occurred when MUCAPE was smaller. While this seems counter-

intuitive, this relationship is most likely a consequence of the nocturnal timeframe when 

lower CAPE magnitudes are expected (Gropp and Davenport 2018). The outages were 

likely caused by remnant daytime multicells that had sufficiently mature gust fronts to 

sustain convection even though MUCAPE values was deceasing due to the nocturnal 

stabilization.  

 The all-encompassing category of FLA-HOT, was best explained by the MAX-AVG 

of DIV500 (Table 5, Index 29), after a log transformation was applied to the skewed power-

outage count dataset (Figure 24). The DIV500 showed a negative correlation with power 

outages, implying that strong convergence at 500 mb would result in more power outages. 
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Multiple observational case studies of microburst-producing storms (Peterson 1984; 

Caracena and Maier 1987; Wakimoto and Bringi 1988; Roberts and Wilson 1989, 

Kingsmill and Wakimoto 1991) have noted the presence of strong midlevel convergence. 

While it’s not clear whether the midlevel convergence initiates an ensemble of microbursts 

via entrainment or is a mass-continuity response to microburst initiation, the presence of 

midlevel convergence is a tell-tale sign of microburst-producing storms. Our multiyear 

results are consistent with these case studies.  

 Moving forward to the warm season, the scenario FLA-WARM-SCAT-WIND-DAY 

led to a linear regression equation that estimated the log transformed power outages (Figure 

25) by the MAX-AVG of RHBLML (Table 5, Index 30). This model displayed a mean 

adjusted r-square of 0.402. A negative correlation was established between RHBLML and 

power outages, meaning that a small RHBLML resulted in less power outages. While many 

studies have indicated that moist low-levels and dry mid-levels (large RHBLML) conceive 

strong, evaporatively-cooled driven microbursts, small RHBLML indicate regions that 

have moist mid-levels where microbursts are still capable of being produced via 

waterloading. Such results are broadly consistent with optimal negative relationship 

between Florida outage and DCAPE discussed above (Equation 26). 

 The FLA-WARM-SCAT-WIND-NIGHT power outages underwent a log 

transformation to adjust the skewness of the dataset prior to model development (Figure 

26). The outages in this case were estimated by the MAX-AVG of MLCIN and MBURST 

(Table 5, Index 31) with a mean adjusted r-square of 0.715. The negative relationship 

between MLCIN and power outages, indicates that when MLCIN is larger (further from 

zero), more power outages transpired. Since the physical effects of MLCIN are virtually as 
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MUCIN, this relationship can be summarized by the explanation provided for Equation 17. 

MBURST displayed a positive relationship with power outages, implying that more power 

outages took place when there were higher values for MBURST. This positive relationship 

is described with Equation 14. 

 The power outages that resulted on dates within the FLA-WARM-SQLL-WIND-

DAY category experienced a log transformation to reduce skewness within the dataset 

(Figure 27) and then were best estimated by the AVG-MAX of WSP700 and MBURST 

(Table 5, Index 32). The equation is summarized with a mean adjust r-square of 0.605. 

Both of the estimators, WSP700 and MBURST exhibited positive relationships with power 

outages, indicating higher magnitudes of either estimator resulted in more power outages. 

The corresponding explanations of these relationships can be found with Equations 5 and 

14, respectively.  

 The nocturnal outages in this setting (FLA-WARM-SQLL-WIND-NIGHT), also 

underwent a log transformation to reduce skewness (Figure 28). These outages were 

predicted best by the MAX-AVG of MLCAPE with an adjusted r-square of 0.392 (Table 

5, Index 33). This positive relationship between MLCAPE and power outages, suggests 

that more outages occurred when MLCAPE was larger. Given that the ultimate effects of 

MLCAPE on the downdraft are fundamentally the same as MUCAPE, the explanation 

given with Equation 22 is an adequate representation of this relationship.   

 An optimal model was developed for the power outages on FLA-WARM-PULSE-

DAY using log transformed outage counts to reduce skewness (Figure 29) that were best 

estimated by the MAX-MAX statistics of SHR03, resulting in a mean adjusted r-square of 

0.392 (Table 5, Index 34). The positive relationship indicates that when SHR03 was larger, 
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more power outages arose. Typically, strong SHR03 does not correspond with ordinary, 

pulse thunderstorms, however strong shear in the lower levels of the atmosphere aids in 

the separation of the updraft and the downdraft allowing the cell to mature to create a strong 

downdraft via evaporative cooling and waterloading.  

 The FLA-WARM-SCAT-DAY endured a log transformation and then was best 

estimated by the MAX-MAX of SOILMS and PW (Table 5, Index 35). The equation 

resulted in a mean adjusted r-square of 0.393. The two estimators both demonstrated 

positive relationships with power outages implying that when either estimator was larger, 

more outages transpired. These positive relationships are explained with Equations 2 and 

4, respectively.  

 The power outages that occurred on dates within the FLA-WARM-SCAT-NIGHT 

tier experienced a log transformation (Figure 30) before being best related to the MAX-

AVG of PW with a mean adjusted r-square of 0.303 (Table 5, Index 36). This positive 

relationship implies larger values of PW resulted in a greater number of power outages. 

For more information regarding this relationship, refer to the discussion for Equation 4. 

  FLA-WARM-SQLL-DAY outages were required to undergo a log transformation 

prior to model development (Figure 31). The outages ended up being most related to the 

AVG-AVG of SHR01 and MBURST, and resulted in a mean adjusted r-square of 0.599 

(Table 5, Index 37). Both of the estimators exhibited positive relationships with power 

outages indicating large magnitudes of either estimator led to a greater number of outages. 

A description of these relationships can be found with Equations 2 and 14.  
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 The FLA-WARM-SQLL-NIGHT scenario power outages experienced a log 

transformation and then were best estimated by the AVG-AVG of MLCAPE with an 

average adjusted r-square of 0.338 (Table 5, Index 38). The relationship between MLCAPE 

and power outages was positive implying that more outages took place when MLCAPE 

was larger. This relationship was discussed with Equation 22. 

 Outages that occurred during the FLA-WARM-DAY season were skewed so a log 

transformation was applied (Figure 32). This led to the development of a model relating 

power outages to the AVG-MAX of SOILMS and PW with an average adjusted r-square 

of 0.281 (Table 5, Index 39). In fact, the same summary statistic and estimators were the 

most reliable at predicting nocturnal power outages (FLA-WARM-NIGHT) as well! The 

nocturnal equation resulted in a mean adjusted r-square of 0.297 (Table 5, Index 40). The 

estimators in both equations displayed positive relationships with power outages signifying 

that more power outages resulted from larger values of SOILMS and PW. The discussion 

of these relationships can be found with Equations 2 and 4, respectively.  

ii. FLA Error Analysis 

For the FLA service area, 11 of 16 models exhibited mean MAEs less than the 50-

outage threshold and were considered to be acceptable (see Figures 33a, 34a, and 35a). 

Multiple exceptional models, FLA-HOT-WIND-NIGHT (26), FLA-HOT-SCAT-

NIGHT (28), FLA-HOT-DAY (29), FLA-WARM-SQLL-WIND-DAY (32), FLA-

WARM-PULSE-DAY (34), and FLA-WARM-SCAT-NIGHT (36), possessed means 

less than 35 outages with interquartile ranges less than 7 outages. The 5 unacceptable 

models that exceeded the 50-outage threshold were FLA-HOT-SCAT-WIND-DAY (25), 

FLA-WARM-SCAT-WIND-NIGHT (31), FLA-WARM-SQLL-DAY (37), FLA-
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WARM-DAY (39), and FLA-WARM-NIGHT (40) with mean MAEs near 55, 65, 52, 

55, and 90 outages, respectively. Among this unacceptable group, (a) four were daytime 

models, (b) four were warm season models, and (c) two were scattered multicell models. 

Only FLA-HOT-SCAT-WIND-DAY (25), FLA-WARM-SCAT-WIND-NIGHT (31), 

and FLA-WARM-SQLL-DAY (37) could potentially be attributed to a small sample size, 

however the other two models were developed from a large sample of 58 case dates. 

When using the RMSE error statistic over half the models (9 out 16) exceeded the 50-

outage threshold and qualified as unacceptable (see Figures 33b, 34b, and 35b), however 

none of the exceptionally acceptable models made the leap into the unacceptable category. 

The original five unacceptable models discussed above were included in this group, but so 

were the FLA-WARM-SCAT-WIND-DAY (30), FLA-WARM-SQLL-WIND-NIGHT 

(33), FLA-WARM-SCAT-DAY (35), and FLA-WARM-SQLL-NIGHT (38) models. 

Interestingly, eight of the nine unacceptable models were for the warm season. Of the three 

acceptable warm models, both FLA-WARM-SQLL-WIND-DAY (32) and FLA-

WARM-SCAT-NIGHT (36) exhibited wide asymmetrical distributions with interquartile 

ranges of 10 outages, suggesting inconsistency.  

Regarding the percent errors (see Figure 33c, 34c, and 35c) 13 of 16 models displayed 

means less than 40%. More notably, FLA-HOT-WIND-NIGHT (26), FLA-HOT-SCAT-

DAY (27), FLA-HOT-DAY (29), and FLA-WARM-PULSE-DAY (34), had percent 

error means below 30% and interquartile ranges less than 5%. As for the three models that 

exhibited percent errors above 40%, FLA-HOT-SCAT-WIND-DAY (25), FLA-WARM-

SCAT-NIGHT (36), and FLA-WARM-NIGHT (40), their means were 46%, 45%, and 

41%, respectively.  
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Most models (15 of 16) exhibited mean biases smaller than ±50 outages (see Figures 

33d, 34d, and 35d). The one with an unacceptable bias was the FLA-WARM-SQLL-

WIND-DAY (32) with a wide asymmetrical distribution with a mean near -60 outages and 

an interquartile range of 15 outages. An inconsistent bias can be difficult to account for in 

an operational setting.  

In conclusion the four error statistics highlight FLA-WARM-PULSE-DAY (34) and 

FLA-HOT-WIND-NIGHT (26) as the most outstanding daytime and nighttime models, 

respectively. While FLA-WARM-PULSE-DAY (34) may not have had the smallest mean 

MAE and mean RMSE, the model exhibited the narrowest symmetrical error distribution, 

implying consistency.  The worst performing daytime and nighttime models were the FLA-

HOT-SCAT-WIND-DAY (25), and FLA-WARM-NIGHT (40), therefore forecasters 

should be vigilant when using them. 

d. Carolina West (DEC) 

The DEC event database contained 155 event dates, that when stratified, created 

thirteen categories (DEC-HOT-PULSE-WIND, DEC-HOT-SCAT-WIND, DEC-HOT-

SQLL-WIND, DEC-HOT-PULSE, DEC-HOT-SCAT, DEC-HOT-SQLL, DEC-HOT, 

DEC-WARM-SCAT-WIND, DEC-WARM-SQLL-WIND, DEC-WARM-PULSE, DEC-

WARM-SCAT, DEC-WARM-SQLL, DEC-WARM) with a sufficient number of events 

(>10) to attempt building both day and night multiple-linear regression equations – for a 

potential of twenty-six equation. Tables 9a and 9b list the number of dates that fell into 

each classification. No regression equation could be determined for either the daytime or 

nighttime DEC-HOT-PULSE-WIND, DEC-HOT-PULSE, DEC-HOT-SCAT, or DEC-

WARM-PULSE categories due to inconsistent statistically-significant estimators, 
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lessening the number of equations by eight. This same defect was encountered when 

attempting to build an equation for DEC-HOT-SCAT-WIND-NIGHT, DEC-HOT-SQLL-

WIND-DAY, DEC-HOT-SQLL-DAY, DEC-HOT-NIGHT, DEC-WARM-SCAT-WIND-

NIGHT, DEC-WARM-SQLL-WIND-NIGHT, DEC-WARM-SCAT-NIGHT, DEC-

WARM-SQLL-NIGHT, and DEC-WARM-NIGHT. Thus, the following discussion will 

centralize on the remaining nine categories that consistently provided statistically 

significant estimators. 

i. DEC Model Discussion 

The DEC-HOT-SCAT-WIND-DAY event category required a log transformation 

to the outage dataset prior to model development (Figure 36). The outages were best 

estimated by the MAX-AVG of LI and DCAPE with an average adjusted r-square of 0.243 

(Table 5, Index 41). Both of the estimators were negatively correlated with power outages. 

The negative relationship between LI and power outages would imply that the more 

negative (further from zero) LI, would create more power outages. The more negative the 

LI is, the more unstable atmosphere is and more conducive for strong, deep convection. 

The negative relationship between DCAPE and power outages was discussed with 

Equation 26. 

The following successful model was created under the DEC-HOT-SQLL-WIND-

NIGHT category where a log transformation was performed on the outage dataset to 

reduce skewness (Figure 37). This led to a regression equation that estimates the number 

of power outages using the MAX-MAX of the SHP with a mean adjusted r-square of 0.481 

(Table 5, Index 42). A description regarding the positive relationship between power 

outages and SHP can be found with Equation 10.  
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When the dominant severe weather type is not considered, the category of DEC-

HOT-SQLL-NIGHT was able to be estimated by the MAX-MAX of DCAPE (Table 5, 

Index 43) with a mean adjusted r-square of 0.361, after a log transformation was applied 

to the power outage dataset (Figure 38). The equation exhibited a positive relationship 

between power outages and DCAPE, which was thoroughly discussed with Equation 9. 

The broad DEC-HOT-DAY tier underwent a log-transformation prior to model 

development to reduce the skewness in the power outage dataset (Figure 39). The power 

outages, in this case, were predicted best by the AVG-AVG of the LLVVEL and DIV500 

with a mean adjusted r-square of 0.210 (Table 5, Index 44). Both of the estimators were 

negatively related to power outages meaning that when the service area was subjected to 

strong ascending air or the air at 500 was converging (instead of diverging), more outages 

took place. These negative relationships were discussed with Equations 16 and 29, 

respectively. 

Moving into the DEC warm season categories, the DEC-WARM-SCAT-WIND-

DAY case dates created a successful model relating power outages to the AVG-AVG of 

MUCAPE (Table 5, Index 45). The equation coincided with an average adjusted r-square 

of 0.438 and displayed a positive relationship between power outages and MUCAPE, 

implying larger values of MUCAPE resulted in more power outages. This positive 

relationship between MUCAPE and power outages is fundamentally the same as the 

positive relationship between MLCAPE and power outages explained with Equation 22. 

In the case of DEC-WARM-SQLL-WIND-DAY, a log transformation was 

applied to the power outage dataset (Figure 40). The scenario led to a regression equation 

relating power outages to the AVG-AVG of HEL01 with a mean adjusted r-square of 0.743 
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(Table 5, Index 46). The positive relationship between HEL01 and power outages indicates 

that more power outages took place when HEL01 was of a larger magnitude. This positive 

relationship is discussed with Equation 8. 

The next situation evaluated was the DEC-WARM-SCAT-DAY, where a log 

transformation was applied to the power outage dataset to reduce skewness (Figure 41). 

The linear regression equation estimates power outages by using the AVG-AVG of 

LLVVEL and LI with a mean adjusted r-square of 0.629 (Table 5, Index 47). This equation 

showed both estimators negatively correlated to outages implying that strong ascending air 

(more negative LLVVEL) or more unstable air (more negative LI) led to more power 

outages. These two estimator’s negative relationships with power outages are elaborated 

with Equations 16 and 18, respectively. 

In the case of DEC-WARM-SQLL-DAY, the power outages required a log 

transformation to reduce skewness in the dataset (Figure 42). The outages were then best 

predicted by MAX-AVG of WSP700 and MUCIN with a mean adjusted r-square of 0.439 

(Table 5, Index 48). Both estimators resulted in positive relationships with power outages 

indicating that when WSP700 was a large magnitude and/or when MUCIN was small 

(close to zero), more outages transpired. The positive relationships between WSP700 and 

MUCIN with power outages is evaluated with Equations 5 and 22, respectively. 

The final equation for the DEC service area, was the broad DEC-WARM-DAY, 

where the power outage dataset was subjected to a log transformation prior to model 

development (Figure 43). This equation related power outages to the MAX-AVG of the 

WSPSFC and LLVVEL with an adjusted r-square of 0.401 (Table 5, Index 49). The 

WSPSFC exhibited a positive relationship with power outages, indicating that when winds 
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were stronger at the surface, more outages occurred. This relationship is consistent with  

the theory that strong surface winds cause of trees and utility poles to be uprooted. The 

LLVVEL displayed a negative relationship with power outages, which is discussed in 

detail with Equation 16. 

ii. DEC Error Analysis 

The DEC service area had 2 of 9 models demonstrate acceptable MAE means; the 

remaining 7 models produced MAE means greater than the 50-outage threshold (see 

Figures 44a and 45a). The acceptable models were DEC-WARM-SCAT-WIND-DAY 

(45) and DEC-WARM-NIGHT (49) with means near 35 and 45 outages, respectively. 

The only commonality between those models is that they are both warm season models. 

The unacceptable models could be viewed as two sub-categories: slightly unacceptable 

(<100 outages) and extremely unacceptable (>100 outages). The slightly unacceptable 

models include DEC-HOT-SCAT-WIND-DAY (41), DEC-HOT-SQLL-WIND-

NIGHT (42), DEC-HOT-DAY (44), and DEC-WARM-NIGHT (49).  Most notably, 

three of these four models are from the hot season and only two [DEC-HOT-SCAT-

WIND-DAY (41), and DEC-HOT-SQLL-WIND-NIGHT (42)] may have larger MAE 

errors due to their relatively small sample size.  Likewise, all three extremely unacceptable 

models [DEC-HOT-SQLL-NIGHT (43), DEC-WARM-SQLL-WIND-DAY (46), and 

DEC-WARM-SQLL-DAY (48)] had sample sizes (<20).  

The RMSE distributions (see Figures 44b and, 45b) suggest that all of models failed 

to produce acceptable errors. However, three models [DEC-HOT-SQLL-WIND-NIGHT 

(42), DEC-WARM-SCAT-WIND (45), and DEC-WARM-SCAT-DAY (47)] exhibited 

narrow distributions with means of 75, 55, and 65, respectively. In contrast, the DEC-
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HOT-SQLL-NIGHT (43) and DEC-HOT-DAY (44) models demonstrated extremely 

large mean RMSEs of 450 and 200, respectively.  

Regarding the percent error (see Figures 44c and 45c), 7 of 9 models exhibited 

means less than 50%. Not only were the means small for those seven models [DEC-HOT-

SCAT-WIND-DAY (41),  DEC-HOT-DAY (44), DEC-WARM-SCAT-WIND-DAY 

(45), DEC-WARM-SQLL-WIND-DAY (46), DEC-WARM-SCAT-DAY (47),  DEC-

WARM-SQLL-DAY (48), and DEC-WARM-NIGHT (49)], but the distributions were 

narrow with interquartile ranges less than 5%. Of the two models with large percent error, 

one [DEC-HOT-SQLL-WIND-NIGHT (42)] exhibited a mean of 87% and an 

interquartile range exceeding 12%, indicating an inconsistent model. The second model 

with a large percent error [DEC-HOT-SQLL-NIGHT (43)] exhibited a mean near 75%, 

but a narrow distribution with an interquartile range less than 5%.  

Most DEC models (7 of 9) displayed mean biases smaller than the ±50 outages (see 

Figures 44d and 45d). However, two of the seven models [DEC-WARM-SQLL-WIND-

DAY (46) and DEC-WARM-SQLL-DAY (48)] exhibited wide asymmetrical 

distributions indicating an inconsistent bias, which is arguable more difficult to account for 

than having a large consistent bias. The DEC-HOT-SQLL-NIGHT (43) model also 

exhibited a wide asymmetrical distribution, but with a large mean bias near -275 outages.  

Overall, these four error statistics highlighted DEC-WARM-SCAT-WIND-DAY 

(45) and DEC-WARM-NIGHT (49) as the best performing daytime and nighttime model, 

respectively. In contrast, the error statistics identified DEC-WARM-SQLL-DAY (48) and 

DEC-HOT-SQLL-NIGHT (43) model as the least skillful. 



72 

e. Carolina East (DEP)  

 The DEP service area incorporated 127 event dates within its database, that when 

classified, introduced eleven subcategories (DEP-HOT-PULSE-WIND, DEP-HOT-

SCAT-WIND, DEP-HOT-SQLL-WIND, DEP-HOT-SCAT, DEP-HOT-SQLL, DEP-

HOT, DEP-WARM-SCAT-WIND, DEP-WARM-SQLL-WIND, DEP-WARM-SCAT, 

DEP-WARM-SQLL, DEP-WARM) with enough dates (≥10) to construct both day and 

night multiple-linear regression equations – for a total of twenty-two potential regression 

equations (Tables 10a and 10b). Of those attempts, several were unable to produce 

statistically significant equations for the daytime or nighttime (DEP-HOT-SCAT, DEP-

WARM-SCAT-WIND, and DEP-WARM-SCAT), which reduced the equation pool by six. 

Other scenarios unable to generate a consistent statistically stable equation included DEP-

HOT-SQLL-WIND-NIGHT, DEP-HOT-SQLL-NIGHT, DEP-WARM-SQLL-WIND-

NIGHT, DEP-WARM-SQLL-DAY, and DEP-WARM-DAY. Nevertheless, the nine 

successful equations will be reviewed in this section.   

i. DEP Model Discussion 

 Power outages for the DEP-HOT-SCAT-WIND-DAY were best estimated by the 

MAX-MAX of SHR01 and RHBLML with a mean adjusted r-square of 0.275 (Table 5, 

Index 50) after a log transformation was applied (Figure 46). The relationships for these 

estimators with power outages were both positive, implying that when SHR01 was larger 

and/or RHBLML was larger, more outages transpired. The positive relationships between 

SHR01 and RHBLML with power outages is thoroughly justified with Equations 2 and 21, 

respectively.  
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  The nocturnal scenario (DEP-HOT-SCAT-WIND-NIGHT) also required a log 

transformation to the power outages to reduce for skewness (Figure 47). The resulting 

linear equation predicted power outages utilizing the MAX-AVG summary statistic of LI 

with an average adjusted r-square of 0.318 (Table 5, Index 51). The equation suggests a 

negative relationship between power outages and LI, which is analyzed with Equation 18.  

 The following category was based off events that occurred in a DEP-HOT-SQLL-

WIND-DAY environment. The power outages in this case were corrected by a log 

transformation (Figure 48) and then best predicted in a linear regression equation by the 

AVG-AVG summary statistic of LLVVEL with an adjusted r-square of 0.505 (Table 5, 

Index 52). The relationship between the LLVVEL and power outages was negative and 

was explained with Equation 16. 

 When neglecting the dominant severe weather type, the category DEP-HOT-SQLL-

DAY results in an equation that related log transformed power outages (Figure 49) to the 

AVG-AVG summary statistic of SHP, MLCIN, and LLVVEL with an adjusted r-square of 

0.708 (Table 5, Index 53). The SHP displayed a positive relationship with power outages, 

while the other two estimators, MLCIN and LLVVEL, exhibited negative relationships 

with power outages. Discussions about these correlations can be found with Equations 10, 

17, and 16, respectively.  

 Zooming outward to the broad category of DEP-HOT-DAY, an equation was created 

by relating the log transformed power outages (Figure 50) to the AVG-AVG of SHP and 

LLVVEL (Table 5, Index 54). Interestingly, a negative relationship between LLVVEL and 

power outages formed in the last three equations all within the DEP-HOT category 

implying that broad-scale rising motion was consistently proving to be statistically 
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significant in predicting the number of power outages. As noted above, a discussion on 

how this estimator effects power outages can be found with Equation 16.  

 As for the nocturnal outages in the DEP-HOT-NIGHT category, a log transformation 

was required to correct the skewness in the power outage dataset (Figure 51). The power 

outages were best estimated by the MAX-MAX of SHP and PW with an average adjusted 

r-square of 0.263 (Table 5, Index 55). Both of the estimators demonstrated positive 

relationships with power outages, implying that when SHP and/or PW was larger, more 

outages occurred. These relationships are explained with Equations 10 and 4, respectively.  

 The first successful warm season equation resided in the DEP-WARM-SQLL-WIND-

DAY category where a log transformation was applied to the outage dataset to reduce 

skewness (Figure 52). The resulting equation predicted power outages by the MAX-MAX 

of MLCIN and HGTFRZ with an average adjusted r-square of 0.490 (Table 5, Index 56). 

The MLCIN showed a positive relationship with power outages (discussed with Equation 

22), while the HGTFRZ displayed a negative relationship with power outages (explained 

with Equation 4).  

 A nighttime equation was created for the DEP-WARM-SQLL-NIGHT category 

where a log transformation was applied to the outage dataset to decrease skewness (Figure 

53). The resulting linear regression equation related power outages to PW and MUCIN 

with a mean adjusted r-square of 0.538 (Table 5, Index 57). Both of the estimators 

positively influenced power outages, meaning when either of the estimators were of a 

larger magnitude, more outages transpired. These relationships were discussed with 

Equations 4 and 22, respectively.  
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 The final linear regression equation was created for the broad DEP-WARM-NIGHT 

category where the power outage dataset was subjected to a log transformation to reduce 

the skewness (Figure 54). Power outages in this case were best estimated by the AVG-

AVG of LLVVEL and HEL01 with an average adjusted r-square of 0.368 (Table 5, Index 

58). Both of the estimators displayed negative relationships with power outages, which 

were discussed in detail with Equations 16 and 8, respectively. 

ii. DEP Error Analysis 

 Only 2 of 9 models [DEP-WARM-SQLL-NIGHT (57) and DEP-WARM-NIGHT 

(58)] in the DEP service area displayed acceptable MAE means below the 50-outage 

threshold (see Figures 55a and 56a). Both were built upon the AVG-AVG summary 

statistics with sample sizes of 19 and 58, respectively. Since a majority of the models (7 of 

9) produced unacceptable mean MAEs, the unacceptable category was viewed as two sub-

categories (as with the DEC service area): slightly unacceptable [<100 outages] and 

extremely unacceptable [>100 outages]. Four of the seven unacceptable models were 

slightly unacceptable [DEP-HOT-SCAT-WIND-DAY (50), DEP-HOT-SCAT-WIND-

NIGHT (51), DEP-HOT-SQLL-DAY (53), and DEP-HOT-DAY (54)] exhibiting means 

of 55-70 outages and narrow symmetrical error distributions with interquartile ranges < 5 

outages. Such narrow distribution imply consistency. Moreover, all slightly unacceptable 

models were for the hot season and three were daytime models. In contrast, the extremely 

unacceptable models [DEP-HOT-SQLL-WIND-DAY (52), DEP-HOT-NIGHT (55), 

and DEP-WARM-SQLL-WIND-DAY (56)] exhibited mean MAEs of 160-165 outages 

and interquartile ranges greater than 20 outages.  
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 The RMSE showed all models as unacceptable (see Figures 55b and 56b)! Any model 

that was acceptable according to MAEs, moved into the slightly unacceptable category for 

RMSE, and the DEC-HOT-DAY (54) model became extremely unacceptable. 

 Regarding percent error, 4 of 9 models in the DEP service area [DEP-HOT-SQLL-

WIND-DAY (52), DEP-HOT-SQLL-DAY (53), DEP-HOT-DAY (54), and DEP-

WARM-SQLL-NIGHT (57)] had mean percent errors below 50% (see Figures 55c and 

56c). Of the five models with mean percent errors above 50%, four [DEP-HOT-SCAT-

WIND-DAY (50), DEP-HOT-SCAT-WIND-NIGHT (51), DEP-WARM-SQLL-

WIND-DAY (56), and DEP-WARM-NIGHT (58)] had relatively wide distributions with 

interquartile ranges > 8%. The DEP-HOT-NIGHT (55) model exhibited a consistently 

large mean percent error mean near 83%. 

 As for bias, most models (6 of 9) had narrow symmetrical distributions, with 

interquartile ranges less than 7 outages (see Figures 55d and 56d). Of those six models, 

only one [DEP-HOT-DAY (54)] had a mean bias greater than the acceptable 50-outage 

threshold. All three models with unacceptable biases [DEP-HOT-SQLL-WIND-DAY 

(52), DEP-HOT-NIGHT (55), and DEP-WARM-SQLL-WIND-DAY (56)] under 

predicted by more than 150 outages on average, and exhibited asymmetrical bias 

distributions.  

 Overall, the best performing daytime and nighttime models for the DEP service area 

were DEP-HOT-SQLL-DAY (53) and DEP-WARM-SQLL-NIGHT (57), respectively. 

The worst performing daytime and nighttime models, which should be used with caution, 

were DEP-HOT-SQLL-WIND-DAY (52) and DEP-HOT-NIGHT (55), respectively. 
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CHAPTER 6: CASE STUDIES 

 

 

 A detailed error analysis for a single case date was performed for each service area, 

Midwest (MWC, MWI), Florida (FLA), and Carolinas (DEC, DEP) to show the 

functionality of the models and how the forecasters may wish to use the statistical forecasts. 

Specifically, we envision the forecaster using multiple applicable models to provide an 

ensemble prediction for a given scenario. Therefore, for each case date discussed below, 

all applicable models for that service area and time of day were analyzed as an ensemble 

(i.e. regardless of season, anticipated dominant convective mode, or anticipated severe 

weather type). This approach will provide the forecaster with a range of potential outages 

expectations within a given region. For example, when forecasting for the MWC area, all 

daytime and nighttime model predictions for the Midwest (MWC and MWI) will be 

examined. Moreover, since MWC and MWI are adjacent to one another and share similar 

climates, Duke forecasters would benefit from including the individual model forecasts for 

the adjacent service area into the ensemble.  

 Such approach has multiple advantages. First, much like ensemble prediction via 

numerical modeling systems, we believe that an ensemble approach using multiple 

individual statistical models will improve the final forecast while providing forecasters a 

measure of confidence through the ensemble variance. Second, the case date categorization 

process was somewhat subjective and at time non-physical, such that considerable overlap 

exists between categories. For example, our database contains numerous dates in both late 

May (warm season) and early June (hot season) that experienced numerous power outages 

due to a combination of convective modes (both squall lines and scattered multicells) and 

severe weather reports (both wind and hail). Third, the low computational expense of 



78 

running GLM models based on metrics derived from numerical forecast fields make the 

ensemble approach a feasible option.  

 Shown below for each analyzed case date are the relevant forecast ensemble separated 

by day and night (Figures 57-59). In each figure, the observed outage counts are denoted 

by black cross hairs, individual statistical model forecast are denoted by colored symbols, 

and the acceptable range of ±50 outages is marked by red lines (relative to the observed 

outage count). Recall, that from an operational stand point, Duke’s outage mitigation 

protocols do not change drastically if the outage count is off by ±50, therefore model 

outputs within that range are considered acceptable. 

a. Midwest (MWC, MWI) 

 On June 18th, 2013 disorderly multicells developed in central Indiana and Ohio around 

1930-2030 UTC and propagated south/ southeast. The cells became more organized and 

even developed a slight bowing region before reaching the heavily populated Cincinnati 

region around 2100 UTC. The storms continued south-southeastward into the few counties 

in northern Kentucky that are part of Duke Energy’s service territory and then the system 

completely exited their service region by 2330 UTC. The event was classified as a MWC-

HOT-SCAT-NO event that generated 94 daytime and 11 nocturnal outages. The statistical 

model forecasts are summarized in Figure 57.  

 Of the eleven daytime models, seven models within the acceptable ±50 range (44 - 144) 

from the observed outage counts (94) and one was MWI-HOT-SCAT-WIND-DAY (7), 

the most applicable model to this situation. The models closest to the observed outage count 

were MWI-WARM-SQLL-WIND-DAY (9) with 96 predicted outages and MWI-
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WARM-SQLL-WIND-DAY (17) with 88 predicted outages. The scattered convection did 

not transform into a well-organized squall line; however, it was organized enough to 

develop a slight bowing region where most of the outages were concentrated.  

 In the evening, all thirteen models provided prediction within the ±50 outage range (0-

61; the lower bound was set to zero since only 11 outages were reported) from the observed 

outage counts. The MWI-WARM-SCAT-HAIL-TOR-NIGHT (16) predicted exactly 11 

outages and MWC-HOT-SCAT-WIND-NIGHT (the most relevant model to this 

scenario) predicted 61 outages. 

b. Florida (FLA) 

 June 30th, 2013 was a very busy convective day and evening within Duke Energy’s 

Florida service territory. Storms began as pulse convection around 1200 UTC and then 

quickly transitioned into scattered multicells that persisted through 1200 UTC the next day. 

Major metropolitan regions such as Orlando, Tallahassee, and Tampa were all impacted 

during this event, amounting to 152 daytime outages and 102 nighttime outages. This event 

was classified as FLA-HOT-SCAT-WIND event. The statistical model forecasts are 

summarized in Figure 58. 

 The nine daytime models predicted outages counts between 111 and 237, with five 

predictions falling within the acceptable ±50 outage range (102-202) from the observed 

outage count (152). Two models designed for multicell events [FLA-HOT-SCAT-DAY 

(27) and FLA-WARM-SCAT-WIND-DAY (30)] provided excellent forecasts with 149 

and 152 predicted outages, respectively. In contrast, the predictions from two other models 

also developed for multicell events [FLA-HOT-SCAT-WIND-DAY (25) and FLA-
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WARM-SCAT-DAY (37)] exceeded the upper limit of the acceptable range. However, as 

noted above, the FLA-HOT-SCAT-WIND-DAY (25) equation has an inherent bias for 

over-prediction (see Figure 33d) and errors of 50 or greater are typical for the FLA-

WARM-SCAT-DAY (37) (see Figure 35a).  

 As for the seven nighttime models, predictions ranged from 6 to 108 with five falling 

within the acceptable ±50 outage range (52-152). The most accurate model with the largest 

prediction (108 outages) was from the FLA-WARM-NIGHT (40), which relies on PW 

and SOILMS. Considering that there had been consistent convection throughout the day 

and into the evening, SOILMS was likely elevated across the service area, thereby 

increasing the outage count prediction. The second most accurate model was FLA-

WARM-SCAT-NIGHT (36), which also relies on PW, reinforcing the importance of the 

PW parameter to outage forecasts in Florida.  

c. Carolinas (DEC, DEP) 

 On August 4th, 2017 unorganized convection developed over the western Carolina 

Mountains around 2030 UTC and became more linear as it descended into the Piedmont, 

forming a bowing squall line that affected major populated areas across the Carolinas (i.e. 

Asheville, Shelby, Gastonia, Charlotte, Salisbury, and Greenville).  The event was 

classified as a DEC-HOT/WARM-SQLL-WIND event (recall that August was used to 

build both HOT and WARM models in the Carolinas). Since convective dissipation did 

not occur until roughly 0230 UTC a large number of outages occurred in both daytime 

(139) and nighttime (141). The statistical model results are summarized in Figure 59.  
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 The eleven daytime model predictions ranged from 58 – 272 with six falling within 

±50 outages (89-189) of the observed outage count (139). The DEC-WARM-SQLL-

WIND-DAY (46) provided a perfect forecast despite the model’s large MAE and RMSE 

(see Figures 44a and 44b). Two other models that were highly applicable to this situation, 

DEC-WARM-SQLL-DAY (48) and DEP-WARM-SQLL-DAY (53), did not perform 

well and provided opposite out-of-acceptable-range forecasts (272 and 58, respectively). 

More surprisingly was the large DEC-WARM-SQLL-DAY (48) over-prediction that 

contradicted the strong negative bias found during repeated error analysis trials (see Figure 

45d). Likewise, the DEP-WARM-SQLL-DAY (53) under-prediction was inconsistent 

with its mean bias (see Figure 55d). In this case, under-estimation can most likely be 

attributed to the unusual AVG-AVG statistics of SHP and LLVVEL on this day; the SHP 

was particularly low (~0.129; resulting in a low outage prediction) and the LLVVEL was 

positive (resulting in a subsequent reduction in the predicted outage count). 

The seven nighttime model predictions ranged between 25 and 142 with four falling 

within the ±50 outages (91-191) from the observed outage count (141). As expected, the 

most accurate models were the DEC-HOT-SQLL-WIND-NIGHT (42) and DEP-

WARM-SQLL-NIGHT (57) with predicted outages of 130 and 142, respectively. The 

DEC-HOT-SQLL-NIGHT (43) under-predicted on this date even though an 

exceptionally high MAX-MAX of DCAPE (~1300 J kg-1) was present. However, as 

previously discussed in the error analysis, this model exhibits a large negative mean bias 

of -275 outages (see Figure 44d). In practice, an experienced forecaster will place more 

confidence in the models forecasting large outage counts if an intense, bowing squall line 

is expected to pass over heavily populated portions of a given service area. 
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CHAPTER 7: CONCLUSION 

 

 

 This study was designed to help alleviate forecasting errors between power outage 

causing thunderstorms and ordinary thunderstorms during the meteorological warm season 

(March 1st – October 31st for this study). Duke Energy has struggled with identifying (1) 

“short-fuse events” where strong power outage producing storms are not well-forecasted 

resulting in an understaffing of repair crews, and (2) “non-events” where storms are well 

forecasted but do not produce the expected outages, leading to an overstaffing of repairs 

crews. Neither scenario is cost-effective, so a forensic analysis of five years (2013-2017) 

of thunderstorm-induced power outage events was conducted to improve the outage 

prediction during such events. This study focused on wet microbursts (a common 

phenomenon in Duke Energy’s service territories) known to generate divergent strong 

surface winds capable of knocking down trees and utility poles. Thirty-three specific 

meteorological diagnostic/forecast parameters, known to identify microburst-conducive 

environments, were evaluated for use in multiple-regression equations that predict the total 

number of power outages in a given service area.  

The case dates used to build the metric database were identified by reviewing the 

SPC convective outlook archive and the NWS severe storm report database. The hourly 

RAP initialization files (i.e. the analysis fields or 0-hr forecast) were then downloaded for 

all relevant hours during the chosen case date. The outage data provided by Duke Energy 

was used as the response variable within a series of GLM equations developed using the 

meteorological parameters as predictors. A 10-km grid covering the five Duke Energy 

service territories was employed and all 33 meteorological parameters derived from RAP 

analyses were interpolated onto this grid. This was completed for a 24-h period during each 
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identified case date, beginning at 1200 UTC and running through 1200 UTC on following 

day. Next, regional day and night summary statistics were computed for each case date, by 

finding the (1) average of hourly maximum within the service area, (2) average of the 

hourly average within the service area, (3) maximum of hourly average within the service 

area, and (4) maximum of the hourly maximum within the service area. The case dates 

were then stratified into categories based on the season, the dominant convective mode, 

and dominant severe weather type, with the potential to build 360 different GLMs (one for 

each stratification category). However, only 102 scenarios had a sufficient number of case 

dates (≥10 events) to attempt model development, and optimal GLM equations (where p-

values for all estimators consistently remained below 0.05 in repeated boot-strapping trials) 

were successfully developed for only 58 scenarios.  

 For the MWC service area, a total of 6 optimal models (of 16 attempted) were 

successfully developed. The only predictor identified for multiple models in this service 

area was WNDG, a parameter designed to detect damaging winds if there were storms to 

initiate in that environment. However, WNDG displayed a positive relationship with power 

outages in one equation and a negative relationship in another. In the MWI service area 18 

optimal models were successfully developed (of the 24 attempted). The most common 

predictor was the SHP (with six appearances), and it exhibited a positive relationship with 

outage counts in all cases. The LLVVEL was a close second with five appearances, three 

of which displayed positive correlations with power outages and the other two were 

negatively related. In the FLA service area, 16 optimal models were successfully developed 

(of the 24 attempted). The most common predictors in FLA were MBRUST and PW, both 

occurring in three equations and always exhibiting a positive relationship to power outage 
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counts. In the DEC service area, 9 optimal models were successfully developed (of 26 

attempted), and the most frequent predictor was LLVVEL with three appearances. Finally, 

in the DEP service area, 9 optimal models were successfully developed (of the 22 

attempted), and the most common predictor, again, was LLVVEL (with four appearances). 

Overall, the 58 successfully developed optimal models utilized 24 of the 33 evaluated 

predictors, but the two most common predictors were LLVVEL and SHP. Such differences 

reinforce the idea that outage-producing thunderstorms come in a variety of “flavors”, and 

that accurate forecasts of all such flavors requires an ensemble approach.  

 To demonstrate the many advantages of a GLM ensemble approach, three case dates 

were analyzed in detail. Due to climatological similarities and the low computational 

requirement to implement multiple GLM equations, the two Midwest (MWC and MWI) 

and two Carolina (DEC and DEP) service areas were combined. The statistical model 

predictions, in a manner akin to numerical ensemble prediction, were presented such that 

the outage forecast spectrum could be easily visualized. In each case, many models 

provided predictions within the acceptable range of ±50 outages from the observed outage 

count; several models provided predictions within five outages or a perfect forecast! 

 The statistical models developed in this study are envisioned to merely serve as 

“another tool in a forecaster’s toolbox.” In practice, selection of the best model(s) for a 

given scenario will remain up to the discretion of the forecaster. However, with (a) practice, 

(b) daily knowledge of the current atmospheric conditions, and (c) broad expectations as 

to when and where within a given service area the most outage-producing convection will 

pass, forecasters will undoubtedly learn to easily identify which optimal models provide 

the most reliable predictions for a given scenario.  
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 Finally, in line with the “perfect-prognosis” approach (Cerruti and Decker 2012) to 

forecasting, whereby statistical models are developed from observations (or 0-h model 

analyses) and then applied to numerical model forecast field, our statistical models should 

be readily transferable to different numerical forecast systems. For example, our optimal 

models were developed using RAP analysis fields, but current plans at Duke Energy are to 

apply these statistical models to the North American Model (NAM) forecast fields to take 

advantage of the NAM’s multiday forecast period. Such approach will provide Duke 

Energy with the desired 3-day guidance regarding potential weekend storms, outages, and 

repair crews placed on standby. The multiday predictions will also enable tracking how the 

outage forecasts trend from run-to-run as potential outage-producing-events approach a 

given service area.  
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CHAPTER 8: FUTURE WORK 

 

 

 Future work should more carefully consider the effects of high-density vs. low-density 

infrastructure, by sub-dividing each service area based on an appropriate infrastructure 

metric (e.g. pole or transformer count per unit area). It is possible that the same broad 

atmospheric conditions could be present on days with few outages and many outages; - the 

primary difference in total outage counts would be related to where the intense convection 

occurred.  Such differences may have affected some of the correlations between outages 

and the metrics investigated in this study.  

  Lastly, it would be wise to reassess the spatiotemporal aspect of the project. One 

approach would be to only investigate the atmospheric conditions at grid points where 

power outages and/or deep convection were experienced on that day. Another approach 

would be to reduce the hours investigated, to only those when power outages were reported 

(in addition to a few hours prior because often there is a time lag with reporting outages) 

and/or when deep convection was present. By focusing on the specific hours and grid points 

where power outages were reported and/or deep convection was present more commonality 

may be found between which meteorological parameters are most influential on power 

outages.  
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TABLES 

 

 

Table 1. The number of event types and total number of events that occurred in each 

service over the five-year study period (2013- 2017). Please note that this is the initial event 

count and does not account for the dates where data was unavailable. 

  

Number of Event Types per Service Area 

Service Area SF-Events NON-Events HIT-Events Total 

MWC 12 71 38 121 

MWI 18 81 70 169 

FLA 112 13 29 154 

DEC 107 21 44 172 

DEP 61 34 43 138 
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Table 2.  The 33 metrics investigated in this study along with their short-hand ID, long 

name, unit, and computational method. 

 

Metrics 

Short-hand ID Long-name Unit Computational 

Method 

DIV500 Divergence at 500 

mb 

s-1 Custom Software 

HGTFRZ Height of the 0°C 

Isotherm 

m Custom Software 

HEL03 Helicity 0-3 km m2 s-2 Custom Software 

HEL01 Helicity 0-1 km m2 s-2 Custom Software 

LI Lifted Index K Custom Software 

PW Precipitable Water 

of the Troposphere 

kg m-2 Custom Software 

RHBLML The Difference of 

Relative Humidity 

in the Boundary 

Layer and the 

Average Mid-level 

(850 – 500 mb) 

% Custom Software 

TMP700 700 mb 

Temperature 

K Custom Software 

THE700 700 mb Theta-e  K Custom Software 

THE850 850 mb Theta-e K Custom Software 

LLVVEL Low Level Vertical 

Velocity 

Pa s-1 Custom Software 

WSPSFC Surface Winds m s-1 Custom Software 

WSP700 700 mb Winds m s-1 Custom Software 

WSP850 850 mb Winds m s-1 Custom Software 

SOILMS Mean Soil Moisture Fraction Native Grid Custom 

Software 

BRN Bulk Richardson 

Number 

Non-dimensional SHARPpy 

DCAPE Downdraft 

Convective 

Available Potential 

Energy 

J kg-1 SHARPpy 

EFFDEPTH Effective Inflow 

Layer Depth 

m SHARPpy 

EFFBASE Effective Inflow 

Layer Base Height 

m SHARPpy 

EFFTOP Effective Inflow 

Layer Top Height 

m SHARPpy 

MBURST Microburst 

Composite 

Non-

Dimensional 

SHARPpy 
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MLCAPE Mixed Layer 

Convective 

Available Potential 

Energy 

J kg-1 SHARPpy 

MLCIN Mixed Layer 

Convective 

Inhibition 

J kg-1 SHARPpy 

MUCAPE Most Unstable 

Convective 

Available Potential 

Energy 

J kg-1 SHARPpy 

MUCIN Most Unstable 

Convective 

Inhibition 

J kg-1 SHARPpy 

SCP Supercell 

Composite 

Parameter 

Non-dimensional SHARPpy 

SHERBE SHERBE Non-dimensional SHARPpy 

SHP Significant Hail 

Parameter 

Non-dimensional SHARPpy 

STP Significant Tornado 

Parameter 

Non-dimensional SHARPpy 

SHEAR1km Shear 0-1 km kts SHARPpy 

SHEAR3km Shear 0-3 km kts SHARPpy 

SHEAR6km Shear 0-6 km kts SHARPpy 

WNDG Wind Damage 

Parameter 

Non-dimensional SHARPpy 

 

Table 2. (continued)  The 33 metrics investigated in this study along with their short-hand 

ID, long name, unit, and computational method. 
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Table 3. The number of dominant severe weather type days in each service area for the 

case dates selected for this study.  

 

Number of Severe Weather Type Events per Service Area 

Service Area Wind Hail Tornado Hail/ Tor No Type 

MWC 52 10 2 12 40 

MWI 79 25 3 28 35 

FLA 95 10 2 12 23 

DEC 112 24 1 25 18 

DEP 95 13 2 15 17 
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Table 4. Broad metric categories used for check for multi-collinearity within models. If 

two predictors within the same category had r > 0.30, the predictor, least correlated with 

outages was removed from the equation. 

 

Positive Buoyancy Negative Buoyancy Convective Inhibition 

DIV500 THE850 MUCIN 

LI THE700 MLCIN 

LLVVEL DCAPE TMP700 

MUCAPE HGTFRZ   

MLCAPE    

     

Shear Moisture Rotation 

SHR01 PW HEL03 

SHR03 RHBLML HEL01 

SHR06    

WSPSFC    

WSP850    

WSP700    

     

Inflow Layer Storm Type Other 

EFFBASE BRN SOILMS 

EFFTOP    

EFFDEPTH    

     

Composite     

WNDG : MLCAPE, SHR03, MLCIN 

MBURST : SBCAPE, SBLI, DCAPE, PW 

SCP : MUCAPE, HEL03, BRN 

STP : MLCAPE, SHR06, HEL01 

SHERBE : EFFDEPTH   

SHP : MUCAPE, SHR06   
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Table 5. Table lists the scenario the equation is built for, time of day, summary statistic 

used, equation, adjusted r-square, and number of event dates used to build the equation.  

IDX Model Time Sum. 

Stat 

Equation with Average 

Estimators 

Average 

Adjusted  

r-square 

n 

1 MWC-

HOT-

SCAT-

WIND 

N MAX-

AVG 

LOG(OUTS) = -

0.03825*WSP850 + 

2.057886 

0.510 17 

2 MWC-

HOT-

SQLL-

WIND 

D MAX-

MAX 

LOG(OUTS) = -

0.30126*WNDG + 

0.033943*SOILMS + 

0.107044*SHR01 

0.709 17 

3 MWC-

WARM

-SQLL 

D AVG-

MAX 

LOG(OUTS) = 

0.758301*WNDG + 

0.040951*SHR06 

0.701 17 

4 MWC-

WARM

-SQLL 

N MAX-

MAX 

LOG(OUTS) = 

0.04945*PW – 

0.00076*HGTFRZ + 

2.357075 

0.425 17 

5 MWC-

WARM 

D AVG-

MAX 

LOG(OUTS) = 

0.026525*WSP700 + 

1.065718 

0.264 

 

42 

6 MWC-

WARM 

N MAX-

MAX 

LOG(OUTS) = 

3478.186*DIV500 + 

0.838094 

0.175 

 

42 

7 MWI-

HOT-

SCAT-

WIND 

D MAX-

AVG 

OUTS = -5.24034*SHR01 + 

164.994 

0.114 15 

8 MWI-

HOT-

SCAT-

WIND 

N MAX-

MAX 

LOG(OUTS) = 

0.251973*WNDG + 

0.001211*HEL03 + 

0.996782 

0.487 15 

9 MWI-

HOT-

SQLL-

WIND 

D MAX-

MAX 

OUTS = 80.23204* 

LLVVEL + 

0.186336*DCAPE -177.163 

0.301 30 

10 MWI-

HOT-

SQLL-

WIND 

N MAX-

MAX 

LOG(OUTS) = 

0.206209*SHP + 

0.002017*HEL01 + 1.08054 

0.457 30 

11 MWI-

HOT-

SCAT 

N MAX-

MAX 

OUTS = 27.9664*WNDG 

+60.64036*LLVVEL - 

24.7924 

0.491 29 
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Table 5. (continued) Table lists the scenario the equation is built for, time of day, 

summary statistic used, equation, adjusted r-square, and number of event dates used to 

build the equation.  

 

12 MWI-

HOT-

SQLL 

N MAX-

MAX 

LOG(OUTS) = 

0.190731*SHP + 

0.001412*HEL03 + 

1.019466 

0.472 40 

13 MWI-

HOT 

N AVG-

MAX 

OUTS = 

0.902639*LLVVEL + 

0.094496*HEL01 + 

0.882346 

0.418 75 

14 MWI-

WARM

-SCAT-

WIND 

D AVG-

MAX 

OUTS = 

48.03844*MBURST + 

56.49236 

0.462 10 

15 MWI-

WARM

-SCAT-

HAIL-

TOR 

D MAX-

MAX 

OUTS = 39.08919*SHP + 

48.94842 

0.316 10 

16 MWI-

WARM

-SCAT-

HAIL-

TOR 

N AVG-

AVG 

LOG(OUTS) = -

1.10144*LLVVEL 

+1.1205272 

0.808 10 

17 MWI-

WARM

-SQLL-

WIND 

D AVG-

AVG 

LOG(OUTS) = -

0.01181*MUCIN 

+1.650919 

0.320 11 

18 MWI-

WARM

-SQLL-

WIND 

N AVG-

MAX 

LOG(OUTS) = 

0.713145*SHP – 

0.07388*LI -

0.00223*HEL01 

0.551 11 

19 MWI-

WARM

-SCAT 

D MAX-

AVG 

OUTS = 83.97244*SHP 

+62.54173 

0.301 27 

20 MWI-

WARM

-SCAT 

N MAX-

AVG 

LOG(OUTS) = -

1.0464*LLVVEL + 

1.415195 

0.342 27 

21 MWI-

WARM

-SQLL 

D AVG-

AVG 

OUTS = 4.046051*WSP700 

+ 1.090225*RHBLML 

0.279 31 
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Table 5. (continued)Table lists the scenario the equation is built for, time of day, 

summary statistic used, equation, adjusted r-square, and number of event dates used to 

build the equation.  

 

22 MWI-

WARM

-SQLL 

N MAX-

AVG 

LOG(OUTS) = 

0.0034*MUCIN + 

0.000535*MLCAPE + 

1.552794 

0.333 31 

23 MWI-

WARM 

D MAX-

AVG 

OUTS = 2.629044*WSP700 

+ 50.19245*SHP + 

0.527404*RHBLML 

0.323 67 

24 MWI-

WARM 

N MAX-

MAX 

OUTS = 0.023305*THE850 

+ 0.013583*SHR06 + 

0.000694*MUCIN – 

6.55384 

0.216 67 

25 FLA-

HOT-

SCAT-

WIND 

D MAX-

AVG 

OUTS = 9.18441*SHR06 

+147.4114 

0.493 21 

26 FLA-

HOT-

SCAT-

WIND 

N AVG-

AVG 

LOG(OUTS) = -

0.00089*DCAPE 

+2.413616 

0.546 21 

27 FLA-

HOT-

SCAT 

D MAX-

AVG 

LOG(OUTS) = 

0.878152*SHP +1.964533 

0.316 23 

28 FLA-

HOT-

SCAT 

N MAX-

MAX 

LOG(OUTS) = -

0.00013*MUCAPE 

+2.330389 

0.303 23 

29 FLA-

HOT 

D MAX-

AVG 

LOG(OUTS) = -

13118.8*DIV500 + 

2.295628 

0.216 72 

30 FLA-

WARM

-SCAT-

WIND 

D MAX-

AVG 

LOG(OUTS) = -

0.0051*RHBLML 

+2.261963 

0.402 13 

31 FLA-

WARM

-SCAT-

WIND 

N MAX-

AVG 

LOG(OUTS) = -

0.00301*MLCIN + 

0.134266*MBURST + 

1.331647 

0.715 13 

32 FLA-

WARM

-SQLL-

WIND 

D AVG-

MAX 

LOG(OUTS) = 

0.024254*WSP700 + 

0.9972*MBURST + 

1.156948 

0.605 16 
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Table 5. (continued)Table lists the scenario the equation is built for, time of day, 

summary statistic used, equation, adjusted r-square, and number of event dates used to 

build the equation.  

 

33 FLA-

WARM

-SQLL-

WIND 

N MAX-

AVG 

LOG(OUTS) = 

0.000657*MLCAPE + 

1.52899 

0.392 16 

34 FLA-

WARM

-

PULSE 

D MAX-

MAX 

LOG(OUTS) = 

0.046738*SHR03+1.467692 

0.396 11 

35 FLA-

WARM

-SCAT 

D MAX-

MAX 

LOG(OUTS) = 

0.218635*SOILMS + 

0.019963*PW + 0.858849 

0.393 27 

36 FLA-

WARM

-SCAT 

N MAX-

AVG 

LOG(OUTS) = 

0.016364*PW + 0.995989 

0.303 27 

37 FLA-

WARM

-SQLL 

D AVG-

AVG 

LOG(OUTS) = 

0.060189*SHR01 + 

0.403154*MBURST + 

1.618636 

0.599 20 

38 FLA-

WARM

-SQLL 

N AVG-

AVG 

LOG(OUTS) = 

0.000527*MLCAPE + 

1.6315584 

0.338 20 

39 FLA-

WARM 

D AVG-

MAX 

LOG(OUTS) = 

0.174307*SOILMS + 

0.016032*PW +1.200298 

0.281 58 

40 FLA-

WARM 

N AVG-

MAX 

LOG(OUTS) = 

0.213832*SOILMS 

+0.016257*PW + 0.792062 

0.297 58 

41 DEC-

HOT-

SCAT-

WIND 

D MAX-

AVG 

LOG(OUTS) = -0.05364*LI 

– 0.00031*DCAPE + 

2.174527 

0.243 34 

42 DEC-

HOT-

SQLL-

WIND 

N MAX-

MAX 

LOG(OUTS) = 

0.583582*SHP + 1.722954 

0.481 18 

43 DEC-

HOT-

SQLL 

N MAX-

MAX 

LOG(OUTS) = 

0.001013*DCAPE 

0.361 

 

19 

44 DEC-

HOT 

D AVG-

AVG 

LOG(OUTS) = -

0.81483*LLVVEL -

19973.3*DIV500 + 2.3137 

0.210 89 
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Table 5. (continued)Table lists the scenario the equation is built for, time of day, 

summary statistic used, equation, adjusted r-square, and number of event dates used to 

build the equation.  

 

45 DEC-

WARM

-SCAT-

WIND 

D AVG-

AVG 

OUTS = 

0.055698*MUCAPE + 

117.346 

0.438 13 

46 DEC-

WARM

-SQLL-

WIND 

D AVG-

AVG 

LOG(OUTS) = 

0.004562*HEL01 + 

2.064235 

0.743 13 

47 DEC-

WARM

-SCAT 

D AVG-

AVG 

LOG(OUTS) = -

0.75148*LLVVEL – 

0.01163*LI + 2.09674 

0.629 30 

48 DEC-

WARM

-SQLL 

D MAX-

AVG 

LOG(OUTS) = 

0.015447*WSP700 + 

0.002546*MUCIN + 

2.201393 

0.439 20 

 

49 DEC-

WARM 

N MAX-

AVG 

LOG(OUTS) = 

0.02008*WSPSFC – 

1.14214*LLVVEL + 

1.74478 

0.401 

 

66 

50 DEP-

HOT-

SCAT-

WIND 

D MAX-

MAX 

LOG(OUTS) = 

0.033379*SHR01 + 

0.008007*RHBLML + 

1.392739 

0.275 24 

51 DEP-

HOT-

SCAT-

WIND 

N MAX-

AVG 

LOG(OUTS) = -0.16055*LI 

+ 1.453959 

0.318 24 

52 DEP-

HOT-

SQLL-

WIND 

D AVG-

AVG 

LOG(OUTS) = -

1.225*LLVVEL +1.847398 

0.505 28 

53 DEP-

HOT-

SQLL 

D AVG-

AVG 

LOG(OUTS) = 

1.044543*SHP – 0.0059* 

MLCIN – 

1.74688*LLVVEL + 

1.530157 

0.708 29 

54 DEP-

HOT 

D AVG-

AVG 

LOG(OUTS) = 

0.720987*SHP – 

0.94203*LLVVEL + 

1.814984 

0.246 69 
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Table 5. (continued)Table lists the scenario the equation is built for, time of day, 

summary statistic used, equation, adjusted r-square, and number of event dates used to 

build the equation.  

 

55 DEP-

HOT 

N MAX-

MAX 

LOG(OUTS) = 

0.544709*SHP + 

0.019916*PW 

0.263 69 

56 DEP-

WARM

-SQLL-

WIND 

D MAX-

MAX 

LOG(OUTS) = 

0.001108*MLCIN – 

0.00056*HGTFRZ + 

5.053452 

0.490 10 

57 DEP-

WARM

-SQLL 

N AVG-

AVG 

LOG(OUTS) = 

0.015849*PW + 

0.011852*MUCIN + 

1.909377 

0.538 19 

 

58 DEP-

WARM 

N AVG-

AVG 

LOG(OUTS) = -

1.28543*LLVVEL – 

0.00238*HEL01 + 1.808599 

0.368 58 
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Table 6a. Event date stratification for MWC service area for the hot season. 

MWC - HOT        

 PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 4 0 17 17 0 0 38 

HAIL & TOR 0 0 1 2 0 0 3 

NO TYPE 3 0 9 9 0 0 21 

TOTAL 7 0 27 28 0 0 62 

 

 

Table 6b. Event date stratification for MWC service area for the warm season. 

MWC - WARM        

 PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 0 1 5 8 0 0 14 

HAIL & TOR 0 0 8 1 0 0 9 

NO TYPE 1 1 9 8 0 0 19 

TOTAL 1 2 22 17 0 0 42 
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Table 7a. Event date stratification for MWI service area for the hot season. 

MWI - HOT               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 6 0 15 30 0 0 51 

HAIL & TOR 0 0 5 1 0 0 6 

NO TYPE 0 0 9 9 0 0 18 

TOTAL 6 0 29 40 0 0 75 

 

Table 7b. Event date stratification for MWI service area for the warm season. 

  
MWI - WARM               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 2 5 10 11 0 0 28 

HAIL & TOR 0 0 10 12 0 0 22 

NO TYPE 0 2 7 8 0 0 17 

TOTAL 2 7 27 31 0 0 67 
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 Table 8a. Event date stratification for FLA service area for the hot season. 

FLA-HOT               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 36 0 21 3 0 0 60 

HAIL & TOR 1 0 1 0 0 0 2 

NO TYPE 9 0 1 0 0 0 10 

TOTAL 46 0 23 3 0 0 72 
 

Table 8b. Event date stratification for FLA service area for the warm season. 

  
FLA-WARM               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 6 0 13 16 0 0 35 

HAIL & TOR 4 0 5 1 0 0 10 

NO TYPE 1 0 9 3 0 0 13 

TOTAL 11 0 27 20 0 0 58 
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Table 9a. Event date stratification for DEC service area for the hot season. 

DEC – HOT               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 25 0 34 18 0 0 77 

HAIL & TOR 2 0 4 1 0 0 7 

NO TYPE 2 0 3 0 0 0 5 

TOTAL 29 0 41 19 0 0 89 
 

Table 9b. Event date stratification for DEC service area for the warm season. 

  
DEC - WARM               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 9 0 13 13 0 0 35 

HAIL & TOR 2 1 11 4 0 0 18 

NO TYPE 1 3 6 3 0 0 13 

TOTAL 12 4 30 20 0 0 66 
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Table 10a. Event date stratification for DEP service area for the hot season. 

DEP - HOT               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 10 0 24 28 0 0 62 

HAIL & TOR 0 0 2 0 0 0 2 

NO TYPE 0 0 4 1 0 0 5 

TOTAL 10 0 30 29 0 0 69 

 

Table 10b. Event date stratification for DEP service area for the warm season. 

DEP - WARM               

  PULSE FRNT SCAT SQLL SUPER NONE TOTAL 

WIND 6 1 16 10 0 0 33 

HAIL & TOR 0 1 7 5 0 0 13 

NO TYPE 0 0 8 4 0 0 12 

TOTAL 6 2 31 19 0 0 58 
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FIGURES 

 

 

 
 

Figure 1. Duke Energy five different service territories. This study will combine Duke 

Energy Ohio with Duke Energy Indiana and will combine Duke Energy Carolinas with 

Duke Energy Progress due to the climatological similarities in the regions. 

(http://sustainabilityreport.duke-energy.com/2013/images/charts/map-service-

territories.png) 

 

 

 

 

 

 

 

http://sustainabilityreport.duke-energy.com/2013/images/charts/map-service-territories.png
http://sustainabilityreport.duke-energy.com/2013/images/charts/map-service-territories.png
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Figure 2. A flow chart indicating how the event pool was stratified by service area, 

season, dominant convective mode, and dominant severe weather type. 
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Figure 3. Histogram of observed outage counts on MWC-HOT-SCAT-WIND nights.  

 

 
Figure 4. Histogram of observed outage counts on MWC-HOT-SQLL-WIND days. 
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Figure 5. Histogram of observed outage counts on MWC-WARM-SQLL days. 

 

 
Figure 6. Histogram of observed outage counts on MWC-WARM-SQLL nights. 
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Figure 7. Histogram of observed outage counts on MWC-WARM days. 

 

 
Figure 8. Histogram of observed outage counts on MWC-WARM nights. 
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Figure 9a. The mean absolute error distributions of models 1-6. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 9b. The root mean square error distributions of models 1-6. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 9c. The percent error distributions of models 1-6. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 9d. The bias distributions of models 1-6. The box marks the 25th percentile (bottom 

of the box), 50th percentile (centerline), and 75th percentile (top of the box). The lines 

extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). The 

notches signify the 95% confidence intervals of the mean. 
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Figure 10. Histogram of observed outage counts on MWI-HOT-SCAT-WIND nights. 

 

 
Figure 11. Histogram of observed outage counts on MWI-HOT-SQLL-WIND nights. 
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Figure 12. Histogram of observed outage counts on MWI-HOT-SQLL nights. 

 

 
Figure 13. Histogram of observed outage counts on MWI-WARM-SCAT-HAIL-TOR 

nights. 
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Figure 14. Histogram of observed outage counts on MWI-WARM-SQLL-WIND days.  

 

 
Figure 15. Histogram of observed outage counts on MWI-WARM-SQLL-WIND nights. 
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Figure 16. Histogram of observed outage counts on MWI-WARM-SCAT nights. 

 

 
Figure 17. Histogram of observed outage counts on MWI-WARM-SQLL nights.  
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Figure 18a. The mean absolute error distributions of models 7-12. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 18b. The root mean square error distributions of models 7-12. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 18c. The percent error distributions of models 7-12. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 18d. The bias distributions of models 7-12. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 19a. The mean absolute error distributions of models 13-18. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 19b. The root mean square error distributions of models 13-18. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 19c. The percent error distributions of models 13-18. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 19d. The bias distributions of models 13-18. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 



124 

 
Figure 20a. The mean absolute error distributions of models 19-24. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 20b. The root mean square error distributions of models 19-24. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 20c. The percent error distributions of models 19-24. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 20d. The bias distributions of models 19-24. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 21. Histogram of observed outage counts on FLA-HOT-SCAT-WIND nights. 

 

 
Figure 22. Histogram of observed outage counts on FLA-HOT-SCAT days. 
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Figure 23. Histogram of observed outage counts on FLA-HOT-SCAT nights. 

 

 
Figure 24. Histogram of observed outage counts on FLA-HOT days. 
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Figure 25. Histogram of observed outage counts on FLA-WARM-SCAT-WIND days. 

 

 
Figure 26. Histogram of observed outage counts on FLA-WARM-SCAT-WIND nights. 
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Figure 27. Histogram of observed outage counts on FLA-HOT-SQLL-WIND days. 

 

 
Figure 28. Histogram of observed outage counts on FLA-WARM-SQLL-WIND nights. 
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Figure 29. Histogram of observed outage counts on FLA-WARM-PULSE days. 

 
Figure 30. Histogram of observed outage counts on FLA-WARM-SCAT nights. 
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Figure 31. Histogram of observed outage counts on FLA-HOT-SQLL days. 

 

 
Figure 32. Histogram of observed outage counts on FLA-WARM nights. 
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Figure 33a. The mean absolute error distributions of models 25-30. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 33b. The root mean square error distributions of models 25-30. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 33c. The percent error distributions of models 25-30. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 33d. The bias distributions of models 25-30. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 34a. The mean absolute error distributions of models 31-36. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 34b. The root mean square error distributions of models 31-36. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 34c. The percent error distributions of models 31-36. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 34d. The bias distributions of models 31-36. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 35a. The mean absolute error distributions of models 37-40. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 35b. The root mean square error distributions of models 37-40. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 35c. The percent error distributions of models 37-40. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 35d. The bias distributions of models 37-40. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 36. Histogram of observed outage counts on DEC-HOT-SCAT-WIND days. 

 

 
Figure 37. Histogram of observed outage counts on DEC-HOT-SQLL-WIND nights. 
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Figure 38. Histogram of observed outage counts on DEC-HOT-SQLL nights. 

 

 
Figure 39. Histogram of observed outage counts on DEC-HOT days. 
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Figure 40. Histogram of observed outage counts on DEC-WARM-SQLL-WIND days. 

 

 
Figure 41. Histogram of observed outage counts on DEC-WARM-SCAT days. 
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Figure 42. Histogram of observed outage counts on DEC-WARM-SQLL days. 

 

 
Figure 43. Histogram of observed outage counts on DEC-WARM nights. 
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Figure 44a. The mean absolute error distributions of models 41-46. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 44b. The root mean square error distributions of models 41-46. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 44c. The percent error distributions of models 41-46. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 44d. The bias distributions of models 41-46. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 45a. The mean absolute error distributions of models 47-49. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 45b. The root mean square error distributions of models 47-49. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 45c. The percent error distributions of models 47-49. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 45d. The bias distributions of models 47-49. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 46. Histogram of outage counts on DEP-HOT-SCAT-WIND days. 

 

 
Figure 47. Histogram of outage counts on DEP-HOT-SCAT-WIND nights. 
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Figure 48. Histogram of outage counts on DEP-HOT-SQLL-WIND days. 

 

 
Figure 49. Histogram of outage counts on DEP-HOT-SQLL days. 
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Figure 50. Histogram of outage counts on DEP-HOT days. 

 

 
Figure 51. Histogram of outage counts on DEP-HOT nights. 
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Figure 52 Histogram of outage counts on DEP-WARM-SQLL-WIND days. 

 

 
Figure 53. Histogram of outage counts on DEP-WARM-SQLL nights. 
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Figure 54. Histogram of outage counts on DEP-WARM nights. 
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Figure 55a. The mean absolute error distributions of models 50-55. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 55b. The root mean square error distributions of models 50-55. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 55c. The percent error distributions of models 50-55. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 55d. The bias distributions of models 50-55. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 56a. The mean absolute error distributions of models 56-58. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 56b. The root mean square error distributions of models 56-58. The box marks the 

25th percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of 

the box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 56c. The percent error distributions of models 56-58. The box marks the 25th 

percentile (bottom of the box), 50th percentile (centerline), and 75th percentile (top of the 

box). The lines extending from the boxes mark the 10th percentile (bottom) and 90th 

percentile (top). The notches signify the 95% confidence intervals of the mean. 
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Figure 56d. The bias distributions of models 56-58. The box marks the 25th percentile 

(bottom of the box), 50th percentile (centerline), and 75th percentile (top of the box). The 

lines extending from the boxes mark the 10th percentile (bottom) and 90th percentile (top). 

The notches signify the 95% confidence intervals of the mean. 
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Figure 57. An ensemble forecast for the Midwest service area on 06-18-2013. The 

observed outage counts are denoted by black cross hairs, individual statistical model 

forecast are denoted by colored symbols, and the acceptable range of ±50 outages is marked 

by red lines (relative to the observed outage count). 
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Figure 58. An ensemble forecast for the Florida service area on 06-30-2013. The observed 

outage counts are denoted by black cross hairs, individual statistical model forecast are 

denoted by colored symbols, and the acceptable range of ±50 outages is marked by red 

lines (relative to the observed outage count). 
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Figure 59. An ensemble forecast for the Carolina service area on 08-04-2017. The 

observed outage counts are denoted by black cross hairs, individual statistical model 

forecast are denoted by colored symbols, and the acceptable range of ±50 outages is marked 

by red lines (relative to the observed outage count). 
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