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ABSTRACT

TREVON WILLIAMS. An Approach Towards an Autonomic Computing Prototype
Reference Architecture. (Under the direction of DR. TOM MOYER)

Autonomic Computing is a grand challenge that strives to create self-regulating en-

vironments. The end goal, is to create an environment that can self-optimize, self-

protect, self-heal and self-configure based on built-in, formulated, and generated logic

to address to concerns of the growing complexity in managing computer systems. To

do so, Autonomic Computing requires advancement in a plethora of scientific and

economical fields. In theory, Autonomic Computing implementations can handle sys-

tem complexity by abstracting aggregated environment information used in policy

bases systems. This allows autonomic elements in the system to administer config-

uration changes and policy at the moment remediation is needed. In this paper we

outline the ideas and direction of Autonomic Computing, the reference architecture

we formulated, and the autonomic features we focused our architecture around. The

end goal of this research is to aid in the creation of light weight autonomic computing

prototype reference architecture, which utilizes SaltStack as an autonomic element.

Later, we explain why we thought it was important to utilizes specific open sources

tools and academic ideas.
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CHAPTER 1: INTRODUCTION

Large computer networks can be found in data centers, universities, and well-

established companies. Networked computer systems are typically found containing

a composition of machine abstractions, network configurations, operating systems

and novel defense strategies. These systems are arguably racing towards greater

complexity, connectivity, and efficiency of use, as new methodologies and advance-

ments are implemented in an ever-adapting eco-system. Systems are becoming more

cumbersome to manage and advancements require more specialized knowledge to

implement and maintain. Industry leaders, researchers, academics, and IT practi-

tioners have long since agreed that this is an issue worth solving. Initiatives have

led to novel advancements like high-level orchestrated deployment techniques, auto-

mated patches via agents, and advance configuration management tools. Efforts have

pushed back the inevitable of not being able to fully manage legacy systems riddled

with technical debt. The idea of Autonomic Computing is not a new idea and was de-

scribed indirectly in modern literature as Computer Immunology in 1998 [1]. Burgess

made the case that “the time is right to build not merely fault tolerant systems, but

self-maintaining, fault corrective systems”. Computer Immunology, similarly to au-

tonomic computing, is heavily inspired by biological system’s ability to self-regulate

and how they manage themselves in a diverse breadth of environments.

The term Autonomic Computing was coined in 2001 by IBM [2] proceeding a

keynote from Paul Horn and the release of the Autonomic Computing manifesto [3]

as it marked the beginnings of the Autonomic Computing initiative. Autonomic

Computing strives to abstract the complexity of optimal states and system policy,

to enable executed actions and decisions by autonomic control loops and decision-
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making systems. Decisions then must govern a heterogeneous collection of computers

based on proposed goal policies without causing system failures. From a security per-

spective, integrating responsive logic into globally aware systems improves structural

integrity by decreasing the response time between threat detection and mitigation.

In reducing the surface of direction human administration, current design implemen-

tations of orchestration technologies increase potential risk if attackers are able to

control responses.

Initially, we embarked with the goal of developing a system that was able to react

to custom triggers within the environment to create a more agile system. This led to

iterations of environment designs spanning custom automation tools to utilizing open

source solutions like Ansible and SaltStack. After we came across SaltStack and saw

how we could utilize their reactor system to create an event driven environment, we

returned to the common literature to find if work had been done in this area. This led

us to the field of autonomic computing and the goal of creating a self-managing en-

vironment. We explored prototype and testbed implementations to explore solutions

and how custom orchestration tooling was used in place of autonomic elements.

In this thesis, we sought to outline a rudimentary prototype architecture of a sys-

tem with open source tooling and methodologies to explore security implications in

future work. Utilizing Kephart’s guidance from Research Challenges of Autonomic

Computing [4], we make the claim that we have identified a tool that can be utilized

to create autonomic elements. We then to detail how we propose to use this tool

to create of an autonomic computing prototype. This research fits within one of the

three sub-branches of the autonomic computing research framework which includes:

autonomic elements, autonomic systems, and human computer interactions.

1.1 BODY OF WORK

Autonomic Computing has five fundamental goals, as referenced in the Internet En-

gineering Task Force’s (IETF) RFC 7575 [5] and described in Research Challenges of
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Autonomic Computing [4]. The system must be self-managing, self-configuring, self-

optimizing, self-healing, and self-protecting. These self-x features are implemented by

a collection of autonomic elements. Each element provides some sort of functionality

to each automated processes through advanced utility deducing algorithms. When

broken down into smaller elements, this body of work requires efforts in system de-

sign, learning integration, and algorithmic decision-making processes that can adapt

to the changes they and other similar elements make in the environment. In this

paper, we explore self-healing, self-protecting, and self-configuration as we structure

our reference architecture around proposed work, drafted frameworks, and testbeds

in both network and infrastructure rich environments. Contained in our goal of de-

scribing our architecture, we make an argument to show how SaltStack can be used

as an autonomic element and why using an open source enterprise tool creates a re-

alistic architecture that can increase the rate of feedback and adoption of autonomic

research.

This paper details some design philosophies retrieved from the Autonomic Com-

puting literature, information security engineers, and reference architectures. Then

we detail related works spanning the technological implementations considered in

the proposed design which is followed by the specific technologies. After providing

this overview, we detail our reference architecture and give a high-level overview of

what specific implementation details we believe can be accomplished with the specific

components referenced.

1.1.1 Design Philosophies

In this section, we explore a few important design philosophies. Our intent when

conducting this research, was to design a reference architecture that can enable a

large collective of researchers to work in a similarly complex system. We hope that

the architecture will be expanded, edited and fully created in future work. While

considering the environment’s structure, we focused on reducing the need to build
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custom tooling for a simulated environment by suggesting open source tools and

tested technologies.

1.1.1.1 D.I.E

D.I.E is a design paradigm and resiliency model, that suggests systems should be

distributed, ephemeral, and immutable. Our first encounter with this philosophy

came from a presentation [6] by Sounil Yu in which he suggests design considerations

for the next era of computer security. Yu highlights key problems, solutions, and

architectural focuses to guide design decision for more robust and resilient systems.

The struggle within the core challenges in IT environments have left some IT practi-

tioners and security engineers at odds due to their different goals. As solutions and

security teams matured, advancements in information gathering services, automation

tools and pipelines have brought security and IT teams closer than before.

The blend of approaches, driven by modern advancements and research, are leading

to shared design goals in IT and security disciplines which parallel inherit properties

of Autonomic Computing. Autonomic systems are secure by design, resilient, and

scalable. These properties align with the end goals of the D.I.E philosophy. We

believe that if we can propose a distributed, ephemeral and immutable autonomic

architecture that can work within the confines of the autonomic definition, we can

negate some future challenges by solving the implementation obstacles required for

an architecture to exhibit this philosophy.

1.1.1.2 Unified Autonomic Layer

When implementing an autonomic computing system, we believe that we need to

create a plane of unified operating. Meaning, a layer where autonomic elements and

orchestration elements operating within the same level of abstraction. This idea is

similar to how operating system kernels work by abstracting low-level hardware details

away from system developers, operators and users to create allow for feature extending
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when needed. In doing so, collectively we can increase the amount of applicable

testing in a wider range of live environments and the adoption of advancements.

With one level of unified communication for autonomic elements, system logic, and

human interaction, we believe that researchers can focus on building, adapting, and

expanding relevant work.

1.1.1.3 State Policies

Policy has two working definitions in autonomic literature. As presented in [7],

policies can be in the form of a configuration used in rule-based engines or it can be

a composition of a set of rules that determine the behavior of the system. From this

paper, we focus on a definition of policies that is a synthesis of these two ideas.

Policy creation and implementation are arguably two of the most important aspects

of securing any computer system. When drafting methods for generating policy to

store in autonomic registries; we considered generating policy based on initial element

requirements, dynamic policy state generate, or static policy generation. This is

supported in literature, and requires advancements in hot swapping, machine learning,

case-based reasoning, and data clustering techniques as they relate to Autonomic

Computing. Drawing inspiration from the findings of [8], we wanted to understand

how to suggest an interactive interface that bridges the intuition of humans and

processing power of machines and algorithms. As we approached policy, we divided

it into three layers where generation can be enforced in our environment: include

network policies, custom software policies, and infrastructure policies. These policies

do not take way from or add to active, goal, or utility function policies defined in [9].

We can enforce policy to effect lower networking layers when generated to suggest

and enforce autonomic element or resource communication in an autonomic comput-

ing environment. This would require a registry to account for network connections

and elements as applied to networked autonomic elements. From here, the abstract

policies of [9] (action, goal, utility) can be applied. Following this point, we assume
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the autonomic environment contains a continuous integration and continue delivery

(CI/CD) pipeline that can extract deployment resource requirements from template

files. Using best practices and a CI/CD pipelines, smart swaps can be built into an

interactive policy generator to enable a greater efficiency of software resource admin-

istration at the point of deployment. Assuming git is used as a registry, we can ensure

that the registry is up to date at the moment software is committed and testing and

resource extraction is complete in CI/CD pipelines.

We hypothesize by using elements present in continuous deployment pipelines, en-

vironments can take advantage of containerized services to extract pertinent informa-

tion from configuration files. Traditional infrastructure elements like active directory,

mail, or web host elements present a balance of use-case and security focus and deserve

further discussion.

1.1.1.4 Response Loops and Analysis Criteria

Static policies are seen to be effective in the initial configuration steps of system

and services but they lack the ability to change behavior beyond the originally de-

fined scope. Thus, dynamically policy generation is essential for self-optimizations,

self-healing, and self-configuration. Dynamic policy generation depends heavily on ar-

tificial intelligence, robust policy libraries, and the ability to process and understand

system behaviors. The latter is arguably the most crucial, as building a behavioral

model can not only provide guidance for optimization directions, but can lead to

more secure policies that converge to an optimal state that supports defined software

actions.

In order to build behavior models, one must understand how models have been

typically generated by human operators. At this point, we find recommendations for

suggestive reactive loops like observe, orient, decide, act (OODA), monitor, analyze,

plan, execute (MAPE), and FOCALE foundation, observe, compare, act, learn rEason

(FOCALE). These reactive loops each share a core philosophy. An intelligent system
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or structure needs a foundation to build upon or must create their own understanding

to expand when influenced by environmental factors. They must then detect reactions

based on policy, self-preservation algorithms, or efficient decision constructing logic.

These feedback loops are utilizing when building software and compiling granular log

and threat data, but we believe enabling systems to emulate these feedback processing

loops can lead to more effective policy guidance.

1.1.2 Network Design

When creating a complete autonomic computing reference architecture, we found

that we must understand the configuration and implementation of software providing

resources just as much as network resources. We have found a lack of prototypes in

literature that focus on including network, virtualized, and physical resource manag-

ing autonomic managing elements. Due to the nature of this problem, we decided

to focus on proposing an architecture that includes the ability to impact both. This

task comes with an inherit challenge, proposing a system that is usable by a greater

breadth of researchers by utilizing technologies that work without disrupting test-

ing. When drafting our architecture, we settled upon suggesting Software Defined

Networking solutions via the implementation of OpenVSwitch (OVS).

1.1.2.1 Software Defined Networking

Software defined networking (SDN) is a relatively new, networking paradigm in

which an SDN controller is utilized by centralizing route management of a group of

decentralized switches. This concept is similar to how a collection of routers com-

municate amongst themselves to send route updates. By centralizing route polling

and issuing, SDN implementation reduce network congestion of route determination

from a N*N complex route determination algorithm to a N complex algorithm. SDN

works as a framework that abstracts networks, to control them programmatically.

This reduces the amount of interactions between network components and managing
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software. In common implementations of SDN networks, controllers utilize the con-

trol plane to update network flows to OpenFlow enabled switches in a southbound

manner. Utilizing the high programmability of SDN controllers, we have found in lit-

erature that we can enforce access control policies, simulate one to many connections

[10], dynamically update firewall rules, and implement fault tolerant design [11]. We

perceive that when enabling autonomic elements to interact with network resources,

we can understand how autonomic elements work when interacting in a complete sys-

tem. It also enables us to understand how system resources are consumed or allocated

in a dense environment.

Some challenges of using SDN include attempting to dynamically update network

configuration depend on algorithmic considerations. Drawing from the guidance of

Abstractions for Network Updates [2], we find that introducing consistent and well-

defined behaviors when transitioning between network configurations or states is re-

quired. In kinetic, a system built on top of the NOX Controller, a group of researchers

detail an algorithmic implementation that was created to handle certain cases for up-

dating flows in real time while taking into consideration the packets in transit. This

aligns with the goals of a complete autonomic element.

1.1.3 Virtualization

Virtual machines and containers are important technologies that allow us to simu-

late a large and diverse environment with minimal hardware. A container is a modern

software abstraction that simply isolates a process from the rest of the system. Vir-

tual machine takes this abstraction a step further and virtualizes all aspects of an

operating system for use at the cost of utilizing hosts resources. Virtual machines and

containers templates enables us to create an ephemeral environment that allows ele-

ments to rapidly deploy, scale and manage packaged software and user environments

in a highly effective way. In our architecture, we suggest this technology to create an

environment that can scale as more hardware is introduced to a virtualized cluster.
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1.1.3.1 Linux Containers

In our architecture, we reference the container system, Linux containers (LXD).

LXD is a container managing system that is designed around a privileged daemon

process that provides a REST API for management. LXD’s implementation abstracts

many low-level details through the use of YAML configuration files and container tem-

plates to enable fast deployment and resource allocation in any environment. This

feature is similar to docker and other containerized technologies. Containers are an

important element of our architecture. As stated in the prior ‘State Policies’ section,

we assume that the DevOps philosophy of rapidly encapsulating and deploying soft-

ware projects into cloud and on-premise environments is implemented. We perceive

that containers can enable IT practitioners to automate the creation of models from

information from deployment pipelines. This strategy will allow systems to build

an understanding of on initial behavior and to distribute accumulated knowledge to

system agents assuming an effective implementation of learning models is deployed.

1.1.4 Orchestration

Orchestration facilitates rapid prototyping, deployment, and updating of infras-

tructure design and architecture. Orchestration centralizes system configuration and

can easily can searched for unwanted system changes. Burgess’s cfengine [1] is very

similar to modern orchestration technologies such that abstract definitions and con-

figurations are applied to a diverse lineup of computing systems. Orchestration can

also be used to enforce policy, reduce misconfiguration, and simplify management all

while reducing the man power required to setup and configure a large collection of

machines. The deployment of orchestration technologies enables a higher efficiency

of deployment to cloud or on-premise environments and will enable a new method-

ology of dynamic load balancing in autonomic systems unable to find resources in

the on-premises environment. Dynamic scaling and re-scaling is an essential idea en-
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capsulated in self-optimizing systems where autonomic elements need the ability to

know when to scale and when to reduce resources used on the environment by the

means of a resource broker. Self-healing and self-configuring systems are dependent on

well-defined states and the implementation of extensible orchestration technologies.



CHAPTER 2: RELATED WORK

When considering a design strategy, we found it important to explore the relevant

work around autonomic computing prototypes to understand approaches of other

researchers. In this section, we mention some of the many novel approaches and

frameworks for implementing autonomic environments and what design strategies the

researchers focused on highlighting. Some of the methodologies and implementations

below influenced our architecture direction due to their importance whereas others

are referenced due to their ingenuity. Understanding that the nature of autonomic

frameworks and architectures span a diverse breadth of implementations as mentioned

in [12]. Our architecture we focuses on biologically inspired, agent computing and

policy enforcement methodologies.

2.1 Autonomic Research

Autonomic system research spans a multitude of disciplines, approaches and im-

plementations. We do not in any way intend to establish a complete synopsis of

novel research contained in the literature. Below, detail approaches of related work

to highlight strategies for enforcing autonomic environments.

2.1.1 Autonomic Computing Architecture

Work done in this paper [9] outlines architectural requirements, components, and

system structure of an autonomic computing environment. It is important to under-

stand the goals and expected behavior as we draft or prototype reference architec-

ture. Reasons that lead us to suggest a unification of autonomic operating level and

technologies stem from the expected autonomic behavior: an element must be self-

managing, capable of establishing and maintaining relationships, and able to manage
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its behavior and relationships as defined by system policy [9]. Policies levels are later

defined in this work and have been previously referenced.

2.1.1.1 Research Challenges of Autonomic Computing

Our research group came upon autonomic computing when exploring how realistic

is it to implement reactive environments. Research challenges of Autonomic Com-

puting [4] provides a brief history and high-level context for approach autonomic

research. Our feature is relevant to a component contained in the autonomic ele-

ments area of research that suggests generic autonomic element architectures, tools

and prototypes are formed to enable further research. [12] Kephart then describes

attributes of autonomic elements, methods to be displayed in implementations and

prospective challenges that can be focused on.

2.1.2 Agent Based Design

Multi-agent systems are a popular design consideration in Autonomic Computing

implementations. Multi-agent systems typically utilize a centralized, policy possess-

ing entity of varying definitions that provide agents with execution guidance? In a

well-designed system, the multi-agent approach enables decentralized and distributed

management in systems with greater complexity and fault potential. In doing so,

multi-agent systems create the need for attestation of agents but allow for a highly

efficient method of distributing environment information. We find that the multi-

agent design in literature utilizes agents as autonomic elements, which reference a

centralized registry to understate future courses of execution and provision.

2.1.2.1 Multi-Agent Systems Approach to Autonomic Computing

Unity [13] is a de-centralized architecture built by IBM that uses autonomic el-

ements to create a complete multi-agent system to enable autonomic features in a

software rich environment. The design focuses on abstracting compute resources into

autonomic elements to enable self-optimizations and self-healing properties through
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the use of its three main components: a registry, policy repository, and sentinel el-

ements. Unity uses utility functions to simplify how machines in the environment

make decisions to manage themselves. Management is based on abstracted resource

need provided via utility functions. Some of the important properties we find in this

system include how Unity utilizes a registry, enables self-healing, and utility functions

for self-optimizing.

The autonomic elements in the Unity, query a registry that provides information

pertaining to how the system should handle it’s initializing, what services it can com-

municate with, and what policies it should adhere to. This design feature abstracts

the configuration of dependencies away from single elements to force elements to be

disjoint when interaction is not required. The registry holds information relevant to

each node in the cluster the registry is housed in. Unity then uses the cluster as a

means for self-healing in a novel way. Unity is designed by the methodology that

two elements of the same cluster should not be on the same machine which enables

a cluster to recreate an element if it is not present in the whole environment. This

self-healing functionality spans to all autonomic elements including the registry.

Unity also takes a unique approach towards policy generation and management.

Unity implements a policy environment ‘Policyscape’ that utilizes manually con-

structed policies and aggregated information to create an approximate configuration

for new policies.

2.1.2.2 A Policy Language Prototype Implementation Library

An implementation towards a unified policy language [7] is needed to condense

policy research. Hypothesizing how to implement self-managing systems has led to

the popular notion of policy-based management. Policy based management facilitates

an ease of deployment for an entire base of applications depending on how policies are

implemented. Static policies leave little room for the system to be dynamic without

human interaction. This comes from the understanding that systems are complex
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as they interact in varying degrees of freedom and require different level of policy

implementation. As reference in [9], [7] defines policies in different levels to address

the dimensions policies need to be enforced. This includes fine grain policy control,

medium-grained optimizations, and coarse-grained behavioral shifts.

2.1.2.3 Policy Management for Autonomic Computing

The Policy-Based Management of Networked Computing (PMAC) [14] systems is

defined and outlined to provide a model for policy managers to interacted with a

managed resource in an autonomic system. Drawing inspiration from the Common

Information Model (CIM), PMAC builds upon the work of the Distributed Man-

agement Task Force (DMTF) to create a platform specifically for IBM’s autonomic

computing architecture by breaking the system into two parts. When together, the

autonomic manger and managed resource create a system that can monitor and ana-

lyze computer resources to execute planned course of actions. Integrating this system

into our architecture increase the prototypes use of standard technologies.

2.1.2.4 Architectures and Techniques in Autonomic Computing

In a survey conducted on the state of frameworks, architectures and techniques in

autonomic computing [12], we find that there is are a plethora of approaches when

attempting to create solutions to address autonomic system design requirements.

To enable self-x features, designs utilize hot-swapping, machine learning, case-based

reasoning, data clustering, hybrid survivability models, probing techniques, control

theory and attestation techniques. This paper [12] presents interesting correlations

between effective methods and self-x abilities. For example, hot swapping is an im-

portant technique that injects monitoring abilities into live code and is effective in

enforcing self-configuration in many frameworks. The break down found of techniques

and self-x abilities is important and has influenced proposed future work.
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2.1.2.5 A Symbiotic approach to Autonomic Computing

Kephart highlights an important notion in this paper [8]. After the introduction

and bid for utilizing smart swaps in systems that enable close human and computer

interactions, Kephart concludes that researchers aren’t as accurate as they assume

when generating utility-functions for autonomic environments. This idea has in-

fluenced our approach directly through motivations to suggests work on to extract

autonomic features in CI/CD pipelines and how we approach our recommendations

for constructing autonomic prototypes. We envision it will take a prototype that is

able to evolve to enable researchers to collective realize the goal of solving the grand

challenge of self-managing systems.

2.1.3 Testbed

Testbeds are important when considering autonomic prototypes. We believe that

merging the utility of testbeds and prototypes can enable researchers to leverage work

in literature in more effective ways. We drew inspiration from design motivations of

autonomic testbeds due to the specific need and use case some testbeds were created

to address.

2.1.3.1 Towards an Autonomic Computing Testbed

Components and plug-ins drive the design of Automat [15]. Automat focuses on

allowing users to install, manage and launch software experiments in a virtual environ-

ment by enabling pluggable controllers into a testbed system. The testbed then lever-

ages aggregated system diagnostics to provide pertinent information in an interactive

display. Automat strives to be an open and easy to test environment that leverages

VM technology to provide an ability to test autonomic applications. Observing this,

we want to understand how we could integrate enterprise grade components into an

architecture that could also drive rapid feature testing. Virtualization advancements

have now enabled a light-weight architecture that doesn’t have to depend only on a
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collection of virtual machines for live migration, configuration, and snap shot features.

Utilizing container systems, we suggest a way to create a more robust environments

that enables the testing of autonomic elements without increasing the cost of research

hardware.

2.1.4 SDN Research

In this section we observe autonomic like features implemented in SDN research.

The research contains advancements in automated changes in SDN as well as func-

tionality that will further support robust autonomic elements in feature rich environ-

ments.

2.1.4.1 Adaptive Flow monitoring

Adaptive flow monitoring, as covered in [16], provides an overview of current

standards in SDN controller implementations. Describes alternatives for constantly

polling SDN enabled switches for event data by implement a new procedure and

method format which is implemented in OpenFlow 1.4. This research is important

for when SDN technologies are enabled in an event driven environment. In larger

scale environments, reducing the overhead of route retrieval can lead to more efficient

and robust network implementations.

2.1.4.2 Customizable Autonomic Network Management

Autonomic network management and Software defined networks align with similar

methodologies and goals. This paper [17] compares proposed frameworks such as au-

tonomic networking integrated model and approach (ANIMA), autonomous network

management (ANM), and Autonomic failure and recovery (AFRO) and then later in-

troduces autonomic OpenFlow (AutoFlow). AutoFlow implemented in the GEANT

testbed [17] and is proposed to address problems in future networks with unforeseen

unmanageable levels of complexity. Like some autonomic systems covered previously,

the GEANT testbed enforces a policy-enforcement layer in AutoFlow that allows for
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middle-box-specific traffic steering in a large network.

2.1.4.3 Virtual function placement and traffic steering

In literature, we see how network function virtualization (NFV) and SDN enabled

environments can create a highly flexible network environment. Rich networking envi-

ronments typically include interactions of SDN controllers with firewalls, proxies, and

cache and policy engines. In efforts to increase the efficiency of route determination

and assignment, [18] has reduced the challenges of routing and middle box network

function interactions into a mixed integer linear programming problem. This greatly

increases the ability to run SDN controllers which are interacting heavily with net-

work resources in more light ware software abstractions like containers. We use this

paper to explore how to increase the efficiency of use different SDN controllers in a

dense virtual environment.

2.1.4.4 Cognitive Autonomic Fault Management

Control loops are important to autonomic and reactive environment experiments.

The paper [11] propose a method for implementing control loop algorithms in an

SDN controller. The hopes of doing so will enable a controller to respond to one or

many faults in network routing immediately. This research was conducted due to

most controls loops inability to fix failures that us outside the defined scope of failure

cases. By implementing the fast flow setup (FFS) algorithm in controller code, the

researchers are increase the time in which controller logic can redirect traffic when

routes decrease in integrity or fail.



CHAPTER 3: APPROACH

We believe a robust reference architecture is a needed platform that can expand

integrate past and current developments to create a uniform environment for testing

autonomic decisions making, policy generation and execution, and machine learning

model accuracy in deployed software projects and environments. Our goal is to influ-

ence the creation of a suite of dynamic components that drive testing of a complete

autonomic system which is agnostic to the field of autonomic system research.

Our design is motivated by understanding how services and systems are introduced

to systems and interact over time. One of the most popular paradigms for deploy-

ing software and services requires configuring a pipeline to increase the speed and

efficiency of deploying software. DevOps effectiveness has motivated IT and secu-

rity teams to collaborate in creating DevSecOps or SecOps systems that can deploy

security features and functionality just as efficiently as software updates. Without

deterring from an already effective method of deploying software, we theorize that

an effective autonomic system can work effectively with software developers, service

managers or security teams to define a baseline policy as the software is being tested,

packaged, containerized and deployed by integrating autonomic policy generation into

these pipelines. By suggesting the inclusion of an agent into this system in our refer-

ence architecture, we hope that a prototype will help researchers to understand how

specific policy evolves from deployment to a simulated life-cycle.

SaltStack provides configuration management, orchestration and an agent or agent-

less ability to administrator machines. We believe that SaltStack can serve as the

middle-ware for each autonomic computing component while being an autonomic

element itself with the ability to enforce autonomic feedback loops and managed
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environment resources. SaltStack is industry tested and proven to be effective at state-

based reactions. The system is highly extensible via its plug-in oriented programming

(POP) system AND recently introduced a machine learning pipeline, umbra, that uses

the POP system to create an effective way to train and use machine learning models.

In our experiment described below, we detail how we iteratively created an auto-

mated processes to launch the test environment. In our third version of our lab, we

utilized terraform with the LXD formula to launch the environment which is described

in the image in the preceding section. We detail the creation time of the environment

and the amount of time it took to migrate a container from one network zone to the

other using SaltStack’s LXD formula.



CHAPTER 4: ARCHITECTURAL COMPONENTS

In this section we provide a baseline for our reference architecture and our progress

towards this prototype. The technologies highlighted below can be integrated and

extended into the OpenStack environment by implementing plug-ins or supported

features. The structure of our components in our reference architecture are influ-

enced by the Survivable Autonomic Recovery model (SARA) [19]. This is due to our

motivations to enable security into the architecture by default.

4.1 Components

In order to visualize or proposed architecture, we have provided a high level via of

the rudimentary system level architecture.

In this diagram below, we show four zones which are networked via an Open-

VSwitch. This enables us to allocate each zone with its own unique network bridge.

Each SDN enabled bridge features its own filtering and policy requirements. Each

zone is containers an LXD cluster by nested a remote LXD host inside of a top

level cluster. This enables us to test more fine-grained SDN routing algorithms. We

found that by using LXD, we do not lose a feature parity with virtual environments

as described in Automat [15]. Network configurations, LXD clusters and machine

provisioning can be dynamically created using a automation programs to initializa-

tion configuration. We found this to be incredibly helpful for changing environments

rapidly without losing progress.

Outside of the four zoned LXD cluster, we have a master container that hosts the

salt master and SDN controller and a snort container that houses an open source

IDS. Utilizing a default configuration template of RYU, we can forward network
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Figure 4.1: High level reference architecture diagram

packets through snort in a simple and manner at the moment of configuration. Within

the environment, we provision five initial elements: a Gitlab self-hosted instance, a

database, FreeIPA (an authentication server), a mail server, and a website. These

services will serve to provide an easy baseline environment for testing autonomic

elements. In this section, we will detail strategies for integrating these components

and how they are relevant to creating an autonomic architecture.

4.2 SaltStack

SaltStack was originally designed to be a remote execution tool designed around be-

ing able to execute commands effectively and efficiently on a wide breadth of servers.

By integrating ZeroMQ, Salt adapts well to increased scale. ZeroMQ is a synchronous

messaging library that reliably uses multicast protocols to reduce network traffic be-

tween a group of hosts that typically receive similar messages. Salt also supports

its own implementation of Reliable Asynchronous Event transport (RAET) to enable

application layer level queuing and socket layer encryption as described in its docu-

mentation. In attempts to find a tool that support attestation of elements natively
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and could manage itself in a distributed way, we found SaltStack to be the go-to tool

of choice. SaltStack also integrates with environmental utility effectively

4.3 Software Defined Networking

We used the RYU SDN controller in our baseline environment due to its ability

to rapidly prototype SDN experiments. For our controller code, we attempted to

implement a fault tolerant routing algorithm implemented in[11] to see how it would

perform in our environment. We also tested utilizing a REST implementation of RYU

to dynamic enforce firewall rules. To extend this feat, we realized that we needed to

development a more generic suite of event triggers to align with the three abstract

layers of policies defined in [9].



CHAPTER 5: BASELINE PROTOTYPE

When first embarking on creating a prototype based on our reference architecture,

we experimented with creating it from scratch by automating the process in bash and

python but we ultimately have decided to build around terraform. With terraform,

we can provide the ability to quickly create and destroy the prototype in a Linux

environments. In this section, we detail how long it takes to construct the baseline

environments, the features each version contains, and the amount of time it took to

execute a live migration in the environment.

5.1 Foundational Design

When embarking on our design, we initial set out to rapidly create an environment

where SDN capabilities were built in without the need for further configuration. This

was to aid any users who might not have an understanding of how to configure an

environment to test customer controller code. LXD containers allow us to rapidly

download, boot strap, and manage virtual environments. The testing that we include

below assumes that LXD images have already been downloaded onto the host machine

to provide a more uniform and realistic view of how long it takes to rapid create and

destroy the environment. We didn’t include the time it took to download the images,

because the time it takes to download a 300MB image file can vary greatly depending

on Internet speed.

In our experience of setting up the environment, we did not work in a static en-

vironment and baked in our changes into the automated setup to ensure that tested

features, which almost always broke the environment, did not deter our advance-

ment towards progressing the prototype design. This prototype does not have any
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autonomic features completely implemented.

5.1.1 Version 1

In the first iteration of our prototype, we utilize a bash script to initialize our

environment. At this stage, our environment did not reach full maturity because the

rate of complexity increased exponentially as we added more design considerations

to our scripted environments. In this environment, we created a method for deploy

5*N SDN controlled LXD containers that span four zones and configured the hosts to

be configured via ansible. [N specifies the amount of parallel environments created].

We must also note that the bash script crashes more often than we would have like

and we have had to stop creation, delete the elements and restart the script to get

an accurate run time.

5.1.2 Version 2

The second iteration of our prototype utilized a custom python suite to configure

an environment from elements defined in a yaml file. This test bench enabled our

prototype to have less hacked together methods of setting static IP addresses and

container zones. In this iteration, we began to focus on implementing the ansible

tower library but decided to look at other tooling when we realized the ansible’s

python libraries were in heavy development and could change without notice. Unlike

the first version, we parallelized machine creation and network configuration in this

setup.

5.1.3 Version 3

In our latest iteration, we utilize terraform to configure and bootstrap our environ-

ment. This environment is significantly more mature than the previous iterations as

it creates four LXD zones and containers that are clusters that contain the prototypes

LXD virtual environments. This environment also features SaltStack. We later detail

how long it takes to migrate LXD containers when a fine-grained reactor is triggered
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Figure 5.1: Time to create environment

via the SaltStack event bus.

5.1.4 Results

In the figure below, we capture the differences in the time to create our current

baseline prototype. The data gathered was ran on a system with the following specs:

Ryzen 3700X, 32 GB’s of RAM, and a full SSD raid setup. We understand that this

may influence our lab creation time and we felt that it was important to include prior

to including our data. Our graphs are in the units of minutes where the seconds are

out of 100.
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5.2 Areas of Development

In regards to policy generation, there is work that needs to be completed to in-

tegrate SaltStack states and policy definitions defined in PMAC to work in Salt’s

render system. It is unknown if there is a way to utilize XML directly in the render-

ing system. We also need to explore dynamically generation polices in XML or any

configuration syntax format. This will drive the testing effective of policies and will

hopefully lead to new areas of research.

Autonomic elements in this environment cannot be truly classified as autonomic

elements without adequate testing. We hypothesize that utilizing a network based

approach of the american fuzzy lop (AFL), we can provide a substantial baseline for

creating testing suites to drive autonomic behavior in a effective way. Incorporating

the fuzzing methodology of testing can aid in finding gaps in assumptions to help

enrich research efforts.

An agent also needs to be developed for the integration into a CI/CD pipeline to

test how effective and efficient generating policy in an automated by guided fashion

can be. After adequately training a model to understand how permissions correlate

to container definitions, we think that dynamically generating policies can increase

the integrity of autonomic environments.



CHAPTER 6: CONCLUSION

We provided an overview of reference architecture for an autonomic system pro-

totype and details on the progress we have currently made so far towards this goal.

Our system attempts to be a complete autonomic prototype and we reference the

implementation of different technologies in an environment without a large resource

constraint. In our results, we find that we can provide a relatively short time to

bootstrap the baseline environment. We believe this trend will continue as we design

a more complete prototype. We hope to enable autonomic network and virtualized

resource testing by outlining how LXD containers and OVS can be combined with

Salt to create an environment that is easy to test. The system attempts to reduce

the amount of custom solutions by suggesting SaltStack as the unified operating level

of autonomic elements. This proposal is to inspire the adoption of unified systems

design, where research can be quickly integrated and tested in a shared environment.



CHAPTER 7: FUTURE WORK

In the future, we intend to continue extending and building upon the foundation

that we created into a fully functioning prototype. Currently we have been utilizing

terraform to build the entire environment so that other researchers can deploy their

own local environment. Some examples of extending this work includes integrating

SaltStack’s Umbra, a machine learning pipeline, into our prototype to explore more

intelligence signal’s and reactions. This will also enable move robust research on

smart-swaps and active learning contained in current literature. We also intend to

explore provenance as it relates to SDN configurations to see how we can integrate

granular network information into the umbra machine learning pipeline.

Throughout the development of this prototype, we realized that there was signif-

icant work to be done in the field of enriching test suites for autonomic computing

environments. We hope to extend and release our testing suite for the use in future

prototype and enforcing environments. Our initial focus will be on creating agents

that are able to fuzz systems to try to find logic errors in self-optimization algorithms

and reaction loops.
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