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ABSTRACT 
 
 

ANNA STUCK.  Development of a Forecasting Technique for the Charlotte Urban Heat Island 
Intensity (Under the direction of DR. MATTHEW EASTIN) 

 
 

 The urban heat island (UHI) of Charlotte (North Carolina) - a rapidly expanding subtropical 

city - was studied through statistical analysis and short-term predictive modeling. Our study used 

hourly surface observations taken from 12 weather stations over a 5-year period. One station was 

identified as the least urban and used as the rural reference. Two stations were deemed the most 

urban and were used for UHI analysis and development of a UHI predictive.  Observations from 

the two urban stations were combined to account for dissimilar parameters observed by each 

station. 

Previous work has shown that the daily UHI maximum (4-10 K) often occurs during nocturnal 

hours when optimal weather conditions (i.e., clear skies, light winds, low humidity, and strong 

static stability) are present. This study examines whether such nocturnal UHI maximum can be 

predicted from daytime weather parameters observed 6-9 hours prior. Using daytime weather 

parameters, two statistical model types (generalized linear models and bootstrap random forests) 

were evaluated for predicting the nocturnal UHI magnitude.  The bootstrap random forest models 

were found to out-perform the generalized linear models.  Stratification of the data by season and 

day of the week further improved random forest models. 

 

 

 

 

 



iv 
 

DEDICATION 
 
 

This thesis is dedicated to my mom, Ann Stuck. While you weren’t able to see me complete my 

research, you never stopped motivating me and inspiring me along the way.  



v 
 

ACKNOWLEDGEMENTS 
 
 

 I would like to thank Dr. Matthew Eastin for guiding me through my research and helping 

me throughout my time here at UNC Charlotte. This project could not have been done without Dr. 

Eastin’s patience and motivation. I would also like to give a special thanks to my committee, Dr. 

Casey Davenport and Mr. Terry Shirley for being incredibly flexible during these unprecedented 

times when scheduling around our crazy schedules and providing valuable feedback at my 

proposal defense. To my friends in the meteorology office, thank you from the bottom of my heart 

for being my support system, my best friends, and for making me a better meteorologist and 

person. To my mom, thank you for everything you did for me and for motivating me every day 

even when you are not here. Finally, I would like to thank my family and friends for always 

supporting me and believing in me.   



vi 
 

TABLE OF CONTENTS 

 
LIST OF TABLES ...................................................................................................................... vii 
 
LIST OF FIGURES .................................................................................................................. viii 
 
CHAPTER I: INTRODUCTION AND PROBLEM STATEMENT .................................................. 1 
 
CHAPTER II: BACKGROUND ................................................................................................... 3 
 
CHAPTER III: RESEARCH QUESTIONS AND GOALS ............................................................. 8 
 
CHAPTER IV: DATA AND METHODS ....................................................................................... 9 
 
CHAPTER V: RESULTS ...........................................................................................................14 
 
CHAPTER VI: CONCLUSIONS AND FUTURE WORK .............................................................20 
 
REFERENCES .........................................................................................................................38 
 

 

  



vii 
 

LIST OF TABLES 
 
 

TABLE 1: Surface weather station metadata, including latitude, longitude, elevation, local 
topographic relief, land use/cover characteristics, mean daily temperature (TDAY), mean daily 
temperature range (ΔTDAY), sky view factor (SVF), and the local climate zone (LCZ). This table is 
from Eastin et al. (2018). 

TABLE 2: The correlation coefficients between each 15 LST meteorological parameters and the 
21-23 average UHI intensity. 

TABLE 3: Results of initial Bootstrap Random Forest model  

TABLE 4: Results of bootstrap random forest model using the GRM optimal predictors. 

TABLE 5: Results of bootstrap random forest model using the 5 predictors highest correlated to 
the mean UHI Intensity.  

TABLE 6: Statistical Results of all model run performance. 

TABLE 7: Cross Correlation analysis of wind speed with other predictors.  

 

  



viii 
 

LIST OF FIGURES 
 
 
FIGURE 1: Surface weather station locations superimposed on the 2011 USGS LULC product 
across the CMR. The blue circle denotes the rural reference site (WAD), the yellow circles denote 
the most urbanized sites (GAR and CLT) discussed in this study, and the plus sign denotes the 
central business district of the urban core. See Table 1 for station metadata and local LULC 
characteristics. 

FIGURE 2: Wind rose of hourly observations at CLT for all good dates between June 2010 and 
May 2015. 

FIGURE 3: Distribution of the Adjusted Temperature between June 2010 and May 2015. 

FIGURE 4: Distribution of the Precipitation between June 2010 and May 2015. 

FIGURE 5: Distribution of the Relative Humidity between June 2010 and May 2015. 

FIGURE 6: Distribution of the Vapor Pressure between June 2010 and May 2015. 

FIGURE 7: Distribution of the Station Pressure between June 2010 and May 2015. 

FIGURE 8: Distribution of the Wind Speed between June 2010 and May 2015. 

FIGURE 9: Distribution of the Wind Direction between June 2010 and May 2015. 

FIGURE 10: Distribution of the Solar Radiation between June 2010 and May 2015. 

FIGURE 11: Distribution of the Sky Cover between June 2010 and May 2015. 

FIGURE 12: Distribution of the Cloud Height between June 2010 and May 2015. 

FIGURE 13: Distribution of the Weather Factor between June 2010 and May 2015. 

FIGURE 14: Distribution of the Turner Stability Index between June 2010 and May 2015. 

FIGURE 15: Distribution of the Urban Heat Island Intensity between June 2010 and May 2015. 

FIGURE 16: Scatterplots of observed (actual) UHI intensity vs the predicted UHI intensity from 
the initial BRF model fit for the training, validation, and testing subsets. 

FIGURE 17: Actual UHI plotted with Predicted UHI for All Data. 

FIGURE 18: Actual UHI plotted with Predicted UHI for spring. 

FIGURE 19: Actual UHI plotted with Predicted UHI for summer. 

FIGURE 20: Actual UHI plotted with Predicted UHI for fall. 

FIGURE 21: Actual UHI plotted with Predicted UHI for winter. 

FIGURE 22: Actual UHI plotted with Predicted UHI for weekend. 



ix 
 

FIGURE 23: Actual UHI plotted with Predicted UHI for weekday. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER I: INTRODUCTION AND PROBLEM STATEMENT 
 
 

The global population is becoming increasingly urbanized; as of 2007 more than 50% of 

the population lives within urban areas, and by 2030 over 5 billion people will live within an urban 

area (Mills 2007). As the world becomes more urbanized, contributions to local climate change 

by Urban Heat Islands (UHIs) are expected to increase. While the UHI is one of the most widely 

studied urban climate phenomena, our understanding of the full range of forcing factors 

responsible for UHIs remains incomplete. For example, while it is well recognized that a UHI is 

primarily a nocturnal phenomenon that arises from differential heating/cooling rates between 

urban regions containing impervious built surfaces (buildings, roads, etc.) and rural regions 

containing natural vegetated surfaces (forest, grass, crops, etc.), our ability to predict UHI intensity 

remains a challenge. On any given night, UHIs result from a complex balance among multiple 

local factors that control the nocturnal cooling rates, including meteorological conditions, urban 

form, and human activity. Given that such factors are also influenced by climate, season, and 

geography, the governing UHI controls, and their relative importance, are often unique to each 

city (Grimmond 2006). Previous studies have found a diverse set of influencing factors on the UHI 

in relation to meteorological controls, atmospheric controls, and controls due to urban form. 

Significant meteorological controls such as wind speed and cloud cover have been found to be 

the most significant controlling factors in previous studies (Morris et al., 2001; Runnalls & Oke, 

2000). Significant atmospheric controls found in previous studies include humidity (Hoffmann et 

al. 2012), stability (Holmer et al. 2013), and solar radiation (Steeneveld et al. 2011).  

In this study, we developed a series of statistical models that provide short-term 

predictions of the nocturnal UHI intensity for Charlotte, North Carolina.  The goal was to use 

afternoon observations to predict that evening’s UHI intensity.  Using previously acquired and 

quality-controlled meteorological data from standard surface weather stations, a series of 

statistical evaluations involving lagged cross-correlation analysis between various potential 
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afternoon parameters and the corresponding nocturnal UHI intensity were used to identify a 

reduced set of more optimal afternoon predictors.  Then, a variety of model types were explored, 

including generalized linear models (GLMs) and nonlinear bootstrap random forests (BRFs), 

using the reduced set of optimal predictors. 
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CHAPTER II: BACKGROUND 
 
 

Several studies have analyzed daily UHI variability based on surface weather 

observations. In an early study, Eliasson (1996) used observations from one urban and three rural 

meteorological stations near Goteborg, Sweden to develop statistical models that predict the intra-

urban air temperature differences. Hourly observations over a 3-year period were separated into 

three categories depending on cloud cover. Then, a multiple regression model was developed for 

each category using a predictor pool that included total cloud cover, cloud base, air temperature, 

absolute air humidity, wind speed, wind direction, and a seasonal factor. The optimal regression 

models showed modest success in predicting the intra-urban temperature variations with wind 

speed and cloud cover being the most valuable predictors. These results showed that low winds 

speeds and limited cloud cover favor strong nocturnal UHIs. 

 Kim and Baik (2002) studied the daily maximum UHI intensity for Seoul, South Korea. 

Using hourly data from two surface weather stations (one urban; one rural) over a 24-year period, 

the UHI was found to be more intense during the cooler seasons and weaker in the warm seasons, 

while the most intense UHI are often observed during calm, cloudless nights. The authors 

developed a neural network to predict UHI intensity using four predictors, including the maximum 

UHI from the previous day, wind speed, cloud cover, and relative humidity. Of those predictors, 

the previous day UHI was positively correlated, while the others are negatively correlated, to the 

maximum UHI. Overall, the neural network (which explained 52.4% of the total variance) 

outperformed a simple multiple linear regression model using the same four predictors (which 

explained 46.1% of the total variance). These results suggest that nonlinear data-mining 

techniques (such as neural networks, regression trees, and random forests) may provide better 

UHI predictions than linear regression models. 
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Bottyan and Unger (2003) studied the effects of urban surface factors, such as the built-

up ratio, the water surface ratio, the sky view factor, and building height on UHI intensity in 

Szeged, Hungary. Using mobile temperature observations between March 1999 and February 

2000, the UHI intensity was measured once a week over a one-year period. A clear connection 

between the spatial distribution of UHI intensity and the land use parameters was observed.  Also, 

in the cool season, a UHI intensity greater than 2 K covered about 37% of the investigated area, 

while only 2% of the area was similarly covered during the warm season. The authors constructed 

a stepwise multiple regression model for each season using the mean UHI intensity and the mean 

urban surface parameters. Overall, the sky view factor and building height proved to be the most 

important predictors. These results suggest that urban form and land cover play non-negligible 

roles in modulating UHI spatial distribution and maximum intensity. 

Schatz and Kucharik (2014) used hourly observations from 135 surface weather stations 

to document the spatiotemporal variability of UHI intensity across Madison, Wisconsin during an 

18-month period (March 2012 – October 2013). From a seasonal perspective, the primary UHI 

peak occurred during the summer with a secondary peak during winter. The winter UHI was 

modulated by differential snow cover across the area, while the summer UHI was primarily 

modulated by wind speed and cloud cover (with the most intense UHIs occurring on nights with 

weak winds and clear skies). Overall, higher rural plant biomass in the summer promoted a more 

intense UHI due to the greater differences between the urban and rural cooling rates after sunset. 

These results suggest that metropolitan areas with substantial urban tree cover (such as 

Charlotte) may experience less intense UHIs during the warm season. 

Recently, Eastin et al. (2018) used hourly observations from 12 surface weather stations 

(two urban, nine suburban, and one rural) to document the temporal variability of the UHI in 

Charlotte, North Carolina over a 5 year period (June 2010 to May 2015).  Over 70% of dates 

exhibited prominent nocturnal UHIs (greater than 1 K). The most intense UHIs occurred on winter 
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nights with light winds, clear skies, low humidity, strong low-level stability, and no precipitation or 

frontal passage. The maximum hourly UHI typically occurred one to two hours before midnight.  

This was attributed to a positive sensible heat flux from urban surfaces that was maintained for 

3-4 hours after sunset, causing urban cooling to lag rural cooling. Daily variations in nocturnal 

mean UHI intensity exhibited significant positive correlations with cloud-base height, atmospheric 

stability, NO2 concentration, and total solar radiation. Daily variations in nocturnal mean UHI 

intensity exhibited significant negative correlations with relative humidity, wind speed, and cloud 

cover. When optimal weather for UHI development was present, UHIs were more intense on 

weekdays (greater air pollution) than on weekends (less air pollution). These results further 

suggest that local weather conditions and air pollution play substantial roles in modulating UHI 

intensity.  The database used by Eastin et al. (2018) is used in this study – additional details are 

provided below. 

Historically, the UHI has been studied primarily through observations, but high-resolution 

mesoscale models have increasingly been used to study the physical factors responsible for 

intense UHI events.  However, an important hurdle that must be overcome when simulating any 

UHI event is a fair representation of urban factors known to influence UHI intensity (land use/cover 

fractions, sky view factor, building heights). Such detail requires substantial computing resources 

that have only recently become available.  As a result, a limited number of mesoscale models 

have been capable of simulating UHIs (Best 2006). 

In an early attempt, Johnson and Oke (1991) created two simple numerical models to 

simulate the surface-level UHI under ideal nocturnal conditions (weak winds and clear skies). One 

model used a full system of differential equations while the other used a “force-restore” approach 

(Johnson et al. 1991). Both models used computationally expensive parameterizations for 

building height, sky-view factor, internal building temperature, ground/soil temperature, surface 

thermal admittance, surface emissivity, and down-welling longwave radiation. Results from both 
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models were compared and tested against field data under similar ideal conditions. Overall, the 

force-restore model, also called the Surface Heat Island Model (SHIM), proved more effective at 

representing the cooling in both urban and rural surfaces when compared to field observations 

(Johnson et al. 1991). 

In a follow-up study, Oke et al. (1991) used the SHIM to study the relative importance of 

numerous factors in developing moderate and intense UHIs.  A series of sensitivity simulations 

revealed that UHIs are most impacted (in rank order) by (1) sky-view factor, (2) surface thermal 

admittance (surface type and/or materials), (3) wind speed, (4) cloud cover/height, (5) humidity, 

(6) urban pollution, and (7) anthropogenic heat release.  These results further suggest that urban 

form and local weather conditions play a large role in modulating UHI intensity on a day-to-day 

basis, but also showed a substantial need for additional simulations and more sophisticated 

numerical models. 

Lemonsu and Masson (2002) used a full-physics mesoscale numerical model to simulate 

diurnal variations in UHI intensity for Paris, France during two consecutive summer nights when 

strong anticyclonic conditions (weak winds, clear skies, low humidity, and strong low-level 

stability) prevailed.  The spatiotemporal distribution of simulated surface temperature was well 

correlated with the available hourly observations during the period of interest, suggesting that 

critical governing factors were captured by the sophisticated surface parameterizations used in 

the model.  An analysis of the surface energy budgets at several urban and rural locations 

revealed the following: (a) net radiation was slightly larger in the city due to a reduced sky-view 

that trapped the radiant energy; (b) sensible heat fluxes were much larger in the city due to limited 

vegetation cover, and they continued to be positive for a few hours after sunset; (c) latent heat 

fluxes were much larger in the rural area due to large vegetation cover; (d) storage heat fluxes 

were much larger in the city, and represented an atmospheric heat source at night. These results 
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reaffirm that urban factors play a non-negligible role in modulating UHI intensity when the local 

weather conditions are ideal for UHI formation. 

Yang et al. (2015) used a full-physics mesoscale numerical model coupled with an urban-

canopy model to examine UHI sensitivity to various aspects of urban form, including (a) building 

height and density, (b) building materials, (c) anthropogenic heat sources, and (d) land use/cover 

during ideal weather conditions (weak winds, clear skies, low humidity, and strong low-level 

stability).  Results showed that the UHI was more intense when high-density low-rise buildings 

were more common (leading to less surface shade), when exterior building materials were less 

reflective (leading to more heat storage), when urban trees and parks are less common (leading 

to larger sensible heat fluxes and less latent heat fluxes), and when anthropogenic heat is large 

(during the summer when air-conditioner use is high and during the winter when buildings are 

heated).  Since many urban areas (including Charlotte) consist of high-density low-rise buildings 

made with high heat-capacity materials and non-negligible anthropogenic heating, prominent 

UHIs should be more frequent and more intense when weather conditions are ideal for UHI 

formation. These results further reaffirm the idea that urban factors play an important secondary 

role in modulating UHI intensity. 

 Overall, the literature suggests that local weather conditions play a leading role in 

modulating the daily UHI intensity.  The most intense UHIs occurred on nights with light winds, 

clear skies, low humidity, strong low-level stability, and no precipitation or frontal passage.  If the 

weather conditions are favorable, then various measures of urban form dictate the spatiotemporal 

distribution of UHI intensity. These results suggest that predicting UHI intensity using local 

weather parameters is an important first step. 
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CHAPTER III: RESEARCH QUESTIONS AND GOALS 
 
 

This project used the Eastin et al. (2018) database to evaluate a hierarchy of statistical 

models that provide short-term predictions of nocturnal UHI intensity for Charlotte, North Carolina. 

The goal was to use afternoon observations to predict the nocturnal UHI intensity 6-12 hours later.  

A variety of model types were explored, including generalized linear models (GLMs) and bootstrap 

random forests (BRFs), using a predictor pool consisting of meteorological parameters easily 

derived from standard surface weather observations.  This thesis addresses the following 

research questions: Which afternoon meteorological parameters exhibit the greatest skill (i.e., lag 

correlation) at predicting the nocturnal UHI intensity? Which statistical models provide acceptable 

UHI predictions?  Which model provides the best UHI prediction? We are expecting the daytime 

predictors with the biggest influence on the nocturnal UHI to include cloud cover, wind speed, 

humidity, and/or atmospheric stability, consistent with previous research.  Regarding model type, 

we expected the non-linear data mining approaches will outperform the linear regression 

approaches.  
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CHAPTER IV: DATA AND METHODS 
 
 

The data used was collected by 12 automated surface weather and air-quality stations 

across the Charlotte-Mecklenburg region. Of those stations, four were ASOS stations located at 

the Charlotte Airport (CLT), Gastonia (GAS), Monroe (MON), and Rock Hill (RKH). Seven stations 

are located near county airports in Chester (CHR), Concord (CON), Lancaster (LAN), Lincolnton 

(LIN), Salisbury (SAL), Statesville (STV), and Wadesboro (WAD) with one station being operated 

by Mecklenburg County Air Quality at Garinger High School (GAR). Each station was evaluated 

based on the land use land cover (LULC) percentages and placed into a category: rural, urban, 

or suburban (see Figure 1; Table 1).  Rural sites were located greater than 40 km from the urban 

core, were surrounded by farmland and trees, and had the least amount of development. Of the 

sites classified as rural, the Wadesboro station was deemed the optimal rural site as it was located 

in an open grassy field, was far from any airport infrastructure, rarely downwind from the urban 

core, and had the smallest population. For the urban sites, both Garinger and Charlotte were the 

most developed and located less than 10 km from the urban core. While neither location was in 

the urban core, both GAR and CLT were often downwind of the urban core based on prevailing 

climatological synoptic patterns.  Figure 2 shows a wind rose detailing long-term wind patterns for 

the Charlotte urban core (Eastin 2018). During the study period, wind primarily came from the 

southwest and the northeast. This allows for both locations to be under the influence of the urban 

core. Further details about the surface stations can be found in Eastin et al. (2018). 

 Using only the GAR, CLT, and WAD stations, hourly observations of station pressure, 

temperature, relative humidity, precipitation, wind speed, wind direction, cloud cover, cloud base, 

and net solar radiation were analyzed between June 2010 and May 2015. Due to latitudinal and 

elevation differences among the stations, all hourly observations were adjusted to a common 

elevation of 229 m using the dry adiabatic lapse rate and a common central latitude of 35.23ºN 
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using -0.9ºC per degree of latitude (the common elevation and latitude correspond to central 

Charlotte) (Lindén et al. 2015; Peterson 2003; Winkler et al. 1981). The hourly UHI intensity was 

calculated by subtracting the adjusted temperature of each urban site from the adjusted 

temperature of the rural site. Only dates with no missing hourly data were used to ensure a 

common dataset for each location. This criterion resulted in 1558 total dates and 404 optimal 

dates (where the weather conditions were favorable for the development of an intense UHI). 

Optimal weather conditions included clear to scattered skies, light winds, and low humidity with 

no precipitation or frontal passages (Eastin et al. 2018).  

 Two additional parameters were computed from the observations.  First, the weather 

factor (WXF; Runnalls and Oke 2000) combines cloud cover and cloud type with surface winds 

and was computed using WXF = WS-0.5 (1-kn2) where WS is the wind speed, k is a 

nondimensional coefficient that accounts for decreasing cloud temperature with height  and n is 

the cloud cover fraction. Determination of k requires unavailable hourly information on cloud type, 

depth, and optical thickness (Morgan et al. 1971). Thus, the k values used by Runnalls and Oke 

(2000) for low (0.88), medium (0.73), and high (0.24) clouds were assigned cloud base heights of 

2, 5, and 8 km, respectively. Hourly estimates of k were computed through linear interpolation 

using the observed cloud base heights and assuming k = 1 at the surface and k = 0 for either 

clear skies or cloud base heights above 10km.  

Second, to better understand how atmospheric stability influences UHI intensity, an hourly 

Pasquill-Gilford-Turner stability index (STB; Turner 1964) was computed at each site location. 

The STB scheme uses surface wind speed, cloud cover, and solar altitude to classify the stability 

of the atmosphere into seven different categories: 1) extremely unstable, 2) unstable, 3) slightly 

unstable, 4) neutral, 5) slightly stable, 6) stable, and 7) extremely stable.  While a sounding-based 

temperature profile would be more ideal for estimating stability, no rawindsondes are launched 
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regularly in the Charlotte region.  Thus, STB provides an alternative rough estimate at an hourly 

interval.  

 To create a more cohesive urban dataset, the data from the GAR station was 

supplemented with data from the CLT station. Parameters used from the GAR station included 

adjusted temperature, precipitation, relative humidity, vapor pressure, station pressure, wind 

speed, wind direction, solar radiation, UHI intensity from the previous day, and UHI intensity 

(calculated as the adjusted temperature difference between GAR and WAD). Data included from 

CLT was cloud cover, cloud height, WXF, and STB. This data was combined to make one dataset 

including all desired variables.  

To identify the optimal afternoon hour(s) for predictors and the optimal overnight hour(s) 

for UHI intensity, a series of lagged linear correlations were computed for all possible 

combinations of afternoon hours (12-16 LST) and overnight hours (19-23 LST) using the full set 

of 1558 good dates during the 5-year study period.  The hours of 17-18 LST were excluded to 

account for sunset and to provide a true short-term prediction of UHI intensity. Morning hours (0-

12 LST) were also excluded because the UHI is often most intense during the evening hours just 

before midnight (Eastin et al. 2018).  The detailed correlation analysis showed that the 15 LST 

afternoon observations were best correlated with nighttime UHI intensities, but the correlation 

coefficients were roughly similar when the 15 LST observations were paired with either the 21 

LST, 22 LST, or 23 LST estimates of UHI intensity. Thus, the 15 LST observations were chosen 

to represent afternoon predictors and the average UHI intensity between hours 21-23 LST was 

chosen to represent the nocturnal predictand. These selections will effectively allow for a 6-8 h 

forecast of UHI intensity.  

The correlation coefficients between each 15 LST meteorological parameters and the 21-

23 average UHI intensity are shown in Table 2. The predictors with the five largest correlation 
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coefficients are relative humidity, weather factor, cloud height, sky cover, and vapor pressure. It 

is expected that these predictors will be the most skillful predictors in model performance. The 

predictors with the 5 lowest correlation coefficients are adjusted temperature, wind direction, wind 

speed, precipitation, and the turner stability index. These predictors are expected to be the least 

skillful predictors. Station pressure and solar radiation were in the middle with correlation 

coefficients of just under 0.3. It is unknown how these predictors will perform in model 

development.  

 The next step was to develop and evaluate various statistical models using the various 

15 LST observations as predictors of the 21-23 LST mean UHI intensity.  The following statistical 

model types were evaluated using the JMP statistical software:  generalized linear models (GLMs) 

and bootstrap random forests (BRFs).  

A generalized linear model uses the following basic formula:  

𝑦 = 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 + 𝜀 

where y is the response or dependent variable, xn are the predictors, βn are the estimators or 

weights for each predictor, β0 is the intercept, n is the total number of predictors, and ε represents 

residual errors (which under the assumption of normalcy are assumed to be zero). The GLM 

generalizes regression by using a link function to relate the linear model to the response variable 

and using the variance magnitude of each measurement (i.e., estimators or weights) to be a 

function of the response. Assumptions of a GLM are that all predictors are independent (from one 

another), all predictors exhibit normal distributions, and the response exhibits a normal distribution 

(McCullagh and Nelder 1989).  

 A bootstrap random forest averages numerous decision trees to create an ensemble 

model. In lieu of using a mathematical formula, a decision tree uses a series of branches 

(equivalent to nested if/then statements in code) to guide the model through a series of decisions 
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to provide a prediction. Training data is randomly selected with replacement and used to create 

smaller datasets. These bootstrapped samples are then fed through multiple decision trees with 

the result being the averaged results from all trees.  Each split in each tree included in the forest 

randomizes which predictors are included. Individually, the decision trees have a wide range of 

statistical significance. A bootstrap forest model averages the result from each tree to create a 

stronger model (Breiman 1996; Breiman et al. 1983).  
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CHAPTER V: RESULTS 
 
 

The first model evaluated was a generalized linear model.  Given that GLMs assume a 

normal distribution for all predictors and the predictand, the full dataset of adjusted temperature, 

vapor pressure, station pressure, sky cover, cloud height, weather factor, turner stability index, 

precipitation, relative humidity, wind speed, and mean nocturnal UHI intensity were checked for 

normalcy using the Kolmogorov-Smirnov test. Figures 3-14 show the distributions of each 

predictor with Figure 15 showing the distribution of the Urban Heat Island Intensity. A log 

transform was applied to all non-normal distributions (relative humidity, precipitation, wind 

direction, and wind speed).   

Prior to any GLM fitting, the full dataset was split into independent modeling and testing 

subsets (often called developmental and validation subsets).  The modeling subset consisted of 

the first three years (June 2010 – May 2013) or ~60% of the full dataset, while the testing subset 

consisted of the last two years (June 2013 – May 2015) or ~40% of the full dataset.  A larger 

modeling subset was used to decrease overfitting and increase model robustness.  

The initial GLM fit (using the 60% modeling subset) included all predictors and exhibited 

a corrected Akaike Information Criterion (AICc) near 260. More importantly, several individual 

predictors exhibited regression coefficients that were not statistically significant at the 5% level.  

To improve model fit, a stepwise process was invoked whereby the least skillful non-significant 

predictor was removed and a new GLM was fit. This process was repeated until all predictors 

exhibited statistically significant regression coefficients at the 5% level.  The final “optimal” GLM 

included vapor pressure, weather factor, station pressure, solar radiation, relative humidity, and 

the UHI from the previous day as predictors in respective order of significance with an AICc over 

4,300.   
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Validation statistics run on the testing years resulted in a mean absolute error in UHI 

intensity of 1.28 K, a root mean square error of 1.63 K, a mean percent error of 104% and a mean 

bias of 0.01 K. Given the dramatically increased AICc for all re-fit GLMs (including the optimal 

model) during the model development stage, combined with the rather large mean percent error 

during model validation, it was concluded that GLMs are not the most ideal statistical model type 

for predicting the Charlotte UHI intensity. 

The next model evaluated was the Bootstrap Random Forest (BRF) model.  For this 

model, no initial division of the full dataset into training and validation subsets was required since 

the JMP software automatically separates the data into training (60%), validation (20%), and 

testing (20%) subsets during model development. Training data is used to build the model and 

validation data is used during model development to provide an unbiased evaluation of the fit of 

the model on the training data while fine tuning hyper parameters.  Finally, the testing data is the 

independent sample used for traditional model validation once an optimized model has 

developed. The separation process is random and the percentages are user-defined (the default 

values shown above were used for the initial evaluation).  As with the GLMs, a log transform was 

applied to all non-normal distributions before any model development. 

The initial BRF model fit included all predictors and exhibited a generalized R-square value 

of 0.71, suggesting BRFs may be a more ideal model type for predicting the Charlotte UHI 

intensity. Interestingly, however, model performance decreased with the validation and test 

subsets, exhibiting generalized R-square values of 0.391 and 0.334, respectively (see Table 3). 

Figure 16 shows the observed UHI intensity plotted with respect to the BRF predicted UHI 

intensity for the training, validation, and testing subsets; the training data clearly performed the 

best. The BRF was run using the optimal predictors from the final GLM which included vapor 

pressure, weather factor, station pressure, solar radiation, relative humidity, and the UHI from the 

previous day.  This exhibited a training R-square of 0.29 with validation and test R-square values 
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of 0.26 and 0.25 respectively (see Table 4). BRF model was also run using the top 5 predictors 

highest correlated with mean UHI Intensity (see Table 2); relative humidity, weather factor, cloud 

height, sky cover, and vapor pressure. This run of the BRF performed better than the GLM optimal 

predictors with a training R-square of 0.361. Similar to the initial run, performance decreased with 

validation and test R-squares of 0.28 and 0.29 respectively (see Table 5.) Since model 

performance did not increase with limiting predictors included in model development, all predictors 

were included for the rest of the models.  

Different user defined percentages for training, validation, and testing the BRF model were 

tested using the full dataset.  The percentage breakdown with the highest overall performing 

testing R-square included 50% (853 dates) for model training, 40% (687 dates) for model 

validation, and 10% (167 dates) for model testing. The optimal settings or settings with the highest 

performing testing R-square were 175 trees with 10 predictors sampled per split and a minimum 

of 10 splits. This model run resulted in a training R-square of 0.795, a validation R-square of 

0.362, and a testing R-square of 0.457. The top five predictors for this model run were vapor 

pressure, relative humidity, weather factor, temperature, and solar radiation. Figure 17 shows the 

actual UHI plotted against the predicted UHI which shows a loose correlation. This optimal model 

using all of the data was used as a baseline for the rest of model development on seasonal and 

weekend/weekday data (see below).  

To better optimize the BRF, data was stratified by season (i.e., summer, fall, winter, and 

spring) and day of the week (i.e., weekday and weekend). Summer data included the months 

June, July, and August and fall data included September, October, and November. Winter data 

included December, January, and February with spring data including March, April, and May. 

Weekend data included Saturday’s, Sunday’s, and all National Holidays with weekday data 

including Monday-Friday with national holidays excluded.  
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For spring data, the optimal model used 50% (201 dates) for training, 40% (162 dates) for 

validation, and 10% (39 dates) for testing and resulted in a testing R-square of 0.415. This model 

run had 225 trees, 7 predictors sampled per split, and a minimum of 10 splits. The top five 

predictors were relative humidity, solar radiation, vapor pressure, weather factor, and 

temperature. Figure 18 shows the predicted UHI plotted with the actual UHI and displays a more 

scattered relationship than with all of the data.  

The optimal BRF run on the summer data included 50% (224 dates) for training, 40% (183 

dates) for validation, and 10% (46 dates) for testing. This model had 225 trees with 7 predictors 

sampled per tree, and a minimum of 10 splits per tree. The top five predictors were vapor 

pressure, the urban heat island from the previous day, solar radiation, relative humidity, and 

weather factor.  Among all four seasons, the optimal summertime model performed the worst, 

with a testing R-square of 0.21. When looking at Figure 19, the relationship between the actual 

UHI and predicted UHI is relatively scattered with less correlation than was apparent with the 

optimal springtime model (Figure 18). 

The fall BRF run included 50% (226 dates) for training, 40% (178 dates) for validation, 

and 10% (45 dates) for testing. This model had 100 trees with 3 predictors sampled per tree, and 

a minimum of 10 splits per tree. The testing R-square was 0.415, and the top five predictors were 

relative humidity, vapor pressure, solar radiation, temperature, and the urban heat island from the 

previous day. Figure 20 shows the actual UHI plotted with the previous UHI and shows a strong 

relationship with slight under prediction of the UHI compared to actual UHI.  

The optimal winter BRF model included 204 dates in the training subset, 157 dates in the 

validation subset, and 42 dates in the testing subset, with 200 trees, 10 predictors sampled per 

spit, and a minimum of 10 splits.  The optimal model exhibited an R-square of 0.599, and the top 

five predictors were weather factor, cloud height, solar radiation, relative humidity, and the turner 
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stability index.  Figure 21 shows a strong relationship between the observed and predicted UHI 

values for winter dates. 

The initial run of the BRF for weekends was the most optimal with 50% (266 dates) for 

training, 40% (214 dates) for training, and 10% (54 dates) for testing. With 100 trees, 3 terms 

sampled per split, and a minimum of 10 splits per tree, the optimal BRF for weekends has an R-

square of 0.277. The top five predictors are relative humidity, weather factor, vapor pressure, 

cloud height, and solar radiation. Figure 22 shows the poor relationship between the predicted 

UHI and the actual UHI. The optimal run of the BRF for weekdays had user defined percentages 

of 40% (586 dates) for training, 30% (351 dates) for validation, and 30% (351 dates) for testing. 

With 225 trees, 7 splits per tree, and a minimum of 10 splits, the optimal model for weekdays had 

a testing R-square of 0.381. The top five predictors are relative humidity, weather factor, vapor 

pressure, turner stability index, and solar radiation. The weekday model has the turner stability 

index as one of the top predictors. This is important due to the influence of an inversion and 

pollution caused from individuals commuting to and from work. Compared to Figure 22, Figure 23 

shows a slightly closer relationship between the predicted UHI when compared to the actual UHI.  

Statistical validation was completed for each optimal BRF model and is shown in Table 6. 

To compute each validation metric, the entire dataset (i.e., the full dataset along with the seasonal 

and day-of-week subsets) was used (i.e., not just the 10% testing subsets). The average UHI for 

each model subset was also computed. Among the four seasons, spring exhibits the largest UHI 

and fall exhibits the smallest. For the mean absolute error (MAE), summer exhibits the smallest 

MAE and spring exhibits the largest. The MAE tells us how accurate the model is when predicting 

the UHI with a value of 0 being a perfect model performance. Of the four season’s winter and 

spring exhibit a positive bias indicating an over prediction of the UHI by the model. Fall exhibits 

virtually no bias at all and summer exhibits a slight negative bias indicating a slight under 

prediction of the UHI. Bias are a good indicator of how the model prediction trends and can be 
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easily subtracted or added to the model output to create a more accurate model prediction. Spring 

exhibits the largest percent error with 146.03% and winter exhibited the smallest percent error 

with 21.33%. Percent error is another way to measure how accurate the model prediction is.  

For the weekend and weekday data, the weekdays on average have a slightly larger UHI 

by just 0.03 degrees Celsius. The weekend data has both a larger mean absolute error and a 

larger percent error than the weekday data meaning the model performance is not as accurate 

for weekends. This could be due to having a smaller sample size. Both the weekend and weekday 

data have a positive bias with weekends having a very small bias at just 0.03.  
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CHAPTER VI: CONCLUSIONS AND FUTURE WORK 
 

 
While seasonality is not an effective predictor, knowing which season it is can greatly 

influence the effectiveness of general model performance and model predictors. For example, 

weather factor is a top predictor for winter, but does not perform as well in the other seasons. As 

mentioned before, weather factor combines surface winds and cloud cover and cloud type 

(Runnalls and Oke 2000). Winter is typically windier and days with low lying clouds are more 

common. High cloud cover and high winds would both inhibit the development of a large UHI.  

Solar radiation and relative humidity are the only common effective predictors for all four seasons. 

Solar radiation is an effective predictor for all seasons due the relationship between increased 

solar radiation and daytime urban heat storage. Greater amounts of solar radiation lead to greater 

daytime urban heat storage which transitions to a large UHI source after sunset. Relative humidity 

is an effective predictor for all seasons because of the “greenhouse effect” influence that 

atmospheric moisture has on surface air temperatures. Vapor Pressure is a top predictor for all 

models except for winter. Similar to relative humidity, vapor pressure is a measure of the moisture 

in the atmosphere. With the small day to day variations in atmospheric moisture during winter, 

vapor pressure would not be an effective predictor. Temperature is a top predictor for all of the 

data, spring, and fall models. This could be due to the large day to day temperature variations 

during the spring and fall when compared to the small variations during summer and winter.   

Knowing if it is a weekend or weekday is also not an effective predictor, but model 

performance varies depending on the day of the week. The larger UHI on weekdays could be due 

to increased urban pollution caused by people commuting to and from work. An increase in urban 

pollution could lead to an increase in stored heat energy near the surface from an enhanced local 

greenhouse effect. This is backed up by the presence of the turner stability index as an effective 

predictor for the weekdays. As mentioned earlier, the turner stability index is a measure of stability 

in the atmosphere. A more stable atmosphere would be conducive for a larger UHI on weekdays 
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due to limited vertical mixing and air pollution dispersal. With limited vertical mixing, air pollution 

would enhance a local greenhouse effect. In addition to the turner stability index, relative humidity 

is an effective predictor for weekdays as well as weekends. A high relative humidity percentage 

would also be conducive for an enhanced local greenhouse effect.  Knowing these details can 

improve the effectiveness of predicting the urban heat island.  

Despite being an important predictor in previous studies, wind speed did not prove to be 

an effective predictor of the UHI for Charlotte, NC. Table 7 shows a cross correlation of wind 

speed with the other predictors used in this study. While wind speed is not a top five predictor for 

any BRF model, wind speed is highest correlated with other top predictors. Predictors highest 

correlated with wind speed include temperature, vapor pressure, weather factor, turner stability 

index, and solar radiation. The strong performance of these predictors in model performance 

could be the reason wind speed was not chosen as a top five predictor.   

Future work would include expanding the dataset for model development and testing. For 

seasonality and weekends, model performance and accuracy would improve with a larger testing 

dataset. Model performance could be tested using predictors from two days prior instead of the 

previous day to test if that would result in an effective model. 
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TABLES 

 
 
Table 1. Surface weather station metadata, including latitude, longitude, elevation, local 
topographic relief, land use/cover characteristics, mean daily temperature (TDAY), mean daily 
temperature range (ΔTDAY), sky view factor (SVF), and the local climate zone (LCZ). This table is 
from Eastin et al. (2018). 

 

Table 2. The correlation coefficients between each 15 LST meteorological parameters and the 
21-23 average UHI intensity. 
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Table 3. Results of initial Bootstrap Random Forest model. 

 

Table 4. Results of bootstrap random forest model using the GRM optimal predictors. 

 

Table 5. Results of bootstrap random forest model using the 5 predictors highest correlated to 
the mean UHI Intensity. 

 

  



24 
 

Table 6: Statistical Results of all model run performance. 

Model 

Mean 
Absolute 

Error 

Root Mean 
Squared 

Error 
Mean 

Percent Error Mean Bias 
Average UHI 

Intensity R-Squared 

All Data 0.99 1.30 56.21 0.14 0.35 0.46 

Winter 1.09 1.43 21.33 0.14 0.31 0.6 

Spring 1.28 1.67 146.03 0.55 0.47 0.42 

Summer 0.82 1.07 41.42 -0.07 0.42 0.21 

Fall 1.1 1.45 48.07 0 0.22 0.42 

Weekend 1.13 1.47 55.26 0.03 0.33 0.28 

Weekday 1.02 1.33 8.64 0.12 0.36 0.38 

Table 7: Cross correlation analysis of wind speed with the other predictors.  

Cross Correlation with Wind Speed (m/s) 
Temperature (C) -0.31 
Precipitation (mm) 0 
Relative Humidity (%) 0.01 
Vapor Pressure (mb) -0.28 
Station Pressure (mb) -0.04 
Solar Radiation (W/m2) -0.18 
Sky Cover (Frac) 0.05 
Cloud Height (m) -0.08 
Weather Factor (frac) -0.28 
Turner Stability Index  0.34 
Wind Direction (deg) -0.03 
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FIGURES 
 

 

Figure 1. Surface weather station locations superimposed on the 2011 USGS LULC product 
across the CMR. The blue circle denotes the rural reference site (WAD), the yellow circles denote 
the most urbanized sites (GAR and CLT) discussed in this study, and the plus sign denotes the 
central business district of the urban core. See Table 1 for station metadata and local LULC 
characteristics. 
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Figure 2: Wind rose of hourly observations at CLT for all good dates between June 2010 and 
May 2015. 

 

 

Figure 3: Distribution of the Adjusted Temperature (◦C) between June 2010 and May 2015. 
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Figure 4: Distribution of the Precipitation (mm) between June 2010 and May 2015. 

 

 

 

Figure 5: Distribution of the Relative Humidity (%) between June 2010 and May 2015. 
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Figure 6: Distribution of the Vapor Pressure (mb) between June 2010 and May 2015. 

 

 

Figure 7: Distribution of the Station Pressure (mb) between June 2010 and May 2015. 
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Figure 8: Distribution of the Wind Speed (m/s) between June 2010 and May 2015. 

 

 

Figure 9: Distribution of the Wind Direction (deg) between June 2010 and May 2015. 
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Figure 10: Distribution of the Solar Radiation (W/m2) between June 2010 and May 2015. 

 

Figure 11: Distribution of the Sky Cover (frac) between June 2010 and May 2015. 
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Figure 12: Distribution of the Cloud Height (m) between June 2010 and May 2015. 

 

Figure 13: Distribution of the Weather Factor between June 2010 and May 2015. 
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Figure 14: Distribution of the Turner Stability Index between June 2010 and May 2015. 

 

Figure 15: Distribution of the Urban Heat Island Intensity (◦C) between June 2010 and May 2015. 
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Figure 16. Scatterplots of observed (actual) UHI intensity vs the predicted UHI intensity from the 
initial BRF model fit for the training, validation, and testing subsets. 
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Figure 17: Actual UHI plotted with Predicted UHI for All Data. 

 

 

 

Figure 18: Actual UHI plotted with Predicted UHI for spring. 
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Figure 19: Actual UHI plotted with Predicted UHI for summer. 

 

 

 

Figure 20: Actual UHI plotted with Predicted UHI for fall. 
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Figure 21: Actual UHI plotted with Predicted UHI for winter. 

 

 

 

Figure 22: Actual UHI plotted with Predicted UHI for weekend. 
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Figure 23: Actual UHI plotted with Predicted UHI for weekday. 
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