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ABSTRACT 

 

 

ARASH KARIMZADEH. Prediction of defect hotspots for highway maintenance 

management: A multi-asset machine learning approach.  (Under the direction of DR. 

OMIDREZA SHOGHLI) 

 

 

 Given multiple budget and revenue constraints that the transportation sector 

encounters, predictive analytics enables maintenance agencies to make effective decisions, 

prioritize maintenance tasks, and provide efficient life-cycle planning. To this end, risk-

based predictive models have provided promising results in representing the susceptibility 

of assets to future defects. Hence, the main objective of this study is to provide an integrated 

framework for predicting the occurrence probability of multiple defects on different 

highway asset types. Several gaps in previous models were identified, including limitations 

in predictive frameworks given the inadequate scope of available inspection data, expert-

based selection of contributing factors, and ignoring the interrelationships between 

neighboring assets. Therefore, this study proposes a risk-based method that combines a risk 

score generator and a Machine Learning (ML) algorithm to predict the hotspots of multiple 

defects in a given roadway. To find the best fit, the model is chosen from a pool of ML 

algorithms containing linear and non-linear methods. To measure the efficiency of the 

proposed model, its performance is investigated on a selected case study. The proposed 

framework produced results with significant accuracy within the extent of available data 

in the case study for calculating risk scores of erosion, obstruction, and cracking on paved 

ditches given historical weather, traffic, maintenance, and inspection data of five selected 
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neighboring assets (flexible pavements, unpaved ditches, slopes, small pipes and box 

culverts, and under drain pipes and edge drains). Additionally, the contribution of the 

considered factors was investigated to further study the importance of individual 

contributors. The framework offers decision-makers a holistic view of degradation risks of 

multiple assets, which could enable them to prepare an integrated asset management 

program. Additionally, a similar framework can be applied to other linear infrastructure 

systems such as sanitary sewers, water networks, and railroads. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

Most of the US interstate highways have passed or will exceed their design life in 

the next 20 years and require restorations and preservations (NASEM, 2019). Hence, 

Departments of Transportation (DOTs) strive to maintain roadways in a good state of repair 

by spending a major part of their budget on preservation works. However, tight budgetary 

constraints and continuous degradation of assets are the main challenges that DOTs 

encounter. Therefore, they are always looking for optimal solutions that make their 

investments effective and efficient (AASHTO, 2011; Shoghli et al., 2016). To this end, 

predictive analytics and data collection are the tools that pave the path toward more 

efficient decision making, maintenance prioritizing, and life-cycle planning. However, 

intensifying data collection considering the current practices in DOTs seems to be 

expensive and far-fetched, given the enormous US roadway system and the extent of 

highway assets. Therefore, researchers and practitioners are interested in enhancing 

predictive analytics utilized in Transportation Asset Management (TAM) programs to 

augment the potential of the current available data.  

To this end, numerous models have been developed and applied in forecasting the 

deterioration of roadway assets. Among different available models, the techniques that 

provide information on the occurrence probability of defects can be utilized to estimate 

risks throughout roadways, since the risk is usually defined as the probability of undesired 

events multiplied by their impacts (Proctor et al., 2012; Renn, 2008). Therefore, such 

models are capable to provide an important aspect of risk (i.e. probabilities) in a risk-based 
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asset management system. Additionally, the outcome of the models is utilized in preparing 

risk-maps that present hotspots of defects and their probabilities, which in turn shows the 

parts of roadways that are prone to a particular set of defects (Madaio et al., 2016). Later 

on, risk-maps could be used in managing risks, prioritizing inspections, and making 

maintenance decisions. 

 

1.2 Problem statement 

Given the important role of prediction models in TAM, their performance directly 

impacts the efficiency of maintenance decisions. Therefore, understanding the limitations 

of the models is a major step toward enhancing their performance and ultimately making 

smart and efficient decisions for maintenance works.  

One of the challenges in developing data-driven prediction models is the 

inadequacy of the inspection data on all road segments due to the current implemented 

inspection methods in DOTs. Therefore, several predictive frameworks compatible with 

the inadequate scope of available inspection data were proposed in the literature. However, 

their limitations directly impact the performance of the developed models. 

Although several factors contribute to the degradation of different asset types in a 

roadway system, most of the proposed prediction models in previous studies were 

developed based on a few subjectively selected contributing factors. However, due to the 

complexity of the degradation process, some of the contributors might be unknown to the 

experts. Moreover, there is not a complete agreement among practitioners and researchers 

on the factors considered in previous studies. Therefore, considering only a few factors 
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might result in ignoring the major contribution of other factors to the degradation of assets 

and negatively impacts the performance of prediction models. 

The degradation of assets might be influenced by the deterioration of nearby assets. 

Furthermore, neighboring assets might deteriorate similarly as they are in the same 

environment or constructed using the same materials. However, the interrelation was 

marginally considered in developing prediction models in previous studies and each asset 

was considered independently. Hence, the performance of the models might be negatively 

impacted by ignoring interrelations.  

In summary, as identified in this study, the gaps and limitations in the current 

predictive models are: (i) limitations in predictive frameworks compatible with the 

inadequate scope of available inspection data, (ii) expert-based subjective selection of 

contributing factors, and (iii) marginal consideration of interrelationships between 

neighboring assets. 

 

1.3 Objectives of the Study 

To mitigate these challenges, this study is proposing a risk-based method that 

combines a risk score generator and a Machine Learning (ML) algorithm to predict the 

hotspots of multiple defects in a given roadway. The objectives of this study are fourfold: 

1. To augment the limited extent of available inspection data by using density estimation 

of defects to meet the requirement of risk-based prediction models 

2. To consider a wide range of factors with the potential contribution to the degradation of 

assets, including the interrelations between nearby assets  
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3. To reduce subjectivity in selecting contributing features by considering a wide range of 

potential contributors in developing prediction models with a data-driven approach for 

finding factors with significant contributions, instead of subjectively selecting them 

beforehand. 

4. To predict risk scores of roadway segments susceptible to defects and spatially visualize 

the corresponding risk-based hotspots.  

It is noteworthy mentioning that the scope of the present study is limited to roadway asset 

types, however, the proposed framework can be applied to any other linear infrastructures, 

such as railroads, sanitary sewers, and water networks. 

 To ensure the quality of the results, the proposed framework in this study is 

equipped with a comparative analysis among multiple ML algorithms that helps to choose  

the most accurate one for producing outcomes. The outcome of the framework is a set of 

risk maps that present the predicted hotspots of each defect for the considered asset types 

in a given road; wherein, hotspots refer to the parts of roadways with higher densities of 

defects. Moreover, another strength of the proposed framework is its multi-asset risk-based 

predictor essence, meaning that a single model could be applied to all road asset types.  

 

1.4 Significance of the Study 

By considering a wide range of contributing factors to the degradation of roadway 

assets, this study provides the capability of finding major factors in the occurrence of each 

defect. Indeed, the framework decides the most significant contributors among a wide 

range of potential candidates, instead of subjectively selecting them beforehand. In this 
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way, the framework respects the difference among important contributors to the 

degradation of different highway assets. Furthermore, the deterioration of each asset is 

investigated considering its possible interrelation with other nearby assets. Hence, this 

study helps to improve the robustness of prediction models by considering potential factors 

that identify future deteriorations.  

In addition, the proposed methodology lacks the limitation of the previous 

predictive frameworks and augments the scope of the available inspection data. Therefore, 

this study enables agencies to come up with prediction models for all road segments based 

on the annual inspection data on a selected subset of segments. 

By forecasting the hotspots of different defects, the results of this study will enable 

agencies to include the probable location of defected assets in their life-cycle planning and 

enrich their budget management with the benefit of forecasting possible maintenance 

needs. Besides, the multi-asset attribute of the framework provides a holistic view of 

degradation risks of multiple assets and helps DOTs to prepare an integrated asset 

management program. 

 

1.5 Organization 

In the following chapters, first, a literature review is provided in Chapter 2 to 

ascertain the nature of methodologies utilized in previous studies, and explore the 

limitations and gaps in the body of knowledge. Then, in Chapter 3, the proposed 

methodology and the framework of the study are elaborated in greater detail. Next, the 

efficiency of the framework is measured by applying that to a case study chosen from the 
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state of Virginia, and a comparative study on the selected algorithms is performed. To 

incorporate the effect of neighboring asset interrelations into the case study, a combination 

of assets was considered including one capital asset type (flexible pavement) and five 

adjacent roadside assets– paved ditches, unpaved ditches, slopes, small pipes and box 

culverts, and under drain pipes and edge drains. However, the proposed framework is 

similarly applicable to any other highway asset type. Later on, prediction models were 

developed to forecast the probabilities of observing three defects (erosion, obstruction, and 

cracking) on paved ditches. All accomplished results are presented and discussed in 

Chapter 4. Finally, the key findings are discussed and the conclusions, limitations of this 

study, and recommendations for future works are provided in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 

 

 

In this chapter, a literature review on the background, methodologies, and 

applications of prediction models is performed. In the first section, the approaches utilized 

in developing prediction models for roadway assets are reviewed. Then, based on previous 

studies, the application of prediction models in a risk-based management system is 

elaborated and the corresponding gaps in the transportation sector are highlighted. Next, 

the gaps and limitations in the previous predictive methods are elaborated.  

 

2.1 Prediction Models 

In an asset management program, the initial requirement is the knowledge about 

assets, their condition, and the level of service they provide. This knowledge helps to 

design, plan, and determine the appropriate maintenance tasks for different assets in a 

roadway system and optimize resources (Shoghli et al., 2017). Therefore, in predictive 

asset management programs forecasting the level of service and condition of assets is a 

major task that enables agencies to establish future maintenance plans (Radopoulou et al., 

2016). To this end, prediction models are used to perform such forecasts by providing 

information about assets' future degradation, life expectancy, future conditions, initiation 

of defects, or the occurrence probability of defects.  
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2.1.1 Taxonomy of Approaches 

Regardless of what the prediction models provide, they can be categorized into 

three classes in terms of the approach used in their development: deterministic, 

probabilistic, and machine learning (Karimzadeh & Shoghli, 2020). Deterministic models 

are in the form of mathematical functions and are widely used to predict future conditions 

or the remained life of roadway assets. In probabilistic approaches, a probability 

distribution such as Weibull is used to forecast the condition of an asset or the probability 

of a particular condition in the future (Anyala et al., 2014; Sanabria et al., 2017; H. Wang 

et al., 2017). Finally, in a Machine Learning (ML) approach, Artificial Intelligence (AI) is 

leveraged to explore relationships between contributing factors to the degradation of assets 

and their condition or the probability of observing a certain defect. ML prediction models 

are developed based on the learning process from historically recorded data.  

Although deterministic models are the most common prediction tool in TAM 

programs they cannot effectively capture the stochastic nature of each asset’s performance 

(Toole et al., 2007). Hence, to consider the uncertainty and variability of the deterioration 

process, an increasing interest in developing probabilistic models emerged from the early 

years of the twentieth century, especially for pavements (Choummanivong et al., 2013). 

The initiation and progression of different types of defects follow stochastic variations. For 

example, Pavement cracking is characterized as a stochastic process due to its random 

variations. Therefore, probabilistic models have gained more attention in forecasting 

cracking on pavements (Yang et al., 2004). However, due to assuming a fixed probability 

distribution in probabilistic models, sometimes the predictions are not consistent with the 

actual recorded data (Karimzadeh & Shoghli, 2020). Therefore, machine learning 



9 

 

approaches were proposed to mitigate the limitations in deterministic and probabilistic 

approaches. Although machine learning deterioration models were developed several years 

ago, an increasing interest in using them emerged recently. Studies made efforts to develop 

deterioration models using machine learning and compared the outcomes with 

deterministic and probabilistic techniques. To this end, most research studies claimed that 

using machine learning resulted in more accurate outcomes (Karlaftis et al., 2015; C. Wang 

et al., 2016). Furthermore, they addressed the capabilities of machine learning models in 

adjusting to a changing environment in terms of the considered features. Hence, the 

application of these models proved to be more scalable and extensible compared to 

deterministic and probabilistic models (Chopra et al., 2018; Sanabria et al., 2017). 

 

2.1.2 Risk-based Predictions 

Risk management is vital for many organizations and decision makers to control 

and mitigate the risk of probable hazards (FTA, 2004). However, only a few state DOTs 

deployed a risk-based decision framework for their operation and maintenance tasks on an 

organization-wide scale. In addition, they implement risk-based management strategies for 

only a selected number of assets (Lin et al., 2015). In order to implement these strategies, 

data-driven risk maps are proven to be the most useful information that enables asset 

managers to prioritize inspections and make maintenance decisions (Madaio et al., 2016). 

In the context of asset management, risk maps are the tools for presenting risks of undesired 

events that might happen to an infrastructure. Risk includes two dimensions: the occurrence 

probability of an event and the impact of the occurrence of that event. In this concept, the 
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term event refers to the occurrence of a problem, deficiency, or danger in elements of a 

system that jeopardizes the functionality of the system (Haimes, 2005).  

Preparing risk maps is a common way to visualize the spatial distribution of the risk 

of undesirable events in different fields. For example, the recorded data of fire events in 

forest areas are used to show high-risk zones in terms of their susceptibility to wildfire 

(Kuter et al., 2018; Massada et al., 2009; Millington et al., 2008). As another example, 

earthquake magnitudes likely to be expected in different zones of a region are shown by 

earthquake risk maps (Gaull et al., 1990). In addition, in analyzing road traffic accidents, 

risk maps are widely used to find hotspots of the probable accidents (Erdogan, 2009; 

Rahman et al., 2018; J. Wang et al., 2011). However, a few studies provided frameworks 

for developing predictive risk maps of undesirable events in roadway infrastructure.  

Furthermore, the focus of previous studies on risks in highway systems was mostly on 

natural hazards, environmental events, flooding,  and landslides (C. J. Anderson et al., 

2015; Hunt, 1992; Lu, 2020; Sohn, 2006; Wright et al., 2012) 

In a highway infrastructure, defects are major problems that negatively impact the 

condition of an asset and decrease its level of service. Hence, forecasting future hotspots 

of defects representing the locations in a roadway system with a higher likelihood of 

observing those defects is an essential task to provide the required information for the risk-

based decision making framework in TAM. 
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2.2 Compatible Predictive Frameworks with Inadequate Inspection Data 

The historical condition of road segments has been usually utilized as the 

foundation of developing predictive deterioration models. However, random inspection of 

roadways that is the current practice of several DOTs restricts the number of segments with 

adequate data. This usually results in noncontinuous historical conditions on the majority 

of road segments during all years of inspection. In other words, a unique condition record 

corresponding to each year of inspection is often unavailable for each segment. To 

overcome this limitation, most of the previous studies used the idea of grouping segments 

with similar deterioration characteristics (family groups) and estimating the average 

degradation of each group by utilizing a deterioration model (family deterioration 

model)(Mills et al., 2012; Saha et al., 2017).  

Family deterioration models are widely used by many U.S. Departments of 

Transportation (DOTs) such as Pennsylvania DOT (Wolters et al., 2010), Delaware DOT 

(Mills et al., 2012), Colorado DOT (Saha et al., 2017), and North Carolina DOT (D. Chen 

et al., 2016). However, several challenges come with this approach. As an example, the 

condition of specific segments in a family might be different from the family's average 

condition. This is mainly attributed to the local variation of contributors to the degradation 

of assets such as traffic, weather, and maintenance (Pantuso et al., 2019).  

Selecting the parameters for grouping similar road segments and creating families 

was mostly based on experts’ opinions. Furthermore, the selected categories for each 

parameter were considered differently in previous studies. For example, Bannour et al. 

(2017) used Average Annual Daily Traffic (AADT) for grouping road segments into 

families. In their study, road segments were grouped based on three categories of AADT: 
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high (>4500), medium (1500-4500), and low (<1500). Another factor that was utilized in 

their creation of families was temperature. Then, roadways were grouped into three 

families located in tropical, subtropical-hot, and subtropical-cool zones in terms of 

temperature.  However, D. Chen et al. (2014) utilized four categories of AADT for their 

family creation framework: 0-1000, 1000-5000, 5000-15000, and more than 5000. They 

also considered other factors in their study to build families of segments including 

pavement types (asphalt and Jointed Concrete Pavement (JCP)) and roadway types 

(Interstate, U.S., North Carolina, and Secondary Road).  

It is worth mentioning that when the number of parameters increase, exploring the 

impacts of their interaction on the configuration of family groups would be complex. 

Consequently, the accuracy of the developed deterioration models for the created families 

depends on the expert’s decision in choosing and categorizing the considered parameters. 

Hence, several studies attempted to minimize the subjectivity in family creator 

frameworks. For example, Tighe et al. (2001) utilized an unsupervised clustering algorithm 

(k-means) to create family groups but only 94 road segments were considered. As another 

example, Luo et al. (2006) proposed a cluster-wise regression method for predicting 

Pavement Condition Rating (PCR) but only based on one parameter: the age of pavements. 

Later on, Henning et al. (2014) considered more parameters in their clustering technique 

and created families based on drainage condition, road type (urban or rural), traffic loading, 

and climate region. Next, Saliminejad et al. (2016) clustered segments with respect to only 

their prior conditions and historical maintenance and rehabilitation tasks. In another study, 

Yacout et al. (2019) minimized the variability between performance indices in each cluster 

of road segments by utilizing Artificial Intelligence (AI). Then, Titus-Glover (2019) 
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attempted to deploy an unsupervised clustering method to minimize subjectivity and 

improve exploring current and future performance patterns for each asset. Also, in a 

research study conducted by Chen et al. (2019), segments were clustered by leveraging a 

high-dimensional clustering approach. However, they considered the level of maintenance 

of assets as the only parameter in their clustering framework. Finally, Karimzadeh, Sabeti, 

and Shoghli (2020) used more features to cluster road segments compared to previous 

studies. However, they addressed identifying the optimal number of clusters as the main 

challenge in creating family groups. This challenge was also addressed by several studies 

in the literature (Jain, 2010; Sugar et al., 2003). 

 

2.3 Interrelations of Roadway Assets 

Based on the first law of geography, relations exist between everything, but 

neighboring elements are more related compare to the farthest ones (Zhu et al., 2018). 

Therefore, in a highway system that contains different asset types in a close distance, 

interrelations between nearby assets are expected. One of the reasons is the mutual impacts 

of the condition of nearby assets. For example, degradation of drain pipes under a pavement 

might cause the subsidence of the base and subbase layers and consequently the creation 

of potholes on the pavement. Another reason for the interrelation between neighboring 

assets in a highway system is the same environmental conditions in their vicinity or using 

similar materials in their construction. For example, a correlation exists between erosions 

on nearby unpaved shoulders, slopes, and unpaved ditches due to similar precipitations in 

their vicinity and their same constructive materials. Therefore, the mutual impacts of 
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neighboring assets and the correlations between their deteriorations result in the 

interrelation between their conditions. 

However, a few research studies have investigated such interrelations (Al-Mansour 

et al., 1994; Coffey et al., 2016; Forsyth et al., 1987; Ghabchi et al., 2013; Karimzadeh, 

Sabeti, Burde, et al., 2020; Karimzadeh, Sabeti, Tabkhi, et al., 2020). Moreover, most of 

the developed deterioration models in the literature did not consider such interrelationships 

and investigated each asset's condition independent from its neighbors. For example, 

Abaza (2017), Chopra et al. (2018), and Gao et al. (2012) forecasted the condition of 

pavements only based on the historical condition of pavement segments. This trend was 

also pursued for other asset types such as markings, signs, barriers, and culverts (Chimba 

et al., 2014; Halmen et al., 2008; Immaneni et al., 2009; Malyuta, 2015; Sitzabee et al., 

2012). 

 

2.4 Contributing Factors to Deterioration of Roadway Assets 

In the literature review, several factors were identified that impact roadway assets' 

deterioration. For example, the role of material, traffic loading, weather condition, and 

historical maintenance on the degradation patterns of multiple assets was highlighted in 

several studies (Anyala et al., 2014; Bannour et al., 2017; Ford et al., 2012; Hong et al., 

2010; Labi et al., 2003; Prozzi et al., 2017; Ré et al., 2011; C. Wang et al., 2016). Materials 

used in the construction or production of different asset types identify their resistance 

against degradations. Also, the structural characteristics of assets influence their 

deterioration trend. For example, the thickness of flexible pavements and the binder type 
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are two main factors that impact the resistance of the pavement layer against degradation 

(Anyala et al., 2014). Moreover, traffic volume is a major factor that contributes to the 

deterioration of pavements and markings (Craig III et al., 2007). In addition, a variety of 

defects on different asset types are resulted from environmental factors. For instance, the 

deterioration trend of traffic signs and ditches are impacted by moisture, temperature, solar 

radiation, and precipitation (Markow, 2007).  

However, most studies developed deterioration models where only a selected 

number of contributing factors were considered based on experts’ opinions. Also, as a 

significant factor that improves the condition of highway assets, historical maintenance 

activities have received marginal attention when it comes to developing prediction models 

(Karimzadeh & Shoghli, 2020). For example, Chopra et al. (2018) studied pavements 

degradation by considering only traffic loadings data. As another example, Swargam 

(2004) proposed a prediction model to forecast the retroreflectivity of traffic signs utilizing 

only the age and characteristics of signs. Later on, Elwakil et al. (2014) investigated the 

effects of traffic, age, and the number of snow removals on the condition of pavement 

markings. 

To summarize, three main gaps and limitations in the previous predictive models 

were identified: (i) limitations in predictive frameworks given the inadequate available 

inspection data, (ii) marginal investigation of possible interrelations between neighboring 

assets in the majority of studies, and (iii) subjective selection of contributing factors to 

degradation of assets.  
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CHAPTER 3: METHODOLOGY 

 

 

3.1 Overview 

After highlighting the main limitations and gaps in the literature, this section moves 

on to explain the methodology for filling the gaps and mitigating the challenges in previous 

studies. Figure 1 shows the proposed framework of this study. Within this framework, the 

required data were extracted from pertinent and available resources under four categories: 

weather, traffic, historical maintenance, and inspection. Then, the collected datasets were 

cleaned to ensure that they are free of missing information and errors. Finally, a 

preprocessing step was performed on the cleaned datasets to get them prepared for the 

analysis. After making the data ready, Kernel Density Estimation (KDE) Analysis was used 

to calculate the density of defects in the unit of area (defects per square mile) for all road 

segments. This parameter was named Risk Score (RS) as it corresponds to the probability 

occurrence of the considered defects estimated based on their densities in different parts of 

roadways. Then, in the machine learning component of the framework, prediction models 

were developed and validated for predicting RSs based on previous historical RSs and other 

considered contributors (i.e., weather, traffic, maintenance). To this end, multiple linear 

and nonlinear ML algorithms were used. Then, the performance of the utilized algorithms 

was evaluated and the most accurate RS prediction model was chosen through a 

comparative study. Ultimately, the results were finalized and visualized.  

To measure the proposed framework's efficiency, 242 miles (389 kilometers) of 

Interstate I-81, I-77, and I-381 highways were used as the case study, as shown in Figure 

2. The roadways that consisted of mainlines and ramps were firstly split into 2420 
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segments. To do so, road segments were defined as sections with one-tenth of a mile (161 

meters) length covering fence-to-fence of the right of way.  

A variety of asset classes can be found in each segment of the case study roadways. 

For example, pavements, signs, markings, ditches, and guardrails. In addition, each asset 

class has its corresponding defect types. For instance, pothole and patch are two common 

defects that happen on flexible pavements. Also, erosion, obstruction, and cracking are the 

common defects that might take place on paved ditches. In this study, six adjacent asset 

types were considered to incorporate the interrelation of neighboring assets into the case 

study investigations. Flexible pavements, paved ditches, unpaved ditches, slopes, small 

pipes and box culverts, and under drain pipes and edge drains were the considered asset 

types in this study. This set of asset classes was chosen because of the potential 

interrelations between their condition. These interrelations are mainly attributed to the fact 

that they all belong to a continuous drainage system and are located at a close distance 

(Karimzadeh, Sabeti, Burde, et al., 2020). For each of the six selected asset types, the 

considered corresponding defects were also taken into consideration.  

 Then, the proposed framework was applied to predict the Risk Scores (RSs) of 

three defects (erosion, obstruction, and cracking) on all paved ditches in each road segment. 

The condition of the nearby assets was also incorporated in the prediction model and their 

corresponding defects were considered in the analysis. Next, the data between 2015 and 

2020 was obtained with the Fiscal Year (FY) being the unit of time. FY is the 12-month 

period that ends on June 30th of each year. For example, FY2016 refers to the 12-month 

period between July 1st, 2015, and June 30th, 2016. This time interval encompasses all 

maintenance activities that were performed during one year before the annual inspection 
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in 2016, as well as the recorded weather and traffic attributes in this period. Accordingly, 

the considered timeframe was then split into five periods: FY2016, FY2017, FY2018, 

FY2019, and FY2020. 
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Figure 2 - Case study roadways 

 

3.2 Data Collection and Preparation  

The weather data was collected from the National Oceanographic and Atmospheric 

Administration (NOAA) database. Multiple features were used to include possible 

fluctuations of weather into the framework. Table 1 provides a full list of the considered 

weather features utilized in this study. In addition, the statistical description of the 

considered weather features is summarized in Table 2. 
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Table 1 - Weather features considered in the study 

Index Parameter Definition 

1 TMAX Annual maximum daily temperature (o F) 

2 TMIN Annual minimum daily temperature (o F) 

3 TMAXMIN Annual average of daily max-min temperature difference (o F) 

4 DWT32 Number of days with minimum temperature<32o F (0o C) in a year 

5 DWT80 Number of days with maximum temperature>80o F  (26.7o C) in a year 

6 DWTMXN30 Number of days with Tmax-Tmin> 30o F (16.7o C) in a year 

7 DSNW Number of days with snow depth >1 inch (2.54 cm) in a year 

8 EMSD Maximum annual daily snow depth (inch) 

9 EMXP Maximum annual daily precipitation depth (inch) 

10 PRCP Total annual precipitation (inch) 

11 SNOW Total annual snow depth (inch) 

 

Traffic data were extracted from the Virginia Department of Transportation 

(VDOT)’s public portal. The traffic data, in the form of a shapefile, contained the location 

of roadways in Virginia and their corresponding traffic attributes. Figure 3 illustrates the 

shapefile of Annual Average Daily Traffic (ADT). A variety of traffic features were used 

in the framework and the corresponding data were examined for the existence of missing 

information to ensure the considered dataset is error-free. Table 3 provides the full list of 

the considered traffic features in this study. Also, a descriptive statistical summary of the 

traffic features is provided in Table 4. 
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Table 2 – Summary of the statistical description of weather features 

Parameter Min Max Average Median Standard Deviation 

TMAX 86.2 95.0 90.8 91.0 1.6 

TMIN -5.4 12.5 3.1 3.0 5.2 

DWT32 70.9 127.5 100.8 100.8 10.7 

DWT80 38.2 112.7 82.2 81.5 14.9 

DSNW 0.0 7.0 3.7 4.5 1.8 

EMSD 0.5 15.5 6.7 5.9 4.2 

EMXP 1.8 4.9 2.8 2.7 0.6 

PRCP 40.5 75.0 52.0 50.9 7.0 

SNOW 0.8 41.4 17.4 16.4 10.8 

DWTMXN30 30.6 72.0 53.4 57.8 11.2 

TMAXMIN 20.4 24.0 22.1 22.3 0.9 

 

Table 3 - Traffic features considered in the study 

Index Parameter Definition 

1 ADT Average daily traffic 

2 AAWDT Average annual weekday traffic 

3 ADT_4 Average daily traffic of 4-tire vehicles 

4 ADT_BU Average daily traffic of buses 

5 ADT_TR Average daily traffic of trucks with 1 trailer 

6 ADT_1 Average daily traffic of trucks with 2 axles 

7 ADT_2 Average daily traffic of trucks with 2 trailers 

8 ADT_3 Average daily traffic of trucks with 3 axles 
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Table 4 – Summary of the statistical description of traffic features 

Parameter Min Max Average Median Standard Deviation 

ADT 440 58000 30473 30000 11789 

AAWDT 440 57000 29169 27000 11600 

ADT_4 0 45775 23588 23359 9305 

ADT_BU 0 375 175 175 77 

ADT_TR 0 465 234 243 95 

ADT_1 0 432 240 243 99 

ADT_2 0 11793 5661 5404 2609 

ADT_3 0 890 409 397 198 

 

 

Figure 3 - Average Daily Traffic (ADT) of roadways in Virginia 

 

The case study's historical maintenance information was extracted from a 

Maintenance Quality Assurance Program (MQAP) that recorded the history of 

maintenance tasks performed in FY2016, FY2017, FY2018, FY2019, and FY2020. Each 

record in the MQAP includes the time, type, and location of each maintenance task. The 
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tasks that are relevant to the selected asset (i.e., paved ditch) were chosen. The selected 

maintenance tasks and their descriptions provided in Table 5 were obtained from Virginia 

DOT maintenance guidelines. This table was created in direct collaboration with a former 

VDOT maintenance crew with extensive highway maintenance experience. The 

maintenance expert validated all the obtained maintenance records from the VDOT task 

orders. After collecting the data, the records that contained missing information were 

removed. The historical maintenance was treated as a categorical feature with binary 

values: if a maintenance task was performed in a fiscal year, its corresponding feature 

would be 1, otherwise 0.  

Finally, the inspection data were extracted from the same MQAP that was utilized 

to obtain maintenance records. In this resource, the conditions of the selected assets were 

accessible through the recorded data at the time of inspections. The conditions were 

reported in terms of the level of the corresponding defects of each asset class in 4 levels: 

very poor, poor, good, and very good. The definition of four classes of conditions for 

flexible pavements, paved ditches, unpaved ditches, slopes, small pipes and box culverts, 

and under drain pipes and edge drains are provided in Table 6, Table 7, Table 8, Table 9, 

Table 10, and Table 11, respectively.  

In this study, very poor and poor conditions were aggregated as the observation of 

the corresponding defect and the need for fixing repair tasks. This classification that 

highlights the necessity of repairs is aligned with the trigger levels utilized in making 

maintenance decisions in VDOT. Therefore, very poor and poor conditions for each asset 

type were merged into the fail class while good and very good into the pass class. The fail 

condition under a specific defect means that the defect was observed in the considered asset 
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item. Pass condition means that the considered asset item was defect-free under the specific 

defect type. Later on, the location of the failed asset items was used in presenting the spatial 

distribution of the defects. A summary of the selected assets, their corresponding defects, 

and the number of observed defects in different years of inspection are provided in Table 

12.  

 

Table 5 - Maintenance activities performed on paved ditches (VDOT, 2014) 

Index Code Maintenance Name Description 

1 M70141 Hand Cleaning Hand cleaning of drainage assets, traffic control devices, 

shoulders, tunnels, ferries, etc. Cleaning with manual 

tools (shovels, pickaxes, etc.). Cleaning without the use 

of machinery.  

2 M70142 Machine Cleaning / 

Mechanical Sweeping 

Machine cleaning or sweeping of drainage assets such as 

pipes, ditches, etc.; tunnels; roadside assets such as 

sidewalks, truck ramps, pedestrian trails, walls, etc.; 

traffic assets such as rumble strips; pavement assets 

including roads, and paved shoulders, etc. Also, to be 

used for cleaning when using pressurized water such as 

power washing.  

3 M71152 Seeding, Fertilizing, 

Mulching (Serv) 

Seeding, fertilizing, mulching, sodding, soiling, 

spreading lime. The cyclical and regular replacement 

and maintenance of vegetation to combat erosion.  

4 M72223 Concrete Patching / 

Repair - Drainage 

(Serv) 

Patching holes, blow-ups, and other irregularities on 

concrete surfaces for drainage assets.  This activity 

includes cutting and removing damaged concrete and 

patching concrete areas. 

5 M72224 Concrete Joint Repair 

- Drainage (Serv) 

Removing and replacing joint filler, pouring joints, 

trimming joints, joint patching, and other maintenance of 

drainage concrete joints. 

 

Since identifying defects’ hotspots is an objective of this study, the total number of 

observed defects should be adequate to find the areas with the concentration of those 
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defects. Therefore, when the number of defects for a certain asset type is zero, identifying 

hotspots makes no sense. As shown in Table 12, the number of recorded defects for all the 

considered asset types was not zero however some of the defects have been observed rarely. 

 

Table 6 - Condition descriptions for flexible pavements (VDOT, 2014) 

Defect Very Good Good Poor Very Poor 

Pothole No potholes or signs 

of distressed asphalt 

(i.e. troughing, 

rutting, heaving) 

No potholes One pothole present More than one 

pothole present 

Patch No patches or all 

patches with smooth 

ride 

No patches or 

distresses greater 

than or equal to ½ 

inch higher or lower 

than surrounding 

pavement 

N/A Patches or distresses 

greater than ½ inch 

higher or lower than 

surrounding 

pavement 

 

Table 7 - Condition descriptions for paved ditches (VDOT, 2014) 

Defect Very Good Good Poor Very Poor 

Erosion No undermining (no 

erosion present) 

Undermining less 

than or equal to 3 

inches deep 

Undermining greater 

than 3 inches deep 

Evidence of 

structural damage or 

collapse 

Obstruction No obstruction Less than 25% of 

the cross section 

obstructed 

Greater than or 

equal to 25% of the 

cross section is 

obstructed 

Greater than or 

equal to 50% of the 

cross section is 

obstructed 

Cracking No cracking Less than or equal to 

10% of surface area 

showing cracking 

greater than ½ inch 

wide 

Greater 10% of 

surface area 

showing cracking 

greater than ½ inch 

wide 

Greater than or 

equal to 25% of 

surface area 

showing cracking 

greater than ½ inch 

wide 
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Table 8 - Condition descriptions for unpaved ditches (VDOT, 2014) 

Defect Very Good Good Poor Very Poor 

Erosion No erosion. Erosion less than or 

equal to 8 inches 

deep 

Erosion greater than 

8 inches deep 

Erosion greater than 

8 inches deep over 

more than 25% of 

the length 

Obstruction No obstruction. Less than or equal to 

25% of the cross 

section obstructed 

More than 25% of 

the cross section 

obstructed 

More than or equal 

to 50% of the cross 

section obstructed 

 

Table 9 - Condition descriptions for slopes (VDOT, 2014) 

Defect Very Good Good Poor Very Poor 

Erosion No slope erosion Less than or equal 

to 8 inches deep 

erosion 

Erosion along slope 

greater than 8 

inches deep 

Multiple erosion 

along slope greater 

than 8 inches deep 

Erosion Pattern N/A No pattern of 

erosion that 

endangers the 

stability of the slope 

Pattern of erosion 

that endangers the 

stability of less than 

25% of the slope 

Pattern of erosion 

that endangers the 

stability of greater 

than or equal to 

25% of the slope 

Lower Slope Slope matches 

paved shoulder 

throughout segment 

Less than or equal 

to 20% of slope 

length greater than 

2 inches lower than 

paved shoulder 

Greater than 20% of 

slope length greater 

than 2 inches lower 

than paved shoulder 

Greater than or 

equal to 40% of 

slope length greater 

than 2 inches lower 

than paved shoulder 

Higher Slope Slope matches 

paved shoulder 

throughout segment 

Less than or equal 

to 20% of slope 

length greater than 

2 inches higher than 

paved shoulder 

Greater than 20% of 

slope length greater 

than 2 inches higher 

than paved shoulder 

Greater than or 

equal to 40% of 

slope length greater 

than 2 inches higher 

than paved shoulder 
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Table 10 - Condition descriptions for small pipes and box culverts (VDOT, 2014) 

Defect Very Good Good Poor Very Poor 

Pipe 

Obstruction 

No obstructions that 

impede flow 

Less than or equal to 

25% diameter closed 

Greater than 25% of 

diameter closed 

Greater than or 

equal to 50% of 

diameter closed 

Pipe Joint Pipe inline and 

functioning as 

designed 

No separated or 

damaged joints 

Joint separation or 

mis-alignment is 

visible from the pipe 

opening 

Joint separation with 

joint exposed 

Pipe Erosion No erosion at pipe 

end.  

Less than or equal to 

2 feet deep erosion 

within 1 foot of 

outfall 

Greater than 2 feet 

deep erosion within 

1 foot of outfall.  No 

undermining of pipe 

end 

Greater than 2 feet 

deep erosion and 

pipe end is 

undermining 

Pipe 

Vegetation 

N/A No vegetation 

impacting flow 

N/A Vegetation is 

affecting the flow of 

water 

End Wall N/A End walls and end 

section intact or free 

of damage 

End walls or end 

section intact with 

minor separation or 

misalignment.  

End walls or end 

section damaged, 

separated or missing 

 

Table 11 - Condition descriptions for under drains and edge drains (VDOT, 2014) 

Defect Very Good Good Poor Very Poor 

Drain Outlet No damage or 

deterioration to 

outlet pipe 

Under drain pipes 

intact 

Damage or 

deterioration to 

outlet pipe that 

effects flow 

Outlet pipe damaged 

or deteriorated. Non-

functioning 

Drain 

Obstruction 

No blockage Less than or equal to 

10% blockage of the 

diameter or end 

protection 

More than 10% 

blockage of the 

diameter or end 

protection 

More than or equal 

to 25% blockage of 

the diameter or end 

protection 

End 

Protection 

End protection intact Damaged but 

functioning end 

protection 

Wire mesh missing Damaged non-

functioning end 

protection 
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3.2.1 Spatial Interpolation of Weather and Traffic Data 

Since traffic data was in the form of a shapefile, ESRI’s ArcGIS spatial join tool 

was utilized to extract traffic features at the location of the case study road segments. In 

addition, to extend known measurements of weather parameters (accessible at the location 

of weather stations) to roadway segments where no measurements were taken, a spatial 

interpolation technique was required. Global interpolation (trend surfaces and regression 

models), local interpolation (Thiessen polygons, inverse distance weighting, splines), 

geostatistical methods (simple kriging, ordinary kriging, block kriging, directional kriging, 

universal kriging, and co-kriging), and mixed methods (combined global, local and 

geostatistical methods) are common methods of spatial interpolation for weather 

parameters (Vicente-Serrano et al., 2003). Ordinary kriging was leveraged to interpolate 

the value of each weather feature on the considered road segments because of its proven 

performance in interpolating weather features (da Silva et al., 2019; Frazier et al., 2016; 

Plouffe et al., 2015). 

Ordinary kriging uses the core idea that observations in neighboring locations are 

more related than those of farther ones. In this algorithm, based on the observed values of 

a certain parameter in several points, the parameter is interpolated and calculated at 

unobserved points. For this purpose, spatial autocorrelation is assessed and represented by 

semivariogram and statistical functions are utilized to fit the model autocorrelations and 

the semivariogram. Ordinary kriging, with minimum variance, is an unbiased interpolation 

method that considers statistical relationships and autocorrelations between the observed 

points (de Amorim Borges et al., 2016). In that way, this algorithm uses a linear 

combination of observed values for interpolation purposes, as shown in Equation 1. 
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�̂�(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖) ;      ∑ 𝜆𝑖 = 1

𝑛

𝑖=1

𝑛

𝑖=1

           
(1) 

 

Where �̂�(𝑠0) is the interpolated value at location 𝑠0, 𝜆𝑖; i=1,…,n are linear 

coefficients and 𝑍(𝑠𝑖) i=1,…n are observations at locations 𝑠𝑖. Moreover, the estimator in 

ordinary kriging is unbiased, that means the predicted value at the location 𝑠𝑖 is equal to 

the observed value at that location, as shown in Equation 2. 

𝐸[�̂�(𝑠0)] = 𝐸[𝑍(𝑠0)]     (2) 

  

Additionally, to interpolate the values at unobserved points, the variance of the 

prediction error, as shown in Equation 3, should be minimized. 

 

𝑀𝑖𝑛 {𝑣𝑎𝑟[∑ 𝜆𝑖𝑍(𝑠𝑖) − 𝑧(𝑠0)]

𝑛

𝑖=1

}     
(3) 

 

3.3 Density Estimation of Defects 

Kernel Density Estimation (KDE) is a common tool in developing risk maps in 

different fields. For example, KDE has been widely used in transforming historical forest 

fire data into a smooth and continuous 2-D surface that shows high-risk areas to wildfires 

(Kuter et al., 2018). In addition, KDE is a common tool in analyzing road traffic accidents 

and providing associated risk-maps for the transportation management sector. Space-time 

plots additionally rely on KDE in finding hotspots of the probable accidents (Rahman et 

al., 2018).  
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DOTs annually inspect only a portion of roads as the representative of all parts of 

roadways. They usually divide roads into inspection units (i.e., segments) and randomly 

select a subset of segments for the annual inspection. Therefore, a complete set of historical 

data for all years of inspections is usually unavailable on each road segment. ،To augment 

the available inspection data, the KDE was used to generate a continuous distribution of 

the density of defects for all segments of the case study in each year based on the sampled 

inspections, as shown in Figure 4. The location of the observed defects is shown in Figure 

4(a), and the corresponding densities of defects are presented in Figure 4(b). The lowest 

density of defects is displayed with dark blue color, and the highest densities are colored 

in darker red. The KDE provides the distribution of the defect densities per unit area, which 

corresponds to the probability of occurrence of a particular defect. As a result, the term 

“Risk Score (RS)” was used for representing the outcome of the KDE in this study. By 

placing a kernel over each observation and summing all individual kernels over each point, 

the distribution of density is achievable (T. K. Anderson, 2009). Equation 4 shows the 

density estimation in a two-dimensional space using KDE. 

 

𝑓(𝑥, 𝑦) =
1

𝑛ℎ2
∑ 𝐾

𝑛

𝑖=1

(
𝑑𝑖

ℎ
) (4) 

 

Where f(x,y) is the density estimation at the location (x,y); n is the number of points 

or observations; h is the kernel bandwidth; K is the kernel weight function; and di is the 

distance between the location (x,y) and the ith point or observation. In Equation 4, selecting 

kernel bandwidth is a subjective task (T. K. Anderson, 2009; Thakali et al., 2015). 
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However, several recommendations are available in the literature, such as Silverman’s rule-

of-thumb (Silverman, 1986), or selecting a bandwidth equal to 9 times the median of the 

nearest neighbor distances between the considered points (Chainey et al., 2013). Both 

methods were used in the case study, and the estimations for the bandwidth were 4.93 and 

1.25 miles for the Silverman and nearest-neighbor-based methods, respectively. Finally, 

the average of these values was utilized in the analysis, and the kernel bandwidth was 

chosen as 3.1 Miles (5 Kilometers).  

 

 

Figure 4 - (a) Spatial distribution of observed defects on paved ditches (b) Corresponding 

Risk Scores (RSs) of defects based on KDE analysis 

 

After preparing the complete set of RSs of different defects for the six considered 

nearby assets an input dataset was created that contained all predictors (i.e. weather, traffic, 

maintenance, and RSs for all segments). Figure 5 presents the concept of the prediction 

proposed in this study. Figure 5 shows that the combination of weather, traffic, and 

maintenance for one year, as well as the prior year RSs of paved ditches and all other 

considered neighboring assets are used as the inputs to predict a particular defect’s RS in 

the next year (Year2). 
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Figure 5 - Schematic procedure of predicting Risk Scores (RSs) at segmenti (a) 

Transformation of RSs in a fiscal year (b) Proposed prediction framework 

 

For example, in this concept, to predict the RS of erosion on paved ditches at the 

end of FY2017, weather, traffic, and maintenance in FY2017, RSs of paved ditch’s erosion, 

obstruction, and cracking at the end of FY2016, and RSs of neighboring asset types at the 

end of FY2016 would be the inputs. Accordingly, the series of inputs for all of the 

considered fiscal years were created, and then the machine learning component was used 

for predicting the RSs of paved ditches under the three selected defects.   

Before using the input dataset in building prediction models, it needs to be cleaned 

from records containing non-logical transition of RSs during a fiscal year. In this study, a 

non-logical record refers to a segment that encountered a decreasing trend in its risk score 

in a fiscal year without performing any corrective maintenance on the segment in that year. 
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It means that based on the observed data, sometimes defects densities in some areas might 

decrease. However, a corrective maintenance might not be recorded in those areas, which 

is not logical. In order to select the corresponding corrective maintenance that fixes a 

certain defect, different maintenance types, as shown in Table 5, were considered. To this 

end, M_72223 and M_72224 were chosen as the corrective maintenance tasks performed 

to repair erosion and cracking on paved ditches. However, M_70141 and M_70142 were 

also taken into account as corrective maintenance tasks for fixing obstructions. Therefore, 

the filter was performed based on the selected corrective maintenance tasks and the 

decreasing trend of RSs on each segment. Finally, the non-logical records were filtered, 

and the remaining data were used in developing prediction models. 

Figure 6 illustrates the spatial distribution of segments with logical data of erosion 

RSs in different fiscal years. According to this figure, the remained segments almost cover 

all parts of the case study roadways and only two segments were completely removed from 

the input dataset after performing the filter. Figure 7 shows the remained segments in the 

filtered dataset for developing prediction models for obstruction RS. As shown in this 

figure, remained segments covered all parts of the case study roadways and no segment 

was removed after applying the filter. Furthermore, Figure 8 presents the filtered segments 

for building the prediction model for cracking RSs. With respect to the figure, all segments 

were remained after conducting the considered filter. 



36 

 

 

Figure 6 – Spatial distribution of remaining segments after filtering non-logical 

records for developing prediction model for erosion RS 
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Figure 7 – Spatial distribution of segments after filtering non-logical records for 

developing prediction model for obstruction RS 
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Figure 8 – Spatial distribution of segments after filtering non-logical records for 

developing prediction model for cracking RS 
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3.4 Preprocessing Data 

Before developing machine learning-based prediction models, the data needs to be 

preprocessed and get ready for the next step. The preprocessing component of the 

framework contains three different modules. In the first module and as an attempt to 

remove the potential bias in the results, the input data were normalized using a min-max 

scaler (Aksoy et al., 2001). The utilized scaler linearly maps the continuous features of the 

input dataset (i.e., weather, traffic, and RSs) into a new continuous space between 0 and 1. 

This scaler was applied to each one of the continuous features separately.  

In the next module, the multicollinearity in the input dataset was removed. 

Multicollinearity refers to a scenario in which high correlations among multiple features of 

a dataset are observed, which could potentially bias the outcomes (Yoo et al., 2014). In this 

framework, the multicollinearity was removed using a correlational investigation. The 

considered feature space is a mixed dataset consisting of both continuous and categorical 

(e.g., historical maintenance) features. Therefore, the feature reduction in this framework 

is performed in three steps. Firstly, the correlation between continuous features was 

measured. To do so, the features with absolute Pearson correlation coefficients greater than 

0.9 were grouped and each group was represented with only one feature (Bujang et al., 

2017; Yoo et al., 2014). Next, the Chi-square test was used to examine the correlation 

among categorical features. Any pair of features with a p-value larger than 0.05 was 

considered highly correlated and represented with one of them. Ultimately, the dependence 

between the reduced continuous and categorical spaces was investigated using the point-

biserial correlation coefficient. The attributes with a correlation bigger than 0.9 were 

grouped and only one feature was considered as the representative of the groups. 
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In order to validate the prediction models, the data is split into training and testing 

sets. Next, prediction models are trained using the training set. Then, the testing set is 

utilized in measuring the performance of the model on unseen data. To this end, 60% of 

the data was used to develop the prediction model and the remaining 40% of the data was 

utilized to assess the performance of the developed model. Figure 9 further illustrates the 

training and testing process of model preparation.  

 

 

Figure 9 - Splitting data into training and testing sets, model training, and model 

validation processes 
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3.5 Predictive Modeling 

A series of ML algorithms were used to predict risk scores, given the reduced 

feature inputs. Multiple ML-based linear and nonlinear models were used to find the best 

fit for the case study and also to run a comparative analysis. To this end, three linear models 

were selected: Multivariate Linear Regression (MLR), Regularized Regression using 

Ridge (RR), and Regularized Regression using Lasso (RL). In the nonlinear category, five 

models were considered:  Support Vector Regression (SVR), Artificial Neural Network 

(ANN), and decision tree-based algorithms including Decision Tree (DT), Adaptive 

Boosting (ADB), and Random Forest Regression (RFR). A brief introduction over each 

one of the models is provided below. 

 

3.5.1 Linear regression 

3.5.1.1 Multivariate Linear Regression 

Multivariate Linear Regression (MLR) is a supervised ML algorithm that models 

the relationship between one response variable and two or more explanatory variables. This 

technique fits a linear equation to the observed data points and provides information about 

correlations between dependent and independent variables. The first goal in most ML 

techniques is to develop a hypothesis (model) to predict a dependent variable (prediction) 

based on k independent variables (predictors). Therefore, a set of observations is used to 

develop the hypothesis of the MLR model that can be presented as Equation 5: 

 

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑘𝑥𝑘  (5) 



42 

 

 

Where ℎ𝜃(𝑥) is the prediction model, 𝑥𝑖’s are the predictors, 𝜃0 is the intercept, 

and 𝜃𝑖 ′𝑠 are regression coefficients. In the MLR model, the cost function defined in 

Equation 6 should be minimized, so that the coefficients can be found: 

 

𝐽(𝜃) =
1

2𝑛
∑(𝑦𝑖 − 𝜃0 − ∑ 𝑥𝑖𝑗𝜃𝑗

𝑘

𝑗=1

)2

𝑛

𝑖=1

 (6) 

 

3.5.1.2 Regularized Linear Regression 

Given the interpretability and simplicity of the MLR method, it was widely used to 

build prediction models in different fields (Immaneni et al., 2009; Leggetter et al., 1994; 

Yuan et al., 2007). However, sometimes multicollinearity leads to bias and inaccuracy 

within results. Therefore, filtering independent variables, a.k.a. dimension reduction, and 

feature selection were proposed to overcome this problem (Yuan et al., 2007). Furthermore, 

similar to other ML techniques, overfitting is still a possibility in MLR. Overfitting is a 

situation where the prediction model extremely corresponds to the input data that makes 

the model inapplicable to fit unseen datasets, which leads to providing unreliable results 

when new data is used. Therefore, research studies suggested some methods for mitigating 

multicollinearity and overfitting issues in MLR, such as regularized regression techniques. 

Regularization is a method that minimizes overfitting in regression models by penalizing 

and shrinking regression coefficients. To this end, Regularized Ridge (RR) and 

Regularized Lasso (RL) are two famous regularization techniques that were vastly used in 

the literature (Friedman et al., 2001) that result in removing irrelevant features in the RL 
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and decreasing weights of these features in the RR. An L2 penalty term is added to the cost 

function of MLR in the RR regression. The corresponding cost function in this algorithm 

is shown in Equation 7: 

 

𝐽(𝜃) =
1

2𝑛
[∑(𝑦𝑖 − 𝜃0 − ∑ 𝑥𝑖𝑗𝜃𝑗

𝑘

𝑗=1

)2

𝑛

𝑖=1

+ 𝜆 ∑ 𝜃𝑗
2

𝑘

𝑗=1

]  (7) 

 

 

On the other hand, in the LR technique, an L1 penalty term is added to the MLR 

cost function, as shown in Equation 8: 

 

𝐽(𝜃) =
1

2𝑛
[∑(𝑦𝑖 − 𝜃0 − ∑ 𝑥𝑖𝑗𝜃𝑗

𝑘

𝑗=1

)2

𝑛

𝑖=1

+ 𝜆 ∑‖𝜃𝑗‖

𝑘

𝑗=1

]  (8) 

 

In the proposed framework of this study, the aforementioned linear models, i.e. 

MLR, RR, and LR were compared to investigate their performance in the problem. 

 

3.5.2 Nonlinear regression 

Linear models are not always capable of capturing the relationship between 

dependent and independent variables. In such cases, nonlinear regression techniques are 

used in developing prediction models. In the proposed framework, some of the most 
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famous nonlinear algorithms were leveraged that were widely used in various fields of 

studies.  

 

3.5.2.1 Support Vector Regression 

Support Vector Regression (SVR) is one of the nonlinear ML algorithms whose 

success in different fields has been highlighted in the literature (Clarke et al., 2005). In a 

nonlinear SVR, a kernel transformation function is used to map predictors (xi) to a new 

high-dimensional space. Then, the optimal function f(x) is introduced to represent the 

relationship between the prediction (y) and predictors in the transformed space. The most 

popular kernel functions that are used to map predictors are linear, polynomial, and 

gaussian kernels, shown in Equations 9 to 11, respectively. 

 

Linear kernel:                      𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗  (9) 

Polynomial kernel:              𝐾(𝑥𝑖, 𝑥𝑗) = (1 + 𝑥𝑖
𝑇𝑥𝑗)𝑑 (10) 

Gaussian kernel (RBF):      𝐾(𝑥𝑖, 𝑥𝑗) = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ) (11) 

 

In the abovementioned equations, 𝑥𝑖 and 𝑥𝑗 are predictors vector spaces, 𝜎 is the 

variance, and 𝑑 is the polynomial’s dimension (Wu et al., 2009). In this study, all three 

kernel functions were used in the SVR algorithm and the results were reported for the most 

accurate one in terms of risk scores (RSs) predictions. 
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3.5.2.2 Artificial Neural Networks 

Artificial Neural Network (ANN) is another ML algorithm that has been used in 

capturing complicated relationships and patterns among datasets. The architecture of the 

neural network is a major part of creating an ANN model. To this end, Multi-Layer 

Perceptron (MLP) is a vastly used architecture in the literature of regression models (Cohen 

et al., 2003; Yilmaz et al., 2011). In the MLP-ANN model, linear combinations of the 

outputs from each layer nodes are used to produce the inputs for each perceptron in the 

next layer and, finally, the prediction for the dependent variable (y) in the output layer. The 

vector of inputs in this model is described as Equation 12 (Rynkiewicz, 2012). 

 

𝑥 = (𝑥(1), … , 𝑥(𝑑))𝑇 ∈ ℝ𝑑 (12) 

 

Wherein, x is the input’s vector and d is the number of vectors in the layer. The 

parameter vector for hidden layer i can be presented by Equation 13. 

 

𝑤𝑖 = (𝑤𝑖1, … , 𝑤𝑖𝑑)𝑇 ∈ ℝ𝑑 (13) 

 

Therefore, the Multilayer Perceptron (MLP) for k hidden layers can be written as 

Equation 14. 

𝑓𝜃(𝑥) =  𝛽 + ∑ 𝑎𝑖∅(𝑤𝑖
𝑇𝑥 + 𝑏𝑖)

𝑘

𝑖=1

 (14) 
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With 𝜃 = (𝛽, 𝑎1, … , 𝑎𝑘, 𝑏1, … , 𝑏𝑘, 𝑤11, … , 𝑤1𝑑, … , 𝑤𝑘1, … , 𝑤𝑘𝑑) as the parameter 

vector of the model and ∅ the bounded transfer function which is usually a sigmoidal 

function. In an MLP regression model, Equation 14 is used as the regression function. 

Hence, all parameters are calculated based on Equation 15. 

 

𝑌 = 𝑓𝜃(𝑥) + 𝜀 (15) 

 

Where Y is the prediction vector. The MLP regression algorithm was used in this 

study and Figure 10 shows the utilized MLP architecture. In this figure, the input layer 

contains 34 predictors that are the contributors to the reduced feature space (weather, 

traffic, maintenance, and RSs). 

 

 

Figure 10 – ANN-MLP structure used in the study 
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3.5.2.3 Decision Tree Regression 

Decision Tree Regression (DTR) is another algorithm that is considered in this 

study. Due to its intelligibility and simplicity, DTR is among the most popular ML 

techniques (Tso et al., 2007). In this method, a decision-tree is established with a series of 

simple rules utilized to split the input dataset into two parts at each node of the tree, as 

shown in Figure 11. By repetitive process of splitting the data, the desired outcome can be 

predicted at the final layer of the tree (Tso et al., 2007). The DTR was used for developing 

a prediction model with the maximum depth of each branch of the tree being set as eight. 

 

 

Figure 11 – A decision tree with four layers of depth 

 

3.5.2.4 Adaptive Boosting  

The idea of combining a set of weak regressors for building a high-performing 

model was introduced as ensemble learning. In this technique, more than one regressor is 

trained, each of which contributes to the final result (Schapire, 2003). In addition, the 

boosting technique is used to decrease the error of the combination of the constituent 
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models. In this study, Adaptive Boosting (ADB) which is a famous boosting ensemble 

method was used. This algorithm decreases training errors during the process of learning 

from the mistakes of sequentially trained constituent models (Karabulut et al., 2014). A 

decision tree with a maximum depth of five as the base constituent model was utilized in 

ADB to build a high-performing prediction model using 100 decision trees.  

 

3.5.2.5 Random Forest Regression 

Finally, another ML method named Random Forest Regression (RFR) was used to 

predict future risk scores. The excellent performance of this technique made it a widely 

used method in developing prediction models (Yaseen et al., 2019). The RFR works based 

on constructing several decision trees using the bootstrap resampling method. The outcome 

of the produced decision trees provides the final result by either a voting or averaging 

approach. Figure 12 shows the general structure of the RFR technique. High stability of 

the procedure used in RFR has resulted in better performance and prediction accuracy 

while avoiding overfitting compared to other ML methods such as Artificial Neural 

Network (ANN) (Breiman, 2001; W.-c. Wang et al., 2015; Yaseen et al., 2019).  
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Figure 12 – General structure of a Random Forest Regression (RFR) model 

 

3.6 Model Validation 

Two common problematic cases might happen when a machine learning model is 

developed: underfitting and overfitting. These problems describe the degree to which the 

model corresponds to a particular set of data (i.e., training set) and the level it might fail to 

fit unseen data (i.e. the data that is not used in the training process of the model) (Friedman 

et al., 2001; Hawkins, 2004; Srivastava et al., 2014). Underfitting refers to a situation that 

the model is incapable to provide acceptable accuracy in predictions within both training 

and testing datasets. In that case, the model has not learned enough from the data, besides 

training and testing errors are high and the model outcomes are unreliable. In contrast, 

overfitting means that the model corresponds too closely to the training dataset but is 

unable to accurately make predictions for unseen data. Hence, model errors in the training 

set are low however the model provides predictions with high errors in the scope of the 

testing set.  
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To detect underfitting and overfitting problems of a machine learning model, 

several metrics are addressed in the literature and are commonly used in research studies. 

For a regression problem which is the case in this study, quantitative metrics that represent 

the level of errors are utilized to detect underfitting. To this end, the R-squared value 

between observations and predictions (R2) and Root Mean Squared Error (RMSE) are two 

famous parameters that are vastly used in regression analysis (Lambourne et al., 2010; 

Thanassoulis, 1993). The greater R2 and the less RMSE show more accurate predictions. 

Therefore, these metrics were used to qualify developed prediction models in terms of the 

underfitting problem.  

To find out if a model is overfitted to the training set, k-fold cross-validation is a 

common method proposed in the literature (Browne, 2000). K-fold cross-validation is a 

process to assess and validate the performance of the models on unseen data. In this 

procedure, the dataset is divided into two parts: training and testing sets. Then, after 

building the model based on the training set, its performance is calculated using the test 

set. The procedure is performed k times and the average score of them is used as the cross-

validation score. Figure 13 illustrates the k-fold cross-validation process. This method was 

used to evaluate developed machine learning models in terms of overfitting and five was 

considered as the number of folds (k) in this study. 
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Figure 13 – K-fold cross-validation process 

 

3.7 Model Selection and Implementation 

3.7.1 Comparative Study and Model Selection 

After developing prediction models based on the eight considered ML algorithms, 

a comparative study is performed to select the algorithm that provides the best fit to the 

dataset. To do so, first, the metrics that present the accuracy of predictions in training and 

testing sets utilizing all considered algorithms are compared. To better compare the models, 

the bias and variance of their predictions are also taken into consideration. Bias refers to 

the difference between prediction and actual observation values. Hence, the bias identifies 

how far off the model predictions are from the correct values. Figure 14 schematically 

illustrates the meaning of low and high bias for the prediction values of a model. In addition 

to bias, the variance of the prediction values is important when a model is developed. As it 

is shown in Figure 14, variance denotes how much the distance between predictions and 

actual values varies. A low-bias low-variance model is interpreted as a model that provides 

not only close predictions to the actual values but also a consistent level of accuracy in all 

prediction values (Suen et al., 2005). In other words, the model is not only accurate but 
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also precise (Berardi et al., 2003). With respect to this, all developed prediction models are 

compared, and the best model is selected. 

 

 

Figure 14 - Bias and variance of a prediction model (Ferrante et al., 2009) 

 

3.7.2 Model Implementation 

After developing and validating prediction models and selecting the best option, 

the next step is dedicated to utilizing the prediction capabilities that the model offers in the 

decision making process. To this end, the outcomes of the model will be used in preparing 

risk maps and finding the hotspot of defects over the considered roadways in the next year. 

Therefore, in this section, the performance of the models in their implementation will be 

investigated. 

 To do so, three scenarios were taken into account as shown in Figure 15. This 

figure shows that the size of the training set was incrementally increased to measure the 
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impact of data availability in developing models. In the first scenario, the data of RSs at 

the end of FY2015, FY2016, and FY2017 as well as all contributing factors in FY2016 and 

FY2017 are utilized to build the prediction model. It is worth mentioning that the data is 

first split into training and testing sets and all validation procedures and comparative study 

are performed in identifying the best model. Then, the model is used to predict RSs in 

FY2018 when RSs at the end of FY2017 and contributing factors in FY2018 are the inputs 

of the model. Later on, R2 and RMSE are used to assess the accuracy of predictions 

considering the actual observations of RSs at the end of FY2018. This process is repeated 

in scenario2 by adding the data of FY2018 in building the prediction model and then testing 

the model performance with FY2019. Finally, in scenario3 another year of data is added to 

build the model, and predictions are evaluated for FY2020. 

The process of adding a new year of data for model development and testing its 

performance on unseen data in the next year helps to monitor the model performance and 

the trend of its prediction capability to capture all possible variations of contributing factors 

in the case study region and being trained thoroughly.  
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Figure 15 - Scenarios utilized to assess the selected model performance in its 

implementation 

 

3.8 Web-based Spatial Visualization 

A Geographical Information System (GIS) is a framework that enables practitioners 

and researchers to gather, manage, and analyze data. GIS integrates various types of data 

and provides spatial data analysis tools accompanied with visualization capabilities by 

organizing layers of information into usable maps (Bolstad, 2016). Given these 

capabilities, GIS reveals deeper insights into data and helps to make maps that highlight 

patterns, relationships, and situations which ultimately results in smart decisions in 

different fields.  

ESRI’s ArcGIS is the most commonly used GIS application for working with 

geographical data (i.e. the data containing the location attributes). Therefore, it was utilized 
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in this study not only for spatial analysis like KDE and ordinary kriging but also for 

visualization purposes. In ArcGIS, geographical data are stored as shapefiles that contain 

the geometric location and attribute information of each feature. In addition, features are 

represented by points, lines, or polygons that are connected to an attributed table including 

all corresponding information.  

In order to visualize the results of RSs and other attributes of the considered asset 

items, the data including required features and the coordinates of asset items were imported 

into the ArcGIS and converted to shapefiles. Therefore, in this study, ArcGIS was used as 

a data repository to store all attributes of the considered asset items. Then, ArcGIS 

visualization tools were deployed to come up with illustrative maps. Furthermore, since 

the web-based version of ArcGIS (i.e. ArcGIS-Online) facilitates cloud-based data sharing 

and also provides compelling data visualization tools for building maps, it was used as a 

platform for interactive presentations. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

 

This section provides the results that were accomplished by applying the proposed 

framework to the selected case study. In this chapter, the results of calculating risk scores 

utilizing KDE are presented first. Then, in the section prepared for scaling data, the 

variation of the scaled feature space is illustrated. Next, correlations in the feature space 

are visualized and the process of removing multicollinearity in the extent of the case study 

data is explained. Later on, the results of the developed prediction models are presented 

and compared. Afterward, the implementation of the model is discussed, and the results 

are highlighted. Finally, spatial visualization in ArcGIS is presented. 

 

4.1 Density Estimation of Defects  

According to the proposed methodology, KDE was utilized to come up with a 

parameter (RS) that represents the density of defects in each segment of the considered 

roadways. Figure 16 provides the histogram of erosion RSs on paved ditches and the 

corresponding KDE results at the end of FY2015, FY2016, FY2017, FY2018, FY2019, 

and FY2020. Additionally, Figure 17 and Figure 18 provide the histogram and spatial 

distribution of RSs for obstruction and cracking, respectively. Similarly, the RSs of the 

considered defects were calculated on the selected nearby asset items (mentioned in Table 

12) at the end of FY2015 to FY2020 to be used in the prediction.  
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Figure 16 - Histograms and spatial distributions of erosion RSs in different years of 

inspection (a) FY2015 (b) FY2016 (c) FY2017 (d) FY2018 (e) FY2019 (f) FY2020 
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Figure 16 (continued) - Histograms and spatial distributions of erosion RSs in different 

years of inspection (a) FY2015 (b) FY2016 (c) FY2017 (d) FY2018 (e) FY2019 (f) 

FY2020 
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Figure 17 - Histograms and spatial distributions of obstruction RSs in different years of 

inspection (a) FY2015 (b) FY2016 (c) FY2017 (d) FY2018 (e) FY2019 (f) FY2020 
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Figure 17 (continued) - Histograms and spatial distributions of obstruction RSs in 

different years of inspection (a) FY2015 (b) FY2016 (c) FY2017 (d) FY2018 (e) FY2019 

(f) FY2020 
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Figure 18 - Histograms and spatial distributions of cracking RSs in different years of 

inspection (a) FY2015 (b) FY2016 (c) FY2017 (d) FY2018 (e) FY2019 (f) FY2020 
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Figure 18 (continued) - Histograms and spatial distributions of cracking RSs in different 

years of inspection (a) FY2015 (b) FY2016 (c) FY2017 (d) FY2018 (e) FY2019 (f) 

FY2020 
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4.2 Scaling Data 

The considered contributing factors to the degradation of roadway assets in this 

study have different ranges and measurement units. Figure 19 provides a series of boxplots 

that visualize the different variations among continuous features. Later on, the min-max 

scaler was used to map all features to a range between 0 to 1 to prevent potential future 

biases of outcomes. Figure 20 shows the boxplots of the scaled features considered in this 

study. 

 

Figure 19 - Boxplots of continuous features (a) traffic features (b) temperature features 

(c) precipitation features (d) weather features measured with days 
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Figure 20 - Boxplots of scaled features 

 

4.3 Removing Multicollinearity 

To detect and remove multicollinearity, the correlations inside the input feature 

space were investigated. Figure 21 provides the pairwise absolute Pearson Correlation 

between continuous features. This figure shows that traffic attributes (ADT, AAWDT, 

ADT_4, ADT_BU, ADT_TR, ADT_1, ADT_2, and ADT_3) are highly correlated (i.e., their 

pairwise absolute Pearson correlation is greater than 0.9). Therefore, the continuous feature 

space was reduced by keeping ADT as the sole representative of traffic features. 

Furthermore, TMAXMIN and DWTMXN30 are also highly correlated, as shown in Figure 

21. Hence, only TMAXMIN was kept and DWTMXN30 was removed from the feature 

space. 
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Figure 21 - Absolute Pearson correlation matrix of continuous features 

 

Table 13 provides the chi-square test results, or in other words, the dependencies 

among categorical features. The results show that M_71152 and M_72224 are highly 

correlated (i.e., the corresponding p-value is greater than 0.05). Therefore, only M_72224, 

M_70141, M_70142, and M_72223 were kept and M-71152 was removed for future 

analysis. 
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Table 13 - Pairwise Chi-square correlation test results for categorical features 

 M_71152 M_70141 M_70142 M_72223 M_72224 

M_71152 N/A 9.08x10-219 6.60x10-147 1.04x10-05 5.22x10-02 

M_70141 9.08x10-219 N/A 0.00 9.14x10-260 8.26x10-25 

M_70142 6.60x10-147 0.00 N/A 7.22x10-159 1.99x10-42 

M_72223 1.04x10-05 9.14x10-260 7.22x10-159 N/A 0.00 

M_72224 5.22x10-02 8.26x10-25 1.99x10-42 0.00 N/A 

 

Finally, Figure 22 presents the absolute point-biserial correlation coefficients 

between remaining categorical and continuous features. According to the results, none of 

the features are highly correlated and all features can be considered independent.  

 

 

Figure 22 - Absolute point-biserial correlation matrix between continuous and categorical 

features 
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4.4 Prediction Models 

After reducing feature space and removing multicollinearity, the selected ML 

algorithms were used to predict RSs of erosion, obstruction, and cracking on paved ditches. 

The results of the models for erosion, obstruction, and cracking RSs are presented in Figure 

23, Figure 24, and Figure 25, respectively. In these figures, the obtained coefficient of 

determination (R2), adjusted coefficient of determination (R2
adj), and the Root Mean Square 

Error (RMSE) are reported. In addition, the observed vs. predicted Risk Score (RS) values 

in all considered algorithms are visualized. Besides, Table 14 provides scores of the 

developed prediction model (i.e., their R2) using machine learning algorithms in training 

and testing sets for three considered defects on paved ditches. This table is utilized to 

investigate the underfitting problem of the developed models. As it is shown in this table, 

linear models (i.e., multilinear regression, Ridge, and Lasso) in all cases provided low 

scores both in training and testing sets. Therefore, the models were incapable of capturing 

the patterns and relationships between contributors and the prediction. Consequently, this 

result was interpreted as the nonlinearity in relationships and the need for nonlinear models 

to capture the relations by learning within the extent of the considered data. Moreover, 

higher scores of nonlinear models in Table 14 attested to the interpretation.  
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Table 14 - Scores of the considered models in training and testing sets 

Utilized ML algorithm 

Erosion Obstruction Cracking 

Training Testing Training Testing Training Testing 

Multivariate Linear Regression 0.642 0.652 0.515 0.516 0.317 0.330 

Regularized Linear Regression | Ridge 0.641 0.651 0.515 0.516 0.316 0.330 

Regularized Linear Regression | Lasso 0.600 0.602 0.479 0.481 0.127 0.150 

Support Vector Regression 0.845 0.852 0.871 0.872 -2.575 -2.638 

Artificial Neural Network 0.968 0.969 0.982 0.982 0.919 0.911 

Decision Tree 0.918 0.918 0.886 0.881 0.951 0.942 

Adaptive Boosting 0.926 0.927 0.876 0.877 0.493 0.477 

Random Forest Regression 0.999 0.997 0.999 0.997 0.999 0.996 
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Figure 23 - Observed versus predicted erosion RSs using considered algorithms on the 

testing set 
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Figure 24 - Observed versus predicted obstruction RSs using considered algorithms on 

the testing set 
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Figure 25 - Observed versus predicted cracking RSs using considered algorithms on the 

testing set 
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Additionally, a summary of the accuracy metrics for the corresponding prediction 

models is provided in Figure 26. The result of k-fold cross-validation is also reported in 

Table 15. In this table, for each ML algorithm, the minimum and maximum scores in the 

five folds of training and testing sets are provided. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 26 - Comparison of models’ accuracy metrics on testing set (a) prediction models 

for erosion RSs (b) prediction models for obstruction RSs (c) prediction models for 

cracking RSs 
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Table 15 - Results of cross-validation scores for all considered ML algorithms 

Algorithm 

Erosion Obstruction Cracking 

Min 

Score 

Max 

Score 

Min 

Score 

Max 

Score 

Min 

Score 

Max 

Score 

Multivariate Linear Regression 0.614 0.672 0.480 0.546 0.285 0.350 

Regularized Linear Regression | Ridge 0.615 0.67 0.481 0.546 0.286 0.349 

Regularized Linear Regression | Lasso 0.583 0.623 0.453 0.502 0.103 0.162 

Support Vector Regression 0.834 0.865 0.873 0.877 -2.997 -2.224 

Artificial Neural Network 0.973 0.984 0.984 0.990 0.914 0.937 

Decision Tree 0.893 0.927 0.829 0.891 0.933 0.963 

Adaptive Boosting 0.919 0.939 0.872 0.910 0.390 0.624 

Random Forest Regression 0.996 0.999 0.998 0.999 0.997 0.999 

 

The results unveiled that in all cases, the RFR provided more accurate outcomes 

with respect to R2 and RMSE values. Additionally, Figures 27 to 28 reveal that the predicted 

values using RFR are very close to the observed values in the considered dataset. 

Moreover, the RFR cross-validation scores show the narrow range of scores in all five folds 

of validation, which can be interpreted as the lack of overfitting, and further confirms the 

significant performance of RFR on unseen data. Therefore, given the fact that all 

measurements pointed out the RFR as the best model for the considered case study, the 

RFR was selected for further analyzing and discussing the results.  

One of the best attributes of RFR is its capability in calculating the contribution 

(i.e., importance) of each feature in the regression by providing a metric called importance 
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score. To measure the importance of each contributing factor, most methods rely on the 

decrease in the accuracy when a permutation to a specific feature is performed. In this 

approach, when a feature is permuted, its original relationship within the decision trees 

(shown in Figure 12) with the final output is disturbed. Therefore, using the permuted 

feature along with the other non-permuted features might result in a decrease in the 

accuracy of predictions. This descent in accuracy is believed to be a realistic way of finding 

the importance of each feature. The more accuracy decrease can be interpreted as more 

contribution of that feature into regression (Strobl et al., 2007). This metric was used here 

to measure the importance of the considered features in the regression analysis. With 

utilizing RFR, the main goal is to let the model decide the most significant contributors 

among the wide range of potential candidates that were included in the framework, instead 

of subjectively selecting them beforehand. In this way, the important contributors might 

vary from asset to asset, which shows that the proposed framework respects the difference 

among the different highway assets’ nature.  

The importance of each considered contributing factor was investigated to interpret 

their contribution to the regression with the aforementioned attribute of RFR. Figure 27 

provides the obtained results in erosion, obstruction, and cracking predictions. This figure 

shows that paved ditch erosion RS in the prior year, the erosion of neighboring unpaved 

ditches, and maximum annual daily temperature (TMAX) contributed the most to the 

predicted erosion RS. In addition, the importance of the annual average of daily max-min 

temperature difference (TMAXMIN) and the number of freezing days (DWT32) are 

considerable. The results confirm the interrelations between nearby assets and their 

importance on one another’s conditions. More importantly, the outcomes also highlight the 
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higher contribution of short-term precipitation factors (e.g. EMXP: the maximum daily 

precipitation, and EMSD: the maximum annual daily snow) in the erosion of paved ditches 

in comparison to the long-term average annual precipitation (i.e. PRCP and SNOW). 

Finally, the results underline the slight contribution of two of the maintenance works 

(M_72223: Concrete Patching / Repair and M_70142: Machine cleaning) in erosion RS of 

paved ditches out of the considered maintenance tasks.  

Similarly, the importance of contributing factors in the prediction model of 

obstruction RSs on paved ditches was investigated. According to Figure 27, like erosion, 

the maximum annual daily temperature (TMAX) has a bold contribution to the values of 

obstruction RSs calculated by the model. Also, the contribution of the number of freezing 

days (DWT32), the annual average of daily max-min temperature difference (TMAXMIN), 

and total annual snow depth were significant. Furthermore, in this case, long-term 

precipitation features (i.e. PRCP and SNOW) had more contribution in predicting 

obstruction RSs compared to the short-term precipitation features (EMSD and EMXP). In 

addition, the contribution of the prior year drain outlet defect (RS_prior_UED_D1) in the 

vicinity of paved ditches was bold. The reason for this contribution could be attributed to 

the downstream blockage resulted from defected under drains and edge drains outlet and 

settlement of debris and obstruction in the upstream ditches. The figure also highlights the 

contribution of the condition of other neighboring assets, such as erosion on unpaved 

ditches and lower-slope issue on slopes on calculating paved ditch obstruction RSs.  

Figure 27(c) reveals that TMAX and TMAXMIN that represent the temperature 

features and correspond to temperature harshness in a region contributed significantly in 

predicted cracking RSs. Besides, the next rank belongs to EMXP which is a short-term 
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precipitation feature. This figure also unveils the importance of prior year cracking, 

erosion, and obstruction RSs in the next year cracking RSs on paved ditches. Ultimately, 

the results show that the condition of nearby assets contributed to the predicted RSs as well. 

It is worth mentioning that the contribution of traffic (ADT) in all three considered defects 

RSs is low, which seems rational.  
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 (a) 

 

 (b) 

 

 (c) 

 

Figure 27 - Importance feature scores in the RFR model for predicting RSs of defects (a) 

erosion (b) obstruction (c) cracking 
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4.5 Model Implementation 

With respect to the scenarios introduced in Figure 15, the performance of the 

prediction models in forecasting RSs of erosion, obstruction, and cracking on paved ditches 

was investigated and the results are provided in this section. 

 

4.5.1 Erosion Prediction 

Figure 28 illustrates R2 and RMSE-scaled values for prediction models developed 

for RSs of erosion on paved ditches based on the scenarios explained in the methodology 

(section 4.6.2). Since the range of RS values in different years are not equal, to come up 

with a comparable metric for residuals, RMSE values were scaled based on the range of 

RSs in the corresponding year. Hence, RMSE-scaled in each year was calculated by 

dividing RMSE value by the range of RSs (i.e. maximum-minimum difference). As it is 

shown, the trend of R2 values is increasing while that of RSME is decreasing. It shows that 

adding a new year of data to the training set of scenario1 improved the accuracy of the 

predictions in scenario2 and this trend continues for scenario3 that reached the value of 

0.65 for R2. The improvement looks more significant given that adding only two years of 

data in the training process improved R2 from -1.1 to 0.65.  

Figure 29 displays the spatial distribution of erosion RSs that provides a 

comparison between observed and predicted RSs at the end of FY2020. As shown in this 

figure, the locations of higher RSs are almost the same in two cases. However, to better 

compare observation and prediction values, Figure 30 illustrates the longitudinal profile of 

erosion RSs on case study roadways. In this figure, the match between the majority of 
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observed and predicted RSs peaks is obvious. To quantify the match, Figure 31 shows the 

percentage of points that are similar when a threshold is assumed for defining hotspot and 

coldspot of defects. The threshold is calculated based on the Jenks method that clusters 

points into similar groups in terms of their attributes (North, 2009). Hence, the threshold is 

identified based on the similarity between datapoints instead of selecting it subjectively. In 

Figure 31, the value of RSs is considered to cluster datapoints and calculating the threshold 

(as shown 0.3 in the figure). As it is shown, the percentage of the match between 

observation and prediction was 81.9 percent which shows good accuracy in predicting the 

location of hotspots. 

 

 

Figure 28 - Accuracy metrics of prediction model for RS of erosion on paved ditches (a) 

R-squared (b) Scaled Root Mean Squared Error 
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Figure 29 - RSs of erosion on paved ditches at the end of FY2020 (a) observation (b) 

prediction 

 

 

Figure 30 - Longitudinal distribution of RSs of erosion on paved ditches all over case 

study roadways at the end of FY2020 

 

 

Figure 31 - Match percentage of observed versus predicted RSs of erosion on paved 

ditches at the end of FY2020 
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4.5.2 Obstruction Prediction 

Like erosion, the developed models for obstruction RSs in three considered 

scenarios were assessed. Figure 32 illustrates the accuracy metrics of the models in 

scenarios 1 to 3. As it is shown, like erosion, predictions for obstruction were improved 

when an additional year of data has been used in the training process. Moreover, the R2 of 

predictions after adding two years changed from -0.24 to a value of 0.7 at the end of 

FY2020. Figure 33 illustrates the spatial distribution of obstruction RSs in two cases of 

observed and predicted values. Again, like erosion, the location of higher obstruction RSs 

in those two cases are almost similar. Furthermore, Figure 34 better present the similarity 

between observations and predictions. Finally, Figure 35 presents the match between actual 

and forecasted hotspots and coldspots as 96.2 percent. 

 

 

Figure 32 - Accuracy metrics of prediction model for RS of obstruction on paved ditches 

(a) R-squared (b) Scaled Root Mean Squared Error 
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Figure 33 - RSs of cracking on paved ditches at the end of FY2020 (a) observation (b) 

prediction 

 

 

Figure 34 - Longitudinal distribution of RSs of obstruction on paved ditches all over case 

study roadways at the end of FY2020 

 

 

Figure 35 - Match percentage of observed versus predicted RSs of obstruction on paved 

ditches at the end of FY2020 
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4.5.3 Cracking Prediction 

For cracking, the trend of improvement in the accuracies by adding years of new 

data in the training process was still increasing. However, the trend had a slighter slope 

compared to erosion and obstruction cases. As shown in Figure 36, The R2 of the scenario3 

for cracking was 0.25 which is much less than that of erosion and obstruction cases. 

Although the prediction model in scenario3 had low accuracy in terms of its R2 value it 

provides a reasonable prediction of hotspots of cracking as shown in Figures 37 and 38. 

The results show that the percentage of the match between observed and forecasted 

cracking hotspots and coldspots was 96.1 percent, as shown in Figure 39. 

 

 

Figure 36 - Accuracy metrics of prediction model for RS of cracking on paved ditches (a) 

R-squared (b) Scaled Root Mean Squared Error 
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Figure 37 - RSs of erosion on paved ditches at the end of FY2020 (a) observation (b) 

prediction 

 

 

Figure 38 - Longitudinal distribution of RSs of cracking on paved ditches all over case 

study roadways at the end of FY2020 

 

 

Figure 39 - Match percentage of observed versus predicted RSs of cracking on paved 

ditches at the end of FY2020 
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4.6 Web-based Spatial Visualization 

In order to spatially visualizing the results of RSs and other attributes of the 

considered asset items in roadway segments, ArcGIS was deployed. Figures 40 to 43 

present produced maps from ArcGIS to show the distribution of multiple contributing 

factors in the case study. Such that, Figure 40 shows the annual minimum daily temperature 

in FY2017, Figure 41 presents the number of freezing days in FY2016, Figure 42 illustrates 

total annual snow depth in FY2018, and Figure 43 reveals total annual precipitation depth 

in FY2019. Furthermore, the location of machine cleaning works in FY2018 is highlighted 

in Figure 44. Moreover, the ArcGIS was utilized to produce the map of risk scores in 

different years. To this end, Figure 45 is an example of illustrating erosion RSs on paved 

ditches in 2015. 

 

 

Figure 40 – Annual minimum daily temperature (o F) in FY2017 over the case study 
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Figure 41 – Number of freezing days in FY2016 over the case study 

 

 

Figure 42 – Total annual snow depth (inch) in FY2018 over the case study 
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Figure 43 – Total annual precipitation depth (inch) in FY2019 over the case study 

 

 

Figure 44 – Location of maintenance with code 70142 (machine cleaning) in FY2018 

over the case study 
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Figure 45 – Risk scores of erosion on paved ditches in 2015 over the case study 

 

ArcGIS Online was also utilized for presentation purposes. Appendix A illustrates 

how the shapefiles containing geographical locations and all attributes of asset items 

(weather, traffic, inspection, maintenance, risk scores) were imported into the ArcGIS 

Online environment. As specified in this appendix, first all created shapefiles were added 

to ArcGIS Online. Then, they were added to the map viewer that provides interactive 

visualization and presentation capabilities. All attributes of each point are accessible 

through the attribute table of this asset type or by clicking on that point, as shown in Figure 

46. In addition, visualizing the spatial distribution of each attribute can be fulfilled by 

selecting and changing the options for visualization, as presented in Appendix A.  
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CHAPTER 5: CONCLUSION 

 

 

This study provides a framework for a multi-asset hotspot prediction model that 

points out the susceptibility of road segments to a set of selected defects. It is empowered 

by combining a risk factor generator (Kernel Density Estimation) and a machine learning 

algorithm selected from a pool of candidates to provide the most accurate results. This 

combination enables the proposed framework to predict the probability of future defects 

given a wide range of historical information, including weather, traffic, and historical 

inspection and maintenance data. 

The proposed framework provided significant accuracy in the extent of the case 

study data for forecasting the risk scores of erosion, obstruction, and cracking on paved 

ditches based on real observations. The outcomes corroborated the interrelation between 

adjacent assets and their contribution to future defects. For instance, the contribution of 

outlet defects of the downstream under drains and edge drains on the obstruction on 

upstream paved ditches was unveiled. As another example, the contribution of the prior 

year erosion on unpaved ditches and lower-slope issue on slopes in the next year erosion 

on paved ditches was revealed.  

The comparative study showed that the hotspot prediction in the extent of the case 

study followed a nonlinear pattern, with Random Forest Regression (RFR) being the most 

accurate algorithm in this problem. The already proven performance of RFR in unbalanced 

data with categorical features resulted in its outperforming other selected linear and 

nonlinear algorithms in the case study. Not only its performance in terms of R2 was the 
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most accurate among the selected algorithms, but also the variation among the residuals 

was the least, which further corroborates it being the best fit.   

Even though the proposed framework is a multi-asset risk score predictor, it 

respects the different essence of each selected asset and investigates the impact of 

contributors on different asset types appropriately. For example, the findings of this study 

show that while prior year erosion on paved ditches contributed the most to the predicted 

erosion, obstruction predictions were mostly influenced by the annual maximum 

temperature feature. The methodology also identified the annual average min-max daily 

temperature difference and annual maximum daily temperature as the most influential 

parameters in predicting next year's cracking, which makes sense. Furthermore, evidence 

of maintenance impacting both erosion and obstruction was identified in the results despite 

its negligible influence on cracking.  

The efficiency of the developed prediction models was also investigated in a way 

that they will be deployed by agencies to forecast RSs. The results unveiled that adding 

one year of data to the training dataset increases the accuracy of the predictions and this 

trend continues by feeding more years of data when the model is trained. Therefore, after 

a few years, the model is capable to capture possible scenarios of the variation of each 

contributing factor in the region of the case study and to provide reliable predictions. 

This study provides highway asset managers with a method to predict and explore 

parts of roadways that are prone to a certain defect. Hence, agencies can plan and prioritize 

maintenance activities based on the outcomes of the models. Furthermore, the proposed 

methodology substitutes the independent investigation of each asset’s deterioration with 

an integrated estimator of defects’ probability for various assets. Therefore, this study can 
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be leveraged to provide a holistic view of the future condition of a roadway system in terms 

of probable defects of multiple asset types. Consequently, it has the potential of benefiting 

risk mitigation plans for the whole highway infrastructure. In addition, the framework can 

be used in locating the segments with higher risk assessments in terms of multiple defects. 

As a result, maintenance plans can be enriched by such information and be optimized 

accordingly. Moreover, the proposed framework can be applied to other linear or network 

infrastructures such as sewers, water networks, and railroads. 

The proposed framework also helps agencies to prioritize their future inspections 

with more concentration on the locations with a higher probability of defects. 

Consequently, after a few years, more data will be available in susceptible parts of 

roadways and accurate maintenance decisions can be made utilizing more available data. 

By providing prediction models considering several contributors to the degradation, 

the outcome of this study can be utilized as a tool to examine different scenarios of future 

variation of the contributors. For example, what-if analysis can be performed to find out 

what are the impacts of temperature increase resulted from climate change in a region. 

Furthermore, the implications of variations in traffic patterns resulted from urban 

developments, and their impacts on RSs can be investigated by using the developed 

prediction models. 

 

5.1 Limitations of Study and Recommendations for Future Works 

As a limitation of this study, only five years of inputs were used, and six asset types 

were considered due to data availability issues. However, the proposed framework does 
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not have any constraints on the scope of inputs. Therefore, it is suggested that future studies 

consider applying the methodology on other road assets and cover a more extended scope 

of time. Besides, the time period of available data (five years) might not be long enough to 

contain the most probable range of variation for each contributing factor in the region of 

study. Hence, it is recommended to investigate the minimum time period of historical data 

required for thoroughly training the model to capture the possible variation of contributing 

factors in each region.  

In this study, due to the limitations in available data, some of the characteristics of 

assets such as their size and age were not considered in developing prediction models. 

Since the characteristics of assets are believed to impact their degradation trend, it is 

recommended to take into consideration these factors in forecasting risk scores of defects 

as a future research study. Also, the characteristics of the soils on which or inside which 

road assets are built or installed directly impact the condition of the assets, however, the 

data were not accessible in this study. Therefore, considering the characteristics of soil 

layers at the location of assets is suggested for future investigations of prediction models. 

Furthermore, the parameters that represent the topography of each region (e.g. slope of 

roadways) can be added to the set of potential contributors in future studies. 

Data-driven prediction models are built upon the historical data and are valid within 

the variation range of the constructive features. Hence, their forecasting performance 

outside this scope might be questionable. In this study, a data-driven approach was 

provided to come up with prediction models based on historical weather, traffic, condition, 

and maintenance data. Since the models were built based on the trends and patterns inside 

the input dataset during the considered timeframe (i.e. five years), changing patterns and 
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trends in future results in forecasts utilizing extrapolations. Changing traffic patterns, and 

climate change in the future are two examples of this scenario. Recently, weather extremes 

such as floods, tropical cyclones, heat waves, and heavy storms are becoming more intense 

and frequent compared to the past due to climate warming. Additionally, traffic patterns 

have changed recently due to the COVID-19 pandemic. Therefore, it is recommended to 

investigate how the change of patterns inside the feature space might impact the accuracy 

of the proposed framework and examine how to incorporate this change into predictions. 

Also, integrating expert opinions and knowledge-based judgments into the prediction stage 

for improving the accuracy of forecasts can be examined when future variations of the 

features are different from the historical data. 

In this study, eight machine learning algorithms were proposed to develop 

prediction models in two main groups: linear and non-linear regression. Sometimes, these 

algorithms are clearly interpretable and users can simply explain how they work, how they 

produce forecasts, and what are the most influential parameters. Linear regression is an 

example of this category of algorithms known as white-box models. However, some 

machine learning algorithms, such as ANN, are more complicated to understand and 

interpret. These kinds of algorithms are known as black-box models. Since the 

interpretation of the model helps practitioners to better understand the impact of each 

feature on the prediction results, white-box models gained more attention and deployed 

widely in the industry. However, sometimes black-box models outperform white-box 

algorithms, hence, an investigation on the trade-off between the accuracy and 

interpretability of the models is recommended for future studies. 
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The results of this study unveiled that Random Forest Regression (RFR) provided 

the highest accuracy in the case study problem when most of the Risk Scores (RSs) were 

small values or zero. Other techniques are also utilized in the same cases such as Zero-

inflated Poisson regression. Hence, examining the performance of these algorithms is 

recommended in a future study. 

  



96 

 

REFERENCES 

 

 

AASHTO. (2011). AASHTO transportation asset management guide: A focus on 

implementation. Washington D.C.: AASHTO. 

Abaza, K. A. (2017). Empirical Markovian-based models for rehabilitated pavement 

performance used in a life cycle analysis approach. Structure and Infrastructure 

Engineering, 13(5), 625-636.  

Aksoy, S., & Haralick, R. M. (2001). Feature normalization and likelihood-based similarity 

measures for image retrieval. Pattern recognition letters, 22(5), 563-582.  

Al-Mansour, A. I., Sinha, K. C., & Kuczek, T. (1994). Effects of routine maintenance on 

flexible pavement condition. Journal of Transportation Engineering, 120(1), 65-

73.  

Anderson, C. J., Claman, D., & Mantilla, R. (2015). Iowa’s bridge and highway climate 

change and extreme weather vulnerability assessment pilot.  

Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road 

accident hotspots. Accident Analysis & Prevention, 41(3), 359-364.  

Anyala, M., Odoki, J., & Baker, C. (2014). Hierarchical asphalt pavement deterioration 

model for climate impact studies. International Journal of Pavement Engineering, 

15(3), 251-266.  

Bannour, A., El Omari, M., Lakhal, E. K., Afechkar, M., Benamar, A., & Joubert, P. 

(2017). Optimization of the maintenance strategies of roads in Morocco: calibration 

study of the degradations models of the highway development and management 



97 

 

(HDM-4) for flexible pavements. International Journal of Pavement Engineering, 

1-10.  

Berardi, V. L., & Zhang, G. P. (2003). An empirical investigation of bias and variance in 

time series forecasting: modeling considerations and error evaluation. IEEE 

Transactions on Neural Networks, 14(3), 668-679.  

Bolstad, P. (2016). GIS fundamentals: A first text on geographic information systems: Eider 

(PressMinnesota). 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. 

doi:10.1023/A:1010933404324 

Browne, M. W. (2000). Cross-validation methods. Journal of mathematical psychology, 

44(1), 108-132.  

Bujang, M. A., Sa’at, N., & Bakar, T. M. I. T. A. (2017). Determination of minimum 

sample size requirement for multiple linear regression and analysis of covariance 

based on experimental and non-experimental studies. Epidemiology, Biostatistics 

and Public Health, 14(3).  

Chainey, S., & Ratcliffe, J. (2013). GIS and crime mapping: John Wiley & Sons. 

Chen, & Liu, X. (2019). Roadway Asset Inspection Sampling Using High‐Dimensional 

Clustering and Locality‐Sensitivity Hashing. Computer‐Aided Civil and 

Infrastructure Engineering, 34(2), 116-129.  

Chen, D., Cavalline, T., Ogunro, V., & Thompson, D. (2014). Development and validation 

of pavement deterioration models and analysis weight factors for the NCDOT 

pavement management system. Rep. No. FHWA/NC/2011-01, Federal Highway 

Administration (FHWA), Washington, DC.  



98 

 

Chen, D., & Mastin, N. (2016). Sigmoidal models for predicting pavement performance 

conditions. Journal of Performance of Constructed Facilities, 30(4), 04015078. 

doi:10.1061/(ASCE)CF.1943-5509.0000833 

Chimba, D., Emaasit, D., Allen, S., Hurst, B., & Nelson, M. (2014). Factors affecting 

median cable barrier crash frequency: new insights. Journal of Transportation 

Safety & Security, 6(1), 62-77.  

Chopra, T., Parida, M., Kwatra, N., & Chopra, P. (2018). Development of Pavement 

Distress Deterioration Prediction Models for Urban Road Network Using Genetic 

Programming. Advances in Civil Engineering, 2018.  

Choummanivong, L., & Martin, T. (2013). Probabilistic road deterioration model 

development (1925037290) 

Clarke, S. M., Griebsch, J. H., & Simpson, T. W. (2005). Analysis of support vector 

regression for approximation of complex engineering analyses.  

Coffey, S., & Park, S. (2016). Observational study on the pavement performance effects of 

shoulder rumble strip on shoulders. International Journal of Pavement Research 

and Technology, 9(4), 255-263.  

Cohen, S., & Intrator, N. (2003). A study of ensemble of hybrid networks with strong 

regularization. Paper presented at the International Workshop on Multiple 

Classifier Systems. 

Craig III, W. N., Sitzabee, W. E., Rasdorf, W. J., & Hummer, J. E. (2007). Statistical 

validation of the effect of lateral line location on pavement marking retroreflectivity 

degradation. Public Works Management & Policy, 12(2), 431-450.  



99 

 

da Silva, A. S. A., Stosic, B., Menezes, R. S. C., & Singh, V. P. (2019). Comparison of 

Interpolation Methods for Spatial Distribution of Monthly Precipitation in the State 

of Pernambuco, Brazil. Journal of Hydrologic Engineering, 24(3), 04018068.  

de Amorim Borges, P., Franke, J., da Anunciação, Y. M. T., Weiss, H., & Bernhofer, C. 

(2016). Comparison of spatial interpolation methods for the estimation of 

precipitation distribution in Distrito Federal, Brazil. Theoretical and applied 

climatology, 123(1-2), 335-348.  

Elwakil, E., Eweda, A., & Zayed, T. (2014). Modelling the effect of various factors on the 

condition of pavement marking. Structure and Infrastructure Engineering, 10(1), 

93-105.  

Erdogan, S. (2009). Explorative spatial analysis of traffic accident statistics and road 

mortality among the provinces of Turkey. Journal of safety research, 40(5), 341-

351.  

Ferrante, L., & Cameriere, R. (2009). Statistical methods to assess the reliability of 

measurements in the procedures for forensic age estimation. International journal 

of legal medicine, 123(4), 277-283.  

Ford, K. M., Arman, M., Labi, S., Sinha, K. C., Thompson, P., Shirole, A., & Li, Z. (2012). 

Estimating Life Expectancies of Highway Assets - Volume 2: Final Report  

Forsyth, R. A., Wells, G. K., & Woodstrom, J. H. (1987). Economic impact of pavement 

subsurface drainage. 

Frazier, A. G., Giambelluca, T. W., Diaz, H. F., & Needham, H. L. (2016). Comparison of 

geostatistical approaches to spatially interpolate month‐year rainfall for the 

Hawaiian Islands. International Journal of Climatology, 36(3), 1459-1470.  



100 

 

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 

1): Springer series in statistics New York. 

FTA. (2004). Risk analysis methodologies and procedures. Washington DC.  

Gao, L., Aguiar-Moya, J. P., & Zhang, Z. (2012). Bayesian analysis of heterogeneity in 

modeling of pavement fatigue cracking. Journal of Computing in Civil 

Engineering, 26(1), 37-43. doi:10.1061/(ASCE)CP.1943-5487.0000114 

Gaull, B., Michael‐Leiba, M., & Rynn, J. (1990). Probabilistic earthquake risk maps of 

Australia. Australian Journal of Earth Sciences, 37(2), 169-187.  

Ghabchi, R., Zaman, M., Khoury, N., Kazmee, H., & Solanki, P. (2013). Effect of gradation 

and source properties on stability and drainability of aggregate bases: a laboratory 

and field study. International Journal of Pavement Engineering, 14(3), 274-290.  

Haimes, Y. Y. (2005). Risk modeling, assessment, and management (Vol. 40): John Wiley 

& Sons. 

Halmen, C., Trejo, D., & Folliard, K. (2008). Service Life of Corroding Galvanized 

Culverts Embedded in Controlled Low-Strength Materials. Journal of Materials in 

Civil Engineering, 20(5), 366-374. doi:10.1061/(ASCE)0899-

1561(2008)20:5(366) 

Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information and 

computer sciences, 44(1), 1-12.  

Henning, T. F., Alabaster, D., Arnold, G., & Liu, W. (2014). Relationship between traffic 

loading and environmental factors and low-volume road deterioration. 

Transportation Research Record, 2433(1), 100-107.  



101 

 

Hong, F., & Prozzi, J. A. (2010). Roughness model accounting for heterogeneity based on 

in-service pavement performance data. Journal of Transportation Engineering, 

136(3), 205-213.  

Hunt, R. E. (1992). Slope failure risk mapping for highways: methodology and case 

history. Transportation Research Record(1343).  

Immaneni, V. P., Hummer, J. E., Rasdorf, W. J., Harris, E. A., & Yeom, C. (2009). 

Synthesis of sign deterioration rates across the United States. Journal of 

Transportation Engineering, 135(3), 94-103. doi:10.1061/(ASCE)0733-

947X(2009)135:3(94) 

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 

31(8), 651-666.  

Karabulut, E. M., & Ibrikci, T. (2014). Analysis of cardiotocogram data for fetal distress 

determination by decision tree based adaptive boosting approach. Journal of 

Computer and Communications, 2(9), 32-37.  

Karimzadeh, A., Sabeti, S., Burde, A., Tabkhi, H., & Shoghli, O. (2020). Spatial-Temporal 

Deterioration of Multiple Highway Assets: A Correlational Study. Paper presented 

at the ASCE Construction Research Congress (CRC) - 2020, Tempe, Arizona.  

Karimzadeh, A., Sabeti, S., & Shoghli, O. (2020). Clustering-based Similarity Detection 

of Pavement Segments Considering Multiple Contributors to Deterioration. Paper 

presented at the ASCE Construction Research Congress (CRC-2020), Tempe, 

Arizona.  

Karimzadeh, A., Sabeti, S., Tabkhi, H., & Shoghli, O. (2020). Condition Prediction of 

Highway Assets Based on Spatial Proximity and Interrelations of Asset Classes: A 



102 

 

Case Study. Paper presented at the 37th International Symposium on Automation 

and Robotics in Construction (ISARC), Kitakyshu, Japan.  

Karimzadeh, A., & Shoghli, O. (2020). Predictive Analytics for Roadway Maintenance: A 

Review of Current Models, Challenges, and Opportunities. Civil Engineering 

Journal, 6(3), 602-625.  

Karlaftis, A. G., & Badr, A. (2015). Predicting asphalt pavement crack initiation following 

rehabilitation treatments. Transportation Research Part C: Emerging 

Technologies, 55, 510-517.  

Kuter, N., & Kuter, S. (2018). Investigation of wildfire at forested landscapes: A novel 

contribution to nonparametric density mapping at regional scale. Applied Ecology 

and Environmental Research, 16(4), 4701-4716.  

Labi, S., & Sinha, K. C. (2003). Measures of short-term effectiveness of highway pavement 

maintenance. Journal of Transportation Engineering, 129(6), 673-683.  

Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on 

cognitive task performance: a meta-regression analysis. Brain research, 1341, 12-

24.  

Leggetter, C., & Woodland, P. C. (1994). Speaker adaptation of continuous density HMMs 

using multivariate linear regression. Paper presented at the Third International 

Conference on Spoken Language Processing. 

Lin, Y. C., Paul, A., Corotis, R. B., & Liel, A. B. (2015). Framework methodology for risk-

based decision making for transportation agencies. ASCE-ASME Journal of Risk 

and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1(3), 

04015006.  



103 

 

Lu, D. (2020). Pavement Flooding Risk Assessment and Management in the Changing 

Climate.  

Luo, Z., & Chou, E. Y. (2006). Pavement condition prediction using clusterwise regression. 

Transportation Research Record, 1974(1), 70-77.  

Madaio, M., Chen, S.-T., Haimson, O. L., Zhang, W., Cheng, X., Hinds-Aldrich, M., . . . 

Dilkina, B. (2016). Firebird: Predicting fire risk and prioritizing fire inspections 

in Atlanta. Paper presented at the Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining. 

Malyuta, D. A. (2015). Analysis of Factors Affecting Pavement Markings and Pavement 

Marking Retroreflectivity in Tennessee Highways. University of Tennessee at 

Chattanooga.  

Markow, M. J. (2007). Managing selected transportation assets: Signals, lighting, signs, 

pavement markings, culverts, and sidewalks. Washington D.C.  

Massada, A. B., Radeloff, V. C., Stewart, S. I., & Hawbaker, T. J. (2009). Wildfire risk in 

the wildland–urban interface: a simulation study in northwestern Wisconsin. Forest 

Ecology and Management, 258(9), 1990-1999.  

Millington, J., Romero-Calcerrada, R., Wainwright, J., & Perry, G. (2008). An agent-based 

model of Mediterranean agricultural land-use/cover change for examining wildfire 

risk. Journal of Artificial Societies and Social Simulation, 11(4), 4.  

Mills, L. N. O., Attoh-Okine, N. O., & McNeil, S. (2012). Developing pavement 

performance models for Delaware. Transportation Research Record, 2304(1), 97-

103.  



104 

 

NASEM. (2019). Critical Issues in Transportation 2019. The National Academies of 

Science, Engineering & Medicine: The National Academies Press. 

North, M. A. (2009). A method for implementing a statistically significant number of data 

classes in the Jenks algorithm. Paper presented at the 2009 Sixth International 

Conference on Fuzzy Systems and Knowledge Discovery. 

Pantuso, A., Flintsch, G. W., Katicha, S. W., & Loprencipe, G. (2019). Development of 

network-level pavement deterioration curves using the linear empirical Bayes 

approach. International Journal of Pavement Engineering, 1-14.  

Plouffe, C. C., Robertson, C., & Chandrapala, L. (2015). Comparing interpolation 

techniques for monthly rainfall mapping using multiple evaluation criteria and 

auxiliary data sources: A case study of Sri Lanka. Environmental Modelling & 

Software, 67, 57-71.  

Proctor, G., & Varma, S. (2012). Risk-Based Transportation Asset Management: 

Evaluating Threats, Capitalizing on Opportunities: Report 1: Overview of Risk 

Management  

Prozzi, J. A., Serigos, P. A., Kim, M. Y., & Xu, H. (2017). Deterioration Modelling of 

Preventive Maintenance Treatments for Flexible Pavements  

Radopoulou, S. C., & Brilakis, I. (2016). Improving road asset condition monitoring. 

Transportation Research Procedia, 14(0), 3004-3012.  

Rahman, M. K., Crawford, T., & Schmidlin, T. W. (2018). Spatio-temporal analysis of 

road traffic accident fatality in Bangladesh integrating newspaper accounts and 

gridded population data. GeoJournal, 83(4), 645-661.  



105 

 

Ré, J., Miles, J., & Carlson, P. (2011). Analysis of in-service traffic sign retroreflectivity 

and deterioration rates in Texas. Transportation Research Record: Journal of the 

Transportation Research Board(2258), 88-94.  

Renn, O. (2008). Risk governance: coping with uncertainty in a complex world: Earthscan. 

Rynkiewicz, J. (2012). General bound of overfitting for MLP regression models. 

Neurocomputing, 90, 106-110.  

Saha, P., Ksaibati, K., & Atadero, R. (2017). Developing Pavement Distress Deterioration 

Models for Pavement Management System Using Markovian Probabilistic Process. 

Advances in Civil Engineering, 2017.  

Saliminejad, S., & Gharaibeh, N. G. (2016). Proximity-based outlier detection method for 

roadway infrastructure condition data. Journal of Computing in Civil Engineering, 

30(1), 04015001.  

Sanabria, N., Valentin, V., Bogus, S., Zhang, G., & Kalhor, E. (2017). Comparing Neural 

Networks and Ordered Probit Models for Forecasting Pavement Condition in New 

Mexico. Paper presented at the Transportation Research Board 96th Annual 

Meeting, Washington D.C.  

Schapire, R. E. (2003). The boosting approach to machine learning: An overview. In 

Nonlinear estimation and classification (pp. 149-171): Springer. 

Shoghli, O., & De La Garza, J. M. (2016). A Multi-Objective Decision-Making Approach 

for the Sustainable Maintenance of Roadways. In Construction Research Congress 

2016 (pp. 1424-1434). 

Shoghli, O., & De La Garza, J. M. (2017). Multi-Asset Optimization of Roadways Asset 

Maintenance. In Computing in Civil Engineering 2017 (pp. 297-305). 



106 

 

Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26): CRC 

press. 

Sitzabee, W. E., White, E. D., & Dowling, A. W. (2012). Degradation modeling of 

polyurea pavement markings. Public Works Management & Policy, 18(2), 185-

199.  

Sohn, J. (2006). Evaluating the significance of highway network links under the flood 

damage: An accessibility approach. Transportation research part A: policy and 

practice, 40(6), 491-506.  

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). 

Dropout: a simple way to prevent neural networks from overfitting. The journal of 

machine learning research, 15(1), 1929-1958.  

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest 

variable importance measures: Illustrations, sources and a solution. BMC 

bioinformatics, 8(1), 25.  

Suen, Y. L., Melville, P., & Mooney, R. J. (2005). Combining bias and variance reduction 

techniques for regression trees. Paper presented at the European Conference on 

Machine Learning. 

Sugar, C. A., & James, G. M. (2003). Finding the number of clusters in a dataset: An 

information-theoretic approach. Journal of the American Statistical Association, 

98(463), 750-763.  

Swargam, N. (2004). Development of a neural network approach for the assessment of the 

performance of traffic sign retroreflectivity. ( M.S. Thesis), Lousiana State 

University, Civil and Environmental Engineering, Baton Rouge, LA.  



107 

 

Thakali, L., Kwon, T. J., & Fu, L. (2015). Identification of crash hotspots using kernel 

density estimation and kriging methods: a comparison. Journal of Modern 

Transportation, 23(2), 93-106.  

Thanassoulis, E. (1993). A comparison of regression analysis and data envelopment 

analysis as alternative methods for performance assessments. Journal of the 

operational research society, 44(11), 1129-1144.  

Tighe, S., He, Z., & Haas, R. (2001). Environmental deterioration model for flexible 

pavement design: an Ontario example. Transportation Research Record, 1755(1), 

81-89.  

Titus-Glover, L. (2019). Unsupervised extraction of patterns and trends within highway 

systems condition attributes data. Advanced Engineering Informatics, 42, 100990.  

Toole, T., Martin, T., Roberts, J., Kadar, P., & Byrne, M. (2007). Guide to asset 

management part 5H: performance modelling. 

Tso, G. K., & Yau, K. K. (2007). Predicting electricity energy consumption: A comparison 

of regression analysis, decision tree and neural networks. Energy, 32(9), 1761-

1768.  

VDOT. (2014). Bundled Interstate Maintenance Services (BIMS): Instructions, Asset and 

Activity Codes for Reports Manual 

https://www.bidnet.com/bneattachments?/563874634.pdf 

Vicente-Serrano, S. M., Saz-Sánchez, M. A., & Cuadrat, J. M. (2003). Comparative 

analysis of interpolation methods in the middle Ebro Valley (Spain): application to 

annual precipitation and temperature. Climate research, 24(2), 161-180.  

https://www.bidnet.com/bneattachments?/563874634.pdf


108 

 

Wang, C., Wang, Z., & Tsai, Y.-C. (2016). Piecewise Multiple Linear Models for 

Pavement Marking Retroreflectivity Prediction Under Effect of Winter Weather 

Events. Transportation Research Record: Journal of the Transportation Research 

Board(2551), 52-61.  

Wang, H., & Wang, Z. (2017). Deterministic and probabilistic life-cycle cost analysis of 

pavement overlays with different pre-overlay conditions. Road Materials and 

Pavement Design, 1-16.  

Wang, J., & Wang, X. (2011). An ontology-based traffic accident risk mapping framework. 

Paper presented at the International Symposium on Spatial and Temporal 

Databases. 

Wang, W.-c., Chau, K.-w., Qiu, L., & Chen, Y.-b. (2015). Improving forecasting accuracy 

of medium and long-term runoff using artificial neural network based on EEMD 

decomposition. Environmental research, 139, 46-54.  

Wolters, A. S., & Zimmerman, K. A. (2010). Current practices in pavement performance 

modeling project 08-03 (C07): task 4 report final summary of findings  

Wright, L., Chinowsky, P., Strzepek, K., Jones, R., Streeter, R., Smith, J. B., . . . Perkins, 

W. (2012). Estimated effects of climate change on flood vulnerability of US 

bridges. Mitigation and Adaptation Strategies for Global Change, 17(8), 939-955.  

Wu, C.-H., Tzeng, G.-H., & Lin, R.-H. (2009). A Novel hybrid genetic algorithm for kernel 

function and parameter optimization in support vector regression. Expert Systems 

with Applications, 36(3), 4725-4735.  



109 

 

Yacout, S., & Ouali, M. S. (2019). Using Artificial Intelligence for Block Maintenance of 

Pavement Segments with Similar Degradation Profile. Paper presented at the 2019 

Annual Reliability and Maintainability Symposium (RAMS). 

Yang, S.-I., Frangopol, D. M., & Neves, L. C. (2004). Service life prediction of structural 

systems using lifetime functions with emphasis on bridges. Reliability Engineering 

& System Safety, 86(1), 39-51.  

Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2019). An enhanced extreme 

learning machine model for river flow forecasting: State-of-the-art, practical 

applications in water resource engineering area and future research direction. 

Journal of Hydrology, 569, 387-408.  

Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS 

models for prediction of swell potential of clayey soils. Expert Systems with 

Applications, 38(5), 5958-5966.  

Yoo, W., Mayberry, R., Bae, S., Singh, K., He, Q. P., & Lillard Jr, J. W. (2014). A study 

of effects of multicollinearity in the multivariable analysis. International journal of 

applied science and technology, 4(5), 9.  

Yuan, M., Ekici, A., Lu, Z., & Monteiro, R. (2007). Dimension reduction and coefficient 

estimation in multivariate linear regression. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology), 69(3), 329-346.  

Zhu, A. X., Lu, G., Liu, J., Qin, C. Z., & Zhou, C. (2018). Spatial prediction based on Third 

Law of Geography. Annals of GIS, 24(4), 225-240.  

 

  



110 

 

APPENDIX A: IMPORTING AND VISUALIZING DATA IN ARCGIS 

ONLINE  

 

 

In this appendix, the process of importing asset items data into ArcGIS online is 

provided in Figure A1. In addition, visualization process of the imported data is shown in 

Figure A2. After importing all shapefiles, Figure A3 shows an example of how the asset 

items are visualized in ArcGIS Online. In this figure, data points belonging to the paved 

ditch asset type are shown. Besides, the environment is equipped with a tool to select a 

base map as the background of the visualizations, as shown in Figure A3. Moreover, 

visualizing the spatial distribution of each attribute of each point can be fulfilled by 

selecting and changing the options for visualization. Figure A4 represents the spatial 

distribution of erosion risk scores on paved ditches in 2015 all over the case study roadways 

using ArcGIS online. 
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