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ABSTRACT

NAVEEN KUMAR KODANDA PANI. Coordinated optimal control of smart
buildings and PV systems in active distribution networks. (Under the direction of

DR. LINQUAN BAI)

Driven by economic and environmental policies, there is an increase in distributed

energy resources (DER) penetration, such as wind farms and rooftop solar panels

in the electrical grid system. With advancement in smart technology such as smart

meters and smart inverters, the DERs are transforming the traditional consumers into

prosumers (Producers and Consumers) that can actively contribute to the power grid

operation by providing grid services. This work will investigate the grid management

and coordination strategies for distributed photovoltaics (PVs) and smart buildings

in distribution power networks.

This research includes two parts. The first part is to establish a centralized opti-

mization framework to effectively coordinate the operations of distributed PVs and

Heating, ventilation, and air conditioning (HVAC) unit in smart buildings in the

distribution network to minimize the total network losses. The proposed control

strategy has been compared with a basic thermostat control logic to demonstrate its

effectiveness.

The second part of this research proposes a distributed optimization approach to

coordinating distributed PVs and building aggregators. It is usually not feasible for a

system operator to directly model and control individual HVAC unit in each building

from the grid operation’s perspective. Also, the privacy concerns of the customers and

other parties in the network need to be considered. In this regard, a decentralized

optimization framework is proposed in this work for distributed PVs and building

aggregators. The optimization problem is divided as grid operations main problem

and aggregators sub-problem. A modified Benders decomposition algorithm is pro-

posed to solve the model. The objective of the main problem is to minimize the total
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network losses while maintaining the nodal voltage in the distribution network. The

sub-problem represents the operations of buildings. The objective of sub-problem is

to minimize the active power consumption by optimally operating the HVAC units

over a time period. The Lagrangian dual extracted from sub-problems is used to

update the main problem to converge to an optimal solution using the modified Ben-

ders decomposition algorithm which is based on the classical Benders decomposition

technique.

All the models have been implemented in MATLAB with YALMIP tool box and

solved using commercial solvers such as Gurobi or CPLEX to obtain the optimal so-

lutions. Case studies and comparisons have been conducted to verify the effectiveness

of the proposed models.
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CHAPTER 1: INTRODUCTION

In today’s modern world, electricity has become a necessity, like food and shelter

and is growing in importance. In our day-to-day life, the uses of electricity include

lighting, cooking, washing, heating and cooling, transportation, communication, ma-

chinery in industries, to name a few.

Electricity production follows the first law of thermodynamics (law of conservation

of energy) which states, "Energy can be transformed from one form to another, but

can be neither created nor destroyed". Hence electricity is a secondary energy source

as its production depends on the conversion of a primary energy from sources such as

coal, petroleum, natural gas, solar energy, wind energy, nuclear energy, or biomass.

Electricity, like other energy resources, cannot be stored efficiently except in small

amounts using devices such as lithium-ion batteries or converting it to another form

of energy to be later used, such as pumped-storage hydroelectricity or thermal energy.

Hence to meet the demand of consumers such as residential and industrial, the

suppliers should generate the required amount of electricity simultaneously in real-

time and use the electric grid to transmit it to its consumers.

1.1 Modern electric grid with distributed energy resources

An electric power grid is an interconnected network of generating stations, electric

substations, high voltage, and distribution power lines used for delivering electri-

cal power from producers to consumers. One significant benefit of electricity is its

long-distance transmission capability. Hence the electrical power is transmitted from

producers to consumers located at long distances using power lines.

Based on the size, electrical grids are classified ranging from a single building
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network to national grids and transnational grids. Yet the basic structure of buses

and flow lines remains the same in the electrical networks. A bus is a graphical node

representation in which electrical quantities such as voltage, current, and power flows

are evaluated whereas flow lines are lines connecting these buses or nodes that are

responsible for transferring the power flow.

Figure 1.1: Power transmission and distribution structure

The electrical network can be categorized as a transmission network or distribution

network depending on the function and voltage as shown in fig.1.1. The transmis-

sion networks are responsible for collecting the electric power from producers and

transferring it to electric substations at very high voltages to minimize the energy

loss due to the resistance and capacitance in the flow lines. The electric substation

then reduces the voltage magnitude (step down) and transfers the low voltage elec-

tric power to distribution networks whose responsibility is to deliver the electricity

to its customers. The distribution networks may include power generation sources
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such as small distributed power generators or energy storage devices to provide an

uninterrupted power supply.

Due to economic and environmental policies, there is an increase in distributed

energy resources (DERs) penetration, such as wind farms and rooftop solar panels

in the electrical grid system. These DERs produce a volatile situation which has

caused changes in electricity forecasts. To mitigate such issues, the Federal Energy

Regulatory Commission (FERC) introduced an Independent System Operator (ISO) a

neutral party responsible for the management and control of the electric transmission

grid in a state or a region. The roles of ISO include:

• Grid operation: Coordinate and direct the flow of electricity over the region’s

high voltage transmission systems to maintain safety and reliability.

• Market administration: Design, run, and oversee the markets where wholesale

electricity is brought and sold.

• Power system planning: Study, analyze, and plan to meet future electricity

needs.

Similarly, the Distribution System Operators (DSO) are responsible for the reliable

operation of power distribution network at low and medium voltages. The roles of

DSO include:

• Planning, maintenance, and network management.

• Manage power supply outages.

• Energy billing.

• Connection and disconnection and peak load management of DERs

To avoid firms from accessing the market power (monopoly), the ISO, which is a

neutral organization based on day-ahead forecasts, calls for price auctions. The firm’s
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marginal cost of production (System energy price) includes variable costs due to fuel

and the other variable operating and maintenance costs [1]. Based on the demand,

system energy prices, transmission congestion costs, and cost of marginal losses, the

Locational Marginal Price (LMP) is decided. The transmission congestion costs vary

based on peak demand. Congestion occurs when parts of the grid operate near their

limits and prevent the low priced energy from freely flowing to a specific region in the

grid [2].

The LMP represents the cost to buy and sell electric power to different locations

within the electricity market. The LMP is classified as day ahead and real-time LMPs.

Day ahead LMP represents the day ahead market that lets market participants to

buy and sell electricity a day before to avoid volatility and real-time LMPs represent

prices in real-time markets that let participants to buy and sell power during the day

of operation [3]. Figure 1.2 shows the variation in average day ahead and real time

LMPs [4].

Figure 1.2: Day ahead VS real-time LMP prices[4]

1.2 Impact of building energy consumption on environment

The rise in temperatures and global climate change has resulted in instances of a

rapid change in biodiversity within complex ecosystems. The industries play a larger

role in affecting sustainability on a global scale. The transportation and electricity

sectors account for more than 50% of total greenhouse gasses (GHG) emissions in
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the US. In 2018, with 26.9% of total GHG emissions, the energy industry stands

second, with fossil fuels contributing approximately 63% of total energy production.

With an increase in urbanization, electric vehicles (EVs), and electrification of heat-

ing equipment, power consumption has shown rapid growth. The increase in capacity

requirements promotes energy production from fossil fuels and natural gas. The com-

mercial and residential buildings account for 30-40% of total electricity consumption.

The air conditioning systems consume 48%, and lighting systems consume 24% of the

total power consumption in commercial buildings [5].

The building sector is a complex system that can improve energy efficiency and sus-

tainability by changing the patterns in which the lighting, heating, cooling, and smart

appliances operate [6]. This complex system hence needs an integrated approach to-

wards energy efficiency since various factors affect building energy consumption and

carbon footprint. This brings attention to looking at factors that play a key role

in building energy consumption simultaneously via a holistic energy model [7]. The

commercial building lighting and air conditioning system requirements depend on the

occupancy, devices used, and the materials used in the construction of the building.

The appropriate building design has the potential to save 30% of power when

compared to conventional buildings that offer the same level of comfort [8]. For com-

mercial building owners to incorporate smart technologies in building construction,

analysis of the impact of these technologies on energy savings, and carbon emission

reduction can provide a better insight [9]. Renewable energy resources can further

help in reducing GHG emissions and optimally control the energy consumption in

conventional buildings [10].

1.3 Optimal Power flow

The increasing trend in urbanization, EVs, and policies towards GHG emissions has

led to the integration of Variable Energy Resources (VER) such as large scale solar

and wind farms and DERs such as rooftop solar panels and energy storage into the
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power grid with smart technologies such as smart meters, smart appliances, sensors,

and control units to form smart grids with bidirectional flow of communication and

electric power between suppliers and consumers [11].

The introduction of smart meters has provided its customers with real-time data

to capture the patterns of electric energy usage. By implementing necessary control

strategies based on the communication between producers and consumers, the total

electric energy consumption can be reduced. DERs such as rooftop PVs has intro-

duced a new type of players into the electricity market called prosumers (producers

and consumers).

The two most important control parameters that define the electric demand are

voltage and line loss. To meet the total power demand at every node in the bus,

the necessary voltage magnitude has to be maintained. To achieve this there are

multiple ways. One such way is to control the reactive power by finding an optimal

way to maintain the voltage and deliver the required electric demand and this is called

Optimal Power Flow (OPF).

1.4 Motivation and background

Demand Response (DR) is an incentive approach that changes the electricity usage

by end-users from their regular consumption patterns to increase the power grid

operation efficiency [12]. Currently, both industries and educational institutes have

focused on the OPF of electric power in the power distribution networks, and this

thesis aims to formulate a model in the distribution network with the end consumers

to minimize the total operational cost for transmitting the electricity. Since the

patterns in both power production (VER’s) and consumption are variable, modeling

them to form an OPF model is a challenging task and energy storage requires high

initial investment costs. Hence the better option is to consume the variable power

from VERs on the spot as much as possible. Predictive control of Thermostatically

Controlled Loads (TCL) in buildings can be used to compensate for fluctuations
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in VERs power generation [13]. Hence this research uses TCL’s such as HVAC to

store the variation in solar energy harnessed using PVs. The operation of HVACs

depends on the status of HVAC (On/Off) represented as a binary variable (1-0).

The formulation of the OPF model with this binary variable makes the optimization

problem a Mixed Integer Non-Linear Programming (MINLP) model. Hence the use

of commercial solvers such as Gurobi or CPLEX to solve the MINLP problem in this

thesis.

1.5 Organization of thesis

This thesis is organized as follows. Chapter 2 provides a brief review related to the

concepts used in this thesis. In Chapter 3, a centralised model for optimal control

of building loads in a distribution network is introduced. Using the formulations

from Chapter 3 a distributed optimization model has been presented in Chapter 4

with the modified Benders decomposition algorithm, which is followed by chapter 5,

a case study for both the optimization models discussed in Chapter 3 and Chapter

4. Chapter 6 outlines the conclusion, where the thesis is summarized, and potential

future research directions are outlined.



CHAPTER 2: LITERATURE REVIEW

In this chapter, a review of the previous research in the optimal power flow models

of distribution networks, building thermal storage, and decomposition techniques are

discussed.

2.1 Centralized optimization

The policies towards GHG emissions and concerns related to global warming by

individuals have resulted in a drastic increase in the deployment of DERs, especially

solar PVs. Due to various factors affecting solar irradiation, such as cloud cover, shade,

location, and angle of inclination, the uncontrolled power generation variability has

imposed significant challenges to grid stability. An increase in solar penetration causes

voltage magnitude variations in the distribution network resulting in degradation of

power transformer life due to frequent changes in tap positions [14], [15].

The OPF problem is widely used in fields such as energy management, economic

dispatch, congestion management, demand response etc. The OPF models are non-

convex, non linear mathematical programs which are NP-hard and are constrained

by Kirchhoff’s laws. In order to obtain global solution, OPF models are modified and

solved as convex optimization problems. The relaxation of non convex constraints or

formulation of SOCP, dc power flow approximation are some of the methods used to

represent the OPF models as convex optimization problems [16].

The concept of energy storage in the form of thermal energy is demonstrated in

various pieces of literature. TCLs, such as HVACs, refrigerators, and electric water

heaters, can be used to store the electric power from PVs [13]. Using this concept, [17]

has demonstrated that power from PVs can be used to maintain the HVAC using a
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quadratic optimization method to optimally dispatch the HVAC power consumption

without violating the set temperatures of a room. The average load profile based on

outdoor temperature forecast can be used to control the HVAC units for multi-time

period load balancing [18].

With advancement in inverter based resources, the PV inverters have been used in

distribution networks which can contribute to the line loss minimization and faster

voltage regulation by optimally adjusting the active and reactive power outputs. The

smart inverters can have the apparent power capacity of 110% of its maximum active

power output, leaving 46% of its capacity for reactive power even at full real power

output [19]. The Volt-VAr control of IBRs can mitigate large voltage fluctuations

due to high penetrations of PV generation and the resulting reverse power flow. [19],

[20].

Several DR algorithms have been developed using the centralized optimization

framework to solve OPF models but since in the real world, one centralized authority

cannot control all the operations as there are third party companies operating at

different levels with different goals. The main advantage of centralized algorithms is

that they produce the best optimization result possible but need more computational

power in addition to stable network communications [21]. Also, in the centralized

optimization models the centralized authority has access to all the information related

to the companies involved in the DR response, which can violate the privacy policies

of these companies.

2.2 Decentralized optimization and Decomposition methods

The concept of decentralization (multi level optimization problem) structure has

been discussed in many literature to over come the drawbacks of the centralized

models. Lagrangian dual decomposition Alternating Direction Method of Multipliers

(ADMM) has been widely used to solve the bi-level (main and sub-problem) structure

[22], [23] but since this algorithm has low convergence and as it cannot handle discrete
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variables in sub-problems that are used to model binary constraints [24], ADMM can-

not be used in mixed-integer nonlinear program (MINLP) sub-problem models. To

handle integer sub-problems in two-stage stochastic programming, other algorithms

such as Ordinal Optimization (OO) theory can be used, which is a kind of statistical

optimization method that includes two primary principles: Order comparison instead

of value comparison and goal softening to find the optimal results [25]. OO provides

a good enough solution with high probability instead of best solution to reduce the

computation time [26]. Because of the goal softening, the accuracy and the local

searching ability is inferior and poor. The Column generation (CG) is another algo-

rithm that is used to generate results for sub-problems that contain integer or binary

variables. Reference [27] uses CG algorithm in a location transportation problem but

one of the main disadvantages is that it may be difficult to determine whether or not

a problem can be formulated so that column generation will be beneficial.

Dantzig-Wolfe decomposition (DWD) is a classical algorithm for solving a large-

scale linear programs. DWD represents a set of constraints as a set of extreme points

and extreme arrays. DWD is used only on the problems that have Non-Integral

properties [28]. DWD have been successfully used on DR algorithms [21] but as

described the decomposed problems must be continuous linear problems.

Solving MINLP problems is easier using Branch and Bound (BB) algorithm and has

been very successful in solving the DR models with other algorithms such as Benders

Decomposition [26]. The idea behind BB is to solve continuous relaxations of the

original problem and to divide the feasible region, eliminating the fractional solutions

of the relaxed problem. Doing this creates a tree of problems from which the integer

optimum is found. The hierarchical Benders decomposition with BB algorithm has

been used in [29] where the sub main problem uses BB algorithm to solve investment

decision and sub-problem is relaxed and solved as specialized Linear Programming

(LP) model.
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The Heuristic methods are developed to increase the convergence speed and or

improve the reliability to find good sub-optimal solutions. The concept of rounding

the solution of a continuous nonlinear program subject to linear constraints has been

proposed in [30]. Here two algorithms have been proposed one which finds point to

be rounded for initial feasible solution and the other which searches for an improved

solution within the neighbourhood of a given point. The drawback of heuristic meth-

ods is that these are not applicable to other types of problems other than to which

these are made.

The Geoffrion’s Generalized Benders decomposition (GBD) has been used in DR

evaluation, [31] which uses nested Benders decomposition technique to solve central

station and distributed power generation, storage, and demand management assets on

a linearized electric power transmission network which is a mixed-integer stochastic

programming model. The model uses the bi-level structure by using GBD twice, first

to communicate between a stochastic linear production costing model for operating

central system generation and a nonlinear program for planning central system gen-

eration and transmission. Second, between nonlinear program for planning central

system generation and transmission, and a mixed-integer program for evaluation of

local area distributed resources. Applying GBD twice results in more computation

time and computer memory requirements.

To deal with the uncertainty of PV output over a time (multi-time) [32] uses benders

decomposition in optimal power flow model which include battery energy storage

system and HVAC units. But this model considers all integer and binary variables in

main problem. Relaxing the MINLP main problems have been extensively used such

as [33], [34] to make the convergence faster.

2.3 Benders decomposition

Benders decomposition (BD) is a mathematical programming technique that pro-

vides a solution to very large LP problems that are represented as a bi-level structure
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problem (main and sub-problems). This algorithm was developed by Jacques F.

Benders in 1962. BD tackles the problems that arise with complicating variables

(Variables that come in both main and sub-problems) [35].

Consider the following MILP problem

f =Minimize cx+ dy (2.1)

subjected to:

Ax+By ≤ b1 (2.2)

Cx ≤ b2 (2.3)

Dy ≤ b3 (2.4)

y ≥ 0 (2.5)

x ∈ X (2.6)

Where equation 2.2 represent the complicating constraint with A, B, C, D, b1, b2 and

b3 representing constants and x and y are variables.

The above formulation is decomposed into main and sub-problems as shown below

main Problem:

fMP =Minimize cx (2.7)

subjected to:

Cx ≤ b2 (2.8)

x ∈ X (2.9)

sub-problem:

fSP =Minimize dy (2.10)
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subjected to:

By ≤ b1 − Ax∗ : λ (2.11)

Dy ≤ b3 (2.12)

y ≥ 0 (2.13)

Where x∗ represents the solution of main problem and λ represents the dual for the

complicating constraint.

In case if the sub-problem results in infeasible solution, the complicating constraint

is relaxed as shown in the following formulation

Relaxed sub-problem:

fSP =Minimize dy + ez (2.14)

subjected to:

By + gz ≤ b1 − Ax∗ : λ (2.15)

Dy ≤ b3 (2.16)

y ≥ 0 (2.17)

Where, e and g are constants.

Using the dual variable λ the main problem is updated to provide link between

main and sub-problem and is represented as

Relaxed main problem

fRMP =Minimize cx+ σ (2.18)

subjected to:

Cx ≤ b2 (2.19)

σ ≥ 0 (2.20)
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σ ≥ fSP + λ ∗ (x− x∗) (2.21)

x ∈ X (2.22)

Here the lower bound (LB) is given by fRMP and upper bound (UB) is given by

c ∗ x∗ + fSP

Stopping criteria:

• If LB > UB, the solution is infeasible.

• If LB = UB, the solution is optimal.

The BD method is applicable only to LP problems, So Geoffrion in 1972 proposed

a Generalized Benders Decomposition (GBD) that was applicable to certain NLP and

MINLP problems. The algorithm is as shown in figure 2.1 below.

This method used the concept of optimal cuts (for feasible sub-problem) and fea-

sible cuts (for infeasible sub-problem).

Relaxed main problem

fRMP =Minimize cx+ σ (2.23)

subjected to:

Cx ≤ b2 (2.24)

σ ≥ 0 (2.25)

σ ≥ fSP + µ ∗ (x− x∗) (2.26)

0 ≥ fSP + λ ∗ (x− x∗) (2.27)

x ∈ X (2.28)

sub-problem:

fSP =Minimize dy (2.29)
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subjected to:

By ≤ b1 − Ax∗ : µ (2.30)

Dy ≤ b3 (2.31)

y ≥ 0 (2.32)

Where µ represents the dual for the complicating constraint.

Figure 2.1: Generalized Benders Decomposition Algorithm

In case, if the sub-problem results in an infeasible solution, the complicating con-

straint is relaxed as shown below.

Relaxed sub-problem:

fSP =Minimize dy + ez (2.33)

subjected to:

By + gz ≤ b1 − Ax∗ : λ (2.34)
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Dy ≤ b3 (2.35)

y ≥ 0 (2.36)

Where λ represents the dual for the complicating constraint.



CHAPTER 3: COORDINATED OPTIMAL CONTROL OF PV INVERTERS
AND HVAC LOADS IN ACTIVE DISTRIBUTION NETWORK

This section presents the optimization model for optimally controlling the PV in-

verters and HVAC units to minimize the total network loss in the distribution net-

work for centralized framework. Figure 3.1 shows the centralized framework structure

where the entire network control is handled by the grid controller.

Figure 3.1: Centralized distribution structure

3.1 Objective function

The objective of the problem is to minimize the total network loss in the distribution

network while maintaining the nodal voltage in the set range. The objective can be

represented as shown in equation 3.1.
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min
k∑

t=1

∑
(i,j)∈N

rijwij,t (3.1)

3.2 Constraints

3.2.1 PV inverter control

Smart inverters can flexibly control the PV active and reactive power and the total

active and reactive power generation cannot exceed the inverter capacity at any point

of the given time and can be represented as equation 3.2. Since this equation forms a

quadratic function, it is transformed into the second-order cone (SOC) form as shown

in equation 3.3

(P PV
j,t )2 + (QPV

j,t )
2 ≤ (SPV

j )2 ∀j ∈ N,∀t (3.2)

‖P PV
j,t QPV

j,t ‖2 ≤ SPV
j ∀j ∈ N, ∀t (3.3)

The total active power utilized by the model cannot exceed the maximum active

power output of a PV.

0 ≤ P PV
j,t ≤ P PVmax

j,t ∀j ∈ N, ∀t (3.4)

3.2.2 Branch Flow Model

To provide the relation between different nodes, a branch flow model is considered

for the power distribution. The constraints of branch flow model are as follows:

• Node balancing equations: For each node in the distribution network, the total

power flow into the node should be equal to the total power flowing out of the

node. For node j, the node balance equations are as shown in equations 3.5 and

3.6 where i represents the parent nodes and k represents the children nodes.
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∑
k∈Nf

P f
jk,t −

∑
i∈Nf

(P f
ij,t − rjkwjk,t) = PN

j,t − P PV
j,t ∀i, j, k ∈ N \Nf ,∀t (3.5)

∑
k∈Nf

Qf
jk,t −

∑
i∈Nf

(Qf
ij,t − rjkwjk,t) = QN

j,t −QPV
j,t ∀i, j, k ∈ N \Nf ,∀t (3.6)

Similarly, for the substation, the active and reactive power equation are as

follows:

P s
i,t −

∑
i∈N

P f
ij,t = 0 ∀i ∈ N, ∀t (3.7)

Qs
i,t −

∑
i∈N

Qf
ij,t = 0 ∀i ∈ N, ∀t (3.8)

• Coordinated optimization active power constraint: In equation 3.5, the active

power at node j is split into base load and HVAC load and is represented as

PN
j,t = PL

j,t +
∑

n∈NBj

αn,j,t ∗ PHV AC
n,j ∀n ∈ NBj, ∀j ∈ N,∀t (3.9)

• Voltage drop equation: When the electric power flows along the distribution

line from node i to the node j, the voltage drop will be observed. The voltage

drop equation is given by

uj,t − (ui,t − 2(rijP
f
ij,t + xijQ

f
ij,t) + (r2ij + x2ij)wij,t) ∀ij ∈ D, ∀i ∈ N, ∀t (3.10)

• Voltage magnitude limits: The incorporation of PVs can cause variations in

voltage, thus it is necessary that the voltage is maintained within limits. The

constraint is given by

V 2
min,j ≤ uj,t ≤ V 2

max,j ∀j ∈ N, ∀t (3.11)
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• Current constraints: For any line connecting two nodes, the current flowing

through it cannot exceed the maximum current capacity, as constrained by

0 ≤ wij,t ≤ I2max,ij ∀ij ∈ D, ∀t (3.12)

• Load flow: The load flow calculations are necessary to determine the steady-

state operating characteristics of the power system for a given load, substation

real power and voltage conditions. The relationship between active power, re-

active power, current and voltage can be expressed as

(P f
ij,t)

2 + (Qf
ij,t)

2 = wij,t ∗ ui,t ∀ij ∈ D, ∀t (3.13)

The above equation 3.13 is relaxed and transformed into a second order cone

form as

‖2P f
ij,t 2Q

f
ij,t (wij,t − ui,t)‖2 ≤ wij,t + ui,t ∀ij ∈ D, ∀t (3.14)

3.2.3 Building thermal model

• Thermal dynamics model: The typical one-dimensional resistance-capacitance

(RC) model is widely used in the literature [17]. Consider the following contin-

uous linear time invariant (LTI) system which is based on the dynamics of the

room temperature and outside air temperature.

Tt+1 =
Tout,t
RC

− Tt
RC

+
Gout,t

C
+
αt ∗ (−PHV AC)

C
(3.15)

In equation 3.15, −PHV AC indicates that the HVAC is in cooling mode in the

summer. The LTI equation 3.15 is converted to state-space as

Xt+1 = aXt + bUt + eV (3.16)
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Where a = −1
RC

, b = −PHV AC

C
, e = [ 1

RC
1
C
], U = α and X = T .

Since equation 3.16 is a continuous-time model, it is converted to discrete-time

model for a given time with zero-order hold and reformulated as equation 3.17.

τt+1 = Aτn,t +Bαn,t + Edt ∀n ∈ NBj,∀t (3.17)

Since the model is designed to maintain the indoor temperature within set

limits, this is represented by equation 3.18.

τmin,n ≤ τn,t ≤ τmax,n ∀n ∈ NBj,∀t (3.18)

The mode of HVAC at time t is given by αt which is a binary variable that

controls the HVAC unit to maintain the indoor temperature given by 3.19.

αn,t ∈ [0, 1] ∀n ∈ NBj,∀t (3.19)

• Minimum on and off time constraint: To maintain the long life of an HVAC unit,

it is necessary to avoid frequent switching operations. Therefore, to enforce the

minimum on and off time constraints, equations 3.20 and 3.21 have been used

which utilize the difference in the previous range and current status to determine

the status for the next time interval.

On time constraints

(Hn,t−1 − UTn)(αn,t−1 − αn,t) ≥ 0 ∀n ∈ NBj,∀t (3.20)

Off time constraints

(Hn,t−1 −DTn)(αn,t − αn,t−1) ≤ 0 ∀n ∈ NBj,∀t (3.21)
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To understand the above constraints, it is assumed that at time (t − 1) the

HVAC is on, then αt−1,n = 1. If Ht−1,n is less than UTn which means until time

t− 1, the HVAC unit has not reached the minimum on time, then Ht−1,n−UTn

will result in a negative coefficient. To ensure the left hand side in equation

3.20 to be non-negative, αn,t−1 − αn,t ≤ 0. Thus, to satisfy the constraint, the

HVAC status for time t has to be 1 (on).



CHAPTER 4: DECENTRALIZED COORDINATED OPTIMAL CONTROL OF
HVAC LOAD AGGREGATORS IN ACTIVE DISTRIBUTION NETWORK

This section presents the optimization model for optimally controlling the PV in-

verters and HVAC units in the active distribution network for decentralized frame-

work. Figure 4.1 shows a decentralized framework structure where there are multiple

entities working on different goals. The aggregator works on minimizing the active

power consumption in buildings at each node whereas the grid control work on min-

imizing the network losses.

Figure 4.1: Decentralized distribution structure
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4.1 New centralized model

With multiple entities, in the distribution network, the objective is formulated to

(1) minimize the cost of line losses in power distribution network for the grid operator

while maintaining the voltage magnitude within range, and (2) minimize the power

consumption at each node for buildings, and is as shown in equation 4.1.

minimize
(
Clmp ∗

k∑
t=1

∑
(i,j)∈N

rijwij,t

)
+
(
Cp ∗

k∑
t=1

∑
j∈N

PN
j,t

)
(4.1)

Subjected to

‖P PV
j,t QPV

j,t ‖2 ≤ SPV
j ∀j ∈ N, ∀t (4.2)

0 ≤ P PV
j,t ≤ P PVmax

j,t ∀j ∈ N, ∀t (4.3)

∑
k∈Nf

P f
jk,t −

∑
i∈Nf

(P f
ij,t − rjkwjk,t) = PN

j,t − P PV
j,t − P s

i,t ∀i, j, k ∈ N \Nf ,∀t (4.4)

PN
j,t = PL

j,t +
∑

n∈NBj

αn,j,t ∗ PHV AC
n,j ∀n ∈ NBj, ∀j ∈ N,∀t (4.5)

∑
k∈Nf

Qf
jk,t −

∑
i∈Nf

(Qf
ij,t − rjkwjk,t) = QN

j,t −QPV
j,t −Qs

i,t ∀i, j, k ∈ N \Nf ,∀t (4.6)

QN
j,t = QL

j,t ∀j ∈ N,∀t (4.7)

uj,t − (ui,t − 2(rijP
f
ij,t + xijQ

f
ij,t) + (r2ij + x2ij)wij,t) ∀ij ∈ D, ∀i ∈ N, ∀t (4.8)

V 2
min,j ≤ uj,t ≤ V 2

max,j ∀j ∈ N, ∀t (4.9)

0 ≤ wij,t ≤ I2max,ij ∀ij ∈ D, ∀t (4.10)

‖2P f
ij,t 2Q

f
ij,t (wij,t − ui,t)‖2 ≤ wij,t + ui,t ∀ij ∈ D, ∀t (4.11)

τt+1 = Aτn,t +Bαn,t + Edt ∀n ∈ NBj, ∀t (4.12)

τmin,n ≤ τn,t ≤ τmax,n ∀n ∈ NBj,∀t (4.13)
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αn,t ∈ [0, 1] ∀n ∈ NBj,∀t (4.14)

4.2 Decentralized main problem

To mitigate the drawbacks of centralized network, the decentralized frame work is

used. Here, the model is divided as grid operation (main problem) and aggregator

(sub-problem). Since, the aggregators are in large numbers, these are considered as

sub-problems.

The objective of the grid operation is to minimize the total network loss in the

distribution network while maintaining nodal voltage in the secure range. Here the

nodal operations are not given importance hence it requires only the aggregated nodal

load for modeling. The main problem is formulated as follows

fMP = minimize
(
Clmp ∗

k∑
t=1

∑
(i,j)∈N

rijwij,t

)
(4.15)

subjected to

‖P PV
j,t QPV

j,t ‖2 ≤ SPV
j ∀j ∈ N, ∀t (4.16)

0 ≤ P PV
j,t ≤ P PVmax

j,t ∀j ∈ N, ∀t (4.17)

∑
k∈Nf

P f
jk,t −

∑
i∈Nf

(P f
ij,t − rjkwjk,t) = P TL

j,t − P PV
j,t − P s

i,t ∀i, j, k ∈ N \Nf ,∀t (4.18)

∑
k∈Nf

Qf
jk,t −

∑
i∈Nf

(Qf
ij,t − rjkwjk,t) = QTL

j,t −QPV
j,t −Qs

i,t ∀i, j, k ∈ N \Nf ,∀t (4.19)

uj,t − (ui,t − 2(rijP
f
ij,t + xijQ

f
ij,t) + (r2ij + x2ij)wij,t) ∀ij ∈ D, ∀i ∈ N,∀t (4.20)

V 2
min,j ≤ uj,t ≤ V 2

max,j ∀j ∈ N,∀t (4.21)

0 ≤ wij,t ≤ I2max,ij ∀ij ∈ D, ∀t (4.22)

‖2P f
ij,t 2Q

f
ij,t (wij,t − ui,t)‖2 ≤ wij,t + ui,t ∀ij ∈ D, ∀t (4.23)
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For simplicity, the above formulation is denoted as

fMP (4.24)

subjected to

d(x) ≤ b (4.25)

Where equation 4.25 represents constraints 4.16 to 4.23

4.3 Decentralized sub-problem

Load aggregators act as intermediates to represent corresponding end-users. The

purpose of every aggregator in the distribution network is to operate the HVAC units

in an optimal way so as to minimize the total power consumed at each node over a

time period. The formulation for MILP sub-problem for node j is given by

fSP
j = min Cp ∗

( k∑
t=1

PN
j,t

)
(4.26)

Subjected to:

PN
j,t = PL

j,t +
∑

n∈NBj

αn,j,t ∗ PHV AC
n,j ∀n ∈ NBj,∀j ∈ N,∀t (4.27)

QN
j,t = QL

j,t ∀j ∈ N,∀t (4.28)

τt+1 = Aτn,t +Bαn,t + Edt ∀n ∈ NBj,∀t (4.29)

τmin,n ≤ τn,t ≤ τmax,n ∀n ∈ NBj,∀t (4.30)

αn,j,t ∈ [0, 1] ∀n ∈ NBj,∀t (4.31)
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For simplicity, the above formulation for node j is denoted as

fSP
j (4.32)

subjected to

ej(x) ≤ bj (4.33)

αn,j,t ∈ [0, 1] (4.34)

PN
j = P TL

j ∀j ∈ N,∀t (4.35)

Where equation 4.33 represents constraints 4.27 to 4.30 and equation 4.35 acts

as boundary variable (Control) that provides relation between the main and sub-

problem.

4.4 Modified benders decomposition method

The BD algorithm uses a number of iterations to converge to an optimal solution.

In each iteration a benders cut is generated. These cuts help in converging to an

optimal solution.

The aggregated nodal load for modeling can be obtained after m iterations of the

sub-problem. The solution from main problem can result in three possible situations:

• The sub-problem is infeasible.

• The sub-problem is feasible but not optimal.

• The sub-problem is feasible and optimal.

In case of infeasibility or non-optimality, the sub-problem result can be assumed to be

optimal and benders cuts can be added to ensure that the same result never reoccurs.
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4.4.1 Relaxation of sub-problem

Since the sub-problem contains binary variables (on-off status of HVAC units)

as shown in equation 4.34 the algorithm is modified to solve the sub-problem in

two stages. First, the sub-problem is solved as a MINLP problem with boundary

constraints to obtain the summation of HVAC on-off statuses for node j at time t

(Sαj,t) which is then fixed in the relaxed linear sub-problem to obtain the Lagrangian

dual for the benders cuts used in the main problem.

The relaxed MINLP sub-problem for node j is formulated as shown below:

fRSP
j = fSP

j +
k∑

t=1

Apt (4.36)

subjected to

ej(x) ≤ bj (4.37)

αn,j,t ∈ [0, 1] (4.38)

PN
j + Apt = P TL

j ∀j ∈ N,∀t (4.39)

For the MINLP sub-problem the linear sub-problems is given by

fLSP
j = fSP

j (4.40)

subjected to

ej(x) ≤ bj (4.41)

0 ≤ αn,j,t ≤ 1 (4.42)

NBj∑
n=1

αn,j,t = Sαj,t (4.43)

PN
j = P TL

j :µj,t,m ∀j ∈ N,∀t (4.44)
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For the relaxed MINLP sub-problem the linear sub-problem is given by

fRLSP
j = fRSP

j (4.45)

subjected to

ej(x) ≤ bj (4.46)

0 ≤ αn,j,t ≤ 1 (4.47)

NBj∑
n=1

αn,j,t = Sαj,t (4.48)

PN
j + Apt = P TL

j :λj,t,m ∀j ∈ N,∀t (4.49)

4.4.2 Modified algorithm

The Grid-aggregator problem can be decomposed using the idea of GBD algorithm

where main problem and sub-problem optimize independently and exchange the op-

timal active load (boundary variable) with each other. The flow chart for modified

algorithm is as shown in figure 4.2. The solving procedure is as follows.

• Step 0 (initialization): Set the iteration countm = 1, lower bound (LB) = −∞,

upper bound (UB) =∞, the number of optimal cutting planes pm = 0 and the

number of feasible cutting plane qm = 0.

• Step 1: (Solve sub-problems): For all j nodes, solve MINLP sub-problem indi-

vidually in parallel. if any of the MINLP sub-problem results in an infeasible

solution, solve the corresponding relaxed MINLP sub-problem to get the sum-

mation of on-off status of HVAC at node j for time t.

• Step 2 (Solve linear sub-problems): Using the result from step 1, solve the

corresponding linear sub-problems to obtain the dual variables and objective

function value (Sj,m).
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Figure 4.2: Modified Benders Decomposition algorithm flowchart

To reduce the communication between main and sub-problems, the cuts can be

represented as follows

For feasible MINLP sub-problem, the cutting plane is given by

inf{fSP
j + µj,pP

N
j,p} = Sj,p + µj,p(P

N
j − P TL

j ) (4.50)

Equation 4.50 can be reformulated as

L∗j,p = Sj,p + µj,pP
N
j (4.51)

so that the cutting plane of sub-problem j can be represented as L∗j,p−µj,pP
TL
j .
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Similarly, for the infeasible MINLP sub-problem, the cutting plane is given by

inf{fSP
j + λj,qP

N
j } = Sj,q + λj,q(P

N
j − P TL

j ) (4.52)

Equation 4.52 can be reformulated as

Lj,q
∗ = Sj,q + λj,qP

N
j (4.53)

so that the cutting plane of sub-problem j can be represented as Lj,q
∗ −λj,qP TL

j .

• Step 3 (Main problem with cuts): After obtaining cuts from step 2, the main

problem can be solved using the relaxed main problem represented as

fRMP = fMP +
N∑
j=1

σj (4.54)

subjected to

d(x) ≤ b (4.55)

σj ≥ 0 (4.56)

σj ≥ L∗j,m − µj,mP
TL
j ∀j,∀m = 1, ..., pj (4.57)

σj ≥ Lj,m
∗ − λj,mP TL

j ∀j,∀m = 1, ..., qj (4.58)

• Step 4 (Convergence check): The upper bound (UBk) is the value of main

problem calculated by solving the main problem (fMP ) with P TL = PN and

the lower bound (LBk) is calculated using the relaxed main problem (fRMP ).

• Step 5 (Stopping criteria): The algorithm is terminated when

gap(K) = UBk − LBk ≤ ε (4.59)



CHAPTER 5: CASE STUDY

The formulations from chapter 3 and 4 were used in a case study to demonstrate the

effectiveness of the proposed models. A modified IEEE-33 node radial distribution

network with PVs, Loads and HVAC units were considered. The modified network is

as shown in figure 5.1.

Figure 5.1: Modified IEEE-33 bus radial distribution system

5.1 Assumptions

• The capacity of all PV inverters is set to 0.4 MW.

• The cooling power of each HVAC unit is assumed to be 10.512 kW.

• The indoor temperature is set to 23 ± 0.5 ◦C.

• The minimum on and off of all HVAC units are assumed to be 20 minutes.

• The indoor variations that affect the indoor heat gain such as occupant and

devices inside the building is assumed to be constant.
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• The initial temperature inside the building are assumed to be within the spec-

ified range (23 ± 0.5 ◦C).

• The voltage limits are assumed to be 0.95 to 1.05 per unit (p.u)

• The wall thermal constants are assumed to be constant irrespective of the ma-

terial and window size (Use RC model).

• For centralized model the cost of power is assumed to be uniform.

5.2 Data

The active, reactive loads and maximum solar power profiles between 11:00 AM

and 2:00 PM with 10-min time interval are selected for this study. The outside

temperature, heat gain and thermal dynamics parameters can be found in [17]. The

number of buildings at each node of the distribution network is as shown in Table

5.1. The detailed data of the IEEE 33-node system can be found in [36] and [37].

Table 5.1: Number of HVAC Units At Each Node.

Node Qty Node Qty Node Qty Node Qty

2 40 10 46 18 46 26 42

3 46 11 42 19 42 27 40

4 42 12 40 20 40 28 40

5 40 13 40 21 40 29 42

6 40 14 42 22 46 30 40

7 46 15 40 23 42 31 46

8 42 16 46 24 40 32 40

9 40 17 40 25 46 33 46
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5.3 Results of coordinated optimal control of PV inverters and HVAC loads in
active distribution network

To demonstrate the effectiveness of the proposed model, a comparison is made

between the proposed model and two other models including

Model 1: Basic control strategy of a residential thermostat for inside temperature

control. The control follows the rules for cooling cycle as follows:

• If inside temperature T ≥ 23.5C, then switch HVAC on

• If HVAC is on and T ≤ 22.5C, then switch off the HVAC.

Model 2: The thermal constraints defined in Chapter 3 is used but without the

minimum on and off time constraints.

All three models have been modeled using YALMIP [38] and solved using commer-

cial solver such as Gurobi [39].

The simulation results form all three optimization models are compared in Table

5.2. From this table it can be observed that the model 2 shows less line loss and

active power requirement from the substation when compared to the other models.

The frequent switching operations of HVAC units in model 2 can cause additional

maintenance cost and may not be preferable to the building owners since it does not

consider on/off time constraints resulting in the most frequent switching operations.

The line loss in the proposed model is significantly lower than Model 1 with active

participation of HVAC unit in the grid management. Compared with Model 2, the

proposed model can reduce the number of switching operations of HVACs by the

incorporation of minimum on/off constraints meanwhile the total line loss is slightly

higher. Due to the effective utilization of the PV generation for HVAC loads, model 2

and proposed models perform better than model 1 hence a reduction in active power

consumption.

Figure 5.2 shows the voltage variations from simulations for all 3 models. From
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this it can be observed that the voltage variations for all three models are within the

assumed specification (0.95 to 1.05 p.u) indicating that the model is effective.

Table 5.2: Comparison of Centralized Model Simulation Results for 3 Hours.

Model Model 1 Model 2 Proposed

Total Line Loss (kWh) 383.25 17.38 27.51

Total Active Power from

Substation (MWh)

20.87 3.47 6.19

Total Reactive Power from

Substation (MV arh)

1.82 0.51 0.32

Total number HVAC units

switches

520 1141 774

Simulation Time (Sec) 39.40 4745 473

The voltage variation here depends on the operation of HVAC units. When a

large number of HVAC units turn on, the voltage magnitude drops and this can be

observed in figure 5.2.(a). Further to understand the effect of voltage variation, node

24 simulation results for temperature and HVAC mode are shown in figures 5.3 and

5.4 respectively. From figure 5.3.(a), it is clear that the mode of HVAC changes only

when the temperature reaches the extreme limits which occur mostly at the end of

the time period and the same effect can be observed in the figure 5.2. Figure 5.3.(b)

shows frequent changes at an interval of 10 minutes indicating the active power is

being utilized optimally when compared to other models. Similarly, figure 5.3.(c)

shows the changes at an interval of 20 minutes indicating the effect of minimum

on/off time constraints on HVAC units. The same effects can be observed on the

mode of HVAC as shown in figures in 5.4. Since the operation of HVAC units depend

on the available PV power, the HVACs change the mode in contrast to model 1 in

model 2 and the proposed models. Hence, the variation of voltage can be observed
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through the time horizon in model 2 and the proposed models.

(a) Model 1 Voltage variation for all 33 nodes

(b) Model 2 Voltage variation for all 33 nodes

(c) Proposed Model Voltage variation for all 33 nodes

Figure 5.2: Voltage variation for all 33 nodes in centralized frame work.
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(a) Model 1 Temperature variation for node 24

(b) Model 2 Temperature variation for node 24

(c) Proposed Model Temperature variation for node 24

Figure 5.3: Temperature variation for node 24 in centralized frame work.
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(a) Model 1 HVAC Status for all buildings at node 24

(b) Model 2 HVAC Status for all buildings at node 24

(c) Proposed Model HVAC Status for all buildings

Figure 5.4: HVAC Status for all buildings at node 24 in centralized frame work.
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5.4 Results of decentralized coordinated optimal control of HVAC load
aggregators in active distribution network

To demonstrate the effectiveness of the decentralized model, comparison with the

centralized model is made. By modeling the objective and constraints for both the

models using YALMIP [38] and solving them using commercial optimizers such as

Gurobi [39] or CPLEX [40] , the optimal solutions are obtained and the simulation

results are as shown in Table 5.3. Here a comparison of the network losses, total

amount of active and reactive power consumption, total number of times HVAC

units are switched on, objective function values, and simulation time is shown.

Table 5.3: Comparison of Decentralized Model Simulation Results for 3 Hours.

Model New centralized model Decentralized model

Total Line Loss (kWh) 19.18 21.69

Total Active power

consumption (MWh)

23.3 23.3

Total Active power from PV

(MWh)

19.62 19.33

Total Active power from

substation (MWh)

3.68 3.97

Total Reactive power from

substation (MV arh)

0.29 0.33

Total number HVAC units

switches

1097 1129

Simulation Time (min) 360 13.30

Objective Value ($) 2609.4 2609.2
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(a) Centralized model Voltage variation for all 33 nodes

(b) Decentralized model Voltage variation for all 33 nodes

Figure 5.5: Comparison of Voltage variation for all 33 nodes.

The objective function value of the proposed decentralized optimization model is

very close to the centralized optimization model. The minor variation in total line loss,

total active power and reactive power is due to the weak duality that exist between

the relaxed sub-problems and relaxed main problem. It can also be observed that

though the power source vary (sub stationtion and PV), the total power consumption

remains almost same. One benefit of using the proposed decentralized model is the

simulation time. Since, the sub-problems run in parallel, the best solutions for each

sub-problem can be calculated faster as it contains less binary variables than the
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centralized model. As the solver uses BB algorithm to solve the MINLP problem, the

simulation time varies depending on the number of binary variables and constraints

available.

Figure 5.5 shows the voltage variation for all 33 nodes in centralized and decen-

tralized models. On closer observation slight variations can be observed even though

the voltage magnitude is maintained within the specified limits.

The slight variation is due to the fact that the HVACs operate differently in both

the models. For better understanding figures 5.6 and 5.7 for node 24 are shown below.

(a) Centralized model temperature variation for node 24

(b) Decentralized model temperature variation for node 24

Figure 5.6: Comparison of temperature variation for node 24.
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The mode of HVACs change depending on the availability of PVs active power to

each node and the LMP cost that has been used in the main problem to minimize

the line loss. From figure 5.6 it can be observed that both the models follow a similar

approach of utilizing the active power to run the HVACs optimally to minimize the

total power requirement for each node without violating the voltage magnitude and

indoor set temperature limits.

(a) Centralized model HVAC mode operation for node 24

(b) Decentralized model HVAC mode operation for node

24

Figure 5.7: Comparison of HVAC mode operation for node 24.



CHAPTER 6: CONCLUSIONS

This thesis conducted the following research.

• Centralized optimization model for coordinated optimal control of PV invert-

ers and HVAC loads in active distribution network with and without HVAC

minimum on/off time constraints.

• Decentralized coordinated optimal control of HVAC load aggregators in active

distribution network without HVAC minimum on/off time constraints.

In the first part, a centralized optimization framework to effectively coordinate the

operations of distributed PVs and Heating, ventilation, and air conditioning (HVAC)

unit in smart buildings in the distribution network to minimize the total network

losses is established. Using this model, a new centralized model was formulated and

its decentralized model with benders decomposition was solved in the second part.

From both the cases, the effectiveness of the proposed models are demonstrated

through a comparative case study.

From the results of centralized optimization model for coordinated optimal control

of PV inverters and HVAC loads in active distribution network, the proposed model

is effective in reducing the total network loss while maintaining the nodal voltage and

regulating the HVAC units to maintain temperature within a specified comfort range

in practical applications (using the minimum on/off time constraints).

To mitigate the privacy issues that arise in centralized model, the introduced load

aggregators act as intermediate service provider between the grid control and buildings

at each node. In the decentralized frame work, the proposed model with decision-

making of multiple parties, provides a close enough results to the centralized model
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and is effective in minimizing the objective value.

These multi-period MISOCP models proposed in both the cases can be run in a

rolling horizon to update the control decisions on PV inverters and HVAC units to

optimize the grid operation more effectively.

6.1 Future Work

In real situations, the building owners have different mind sets. A study in UK

has shown that 40% of programmable thermostat owners did not use programming

features and 33% had programming features overridden even though they had the

programmable thermostats installed to minimize the power usage based on the set

programs [41].

This thesis work did not include the rooftop PVs and electric battery storage devices

that are currently in trend to minimize the GHG emissions and/or to minimize the

peak load demands using DR program. Also, an assumption was made to eliminate

the building occupancy which is a major contributor for inside heat gain in buildings

which affects the cooling inside the buildings.

So, depending on these factors, the following cases can be developed.

• Use binary variable to indicate smart thermostat and DR program participation.

• Change the building thermal constraint to include internal heat gain and effects

of occupancy.

• Use a data driven and machine learning based approach for the coordinated

control of PV and smart buildings.

• Investigate how to enable PVs and buildings to provide grid services such as

reserve and frequency regulation.
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