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ABSTRACT

RIYI QIU. Modeling uncertainty in deep learning models of Electronic Health
Records. (Under the direction of DR. MIRSAD HADZIKADIC)

Recent research development has demonstrated the advantages of deep learning

models in prediction tasks on electronic health records (EHR) in the medical domain.

However, the prediction results tend to be difficult to explain due to the complex

neuron structures. Without the explainability and transparency, deep learning models

are not trustworthy or reliable for making real world decisions, especially the high-

stakes ones in the healthcare domain. To improve the trustworthiness of the deep

learning model, quantifying the uncertainty is crucial.

In this dissertation work, we proposed several Bayesian Neural Network (BNN)

structures to estimate the data uncertainty and model uncertainty associated with

the EHR data and deep learning models, respectively. We also proposed Variational

Neural Network (VNN) algorithms to estimate the uncertainty of the variables to in-

vestigate the medical and temporal features that contribute the most to the patient-

level uncertainty. In order to verify the validity of the uncertainty estimations, we

designed a series of experiments to examine the computational results against widely

accepted facts about uncertainty. We also conducted post-hoc analysis to evaluate

whether the proposed models tend to specialize in one or more patient subgroups, at

the cost of model performance on others, as well as whether the treatment (improving

uncertainty in one subgroup) will mitigate such performance cost. The experiment

results have confirmed the validity of our computational approaches. Finally, we

conducted a user study to understand the clinicians’ perception of the proposed un-

certainty models.
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CHAPTER 1: INTRODUCTION

The expeditious growth of Electronic Health Records (EHR) is motivating a large

number of predictive models such as logistic regression and random forest to enhance

healthcare quality [2, 3, 4]. However, EHR data are usually incomplete, noisy, het-

erogeneous, and sparse. To tackle these challenges and build predictive models with

conventional machine learning techniques, solid feature selection and data represen-

tation are necessary. Deep learning [5] is well known for the end-to-end learning

capabilities so feature engineering is automatically performed. It is also able to ex-

tract the temporal information from the time series data in EHR. Therefore, we have

seen the deep learning models largely outperformed conventional machine learning

techniques in the EHR-based predictive tasks over the past few years. Although the

performance is significantly improved, the black-box mechanism of the deep neural

network makes it difficult to explain the model output in the context of clinical use.

The research community was aware of the situation and has been developing tech-

niques to distill explainable insights [6]. Most of the existing attempts, however,

provided model explanations that are only insightful to the deep learning expert and

did not take the expertise of the end-users into account [7]. As indicated by clini-

cians who are familiar with machine learning [8], the explanation given by the model

should enhance the end-users’ trust of the predictions and allow them to validate

model outputs with domain knowledge.

Furthermore, clinicians identified several classes of explanations that will enhance

their trust, including feature importance, individual-level explanations, uncertainty,

temporal explanations, and transparent design [8]. Among these classes, uncertainty

is important because it (1) provides explainability in the form of complementing
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the output results and increases end-users’ confidence and (2) is possible to identify

the significant individual-level error and propagate it to the clinicians even when the

overall model performance is good. In the high-stake acute care specialties such as the

Intensive Care Unit (ICU), it is crucial to point out the possible mistake and let the

users understand what the predictive model does not know. As a fundamental part

of every machine learning phase [9, 10], uncertainty can be caused by the noisy data,

model structure, or model parameters. In this dissertation, we propose to (1) build

deep learning models with EHR data for the risk prediction of healthcare events such

as disease onset, mortality, and hospital length of stay, (2) use deep BNN techniques

to estimate the uncertainty of each patient, (3) investigate the relationships between

uncertainty and the model performance at the population level, (4) estimate the

uncertainty of temporal and medical features to make the model more explainable,

(5) conduct a series of experiments for the uncertainty verification, and (6) perform

a user study to evaluate the clinicians’ perception of the uncertainty model. Our

model will (1) improve the end-users’ efficiency by complementing and screening the

predictions that are correct, (2) identify the individuals that the model is unsure of the

prediction, (3) identify the patient groups that can benefit the most from uncertainty

mitigation, and (4) trace back the source of uncertainty to the feature level hence

helping the clinicians understand how the prediction is made and why is it uncertain.

1.1 Background

1.1.1 Problem Statement

With the rapidly growing computing power and data volume, deep learning tech-

niques have exhibited superior performance in various applications, including clinical

predictive tasks. Despite their promising performance, deep learning models have

some widely agreed limitations. The neuron structure and the high dependence on

mathematical approximation results in a black box of the model learning process.

With the lack of transparency, it is difficult for end-users, including health profes-
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sionals, to understand the models’ behaviors. To provide reasonable explanations

and increase end-users’ confidence in the results, it is crucial to identify when and

what the trained model learns or does not learn, and how certain it is.

For safety-critical tasks such as mortality prediction in an Intensive Care Unit

(ICU), the predictive model should be reliable in terms of knowing when it does not

know. However, the deep learning models often assumed the prediction to be right

and caused catastrophic consequences [1]. Quantifying the uncertainty is necessary

to prevent such situations from happening: it acts as the confidence representations

of the model and the end-users will not trust the prediction blindly when it is high.

Knowing the importance of uncertainty and the fact that a normal deep learning

model is not capable of capturing uncertainty, researchers in other domains such as

computer vision managed to estimate it with approaches such as BNN [11, 1]. As

for healthcare applications, the existing literature mostly focuses on capturing the

uncertainty in the medical image processing and classification, which is quite similar

to computer vision in terms of data format.

Moreover, the non-linear black-box structure of the model helps extract meaningful

information from the data but makes the output difficult to understand as well. When

the clinicians are making decisions and seeking the help of the deep learning model,

for instance, simply providing the result of risk prediction to them is not enough.

They need to understand how the model reaches the result and what are the factors

that lead to it. Although the deep learning community has been developing methods

to improve the model explainability, most of them are designed to be understandable

only by data scientists or machine learning experts. Uncertainty, identified as one

dimension of the model explainability [8], is possible to help the end-users understand

what features have led to the prediction or what are the features that make the

prediction uncertain.

To our best knowledge, there are only a few existing efforts studying uncertainty in
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deep learning models for the EHR data. They are (1) Heo et al.’s study in 2018 [12]

on the feature (variable) uncertainty in medical risk prediction tasks; (2) Dusenberry

et al.’s research in 2019 [13] on Bayesian RNN with stochastic embedding to capture

model uncertainty on the entire patient datasets and different patient subgroups; and

(3) Tan et al.’s work in 2019 [14] on attention mechanisms to accommodate varying

time intervals in time-series data, which they called “uncertainty".

Therefore, a comprehensive study and investigation of uncertainty is in need of the

EHR-based deep learning risk prediction models.

1.1.2 Research Questions

Based on the literature, we proposed to comprehensively study this research ques-

tion: given an EHR dataset and the predictive task, how do we account for the

uncertainty in deep learning models? It was addressed by answering the following

questions:

RQ1: In the context of deep learning model with EHR data, is it possible

to estimate two major types of uncertainty, and how to understand their

relationships with the deep learning model performance? By proposing this

research question, we wanted to learn from the existing methods for the uncertainty

estimation in other domains, especially in the computer vision applications [1, 11, 15].

We investigated how to adapt these models to make predictions on EHR data and

estimate the uncertainty associated with each prediction simultaneously. Several

models were proposed for the simultaneous estimation of data uncertainty and model

uncertainty. We also evaluated whether estimating the uncertainty compromised

the model performance with some key metrics such as the Area Under the Receiver

Operating Characteristic Curve (AUC-ROC), Area Under the Precision-Recall Curve

(AUC-PR), and Expected Calibration Error (ECE). Furthermore, the relationships

between uncertainty and model predictions were explored, aiming to find out the best

way to benefit the real-world clinical decision-making process.
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RQ2: What temporal or medical features are most responsible for the

high uncertainty? This question was to address a research gap for the uncertainty

in deep learning models. Researchers have emphasized the importance of modeling

uncertainty and proposed methods to estimate it. However, these algorithms either

only accounted for the uncertainty at the individual level or estimated the uncertainty

at the pixel (feature) level with pre-assigned labels (such as semantic segmentation

labeling in the computer vision applications). For the clinical risk prediction, there

was no such label for each temporal or medical feature. Therefore with existing mod-

els, the doctors were given no explanations of the time and patient conditions that

contributed the most to the uncertainty. To address this issue and give the clini-

cians more information, we proposed several variational architectures for the feature

uncertainty estimation with the BNN model.

RQ3: How to make sure that all the uncertainty estimations are correct?

How will the proposed models bring benefits to clinical decision making?

Without the ground truth for patient and feature uncertainty, it was difficult to eval-

uate the estimated uncertainty. Inspired by the natures of the uncertainty sources,

we performed a series of experiments to verify that the estimated uncertainty success-

fully captured the noises from data or models. Furthermore, we needed to validate

that the estimated uncertainty provided better and more meaningful information to

the clinicians. we distilled insights from several post-hoc patient sub-group analyses

and feature-level uncertainty estimations. Part of these finds were embedded into a

user survey we designed in order to obtain clinicians’ feedback on the proposed deep

learning models and uncertainty estimations.

1.1.3 Contribution to the Knowledge

This dissertation comprehensively investigated the uncertainty associated with the

deep learning models for EHR-based risk prediction tasks. The outcome of the study

is important for both clinical risk prediction tasks and corresponding deep learning
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models. For the high-stake clinical risk prediction, while the accuracy of the model

is crucial, it is more important that the model can provide an interval/distribution

estimation or propagate the uncertainty to the end-users. Our contributions are:

(1) The first study that applies the BNN algorithms to the EHR-based tasks and

estimates both data uncertainty and model uncertainty simultaneously in one model.

(2) Exploring the major types of uncertainty and their relationships to the EHR-

based deep learning model predictions hence improving the model trustworthiness

for clinical applications; (3) Estimating the uncertainty at the (medical/temporal)

feature level and make the uncertainty model more explainable; (4) Designing a series

of verification experiments and a user study for validating the uncertainty estimations.

1.2 Related Works

In this section, I will discuss the related works from the following aspects: (1) EHR

datasets, specifically the “tabular" EHR datasets that will be used for analysis in this

dissertation, (2) EHR-based predictive modeling, including conventional regression

and machine learning models and deep learning models, (3) a summary of uncertainty

modeling in other domain, especially in the computer vision domain, and (4) existing

uncertainty modeling in the context of EHR-based deep learning.

1.2.1 EHR Datasets

EHR is an effective tool for managing patients’ medical history, communicating

with patients and providers, and maintaining good patient-physician relationships

[16]. In US hospitals, the adoption rate of a basic EHR system has increased from

9.4% to 83.8% during 2008-2015 [17]. The growth of the EHR has enabled enormous

research and studies on clinical risk prediction. Major EHR data formats include

tabular records, images, and clinical notes (natural language). Among these data,

tabular records can include admission records, demographics, diagnosis, procedures,

medications, lab test results, billing information, and healthcare provider information.
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Most of these data are well defined with coding systems such as International Classi-

fication of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) and Clinical

Classifications Software (CCS), hence are ready for predictive analysis. Following are

the EHR database/datasets that will be used to develop predictive models in this

dissertation work.

The Medical Information Mart for Intensive Care (MIMIC-III) [18] is a large

database consisting of de-identified information related to patients admitted to the

intensive care unit (ICU) at the Beth Israel Deaconess Medical Center over 11 years.

It contains 38,597 adult patients with 49,785 hospital admissions. The database con-

tains 26 tables, including information such as patient demographics, lab test results,

diagnoses, procedures, medications, and doctor notes. Since the database enables

various types of research topics and is free to the public, many studies have been

done with its subsets. Therefore, it is viable to develop new techniques or algorithms

on the MIMIC-III and compare the performance with the existing benchmark models.

The Research Resource for Complex Physiologic Signals, well-known as PhysioNet,

is offering free access to large collections of physiological and clinical data and related

open-source software. PhysioNet holds data challenges annually for researchers and

students to address an unsolved clinical problem, which includes risk assessments

of specific events or diseases such as in-hospital mortality [19] and early sepsis [20].

These datasets are well organized and only needs a few pre-processing steps before

applying the machine learning or deep learning algorithms. It is also easy to find the

benchmark models to compare with.

The IBM MarketScan R©1 Research Database is a series of databases that "fully

integrate de-identified patient-level health data, workplace productivity, laboratory

results, health risk assessments (HRAs), hospital discharges and electronic medical

records (EMRs) into data sets available for healthcare research" Among the databases,
1Copyright c© 2018 International Business Machines Corporation; All Rights Reserved



8

MarketScan commercial claims and encounters database contains claims data of em-

ployees and their dependents who are less than 65 years old. The database contains

diverse longitudinal claim information such as patient demographics, diagnoses, pro-

cedures, medications, revenue codes, and healthcare service provider information.

The volume of the database is much higher than the MIMIC-III: it covers over 122

million patients and over 28 billion records. Therefore, the model developed based

on it will be more generalizable. However, access to the database is restricted and it

is very costly to subscribe.

1.2.2 Predictive Modeling with Electronic Health Records

Compared to the traditional cohort studies designed for specific tasks, EHR data

is messier and noisier because it collects data for all patients and only collects med-

ical features that are considered necessary by the physicians, but it is not as time-

consuming as the survey-type studies that followed patients for years. The EHR-

based risk assessment usually covers many more features, more patients, and more

time points than the cohort-study-based algorithms. It also enables multiple tasks

within the same dataset and can be easily implemented. The common path to build-

ing an EHR-based model is defining the task, generating the cohort or case-control

set, pre-processing the data, training the model with one of the popular algorithms

such as generalized/regularized linear regression or random forest, and validating the

results [21].

1.2.3 Conventional Models for EHR-based Risk Prediction

The most common models for the EHR-based risk prediction are the regression

models, including generalized linear regression models and regularized regression mod-

els [21]. The studies that used regression models usually performed feature selection

to reduce the number of input variables. On the other hand, machine learning al-

gorithms such as random forest are also frequently applied and have achieved good
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performance. Although studies using machine learning models were less likely to per-

form feature selection than the ones using regression models, most of them only used

20 or fewer variables.

In the EHR data, the patients’ data are longitudinal. However, existing regression

or machine learning models did not make the most of the temporal information. Most

studies did not consider longitudinal data at all. The rest only utilized the temporal

information partially such as taking the maximum, mean, median, or count of a

variable along the time dimension [21]. With EHR, the development of a patient’s

health conditions is observed and this is an important strength compared to the

cohort studies. It was proved that predictive models ignored temporal information

performed much worse than the ones that can make full use of it [22].

1.2.4 Deep learning with Electronic Health Records

Deep learning has been applied to process EHR data including both structured

(e.g. diagnosis, medications, laboratory tests) and unstructured (e.g. free-text clinical

notes) data. Here we discuss the structured ones. As described in the previous section,

conventional regression and machine learning algorithms ignore part of or all of the

longitudinal data in the EHR. This is one of the major reasons that deep learning

models have been outperforming these conventional algorithms. Deep learning is

also well known for its capability of end-to-end study. The model can take as many

variables as possible (restrained by the computing power) without feature selection

and distill useful information.

There are two major deep neural network structures and both of them are proved

with excellent performance in EHR-based tasks.

• Convolutional Neural Network (CNN). CNN is a class of neural networks

that is commonly used to analyze image data. As a variant of the fully connected

network (multi-layer perceptrons), CNN applies the ‘convolutions’ to enable the

regularization. These convolution kernels are normally small blocks that absorb
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local information and pass it down to the next layer of the network. Unlike the

multi-dimension convolution kernels (e.g. 2x2, 3x3, 2x2x2, etc.) for analyzing

the image or video data, analyzing time-series data such as the EHR only needs

a 1-dimension kernel to capture the longitudinal information. Razavian and

Sontag [23] proposed a 1-D CNN for the diagnosis prediction from lab tests,

since applying CNN in tabular EHR data only requires the convolutions over

the temporal dimension, and convolving over the medical feature dimension does

not provide any meaningful information. In their later study [24], another 1-D

CNN was used for the disease onset prediction to obtain a better performance

than linear regression and conventional machine learning models. Che et al. [25]

utilized the 1-D CNN architecture and medical feature embedding techniques to

predict heart failures and diabetes with high accuracy. Similar works for other

clinical risk prediction tasks also confirmed the better performance of 1-D CNN

[26].

• Recurrent Neural Network (RNN). RNN is a class of neural networks

that are commonly applied to analyze time-series data and sequence data. The

nodes in the network are connected to form a directed graph that cycles the

information for arbitrarily long time [27]. Among the many variants of RNN,

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are most

frequently seen in the EHR context. Both network structures are composed of

“gates" that memorize numbers and signals over time. In one of the earliest

works, Lipton et al. applied LSTM to classify 128 phenotypes. Nickerson et

al. [28] managed to forecast analgesic response with the LSTM. Choi et al.

first used GRU to detect heart failure onset [22], then in their later studies

designed a “doctor AI" system that was able to provide diagnosis based on pa-

tients’ medical history [29]. For better RNN model interpretation, Choi et al.

[30] designed an attention-based architecture that can provide interpretations
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for both temporal dimension and the medical feature dimension. Jagannatha

and Hu [31] used the reversed-order output of RNN layers by using both Bidi-

rectional LSTM and Bidirectional GRU to predict medical events. Compared

with LSTM, GRU is faster to train since it has fewer gates; it is also proved to

have better/comparable performance in most tasks, as claimed by Jozefowicz et

al. [32]. Similar results were presented by Esteban et al. [33] in their work for

clinical event prediction. In GRU/LSTM model, the output only depends on

the hidden state of the last time step. Although it contains information from

all previous time steps, a strong signal from early time steps may have weak-

ened or vanished. Proposed by Howard and Ruder [34], pooling operations can

improve the model performance by taking average/maximum/minimum of all

hidden states. These operations were proved to be able to increase the model

performance by 1%-2% [35].

1.2.5 Modeling Uncertainty in Deep Learning Models

Despite the promising performance, deep learning has limitations. The black-box

structure makes it difficult for end-users to understand and trust the model’s pre-

dicting behaviors. To increase the trustworthiness of the deep learning algorithms,

modeling the uncertainty is crucial. Uncertainty is a fundamental part of every ma-

chine learning phase [9, 10]. Modeling uncertainty is critical in the cases of ‘AI Failure’

[36]: the self-driving vehicle can kill pedestrians or the Amazon recruiting tool can be

gender or race biased. Similarly, a patient can be falsely recognized as ‘low-risk’ in the

hospital. In these cases, If the deep learning model can yield high uncertainty along

with the wrong predictions, such ‘failures’ could have been avoided. As concluded by

Gal [11], there are several situations that can lead to uncertainty: out of distribu-

tion test data, noisy data, model structure, and model parameters. Based on these

situations, two major types of uncertainty can be concluded [37, 11]: (1) aleatoric

uncertainty, which is caused by the noisy data; (2) the epistemic uncertainty, which
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includes the uncertainty from both model structure and model parameters. Fur-

thermore, aleatoric uncertainty can be divided into homoscedastic uncertainty and

heteroscedastic uncertainty. Homoscedastic uncertainty is captured independently of

input data, while the heteroscedastic uncertainty is instance-dependent.

Bayesian Neural Network (BNN) methods have been adapted to capture the un-

certainty in domains such as computer vision and natural language processing, e.g.,

[1, 11, 38]. It is robust to over-fitting, enables uncertainty estimation, provides more

calibrated models, and can easily learn from small datasets [39]. The key idea of

Bayesian modeling is to represent the model weights with some predefined prior dis-

tributions and to train the model to learn the probability density of the posteriors.

Estimating the posterior requires calculating integration over the model parameters

(also known as the process of inference). The process can be intractable to com-

pute analytically. Various methods have been proposed to approximate the inference

back in the 1990s. Some major works include Laplace Approximation [40], Minimal

Description Length (Variational Inference) [41], Hamiltonian Monte Carlo [42], and

Ensemble Learning [43]. However, for the massive datasets nowadays, these methods

were not scalable [11]. To adapt BNN to modern applications, sampling-based algo-

rithms or variational inference methods have been proposed, with good scalability.

Graves et al. [44] applied data sub-sampling techniques to estimate the weights of

Bayesian layers, but did not perform well in practice [45]. Blundell et al. [46] pro-

posed Bayes by Backpropagation (BBB) that used a mixture of two Gaussian priors

for Bayesian learning and largely improved the performance in practice. However,

doubling the number of distributions increased the computational cost and made the

model difficult to adapt to complex models. Hernandez-Lobato and Adams [45] pro-

posed Probabilistic Back Propagation (PBP) that computed a forward propagation

of probabilities followed by backward computation of gradients and outperformed

state-of-the-art models in ten tasks. In his dissertation work, Gal [11] developed
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an approximate inference technique that performs several stochastic forward passes

through the model, and estimated the uncertainty by capturing sample mean and

variance. The model scaled well to large data and could be adapted to different deep

learning models without changing network structures. Gal [11]’s idea has inspired

this study’s four designs of the neural networks.

1.2.6 Modeling Uncertainty in EHR-based Deep Learning Models

In recent three years, there are a few existing studies that estimated data uncer-

tainty or model uncertainty in the EHR data using deep learning models. Based on

the well-known RETAIN model [30], Heo et al. [12] introduced the notion of input-

dependent uncertainty to an attention mechanism, to generate an attention weight

for each feature with different degrees of noise, to learn larger variance on instances

the model is uncertain about. Their study was the first to investigate the feature-

level (variable-level) uncertainty, which has great potential for richer interpretations

of deep learning model results to assist clinicians. Compared to this study, their

study’s focus is feature-level uncertainty and attention weights in order to improve

model prediction performance. Instead, this study focuses on different uncertainty:

data uncertainty and model uncertainty as well as their relationships. Dusenberry

et al. [13] used different approaches to capture the notion of model uncertainty, and

found that a Bayesian RNN with stochastic embedding parameters is a more effi-

cient way to capture model uncertainty compared to ensembles of a large number

of deep learning models. They also analyzed how model uncertainty is impacted by

patient subgroups by age and gender. Although this study dives deep on the subject

of model uncertainty in the medical domain, they did not consider another major

type of uncertainty in their analysis: data uncertainty. Tan et al. [14] proposed a

novel Uncertainty-Aware Convolutional Recurrent Neural Network (UA-CRNN) that

is able to accommodate varying time intervals in time series data in EHR records.

They called this irregular varying time intervals as "uncertainty" in time series data.
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Their definition of uncertainty is completely different from the data and model uncer-

tainty in this chapter. In contrast to Dusenberry et al. [13]’s study, their study only

focuses on data uncertainty. Without understanding model uncertainty, the other

major type of uncertainty, the work did not paint a full picture of uncertainty in

patients’ EHR data.

Their work, although different definitions and approaches, all suggests the signif-

icance of studying EHR uncertainty. This study will continue to address the open

research questions on computational approaches to capture both EHR aleatoric un-

certainty and epistemic uncertainty at the same time, how to validate the results

without any ground truth on uncertainty, uncertainty’s impacts on model perfor-

mance, uncertainty’s effects on different patient demographic groups, as well as the

implications for doctors.

1.3 Overview of the Dissertation

This dissertation is organized into five parts. In Chapter 2, we will explore the

performance of two common deep learning models (CNN and GRU) for clinical risk

prediction tasks using a huge commercial EHR database; In Chapter 3, we will build

several BNN models to capture the patient level uncertainty, investigate the relation-

ships between uncertainty estimations and model performance, conduct uncertainty

verification experiments, and distill actionable insights for clinicians by several post-

hoc patient sub-group analyses; In Chapter 4, we will construct variational layers for

the estimations of temporal feature uncertainty, investigate the relationships between

patient-level uncertainty and feature-level uncertainty, and verify the calculated un-

certainty; In Chapter 5, we will design a user study that investigates the clinicians’

perception of the predictive model with extra uncertainty information; finally, we will

wrap up this dissertation with conclusions and future directions in Chapter 6.



CHAPTER 2: DEEP LEARNING MODELS FOR EHR-BASED PREDICTIVE

TASKS

In this chapter, we applied CNN and GRU to a clinical predictive task: Total joint

replacement (TJR). The deep learning models outperformed conventional machine

learning models. These CNN and GRU models will serve as the baseline models for

the BNN

2.1 Background

TJR is one of the most commonly performed elective surgical procedures in the

United States, with over 1 million total hip and total knee replacement procedures per-

formed each year [47]. The volume of primary and revision TJR procedures has risen

continuously in recent decades. By 2030, primary total hip replacement (THR) is pro-

jected to grow 171% and primary total knee replacement (TKR) is projected to grow

by up to 1 89%, for a projected 635,000 and 1.28 million procedures, respectively[48].

Given its volume and growth rate, the total cost of TJR has been scrutinized for

opportunities to improve the margin of providers or reduce the healthcare burden

of payers. One important finding is that there is a significant cost variation of TJR

procedures. Based on a report published by Health Care Cost Institute (HCCI) in

2016[49], inpatient facility service of TJR is a top shoppable service in the United

States for employer-sponsored insurance (ESI) population with age younger than 65,

which accounts for 1.3% of total ESI spending in 2011. Another report published by

BlueCross BlueShield (BCBSA) and Blue Health Intelligence (BHI) in 2015 showed

that identical TJR procedures can quadruple in cost depending on which hospital is

selected within a market. A more recent study[50] showed that the average cost of



16

care for total knee arthroplasty across the hospitals varied by a factor of about 2 to 1,

despite having similar patient demographics and readmission and complication rates.

Based on those findings, various cost transparency tools have been developed to

enable patients (consumers) to consume value through shopping, chosen the lower-

priced higher-quality providers. Employers usually offer those tools to their employees

through third parties or carriers for free. To maximize the return of investment on

such tools, it is crucial to identify those who might benefit from such tools (e.g. people

who need TJR surgery in the future) and engage them in time.

In view of this, we proposed to leverage claims data to identify the patients who

might need a TJR surgery in the future. Compared with clinical data, the claims

data are easy to obtain and deploy on a large scale, especially for non-clinical settings.

However, the claims data are usually noisy, high-dimensional, sparse, incomplete, and

heterogeneous [51, 22, 26, 25, 30, 52]. To tackle such challenges, researchers have been

applying deep neural networks models such as Convolutional Neural Networks (CNN)

[25, 26, 24, 23] and Recurrent Neural Networks (RNN) [51, 22, 30, 52, 53, 31, 24, 54,

55, 33, 28, 29] to predict the events.

In this chapter, we investigated the performance of various CNN and RNN algo-

rithms to predict TJR on a large scale commercial claim dataset. More specifically,

we are interested in the following aspects:

• Compared with baseline algorithms (LASSO and random forest), how much

performance gain can we achieve by using the complex deep learning approach?

The baseline algorithms aggregate the medical events along the time dimension

hence losing the temporal and contextual information, while the deep learning

based approach should be able to capture more complex structure of data at

the expense of computational complexity.

• Which deep learning model is better for elective surgery prediction? It is well

known that the RNN algorithm can do a better job in capturing longtime de-
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pendency than that of CNN algorithm. However, the results from the literature

were data dependent[56].

• How will data representation methods impact the performance of the deep learn-

ing model? We implemented two data representation methods in this chapter:

multi-hot coding and embedding. Previous studies have shown mixed results

for acute cases and we want to investigate its role for elective surgery[51, 22, 31].

• Will the hidden state information help our prediction task? In traditional RNN

algorithm, only the last hidden state information will be used for prediction.

Given that TJR is an elective procedure, it is possible that the patient may

delay the procedure even if he has met the criteria. From this perspective, we

believed the intermediate state information could also be useful.

2.2 Methodology

2.2.1 Data Description

Data were extracted fromMarketScan1 commercial claims and encounters database.

It covers employees and their dependents with age less than 65 years old. The cohort

is defined as follows:

• Fully enrolled in years 2014, 2015, and 2016.

• Diagnosed with Rheumatoid Arthritis/ Osteoarthritis based on CMS-CCW

Chronic Condition Algorithms2.

• No TJR surgery3 in 2014 and 2015.

• Age over 45 in 2014.

The cohort of 540,000 patients were selected with around 3.5% positive cases (have

a TJR surgery in 2016). The basic statistics of the dataset are listed in Table 2.1.
1 c©2017 Truven Health Analytics LLC, All rights reserved
2https://www.ccwdata.org/documents/10280/19139608/ccw-cond-algo-arthritis.pdf
3TJR surgery is identified by DRG = 269 or DRG=270
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Table 2.1: Basic statistics of the TJR dataset by year.

year 2014 2015

# patients with records 535,499 537,205
# days with events 18,300,352 19,863,997
# medical codes 134,071,176 146,802,340

Avg. days with events per patient 34 37
Avg. codes per patient 250 273

The following data elements from MarketScan database were selected as features

for modeling purpose:

• Demographic variables: Age and gender. For deep learning models, the

Demographic variables were concatenated with other variables in the last layer.

• Diagnosis codes: 283 distinct CCS diagnosis codes4, mapped from both ICD-

9-CM5 and ICD-10-CM6 codes in the MarketScan database.

• Procedure codes: 240 CCS procedure codes7, mapped from both ICD-10-

PCS codes8, Current Procedural Terminology (CPT) and Healthcare Common

Procedure Coding System (HCPCS) in the database.

• Therapeutic classes: 222 therapeutic classes which are derived from drug

information by data vendor.

• Revenue codes: 651 standard revenue codes defined by the Health Care Fi-

nance Administration (HCFA).

• Place of service: 45 codes, such as pharmacy, home, ambulance, hospital, or

other facilities.
4clinical classification software (CCS) provided by ARHQ https://www.hcup-

us.ahrq.gov/toolssoftware/ccs/ccs.jsp
5International Classification of Disease Ninth Revision, Clinical Modification (ICD-9-CM)
6International Classification of Disease Tenth Revision, Clinical Modification (ICD-10-CM)
7clinical classification software (CCS) provided by ARHQ https://www.hcup-

us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp
8International Classification of Disease Tenth Revision, Procedure Coding System (ICD-10-PCS)
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• Provider types. 131 provider types such as birthing center, radiology, or

dentist.

• Service sub-category codes: 498 sub-service types such as mammograms,

MRIs, or PET Scans etc.

2.2.2 EHR Data Representation

Since many EHR data are noisy, high-dimensional, and sparse, we first needed to

explore the literature and find out efficient representation methods for the subsequent

predictive tasks. Three data representation methods will be used in this dissertation.

An aggregated occurrence vector will be applied on the conventional machine learning

models; For the deep neural networks, we will evaluate the performance and efficiency

of two representation methods: simple multi-hot encoding and medical feature em-

bedding.

• Aggregated occurrence vector. We created a binary vector for each patient

with length equals to the number of unique codes for each year. If a code ap-

peared in that year, the corresponding elements in that vector will be set as 1

for this patient. The final feature vector for each patient was the concatena-

tion of binary vectors for all years in the observation window. As mentioned

in the works using conventional machine learning methods [57, 51], this data

representation method did not take or takes little advantages of the longitudinal

data.

• Multi-hot encoding. Every patient record was formed as a temporary-code

binary matrix. The (i, j)th element of the matrix was 1 if i-th code appeared

on the j-th day for a specific patient. The detailed explanation can be found in

the works of Cheng et al.[26] and Che et al.[25].



20

• Embedding. To reduce the dimension of the feature matrix, we used Skip-

Gram [58] method for code embedding[58, 59]. More specifically, we used a

sliding time window of 14 days (can be any other number of days that make sense

in the medical setting) to collect unique codes and reshuffled it as a ‘sentence’.

Detailed explanation was described by Choi et al.[60] and Farhan et al.[61]. The

output embedding dimension was set to 100.

2.2.3 Deep Learning Model Structures

We used two aforementioned deep learning models for the experiments: CNN and

RNN.

• CNN with only 1-d convolutions are commonly used to analyze time-series data

such as the EHR and capture the longitudinal information [25, 26, 24, 23].

• RNN is commonly applied to analyze time-series data and sequence data. The

nodes in the network are connected to form a directed graph that cycles the

information for arbitrarily long time [27]. As mentioned in the previous chapter,

we use GRU as the RNN model in this dissertation.

2.3 Experiments and Implementations

The script language used for the experiments was Python. The medical feature

embedding was trained with Gensim. The neural network models were implemented

in Keras and Tensorflow. For each implemented method, the result was provided by

the mean and 95% confidence interval of a 5-fold cross validation.

2.3.1 Benchmark Model Implementations

The alpha of LASSO was set to 0.001 after performing a grid search. The detailed

parameter for RF was as follows: the number of trees was 100; the maximum depth of

the tree was 100; the minimum number of samples required to split an internal node

was 10; the minimum number of samples required to be at a leaf node was 10; the
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number of features to consider when looking for the best split was set to the square

root of the number of total features.

2.3.2 Model Implementation

2.3.2.1 Implementation of CNN

The CNN model we used was similar to the work of Cheng et al. [26]. The

network had 4 layers: The size of the input layer was the same as the number of

features (codes); the second layer was a one dimensional convolutional layer, where

convolutions of different sizes slided along the time axis and obtained features; the

third layer performed dropout, pooling, and normalization operations, in order to

fasten the computation and control over-fitting; the last layer was a fully connected

(dense) output layer with a logistic regression to make the prediction. After tuning,

we used 3 type of filters with filter length equaling 3, 4 and 5 and set the number

of filters to 100. We used ‘adam’ as the optimizer and the learning rate was set to

0.001. The batch size was set as 250.

2.3.2.2 Implementation of RNN

We selected the gated recurrent unit (GRU) to implement the RNN for simplicity.

As shown in Figure 2.1, given an input sequence xt and the last hidden state ht−1 at

each time step, GRU updates the hidden states ht. GRU cell is built with sophis-

ticated gating mechanism. It contains a reset gate rt and an update gate zt. The

computations inside the solid line box of Figure 2.1 are as follows:

zt = σ(Uzxt +Wzht−1 + bz)

rt = σ(Urxt +Wrht−1 + br)

h̃t = tanh(Uhxt + rt �Whht−1 + bh)

ht = zt � ht−1 + (1− zt)� h̃t
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Figure 2.1: The RNN architecture and pooling operations.

where σ() denotes the sigmoid function and � is the operator for Hadamard product

(i.e. element-wise multiplication); At each time step, the visit information xt and

hidden state of the last time step ht−1 are the inputs; three sets of U, W, b are the

weights and biases to calculate two gates and the intermediate memory unit h̃t. The

sigmoid function makes the values of both gates between 0 and 1. The reset gate

retains the useful information and drops the rest and the update gate decides how

much of last hidden state to be passed onto the next state. We employ dropout on the

final hidden state hT for regularization, concatenate it with the patient’s demographic

data, and make the TJR prediction with logistic regression (Listed as the "Typical

RNN" in Figure 2.1).

After tuning, we set the hyper-parameters as follows: the hidden layer dimension

was set to 200; the dropout rate was 0.2; the optimizer, learning rate, and batch size

were ‘adam’, 0.001, and 250, respectively.
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2.3.2.3 Implementation of Pooling with RNN

In a typical GRU model, the output only depends on the logistic regression of the

last hidden state hT . Recently, researchers started to explore how to leverage other

hidden state information to boost the performance [34, 35]. We also applied different

pooling operations to all hidden state and concatenated it with the final state for

final prediction. The rationale for using these sequences was that the positive or

negative signal was often included in just a few visits at any point of the whole time

period. The signal might have been ignored or weakened while it was passed to

the last hidden state. As an elective surgery, the decision of TJR could possibly be

made early but postponed due to other more urgent health problems. Three kinds of

pooling operations are as follows:

• Max pooling layer. This layer outputs the maximum values of each dimension

over the whole time period. By sending the strongest signal directly to the final

state, the network becomes more sensitive to the important events.

• Average pooling layer. The idea of average pooling is to make the loss function

consider all intermediate states, leading to better convergence and generaliza-

tion.

• Minimum pooling layer. This layer is equivalent to -maxpool(-x). Proposed by

Skinner[35], min-pooling is supposed to enable the model to pass the other end

of the activations in addition to the max-pooling. The network will become

more “balanced" and “expressive".

It was possible to use one or multiple pooling strategies and concatenate them

together to test its performance improvement, as shown in Figure 2.1.
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Table 2.2: Performance comparison between baseline models and deep learning
models.

Model Trained with 2015 data Trained with both 2014 and 2015 data
AUC Precision@Recall=0.9 AUC Precision@Recall=0.9

LASSO 0.7616± 0.0048 0.0527± 0.0003 0.7682± 0.0046 0.0532± 0.0013
RF 0.7853± 0.0050 0.0533± 0.0015 0.7887± 0.0040 0.0541± 0.0007

CNN-MH 0.8086± 0.0036 0.0572± 0.0012 0.8218± 0.0053 0.0645± 0.0015
RNN-MH 0.8200± 0.0073 0.0577± 0.0029 0.8339± 0.0024 0.0662± 0.0008

Table 2.3: Running time comparison between RNN-MH and RNN-EMB.

Measurement RNN-MH RNN-EMB

Trained with 2015 data
Avg. training time per epoch 2589s 1028s
No. of epoch to converge 3 7

Total training time 7767s 7196s

Trained with both 2014 and 2015 data
Avg. training time per epoch 3450s 1246s
No. of epoch to converge 4 11

Total training time 13800s 13706s
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Figure 2.2: Comparison of ROC for different models trained
with 2014 and 2015 data.
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2.4 Results and Discussions

We perform experiments with two different observation windows. For the first

setting, we only use 2015 data to predict TJR event in 2016. For the second setting,

we use both 2014 and 2015 data to predict TJR event in 2016.

Two metrics are used for performance comparison. The first one is the area under

the curve (AUC) which measures the overall performance of the model. The second

one is precision with recall set to 0.9, which measures the real world performance of

the model after consulting with business partners.

• The deep learning approach performs much better than traditional algorithms

such as logistic regression and random forest (RF).

Table 2.2 shows the performance of RF, LASSO, CNN with multi-hot coding

(CNN-MH) and GRU with multi-hot coding (RNN-MH). The pair-wise t-test

shows that the deep learning methods (CNN-MH and RNN-MH) perform sig-

nificantly better than RF and LASSO in all scenarios with p=0.001.

Another interesting observation is that the performance of RF and LASSO does

not increase when more data (2014 data) was included. However, the perfor-

mance of deep learning methods will increase significantly with more data. This

indicates that the deep learning method is more capable of exploring complex

relationships in time series data.

• The RNN based algorithm outperforms CNN based approach regardless of dif-

ferent representation (multi-hot or embedding).

From Table 2.2, it is clear that RNN is much better than CNN in all scenarios,

especially when 2014 data is included in the observation window. Pair-wise

t-test shows that the difference is significant with p=0.001. In view of this, we

will only investigate RNN algorithms from now on.
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• The data representation has a limited effect on the performance and training

efficiency of RNN algorithms.

As shown in Table 2.3, the difference between RNN with two different data

representation methods (RNN-EMB: RNN with embedding) are not significant

in all scenarios. The training time per epoch for RNN-EMB is almost 2-3

times of that for RNN-MH. However, the RNN-MH converges much faster than

RNN-EMB. As a result, the total training time of RNN-MH is similar to that

of RNN-EMB in our experiments. As we formatted our input data as a 3-

D matrix (the 3 dimensions are feature, time and patients respectively), the

training time for both of models increases linearly with the number of patients,

which is different compared with what is reported by Choi et al.[22].

• Additional maximum and minimum pooling mechanism can improve the perfor-

mance of the RNN baseline algorithm. The best performance is achieved when

we add pooling mechanism to RNN-MH algorithm.

Table 2.4 shows the performance of RNN-MH and RNN-EMB with pooling

methods. Pair-wise t-test demonstrates that the performance of RNN-EMB

will be better if the maximum or minimum pooling are included with p =0.005.

However, there is no significant difference when the average pooling is used with

RNN-EMB. When we use all three pooling methods, the performance of both

RNN-MH and RNN-EMB are improved significantly.

In Figure 2.2, we plot the ROC curves of baseline models and three deep learning

models with multi-hot encoding trained with 2014 and 2015 data. The figures demon-

strate that deep learning methods are much better than the traditional methods and

adding the pooling mechanisms further improve the performance of RNN.
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Table 2.4: Performance of RNN with different pooling methods.

Model Trained with 2015 data Trained with both 2014 and 2015 data
AUC Precision@Recall=0.9 AUC Precision@Recall=0.9

RNN-MH 0.8200± 0.0073 0.0577± 0.0029 0.8339± 0.0024 0.0662± 0.0008
RNN-MH-MAX-MIN-AVG 0.8289± 0.0043 0.0601± 0.0015 0.8423± 0.0042 0.0693± 0.0025

RNN-EMB 0.8154± 0.0060 0.0574± 0.0016 0.8349± 0.0053 0.0668± 0.0020
RNN-EMB-MAX-MIN-AVG 0.8234± 0.0056 0.0591± 0.0019 0.8402± 0.0051 0.0685± 0.0024

RNN-EMB-MAX 0.8222± 0.0060 0.0594± 0.0018 0.8379± 0.0032 0.0681± 0.0017
RNN-EMB-MIN 0.8241± 0.0043 0.0598± 0.0018 0.8387± 0.0055 0.0675± 0.0020
RNN-EMB-AVG 0.8173± 0.0061 0.0575± 0.0017 0.8334± 0.0065 0.0667± 0.0032

RNN-EMB-MAX-MIN 0.8218± 0.0044 0.0591± 0.0014 0.8405± 0.0045 0.0687± 0.0020

Figure 2.3: Explanation of model behavior with 3 examples. Out-
liers are not shown and the green triangle indicates the the mean of
each group.
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2.5 Model Explanation

We analyze the predictions made by the best model (RNN-MH-MAX-MIN-AVG)

trained with both 2014 and 2015 data. Similar to what is described by Choi et al.[22],

we sample 200 patients each from true positive (TP), false positive (FP), true negative

(TN) and false negative (FN). This procedure is performed for all 5-folds, which give

us 1000 patients in total. Then we calculate the number of days with those codes per

patient. In the end, we compare their distribution across 4 categories (TP, FP, TN,

and FN).

Figure 2.3 showed 3 representative codes that can explain the behavior of our

prediction. The box-plot in each sub-figure showed the distribution of the number

of days with that specific code per 4 categories (TP, FP, TN, and FN). The model

assign more weights to the patients who have more interactions with health care

provider, as shown in left sub-figure. More specifically, our model prefers those who

got service from orthopedic surgery more often and have undergone the procedure of

arthrocentesis more frequently.

2.6 Conclusions and Future Works

In this chapter, we investigated several deep learning methods to predict the TJR

surgery based on a large commercial claims dataset with more than 2,000 variables and

540,000 patients. Without surprise, the performance of deep learning based approach

is much better than traditional methods (e.g. random forest and LASSO). Among

the investigated deep learning methods, the RNN with pooling mechanism worked

the best for the use case. We tested two different data representation methods and

discovered that the embedding techniques do not improve either the performance or

the training efficiency of RNN in all scenarios. Our experiments also suggested that

pooling mechanisms are able to discover the additional signals from the intermediate

hidden states hence improving the performance of the baseline RNN algorithm.
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In the rest chapters of this dissertation, we will develop the deep learning models

from this chapter and estimate the uncertainty. Some of the settings that have been

proved to be viable in this work will continue to be used. Due to the restricted access

to the large Truven datasets, we will use the open-source MIMIC-III and PhysioNet-

2012 datasets. Given that these datasets both have low numbers of medical features

and medical embedding did not outperform multi-hot encoding in this chapter, we

will only use multi-hot encoding for the following chapters. We will also use GRU

with pooling mechanisms as the benchmark RNN model since pooling models will

always outperform models without pooling.



CHAPTER 3: MODELING UNCERTAINTY OF EHR-BASED DEEP LEARNING

MODELS

3.1 Background

Other than healthcare [26, 62], deep learning has a profound impact on various

data-driven applications such as computer vision, natural language processing, and

robotics [1, 63, 64]. It is well known for learning predictive artificial features from

raw input, which largely reduces feature engineering efforts [5] and meanwhile distills

meaningful information from complicated input data.

As mentioned in Chapter 1, deep learning models have some widely agreed limita-

tions despite their promising performance. The neuron structure and the high depen-

dence on mathematical approximation results in a black box of the model learning

process. With the lack of transparency, it is difficult for end-users, including health

professionals, to understand the models’ behaviors. To provide reasonable explana-

tions and increase end-users’ confidence in the results, it is crucial to identify when

and what the trained model learns or does not learn, and how certain it is. That

is a concept we will study in this chapter: uncertainty in deep learning. Uncer-

tainty plays a fundamental part in every phase of deep learning or machine learning

in general [9, 10]. A machine learning algorithm with high uncertainty may cause

negative or even catastrophic consequences: a self-driving vehicle could not classify

a pedestrian correctly unless she is near the sidewalk; the Amazon AI recruiting tool

showed bias against women, etc. Similarly in the context of healthcare, a predictive

model could falsely label a patient as “low-risk" at the hospital admission. For these

cases that predictive models made mistakes and the AI “failed", if we were able to

derive an assessment of uncertainty on the results beforehand and communicate it to
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the end-users, more attention could have been allocated and the undesired outcomes

could have been avoided.

According to [37, 11], there are two major sources of uncertainty in machine learn-

ing. Uncertainty can be caused by the noise from data, such as a case that is out of

distribution, a wrong observed label, an erroneous data, or an imputed missing patient

record. While making predictions on new data, it is unknown on what characteristics

or which part of the data may lead to better model performance. In addition, uncer-

tainty can also be introduced by the model structure (such as the selection between

linear model, tree-based model, or deep neural networks) and model parameters. Gal

in his dissertation [11] concluded these two sources of uncertainty as (1) aleatoric

uncertainty, which is caused by noisy data; and (2) epistemic uncertainty, which in-

cludes the uncertainty from both model structure and model parameters. The former

one, aleatoric uncertainty can further be divided into homoscedastic uncertainty and

heteroscedastic uncertainty. Homoscedastic uncertainty is captured independently of

input data, while heteroscedastic uncertainty is instance-dependent.

For the healthcare domain where the risk and cost associated with a decision are

high, it is not sufficient for a machine learning model to just deliver a prediction re-

sult. To gain the trust from end-users, the models should go beyond to reliably know

when they are confident and when they are likely to make a mistake. Quantifying

uncertainty is a way to represent such a confidence level. Knowing the importance of

uncertainty and the fact that normal deep learning model is not capable of capturing

uncertainty, researchers in the computer vision domain first estimated it with ap-

proaches such as Bayesian deep learning, which replaces deterministic model weights

with prior distributions and use the learned posteriors to represent the uncertainty. A

representative example of such a stream of research is Gal’s dissertation research [11].

As for the healthcare domain, most of the existing literature focuses on capturing the

uncertainty in the medical image processing and classification, which is essentially
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the same with the problem in computer vision. To our best knowledge, there are

only a few existing efforts studying uncertainty in deep learning models for the EHR

data. They are 1) Heo et al.’s study in 2018 [12] on feature (variable) uncertainty in

medical risk prediction tasks; 2) Dusenberry et al.’s research in 2019 [13] on Bayesian

RNN with stochastic embedding to capture model uncertainty on the entire patient

datasets and different patient subgroups; 3) Tan et al.’s work in 2019 [14] on atten-

tion mechanisms to accommodate varying time intervals in time series data, which

they called “uncertainty". Their work collectively suggests the value of understanding

deep learning uncertainty in the EHR data. However, there are still open research

questions on computational approaches to capture both EHR aleatoric uncertainty

and epistemic uncertainty efficiently and simultaneously, how to validate the results,

uncertainty’s relationship with model performance, uncertainty’s effects on different

patient demographic groups, as well as the implications that can assist the clinicians

in allocating their attention and making decisions.

In this chapter, we proposed four neural network structures to capture both EHR

aleatoric uncertainty and epistemic uncertainty in one Bayesian deep learning model.

Specifically, the designed structure is from adapting and combining various Bayesian

learning methods and sampling methods, to accommodate EHR data. The methods

include the combination of Heteroscedastic Neural Networks (HNN) [1] with Deep

Ensemble (DE) [65] and Dropout [15] respectively. The four models are applied

into two published EHR datasets for a series of clinical prediction tasks (such as in-

hospital mortality). Because there is no ground truth about either type of uncertainty,

we verified the validity of both aleatoric and epistemic uncertainty through a series

of experiments by intentionally introducing noise and randomness to the original

dataset. We also examined the interaction effects between data uncertainty and

model uncertainty on model performance, as well as the effects, broke down by patient

demographic variables.
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The major contributions of this chapter can be summarized in following aspects:

• The four deep learning neural network structures to capture both EHR data

uncertainty and model uncertainty simultaneously in one model.

• A series of experiment design by intentionally introducing noise and randomness

to the original dataset to characterize and validate the nature of our captured

uncertainty, and their relationship with model performance.

• Patient subgroup analysis on the effects of uncertainty on different patient de-

mographic groups in order to derive practical implications for doctors.

3.2 Methodology

In a normal deep learning classification model that does not estimate the uncer-

tainty, the network takes all input variables into the trained black-box and only yield

some probabilities at the output layer. To make the output layer return uncertainty

together with the predicted probabilities, we present several methods for estimating

heteroscedastic aleatoric uncertainty and epistemic uncertainty.

3.2.1 Estimating Heteroscedastic Aleatoric Uncertainty

Figure 3.1: Normal deep learning output layer for categorical (binary) prediction.

To capture heteroscedastic aleatoric uncertainty in a classification model with EHR,

we need to estimate the observation noise σ. In contrast to the homoscedastic uncer-

tainty which assumes constant σ, the heteroscedastic uncertainty assumes that σ is

input-dependent [66]. In a normal deep learning model (as shown in Figure 3.1), the
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network output x is passed into a dense layer with weight W and a Softmax function

to predict the probability vector p̂:

p̂ = Softmax(Wx)

Figure 3.2: BNN output layer for categorical (binary) prediction.

According to the Heteroscedastic Neural Networks (HNN) proposed by Kendall and

Gal in their study in 2017 [1], we could add a noise term k to the weight W and place

a Gaussian distribution over the kx. As shown in Figure 3.2, the data uncertainty

is the extra term in the model output (red dotted box). It was represented by the

variance σ2
x of the Gaussian distribution and calculated from x by another dense layer:

x̂ = (W + k)x = Wx+ kx,

kx ∼ N(0, σ2
xI)

where I stands for an identity matrix. Then, we predict the probability p̂ using the

“corrupted" output x̂, as in the study of Kendall and Gal [1]:

p̂ = Softmax(x̂)

Since there is no analytical solution to integrate out the Gaussian distribution of

introduced error kx for a normally used cross entropy loss function for classification

tasks, Monte Carlo (MC) simulation is used in Kendall and Gal’s study in 2017 [1]

to approximate the objective. We will briefly introduce it here. The simulation is
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performed after the calculation of the network output x, so it only increases a fraction

of the model computing time. Assume that T times Monte Carlo is simulated, the

loss function for this part is:

x̂t = Wx+ σxεt, εt ∼ N(0, I)

LBayes = log
1

T

T∑
t=1

exp (x̂t − log
∑
c

exp x̂t,c)

where t represents one MC simulation, c is every element in x̂t, and LBayes stands for

Bayesian categorical cross entropy. The BNN model will be optimized towards the

weighted average of a regularizer on estimated σx, and the categorical cross entropy

as commonly used in normal deep learning classification models. Note that only the

classification task is supervised. The aleatoric uncertainty as the variance term σ2
x is

learned as we minimize the loss function.

The HNN only performs Bayesian learning at the output layer, so it can be readily

applied to any built models with appropriate changes on the input layer, output layer,

and loss function. In this chapter, we will experiment with the idea of placing HNN [1]

on tops of some EHR friendly deep learning models, such as CNN and GRU.

Except for the HNN models, it was claimed that for the binary tasks, the single

probability predicted by a normal deep learning model can be viewed as the uncer-

tainty from data [67, 13]. While is true that the probability is dependent on the input,

it reduces the model output from three to two and loses that advantages brought by

the HNN.

3.2.2 Estimating Epistemic Uncertainty

We used two different approaches to capture epistemic uncertainty, as described in

the following subsections.
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3.2.2.1 Deep Ensemble

Deep Ensemble (DE) [65] is a simple ensemble method that estimates the uncer-

tainty from the model without requiring the model to be “Bayesian". We need to train

an ensemble of neural networks using the same network structure, hyper-parameters,

and input data. These networks differ from each other only by the randomness in the

model weight initialization. Consider that n models are trained, for one patient in the

test dataset, the predicted probabilities of this patient {λ1, λ2, ...λn} can be viewed

as a distribution p(λ|x,w), where x represents the input data and w represents the

model weights. The variance of this distribution represents the epistemic uncertainty:

unepi = var(λ1, λ2, ...λn)

3.2.2.2 Dropout

Dropout [68] is a regularization method that has been commonly used in deep neu-

ral networks to reduce the problem of over-fitting. It was accomplished by randomly

dropping a certain portion of nodes/units in a neural network layer. The dropout

layers in the deep learning model are usually turned on while training for better reg-

ularization and then turned off while making predictions on the testing phase. As

theoretically proved by Gal and Ghahramani [15], dropout can be used as the approx-

imation of Bayesian inference in deep learning models. The epistemic uncertainty can

be estimated by (1) enabling the dropout layers in the trained model, (2) making mul-

tiple times of predictions on the test data to form a distribution, and (3) calculating

the epistemic uncertainty from the distribution. Consider n times of predictions are

made for each patient, the probabilities {λ1, λ2, ...λn} can be viewed as a distribution

p(λ|x,w), where x represents the input and w represents the model weights. The
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epistemic uncertainty is calculated as the prediction entropy:

unepi = −
n∑

i=1

log(λi) ∗ λi

Having the approaches to calculating data uncertainty and model uncertainty, we

will be able to apply the approaches to two published EHR datasets to test their

validity.

3.3 Experiments

In this section, we will talk about the two EHR datasets for our experiments as

well as the experiment set-up, such as baseline models, methods to verify uncertainty,

etc.

3.3.1 Datasets and Our Prediction Tasks

We use two datasets and five clinical tasks for the experiments in this chapter.

• MIMIC-III dataset and the task of predicting mortality. We follow the

data preprocessing and feature extraction steps described in [69] to prepare the

input data for the MIMIC-III mortality task. The dataset contains a total of

21,139 records, among which 2,797 are positive cases. The observation window

is the first 48 hours after admission. Seventeen features are collected, including

heart rate, temperature, weight, pH, Glascow coma scales, and patient monitor

records, such as systolic blood pressure and respiratory rate. The categorical

features are one-hot encoded and others are normalized. Due to the sparsity of

the EHR data, there is a large number of missing values. Each value is imputed

and followed by an indicator specifying its status (true value or missing value).

After encoding, normalizing, and imputation, each patient’s record is in the

shape of 48 hours with 76 generated features.

• PhysioNet 2012 Data Challenge. The 2012 PhysioNet Challenge dataset
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[19] stores time series data from 12,000 ICU records, each contains 37 variables

such as heart rate, serum glucose, and Glasgow coma score, in 48 hours (155

time steps) after hospital admission. We used the training set A (4000 records)

in the experiments. We conducted four binary predictive tasks: in-hospital

mortality, length-of-stay less than 3, having a cardiac condition, and recovering

from surgery.

3.3.2 Baselines

Since our approaches to capturing data uncertainty and model uncertainty need

baseline deep learning models to work on. Below is a list of baselines in this chapter.

They represent state-of-the-art deep learning models used in the health context.

• CNN: 1-dimensional temporal CNN that was widely used in the medical do-

main (examples are [25, 23, 70]). The convolutions are capable of capturing local

temporal relations between medical features, hence outperforming conventional

methods such as logistic regression and random forest.

• GRU: In addition to the RNN model with GRU layers [22], the pooling mech-

anisms [70, 35] are added to detect strong signals in the early stage of the time

series data.

• RETAIN: The RNN model with both temporal and feature attentions pro-

posed by [30].

• UA-Attention: The uncertainty-aware RNN model [12] that is based on RE-

TAIN.

3.3.3 Experiment Settings

We will introduce the four proposed variants of deep learning models for capturing

both types of uncertainty. They are:
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• HCNN-DE: Based on 1-D CNN, HNN [1], and DE [65].

• HCNN-DR: 1-D CNN model that uses HNN and Dropout [15] to capture data

uncertainty and model uncertainty, respectively.

• HGRU-DE: GRU model that combines HNN at the output layer and uses DE

to quantify model uncertainty.

• HGRU-DR: HGRU model with Dropout layer turned on in the testing phase.

The structure and configurations of HNN are shown in Fig. 3.3. The model takes

input (N, T, F), which corresponds to the number of cases, time duration, and the

number of medical features respectively. The dotted box illustrates the two possi-

ble structures with HGRU or HCNN. One model will take only one possibility of

the two. On the GRU side, the GRU layer was configured with 100 hidden units,

then the output is concatenated with ts maximum, minimum, and average, forming

the output of GRU in the shape of 400 units. On the CNN side, we used 64 filters

with kernel size 3 for two 1-D convolutional layers, each of which is followed by a

‘Batch Normalization" layer and Dropout layer. Following the dotted box structure

is a Dense layer with 100 units/nodes with another Dropout layer. For all Dropout

layers, the dropout rate is set to 0.5. For the output, the dense layers with ‘softplus’

and ‘softmax’ are used to generate the aleatoric uncertainty and the predicted prob-

ability respectively. The aleatoric uncertainty is learned by optimizing the Bayesian

categorical cross entropy (aleatoric uncertainty loss) and the predicted probability

is learned by optimizing the normal categorical cross entropy. We use ‘Adam’ as

the optimizer with the learning rate and decay both set to be 0.001. The number

of MC simulation for updating the Bayesian categorical cross entropy is set to 100.

The weights for adding up the Bayesian categorical cross entropy and the categorical

cross entropy are set to be 0.5 and 1 respectively. When training DE (Deep Ensemble)

models for epistemic uncertainty, ‘training’ option is set to be ‘False’ for the Dropout
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layers; when training Dropout models for epistemic uncertainty, ‘training’ is set to

be ‘True’. For the calculations of epistemic uncertainty, we used 100 outputs to form

the distribution, meaning that 100 models trained for the Deep Ensemble approach

and 100 predictions made by the Dropout model.

GRU CNN

Input (N, T, F)

GRU(n_hidden=100, 'tanh' +
'sigmoid')

pooling layer:
concat([GRU, GRU_MAX,
GRU_MIN, GRU_AVG])

Dropout(0.5, training=False)

Dropout(0.5, training=False)

Variance output: concat
(Dense(2), Dense(1, 'softplus))

Softmax output: Dense(2,
'softmax')

Conv_1d(3x64, 'relu') +
BatchNormalization +

Dropout(0.5, training=False)

Conv_1d(3x64, 'relu') +
BatchNormalization +

Dropout(0.5, training=False)

Flatten

Aleatoric uncertainty Predicted probability

CNN or GRU?

Dense(units=100)

Figure 3.3: The network structure and configurations of proposed HNN models.
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3.3.4 Uncertainty Verification

Through a series of experiments, we will test the captured uncertainty (both data

and model) against several commonly accepted facts about uncertainty, in order to

verify that the estimated uncertainty does capture what we intended to capture for

both data and model. Below we will introduce the set-up of the experiments.

Aleatoric uncertainty verification. It is by definition that when the noises from

data increase, aleatoric uncertainty will increase. Therefore we will test whether as

the data gets noisier, our model will output higher estimated aleatoric uncertainty.

Specifically, we randomly selected some portion of combinations of (time, feature)

from the patient records in the original data, and removed them to generate new

datasets. As the result, we created 5 new datasets with 0% (all data removed), 25%,

50%, 75%, and 100% (all data retained). We then evaluated how the estimated

aleatoric uncertainty change, and whether the change was consistent with the defini-

tion of aleatoric uncertainty as expected. In addition, we also investigated how model

performance will change as the result.

Epistemic uncertainty verification. Since the epistemic uncertainty can be reduced

or explained away with sufficient training data [1], we are interested in this test: will

adding more training data of specific patient group decrease the model uncertainty

of the patients in that group? If so, will the change affect the model performance?

We will conduct this experiment using the PhysioNet dataset and the mortality pre-

diction task. In the dataset, each patient was labeled with one of the four ICU types

at admission: Coronary Care Unit, Cardiac Surgery Recovery Unit, Medical ICU,

and Surgical ICU. We will test against this known fact (epistemic uncertainty will

be reduced with sufficient training data) by reducing the number of patients of a

certain ICU type in the training set, and then evaluate how the estimated epistemic

uncertainty as well as model performance will change. Similarly, five new datasets

were created: 0% (no train data in this type), 25%, 50%, 75%, and 100% (all training
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data in this type retained) respectively.

Interaction effects of aleatoric uncertainty and epistemic uncertainty on the model

performance. With the capability of estimating both types of uncertainty in one

model, we also want to investigate how do the two types of uncertainty interact with

the model performance. Will the population with both low aleatoric uncertainty and

low epistemic uncertainty always perform the best? What if the aleatoric uncertainty

is high while the epistemic uncertainty is low? We divided the dataset into four parts

by the medians of aleatoric uncertainty and epistemic uncertainty, then evaluated the

performance of each part to learn the interaction effects.

3.4 Results and Discussion

3.4.1 Model Performance

We used the area under the receiver operator characteristic curves (AUC) and 5-

fold cross-validation to report the model performance. Table 3.1 shows the AUC

scores with 95% confidence interval of all the five tasks. From these results, we can

confidently claim that capturing the uncertainty does not compromise the model per-

formance: The AUC scores of proposed models are comparable, if not better than, to

the baseline models in all five tasks. The HGRU models achieve the highest average

AUC scores and improve the performance by 1%-4% compared with the baselines.

This performance improvement implies that the process of learning aleatoric uncer-

tainty is in fact helping mitigate the negative effect of noisy data on model perfor-

mance. The process of estimating epistemic uncertainty, on the other hand, does not

have this mitigating effect because the process does not involve any model learning

process.

It is always the case that the GRU models always outperform the CNN models.

This could be due to the fact that GRU captures more long-term information and

CNN focus more on local (short-term) context. For the PhysioNet dataset, the perfor-

mance differences between CNN and GRU are larger due to the varying time intervals
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of the patient records. Although we have 155 time points for all the patients, some

of them only have shorter length of records with many missing values. Under this

situation of data irregularity and sparsity, GRUs’ long-term memory and tolerance

on missing value have advantages compared to CNN. Therefore, we will focus on the

HGRU models in the rest of the result analysis to demonstrate our idea. Specifically,

we will only use the HGRU-DR model for the demonstration purpose.

Table 3.1: Model performance (AUC scores) comparison for 5 binary tasks

MIMIC PhysioNet
Mortality Mortality Stay < 3 Cardiac Recovery

Baseline Models
CNN 0.8439± 0.0149 0.7518± 0.0116 0.8389± 0.0091 0.9183± 0.0218 0.8587± 0.0184
GRU 0.8589± 0.0163 0.7881± 0.0193 0.8615± 0.0077 0.9602± 0.0173 0.9032± 0.0142

RETAIN 0.8242± 0.0178 0.7652± 0.0203 0.8515± 0.0185 0.9485± 0.0138 0.8830± 0.0095
UA-RETAIN 0.8296± 0.0263 0.7737± 0.0234 0.8595± 0.0163 0.9574± 0.0274 0.8895± 0.0153

Our Proposed Models
HCNN-DE 0.8502± 0.0128 0.7532± 0.0196 0.8392± 0.0116 0.9053± 0.0186 0.8630± 0.0263
HCNN-DR 0.8483± 0.0187 0.7549± 0.0209 0.8280± 0.0232 0.8975± 0.0198 0.8554± 0.0210
HGRU-DE 0.8659 ± 0.0172 0.7973± 0.0183 0.8646 ± 0.0219 0.9629 ± 0.0120 0.9102 ± 0.0217
HGRU-DR 0.8618± 0.0216 0.7989 ± 0.0190 0.8565± 0.0241 0.9580± 0.0085 0.9002± 0.0297
The reported numbers are the mean AUC and standard errors for 95% confidence interval over 5-fold cross validation.
The bold numbers indicate the best performance in that (column) group.

3.4.2 Comparing the Uncertainties and Model Performance

Next we will explore how aleatoric uncertainty and epistemic uncertainty affect the

model performance. We divided the test dataset into two segments by the median of

aleatoric uncertainty and epistemic uncertainty respectively, and compare the model

performance for each segment. As shown in Table 3.2, the segments with lower

aleatoric uncertainty have seen a better performance (higher AUC scores) by 0.06 -

0.12 than the segments with higher aleatoric uncertainty. These results confirmed

that high data uncertainty does harm the model performance from the population

level, although it may not always the case at the individual level.

We also compare the performance between segments with high and low epistemic

uncertainty. The difference is not as large as that between the two aleatoric uncer-

tainty groups. For the two mortality prediction tasks, the low-epistemic-uncertainty

group performs significantly better, while for the other tasks the differences are gener-
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ally very small. It is possible that with the model being sufficiently trained on similar

cases, the effect of epistemic uncertainty on the performance is largely weakened.

Table 3.2: Model performance comparison between uncertainty groups separated by
medians

MIMIC PhysioNet
Mortality Mortality Stay < 3 Cardiac Recovery

Aleatoric Uncertainty - High 0.8017± 0.0216 0.7504± 0.0018 0.8104± 0.0289 0.9204± 0.0183 0.8304± 0.0238
Aleatoric Uncertainty - Low 0.9030± 0.0129 0.8335± 0.0072 0.9352± 0.0352 0.9835± 0.0215 0.9559± 0.0294

Epistemic Uncertainty - High 0.7503± 0.0284 0.7045± 0.0064 0.7548± 0.0254 0.8365± 0.0194 0.7943± 0.0124
Epistemic Uncertainty - Low 0.7993± 0.0163 0.7261± 0.0082 0.7792± 0.0265 0.8461± 0.0122 0.8024± 0.0182
The reported numbers are the mean AUC and standard errors for 95% confidence interval over 5-fold cross validation.

3.4.3 Verification of Aleatoric Uncertainty

To verify whether the estimated aleatoric uncertainty does capture the noise from

the data, we manually created several datasets by introducing different levels of miss-

ing values. As mentioned in Section 3.3.4, removing some portions of the non-missing

values is practically equivalent to increasing data noise level. Based on this idea,

we created 5 datasets with 0% (all data removed), 25%, 50%, 75%, and 100% (all

data retained) to evaluate the change of the estimated aleatoric uncertainty and corre-

sponding AUC scores. We conducted this experiment on the two datasets for the same

mortality prediction task. The results are displayed in Fig. 3.4. For both datasets,

the aleatoric uncertainty (green bars) captured by HGRU-DR model decreases as

the percentage of retained data increases, which is as expected by the definition of

aleatoric uncertainty. In addition, as the aleatoric uncertainty is decreasing, the AUC

scores (blue bars) are increasing, which confirms the relationship between aleatoric

uncertainty and model performance documented in Table 3.2. Therefore, we believe

that HGRU-DR is able to capture aleatoric uncertainty as it intended to.

3.4.4 Verification of Epistemic Uncertainty

Similarly, we want to verify whether the estimated epistemic uncertainty is able

to reflect the model noises. We used the PhysioNet dataset to demonstrate our idea

to conduct this verification. In the PhysioNet dataset, patients are grouped by the
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Figure 3.4: Aleatoric uncertainty verification using MIMIC-Mortality and PhysioNet-
Mortality datasets

ICU type at the time of admission. As mentioned in Section IV.D, the ICU type

may take one of the four values: Coronary Care Unit, Cardiac Surgery Recovery

Unit, Medical ICU, and Surgical ICU. If the amount of training samples of Coronary-

ICU patients is decreased, the model will see fewer patients of this type, and its

performance is supposed to be damaged [1]. To test this, we created five new datasets,

each with 0% (no train data), 25%, 50%, 75%, and 100% (all data retained for

training), and evaluated the change of the estimated epistemic uncertainty and the

corresponding AUCs. For demonstration purposes, we displayed the results for only

two ICU types out of the four: the Coronary ICU and the Cardiac Surgery Recovery

ICU as in Fig. 3.5. As illustrated by the green bars, our model successfully captures

the decreasing trend of estimated epistemic uncertainty as the amount of training

samples increases. The AUC scores (blue bars) increase as expected too.

We also notice that the AUC of “Coronary ICU" group is only around 0.74 at its

highest, compared with the highest AUC of 0.86 for the “Cardiac Surgery Recovery

ICU" group. As shown in Fig. 3.5, the epistemic uncertainties of these two groups

are roughly at the same level. We further compared the average aleatoric uncertainty

of these two patient groups: 0.0015 and 0.0005 respectively. This finding indicates

that the differences in the performance could possibly be caused by either aleatoric

uncertainty or epistemic uncertainty. That is the grounding that we investigated both
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data and model uncertainty simultaneously.

Figure 3.5: Epistemic uncertainty verification using “Coronary ICU" patients and
“Cardiac Surgery Recovery ICU" patients

3.4.5 Interaction Effects of Aleatoric Uncertainty and Epistemic Uncertainty on

the Model Performance

With aleatoric uncertainty and epistemic uncertainty both confirmed to be nega-

tively correlated with the model performance at the population level, we are interested

in their interaction effects. The test data is divided into four groups by the medians

of data and model uncertainty to calculate the AUC scores. As reported in Table 3.3,

AUC is highest for the group with both low data and low model uncertainty, indi-

cating that both have a negative impact on the performance. However, the AUC is

not the lowest in the group that both uncertainties are high. When the epistemic

uncertainty is high, the effect of aleatoric uncertainty on the model performance is

not deterministic: higher aleatoric uncertainty does not necessarily lead to lower per-

formance. Imagine when a model makes predictions on cases that it was never trained

on, data noises are not as important as they are for the familiar cases. An example

from the image classification can explain the situation: when using a model trained

on images of dogs to make prediction on a photo of a cat, poor image quality or

missing pixels does not matter much anymore.
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Table 3.3: AUC scores of four different patient groups, divided at medians of both
aleatoric uncertainty and epistemic uncertainty

MIMIC-Mortality Epistemic Uncertainty
High Low

Aleatoric Uncertainty High 0.6741± 0.0123 0.7063± 0.0203
Low 0.6716± 0.0164 0.7331± 0.0168

PhysioNet-Mortality Epistemic Uncertainty
High Low

Aleatoric Uncertainty High 0.7561± 0.0231 0.7800± 0.0205
Low 0.6876± 0.0193 0.8009± 0.0210

3.4.6 Patient Subgroup Analysis

We will also analyze how uncertainties and model performance are impacted across

different patient subgroups. We split. patients into subgroups by demographic vari-

ables: gender (female vs. male) and age (under 65 vs. above 65). We re-run the

HGRU-DR model on each subgroup and then examined the effects of uncertainties

and model performance.

Starting with the gender variable, we only used randomly 50% of the training data

for female and male patients respectively, and also randomly removed 50% of the

features in test data. This setting corresponds to the “50%" bin in Figs. 3.4 and 3.5.

This way made room to improve the aleatoric uncertainty and epistemic uncertainty

later on. As presented in Table 3.4, the female group has a lower AUC than the

male group. By comparing the uncertainties, we found that the two groups’ epistemic

uncertainties are roughly the same, while the aleatoric uncertainty’s difference is large.

This observation suggests that aleatoric uncertainty plays a role in the female group’s

lower performance. And more importantly, the observation suggests a mitigation

action: we could improve female group’s model performance by improving its aleatoric

uncertainty through collect more feature values for this group. To perform this action,

we added the removed features back to the female group and keep the other settings
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unchanged. Now in the lower half of Table 3.4, the AUC of the female group is

increased by 0.06 and even outperforms the male group (half data though). This

example demonstrates the viability and benefits of inspecting uncertainties for certain

patient subgroups, identifying possible causes, then taking the actions to improve the

performance.

Table 3.4: Improving the estimated aleatoric uncertainty to improve the model per-
formance for the female group

Gender Female Male
AUC 0.7301± 0.0164 0.7683± 0.0144

Epistemic Uncertainty 0.4823± 0.0272 0.4992± 0.0289
Aleatoric Uncertainty 0.2242± 0.0190 0.1223± 0.0284

Increasing
Data Points -

AUC 0.7909± 0.0183 -
Epistemic Uncertainty 0.4732± 0.0122 -
Aleatoric Uncertainty 0.0942± 0.0110 -

Likewise, we divided the patients by age. The result is presented in Table 3.5.

The HGRU-DR model performs significantly better in the non-senior group (under

65) than in the senior group (65 or older). The average aleatoric uncertainty level

of these two groups are roughly the same, both around 0.37. However, the obvious

difference of the epistemic uncertainty (0.3640 versus 0.4803) suggests that epistemic

uncertainty plays a role in the lower model performance for the senior patients. In

this case, the model hasn’t seen enough senior cases, and therefore collecting more

data points for each senior patient does not help. This observation suggests our

corresponding action: we could improve the model uncertainty for the senior group

by adding more training samples in this senior group. Therefore we added the 50%

samples back to the training dataset and saw the AUC score increase by 0.03, while

the epistemic uncertainty decrease from 0.4803 to 0.2983.
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Table 3.5: Improving the estimated model uncertainty to improve the model perfor-
mance for the senior patients

Age Under 65 65 or older
AUC 0.8060± 0.0198 0.7292± 0.0156

Epistemic Uncertainty 0.3640± 0.0238 0.4803± 0.0442
Aleatoric Uncertainty 0.3709± 0.0187 0.3773± 0.0215

- Increasing
Training Samples

AUC - 0.7573± 0.0103
Epistemic Uncertainty - 0.2983± 0.0247
Aleatoric Uncertainty - 0.3732± 0.0154

3.5 Conclusion and Future Works

In this chapter, we proposed and implemented four neural network structures to

capture both EHR aleatoric uncertainty and epistemic uncertainty in one Bayesian

deep learning model. The four models were applied to two published EHR datasets

with a series of clinical prediction tasks (such as in-hospital mortality). By manually

introducing varying levels of noises and randomness into datasets, or removing a

varying number of data points and training samples, we verified the validity of our

computational approach to both aleatoric and epistemic uncertainty. We also found

a negative correlation between both types of uncertainty and model performance.

There also existed interesting interaction effects between both uncertainties on model

performance. At last, we conducted patient subgroup analysis to find actionable

treatments for those subgroups for which the model tends to under-performs. The

results have enriched the model output from the deep learning models, which will

help doctors and health professionals allocate their attention to those in need, as well

as offer action suggestions to improve model confidence in individual patients. In the

next chapter, we will continue to develop deep learning approaches to estimate the

feature-level uncertainties and perform targeted post-hoc analysis on those features

with larger estimated feature uncertainty. For better evaluation of the uncertainty
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estimations, we will also use a user study to understand the real end-users’ feedback.



CHAPTER 4: MODELING FEATURE-LEVEL UNCERTAINTY OF EHR-BASED

DEEP LEARNING MODELS

4.1 Background

In Chapter 3, we proposed HNN frameworks for the estimations of patient-level

uncertainty, hence providing extra confidence representations and distribution esti-

mations to increase the clinicians’ trust. However, it is still difficult for the clinicians

to explain the uncertainty score to the patients. In addition, they need to understand

why a model is not confident and what could be the possible causes - either a certain

time period or the happening of certain medical events. Therefore, the explanations

on uncertainty, or feature-level uncertainty, is important.

In the literature of EHR-based uncertainty estimation, we only found one work from

Heo et al. [12], in which they introduced the notion of input-dependent uncertainty

to an attention mechanism, to generate an attention weight for each feature with dif-

ferent degrees of noise, and learn larger variance on instances the model is uncertain

about. Their study was the first to investigate the feature-level (variable-level) un-

certainty, which has great potential for richer interpretations of deep learning model

results to assist clinicians. Compared to this dissertation study, their work focused on

the feature-level uncertainty and attention weights in order to improve model predic-

tion performance, while we tried to utilize the feature uncertainty to improve model

trustworthiness and explainability.

Similar to the patient-level uncertainty, the evaluation and validation of the feature-

level uncertainty estimations are difficult. For the computer vision tasks such as

semantic segmentation, labeled data is easy to obtain and each feature (pixel) can

get a ground truth (e.g. a pixel belongs to side-walk, drive-way, or traffic lights).
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Figure 4.1: Example of pixel-level uncertainty validation in computer vision domain.
Source: Kendall and Gal, 2017 [1].

As presented in [1], these data are good resources for validating the uncertainty

estimations. In Figure 4.1, the input image (a) was used to make prediction of

semantic segmentation. With the help of ground truth (b), we can see how the model

performed in the outputs (c). We can also visually evaluate how could the data and

model uncertainty highlight the uncertain pixels. Without such labeled ground truth

and visualizations in EHR-based tasks, we propose to use uncertainty verification

experiments to make sure that the estimated feature uncertainty can correctly capture

the noises in the features.

In this chapter, we propose two Variational Neural Networks (VNN) frameworks,

namely Variational Convolutional Neural Networks (VCNN) and Variational Gated

Recurrent Unit (VGRU). The models were applied to estimate the temporal fea-

ture uncertainty - time window uncertainty with VCNN and time point uncertainty

with VGRU. Similar to the patient-level uncertainty estimations, we design and con-

duct experiments to verify that the uncertainty estimations could correctly capture

the manually-added noises. We also present a patient’s record and uncertainty es-

timations (both patient-level and feature-level) identified as ‘high-uncertainty’ to a
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clinician for verification.

4.2 Methodology

In HNN models, we placed the prior distributions on the output layer and learned

the posteriors in the training process to estimate the data uncertainty. We estimated

the model uncertainty by approximating the BNN models with DE or DN models that

introduced randomness to the output. Inspired by and based on these methods, we

proposed VNN models, which applied Bayesian learning to the first neural network

layers so that the temporal feature uncertainty can be estimated by inferring the

posteriors. In this section, I will describe two variational layers for VCNN and VGRU,

respectively.

• Variational Convolutional Layer. The first 1-d convolutional layer of the

network was directly connected to the input data and used the temporal con-

volutions/kernels to extract meaningful local information. We made this layer

‘variational’ by replacing the weights of these convolutions with prior Gaussian

distributions, so that the output of this layer can be used to estimate the un-

certainty of corresponding time span. As shown in Figure 4.2, the variational

convolution distilled local information from the dark grey area in the input and

stored the information in the feature maps (also in the format of a vector of

distributions). Similar to a normal convolutional layer, the length of the feature

maps depend on the length of the input and the size of the convolutions/kernels.

Then with the generated feature maps, we used sampling to get (1) the means of

the distributions that would be passed to further layers of the network to make

predictions and (2) the max-pooled variances of the distributions that would be

used as the uncertainty estimations of corresponding temporal features (time

spans). The size of these temporal features were decided by the size of the con-

volutions, so they had to be clinically meaningful to the doctors (e.g. 3 days, 7

days, 14 days, etc.).



55

• Variational Recurrent Unit. The construction of VGRU layer was similar

to that of VCNN’s. The weights and biases in the recurrent unit were all

replaced with Gaussian priors. Therefore, the output of the first GRU layer, the

intermediate temporal states, were represented by a group of learned posteriors

(Figure 4.3). These distributions can be used to sample a set of weights for the

further layers of the network: using the last intermediate state directly for the

final prediction (as the red vector in Figure 4.3), or being stacked to a normal

GRU layer, or even being attached to another VGRU layer. The variances of

the distributions would be treated as the corresponding temporal feature (time

point) uncertainty estimations. The captured uncertainty can be represented

either by a max-pooled vector (like in the VCNN) or a heat map.

4.3 Experiments

In this chapter, we describe the experiment set-up, including baseline models and

methods for uncertainty verification. The EHR datasets and predictive tasks that we

used are the same as the ones in Chapter 3.

4.3.1 Baselines

For the comparison of model performance, we used the HNN models with Dropout

or Deep Ensemble from the last chapter.

• HCNN-DE: Based on 1-D CNN, HNN [1], and DE.

• HCNN-DR: 1-D CNN model that uses HNN and Dropout [15] to capture data

uncertainty and model uncertainty, respectively.

• HGRU-DE: GRU model that combines HNN at the output layer and uses DE

to quantify model uncertainty.

• HGRU-DR: HGRU model with Dropout layer turned on in the testing phase.
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Figure 4.2: Variational Convolutional Layer for estimating the temporal feature un-
certainty.



57

Figure 4.3: Variational Recurrent Unit for estimating the temporal feature uncer-
tainty.
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4.3.2 Experiment Settings

Based on the baseline models, we proposed four variants of VNN models for cap-

turing temporal feature uncertainty.

• VCNN-DE: Based on HCNN-DE, the first 1-d convolutional layer was replaced

by a 1-d variational convolutional layer.

• VCNN-DR: 1-D VCNN model that uses Dropout to capture model uncer-

tainty.

• VGRU-DE: VGRU model that combines variational recurrent unit at the first

layer, HNN at the output layer, and Deep Ensemble.

• VGRU-DR: VGRU model with Dropout layer turned on in the testing phase.

The structures and configurations of the VNN models are shown in Figure 4.4 and

Figure 4.5. The input shape (N, T, F) corresponds to the number of cases, time

duration, and the number of medical features, respectively. For VCNN, the first

component was a 1-d variational convolutional layer with 64 kernels of size 3. 100

MC simulations were performed to generate distributions for the weights and biases,

hence creating distributions for the feature maps. The means of these feature maps

were passed down the network for Batch Normalization, Dropout, and further network

components. The rest of the network had same settings with the HCNN models. The

variances of the feature maps were used as the estimations of the temporal feature

uncertainty with a max-pooling operation (taking the maximum of each temporal

feature). For the VGRU model, the first layer was a variational GRU layer with 100

hidden units. 100 MC simulations were also performed to generate distributions for

the GRU weights and biases, then formatting distributions for the GRU intermediate

hidden states. Similarly, the means of the these distributions were passed down to the

rest of the components, which are identical to the ones in HGRU. The variances were
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Figure 4.4: The network structure and configurations of the proposed VCNN model.

treated as the corresponding time point uncertainty after running through a max-

pooling operation. The optimizer was Adam with learning rate of 0.001 and decay

rate of 0.0001. When training DE (Deep Ensemble) models for epistemic uncertainty,

‘training’ option was set to ‘False’ for the Dropout layers; when training Dropout

models for epistemic uncertainty, ‘training’ was set to ‘True’. For the calculations of

epistemic uncertainty, we used 100 outputs to form the distribution, meaning that

100 models trained for the Deep Ensemble approach and 100 predictions made by the

Dropout model.
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Figure 4.5: The network structure and configurations of the proposed VGRU model.
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4.3.3 Uncertainty Verification

For the temporal feature uncertainty, we are still facing a problem: the lack of

labels like the image pixels in the semantic segmentation. Therefore, verification

experiments similar to what we did in Chapter 3 can to some extent serve as a model

validation method. Below we will describe the experiments setup.

The temporal feature uncertainty verification relies on manually adding noises to

the input features. There are three reason: (1) the estimations of temporal feature

uncertainty are at the first layer of the network and directly connect to the input data,

(2) experiments reveal that temporal feature uncertainty is related to the aleatoric

uncertainty, but not epistemic uncertainty (will be investigated in Section 4.4.2), and

(3) a temporal feature uncertainty verification experiment like what we did in the

model uncertainty verification is not realistic (imagine assigning different temporal

features into groups). Therefore, we take the following steps to verify the temporal

feature uncertainty: using a trained VNN model, we calculate the average uncertainty

of a temporal feature - time span for VCNN and time point for VGRU. Then we

randomly reduce the data points for this time span and create 5 groups with 0%

(all data removed), 25%, 50%, 75%, and 100% (all data retained). We then evaluate

how the estimated temporal feature uncertainty change, and whether the change was

consistent with the patient-level aleatoric uncertainty as expected. Since the volume

of data for a single time point is not sufficient, we perform the experiment for VGRU

by selecting the time span of length three with largest sum of point uncertainty.

4.4 Results and Discussions

4.4.1 Model Performance Evaluation

We continue using the AUC score as the evaluation metric and 5-fold cross-validation

to report the model performance. Table 4.1 shows the AUC with 95% confidence in-

terval of all the five tasks. Although the VNN model performance drops for all the
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tasks compared to corresponding HNN models, the differences are not statistically

significant. The mean AUC of a VNN model is around 0.01-0.02 smaller than that of

a HNN model, while the variances are between 0.008 and 0.03. We can confidently

claim that for the estimation of temporal feature uncertainty, this level of performance

loss is trivial (even not a loss according to the statistical significance).

Table 4.1: Model performance (AUC scores) comparison for 5 binary tasks

MIMIC PhysioNet
Mortality Mortality Stay < 3 Cardiac Recovery

Baseline Models
HCNN-DE 0.8502± 0.0128 0.7532± 0.0196 0.8392± 0.0116 0.9053± 0.0186 0.8630± 0.0263
HCNN-DR 0.8483± 0.0187 0.7549± 0.0209 0.8280± 0.0232 0.8975± 0.0198 0.8554± 0.0210
HGRU-DE 0.8659 ± 0.0172 0.7973± 0.0183 0.8646 ± 0.0219 0.9629 ± 0.0120 0.9102 ± 0.0217
HGRU-DR 0.8618± 0.0216 0.7989 ± 0.0190 0.8565± 0.0241 0.9580± 0.0085 0.9002± 0.0297

Proposed VNN Models
VCNN-DE 0.8432± 0.0218 0.7382± 0.0143 0.8149± 0.0116 0.8833± 0.0156 0.8482± 0.0313
VCNN-DR 0.8378± 0.0167 0.7369± 0.0234 0.8130± 0.0192 0.8795± 0.0238 0.8384± 0.0199
VGRU-DE 0.8489± 0.0189 0.7825± 0.0206 0.8489± 0.0192 0.9459± 0.0228 0.8990± 0.0263
VGRU-DR 0.8509± 0.0224 0.7837± 0.0213 0.8389± 0.0161 0.9428± 0.0155 0.8892± 0.0189
The reported numbers are the mean AUC and standard errors for 95% confidence interval over 5-fold cross validation.
The bold numbers indicate the best performance in that (column) group.

4.4.2 Comparing the Patient Uncertainty and Temporal Feature Uncertainty

Next we will explore how the temporal feature uncertainty differs between different

patient-level uncertainty groups. We divide the data into two groups by the median

of the data uncertainty or model uncertainty, then compare the average temporal

feature uncertainty of each group. Two mortality datasets are used and the 5-fold

cross-validation results are listed in Table 4.2. For both VCNN and VGRU models,

the average feature uncertainty is high when the model uncertainty is high. This

difference is significant for most of the experiments except for the VGRU model

using MIMIC-mortality data. The results indicate that when the patient-level data

uncertainty is high, it can be reflected in the temporal feature uncertainty. On the

other hand, there are no significant differences between the groups with high or low

model uncertainty: the averages temporal feature uncertainty are all at a similar level

for each group of experiments, which indicates that the temporal feature uncertainty

tends to capture the noises in the data. Therefore in the next section, we will perform
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the feature uncertainty verification experiments with the approach similar to data

uncertainty verification experiments.

Table 4.2: Average temporal feature uncertainty of four different patient groups,
divided at medians of both aleatoric uncertainty and epistemic uncertainty

MIMIC-Mortality VCNN VGRU

Aleatoric Uncertainty High 0.1502± 0.0128 0.2336± 0.0183
Low 0.1127± 0.0181 0.2038± 0.0208

Epistemic Uncertainty High 0.1420± 0.0182 0.2102± 0.0264
Low 0.1449± 0.0129 0.2219± 0.0197

PhysioNet-Mortality VCNN VGRU

Aleatoric Uncertainty High 0.1713± 0.0134 0.2478± 0.0177
Low 0.1235± 0.0099 0.2092± 0.0143

Epistemic Uncertainty High 0.1602± 0.0235 0.2291± 0.0287
Low 0.1384± 0.0277 0.2205± 0.0307

4.4.3 Verification of Temporal Feature Uncertainty

To verify whether the estimated temporal feature uncertainty does capture noise

from the corresponding time spans/points, we manually create several datasets with

different levels of noise. Unlike Section 3.4.3 in which we removed portions of data

points from all features, we only introduce noises for specific time spans, so that the

corresponding estimated feature uncertainty can be verified. With the original data

(100% retained), we identify a time span with highest uncertainty for each task and

model combination, then create 5 datasets with 0% (all data removed), 25%, 50%,

75%, and 100% (all data retained) of data points in the time span to evaluate the

change of the estimated temporal feature uncertainty and corresponding patient-level

data uncertainty. We conduct this experiment on two mortality datasets and two

VNN models (VCNN-DP and VGRU-DP). The results are displayed in Figure 4.6 &

4.7. Using MIMIC-mortality dataset and VCNN as an example, the model assigns

the highest average uncertainty to the time span at 30-33 hours after ICU admission.

As shown in the first and second bar charts of Figure 4.6, with more and more data
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Figure 4.6: Temporal feature uncertainty and aleatoric uncertainty verification of
VCNN and VGRU using MIMIC-Mortality dataset.

Figure 4.7: Temporal feature uncertainty and aleatoric uncertainty verification of
VCNN and VGRU using PhysioNet-Mortality dataset.

points randomly removed from this time period (until no data left), the captured av-

erage temporal feature uncertainty (blue bars) increases from around 0.12 to almost

0.23 and the average data uncertainty also increases from 0.18 to 0.30 correspond-

ingly. Similarly for the VGRU model that assigned highest uncertainty to the 28h-31h

time span (third and fourth images of Figure 4.6), both temporal feature uncertainty

and data uncertainty increases as the retained data decreased gradually from 100%

to none. The trends are all the same for the two models trained with PhysioNet-

mortality dataset (Figure 4.7). These exhibited trends indicate that our models are

capable of capturing the data noises in the temporal features and more importantly,

the changes are also reflected in the estimated patient-level data uncertainty.

To further analyze how does temporal feature uncertainty relates to data uncer-

tainty, we sort the data uncertainty estimations, pick a case with high data uncertainty
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and high loss (categorical cross-entropy), and present the patient’s records within the

highest-uncertainty time span to a doctor. More specifically, our VGRU-DP model

assigns low probability of mortality (<0.2) to the patient, while the ground truth is

1 (patient died in the ICU). The model also estimates a high data uncertainty (top-5

among over 400 patients), identifies that 38-43 hours after the admission is the most

‘uncertain’ time period. We convert the raw data of these 5 hours into an Excel sheet

(as shown in Figure 4.8) and present it to the doctor. Several features are noticeable:

the ‘GCS’ value (Glasgow Coma Scale) decreased from 14 to 3 (from fully awake to

deep coma), the ‘MechVent’ (Mechanical Ventilation) was used three times, and the

‘HR’ (heart rate) dropped drastically then kept at a low level. These important risk

factors were somehow ‘blurred’ by other features (noises) hence ignored by the model.

A possible cause is the frequency of the feature record. While other features were

recorded frequently, GCS and MechVent were recorded twice and three times, respec-

tively. These strong signals separated by long time steps can easily be ignored by the

normal deep learning model due to different reasons (lack of long-term memory or

imputation noise). This case indicates that the presence of uncertainty estimations

can help prevent the wrong decisions and save the clinicians’ time when checking for

the causes when uncertainty alerts them.

Time (hh:mm:ss) DiasABP FiO2 GCS HR MAP MechVent SysABP Urine pH PaO2
38:11:00 62 14 91
38:19:00 72
38:26:00 33 88 72 148
38:27:00 7.24 54
38:41:00 54 95 92 171
38:56:00 55 94 100 194
39:11:00 53 1 101 91 1 178 40
39:26:00 40 82 53 140
39:41:00 34 71 58 126
39:59:00 7.28 110
40:11:00 33 64 48 1 92 10
40:41:00 65 47 88
40:55:00 32
41:11:00 0.8 65 69 124 10
41:41:00 45 0.8 1
42:11:00 42 3 71 65 121 7
42:16:00 7.35 62
42:41:00 41 68 58 107

Figure 4.8: Patient records presented to a doctor: the time span (38h-43h) with
highest uncertainty.
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4.5 Conclusion and Future Works

In this chapter, we proposed novel variational layers based on the HNN model. The

VNN frameworks were capable of estimating the uncertainty for temporal feature like

time spans or points. We evaluated the model performance with AUC scores, making

sure that the proposed models preserved good predictive power as the HNNs. By

comparing the temporal feature uncertainty with population level data/model uncer-

tainty, we claimed that the feature-level uncertainty is a reflection of patients’ data

uncertainty. Based on this finding, we performed uncertainty verification experiments

that were similar to the data uncertainty verification in Chapter 3. Experiment re-

sults verified that the VNN models were capable of capturing the increased noises in

the temporal features. We also presented a patient’s case to a doctor for the user

verification of the data.

There are several limitations or future directions for the works in this chapter. First,

the model requires more systematic user-level evaluation and validation; therefore, we

will discuss a user study in the next chapter. Second, a medical feature uncertainty is

desired; with the proposed model, we can only estimate uncertainty for the temporal

features; if there are an enormous number of medical features within a certain period,

the doctors’ work will be very difficult; while it still a challenging task, being able to

identify the medical features with high uncertainty is extremely important.



CHAPTER 5: A USER STUDY FOR UNDERSTANDING CLINICIANS’

PERCEPTION OF OUR UNCERTAINTY MODEL

5.1 Background

In the previous chapters, we were able to estimate the data uncertainty and model

uncertainty in the EHR-based deep learning models. We also proposed several meth-

ods for the estimation of temporal feature level uncertainty. Our experiments verified

that the uncertainty estimations were able to react to the change their sources (to-

wards the correct directions). However, there still existed a lack of solid evaluations

for the captured uncertainty. Unlike the model predictions, uncertainty estimations

at the patient or feature level did not have ground truth or labels that they could

be evaluated upon. Since the purpose of estimating the uncertainty was to improve

the clinicians’ trust in the deep learning models, we proposed to present our model

outcome and get it evaluated by these real end-users.

With the prosperity of machine learning models in healthcare research and applica-

tions, researchers started to pay closer attention to the ‘user experience’. A predictive

model with high accuracy may not necessarily be accepted by the clinicians. Although

the sophisticated machine learning models were able to automatically take all com-

plex information into consideration and provide individualized decisions, clinicians

and physicians still need to understand it and explain the process of decision making

to the patients [8, 71]. Therefore, meaningful and explainable output is an extremely

important step for the practical adoption of machine learning model in clinical deci-

sion making. Great efforts have been made by the research community to address the

issue. Examples include intrinsic explainable models, post-hoc global explanations,

and post-hoc local explanations. However, most of these explanations were extracted
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based on the intuition of researchers instead of the end-users [6].

In recent years, the healthcare informatics research community started to pay more

attention to the doctors’ need when developing the machine learning model explan-

ability. In the survey study conducted by Tonekaboni et al. [8], clinicians from

the ICU or Emergency Department (ED) with previous machine learning experience

were interviewed to understand ‘what makes a model explainable’ for these end-users.

Based on the feedback, reliable machine learning model explanations were divided into

several aspects, including feature importance, instance level explanation, uncertainty,

temporal explanations, and transparent design. They also identified three metrics for

explainability evaluations: domain appropriate representation, potential actionability,

and consistency. We also followed these metrics when designing the experiments in

this thesis. Another notable survey study investigated the clinicians’ understanding,

explainability, and trust in the machine learning risk prediction models. In this work,

Diprose et al. [71] designed a set of survey instruments to systematically compare the

clinicians’ feedback on different levels and methods of model explanations. The abil-

ity of explaining a machine learning output to a patient was proved to be significantly

related to the clinicians’ trust in the model, although the differences between expla-

nation methods they evaluated were not significant. This survey set the questions

and answers as simple as possible and only focused on the problem/hypothesis they

wanted to test. For the design of our survey instruments, we adopt a similar strategy

to retain the participants with simple multiple-choice questions and compared these

answers to derive a trend or statistic significance.

5.2 Survey Design

5.2.1 Survey Instrument

In this survey, we wanted to evaluate whether the uncertainty modeling improved

the clinicians’ trust in the deep learning model outcome. Based on the experiment

results from the previous chapters, we designed a online survey that provide the
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survey context to the participants and ask for their feedback on each integration of

the predictive model. The context included a de-identified patient’s ICU record within

the first 48 hours of admission, the deep learning model estimation of the mortality

risk, and the representations of both patient-level and feature-level uncertainty. For

the selection of the patient we considered the ones with (1) high difference between

model prediction and ground truth, (2) high patient-level uncertainty, and (3) a time

period in the record with high feature-uncertainty.

The patient’s records were presented in two parts.

• Data at admission. As shown in Table 5.1, basic demographic information

and ICU types were recorded at the time of admission.

• Records of first 48 hours. The presentation of the patient records is difficult

for the survey purpose. The data composed of 35 medical features and 155

different time points. A sample of the data can be found in Figure 5.2 - these

are just first 10 of thousands of lines in the patient’s record. Presenting them

all together in text format would easily consume over 20 minutes of the survey

time and could not help the participants understand the patient’s situation. To

create a better presentation, we (1) categorized the features into groups includ-

ing [blood oxygenation level] (Figure 5.1), [kidney (comprehensive metabolic

penal)] (Figure 5.2), [blood count] (Figure 5.3), [vital signs] (Figure 5.4), [blood

pressures] (Figure 5.5), and [others] (Figure 5.6), (2) abandon some useless fea-

tures (verified by a doctor) that only showed once in the record, and (3) drawn

line plots of each group in Tableau software and uploaded to the cloud for par-

ticipants reference. In addition to the lines, we also used color bands to indicate

the reference values for the features that apply.

We presented the visualization to doctors, public health practitioners, healthcare

informatics researchers, and machine learning researchers for feedback (not the survey



70

Table 5.1: Patient’s data at admission

Age 70
Gender Male
Height 173 cm

ICU Type Cardiac Surgery Recovery Unit

Table 5.2: Sample of patient’s data in the text (Excel) format

Time(hh:mm) Parameter Value
00:00 RecordID 13xxxx
00:00 Age 70
00:00 Gender 1 (stands for male)
00:00 Height 173
00:00 ICU Type 2 (Cardiac Surgery Recovery Unit)
00:42 pH 7.45
00:42 PaCO2 34
00:42 PaO2 344
01:11 DiasABP 67
01:11 FiO2 1

participants). This visualization method is proved to be much more informative and

efficient than simply presenting the text. It only took an average of about 5-10

minutes for the user to look through, compared to over 20 minutes

Then we split our BNN model outputs into three parts, presented each part to the

participants sequentially, and asked for their feedback correspondingly. The setup

of the survey questions was inspired by the work of Diprose et al. [71]. We tried

to make the questions as simple as possible for two reasons. First, simple choices

would lead to more responses: in Diprose et al.’s work, they only asked for Yes/No

responses for most of the questions and got 13% response rate; if too many choices

were given, the participants were more likely to quit half-way; the second reason

was the association between answer variances and statistical significance: for the

questions to be tested for significant difference (e.g. Student’s t-test), the answers

scaled from 1-10 were less likely to get the job done than the answers with only

Yes/No/Maybe choices. Following are the three stages of model output presentations
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Figure 5.1: Tableau visualization of the patient’s records related to [blood oxygenation
level].
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Figure 5.2: Tableau visualization of the patient’s records related to [kidney (compre-
hensive metabolic penal)].
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Figure 5.3: Tableau visualization of the patient’s records related to [blood count].
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Figure 5.4: Tableau visualization of the patient’s records related to [vital signs].



75

Figure 5.5: Tableau visualization of the patient’s records related to [blood pressures].
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Figure 5.6: Tableau visualization of the patient’s records related to [others].
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and corresponding multiple-choice questions. The last part is the open-ended question

asking for the participants’ most-wanted feature from the model.

• Feedback on the point estimation of mortality risk. If our model tells

you the probability that this patient will die in the ICU is 40%, what do you

think? Please make your prediction and select how confident you are in the

following questions. Question: Do you think the model output (probability) is

useful or not? [Yes/No/Maybe]

• Feedback on the point estimation of mortality risk with patient-level

uncertainty representation. In addition to the probability, the model tells

you that it is confidence level about its prediction is low, what do you think?

Question: Do you think the model output (probability and confidence level) is

useful or not? [Yes/No/Maybe]

• Feedback on the point estimation of mortality risk with patient-level

uncertainty and feature-level uncertainty representation. The model

tells you that these time/medical features are worth further looking: (1) the

patient records between 38-42 hours after the admission; (2) medical features -

Mechanical Ventilation Respiration (MechVent), Heart Rate (HR), Urine Out-

put (Urine), and Glascow Coma Score (GCS). Would you take a closer look

at the data and update your feedback? Question#1: Do you think the model

output (probability, confidence level, and the important times/features) is use-

ful or not? [Yes/No/Maybe]. Question#2: Can you pick one or two fea-

tures that are most useful to you? [time feature: 38-42 hours after the admis-

sion/Mechanical Ventilation Respiration (MechVent)/Heart Rate (HR)/Urine

Output (Urine)/Glascow Coma Score (GCS)]

• General feedback. Following the three layers of model output and questions,

we finished the survey by asking an open question: If we try to develop a
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computer model to assist the clinicians and physicians, what features/properties

would you look for in this model that will encourage you to use it in your daily

work?

5.2.2 Participants

This study was approved by the UNCC institutional review board (IRB). The

link to the Google Form was then sent to three groups of healthcare practitioners:

students enrolled in the Doctor of Nursing Practice (DNP) program of UNCC, doctors

from Atrium Health, and some of the students enrolled in the Master of Publich

Health program of Harvard University. Since the survey recruiting advertisement was

sent to listserv email address, we were not able to estimate the number of potential

participants therefore the response rate could not be estimated.

5.3 Results and Discussions

The survey was sent out with the expectation of getting about 25 responses. How-

ever, due to the outbreak of the COVID-19 pandemic (Coronavirus Disease 2019),

most of our targeted participants were devoted to fighting against the disease. There-

fore, we only received 9 responses, with 3 from the Harvard MPH program and 6 from

the UNCC DNP program.

Although the sample size were not sufficient for the statistical test, we were still

able to observe meaningful results from the survey responses. We draw the count

of each answer (Yes/No/Maybe) and compared their trends as the output contents

increased from only probability of death to a combination of probability of death and

two levels of uncertainty (as shown in Figure 5.7). The same question was asked after

presenting each layer of output to the participants - whether they think the model

was useful or not.

The number of the answer ‘Yes’ was only 1 when a point estimation was presented

(i.e. the output we usually got from a normal binary-task deep/machine learning
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model); it increased to 4 when the patient-level uncertainty was ‘translated’ to a

model confidence level; when we further notified the participants that the feature-

level uncertainty indicated that a certain period of time or several medical features

in the patient’s record was worth further looking, the number of participants who

answered ‘Yes’ increased to 7, accounting for almost 78% of the total number. This

trend proved that solid and meaningful uncertainty propagation can notably improve

the clinicians’ trust in the output provided by the deep learning models. The patient-

level uncertainty could be translated into confidence representation, hence confirming

the doctors’ decision or alerting them when there existed conflicts. The feature-level

uncertainty could help them quickly locate the possible problem, as well as explain the

output to the patients when necessary. Accordingly, the count of answers ‘No’ and

‘Maybe’ decreased respectively, as the output contents became richer. The results

showed that with plain deep learning output, 2 participants found themselves not

trusting in the model at all; The uncertainty estimations changed their minds and

both selected ‘Maybe’ or ‘Yes’ for the remaining questions. This change is even more

inspiring than the increasing numbers of ‘Yes’ - converting the users who did not

believe in the model at all is the most important step of gaining their full trust.

In addition to the Yes/No/Maybe questions, we listed the high-uncertainty tempo-

ral/medical features to the participants and asked them to pick 1-2 features that were

most useful to them. We first identified the time period by comparing the time-point

uncertainty estimations given by the VGRU models, then picked up the medical fea-

tures that showed in this time period. The results are presented in Figure 5.8. Not

surprisingly, the temporal feature was most selected (6 votes), since it covered mul-

tiple medical features and successfully attended to the time period that contributed

the most to the high patient-level uncertainty. Two important medical features got 3

votes: ‘Mechanical Ventilation Respiration’ was changed from ‘off’ to ‘on’ during the

38-42 hour period, which is an important indicator of the patient’s situation; simi-
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Figure 5.7: Change of participants’ trust in the model by the contents of output.

larly, the patient’s heart rate dropped drastically during the time period, indicating

the possibility of worsened health condition.

The last question we asked in this survey was open-ended: we wanted to understand

what was the most demanded feature from an AI model by the users and got 7

responses. The answers were used to generate a word cloud. From Figure 5.9 we were

able to verify the importance of explainable machine learning models: the clinicians

required better explanations to better understand the model results or trends; they

also wanted to rely on the models to alert them when a potential problem existed.

5.4 Conclusions

In this chapter, we designed an online survey to evaluate the clinicians’ feedback on

our proposed uncertainty models. Although the number of responses was too small

for statistical significance tests, we were able to observe some meaningful trends from

the answers. The results verified that the uncertainty estimations had positive effects

on improving clinicians’ trust in the deep learning models. However, some limitations

needed to be overcome if another survey was conducted in the future. First, to
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Figure 5.8: Feature importance voted by the participants.

Figure 5.9: Word cloud generated from the open-ended question: the most wanted
AI model features.
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confidently report the results from statistical tests, more potential participants should

be reached out and more responses should be recorded. Second, due to the small

number of responses, we only presented one patient’s record in the scenario of wrong-

prediction and high-uncertainty; if possible, the responses to patient scenarios of right-

prediction and low-uncertainty should also be evaluated for a more comprehensive

study. Another limitation is the lack of generalizability, caused by the very small

sample size; the results may not hold for different groups of survey participants,

clinical tasks, or patients.



CHAPTER 6: CONCLUSIONS AND FUTURE WORKS

In the era of big data, machine learning and deep learning models have been widely

adopted in various domains including the healthcare industry. However, the lack of

explainability and trustworthiness has prevented its application in high-stake clinical

risk prediction tasks. Modeling uncertainty will provide an extra layer of confidence

representations to the users, as well as alert the clinicians when the model is ‘un-

certain’ of its predictions. Motivated by the importance of modeling uncertainty, we

proposed to comprehensively study the uncertainty in the EHR-based deep learning

models.

We claim five major contributions in this dissertation study:

• We reviewed the Bayesian learning algorithms for uncertainty estimation and

their existing applications in the EHR-based clinical risk prediction. The im-

portance of modeling uncertainty was emphasized and huge research gap was

identified.

• We proposed a series of novel deep learning frameworks that can estimate the

data and model uncertainty for a patient. The HNN models/modules were

developed to estimate the heteroskedastic aleatoric uncertainty, which captured

the patient-dependent noises in the EHR data. We applied Deep Ensemble

and Dropout methods to capture the epistemic uncertainty that represented

the noises from the model structure and parameters. We proposed to combine

these methods with the normal deep learning models such as CNN and GRU

to estimate both types of patient-level uncertainty in one model.

• We proposed novel deep learning frameworks that can estimate the uncertainty
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of temporal features. We developed the VNN models by proposing variational

CNN and GRU layers, and estimated the temporal feature uncertainty, which

explained the time spans that contribute the most to a high patient-level un-

certainty.

• We proposed a series of experiments that overcome the lack of uncertainty

ground truth issue and were able to verify the validity of the estimated data

uncertainty, model uncertainty, and temporal feature uncertainty.

• We conducted a clinician user study in hope of further validating the proposed

models. The survey instrument including data representation and questions

were well designed. Although sufficient responses were not obtained to draw

statistical significance, the trends it exhibited still indicated that patient-level

and feature-level uncertainty estimations were improving the clinicians’ trust in

the deep learning model outputs.

While the proposed models and uncertainty estimations can already improve the

deep learning model trustworthiness and explainability, there are several major limi-

tations. We explain them with corresponding future directions:

• The sizes of the datasets for modeling uncertainty were small. For the vanilla

deep learning model implementation in Chapter 2, I was able to access a com-

mercial employee claim database with 20 million patients and billions of records

(during an industry internship). But for the uncertainty modeling, we only

worked on the MIMIC-III and PhysioNet data, with around 34,000 and 12,000

patients, respectively. With large datasets, estimating data uncertainty is im-

portant since the model uncertainty can be explained away [1]. Therefore,

experiments on verifying zero/small model uncertainty and investigating the

data uncertainty can be future directions if we gain access to larger datasets.



85

• Since the major task of this dissertation is trustworthiness and explainability

(but not performance), we only used simple CNN and GRU models for the

implementation of Bayesian learning methods. However, these frameworks are

applicable for more sophisticated deep learning models such as Convolutional

RNN (CRNN), Temporal CNN (TCNN), and many other modular network

structures. One future direction is to implement the proposed frameworks in

these well-performed DNNs.

• In Chapter 4, we estimate the temporal feature uncertainty. However, estimat-

ing the medical feature uncertainty remains very difficult due to the structure

of the networks. Attention models like RETAIN [30] were developed to train

medical feature attention and gain some degree of interpretability, but these

models rely on data perturbations and can be very difficult to perform infer-

ence. The future direction on estimating the medical feature uncertainty will

lean towards the deep learning algorithm development.

• In our post-hoc analysis, the full time length of data (48 hours) were used for

both training and validation, which is not applicable for the real-world scenar-

ios. Ideally, we should perform the analysis on the first 24 hours and make

some recommendations, then validate these decisions in the second 24 hours.

However, the data volume was not sufficient. Therefore, a future direction is

getting datasets that are richer in the temporal dimension, so they can fit better

for the real-time clinical decision support.

• Due to the COVID-19 pandemic, the number of responses in the user study was

only 9. We were not able to test statistical significance for the survey hypothesis.

If possible, we will conduct a user study with more potential participants and try

to improve the response rate. Furthermore, with enough participants, different

survey groups should be created to compare the users’ trust. For example, a
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patient with high uncertainty v.s. a patient with low uncertainty should be

presented to two groups of participants and evaluate the effect of uncertainty

values.
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