
DISTRIBUTED MESSAGING SYSTEM FOR THE IOT EDGE

by

Anjus George

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2020

Approved by:

Dr. Arun Ravindran

Dr. Hamed Tabkhivayghan

Dr. Asis Nasipuri

Dr. Chen Chen

Dr. Nenad Sarunac



ii

©2020
Anjus George

ALL RIGHTS RESERVED



iii

ABSTRACT

ANJUS GEORGE. Distributed Messaging System for the IoT Edge. (Under the
direction of DR. ARUN RAVINDRAN)

Recent advances in Deep Learning have made possible distributed multi-camera IoT

vision analytics targeted at a variety of surveillance applications involving automated

real-time analysis of events from multiple video perspectives. However, the latency

sensitive nature of these applications necessitates computing at the Edge of the net-

work, close to the cameras. The required Edge computing infrastructure is neces-

sarily distributed, with Cloud like capabilities such as fault tolerance, scalability,

multi-application tenancy, and security, while functioning at the unique operating

environment of the Edge. Characteristics of the Edge include, highly heterogeneous

hardware platforms with limited computational resources, variable latency wireless

networks, and minimal physical security. We postulate that a distributed publish-

subscribe messaging system with storage capabilities is the right abstraction layer

needed for multi-camera vision Edge analytics.

We propose Mez - a publish-subscribe messaging system for latency sensitive multi-

camera machine vision at the IoT Edge. Unlike existing messaging systems, Mez

allows applications to specify latency, and application accuracy bounds. Mez imple-

ments a network latency controller that dynamically adjusts the video frame quality

to satisfy latency, and application accuracy requirements. Additionally, the design of

Mez utilizes application domain specific features to provide low latency operations.

In this dissertation, we show how approximate computation techniques can be

used to design the latency controller in Mez. We also present the design of Mez

by describing its API, data model and architecture. Additionally, Mez incorporates

an in-memory log based storage that takes advantage of specific features of machine

vision applications to implement low latency operations. We also discuss the fault



iv

tolerance capabilities of the Mez design.

Experimental evaluation on an IoT Edge testbed with a pedestrian detection ma-

chine vision application indicates that Mez is able to tolerate latency variations of up

to 10x with a worst-case reduction of 4.2% in the application inference accuracy. Fur-

ther we investigated two approximate computing based algorithms - a heuristic based

pruning algorithm and a Categorical boost machine learning model based algorithm,

to make the Mez’s latency controller design scalable. Both algorithms were able to

achieve video frame size reduction upto 71.3% while attaining an inference accuracy

of 80.9% of that of the unmodified video frames.



v

ACKNOWLEDGEMENTS

Throughout the PhD program, I have received a great deal of support and assistance.

I owe my deepest gratitude to my advisor, Dr. Ravindran whose expertise was in-

valuable in formulating the research topic and methodology in particular. He has

constantly pushed me to be a better researcher, better engineer, and better writer,

significantly broadening the scope of my abilities and contributions.

I would like to express my sincere gratitude to Dr. Tabkhi for providing valuable

suggestions throughout my research work. I would like to thank him for allowing me

to make use of the facilities in TeCSAR laboratory throughout my research work.

I am deeply indebted to my doctoral committee members for giving valuable sug-

gestions that helped me to advance in my research. I would like to thank them for

their time and consideration for being available to evaluate me in my major doctoral

dissertation milestones.

Thanks to my fellow labmates in TeCSAR lab, for their wonderful collaboration.

You supported me greatly and were always willing to help me. I appreciate your

excellent cooperation and all the influencing ideas that helped me to progress in my

research work.

I would like to sincerely thank the ECE department of UNC Charlotte, for providing

me the opportunity to pursue my PhD. Thank you for assisting me financially with

GASP award and allowing me to use the lab and research facilities in the department.

I would also like to acknowledge the National Science Foundation for providing me

research funding through the Smart and Connected Communities program.

Last but not least, I would like to thank my family for their unconditional trust,

timely encouragement and endless patience. You are always there for me. Many

thanks to my friends who have always been a major source of support, as well as

providing happy distraction to rest my mind outside of my research.



vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xiv

CHAPTER 1: INTRODUCTION 1

1.1. Contributions 6

1.2. Dissertation Outline 7

CHAPTER 2: BACKGROUND AND RELATED WORK 9

2.1. Edge Computing 9

2.2. Approximate Computing 12

2.3. Computer Vision Applications 13

2.4. Messaging Systems 16

2.5. Control Systems 19

2.6. Machine Learning 21

2.7. Summary 24

CHAPTER 3: NETWORK LATENCY CONTROLLER 25

3.1. Characterization of Wi-Fi Latency at the Edge 27

3.1.1. IoT Edge Test Bed 27

3.1.2. Impact of Peer IoT Nodes on Network Latency 29

3.1.3. Impact of Video Frame Size on Network Latency 31

3.2. Approximate Computing for Latency Control 32

3.2.1. Video Frame Quality Tuning Knobs 32



vii

3.2.2. Impact of Video Frame Quality on Network Latency 34

3.2.3. Impact of Video Frame Quality on Inference Accuracy 35

3.3. Latency Control Algorithm 38

3.4. Evaluation 41

3.5. Summary 43

CHAPTER 4: MESSAGING SYSTEM ARCHITECTURE 44

4.1. API and Architecture 45

4.1.1. API 45

4.1.2. Data Model 46

4.1.3. System Architecture 46

4.2. Messaging System Design 47

4.2.1. Brokers 48

4.2.2. Network Latency Controller Integration 48

4.2.3. In-memory Log 49

4.2.4. Fault tolerance 51

4.3. Summary 52

CHAPTER 5: EVALUATION 54

5.1. Node Scaling 55

5.2. Subscriber Scaling 58

5.3. Pub-Sub Latency Breakdown 58

5.4. Summary 58



viii

CHAPTER 6: SCALING THE NETWORK LATENCY CONTROLLER 61

6.1. Additional Video Frame Quality Tuning Knobs 62

6.1.1. Impact of Tuning Knobs on Inference Accuracy 64

6.2. Scalable Approximate Computing Algorithms 67

6.2.1. Knob Search Space 68

6.2.2. Pruning Heuristic Algorithm for Knob Selection 69

6.2.3. Machine Learning Algorithm for Knob Selection 69

6.3. Implementation and Results 72

6.3.1. Pruning Heuristic Algorithm 72

6.3.2. Machine Learning Algorithm 74

6.4. Discussion 77

6.5. Summary 79

CHAPTER 7: CONCLUSIONS 80

7.1. Discussion and Future Directions 81

REFERENCES 85



ix

LIST OF TABLES

TABLE 3.1: Summary of impact of video scene dynamics on network la-
tency for JAAD and DukeMTMC workloads with simple (S), medium
(M) and complex (C) scene dynamics (SD) video frames. All latency
measurements are at the 95th percentile with video frames transmit-
ted at 5 fps. ONELat is the per frame network latency to the Edge
server when only the test node is active. FIV ELat is the per frame
network latency when the node under test and the 4 peer camera
nodes transmit video frames to the Edge server.

30

TABLE 3.2: Summary of network latency vs. frame rates (5 and 15
fps) and distance from Edge server (6m and 12m) for DukeMTMC
complex scene dynamic video frames.

30

TABLE 3.3: Summary of controller results for JAAD and DukeMTMC
workloads

42



x

LIST OF FIGURES

FIGURE 1.1: System architecture for machine vision at the IoT Edge.
IoT nodes equipped with cameras record and transmit video frames
to an Edge server through a Wi-Fi (802.11ac) wireless router. The
Edge server runs machine vision algorithms on the received video
frames for object detection, tracking and event prediction.

2

FIGURE 1.2: Multi-camera machine vision at the IoT Edge for pedestrian
safety.

3

FIGURE 2.1: Architecture of a three tier Edge computing model. Tier 1 -
consists of IoT devices and smart appliances. Tier 2 - includes Edge
servers with more compute and storage capacity than devices in tier
1. Tier 3 - composed of Cloud data centers with huge compute and
storage capacity.

10

FIGURE 2.2: (a) Traditional computer vision workflow: Involves manual
task of telling the system what are the features of the objects need
to be detected and training ML model using these features. (b) Deep
Learning computer vision workflow: Deep Learning model automat-
ically extracts the features and learns using these features.

15

FIGURE 2.3: Architecture of a publish-subscribe system. Multiple pub-
lishers publish messages to a broker and several subscribers consume
messages from the broker. Publishers categorize and publish mes-
sages to different topics in the broker.

18

FIGURE 2.4: Block diagram of a feedback control system. Plant output
is measured using a sensor and is compared against a reference signal.
The error between measured output and reference signal is fed to a
controller and is converted to plant input.

20

FIGURE 2.5: Basic machine learning workflow consists of 4 steps: extract
features from raw data and create dataset, split the dataset into train
and test dataset, train the ML model using train dataset, evaluate
the model and if the performance is good enough create the final
model.

22

FIGURE 3.1: Sample images from JAAD and DukeMTMC dataset with
simple (S), medium (M) and complex (C) scene dynamics (SD) show-
ing pedestrians at public spaces such as traffic intersections, parking
lots, and public buildings.

28



xi

FIGURE 3.2: Characterization of the impact of peer interference on the
video frame transfer latency for frames with different scene dynamics
from (a) JAAD and (b) DukeMTMC datasets. For complex scene
dynamics 5.6x and 8.4x increase in latency is observed for the JAAD
and DukeMTMC datasets respectively.

29

FIGURE 3.3: Characterization of the impact of video frame size on video
frame transfer network latency. Network latency shows an approxi-
mately linear variation with video frame size.

31

FIGURE 3.4: Network latency vs. video frame size. Video frame sizes are
obtained by the application of different combinations of the 5 tuning
knobs that modify the frame quality.

35

FIGURE 3.5: Normalized F1 score expressed as a percentage for Openpose
pedestrian detection application from (a) JAAD and (b) DukeMTMC
datasets. Note that each video frame bucket corresponds to different
combinations of the knob settings with different resulting accuracy.

37

FIGURE 3.6: Block diagram of the network latency controller 40

FIGURE 3.7: Latency controller step response for JAAD (a) and
DukeMTMC (b) complex scene dynamics video frames. The mea-
surement is taken with one test IoT node, and 4 peer IoT nodes.

41

FIGURE 3.8: The impact of accuracy reduction on video frame mod-
ification by the latency controller for JAAD (a) and DukeMTMC
(b). Green and blue bounding boxes indicate pedestrian detections
on unmodified and modified video frames respectively. The video
frames experience an accuracy loss of ≈3% for JAAD and ≈4% for
DukeMTMC respectively. The red arrows show the resulting detec-
tion errors.

43

FIGURE 4.1: A summary of the API provided by Mez. 45

FIGURE 4.2: Detailed architecture of Mez 46

FIGURE 4.3: Block diagram of the network latency controller incorpo-
rated in Mez.

48



xii

FIGURE 4.4: Mez in-memory log. The storage is an in-memory log,
which is an append-only, circular buffer. The log consists of <
timestamp, videoframe > key-value pairs stored in increasing or-
der of timestamps. Concurrent read/write performance is improved
through fine grained locking by segmenting the log.

50

FIGURE 5.1: Pub-sub latency (95th percentile), and pedestrian detection
accuracy with IoT node scaling for Mez and NATS for JAAD dataset
with simple, medium and complex scene dynamics video frames. In
(a) Y axis shows the per frame Publish-Subscribe latency. In (b)
Y axis shows the accuracy in terms of the normalized F1 score per-
centage. X axis of both figures indicates the number of IoT camera
nodes. Unlike NATS, Mez is able to achieve the latency threshold of
100ms as the number of IoT camera nodes scale. The resulting loss
of accuracy is less than 3.3%.

56

FIGURE 5.2: Pub-sub latency (95th percentile), and pedestrian detection
accuracy with IoT node scaling for Mez for DukeMTMC dataset with
simple, medium and complex scene dynamics video frames. In (a) Y
axis shows the per frame Publish-Subscribe latency. In (b) Y axis
shows the accuracy in terms of the normalized F1 score percentage.
X axis of both figures indicates the number of IoT camera nodes.
Mez is able to achieve the latency threshold of 100ms as the number
of IoT camera nodes scale. The resulting loss of accuracy is less
than 4.2%. Since NATS has a 1MB message size limit, DukeMTMC
frames cannot be sent/received using NATS.

57

FIGURE 5.3: Subscriber scaling for Mez and NATS for (a) JAAD and
(b) DukeMTMC datasets with simple, medium and complex scene
dynamics. Y axis shows the per frame Publish-Subscribe latency
and X axis shows the number of subscribers.

59

FIGURE 5.4: End-to-end latency breakdown for (a) Mez and (b) NATS in
presence of 4 peer nodes. The measurements are taken for complex
scene dynamics video frames from the JAAD dataset with median
frame size of 970KB, streamed at 5fps rate. For NATS, the network
latency dominates the overall latency at 96.2%. For Mez, the network
latency is the dominant component at 65.7%, with the controller
overhead being the next highest at 20.5%

60

FIGURE 6.1: Characterization of the impact of application of tuning
knobs, (a) blurring (knob 2) and (b) denoising (knob 3) on video
frame size. Blurring and denoising knobs reduced the frame size as
much as 75% and 67% respectively.

66



xiii

FIGURE 6.2: Characterization of the impact of application of tuning
knobs, (a) blurring (knob 2) and (b) denoising (knob 3) on mAP (ap-
plication inference accuracy). Blurring and denoising knobs achieved
a normalized mAP score of 47% and 72% (of baseline mAP) respec-
tively.

66

FIGURE 6.3: Visual impact on object detections before and after the ap-
plication of tuning knobs. (a) Unmodified video frame, video frame
after applying (b) blurring knob with a kernel size of 5 and (c) de-
noising knob with a kernel size of 10. Both video frames (b) and
(c) have few missed detections, but still preserve most of the true
detections for object categories such as person and bicycle.

67

FIGURE 6.4: Normalized mAP expressed as a percentage for Efficient-
Det mAP for video frames from COCO dataset. Note that each video
frame bucket corresponds to different combinations of the knob set-
tings with different resulting mAP.

73

FIGURE 6.5: Visual impact on object detections before and after the
application of tuning knobs. (a) unmodified video frame and (b)
video frame after applying knobs - colorspace modification, denoising,
contrast stretching and gaussian filtering.

74

FIGURE 6.6: Histogram showing the distribution of error between actual
and predicted mAP scores for percentage of knob combinations cho-
sen to test the mAP ML model. 82.19% of the knob combinations
have predicted mAP error variation of only ±3% of actual mAP.

75

FIGURE 6.7: Histogram showing the distribution of variation between
actual and predicted video frame size for percentage knob combina-
tions chosen to test the video frame size ML model. 78.08% of the
knob combinations have predicted frame size error variation of only
±10% of actual frame size.

76

FIGURE 7.1: Compute latency for pedestrian detection with OpenPose
(on Nvidia Titan V GPU) vs. video frame size

83



xiv

LIST OF ABBREVIATIONS

AC Approximate Computing.

AMQP Advanced Message Queuing Protocol.

AP Average Precision.

API Application Program Interface.

ARM Advanced RISC Machine.

BLE Bluetooth Low Energy.

CIFAR Canadian Institute For Advanced Research.

COCO Common Objects in Context.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DRAM Dynamic Random Access Memory.

DSD Directed Search Domain.

FN False Negative.

FP False Positive.

FPS Frames Per Second.

GDBT Gradient Boosting Decision Tree.

GPU Graphics Processing Unit.

HAS HTTP Adaptive Streaming.

HLS Hue Lightness Saturation.



xv

HSV Hue Saturation Value.

HTTP HyperText Transfer Protocol.

IoT Internet of Things.

IoU Intersection over Union.

JAAD Joint Attention in Autonomous Driving.

LHS Latin Hypercube Sampling.

mAP Mean Average Precision.

ML Machine Learning.

MOO Multi-Objective Optimization.

MQTT Message Queuing Telemetry Transport.

MTMC Multi-Target Multi-Camera.

NBI Normal Boundary Intersection.

NSGA Non-dominated Sorting Genetic Algorithm.

PI Proportional Integral.

PTP Precision Time Protocol.

QoE Quality of Experience.

RBAC Role Based Access Control.

REVAMP2T Real-time Edge Video Analytics for Multi-camera Privacy-aware Pedes-

trian Tracking.

RMSE Root Mean Square Error.



xvi

RPC Remote Procedure Call.

SPEA Strength Pareto Evolutionary Algorithm.

SPO Successive Pareto Optimization.

SSD Solid State Drive.

SSTable Sorted Strings Table.

STOMP Streaming Text Oriented Messaging Protocol.

TCP Transmission Control Protocol.

TeCSAR Transformative Computer Systems and Architecture Research Lab.

TLS Transport Layer Security.

TP True Positive.

TPM Trusted Platform Module.

UDP User Datagram Protocol.

USB Universal Serial Bus.

Wi-Fi Wireless Fidelity.

XGBoost eXtreme Gradient Boosting.



CHAPTER 1: INTRODUCTION

The recent emergence of powerful machine vision algorithms based on Deep Learn-

ing has made possible Internet-of-Things (IoT) applications that utilize machine vi-

sion for a variety of challenging tasks including autonomous driving, pedestrian safety,

public security, and occupational health and safety. Such applications involve compu-

tationally intensive processing of streaming videos from cameras operating 24x7x365.

Assuming a modest frame rate of 5 fps, and a 500 KB frame size, 216 GB of data

is generated per camera per day (19.5 Mbps per camera). Often, multiple cameras

are needed to provide adequate area coverage for subject tracking and overcoming

occlusions [1, 2]. Additionally, the aforementioned applications tend to be latency

sensitive - that is, the processing of video frames needs to be done within a short

time window for the results to be useful. The duration of the time window depends

on the speed of the event (for example, tracking a high speed vehicle vs. tracking a

pedestrian), and the response time needed for useful actions (for example, sounding

an alert before vs. after event). Furthermore, while many of these applications en-

able broader smart city initiatives, and social good, significant privacy concerns exist

regarding the potential misuse of the collected video data [3].

Despite the considerable computing power available in the Cloud, the use of Cloud

computing for IoT machine vision applications is hindered by the high network latency

to access a remote data center (typically hundreds of milliseconds)[4], and constraints

in the upload bandwidth (typically tens of Mbps). Moreover, privacy and legal con-

cerns place limitations on sharing of sensitive data to remote servers controlled by

external entities. IoT machine vision applications are thus an ideal candidate for the

Edge computing paradigm [5, 6, 7, 8, 9] , where most of the processing of the video



2

streams happen in the vicinity of the camera. The Cloud may still play a role in ag-

gregating detected events from multiple IoT Edge deployments, both for performing

batch analytics, and for archival purposes. The localized processing of video streams

at the Edge potentially allows for low latency operation, overcomes bandwidth lim-

itations by reducing the size of the data that needs to be sent to the Cloud, and

helps addresses privacy and legal concerns by eliminating the need to share raw video

frames with Cloud vendors.

Edge server

WiFi (802.11ac)
router

IoT 
camera nodesNode 1

Node 2
Node 3

Node 4
Node 5

Figure 1.1: System architecture for machine vision at the IoT Edge. IoT nodes
equipped with cameras record and transmit video frames to an Edge server through
a Wi-Fi (802.11ac) wireless router. The Edge server runs machine vision algorithms
on the received video frames for object detection, tracking and event prediction.

Figure 1.1 shows the system architecture for machine vision at the IoT Edge. Low

power IoT nodes equipped with cameras, stream live videos of the area under ob-

servation to an Edge server equipped with GPUs through a wireless network. The



3

Edge server aggregates the individual video streams from multiple cameras, and run

machine vision applications for object detection, tracking, and event prediction. For

an application such as pedestrian safety (see Figure 1.2), the cameras are mounted on

traffic signal posts at street intersections, and the Edge server is housed in a traffic

signal box.

IoT camera
nodes

IoT camera
nodes

Edge 
server

Figure 1.2: Multi-camera machine vision at the IoT Edge for pedestrian safety.

The Edge differs from the Cloud in some significant ways - unlike high speed wired

networks in data centers, wireless networks at the Edge allow flexible installation of

cameras at a lower cost. Also, cost reasons motivate the use of wireless technologies

such as Wi-Fi (802.11ac) and Bluetooth (BLE) that operate in the free unlicensed

bands. In contrast 4G and 5G wireless technologies operate in the licensed bands,

and requires paid subscriptions to cellular network vendors. Additionally, space, cost,

and power supply constraints limit the hardware redundancy available at the Edge.



4

Moreover, ensuring the physical security of the hardware is potentially challenging at

the Edge due to deployments in unsecured environments.

In this dissertation, we explore the characteristics of an IoT Edge middleware layer

that provides a suitable abstraction for machine vision application developers to de-

ploy vision applications that consume video streams from one or more cameras. Since

the applications are latency sensitive, the middleware layer should provide a means

for applications to specify the latency requirements. The middleware then makes the

best-effort to guarantee the specified latency. The use of wireless technologies such

as Wi-Fi makes this particularly challenging, due to the large latency variations in

the wireless channel. We propose the use of publish-subscribe (pub-sub) messaging

system with storage, as a candidate IoT Edge middleware.

A pub-sub system decouples publishers (cameras) from subscribers (machine vi-

sion applications). IoT camera nodes publish video frames to topics identified by

a camera ID. Applications subscribe to one or more topics as needed. The storage

layer allows temporal decoupling of publishers and subscribers, allowing subscriber

applications to access past video frames. In Cloud computing, such pub-sub systems

are widely deployed to handle real-time data feeds, and as message brokers between

microservices. Open source examples of such messaging systems include Kafka [10],

NATS [11], and RabbitMQ [12]. Kafka is designed for high throughput, NATS tar-

gets low latency, and RabbitMQ allows for complex routing between publishers and

subscribers. However, the existing messaging systems are built for the Cloud, where

machines communicate over low latency wired networks (Gigabit Ethernet, Infini-

band), and as such do not provide mechanisms to guarantee latency when operating

in wireless channels with large latency variations.

We introduce Mez, a pub-sub messaging system specifically designed for machine

vision applications at the IoT Edge. The key design themes of Mez are -

• Approximate computing - Mez exploits the trade off between video frame trans-



5

fer latency from the IoT camera node to the Edge server, and video frame qual-

ity (approximate computing) inherent in machine vision applications. A lower

quality video frame has a smaller size, and hence can be transferred with lower

network latency. If a lower quality frame can provide acceptable accuracy, then

a lower quality frame could be transferred from the IoT camera node to the

Edge server during conditions of high channel interference. It should be noted

that the application developer has to determine acceptable latency-accuracy

tradeoffs. Mez provides a means for applications to specify the upper bound on

the latency, and the lower bound on the accuracy requirements. The accuracy

in turn translates to the quality of the video frame that Mez has to deliver.

• Adaptive computing - Mez constantly monitors the operating conditions of the

wireless channel. When channel interference is high, Mez automatically adapts

the quality of the video frames such that both the frame transfer latency and

accuracy specifications are met. Automatic adaptation of video frame quality

in Mez is facilitated by a network latency controller.

• Domain specific design - Mez employs an on-demand video frame transfer from

the IoT camera node to the Edge server to minimize wireless channel inter-

ference. Furthermore, Mez uses an in-memory log based storage that exploits

application domain specific characteristics to implement a simple low latency

storage.

We have implemented Mez on an IoT Edge testbed with multiple IoT camera nodes,

and a single GPU equipped Edge server. The source code is available from our GitHub

repository1. Experimental results indicate that for pedestrian detection application

with the OpenPose multi-person 2D pose detection benchmark [13, 14, 15, 16], Mez

is able to achieve the target latency in the presence of up to 10x increase in channel
1https://github.com/Ann-Geo/Mez

https://github.com/Ann-Geo/Mez


6

interference with an application accuracy degradation of at most 4.2%. In contrast,

the state-of-the-art NATS messaging framework suffers from latency degradation as

the number of IoT camera nodes scale.

We then revisit the latency controller in Mez and propose a scalable design for the

controller using two approximate computing based techniques - a pruning heuristic

based approach and a machine learning model based approach. We evaluated the

approximate computing based techniques, on an object detection application using

publicly available vision dataset. Experimental results indicate that for object detec-

tion vision application based on EfficientNet [17, 18] Deep Learning architecture on

the Microsoft COCO 2017 [19] dataset, we obtained an average video size reduction of

71.33% with an inference accuracy of 80.93% of that of the unmodified video frames.

1.1 Contributions

This primary contributions of this dissertation are as follows:

1. Approximate computing technique to exploit latency-accuracy trade-

off experienced by machine vision applications

We exploited approximate computing techniques to trade off quality of video

frames in order to achieve guaranteed frame transfer latency in the wireless

channel. The resulting video frame quality directly impacts the inference accu-

racy of machine vision applications consuming these frames. We conducted a

study of video frame quality vs. accuracy degradation for two Deep Learning

machine vision applications involving pedestrian detection and object detection.

2. Multiple video frame quality modification techniques

There are several ways in which video frames can be modified to constitute a

reduced frame size in order to achieve a reduced frame transmission latency. We

call these modifications as tuning knobs for video frames. In this dissertation

we identified various unique ways in which video frame content can be modified.



7

3. Network latency controller

We designed an approximate computing based latency controller that uses mul-

tiple video frame quality modification techniques to simultaneously satisfy net-

work latency and inference accuracy requirements from machine vision applica-

tions by monitoring the operating conditions in the wireless channel.

4. Pub-sub messaging system for the IoT Edge

We introduced Mez - a publish-subscribe messaging system for machine vi-

sion applications deployed at the IoT Edge. Mez allows applications to specify

latency, and application accuracy requirements and incorporates a network la-

tency controller to satisfy these requirements. Additionally, the design of Mez

utilizes application domain specific features to provide low latency operations.

5. In-memory storage for pub-sub message broker

We designed a low latency in-memory storage that can be integrated in pub-sub

messaging system brokers to store and retrieve visual data recorded by multiple

publishers. The storage also has persistence for achieving fault tolerance against

temporary messaging system failures.

6. Scalable network latency controller

We presented the design of two approximate computing based algorithms - a

heuristic based pruning algorithm and a Categorical boost machine learning

model based algorithm, to make Mez’s network latency controller design scal-

able.

1.2 Dissertation Outline

Chapter 2 provides a brief overview on Edge computing, approximate computing

and distributed messaging frameworks. Chapter 3 presents experimental character-

ization of Wi-Fi latency at the Edge, and design and evaluation of the network la-



8

tency controller in Mez. Chapter 4 describes Mez API, internal architecture, and

detailed design including brokers, in-memory log, and fault tolerance aspects. Chap-

ter 5 presents the experimental evaluation of Mez on an IoT Edge test bed. Chapter

6 describes and evaluates the techniques proposed for scaling the network latency

controller in Mez. Chapter 7 discusses different design decisions made in Mez, and

concludes the dissertation with suggestions for future work.



CHAPTER 2: BACKGROUND AND RELATED WORK

In this Chapter, we first define Edge computing and present several challenges

experienced by Edge computing systems. In the following Sections, we provide an

overview about approximate computing, computer vision applications, messaging sys-

tems, control systems and machine learning in the context of this dissertation. We

also review the state-of-the-art work done in Edge computing, approximate computing

and distributed messaging systems in their relevant Sections.

2.1 Edge Computing

Edge is defined as any computing or network resource along the path between data

sources and Cloud data centers. In the Edge Computing paradigm compute and

storage resources are placed at the Edge of the network close to data sources [20].

This is in contrast with Cloud computing paradigm where the data is cached and

processed in Cloud data centers.

Architecture of a three tier Edge computing model is shown in Figure 2.1. The three

tiers in this architecture are IoT, Edge and Cloud. First tier is IoT including smart

home appliances, smart health wearable devices, cameras, smart grids and connected

vehicles. Second tier, Edge consists of Edge servers (workstations) with more compute

and storage capabilities than IoT devices. IoT devices communicate to the Edge

servers using wireless technologies like 4G/5G cellular networks, Wi-Fi or Bluetooth.

The third tier is composed of Cloud data centers (servers) with huge compute and

storage capabilities. Some of the major Cloud service providers are Amazon Web

Services [21], Microsoft Azure [22] and Google Cloud [23]. Communication between

Edge and Cloud is facilitated by large throughput and high speed protocols like



10

IoT Devices

Smart
Home

Smart
Health Smart

Surveillance

Smart
Grid

Smart
Transportation

Edge
Servers

St
or

ag
e 

an
d 

C
om

pu
te

 R
es

ou
rc

es

H
et

er
og

en
eo

us
 D

ev
ic

es
 a

nd
U

ns
ec

ur
ed

 E
nv

iro
nm

en
t

+

+

Cloud Servers

Figure 2.1: Architecture of a three tier Edge computing model. Tier 1 - consists of
IoT devices and smart appliances. Tier 2 - includes Edge servers with more compute
and storage capacity than devices in tier 1. Tier 3 - composed of Cloud data centers
with huge compute and storage capacity.

Ethernet or optical fibers.

In Cloud computing paradigm, most of the computations happen in Cloud data

centers resulting in longer latency as contrasted with the Edge computing paradigm

where substantial amount of data is cached at the Edge for processing, contributing to

shorter latency. However, there are several factors that make Edge a very challenging

environment compared to Cloud.

• Cloud systems are housed in pristine data centers. On the other hand, Edge sys-

tems are often deployed in the “field” where highly dynamic operating conditions

exist. For example, the Edge nodes most likely use a wireless communication

link operating in unlicensed bands, where significant intermittent interference

exists from other users.



11

• The data is inherently distributed at the Edge nodes due to the distributed na-

ture of the data sources (for example, cameras). This is different from the Cloud

where the data is distributed by design across multiple nodes to accommodate

large data sizes.

• The heterogeneity of the storage nodes at the Edge is far more diverse than the

Cloud. From a storage perspective, the embedded boards (IoT devices) have

GB of storage, the Edge servers (at access points/base stations) offer TB of

storage, and the backend Cloud offers PB of storage.

• The physical insecurity of the nodes in the field and the use of the Edge in

critical cyber physical systems bring additional security challenges to the Edge

[24].

In this dissertation we built an Edge Computing system similar to the one shown

in Figure 1.1. Our system consists of multiple IoT cameras and an Edge server and is

used to deploy computer vision applications (described in Section 2.3). The remaining

part of this Section describes prior work done on vision based IoT Edge systems.

The concept and motivation behind Edge computing are described in a number of

recent publications [5, 6, 7, 8, 9, 25, 26, 27, 28]. Regarding machine vision at the Edge,

in the Gabriel project [29], Ha et al. describe a wearable cognitive assistance system

where the images captured by a mobile device are processed by the Edge node to an-

alyze what the user is seeing, and provide the user with cues as to what is in the scene

(for example, recognizing a person). In the VisFlow project, Lu et al. [30] describe

a system that can analyze feeds from multiple cameras for license plate recognition

and real-time traffic flow mapping. In [31], Neff et al. proposes REVAMP2T, an IoT

system that tracks pedestrians across multiple cameras by running custom-designed

deep learning based vision engines at the low power Edge nodes close to the cameras.

However, none of these works address guaranteeing of latency requirements at the



12

Edge for machine vision applications.

In the Hetero-Edge project, Zhang et al. [32] describe a system that can efficiently

orchestrate real-time vision applications on heterogeneous Edge servers. The new re-

source orchestration platform developed, uses a set of task scheduling schemes to make

the Hetero-Edge system latency-aware, but does not consider communication latency.

In [33], Pakha et al. introduce the idea of control knobs such as frame selection and

area cropping to parametrize a custom video protocol that streams videos from cam-

eras to Cloud servers to perform neural-network-based video analytics. Their work

highlights opportunities to improve the trade-offs between bandwidth usage and in-

ference accuracy, but does not address Edge specific latency requirements demanded

by many IoT vision applications. In [34] Canel et al. proposes a new edge-to-cloud

system called FilterForward that backhauls only relevant video frames from cameras

to datacenter applications with the help of lightweight edge filters. However, unlike

our approach, they perform computationally expensive Deep neural network based

object detection at the camera nodes.

2.2 Approximate Computing

Approximate Computing (AC) is a set of techniques that trade off computation

accuracy so as to achieve better performance or energy consumption. AC leverages

the fact that applications like real time streaming and multimedia processing can tol-

erate compromises on image or video quality [35]. For instance the HTTP Adaptive

Streaming (HAS) protocol streams videos with varying quality to adapt to changes

in network (bandwidth limitations and traffic) and minimize stalls [36]. Such quality

approximations may lead to increased user experience and savings in network band-

width. Applications of AC are not limited to video streaming, but can be seen in

Deep Learning, wireless communication and control systems.

We used approximate computing techniques to trade off video quality to adapt with

the latency variations experienced in the wireless channel due to varying interference



13

levels. We identified a set of video quality modification techniques that reduces the

video frame size and hence result in decreased frame transmission latency through

wireless channel. In the following part of this Section we describe prior research work

that exploited approximate computing in various domains.

In [37], Mittal provides a survey of approximate computing techniques. Strategies

for approximation at the code level such as loop perforation, and at the architecture

level such as reduced precision operations are discussed. Regarding applications of

approximate computing to Deep Learning, Chen et al. [38] use approximate com-

puting to accelerate network training, while Ibrahim et al. [39] explore the use of

approximate computing to realize Deep Learning networks on resource constrained

embedded platforms. Unlike our work, in these works approximate computing is

targeted towards reducing the computational load.

In [40], Betzel et al. introduce the concept of approximate communication to reduce

the communication between processing elements in a high performance computing

system. They evaluate compression, reduced synchronization, and value prediction

as potential approximate communication techniques. In contrast to Betzel et al. we

target latency variations due to interference in wireless communication channels, and

investigate the impact on application accuracy.

2.3 Computer Vision Applications

Computer vision aims to build autonomous systems by gaining high-level under-

standing from observed images or videos. Computer vision systems translate visual

information obtained from images or videos into insights to make decisions and pre-

dictions. Computer vision is distinct from image processing in the way that, the latter

is mechanical transformations used to make alterations to image properties such as

resolution, brightness, contrast and so on. Whereas computer vision processes vi-

sual data and creates intuitive understanding to identify, classify or categorize the

information in the visual data.



14

Prior to 2012, traditional computer vision techniques used a top-down approach

to detect and/or classify information in the visual data [41]. Entities or objects in

the visual data are composed of different features. For instance a cat in an image

is a combination of several features such as head, ears, tail and four legs. Training

a computer vision system to understand these features requires the system to have

pixel level understanding of the visual data. The system analyzes images to obtain

insights on minute differences on pixel density, color saturation, levels of darkness

and brightness. Certain arrangement of pixels with certain level of brightness would

indicate a cat’s ear for instance.

Such early systems were inflexible and time consuming to build because they in-

volved manual effort to codify features (required for detection) for each object for each

vision application. These systems used machine learning (ML) models and developers

trained these models using the features they believed to be relevant to the objects.

Developers had to explicitly tell the rules to the system that cats are made of four

legs, two ears and a tail. Further minor changes in image clarity, object orientation

and rotation would make these systems fail to perform detection or classification.

However recent advances in Deep Learning have changed the way computer vision

systems built traditionally. Deep learning techniques use a bottom-up approach and

are able to train a machine using massive datasets and numerous training cycles.

For instance during the training process the deep learning algorithms automatically

extracts relevant features of a cat. After the training phase a Deep Learning model is

produced and can be used to detect and predict accurate information about previously

unseen visual data. Figure 2.2a and 2.2b show the distinction between traditional

computer vision based system and Deep Learning based system workflows for a simple

object detection application.

Deep Learning in computer vision utilize large scale vision datasets such as Ima-

geNet [42], CIFAR10 [43] and Microsoft COCO [19]. These datasets provide visual



15

Manual task

Feature extractor

Automated training

Traditional
ML model

Cat

Image data
(Input)

Features

Output

(a)

Automated training

Deep Learning
model

Cat

Image data
(Input)

Output

(b)

Figure 2.2: (a) Traditional computer vision workflow: Involves manual task of telling
the system what are the features of the objects need to be detected and training
ML model using these features. (b) Deep Learning computer vision workflow: Deep
Learning model automatically extracts the features and learns using these features.

data containing wide variety of objects. In this dissertation we have used three pub-

licly available vision datasets namely JAAD [44], DukeMTMC [45] and Microsoft

COCO 2017. Among these JAAD dataset contains over 300 video clips of pedestri-

ans recorded at traffic intersections and public spaces using high resolution cameras.

This dataset can be used to train and build Deep Learning models that perform com-

puter vision tasks such as pedestrian detection and pedestrian path prediction. The

DukeMTMC dataset consists of video clips of people recorded using 8 camera views

in Duke University campus. Since DukeMTMC dataset contains videos from multiple

camera perspectives, this dataset is useful to build models that perform multi-camera

person re-identification and tracking. In contrast with these two datasets Microsoft

COCO dataset contains images (≈ 330K) belonging to 80 different object categories.

COCO dataset has been used to develop and validate variety of vision algorithms and

models for object detection, segmentation and keypoint detection. All three datasets

mentioned above provide labels for the objects in the images and videos. These labels

are created by the dataset providers by manually annotating objects in the dataset.

Such labels are termed as ground truth for the objects in the dataset.



16

When sufficiently large set of images are fed to a Deep Learning model it automat-

ically learns the pixel-level details in the images such as varying color and contrast

information, background and edges of objects. After gaining insights about features

(head, tail and legs for cat) by learning pixel-level details the model returns its final

outcome (for example cat).

In this dissertation we used two Deep Learning based computer vision applications

- pedestrian detection and object detection. The pedestrian detection application

uses OpenPose [13, 14, 15, 16] which is a multi-person system to detect human body,

hand and facial key-points in images and videos. The pedestrian detection appli-

cation draws bounding boxes around the key-point detected pedestrians outputted

from OpenPose. The generated bounding boxes are compared against ground truth

(provided by the dataset) of the objects. If bounding boxes for the detections and

their ground truth match and their areas overlap above a certain threshold (IoU-

Intersection over Union) then the detections are considered to be valid (true). For

object detection application we used EfficientDet - an object detector model devel-

oped by Google Brain team [17]. EfficientDet outperforms state of the art object

detector models in terms of model efficiency.

In this dissertation, we use the term inference accuracy to represent a vision applica-

tion’s Deep Learning model accuracy. Some commonly used metrics used to calculate

inference accuracy are Average Precision (AP), mean Average Precision (mAP) and

F1 Score. We define these metrics in their relevant Chapters in this dissertation.

2.4 Messaging Systems

A messaging system’s function is to transfer data between multiple applications.

In the messaging context, the application that sends data is called producer and

application that receives data is called consumer. A common approach for notifying

consumers about a new event is, the producer sends message containing the event,

which is then pushed to consumers. A messaging system can be implemented by



17

using a direct communication channel like a Unix pipe or TCP connection between

producer and consumer. But Unix pipes and TCP connect exactly one sender with

one recipient, whereas a messaging system need to have the ability to send messages

to multiple consumers from a single producer and multiple producers.

A number of messaging systems such as ZeroMQ [46], StatsD [47] and Brubeck

[48] use direct network communication (TCP and UDP) between producers and con-

sumers. But these direct messaging systems require application code to be aware of

the possibility of message loss. The faults they can tolerate are quite limited because

they assume that producers and consumers are always online. If a consumer goes

offline, messages are lost in the communication channel because they were sent when

consumer was unreachable at that point.

An alternative to this problem is to use message brokers. A message broker runs

as a server and producers and consumers connect to it as clients. Producers write

messages to the broker and consumers can retrieve these messages by reading them

from the brokers. By centralizing the data in the broker, messaging systems can more

easily tolerate clients that frequently disconnect and crash. In this case the durability

aspect of messages are handled by broker instead of applications.

Using a message broker has several advantages compared to direct messaging sys-

tems,

• It can act as a buffer if the consumer is unavailable or overloaded, and thus

improve system reliability.

• It can automatically redeliver messages to a consumer that has crashed, and

thus prevent messages from being lost.

• It avoids the producer needing to know the IP address and port number of the

consumer.

• It allows one message to be sent to several consumers.



18

Publisher

Publisher

Publisher Subscriber

Subscriber

Subscriber

Topic 1

Topic 2

Topic 3

Broker

Messages Messages

Figure 2.3: Architecture of a publish-subscribe system. Multiple publishers publish
messages to a broker and several subscribers consume messages from the broker.
Publishers categorize and publish messages to different topics in the broker.

• It logically decouples the producer from the consumer.

A publish-subscribe (pub-sub) messaging is a type of messaging pattern that is

characterized by the producer (publisher) of a piece of data (message) not specifically

directing it to a consumer. Instead, the publisher classifies the message based on a

policy; the consumer (subscriber) subscribes to receive certain classes of messages.

To facilitate this, pub-pub systems have a message broker, a central point where

messages are published [49]. Publishers categorize and publish messages to different

topics in the broker (see Figure 2.3). Further, pub-sub messaging ensures that each

subscriber receives messages on a topic in the exact order in which they were received

by the messaging system.

In this dissertation we present the design of a pub-sub messaging system - Mez, for

latency sensitive multi-camera computer vision applications distributed at the IoT

Edge. Mez provides vision applications the ability to specify their latency and accu-

racy demands and achieves these demands in presence of dynamic network conditions

at the Edge. We now review state of the art messaging systems such as RabbitMQ,

Kafka and NATS and indicate their major distinctions from Mez.

RabbitMQ [12] is an open source messaging system that supports the Advanced

Message Queuing Protocol (AMQP), Streaming Text Oriented Messaging Protocol



19

(STOMP), Message Queuing Telemetry Transport (MQTT), and other protocols. It

supports multiple messaging styles including pub-sub, request-reply, and point-to-

point communication models. RabbitMQ’s design assumes a smart broker, dumb

consumer model, with the broker consistently delivering messages. Mez, in contrast,

supports a dumb broker, smart consumer model, and is designed specifically for ma-

chine vision applications at the Edge.

Kafka proposed by Kreps et al. in [10] is used for collecting and delivering high

volumes of data with high throughput. It combines the benefits of traditional log

aggregators and messaging systems. Kafka is a pub-sub system in which multiple

producers and consumers can publish and retrieve messages at the same time, and

store streams of data in distributed, fault tolerant clusters using multiple brokers and

partitions. Similar to Mez, Kafka supports a dumb broker, smart consumer model.

However, Kafka is focused on delivering high throughput, and not necessarily on

latency of individual messages.

NATS [11] messaging system is a recent project that is focused on providing low

latency to cloud native applications. Similar to Mez, NATS supports a pub-sub

system, and a dumb broker, smart consumer model. However, unlike Mez, NATS is

a general purpose messaging system, and does not provide latency guarantees.

2.5 Control Systems

A control system is a mechanism that alters the future behaviour or state of a

system. In order to consider a system as control system the behaviour or the outcome

must tend towards a state that is desired. A control system has two basic components

- the system to be controlled (plant) and the input that acts on the plant. For a given

input the plant responds over time to produce a system output. There are mainly

two types of control systems - open loop and closed loop. In an open loop control

system, the input does not depend on the system output. The drawback of an open

loop control system is that the input to the system has no way to compensate the



20

variations in the system. To account for these changes, system input must varied with

respect to the output. This type of control system is called a closed loop (feedback)

control system. In closed loop control the output of the system is measured using

a sensor and the output is compared against a reference signal (desired/commanded

state). The error between measured and desired values is fed to a controller, where

the error is converted into a system input value (see Figure 2.4). The advantage

of feedback control system is that it is capable of reacting to changes to the plant

automatically, by constantly driving the error term to zero.

Controller Plant

Sensor

Reference OutputInput

-

Error

+

Figure 2.4: Block diagram of a feedback control system. Plant output is measured
using a sensor and is compared against a reference signal. The error between measured
output and reference signal is fed to a controller and is converted to plant input.

The controller in a control system can be designed in several ways. In the context

of this dissertation, we describe a PI (Proportional-Integral) type controller. For a

PI controller the controller output can be defined using Equation 2.1.

u(t) = Kpe(t) +Ki

∫
e(t)d(t) (2.1)

where u(t) is the controller output, Kp is proportional gain, Ki is integral gain,

and e(t) is controller error. The two tuning parameters for a PI controller are the

proportional gain and integral gain. Controller error is the difference between mea-

sured and desired output. Kpe(t) and Ki

∫
e(t)d(t) are termed as the proportional

(P) and integral (I) terms in the PI controller. The proportional and integral terms

influence the controller to produce output close to the desired output. Term P is

proportional to the controller error e(t). Term I is generated by integrating the past



21

values of controller errors over time. The balancing of both these terms is achieved

by tuning the controller gains Kp and Ki. The tuning constants’ values to achieve an

optimal control depend on behaviour of the measuring sensor as well as plant output.

To obtain optimal values for the constants, they have to be tuned by setting reference

signal at different levels and observing system responses.

2.6 Machine Learning

Machine Learning (ML) is a set of tools for making inferences and predictions from

data. Predictions can be defined as the outcomes of any future events. Inference refers

to drawing insights from events and their behaviours. Machine Learning is a powerful

technique because it gives computers the ability to learn without being explicitly

programmed to do so. Essentially ML learns patterns from existing (training) data

and applies it to new (testing) data. For machine learning to be successful it needs

high-quality data.

A machine learning model can be defined as a statistical representation of a real-

world process. A process is modeled using data and we can enter new inputs into a

model to get an outcome. When a model is being built and learned from training

data, we call this ‘training a model’. Samples in training and testing data are called

observations. Observations are comprised of features and targets. Features are dif-

ferent types of information that help the model to predict the targets. Targets are

outcomes (quantities/categories) that take values depending on the features.

There are mainly three categories for machine learning - reinforcement learning,

supervised learning and unsupervised learning. Reinforcement learning is used for de-

ciding sequential actions. In supervised learning the training data is labeled, meaning

the values of the targets are known. In contrast with this unsupervised learning has

only features, but no labeled targets. Machine learning workflow primarily consists

of 4 steps - extracting features from raw data and creating the input dataset for the

model, split the dataset into two for training and testing, train the ML model using



22

train dataset and evaluate and tune the model till the model performance is good

enough (see Figure 2.5).

Raw data

1. Extract
features

and create
dataset

2. Split
dataset Train dataset 3. Train

model 4. Evaluate

Test dataset

Is performance
good enough?No Yes

Final
model

Figure 2.5: Basic machine learning workflow consists of 4 steps: extract features from
raw data and create dataset, split the dataset into train and test dataset, train the
ML model using train dataset, evaluate the model and if the performance is good
enough create the final model.

Two categories of supervised learning are classification and regression. Classifica-

tion models assign a category to an observation. In classification a discrete variable

is predicted, meaning the target variable can take only a few different values. In con-

trast with this, regression models predict a continuous variable (a variable that can

take any value). Common metrics used to evaluate regression model performance are

R squared and RMSE (Root Mean Squared Error). In a dataset, if the target variable

follows a linear relationship with the features, this dataset can be modeled using a

linear regression model. Whereas if target-feature dependence is more complex, then

non-linear models like polynomial regression, Support vector machine [50], Random

forest regression [51] and Decision tree regression [52] can be used to model the data.

Boosting is one the techniques in ML that can be used to solve complex data

driven real world problems. Boosting is defined as an ensemble learning technique

that uses a set of ML algorithms to combine weak learners to form strong learners

in order to increase the performance of a ML model. Ensemble learning is a method



23

that is used to enhance the performance of ML model by combining several learners.

When compared to a single model, this type of learning builds models with improved

efficiency and accuracy [53]. In boosting weak learners are sequentially produced

during the training phase. The performance of the model is improved by assigning

a higher weightage to the previous incorrectly predicted samples. This process is

repeated until all the mispredicted samples are correctly predicted.

The weak learners in boosting are generated by applying fundamental machine

learning algorithms on different distributions of the dataset. In a boosting algorithm

the weak (base) learners are decision trees by default. Decision tree is a graphical

representation of all the possible solutions to a decision based on certain conditions.

The base learners generate weak rules for each iteration. After multiple iterations the

weak learners are combined and form a strong learner that predicts a more accurate

outcome. Three types of boosting algorithms commonly used are adaptive boosting

[54], gradient boosting [55] and XGBoost [56]. Among these, though adaptive boost-

ing and gradient boosting can be used in both classification and regression problems,

adaptive boosting is more commonly used to solve classification problems. In gradi-

ent boosting base learners are generated sequentially in such a way that the present

base learner is always more effective than previous one. Thus in each step gradient

boosting algorithms try to minimize the prediction error of the previous learner.

In this dissertation, we explored a recently proposed machine learning model called

CatBoostRegressor [57] from open source gradient boosting library CatBoost [58].

This library is particularly useful for datasets that contain categorical features (tuning

knobs in our case, see Section 6.1). Unlike numerical features categorical features

represent a fixed set of discrete values with no mathematical correlation. CatBoost

library is implemented using gradient boosted symmetric decision trees which help

to reduce the prediction time for the machine learning model. CatBoost library

outperforms state of the art gradient boosting libraries such as XGBoost [56] and



24

LightGBM [59] in terms of model quality and training speed.

2.7 Summary

In this Chapter we provided a brief overview on Edge computing, approximate

computing, computer vision applications, messaging systems, control systems and

machine learning. We also presented previously reported work on Edge computing,

application of approximate computing and distributed messaging systems.



CHAPTER 3: NETWORK LATENCY CONTROLLER

In this Chapter we describe the IoT Edge test bed used to construct the Edge vision

system shown in Figure 1.1. The test bed consists of low power embedded boards

(IoT camera nodes) equipped with cameras communicating to a workstation (Edge

server) equipped with GPU over Wi-Fi (802.11ac). We also present experimental

study of impact on latency of video frames transferred over WiFi from IoT camera

nodes to the Edge server (referred to henceforth as network latency for brevity) by

two factors - peer IoT camera nodes’ transmission and video frame size. We postulate

that the network latency of video frames at the Edge substantially increases as the

number of IoT camera nodes scale due to interference from peer camera nodes. We

then conclude that for fixed camera node locations, tuning the video frame size is a

potential means to modulate the network latency experienced by the video frames.

We use this observation to exploit the trade off between network latency and quality

(approximate computing) of video frames. Approximate computing is based on the

idea that in some applications, selective inaccuracies in computation can be tolerated

to achieve gains in efficiency [37]. Machine vision applications can potentially make

use of approximate computing since they can tolerate compromises on object/event

detection accuracy resulting from selective loss of video frame quality.

In this Chapter we explore potential modifications that can be done on video frames

through which we can modify the quality and thus vary the frame sizes. We call these

modifications as video frame quality tuning knobs. We present 5 such tuning knobs

in this Chapter - resolution, colorspace modifications, blurring, artifact removal and

frame differencing. We then study the impact of these tuning knobs on inference

accuracy of a pedestrian detection machine vision application based on OpenPose



26

[13, 14, 15, 16] using two publicly available datasets (JAAD [44] and DukeMTMC

[45]).

We finally study the network latency experienced by the reduced size video frames

and conclude that lower quality video frames (with smaller size) can be transferred

with lower network latency, if they provide acceptable accuracy. We use this observa-

tion to design an approximate computing based latency controller that dynamically

uses multiple video frame frame quality knobs to simultaneously maintain application

specified network latency, and inference accuracy in the presence of interference in the

Wi-Fi communication channel. While inputs to the latency controller are application

specified network latency and inference accuracy bounds, the output is video frames

that satisfy these bounds.

The organization of this Chapter is as follows:

1. Section 3.1 describes the test bed to characterize network latency at the Edge,

characterization of the impact of peer IoT camera nodes on network latency

when scene dynamics and frame rate of the video frames are varied and study

of impact of video frame size on network latency.

2. Section 3.2 describes the video frame quality tuning knobs (resolution, col-

orspace modifications, blurring, artifact removal and frame differencing), char-

acterization of the impact of tuning knobs on inference accuracy for perdestrian

detection machine vision application and the study of impact of video frame

quality on network latency.

3. Section 3.3 presents the design of building blocks of the latency controller and

the latency control algorithm that maintains the application specified network

latency in presence of interference, by automatically tuning the video frame

quality knobs.

4. Section 3.4 presents the evaluation of the network latency controller for JAAD



27

and DukeMTMC complex scene dynamics video frames.

5. Section 3.5 summarizes this Chapter.

3.1 Characterization of Wi-Fi Latency at the Edge

In this Section we describe the IoT Edge test bed used to construct the Edge vision

system shown in Figure 1.1. We also present the study of impact on latency of video

frames transferred over Wi-Fi from IoT camera nodes to the Edge server (referred

to as network latency) due to multiple factors - (1) interference by peer IoT camera

nodes, (2) video scene dynamics, (3) video frame rate, and (4) video frame size.

3.1.1 IoT Edge Test Bed

We set up an Edge testbed similar to the IoT Edge machine vision system shown

in Figure 1.1. Our Edge test bed consists of five IoT camera nodes equipped with 8-

core ARMv8.2 based embedded Nvidia Jetson AGX Xavier [60] boards, and an Edge

server. A workstation equipped with an Nvidia Titan V GPU [61] serves as the Edge

server. The embedded boards and the workstation run Linux. The wireless link con-

sists of a NETGEAR Nighthawk XR700 [62] access point that uses 802.11ac (5 GHz)

Wi-Fi standard. The Edge server is connected to the access point through Ethernet,

while the IoT camera nodes connect to the access point through the 802.11ac Wi-Fi

link. The IoT camera nodes are placed at 6m from the access point.

We use two publicly available video datasets - JAAD [44] and DukeMTMC [45] for

latency characterization. The JAAD dataset consists of videos of pedestrian move-

ment in public spaces captured under various camera types and qualities in differ-

ent weather/lighting conditions. The DukeMTMC data set consists of 1080p videos

recorded at 60 fps from 8 static cameras deployed on the Duke University campus.

To perform the Edge latency measurements, we chose video clips with three different

scene dynamics - simple, medium, and complex, from both JAAD and DukeMTMC

datasets.



28

S

M

C

JAAD DukeMTMC
DatasetSD

Figure 3.1: Sample images from JAAD and DukeMTMC dataset with simple (S),
medium (M) and complex (C) scene dynamics (SD) showing pedestrians at public
spaces such as traffic intersections, parking lots, and public buildings.

In order to cluster the video frames in the two data sets as simple, medium and

complex, a k-means clustering [63, 64] approach was implemented. For DukeMTMC,

all frames from two of the cameras (cameras 5 and 6) were k-means clustered using

the mean and standard deviation of the bounding box areas in a scene. A frame

sequence of 100 frames was then randomly selected from each cluster for network

latency measurements. A similar approach was followed for the JAAD dataset. Figure

3.1 shows a representational sample of images from JAAD and DukeMTMC datasets.

A Golang gRPC [65] based client and multi-threaded server were deployed at the

IoT camera node and the Edge server respectively to facilitate video frame transfer,

and perform network latency measurements. The wireless network latency of video

frame transfer is measured by sending timestamped video frames from IoT camera

node to the Edge server. The latency is calculated as time difference tReceived− tSend.

The IoT camera nodes are time synchronized to the Edge server before starting the

network latency measurements using the PTP network level time synchronization



29

protocol capable of microsecond accuracy [66].

3.1.2 Impact of Peer IoT Nodes on Network Latency

In the measurements described below, we measure the network latency experienced

by IoT camera node 1 (see Figure 1.1) due to the 4 peer IoT camera nodes. All latency

measurements are at the 95th percentile with video frames transmitted at 5 fps.

Figure 3.2 shows the per frame network latency measured at the test camera node as

the number of IoT camera nodes transmitting video frames (with simple, medium and

complex scene dynamics) is increased from 1 to 5. Table 3.1 summarizes the latency

measurements. ONELat is the per frame network latency to the Edge server when

only the test node is active. FIV ELat is the per frame network latency when the node

under test and the 4 peer camera nodes transmit video frames to the Edge server. We

note that for video frames with complex scene dynamics, the ratio FIV ELat/ONELat

is 5.6x for the JAAD dataset, and 8.4x for the DukeMTMC dataset.

1 2 3 4 5
No. of IoT camera nodes

0

50

100

150

200

250

300

N
et

w
or

k 
La

te
nc

y 
(m

s)

JAAD
simple medium complex

(a)

1 2 3 4 5
No. of IoT camera nodes

0

100

200

300

400

500

600

700

N
et

w
or

k 
La

te
nc

y 
(m

s)

DukeMTMC
simple medium complex

(b)

Figure 3.2: Characterization of the impact of peer interference on the video frame
transfer latency for frames with different scene dynamics from (a) JAAD and (b)
DukeMTMC datasets. For complex scene dynamics 5.6x and 8.4x increase in latency
is observed for the JAAD and DukeMTMC datasets respectively.

We also investigate the impact of peer node interference at higher video frame rates

and with increasing distance of IoT camera nodes from the Edge server. Table 3.2

compares the network latencies between 5 and 15 fps for complex scene dynamics

video frames from the DukeMTMC dataset at both 6m and 12m. We note that the



30

FIV ELat at 15 fps is 1.02x higher for DukeMTMC compared to 5 fps, and at 12m is

1.06x higher compared to 6m.

Table 3.1: Summary of impact of video scene dynamics on network latency for JAAD
and DukeMTMC workloads with simple (S), medium (M) and complex (C) scene
dynamics (SD) video frames. All latency measurements are at the 95th percentile
with video frames transmitted at 5 fps. ONELat is the per frame network latency to
the Edge server when only the test node is active. FIV ELat is the per frame network
latency when the node under test and the 4 peer camera nodes transmit video frames
to the Edge server.

Dataset JAAD DukeMTMC
SD S M C S M C
Sizemed (KB) 610 760 970 1390 1670 1740
ONELat (ms) 32.09 35.16 46.09 59.71 68.73 72.72
FIV ELat (ms) 150.28 164.56 262.43 382.47 606.98 617.16
FIV ELat/ONELat 4.6x 4.6x 5.6x 6.4x 8.8x 8.4x

Table 3.2: Summary of network latency vs. frame rates (5 and 15 fps) and distance
from Edge server (6m and 12m) for DukeMTMC complex scene dynamic video frames.

Num.
nodes

Network latency (ms)
5fps
(at
6m)

15fps
(at
6m)

5fps
(at
12m)

1 72.72 80.60 96.35
2 128.97 409.82 162.15
3 341.18 438.01 390.75
4 518.31 585.58 526.95
5 617.16 631.76 657.88

The measurement results indicate that in an IoT machine vision application with

multiple cameras transmitting video frames to the Edge server, a significant rise in

network latency is observed at each IoT node as the number of peer nodes scale. Ad-

ditionally, factors affecting latency include scene dynamics; frame rate, and distance

of IoT camera nodes from the Edge server are less significant. In a real-world de-

ployment, additional external interference effects from unrelated transmitters in the

neighborhood of the deployment worsen the latency. Moreover, the network latency

is dynamic due to scene changes (simple to complex), and the intermittent nature of

external interference.



31

3.1.3 Impact of Video Frame Size on Network Latency

Size of video frames varies depending on the information content present in them.

In this Section we explore the latency experienced by video frames with different sizes

in the Wi-Fi channel using the IoT Edge testbed (shown in Figure 1.1).

We characterized the network latency of video frames when they are transmitted

from a test camera node (Node 1 in Figure 1.1) to the Edge server while keeping

all other camera nodes (Nodes 2 to 5) inactive. This setup emulates an operational

scenario where cameras produce variable size video frames depending on the scene

dynamics in the area of observation.

550 650 750 850 950 1050 1150 1250
Size of video frames (KB)

20

25

30

35

40

45

50

N
et

w
or

k 
La

te
nc

y 
(m

s)

Figure 3.3: Characterization of the impact of video frame size on video frame transfer
network latency. Network latency shows an approximately linear variation with video
frame size.

Figure 3.3 shows the variation in network latency at different video frame sizes.

The video frames of different sizes are chosen from JAAD and DukeMTMC datasets

and each measurement is taken as the average of 10 measurements. From this mea-

surements, we note that the network latency shows an approximately linear variation

with video frame size. Video frames with reduced size can be potentially transmitted

with reduced network latency. This results suggests that for camera nodes at fixed

locations, the latency can be tuned by varying the size of the video frame. In the



32

next Section we explore various techniques to tune the video frame size.

3.2 Approximate Computing for Latency Control

Approximate computing (AC) exploits the gap between the level of accuracy re-

quired by the applications/users and that provided by the computing system, for

achieving diverse optimizations [37]. AC leverages the fact that several important ap-

plications, like machine learning and multimedia processing, do not necessarily need

to produce precise results to be useful. In these applications, we can drop some video

frames or lower the frame resolution, provided that, the machine vision applications’

inference accuracy does not suffer substantially.

As seen in our experimental evaluation of latency in Section 3.1.2, channel inter-

ference from other camera nodes can cause network latency to increase. We also

note that for fixed camera node locations, tuning the video frame size is a potential

means to control latency. However, reducing the information content in the video

frames could make them unusable for object/event detection/prediction vision appli-

cations. In this Section we explore potential modifications that can be done on video

frames through which we can modify the information content and thus vary the frame

sizes. We call these modifications as tuning knobs for video frames. We present five

such tuning knobs - resolution, colorspace modifications, blurring, artifact removal,

and frame differencing techniques. We then study the impact of these tuning knobs

on network latency and inference accuracy of a pedestrian detection machine vision

application in Sections 3.2.2 and 3.2.3.

3.2.1 Video Frame Quality Tuning Knobs

We use the open source computer vision library OpenCV [67] to explore different

lossy image transformation techniques that can be applied to video frames to modify

the frame size. We choose 5 such transformation techniques (which we call tuning

knobs [68]). These are described below:



33

1. Knob1 - Resolution: Video frame size can be reduced by decreasing its res-

olution while keeping the aspect ratio constant. The cv2.resize() function from

OpenCV downscales an image to the specified resolution. We choose the res-

olutions 1312x736, 960x528, 640x352, and 480x256 as possible knob settings.

Modifying resolution can reduce the video frame size by as much as 84%.

2. Knob2 - Colorspace modifications: Video frames can be converted from one

colorspace to another (using cv2.cvtColor() function from OpenCV) resulting in

total size reduction. There are more than 150 color-space conversion methods

available in OpenCV. We choose BGR↔Gray, BGR↔HSV, BGR↔LAB and

BGR↔LUV colorspace modifications as possible knob settings. Our choice of

color space modifications can reduce the video frame size by as much as 62%.

3. Knob3 - Blurring: Video frames can be blurred by passing them through

various low pass filters. The cv2.blur() method from OpenCV blurs an image

using normalized box filter. We choose filter kernel sizes of (5,5), (8,8), (10,10)

and (15,15) as possible knob settings. Blurring the video frames can reduce the

video frame size by as much as 46%.

4. Knob4 - Artifact removal: For cameras mounted at fixed positions, the

background of recorded video stream is largely static over consecutive frames

in the video. Thus video frame size can be reduced by removing the static

background with stationary artifacts in it. First setting of this knob uses mo-

tion detection to detect and preserve moving objects in video frames, as well

as to perform background subtraction to remove all the stationary objects from

the video frames. In the second setting of this knob, we detect moving objects

in the video frames and retain only their contours. Knob4 uses a combina-

tion of the OpenCV functions cv2.absdiff(), cv2.threshold(), cv2.dilate(), and

cv2.findContours() to perform the above video frame modifications. Removing



34

artifact information can reduce the video frame size by as much as 98%.

5. Knob5 - Frame differencing: We applied frame differencing (using cv2.absdiff()

function from OpenCV) on pixel values between pairs of consecutive video

frames to selectively drop frames. We hypothesize that dropping video frames

with similar content (within a threshold) will not adversely affect the machine

vision task. We choose 5 knob values ranging from 0 to 0.72, where 0 represents

pixel wise identical frames, and 1 represents completely dissimilar frames. For

a stream of 100 simple dynamics images from the JAAD data set, this knob

reduces the median image size by up to 40%.

In the next Section we study the impact of these tuning knobs on network latency.

3.2.2 Impact of Video Frame Quality on Network Latency

We investigate the impact on network latency when video frames with degraded

quality are transferred from the IoT camera node to the Edge server. The degradation

is caused due to discarding of information from the the video frame, resulting in a

lower video frame size that can be potentially transmitted at reduced network latency.

However, the lower frame size could adversely impact the accuracy of the machine

vision application as well. The impact on the accuracy is application specific and will

be evaluated in the context of a specific application in Section 3.2.3.

The application of combinations of the 5 tuning knobs identified above result in

different sizes of video frames, all lower than the original. Figure 3.4 shows the

resulting impact on the network latency (95th percentile) from the IoT camera node

to the Edge server. The measurements were done by applying multiple tuning knob

combinations (935 in all) to video frames drawn from the JAAD and DukeMTMC

dataset. From Figure 3.4 we note that the Wi-Fi transmission latency shows an

approximately linear variation with video frame size. A 4x reduction in video frame

size could potentially yield a 4x reduction in wireless network latency. We also note



35

16 300 600 900 1200 1500 1800
Size of video frames (KB)

20

40

60

80

100

N
et

w
or

k 
La

te
nc

y 
(m

s)

Figure 3.4: Network latency vs. video frame size. Video frame sizes are obtained by
the application of different combinations of the 5 tuning knobs that modify the frame
quality.

that multiple knob combinations map to the same video frame size (and hence network

latency). However, these knob combinations could result in different application

inference accuracy - which we characterize in the next section.

3.2.3 Impact of Video Frame Quality on Inference Accuracy

While we note the ability of tuning knobs to reduce network latency by reducing

the size of the video frames, the question remains as to the impact of the lower sized

video frames on the accuracy of the machine vision task. In general, the impact is

dependent on the particular machine vision application. We evaluate the impact on

pedestrian detection application accuracy using OpenPose with video frames drawn

from the JAAD and DukeMTMC datasets.

The OpenPose project from CMU [13, 14, 15, 16] is an open source real-time multi

person system to detect human body, hand and facial keypoints ((x,y) coordinates

of different body parts) on individual images. We input the original and modified

video frames from JAAD and DukeMTMC dataset with simple, medium and complex

scene dynamics to OpenPose to generate the pose detected video frames and keypoint



36

locations. From these keypoints, bounding boxes are created for each detection with

the top-left and bottom-right most coordinates. A set of resulting bounding boxes is

presented as the final output. In order to evaluate these detections, each ground truth

bounding box for that frame (available for the two datasets) is matched exclusively to

the outputted bounding box based on highest Intersection over Union (IoU) overlap.

Positive matches with an IoU greater than a threshold are considered True Positives;

result bounding boxes without ground truth matches are considered False Positives;

and each unmatched ground truth box is considered a False Negative. These records

are utilized for the F1 score calculation.

For pedestrian detection, we utilize the F1-score metric with an Intersection-over-

Union (IoU) threshold of 0.5 as the application inference accuracy metric. Equation

3.1 defines the calculation for F1. Precision is TP
(TP+FP )

and Recall is TP
(TP+FN)

, where

TP , FP , and FN are the number of True Positives, False Positives, and False Neg-

atives respectively.

F1 = 2× Precision×Recall

Precision+Recall
(3.1)

We evaluate the impact of the tuning knobs on the video frame size and pedestrian

detection accuracy (F1) for JAAD and DukeMTMC datasets. To do this, we first

calculate the F1 score for modified video frames (for all knob combinations) and nor-

malize it with the baseline F1 score of unmodified video frames. Figure 3.5 shows the

plot of the normalized F1 expressed as a percentage vs. video frame size for JAAD

and DukeMTMC datasets. The video frame size buckets in Figure 3.5 corresponds

to different combinations of the knob settings with different resulting accuracy. Note

that higher F1 indicates higher accuracy. We have excluded knob combinations with

resulting accuracy of less than 90%. This reduces the total knob combinations to 159

for JAAD and 140 for DukeMTMC. Further, due to the computationally intensive



37

16-200 200-400 400-600 600-800 800-1000
Size of video frames(KB)

90

92

94

96

98

100

N
or

m
al

iz
ed

 F
1 

Sc
or

e 
%

(a)

78-400 400-800 800-1200 1200-1600 1600-1800
Size of video frames(KB)

90

92

94

96

98

100

N
or

m
al

iz
ed

 F
1 

Sc
or

e 
%

(b)

Figure 3.5: Normalized F1 score expressed as a percentage for Openpose pedestrian
detection application from (a) JAAD and (b) DukeMTMC datasets. Note that each
video frame bucket corresponds to different combinations of the knob settings with
different resulting accuracy.

nature of knob 4, we exclude knob 4 to maintain the video frame modification over-

heads to under 10 ms, bringing the total knob combinations to 70 for JAAD and 92

for DukeMTMC.

From the measurements in Sections 3.2.2 and Sections 3.2.3 we note the possibility

of compensating for the increased network latency in the presence of channel interfer-

ence through reducing the video frame quality just sufficiently, such that application

accuracy demands are met (where feasible). This is an example of the paradigm of



38

approximate computing - where despite computational approximations (video frame

quality in our case) acceptable performance (application accuracy) can be obtained

while gaining on another performance metric (network latency). Note that the limits

of the trade-off needs to be determined and characterized by the application devel-

oper for a particular application of interest. We utilize the above observed trade-off

between network latency and application accuracy in designing a network latency

controller. Under dynamically varying network latency conditions, this latency con-

troller automatically adjusts video frame quality such that the application specified

network latency, and accuracy bounds are met.

3.3 Latency Control Algorithm

In this section we describe the algorithm that maintains the application specified

video frame transmission latency from the camera to the Edge server in presence

of interference, by automatically tuning the video frame quality knobs identified in

Section 3.2.1. The control mechanism constructively reduces video frame size, to

match the measured video frame transfer latency with the target latency specified

by the application, while maintaining the inference accuracy request within limits

throughout the operation.

The camera nodes shown in Figure 1.1 need to be able to provide video frames

within the latency and inference accuracy levels requested by the vision applications

executing on the Edge server. Since the dependence of application accuracy is complex

(see Section 3.2.3), we have two options - (1) Use a sophisticated machine learning

model to predict the accuracy and knob combinations for an input video frame size,

or (2) Use a look up table that stores the video frame size and application accuracy

for all knob combinations. We chose the lookup table approach since the total knob

combinations of the 5 knobs results in 2500 values, a small number easily stored in

memory. These can be initially characterized and quickly looked up using two hashta-

bles - a primary hashtable with the video frame size as the key, and the candidate



39

accuracies as the value, a secondary hashtable that uses inference accuracy as the key

and knob settings as the values.

The control algorithm is outlined in the psuedo code shown in Listing 1.

Algorithm 1: Latency control algorithm
Result: Image quality knob setting
latencyTarget;
accuracyTarget;
errorThreshold;
nominalImageSize ← RegressionModel(latencyTarget);
latencyError ← latencySampled - latencyTarget;
while latencyError > errorThreshold do

imageSize = nominalImageSize + K1*latencyError +
K2*latencyErrorIntegral;
accuracy ← BinarySearchTree.search(imageSize);
knobSetting ← HashTable.lookup(accuracy);
if accuracy > AccuracyTarget then

return knobSetting;
else

return(No feasible solution);

end
latencyError ← latencySampled - latencyTarget;

end

The Edge latency controller running on the camera nodes periodically samples the

video frame transfer latency (network latency) to verify if it is under the requested

limit. The control is implemented in two steps - In Step 1, the error (error and integral

of error for Proportional-Integral (PI) control) between the observed the the specified

latency is used to determine the largest video frame size that can potentially satisfy

latency requirements. K1 (proportional) and K2 (integral) in Algorithm 1 are the PI

controller tuning parameters. The almost linear dependence of latency on video frame

size (see Section 3.1.3) facilitates an efficient binary search for the nominal video frame

size. In Step 2, the frame size is then used as a key in a look-up table to determine

the associated application accuracy. A secondary look-up table uses the application

accuracy obtained from the first lookup as key to determine the corresponding tuning



40

knob settings. The lookup tables are implemented with Binary Search Trees and

Hash tables to facilitate efficient queries. The video frames transmitted from the

IoT camera node to the Edge server are modified based on the knob combinations

using OpenCV libraries. The network latency is measured again at the next sampling

interval, and if the error exceeds a preset threshold, Steps 1 and 2 are repeated.

 Regression
model

Network latency
measurement

PI control

(Error)

Target accuracy

Target 
network 
latency Frame size

Frame 
size

Modified 
frame

Target 
network
latency

Current
network 
latency

Error

Size-Acc
lookup table

Size Acc Acc Knob

Knob

Acc

Unmodified 
frame

Video frame
modification

Acc-Knob
lookup table

Figure 3.6: Block diagram of the network latency controller

If the application requested latency and accuracy are infeasible, the application is

notified. At this point, the application has to decide whether to continue operation

with relaxed requirements, or send the notification higher up the stack to the user.

Figure 3.6 shows the block diagram of the latency controller. The machine vision

application informs the latency and inference accuracy demands (target network la-

tency and target inference accuracy) to the latency controller. The regression model

is constructed from the linear dependence of network latency on video frame size

described in Section 3.1.3.



41

3.4 Evaluation

In this Section we present the evaluation of the proposed network latency controller.

The IoT Edge test bed used in the evaluation is described in Section 3.1.1. It consists

of one Edge server, and five IoT camera nodes connected to the Edge server through

Wi-Fi (802.11ac). All latencies are measured between one of the IoT camera nodes,

and the Edge server. The workload used is the pedestrian detection application

with OpenPose described in Section 3.2.3 using video frames from the JAAD and

DukeMTMC datasets described in Section 3.1.1. All latencies are measured at the

95th percentile with video frames streamed from the IoT camera node to the Edge

server at 5 fps. The latency is calculated as time difference tReceived−tSend. The camera

nodes and the Edge server are synchronized using PTP synchronization protocol [66]

before the start of the measurements.

t0−1 t0 t0+1
Elapsed time (sec)

0

50

100

150

200

250

300

N
et

w
or

k 
La

te
nc

y 
(m

s)

Controller activated
 at t0

Latency 
threshold < 100ms

(a)

t0−1 t0 t0+1
Elapsed time (sec)

0

100

200

300

400

500

600

700

N
et

w
or

k 
La

te
nc

y 
(m

s)

Controller activated
 at t0

Latency 
threshold < 100ms

(b)

Figure 3.7: Latency controller step response for JAAD (a) and DukeMTMC (b)
complex scene dynamics video frames. The measurement is taken with one test IoT
node, and 4 peer IoT nodes.

To evaluate the latency controller, the desired latency threshold is set under 100ms,

and the desired application accuracy (normalized F1 score) is set above 95%. Figure

3.7a shows the step response of the controller for complex scene dynamics video frames

from the JAAD dataset. With no latency control, the median latency is 260ms due to

interference from the 4 peer camera nodes. With the controller enabled, the median



42

latency is less than the latency threshold of 100ms. The controller is able achieve an

application accuracy of above 96%.

Figure 3.7b shows the controller step response for the DukeMTMC dataset with

complex scene dynamics. With no latency control, the median latency is 650ms for

complex scene dynamics due to interference from the 4 peer camera nodes. With the

controller enabled, the median latency is less than the latency threshold of 100ms. In

all cases, the controller is able to achieve an application accuracy of above 95% with

a settling time of less than one second. Table 3.3 summarizes the latency reduction

and the resulting F1 score for JAAD and DukeMTMC datasets for all scene dynamics

achieved using the proposed controller.

Table 3.3: Summary of median video frame size after modification by the latency
controller, (Sizemed), Normalized F1 Score expressed as a percentage, 95th percentile
latency reduction with controller (Latred) for JAAD and DukeMTMC dataset for
simple (S), medium (M) and complex (C) scene dynamics (SD).

Dataset JAAD DukeMTMC
SD S M C S M C
Sizemed

(KB)
124 173 228 293 172 371

F1
score
(%)

99.1 98.3 96.7 98.9 96.7 95.8

Latred 6.8x 7.2x 4.1x 7.9x 9.5x 10.1x

Figure 3.8 gives a qualitative illustration of the effect of the inference accuracy loss

with video frames from JAAD (Figure 3.8a) and DukeMTMC (Figure 3.8b) datasets

with complex scene dynamics. Pedestrian detections for the unmodified video frames

(green), and after video frame modification (blue) by the network latency controller

are shown (accuracy loss of 3.3% for JAAD and 4.2% for DukeMTMC). For the

JAAD video frame, a detection error occurs at the area indicated by the red arrow.

A group of two individuals are detected correctly in the unmodified video frame, but

detected as a single box in the modified video frame. For the DukeMTMC frame, the

detection boxes in the modified video frame are thinner than those in the unmodified



43

(a) (b)

Figure 3.8: The impact of accuracy reduction on video frame modification by the
latency controller for JAAD (a) and DukeMTMC (b). Green and blue bounding
boxes indicate pedestrian detections on unmodified and modified video frames re-
spectively. The video frames experience an accuracy loss of ≈3% for JAAD and ≈4%
for DukeMTMC respectively. The red arrows show the resulting detection errors.

video frame. We note that for both datasets, apart from the aforementioned detection

errors, the other detections in the modified frame are same as the unmodified frame.

3.5 Summary

In this Chapter, we demonstrated how network latency and inference accuracy

specifications of machine vision applications at the Edge can be achieved despite the

presence of significant latency variations due to interference in the wireless chan-

nel. The tuning knobs are derived from the approximate computing paradigm that

a degraded video frame quality can be tolerated as long as application accuracy re-

quirements are satisfied. We proposed an efficient two-step control algorithm that

uses a proportional integral controller, and hashtable based lookups to dynamically

determine the tuning knob settings based on latancies sampled during operation. Our

control approach is scalable since each camera node runs its controller independently.

Our experimental results on an Edge test bed with pedestrian detection machine vi-

sion application show that the proposed controller can correct for latency increase of

upto 10.1x with an accuracy degradation of only 4.2%.



CHAPTER 4: MESSAGING SYSTEM ARCHITECTURE

Chapter 3 presented the design and evaluation of the network latency controller that

adjusts video frame size using video frame quality tuning knobs to satisfy machine vi-

sion application specified network latency and inference accuracy requirements. The

latency controller operates at the IoT camera nodes and the machine vision applica-

tion is deployed at the Edge server in the Edge vision system (see Figure 1.1). In this

Chapter we introduce an IoT Edge middleware [69] layer that provides a suitable ab-

straction for machine vision application developers to specify latency, and application

inference accuracy bounds.

The middleware incorporates the network latency controller (described in Chapter

3) and then makes the best-effort to guarantee the specified latency and accuracy

bounds by exploiting the latency-accuracy trade-offs inherent in machine vision ap-

plications (explained in Sections 3.2.3 and 3.2.2).

We call the IoT Edge middleware Mez [70]. Mez is a publish-subscribe (pub-

sub) messaging system with storage capabilities. In Mez, publishers are cameras

and subscribers are machine vision applications. Mez employs adaptive computing

techniques and domain specific design decisions to adapt with the operating conditions

present in the wireless channel.

In this Chapter, first we describe Mez API, data model and internal architecture.

We then explain how the network latency controller (explained in Chapter 3) is incor-

porated in Mez. Later we provide insight into design of brokers in Mez, in-memory

log storage and fault tolerance aspects.



45

4.1 API and Architecture

In this Section we present the Mez API that publishers and subscribers use to

interact with Mez. We then provide an overview of the data model supported by

Mez, and describe the architecture of Mez.

4.1.1 API

Mez has a simple API interface consisting of 5 API calls. As shown in Figure 4.1

- the APIs are Connect, Publish, GetCameraInfo, Subscribe, and Unsubscribe.

Connect(url)         ID
   allows publishers and subscribers to connect with Mez and returns a unique ID

Publish(videoStream)   
   allows publishers to publish video stream with Mez

GetCameraInfo()        list[cameraIDs]
   allows subscribers to get IDs of publishers connected to Mez 

Subscribe(applicationID, cameraID, tStart, tStop, latency, accuracy)        videoStream
   allows subscribers to receive video stream between two timestamps from Mez by specifying latency       
 and accuracy bounds

Unsubscribe(applicationID, cameraID)        status
   allows subscribers to stop receiving video stream from Mez and returns a success/failure status

Figure 4.1: A summary of the API provided by Mez.

Connect API is used by publishers (IoT camera nodes) and subscribers (machine

vision applications) to connect to Mez. Publishers and subscribers are assigned a

unique ID by Mez. Publish API allows publishers to push a stream of time stamped

video frames to Mez. The GetCameraInfo API is used by subscribers to discover

publishers. Subscribe API is used by subscribers to receive streaming video frames

generated by a specific publisher. Additionally, the subscribers can specify begin and

end times for the subscription, along with the desired latency and accuracy bounds

for the video stream. Note that the end time could be in the future, in which case

Mez delivers video frames as they become available. The Unsubscribe API is used by



46

subscribers to terminate an ongoing subscription.

4.1.2 Data Model

Mez's data model is a simple key-value pair. The keys are the timestamps of a

video frame, and the values are individual video frames. Video frames are stored in

Mez in the same chronological order in which they are received from the publisher.

Mez supports at-most-once delivery of video frames to the subscriber to limit the

bandwidth consumption on the wireless channel. Any resend requests need to be done

by the subscriber at the application level, since only the application can determine if

a resend is needed considering task deadlines, and redundancy in the video frames.

4.1.3 System Architecture

The Mez system model consists of multiple IoT camera nodes, and an Edge server

connected by a wireless network. The machine vision applications run on the Edge

server, which has considerably more processing power than the IoT camera node.

Network Latency
Controller 

EdgeBroker

R
PC

 E
nd

po
in

ts

Subscriber

RPC Endpoints

Edge Server

Logs

Persistent
Store

R
PC

 E
nd

po
in

ts

RPC Endpoints

Logs

Persistent
Store

CamBroker

Publisher

RPC Endpoints

RPC Endpoints

IoT Camera Node

RPC Endpoints

RPC Endpoints

Figure 4.2: Detailed architecture of Mez



47

As shown in Figure 4.2, Mez consists of 3 components - a message broker, an in-

memory log, and a network latency controller. The message broker implements the

Mez API, the in-memory log is used to store video frames, and the network latency

controller monitors wireless channel conditions, automatically adjusting the video

frame quality to meet the application specified latency, and accuracy requirements.

A key architectural feature of Mez is the replication of the in-memory logs between

the IoT camera nodes and the Edge server. The timestamped video frames generated

by the publisher are initially stored in the in-memory log associated with the camera

node. Maintaining the log at the IoT camera node allows buffering of video frames

during conditions of intermittent connectivity with the Edge server. Upon a subscrip-

tion request to the video stream by the application, video frames are transferred from

the IoT camera node log to the Edge server log. The network controller resides on the

IoT camera nodes, and modifies the video frames transmitted to the Edge server to

satisfy the latency-accuracy requirements of the subscriber. The on-demand transfer

of video frames reduces channel interference by limiting unneeded transmission in the

wireless channel. Additionally, the reduced transmission also serves as a power saving

opportunity at the IoT camera node. The in-memory logs are persisted on durable

storage (SSD/disk) on both the IoT camera nodes, and the Edge server. However,

to minimize storage latency, all requests are served from the in-memory log. The

persistent storage is only used to reconstruct the in-memory log during reboot after

node failure (see Section 4.2.4).

4.2 Messaging System Design

In this section, we present the detailed design of the different components of Mez

- brokers, in-memory log, and the network latency controller.



48

4.2.1 Brokers

The brokers implement the Mez API, and interface with the log storage. Indepen-

dent brokers are present on the Edge server and the IoT camera node. The broker

on the Edge server (EdgeBroker) implements all the APIs shown in Figure 4.1 except

Publish. Additionally, it implements two internal APIs, Register, and Unregister for

IoT camera nodes to register/unregister with the Edge Server. The broker on the

IoT camera node (CamBroker) implements all the APIs shown in Figure 4.1 except

GetCameraInfo. The CamBroker also interfaces with the network latency controller

on the IoT camera node. All APIs are implemented using gRPC [65] with TLS

(Transport Layer Security) [71] for authentication and encryption of data in transit.

4.2.2 Network Latency Controller Integration

Figure 4.3 shows the block diagram of the latency controller incorporated in Mez.

The CamBroker sends the latency and accuracy demands (target network latency and

target accuracy) from the consumer application to the latency controller through an

internal SetTarget API call.

 Regression
model

Network latency
measurement

PI control

(Error)

Target accuracy

Target 
network 
latency Frame size

Frame 
size

Modified 
frame

Target 
network
latency

Current
network 
latency

Error

Size-Acc
lookup table

From
CamBroker

To
CamBroker

Size Acc Acc Knob

Knob

Acc

Unmodified 
frame

Video frame
modification

Acc-Knob
lookup table

Figure 4.3: Block diagram of the network latency controller incorporated in Mez.

The video frames published at the CamBroker are sent to the latency controller

through a Control API call. Note that the latency controllers on each IoT camera



49

node operate independently of one another. The lack of centralized control allows the

scaling of the IoT camera nodes.

The controller maintains application specified network latency and inference ac-

curacy in presence of Wi-Fi channel interference using the algorithm outlined in the

pseudo code shown in Algorithm 1 (Section 3.3). The network latency for different

video frame sizes (see Section 3.2.2) are assumed to be available from prior character-

ization of the video frames in the targeted deployment environment. The application

accuracy for different tuning knob settings is also assumed available for the targeted

application through prior characterization. The almost linear dependence of latency

on video frame size observed in Section 3.1.3 facilitates the use of linear regression

model of latency on frame size.

If the application requested latency and accuracy are infeasible, the application is

notified. At this point, the application has to decide whether to continue operation

with relaxed latency/accuracy requirements, or notify the system operator of failure.

4.2.3 In-memory Log

The design of Mez storage is targeted to provide low latency read-write operations.

We take advantage of the particular features of machine vision at the IoT edge, both

to ensure high performance, and simplify the design of the storage. As shown in

Figure 4.4, the storage is an in-memory log, which is an append-only, circular buffer.

The log consists of < timestamp, videoframe > key-value pairs stored in increasing

order of timestamps. The log at the IoT camera node stores video frames either

generated from a single camera, or those modified by the latency controller to satisfy

latency requirements. This log is in turn replicated on demand at the Edge server.

For N IoT camera nodes, the Edge server thus holds N replicated logs. Subscriber

machine vision applications are served from the log at the Edge server. A machine

vision application subscribes to one or more such logs. Also, one or more machine

vision applications could subscribe to a particular log. The logs are hence designed



50

to support a single writer, but multiple readers.

.   .   .

Current write
position

Segment 0

Segment 1

Active segment

Empty segments

       0            1              2              3            4              5              6            7              8  

Video
frames

Timestamps
Segmentation of Log

In-Memory Log

    (0,0)       (0,1)       (0,2)         (0,3)        (0,4)    

    (1,0)       (1,1)       (1,2)         (1,3)        (1,4)    

    (2,0)       (2,1)       (2,2)         (2,3)        (2,4)    

Figure 4.4: Mez in-memory log. The storage is an in-memory log, which is an append-
only, circular buffer. The log consists of < timestamp, videoframe > key-value
pairs stored in increasing order of timestamps. Concurrent read/write performance
is improved through fine grained locking by segmenting the log.

To ensure low latency, the logs only utilize the DRAM for storage. Unlike general

purpose storage, there is no requirement to delete arbitrary video frames from the

log. Instead, video frames with increasing time stamps are appended to the log,

which wraps back when the capacity is exceeded, overwriting existing entries with

older timestamps. An attempt to append a video frame with a timestamp earlier

than the last entry in the log is rejected. The lack of a need to support update and

delete operations, and the sorted (by timestamps) video frames in the log, simplify

the design of the log and prevent memory fragmentation. Point queries are done

efficiently with binary search. Range queries are also readily supported by querying

the starting and ending timestamp, returning the video frames corresponding to an

interval that includes the requested time range.



51

A 1 GB of in-memory log at the IoT camera node holds approximately 7 minutes

worth of video frames (assuming 500 KB per frame, and 5 fps). The real-time machine

vision applications are assumed to consume the data within this time frame. The log

is persisted on the disk (in the background) only for recovery from failure (described

in Section 4.2.4). Due to the possible physical insecurity of the hardware, the video

frames stored on disk are encrypted at rest. The encryption/decryption, and disk

accesses are relatively long latency operations, motivating the avoidance of disk access

in the read/write critical path. For the short time duration the video frames are held

in the DRAM, the data is assumed to be safe from illegal access due to the volatile

nature of the memory.

Although the log is replicated from the IoT camera node to the Edge server, no at-

tempt is made at the storage layer to ensure consistency of the video frames between

the IoT node and the Edge server. Instead, we rely on the lower layers of the network

(TCP) for accurate replication. Also, in practice we observe that the ability of ma-

chine vision applications to tolerate errors in the video frame data, allows the use of

simpler transport protocols (UDP) that does not support re-transmissions. Concur-

rent read/write performance is improved through fine grained locking by segmenting

the log. Each segment is protected with read-write locks. Note that reads can occur

from many segments concurrently, while only one segment is active for write.

4.2.4 Fault tolerance

Mez is designed to recover from the following failures:

• Crashes of brokers - EdgeBroker and CamBroker

• Crash of the network latency controller at the IoT camera node

• Corruption of log segments on disk

Fault detection: Mez uses RPC timeouts to detect failures. The EdgeBroker

detects failed CamBrokers through time outs on the Subscribe API call. The publisher



52

detects failed CamBrokers through timeouts on the Publish API call. Subscriber

applications detects a failed EdgeBroker through time outs on the Subscribe API

call. The Cambroker detects a failed latency controller through time outs on the

internal SetTarget API call. The time out duration for the Subscribe RPC depends

on the video frame rate (fps), baseline wireless network latency, and if TCP is used

- the re-transmit timeout. The Publish timeout is typically small since the camera

and the CamBrokers are connected through a high speed interface such as USB. The

Control RPC timeout is determined by the time taken by the controller to modify the

video frame. We thus avoid use of explicit heartbeats, and instead take advantage

of the continuous streaming of video frames from the cameras to detect component

failures. For systems where the camera transmissions may be intermittent, explicit

heartbeats will need to be added to monitor the health of individual components.

Fault recovery: When the subscriber application detects that the EdgeBroker

has failed, it tries to reconnect with the EdgeBroker a finite (configurable) number of

times or until it gets a response. As a part of the recovery process, the EdgeBroker

reconstructs the logs persisted in the disk. A CRC is calculated and stored along with

the on-disk log segments to detect partially written segments, which are discarded

during the recovery process. The EdgeBroker then starts to accept connections from

retrying subscriber applications. The CamBrokers follow a similar recovery process.

Note that Mez has no inherent mechanism to restart failed brokers. Instead, Mez

relies on an external service such as Kubernetes [72] to restart failed brokers (see

Section 7.1).

4.3 Summary

In this Chapter, we presented Mez - a Publish-Subscribe messaging system for

distributed machine vision at the IoT Edge. We first described the simple interface

that Mez provides for applications to communicate their performance requirements.

We then explained Mez’s data model which is designed to be a simple key-value pair.



53

Mez’s internal design consists of three architectural components - message broker,

in-memory log and latency controller. Further we presented the detailed design of

message brokers and in-memory log in Mez and demonstrated how the network latency

controller (described in Chapter 3) can be integrated with Mez. We also list out the

faults that can be tolerated by Mez and their detection and recovery mechanisms.



CHAPTER 5: EVALUATION

We evaluate the pub-sub latency performance of Mez both with scaling of peer IoT

camera nodes, and with scaling the number of subscriber applications. We compare

Mez with the state-of-the-art low-latency NATS [11] pub-sub messaging system. The

pub-sub latency is the end-to-end time taken for a video frame to be published by the

camera and subscribed by the application. The pub-sub latency includes the Pub-

lish and Subscribe API completion times, network latency, video frame modification

times by controller (for Mez), and all processing delays inside the messaging system.

Note that the pub-sub latency does not include the compute time for the pedestrian

detection application.

The IoT Edge test bed used in the evaluation is described in Section 3.1.1. The

test bed is composed of an Edge server, and five IoT camera nodes connected to the

Edge server through Wi-Fi (802.11ac). All latencies are measured between one of

the IoT camera nodes, and the Edge server. The workload used is the pedestrian

detection application with OpenPose described in Section 3.2.3 using video frames

from the JAAD and DukeMTMC datasets described in Section 3.1.1. All latencies are

measured at the 95th percentile with video frames streamed from the IoT camera node

to the Edge server at 5 fps. The latency is calculated as time difference tReceived−tSend.

The camera nodes and the Edge server are synchronized using PTP synchronization

protocol [66] before the start of the measurements.

This Chapter is structured as follows:

1. Section 5.1 presents pub-sub latency performance evaluation of Mez with scaling

of peer IoT camera nodes.



55

2. Section 5.2 evaluates pub-sub latency performance of Mez with scaling of sub-

scribers.

3. Section 5.3 compares the breakdown for different components of the pub-sub

latency for Mez and NATS.

4. Section 5.4 summarizes this Chapter.

5.1 Node Scaling

Figure 5.1a shows the per frame pub-sub latency for Mez and NATS for the JAAD

dataset as the number of IoT camera nodes is scaled from 1 to 5. The latency and

the normalized F1 accuracy thresholds are set at 100 ms, and 96% respectively. This

setup emulates a scenario where a single subscriber (for example, a machine vision

application for object re-identification across multiple camera views) requests video

frames from multiple IoT camera nodes. As seen from Figure 5.1a, when the number

of IoT nodes are increased, Mez is able to maintain the pub-sub latency under 100ms.

However, the pub-sub latency of NATS shows a super-linear increase with IoT node

scaling, since NATS does not perform any type of network latency control. Figure

5.1b shows the accuracy (normalized F1%) achieved by Mez and NATS as the IoT

camera nodes scale. Since NATS always sends unmodified video frames, it maintains

the maximum accuracy for all cases. Mez shows a worst case accuracy reduction of

3.3%.

Similar evaluation is performed on the DukeMTMC dataset with the latency thresh-

old set at 100ms for video frames with simple, medium and complex scene dynamics.

Since the median video frame size for DukeMTMC is greater than 1 MB, we could

not evaluate NATS due to its 1 MB message size limit. When the number of IoT

nodes is scaled from 1 to 5, Mez is able to maintain the pub-sub latency under 100ms

(Figure 5.2a) while maintaining the accuracy reduction less than 4.2%(Figure 5.2b).



56

1 2 3 4 5
No. of IoT camera nodes

0

50

100

150

200

250
Pu

bl
is

h-
Su

bs
cr

ib
e 

La
te

nc
y 

(m
s)

----------------------------------------------------------------------------Latency threshold < 100ms

Mez Mez Mez Mez MezNATS NATS NATS NATS NATS

JAAD
simple medium complex

(a)

1 2 3 4 5
No. of IoT camera nodes

60

70

80

90

100

N
or

m
al

iz
ed

 F
1 

Sc
or

e 
(%

)

----------------------------------------------------------------------------
Accuracy threshold > 96%

Mez Mez Mez Mez MezNATS NATS NATS NATS NATS

JAAD
simple medium complex

(b)

Figure 5.1: Pub-sub latency (95th percentile), and pedestrian detection accuracy
with IoT node scaling for Mez and NATS for JAAD dataset with simple, medium
and complex scene dynamics video frames. In (a) Y axis shows the per frame Publish-
Subscribe latency. In (b) Y axis shows the accuracy in terms of the normalized F1
score percentage. X axis of both figures indicates the number of IoT camera nodes.
Unlike NATS, Mez is able to achieve the latency threshold of 100ms as the number
of IoT camera nodes scale. The resulting loss of accuracy is less than 3.3%.



57

1 2 3 4 5
No. of IoT camera nodes

20

40

60

80

100

120
Pu

bl
is

h-
Su

bs
cr

ib
e 

La
te

nc
y 

(m
s)

--------------------------------------------------------------------Latency threshold < 100ms

DukeMTMC
simple medium complex

(a)

1 2 3 4 5
No. of IoT camera nodes

60

70

80

90

100

N
or

m
al

iz
ed

 F
1 

Sc
or

e 
(%

)

--------------------------------------------------------------------
Accuracy threshold > 95%

DukeMTMC
simple medium complex

(b)

Figure 5.2: Pub-sub latency (95th percentile), and pedestrian detection accuracy
with IoT node scaling for Mez for DukeMTMC dataset with simple, medium and
complex scene dynamics video frames. In (a) Y axis shows the per frame Publish-
Subscribe latency. In (b) Y axis shows the accuracy in terms of the normalized F1
score percentage. X axis of both figures indicates the number of IoT camera nodes.
Mez is able to achieve the latency threshold of 100ms as the number of IoT camera
nodes scale. The resulting loss of accuracy is less than 4.2%. Since NATS has a 1MB
message size limit, DukeMTMC frames cannot be sent/received using NATS.



58

5.2 Subscriber Scaling

Figure 5.3 shows the pub-sub latency for Mez and NATS as the number of sub-

scribers are scaled. Poor subscriber scaling would indicate concurrency limitations.

This set up emulates the operational scenario at the IoT-Edge where multiple vision

applications (subscribers) request video frames from a single camera. In this case,

since only a single IoT camera node (to which the producer is publishing video frames)

is operational, there is no channel interference due to peer IoT camera nodes. Both

Mez and NATS scale well as the number of subscribers are increased from 1 to 8 with

minimal degradation in latency. However, Mez has a higher latency than NATS due

to controller overheads.

5.3 Pub-Sub Latency Breakdown

Figure 5.4 shows the breakdown for different components of the pub-sub latency

for Mez and NATS with all 5 IoT camera nodes transferring video frames to the Edge

server. The measurements are taken for complex scene dynamics video frames from

the JAAD dataset. For NATS, the network latency dominates the overall latency at

96.2%. For Mez also, the network latency is the dominant component at 65.7%, with

the controller overhead being the next highest at 20.5%. About half the controller

processing time is due to the video frame modification, with the video frame copying

between the logs at IoT camera nodes accounting for the remaining time. Use of

GPUs available on the Nvidia Xavier boards to perform the video frame modification

can potentially lower the video frame processing time. Integrating the controller as a

part of the CamBroker instead of the current approach of the controller as a separate

microservice, could result in lowering the video frame copying overheads.

5.4 Summary

In this Chapter we evaluated Publish-Subscribe messaging system, Mez on an IoT

Edge test bed with five IoT camera nodes and an Edge server. The workload used for



59

1 2 3 4 5 6 7 8
No. of Subscribers

0

20

40

60

80

100

120

140

Pu
bl

is
h-

Su
bs

cr
ib

e 
La

te
nc

y 
(m

s)

Mez Mez Mez Mez Mez Mez Mez MezNATS NATS NATS NATS NATS NATS NATS NATS

JAAD
simple medium complex

(a)

1 2 3 4 5 6 7 8
No. of Subscribers

0

20

40

60

80

100

120

140

Pu
bl

is
h-

Su
bs

cr
ib

e 
La

te
nc

y 
(m

s)

DukeMTMC
simple medium complex

(b)

Figure 5.3: Subscriber scaling for Mez and NATS for (a) JAAD and (b) DukeMTMC
datasets with simple, medium and complex scene dynamics. Y axis shows the per
frame Publish-Subscribe latency and X axis shows the number of subscribers.



60

Publish
10.2%

Controller
20.5%

Subscribe

3.6%

Network
65.7%

Latency breakdown for Mez

(a)

Publish
3.6%Subscribe 0.2%

Network
96.2%

Latency breakdown for NATS

(b)

Figure 5.4: End-to-end latency breakdown for (a) Mez and (b) NATS in presence of
4 peer nodes. The measurements are taken for complex scene dynamics video frames
from the JAAD dataset with median frame size of 970KB, streamed at 5fps rate. For
NATS, the network latency dominates the overall latency at 96.2%. For Mez, the
network latency is the dominant component at 65.7%, with the controller overhead
being the next highest at 20.5%

evaluation is the pedestrian detection application with OpenPose using video frames

from the JAAD and DukeMTMC vision datasets. We compared Mez with state-of-

the-art low latency NATS messaging system. Our experimental evaluation indicates

that, when IoT camera nodes are scaled to five, Mez is able to maintain the pub-

sub latency under application requested threshold, while NATS shows a super-linear

increase in pub-sub latency. However, both Mez and NATS scale well upto eight

subscribers with minimal degradation in pub-sub latency.



CHAPTER 6: SCALING THE NETWORK LATENCY CONTROLLER

Chapter 3 presented the design of the network latency controller in Mez that dy-

namically adjusts the video frame quality to satisfy latency and machine vision ap-

plication inference accuracy requirements. The latency controller adjusts video frame

quality using a set of frame quality modification techniques called tuning knobs (ex-

plained in Section 3.2.1). To facilitate the video frame quality tuning process the

latency controller implements a lookup table that stores candidate knob settings,

resulting video frame size (after modifying frames by applying tuning knobs) and

inference accuracy values (by feeding modified frames to machine vision application).

The entries in the lookup table are then used by the controller to search for the tuning

knob combination that satisfy both the latency and inference accuracy demands.

A lookup table style of design is adopted for the controller since the total combina-

tions of settings for 5 knobs (identified in Section 3.2.1) results in 1250 values, a small

number easily stored in memory. However exhaustively combining more number of

knobs with more fine-grained knob settings results in combinatorial explosion of the

knob search space. In this case, computing and storing the resulting frame size and

machine vision inference accuracy for all the knob combinations become prohibitively

expensive.

In this Chapter we propose two scalable algorithms to solve the combinatorial

explosion problem - design space pruning heuristic algorithm, and machine learning

based algorithm. This Chapter is structured as follows:

1. Section 6.1 lists 10 video frame quality modification techniques (tuning knobs)

and their knob settings that reduce video frame size. Among these, first 2

techniques are already introduced in Section 3.2.1. In this Section, we have



62

identified additional knob settings for these 2 tuning knobs.

2. Section 6.2 first presents the equation to quantitatively evaluate total number

knob combinations, given the number of knobs and knob settings. We also

propose two scalable algorithms (pruning heuristic and machine learning based)

to determine the settings of the tuning knobs that simultaneously satisfy video

frame size, and inference accuracy requirements.

3. Section 6.3 presents extensive experimental evaluation of the algorithms for

object detection machine vision application using the EfficientNet [18, 17] Deep

learning architecture on the Microsoft COCO 2017 [19] dataset.

4. Section 6.5 concludes this Chapter.

6.1 Additional Video Frame Quality Tuning Knobs

In this section we explore additional video frame quality modification techniques

which when applied on video frames reduce the frame size. Further, we investigate

the impact of the reduced frame size on machine vision application inference accuracy.

The techniques, referred to as tuning knobs, are described below.

1. Knob1 - Colorspace modifications: Video frames can be converted from

one colorspace to another resulting in total size reduction. We select 8 such col-

orspace modifications which are BGR↔Gray, BGR↔XYZ, BGR↔HSV, BGR↔HLS,

BGR↔LAB, BGR↔LUV, BGR↔YUV and BGR↔CrCb. Our choice of color

space modifications can reduce the video frame size by as much as 60%.

2. Knob2 - Blurring: Video frames can be blurred by passing them through

various low pass filters. We chose the filter kernel sizes of 5, 8, 10, 15 and 20 as

possible knob settings. Blurring the video frames can reduce the video frame

size by as much as 75%.



63

3. Knob3 - Denoising: Noise content in video frames can be removed by passing

them through denoising filters. The 5 knob settings selected for this knob are

denoising filter strengths of 3, 10, 15, 20 and 30. Denoising knob can reduce

the frame size upto 67%.

4. Knob4 - Contrast stretching: Contrast stretching can be done on video

frames by performing range normalization over the frame pixel array. The

norm values for range normalization are chosen from 0.3 to 0.9 with intervals

of 0.1. Contrast stretching using these knob settings can achieve upto 70% size

reduction.

5. Knob5 - 2D filtering: The 2D filtering approach convolves a video frame

with a kernel and removes the noise in the frame. This knob could reduce the

frame size as much as 68% when filter kernel sizes of 5, 6, 7 and 8 are applied

on the video frames.

6. Knob6 - Gaussian filtering: A video frame can be convolved with a Gaussian

kernel to remove Gaussian noise from the video frame. Selected kernel sizes are

5, 11, 21, 31 and 51 and achieved size reduction is 79%.

7. Knob7 - Median filtering: The median filtering technique computes the

median of all the pixels under a kernel window and the central pixel is replaced

with this median value. This technique is highly effective in removing salt-and-

pepper noise from video frames. By choosing the knob settings as 5, 9, 11, 13

and 19, frame size reduced upto 72%.

8. Knob8 - Bilateral Filtering: Bilateral filtering removes noise in video frames

while preserving the sharp edges in them. For this knob the filter sizes are chosen

to be 10, 30 and 50 and filter sigma values are chosen as 70, 150 and 200. Upon

application of this knob video frames reduced in its size by 64%.



64

9. Knob9 - Erosion: Erosion is a type of morphological transformation that

erodes away the boundaries of objects in video frames and is useful in removing

small white noises. Choosing erosion filter kernel sizes to be 5, 10 and 15 could

achieve size reduction of 62%.

10. Knob10 - Dilation: Dilation is another type of morphological transformation

which is the opposite of erosion. This knob dilates video frames using a kernel

structure. The kernel structure sizes chosen are 5, 8 and 10 with size reductions

of upto 52%.

Note that each of these knobs can be set independent of the other knobs potentially

resulting in a large (≈22 million) search space.

6.1.1 Impact of Tuning Knobs on Inference Accuracy

Reducing the information content by applying these tuning knobs on video frames

could impact the object/event detection inference accuracy of machine vision appli-

cations consuming these video frames. In general, the impact is dependent on the

particular machine vision application. We choose object detection as the machine

vision application since it is widely used, and is a basis of other computer vision tasks

such as object tracking, and activity detection. The object detector EfficientDet [17]

is based on EfficientNet [18], a deep learning neural network developed by Google

brain team. It achieves state-of-the-art accuracy while being up to 9x smaller than

competing models and using significantly less computation. Microsoft COCO [19] is

a publicly available vision dataset consisting of 91 object categories (classes) with

a total of 2.5 million labeled instances in 328K images. We input the original and

modified video frames from COCO 2017 dataset to EfficientDet to generate object

detections on video frames with bounding boxes drawn around the objects.

To evaluate these detections, each ground truth bounding box for that frame (pub-

licly available) is matched exclusively to the outputted bounding box based on highest



65

Intersection over Union (IoU) overlap. Positive matches with an IoU greater than a

threshold are considered True Positives; result bounding boxes without ground truth

matches are considered False Positives; and each unmatched ground truth box is

considered a False Negative. These records are utilized for mAP (Mean Average

Precision) calculation.

For object detection, we utilize the mAP metric with an Intersection-over-Union

(IoU) threshold of 0.5. Equation 6.1 defines the calculation for mAP. Precision is

TP
(TP+FP )

, where TP , FP , and FN are the number of True Positives, False Positives,

and False Negatives respectively. Average Precision calculated at a single IoU thresh-

old (0.5 in our case) for a single object class is denoted as, AP IoU=.5. Finally, mAP

is obtained by averaging AP IoU=.5 over different classes in the chosen dataset.

mAP =
1

#classes

∑
class∈classes

AP IoU=.5[class] (6.1)

where #classes represents number of classes of objects in the video frames and

AP IoU=.5[class] represents AP IoU=.5 for a specific object class.

Figures 6.1 and 6.2 show the impact of application of tuning knobs, blurring and

denoising (Knobs 2 and 3) on and video frame size and mAP. The mAP of unmodified

(without the application of any tuning knob) video frame is considered as the baseline

mAP. The mAP values obtained after applying tuning knobs on video frames are

normalized with respect to the baseline mAP. This characterization corresponds to

mAP generated (using EfficientDet-D0 [73] model) on 300 images chosen from COCO

2017 dataset.

Figures 6.1 and 6.2 demonstrate that the application of these tuning knobs can

reduce the video frame size as much as 75% and application inference accuracy upto

47% (of unmodified video frames). A similar trend for video frame size reduction and

accuracy degradation can be observed for other tuning knobs (Knobs 1 and 4-10) as

well.



66

5 8 10 15 20
Blurring filter kernel size

40

50

60

70

80

Vi
de

o 
fra

m
e 

si
ze

 re
du

ct
io

n 
%

(a)

3 10 15 20 30
Denoising filter kernel size

10

20

30

40

50

60

70

Vi
de

o 
fra

m
e 

si
ze

 re
du

ct
io

n 
%

(b)

Figure 6.1: Characterization of the impact of application of tuning knobs, (a) blurring
(knob 2) and (b) denoising (knob 3) on video frame size. Blurring and denoising knobs
reduced the frame size as much as 75% and 67% respectively.

5 8 10 15 20
Blurring filter kernel size

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 m
AP

 %

(a)

3 10 15 20 30
Denoising filter kernel size

70

75

80

85

90

95

100
N

or
m

al
iz

ed
 m

AP
 %

(b)

Figure 6.2: Characterization of the impact of application of tuning knobs, (a) blur-
ring (knob 2) and (b) denoising (knob 3) on mAP (application inference accuracy).
Blurring and denoising knobs achieved a normalized mAP score of 47% and 72% (of
baseline mAP) respectively.

From Figure 6.2, note that setting 1 of knob 2 reduced the mAP to 90.8% of the

baseline and setting 2 of knob 3 reduced mAP to 93.5% of baseline. Figure 6.3 shows

the visual impact of application of setting 1 of knob 2 and setting 2 of knob 3 on object

detections. Because of the effect of quality modification, both the video frames have

missed detections for a few objects. But note that both video frames still preserve

most of the true detections for object categories such as person and bicycle.

These observations indicate that approximate computing exploited in Chapter 3

(in case of tuning knobs explored in Section 3.2) is also applicable in case of the



67

(a) (b) (c)

Figure 6.3: Visual impact on object detections before and after the application of
tuning knobs. (a) Unmodified video frame, video frame after applying (b) blurring
knob with a kernel size of 5 and (c) denoising knob with a kernel size of 10. Both
video frames (b) and (c) have few missed detections, but still preserve most of the
true detections for object categories such as person and bicycle.

additional tuning knobs described in this Section. Lower quality video frames with

smaller size, can be transferred with lower network latency (from IoT camera node to

Edge server) if it provides acceptable machine vision application inference accuracy.

Therefore these additional knobs can also be used as potential tuning knobs to de-

sign the network latency controller (Chapter 3) that adjusts frame size by combining

multiple tuning knob settings. But exhaustively combining all knob settings of the ad-

ditional knobs identified, results in a huge knob design space (≈22 million). Therefore

characterizing the frame size and inference accuracy for all tuning knob combinations

takes a great deal of time. In the next Section we present two scalable approximate

computing algorithms to identify useful knobs (knobs with reduced frame size and

acceptable accuracy) by eliminating the need for exhaustive characterization of the

total knob design space.

6.2 Scalable Approximate Computing Algorithms

In this Section, first we quantitatively represent the knob design space using an

equation, then we describe the scalable approximate computing algorithms for knob

selection.



68

6.2.1 Knob Search Space

The observations from previous section indicate that tuning knobs provide a mech-

anism to send reduced size video frames with acceptable inference accuracy. It should

be noted that the machine vision application specifies the inference accuracy and net-

work latency bounds of the video frames that need to be transmitted. Video frames

satisfying requested network latency can be found if we have the size of these frames

pre-characterized (from the network latency vs. video frame size linear relationship

described in Section 3.1.3).

To select the knob settings that constitute the targeted frame size and target in-

ference accuracy metrics, all combinations of settings of identified knobs need to be

characterized. However, combining the knob settings for different tuning knobs re-

sults in a combinatorial explosion of the design space as seen in Equation 6.2. For

tuning knobs from 1 to n, this number can be represented using the equation,

ktotal = k1 × k2 × ...× ki × ...× kn (6.2)

where ktotal represents the total number of knob combinations and ki represents num-

ber of knob settings for the the ith knob. For the 10 tuning knobs identified in Section

6.1 this results in a total number of 22,394,880 knob combinations. Computing and

storing the resulting frame size (by applying knob combinations sequentially on video

frames) and computing the machine vision inference metric (by feeding the modified

video frames to the machine vision application) become prohibitively expensive.

We therefore explore two scalable algorithms to solve the combinatorial explosion

problem - the design space pruning heuristic algorithm, and machine learning based

algorithm.



69

6.2.2 Pruning Heuristic Algorithm for Knob Selection

We use pruning heuristic algorithm to successively filter out knob combinations that

result in lower performance on the inference metric. In this algorithm we consider

the ktotal knob combinations of Equation 6.2 as the heuristic decision space of the

problem.

The algorithm works as follows. The search space consists of n tuning knobs

with each tuning knob i consisting of ki tuning knob settings. In the first step of

this algorithm we change the knob setting for a single tuning knob (while keeping

settings of other knobs at their defaults) and calculate the frame size and inference

metric. We repeat this process for all the knob settings independently for each knob.

We then filter out knob settings that results in a low performance on the inference

metric (lower than a application specified threshold). This completes the first step

of the algorithm. In the second step, we choose pairs of knob combinations from

distinct knob combinations obtained from the first step. A filtering step similar to

the first step is then applied to weed out knob combinations with lower performance

on the inference metric. This completes the second step of the algorithm. The

process is repeated next considering 3 distinct knob combinations from the knob

setting obtained from step 2. The algorithm terminates when all n distinct knob

combinations are considered in the nth step. Each step i, prunes the design space by

eliminating low performing knob combinations.

The algorithm for the pruning heuristic knob selection is outlined in the pseudo

code shown in Listing 2.

6.2.3 Machine Learning Algorithm for Knob Selection

In contrast to pruning the entire knob space to identify useful knobs using the

pruning heuristic algorithm, a machine learning algorithmic approach can be used

predict video frame size and inference accuracy. To build the model, we first collect



70

Algorithm 2: Pruning heuristic algorithm
Result: Video frame quality knob settings
InferenceAccuracy = Iacc ;
InferenceAccuracyThreshold = IaccThres ;
numKnobs = n ;
step, i = 1;
while i <= n do

from n knobs, choose i settings = nCi ;
for each setting ki in nCi do

apply setting ki on video frame;
calculate video frame size;
calculate Iacc on video frame;
if Iacc < IaccThres then

discard setting ki;
end
increment step, i by 1

end

the input data required to train the model. We sample a small subset of knob com-

binations from the total possible set of knob combinations, and evaluate the video

frame size and machine vision application inference accuracy for the sampled knob

combinations. We then develop a machine learning model and train it using the

sampled knob data to predict the size and inference accuracy for remaining knob

combinations. The detailed steps of the algorithm are described below.

The first step of the algorithm is the data collection process. Here the data rep-

resents tuning knob combinations identified using Equation 6.2, the resulting video

frame size after applying tuning knobs, and the associated inference accuracy of ma-

chine vision application. Since the the knob sample space is large, calculating the

frame size and inference accuracy for all the knob combinations is a time consuming

process. Therefore we select a representative set of samples from the knob search

space using a sampling method. A Latin Hypercube Sampling (LHS) [74, 75] method

can be used to generate near-random samples from the multi-dimensional search space

of knobs. LHS with a ‘maximin’ criteria is specifically chosen to avoid the correlation

between samples by maximizing the minimum distance between samples. [76].



71

The next step is to modify the video frames by applying the sampled knob com-

binations, and recording the resulting video frame sizes. The modified video frames

are fed to the machine vision application to generate the inference accuracy for each

knob combination. At the end of this step for each knob combination we have a frame

size and inference accuracy value.

We aim to two build two models - one to predict frame size and another to predict

inference accuracy values; we consider the knob combinations as common input fea-

tures to both models. We note that all the input features (knob combinations) have

their dependent variable values (frame size and inference accuracy) labeled. Hence

we conclude that a supervised learning method needs to be used for this kind of la-

beled data samples. Another observation is that both the dependent variables are

real-valued quantities that need to be predicted. Therefore a regression model would

be best suited for this type of data. Also we observed that knobs have a non-linear

dependence on both frame size and inference accuracy. Additionally, video frames

with same size map to different inference accuracy values. Due to the complex de-

pendence of knobs on frame size and inference accuracy, we chose to proceed with a

non-linear machine learning model to estimate the dependent variables.

We experimented with multiple non-linear models such as polynomial regression,

Support vector machine [50], Random forest regression [51] and Decision tree regres-

sion [52]. But none of the models could provide sufficient level of prediction accuracy.

Then we explored a recently proposed model called CatBoostRegressor [57] from open

source gradient boosting library CatBoost [58] because of the categorical nature of

the input features (knob combinations). Models from CatBoost library outperforms

state of the art gradient boosting libraries such as XGBoost [56] and LightGBM [59]

in terms of model quality and training speed. CatBoost is a decision tree based li-

brary that uses two phases to predict the next tree. In CatBoost the second phase

is performed using traditional Gradient Boosting Decision Tree (GBDT) [55] scheme



72

and for the first phase a modified version of GDBT is used.

6.3 Implementation and Results

In this Section we present the experimental evaluation of the scalable approximate

computing algorithms described in Section 6.2.

6.3.1 Pruning Heuristic Algorithm

We implemented all the additional knobs identified in Section 6.1 using open source

computer vision library OpenCV [67]. The video frames were chosen from Microsoft

COCO 2017 dataset. A set of 300 video frames belonging to object classes person,

bicycle, car and traffic light were selected for the experimental evaluation. We chose

the object detector model EfficientDet [17] (based on EfficientNet [18]) as the machine

vision application to evaluate its inference metric (mAP) on modified video frames.

EfficientDet model D0 was chosen among models D0 to D7 because it is least complex

model (has low number of model parameters and low computation latency) and is

suited for resource constrained Edge devices.

A set of 146 knob combinations was identified using the pruning heuristic algorithm

from the 22 million knob search space explained in Section 6.2.1. To identify these

knob combinations we set the inference accuracy threshold (mAP) of the EfficientDet

object detector to be >80% of the baseline mAP. Note that the application of all 146

combinations of the knobs identified above result in different sizes of video frames,

all lower than the original.

Figure 6.4 shows the plot of the normalized mAP expressed as a percentage vs.

video frame size for video frames (from COCO dataset) modified using the filtered

knob combinations. The video frame size buckets in Figure 6.4 corresponds to differ-

ent combinations of the knob settings with different resulting mAP. Note that higher

mAP indicates higher inference accuracy for EfficeintDet. (The reason for size bucket

100-120 showing a max normalized mAP greater than 100% is because of the effect of



73

44-60 60-80 80-100 100-120
Size of video frames (KB)

80

85

90

95

100

N
or

m
al

iz
ed

 m
AP

 %

Figure 6.4: Normalized mAP expressed as a percentage for EfficientDet mAP for
video frames from COCO dataset. Note that each video frame bucket corresponds to
different combinations of the knob settings with different resulting mAP.

knob setting 1 of knob3-denoising, which actually caused the mAP to become slightly

higher than baseline mAP.)

Using the pruning heuristic algorithm we could identify knob settings that achieved

71.33% video frame size reduction with mAP score of as much as 82.37% of the

baseline mAP. This key observation enables transmission of smaller sized images with

less mAP from the IoT camera nodes to the Edge server in presence of Wi-Fi channel

interference.

Figure 6.5 shows the visual impact of application of tuning knobs (colorspace modi-

fication, denoising, contrast stretching and gaussian filtering) resulting in a normalized

mAP of 82.37% and size reduction of 71.33%. We note that the object detections

in Figure 6.5b contains most of the true detections (from unmodified video frame)

except a few missed detections such as a bicycle, a parking meter, one car and two

traffic lights. Two wrong detections resulting here are a bicycle detected as vase, and

a person detected as car.

Using Equation 6.2 we estimate the total number of knobs need to be evaluated



74

to be 354 by executing the pruning heuristic algorithm (Listing 2) for steps from

1 to 4 and using the 10 knobs and their settings identified in Section 3.2.1. The

application set inference accuracy threshold was set to be >80% of the baseline mAP.

The computation time taken to evaluate mAP scores (using EfficientDet-D0 on an

Nvidia GeForce 1060 GPU) for 354 combinations for 300 video frames from COCO

dataset is 10.03 hours. The total time taken for evaluations escalates substantially

when number of knobs and/or settings for each knob increase.

(a) (b)

Figure 6.5: Visual impact on object detections before and after the application of
tuning knobs. (a) unmodified video frame and (b) video frame after applying knobs
- colorspace modification, denoising, contrast stretching and gaussian filtering.

6.3.2 Machine Learning Algorithm

We sampled 1000 knob combinations (using Latin Hypercube Sampling) from the

knob sample space to generate the input data for the model. Next, the sampled knob

combinations are applied to video frames to calculate the video frame size. All the

knob settings are represented as categorical features before feeding into the model.

We then divided the samples into train and test samples using an 80-20% split. As

explained in Section 6.2.3, we chose the machine learning model CatBoostRegressor

[57] model from open source library for gradient boosting library catboost [58]. We

trained the model and predicted the frame sizes for the knob combinations from the



75

test sample set. We obtained train and test Root Mean Square Errors (RMSEs) for

this model as 0.74KB and 1.5KB respectively.

Next we take knob settings along with their video frame sizes as input features

to construct a model to predict the machine vision application inference accuracy.

The inference accuracy metric chosen for EfficientDet is mAP. With knob settings

represented as categorical features, we use the CatBoostRegressor model to predict

mAP scores for test knob combinations. For this model we achieved train and test

RMSEs as 0.51% and 1.6% (normalized mAP) respectively.

Using the machine learning algorithm we could identify knob settings that achieved

71.37% video frame size reduction with mAP score of as much as 80.93% of the

baseline mAP.

2 0 2 4 6 8 10 12
Actual vs. precdicted mAP error %

0

5

10

15

20

25

30

35

40

%
 o

f k
no

b 
co

m
bi

na
tio

ns

Figure 6.6: Histogram showing the distribution of error between actual and predicted
mAP scores for percentage of knob combinations chosen to test the mAP ML model.
82.19% of the knob combinations have predicted mAP error variation of only ±3%
of actual mAP.

Figures 6.6 and 6.7 show the percentage variation of actual and predicted mAP

and video frame size with respect to percentage of knob combinations in test sample.

Video frame size histogram (Figure 6.7) shows 78.08% of the knob combinations fall



76

within ±10% of video frame size error. The mAP histogram (Figure 6.6) shows that

82.19% of knob combinations fall within ±3% of mAP error. Since we could predict

accurately (with less than 10% error) most of the knob combinations’ video frame size

and inference accuracy using the constructed models, we conclude that the models

are sufficiently accurate. The computation time taken to evaluate mAP scores (using

EfficientDet-D0 on an Nvidia GeForce 1060 GPU) for 1000 knob combinations (used

for training and testing the models) for 300 video frames from COCO dataset is 28.33

hours.

10 0 10 20 30
Actual vs. precdicted video frame size error %

0

10

20

30

40

%
 o

f k
no

b 
co

m
bi

na
tio

ns

Figure 6.7: Histogram showing the distribution of variation between actual and
predicted video frame size for percentage knob combinations chosen to test the video
frame size ML model. 78.08% of the knob combinations have predicted frame size
error variation of only ±10% of actual frame size.

Comparing the two scalable approximate computing algorithms, the Categorical

boost machine learning model based algorithm achieves comparable accuracies to the

pruning heuristic algorithm (within ±3% error for mAP model, and ±10% for video

frame size model). The machine learning approach is more scalable both in terms of

the number of knobs, and the number of settings for each knob, since it only has a

one time training cost.



77

6.4 Discussion

The machine learning models could be evaluated in real-time to predict the infer-

ence accuracy, and frame size resulting from a given knob combination. Here, the

machine learning models act as objective functions that need to be minimized or

maximized in a multi-objective optimization space [77]. The goal would be to find a

set of solutions (knob combinations) as close as possible to satisfying the conflicting

objectives. The resulting knob combinations can then be used to cached in a lookup

table when the controller is operated in the real time for fast access.

A multi-objective optimization problem can be expressed in a general form as shown

in Equations 6.4.

Find the vector,

X∗ = [x1
∗, x2

∗, ..., xn
∗]T (6.3)

to optimize,

F (X) = [f1(X), f2(X), ..., fk(X)]T , (6.4)

subject to m inequality constraints,

gi(X) ≤ 0, i = 1 to m (6.5)

and p equality constraints,

hj(X) = 0, j = 1 to p (6.6)

where X∗ ∈ Rn is the vector of decision or design variables, and F (X) ∈ Rk is the

vector of objective functions, both of which must be either minimized or maximized.

In a multi-objective optimization problem (MOO), the goodness of a solution is

determined by ‘dominance’. A solution x1 dominates x2 if and only if, solution x1 is

no worse than x2 in all objectives and solution x1 is strictly better than x2 in at least



78

one objective. Given a set of solutions, the non-dominated solution set of a MOO is

defined as the set of all the solutions that are not dominated by any member of the

solution set. The non-dominated set of the entire feasible decision space is called the

Pareto-optimal set. The boundary defined by the set of all points mapped from the

Pareto optimal set is called the Pareto optimal front. The goal of MOO is to find a

set of solutions as close as possible to Pareto optimal front.

There are various ways in which a multi-objective optimization problem can be

solved. Some of the classic ways to solve MOO problems are listed below.

1. Scalarizing: In this method, the original problem with multiple objectives is

converted into a single-objective optimization problem. For instance, in a linear

scalarization method, a set of objectives are scalarized into a single objective

by adding each objective pre-multiplied by a user supplied weight. The weight

of an objective can be chosen in proportion to the relative importance of the

objective. This method is relatively simple, but finding weight vectors to obtain

a Pareto optimal solution in a desired region in the objective space is difficult.

2. A posteriori methods: A posteriori methods aim at producing all the Pareto

optimal solutions or a representative subset of the Pareto optimal solutions.

Posteriori methods fall into either one of the following two classes: mathemat-

ical programming-based a posteriori methods, and evolutionary algorithms. In

mathematical programming-based a posteriori methods an algorithm is repeated

and each run of the algorithm produces one Pareto optimal solution. Some of

the example methods of this class include Normal Boundary Intersection (NBI)

[78], Successive Pareto Optimization (SPO) [79] and Directed Search Domain

(DSD) [80]. In evolutionary algorithms one run of the algorithm produces a

set of Pareto optimal solutions. Examples of evolutionary algorithms are Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) [81] and Strength Pareto

Evolutionary Algorithm 2 (SPEA-2) [82].



79

6.5 Summary

In this Chapter we explored the problem of making the network latency controller

scalable when the tuning knob design space is huge, resulting in combinatorial ex-

plosion. We identified additional video frame transformation techniques, that can

result in reduced frame size, and effectively acts as network latency tuning knobs for

machine vision applications. Since the knob design space suffers from a combinatorial

explosion problem precluding exhaustive characterization of knob combinations, we

investigated scalable algorithms to facilitate our approximate computing approach.

We experimentally evaluated two approaches - a heuristic based pruning algorithm

of the design space, and a Categorical boost machine learning model based algo-

rithm. Both approaches were able to reduce the video frame size by upto 71.3% while

achieving a inference accuracy of 80.9% of the inference accuracy of the unmodified

video frames. The machine learning model has a fixed training cost compared to the

heuristic based pruning algorithm, while being inherently more scalable.



CHAPTER 7: CONCLUSIONS

Multi-camera based Deep Learning vision applications subscribe to the Edge com-

puting paradigm due to stringent latency requirements. However, guaranteeing la-

tency in the wireless communication links between the IoT cameras nodes and the

Edge server is challenging, especially in the cheap and easily available unlicensed

bands due to the interference from other camera nodes in the system, and from exter-

nal sources. In this dissertation, we show how approximate computation techniques

can be used to design a latency controller that uses multiple video frame quality con-

trol knobs to simultaneously satisfy latency and accuracy requirements for machine

vision applications. We also established the need for a suitable messaging abstraction

at the Edge for machine vision application developers to deploy vision applications

that consume video streams from one or more cameras.

We proposed the design of a publish-subscribe messaging system, Mez for dis-

tributed machine vision at the IoT Edge. Mez provides machine vision applications

at the Edge the ability to specify network latency upper bound for the video frames

transferred from the IoT camera nodes to the Edge server, along with an accuracy

lower bound that the application can tolerate. Many machine vision applications

support the approximate computing paradigm, where useful enough results can be

obtained despite reduced quality input. We incorporated the approximate computing

based latency controller in Mez and it achieves application specified network latency

despite channel interference, by modifying the video frames to reduce their sizes such

that the application accuracy specifications are satisfied as well. Additionally, the

design of Mez incorporates an in-memory log based storage that takes advantage of

specific features of machine vision applications to implement low latency operations.



81

We also discuss the fault tolerance capabilities of the Mez design.

Our experimental evaluation of Mez on an IoT Edge testbed with a pedestrian

detection machine vision application indicates that Mez is able to tolerate latency

variations of up to 10x with a modest drop in application accuracy of less than

4.2%. We then revisited the latency controller and made its design scalable using two

approximate computing based algorithms - a heuristic based design space pruning

algorithm, and a Categorical boost based machine learning algorithm. Experimental

results on an object detection application on the Microsoft COCO 2017 data set,

indicates that proposed methods were able to reduce the video frame size by upto

71.3% while achieving an inference accuracy of 80.9% of that of the unmodified video

frames. The machine learning model has a high training cost, but has a lower inference

time, and is scalable and flexible compared to the heuristic design space pruning

algorithm. We also discuss alternatives to some of our design choices, and suggest

directions for future work.

7.1 Discussion and Future Directions

In this Section we review the different choices made in the design of the messaging

system, Mez, and discuss alternatives.

GPU computing at IoT nodes: In our work we have only used the 8 core

ARM CPU available on the Nvidia Xavier board. By using the GPU available on the

Nvidia Xavier board, additional computationally intensive video frame modifications

including performing object detection at the IoT camera node could be employed.

Video frame compression: The video frames that are transferred from the IoT

camera node to the Edge server could be compressed (for example, using H.264) to

reduce the data size. However, Canel et. al. [34] suggest that a low quality H.264-

encoded 1080p (1920x1080 pixels) stream is insufficient to perform accurate analysis

for vision analytic applications such as traffic monitoring and pedestrian tracking.

Availability: Regarding service availability, the current version of Mez does not



82

support replicated physical nodes (neither IoT camera nodes, nor Edge sever). For

hardware failures, such as if an IoT node fails, the video frames from the associated

camera become unavailable. However, if the Edge server fails, then entire system

becomes unavailable. The ability to support replicated Edge server components (logs

and the EdgeBroker) is part of future work. However, we note that computational

resources are constrained at the Edge due to power, space, and cost considerations.

Thus, physical replication of resources may not be practical on the Edge. An alter-

native worth investigating is the use of Cloud for fail over of the Edge server so that

the system is still operational, albeit at a reduced performance.

For software failures, Mez could rely on container orchestrators such as Kubernetes

[72] for resurrecting failed services. In this case, Mez needs to be containerized (for

example, using Docker containers [83]), with Kubernetes orchestrating the containers.

The microservice architecture of Mez allows ready containerization of the brokers, and

the latency controller. A Continuous Integration/Continuous Delivery framework (for

example, with Jenkins [84]) could also be used to ease the deployment and updating

of Mez without loss of service. Note that Kubernetes itself will need hardware redun-

dancy to guarantee its availability. With limited hardware, an interesting possibility

is to use the Cloud to ensure availability of Kubernetes.

Security: Mez takes advantage of the security features of gRPC to implement

TLS based certificate authentication for clients and servers, as well as TLS based

encryption of video frames in transit. Additionally, all sensitive video frames at rest

that are persisted on disk are encrypted. We leave the implementation of additional

security measures such as Role Based Access Control (RBAC) for application access

to video frame data, and the verification of the authenticity of container images to

future work. It should be noted that a Trusted Platform Module (TPM) can be

incorporated with the Edge device hardware to securely store sensitive information

such as security keys and passwords.



83

480x256,
170

640x352,
480

960x528,
1000

1312x736,
1700

Resolution, Median frame size (KB)

0

20

40

60

80

100

Pe
de

st
ria

n 
de

te
ct

io
n

 c
om

pu
te

 la
te

nc
y 

(m
s)

Figure 7.1: Compute latency for pedestrian detection with OpenPose (on Nvidia
Titan V GPU) vs. video frame size

Compute latency: In Figure 7.1 we investigate the dependence of the compute

latency on the video frame size. We note that, the compute latency is only dependent

on the resolution of the images. Since one of the tuning knobs is image resolution, with

reduced resolution and with reduced image size, OpenPose could achieve reduction

in compute latency as well.

Figure 7.1 shows that the pedestrian detection compute latency increases with

increase in resolution and image size. The measurements are done on an Nvidia Titan

V GPU. In this dissertation we have only focused on the network latency. However,

due to the compute intensive nature of these applications, there exists a possibility of

jointly optimizing compute and network latency, so as to obtain the overall desired

latency. We leave the exploration of this topic to future work.

Optimal knob selection: In Chapter 6 we investigated two approximate com-

puting based algorithms to make the latency controller in Mez scalable - the pruning

heuristic based algorithm, and machine learning model based algorithm. The la-

tency controller uses a set of knob combinations to achieve the network latency and

inference accuracy constraints specified by machine vision applications. As a part

of future work, the machine learning models can be used as objective functions in



84

a multi-objective optimization space to solve for an optimal knob combination that

satisfy latency and accuracy constraints.



85

REFERENCES

[1] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pattern Recog-
nition Letters, vol. 34, no. 1, pp. 3 – 19, 2013. Extracting Semantics from Multi-
Spectrum Video.

[2] E. Ristani and C. Tomasi, “Features for multi-target multi-camera tracking and
re-identification,” CoRR, vol. abs/1803.10859, 2018.

[3] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, and X. S. Shen, “Security and privacy
in smart city applications: Challenges and solutions,” IEEE Communications
Magazine, vol. 55, no. 1, pp. 122–129, 2017.

[4] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. Klatzky, D. Siewiorek, and M. Satyanarayanan, “An empirical study
of latency in an emerging class of edge computing applications for wearable
cognitive assistance,” in Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, SEC ’17, (New York, NY, USA), pp. 14:1–14:14, ACM, 2017.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, pp. 14–23,
Oct 2009.

[6] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. Simunic Rosing, J. Wawrzynek,
D. Wessel, J. Rabaey, K. Pister, A. Sangiovanni-Vincentelli, S. A. Seshia,
D. Blaauw, P. Dutta, K. Fu, C. Guestrin, B. Taskar, R. Jafari, D. Jones, V. Ku-
mar, R. Mangharam, G. J. Pappas, R. M. Murray, and A. Rowe, “The swarm at
the edge of the cloud,” IEEE Design Test, vol. 31, pp. 8–20, June 2014.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646, Oct 2016.

[8] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A Platform for
Internet of Things and Analytics, pp. 169–186. Cham: Springer International
Publishing, 2014.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, (New York, NY, USA), pp. 13–16, ACM,
2012.

[10] J. Kreps, N. Narkhede, and J. Rao, “Kafka : a distributed messaging system
for log processing,” in International Workshop on Networking Meets Databases
(NetDB), 2011.

[11] “Nats, documentation.” https://nats.io. Last retrieved 2019-21-10.

https://nats.io


86

[12] P. Software, “Rabbitmq by pivotal.” https://www.rabbitmq.com/. Last re-
trieved 2020-01-10.

[13] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “Openpose:
Realtime multi-person 2d pose estimation using part affinity fields,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[14] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection in single
images using multiview bootstrapping,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4645–4653, 2017.

[15] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-
chines,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4724–4732, 2016.

[16] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2d pose esti-
mation using part affinity fields,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1302–1310, 2017.

[17] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10778–10787, 2020.

[18] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional
neural networks,” vol. 97 of Proceedings of Machine Learning Research, (Long
Beach, California, USA), pp. 6105–6114, PMLR, 09–15 Jun 2019.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer
Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.),
(Cham), pp. 740–755, Springer International Publishing, 2014.

[20] W. Shi, G. Pallis, and Z. Xu, “Edge computing [scanning the issue],” Proceedings
of the IEEE, vol. 107, no. 8, pp. 1474–1481, 2019.

[21] “Aws, explore our products.” https://aws.amazon.com/. Last retrieved 2019-
21-10.

[22] “Azure, invent with purpose..” https://azure.microsoft.com/en-us/. Last
retrieved 2019-21-10.

[23] “Google cloud, build. modernize. scale..” https://cloud.google.com/. Last
retrieved 2019-21-10.

[24] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing security:
State of the art and challenges,” Proceedings of the IEEE, vol. 107, pp. 1608–1631,
Aug 2019.

https://www.rabbitmq.com/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/


87

[25] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,”
IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2016.

[26] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-
edge computing architecture: The role of mec in the internet of things,” IEEE
Consumer Electronics Magazine, vol. 5, pp. 84–91, Oct 2016.

[27] M. Sapienza, E. Guardo, M. Cavallo, G. L. Torre, G. Leombruno, and O. Tomar-
chio, “Solving critical events through mobile edge computing: An approach
for smart cities,” in 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 1–5, May 2016.

[28] O. Vermesan, P. Friess, P. Guillemin, and S. Gusmeroli, Internet of Things
Strategic Research Agenda. River Publishers, 2011.

[29] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards
wearable cognitive assistance,” in Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’14, (New
York, NY, USA), pp. 68–81, ACM, 2014.

[30] Y. Lu, A. Chowdhery, and S. Kandula, “Visflow: A relational platform for effi-
cient large-scale video analytics,” tech. rep., June 2016.

[31] C. Neff, M. Mendieta, S. Mohan, M. Baharani, S. Rogers, and H. Tabkhi, “Re-
vamp2t: Real-time edge video analytics for multi-camera privacy-aware pedes-
trian tracking,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[32] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-edge:
Orchestration of real-time vision applications on heterogeneous edge clouds,” 02
2019.

[33] C. Pakha, A. Chowdhery, and J. Jiang, “Reinventing video streaming for dis-
tributed vision analytics,” in 10th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 18), (Boston, MA), USENIX Association, 2018.

[34] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky,
and S. R. Dulloor, “Scaling video analytics on constrained edge nodes,” CoRR,
vol. abs/1905.13536, 2019.

[35] M. A. Ben Khadra, “An introduction to approximate computing,” CoRR,
vol. abs/1711.06115, 2017.

[36] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki, “Measuring
video qoe from encrypted traffic,” in Proceedings of the 2016 Internet Measure-
ment Conference, IMC ’16, (New York, NY, USA), pp. 513–526, Association for
Computing Machinery, 2016.

[37] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.



88

[38] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and S. Venkataramani, “Ex-
ploiting approximate computing for deep learning acceleration,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2018, Dresden,
Germany, March 19-23, 2018, pp. 821–826, 2018.

[39] A. Ibrahim, M. Osta, M. Alameh, M. Saleh, H. Chible, and M. Valle, “Ap-
proximate computing methods for embedded machine learning,” in 2018 25th
IEEE International Conference on Electronics, Circuits and Systems (ICECS),
pp. 845–848, IEEE, 2018.

[40] F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and U. Karpuzcu,
“Approximate communication: Techniques for reducing communication bottle-
necks in large-scale parallel systems,” ACM Computing Surveys (CSUR), vol. 51,
no. 1, p. 1, 2018.

[41] Dynam.AI, “End to end ai solutions for your business.” hhttps://www.dynam.
ai/. Last retrieved 2020-01-10.

[42] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255, 2009.

[43] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep.,
2009.

[44] A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Are they going to cross? a bench-
mark dataset and baseline for pedestrian crosswalk behavior,” in 2017 IEEE In-
ternational Conference on Computer Vision Workshops (ICCVW), pp. 206–213,
2017.

[45] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance mea-
sures and a data set for multi-target, multi-camera tracking,” vol. 9914, 10 2016.

[46] P. Hintjens, “0mq - the guide,” 2011.

[47] I. Malpass, “Measure anything, measure everything,” 2020.

[48] V. MartÃ, “Brubeck, a statsd-compatible metrics aggregator,” 2020.

[49] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:
Concepts and Design. USA: Addison-Wesley Publishing Company, 5th ed., 2011.

[50] T. Evgeniou and M. Pontil, “Support vector machines: Theory and applications,”
vol. 2049, pp. 249–257, 01 2001.

[51] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, Oct. 2001.

[52] L. Rokach and O. Maimon, Decision Trees, vol. 6, pp. 165–192. 01 2005.

hhttps://www.dynam.ai/
hhttps://www.dynam.ai/


89

[53] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Chapman and
Hall/CRC, 1st ed., 2012.

[54] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, pp. 119–
139, Aug. 1997.

[55] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,”
Ann. Statist., vol. 29, pp. 1189–1232, 10 2001.

[56] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16, (New York, NY, USA), pp. 785–794, Association
for Computing Machinery, 2016.

[57] A. V. Dorogush, V. Ershov, and A. Gulin, “Catboost: gradient boosting with
categorical features support,” ArXiv, vol. abs/1810.11363, 2018.

[58] “Catboost.” https://catboost.ai/. Last retrieved 2020-12-09.

[59] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu,
“Lightgbm: A highly efficient gradient boosting decision tree,” in NIPS, 2017.

[60] N. Corporation, “Jetson agx xavier.” https://developer.nvidia.com/
embedded/jetson-agx-xavier. Last retrieved 2020-07-02.

[61] N. Corporation, “Nvidia titan v.” https://www.nvidia.com/en-us/titan/
titan-v/. Last retrieved 2020-10-02.

[62] NETGEAR, “Nighthawk pro gaming xr700.” https://www.netgear.com/
gaming/xr700/. Last retrieved 2019-13-09.

[63] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Informa-
tion Theory, vol. 28, no. 2, pp. 129–137, 1982.

[64] E. Forgy, “Cluster analysis of multivariate data: Efficiency versus interpretability
of classification,” Biometrics, vol. 21, no. 3, pp. 768–769, 1965.

[65] T. L. Foundation, “grpc - a high-performance, open source universal rpc frame-
work.” https://grpc.io/. Last retrieved 2020-23-01.

[66] J. Han and D. Jeong, “A practical implementation of ieee 1588-2008 transparent
clock for distributed measurement and control systems,” IEEE Transactions on
Instrumentation and Measurement, vol. 59, no. 2, pp. 433–439, 2010.

[67] “Opencv documentation.” https://docs.opencv.org. Last retrieved 2019-21-
10.

https://catboost.ai/
https://developer.nvidia.com/embedded/jetson-agx-xavier
https://developer.nvidia.com/embedded/jetson-agx-xavier
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://www.netgear.com/gaming/xr700/
https://www.netgear.com/gaming/xr700/
https://grpc.io/
https://docs.opencv.org


90

[68] A. George and A. Ravindran, “Latency control for distributed machine vision at
the edge through approximate computing,” in Edge Computing – EDGE 2019
(T. Zhang, J. Wei, and L.-J. Zhang, eds.), (Cham), pp. 16–30, Springer Interna-
tional Publishing, 2019.

[69] A. George and A. Ravindran, “Distributed middleware for edge vision systems,”
in 2019 IEEE 16th International Conference on Smart Cities: Improving Quality
of Life Using ICT IoT and AI (HONET-ICT), pp. 193–194, 2019.

[70] A. George, A. Ravindran, M. Mendieta, and H. Tabkhi, “Mez: A messaging
system for latency-sensitive multi-camera machine vision at the iot edge,” 2020.

[71] “The transport layer security (tls) protocol, version 1.2.”
https://tools.ietf.org/html/rfc5246. Accessed: 2020-09-12.

[72] T. L. Foundation, “kubernetes.” https://kubernetes.io/. Last retrieved 2020-
10-02.

[73] “Efficientdet.” https://github.com/google/automl/tree/master/
efficientdet. Last retrieved 2020-12-09.

[74] M. D. McKay, “Latin hypercube sampling as a tool in uncertainty analysis of
computer models,” in Proceedings of the 24th Conference on Winter Simulation,
WSC ’92, (New York, NY, USA), pp. 557–564, Association for Computing Ma-
chinery, 1992.

[75] M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code,” Technometrics, vol. 21, no. 2, pp. 239–245, 1979.

[76] V. R. Joseph and Y. Hung, “Orthogonal-maximin latin hypercube designs,” Sta-
tistica Sinica, vol. 18, no. 1, pp. 171–186, 2008.

[77] K. Deb and D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary
Algorithms. USA: John Wiley and Sons, Inc., 2001.

[78] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for
generating the pareto surface in nonlinear multicriteria optimization problems,”
SIAM J. on Optimization, vol. 8, pp. 631–657, Mar. 1998.

[79] D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann, “A successive approach
to compute the bounded pareto front of practical multiobjective optimization
problems,” SIAM J. on Optimization, vol. 20, pp. 915–934, July 2009.

[80] T. Erfani and S. V. Utyuzhnikov, “Directed search domain: a method for even
generation of the pareto frontier in multiobjective optimization,” Engineering
Optimization, vol. 43, no. 5, pp. 467–484, 2011.

https://kubernetes.io/
https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet


91

[81] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob-
jective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Compu-
tation, vol. 6, no. 2, pp. 182–197, 2002.

[82] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe, “Spea2+: Improving the
performance of the strength pareto evolutionary algorithm 2,” in Parallel Problem
Solving from Nature - PPSN VIII (X. Yao, E. K. Burke, J. A. Lozano, J. Smith,
J. J. Merelo-Guervós, J. A. Bullinaria, J. E. Rowe, P. Tiňo, A. Kabán, and H.-P.
Schwefel, eds.), (Berlin, Heidelberg), pp. 742–751, Springer Berlin Heidelberg,
2004.

[83] D. Inc., “docker.” https://www.docker.com/. Last retrieved 2020-30-03.

[84] CD.Foundation, “Jenkins.” https://jenkins.io/. Last retrieved 2020-30-03.

https://www.docker.com/
https://jenkins.io/

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Contributions
	Dissertation Outline

	BACKGROUND AND RELATED WORK
	Edge Computing
	Approximate Computing
	Computer Vision Applications
	Messaging Systems
	Control Systems
	Machine Learning
	Summary

	NETWORK LATENCY CONTROLLER
	Characterization of Wi-Fi Latency at the Edge
	IoT Edge Test Bed
	Impact of Peer IoT Nodes on Network Latency
	Impact of Video Frame Size on Network Latency

	Approximate Computing for Latency Control
	Video Frame Quality Tuning Knobs
	Impact of Video Frame Quality on Network Latency
	Impact of Video Frame Quality on Inference Accuracy

	Latency Control Algorithm
	Evaluation
	Summary

	MESSAGING SYSTEM ARCHITECTURE
	API and Architecture
	API
	Data Model
	System Architecture

	Messaging System Design
	Brokers
	Network Latency Controller Integration
	In-memory Log
	Fault tolerance

	Summary

	EVALUATION
	Node Scaling
	Subscriber Scaling
	Pub-Sub Latency Breakdown
	Summary

	SCALING THE NETWORK LATENCY CONTROLLER
	Additional Video Frame Quality Tuning Knobs
	Impact of Tuning Knobs on Inference Accuracy

	Scalable Approximate Computing Algorithms
	Knob Search Space
	Pruning Heuristic Algorithm for Knob Selection
	Machine Learning Algorithm for Knob Selection

	Implementation and Results
	Pruning Heuristic Algorithm
	Machine Learning Algorithm

	Discussion
	Summary

	CONCLUSIONS
	Discussion and Future Directions

	REFERENCES

