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ABSTRACT

JACOB D PAGE. Improved Bounds on a Combinatorial Problem. (Under the
direction of DR. WILL BRIAN)

In this paper, we will define a function H : N → N, whose output is the size of

an optimized hypergraph based upon the restraints given by its input values. This

function is known to be well-defined, however its values are unknown for larger n ∈ N.

Only an upper and lower bound for this function are definitively known. Here, we

will use properties of pre-ordered sets to define an improved lower bound for H.



iv

TABLE OF CONTENTS

LIST OF FIGURES v

CHAPTER 1: INTRODUCTION 1

1.1. H(n): A function regarding Hypergraphs 1

1.2. Bounds on H(n) 2

1.3. Comparing Bounds 3

CHAPTER 2: Hypergraphs and Preordered Sets 4

2.1. Economical Hypergraphs and Maximal Partitions 4

2.2. Hypergraphs as Prosets 4

2.3. Pn: A Sequence of Posets 6

CHAPTER 3: A New Lower Bound 8

3.1. Properties of Pn 8

3.2. |Pn| ≤ H(n) 9

3.3. Comparing Lower Bounds 12

REFERENCES 13



v

LIST OF FIGURES

FIGURE 1.1: A hypergraph, (V,H) 1

FIGURE 1.2: A partition of (V,H) 1

FIGURE 1.3: Known Bounds of H(n) 3

FIGURE 2.1: A Hypergraph Represented as a Preordered Set 5

FIGURE 2.2: Early Examples of Pn 7

FIGURE 3.1: |Pn| alongside the bounds of H(n) 12



CHAPTER 1: INTRODUCTION

1.1 H(n): A function regarding Hypergraphs

Recall that a hypergraph is a set of vertices, V , paired with a collection, H, of

subsets of V . These subsets are known as hyperedges.

The size of a given hypergraph is determined by its total number of vertices, |V |.

• • ••
••

• •

Figure 1.1: A hypergraph,
(V,H)

For a given hypergraph, a vertex v ∈ V is said to be

isolated if v is not contained in any h ∈ H. v is called

restricted if v is contained in exactly one h ∈ H.

A partition, (D,G), of (V,H) is a subgraph

D ⊆ V,G ⊆ H, such that every v ∈ D is restricted.

Here, we have an example of a hypergraph with eight

vertices and four hyperedges.

•
••

•

Figure 1.2: A partition of
(V,H)

Below it is a partition of said hypergraph, which has

four vertices and three hyperedges. Particular interest

is given to partitions that contain as many vertices as

possible. The partition here, for instance, has size 4,

and it can be verified that there exists no partition of

this hypergraph with size greater than 4.

Definition 1.1.1. Define H(n) [1] to be the largest nat-

ural number, k, such that there exists a hypergraph, (V,H), with size k such that:

• (V,H) has no isolated points.

• Every partition of (V,H) has size at most n
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While H(n) is well-defined, only the first six values of the function are known.

• H(1) = 1

• H(4) = 8

• H(2) = 3

• H(5) = 10

• H(3) = 5

• H(6) = 14

1.2 Bounds on H(n)

While the values for larger n are presently unknown, there have been proven upper

and lower bounds for the function. In the case of the upper bound[1], we know that

for each n ∈ N,

n lnn+ γn+
1

2

is a known upper bound for H(n), where γ ≈ 0.5772156649 is the Euler-Mascheroni

constant . This upper bound was derived from the discovery that [1]

H(n) ≤
n∑

k=1

n

k

for all n ∈ N.

As for the lower bound[1], we know that for each n ∈ N

1

2
n log2 n−

1

2
n+

1

2

is a known lower bound for H(n). This lower bound was attained by proving that for

the recursive sequence {kn}∞n=1, where

k1 = 1 and kn = bn
2
c+ kbn

2
c + kbn+1

2
c for n > 1

we have that H(n) ≥ kn.
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[2]

Figure 1.3: Known Bounds of H(n)

1.3 Comparing Bounds

Here we have a display of the bounds of H(n) for n ≤ 100, where the upper bound

is given in green and the lower bound is given in purple. These bounds only agree for

the first four values of H(n), and become more sparse as n grows large. Our focus we

be towards improving the lower bound of this function. Motivation that a stronger

lower bound exists stems from the observation that the known lower bound appears

stronger at powers of 2, than at other n.



CHAPTER 2: Hypergraphs and Preordered Sets

In order to construct a stronger lower bound for H(n), we will define a preorder on

Hypergraphs with particular qualities, and use that preorder to create corresponding

preordered sets, or prosets. We will then construct a sequence of partially ordered

sets, whose corresponding hypergraphs have size that improves upon the known lower

bound for H(n).

2.1 Economical Hypergraphs and Maximal Partitions

In order to define an ordering that is sufficient to what we need, we must first look

at hypergraphs that have particular properties.

Definition 2.1.1. A hypergraph (V,H) is called economical if it contains no isolated

points and for all h ∈ H, there exists a v ∈ (V,H\{h}) that is isolated.

Definition 2.1.2. For a given hypergraph, (V,H), a partition (D,G) ⊆ (V,H) is

called maximal if

|D| = |{v ∈ V : v is restricted in (V,G)}|

Observation 2.1.3. Let (D,G) be a maximal partition of some hypergraph (V,H).

Then for all (D∗,G), such that (D∗,G) is a partition of (V,H), we have that |D∗| ≤ |D|

2.2 Hypergraphs as Prosets

Recall that a preorder is an ordering on a set of elements that is both reflexive and

transitive.

Definition 2.2.1. For a given hypergraph, (V,H), and v, u ∈ V , we say that u ≤ v

if for all h ∈ H, if v ∈ h, then u ∈ h.
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Figure 2.1: A Hypergraph Represented as a Preordered Set

From this definition, we can represent hypergraphs as preordered sets. While this

method can be tailored to work for any given hypergraph, we will only be considering

hypergraphs that are economical. To begin the representation, place each vertex

contained in a single hyperedge in a tier at the top of the proset (This tier will be

referred to as T0). Then, using the preorder, place the remaining vertices below T0

such that if u, v ∈ V and u ≤ v, then u is placed below v in the proset.

By labeling, we can see in 2.1 how the vertices in a given hypergraph map to its

relative proset. Note that since G and H are both in the center of the hypergraph,

their position in the proset is interchangeable. We will consider vertices contained in

all h ∈ H to be in the same ’tier’, which we will call Tc.

Now that we have an interpretation of hypergraphs as prosets, we can reinterpret

our previous definitions for hypergraphs in terms of prosets.

Observation 2.2.2. For a given hypergraph, (V,H), a vertex v ∈ V is restricted if

under its corresponding proset, either: v ∈ T0 or there exists exactly one u ∈ T0, such

that v ≤ u.

Observation 2.2.3. A partition (D,P) of a hypergraph is maximal if and only if

under its corresponding proset, it is the case that for all vertices v ∈ T0 ⊆ D, we have

that for all u ≤ v, if

D ∩ {v∗ ∈ T0 : u ≤ v∗} = {v}

then u ∈ D
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2.3 Pn: A Sequence of Posets

Definition 2.3.1. Define {Pn}∞n=1 to be the sequence of partially ordered sets, con-

structed as follows:

For n ≥ 4, note that there exist unique k,m ∈ N such that

2 ≤ m ≤ 2n + 1 and n = 2k +m.

1. Begin with a row of n nodes. This will be row T0.

2. Add a row, T1, below T0, containing n1 nodes, where n1 = bn
2
c. For i ∈

{1, 2, ..., n1}, declare the following order:

• v1i ≤ v02i−1

• v1i ≤ v02i

• v1n1
≤ v0n

3. for k ≥ 2, continue adding rows down to Tk, each with n1 nodes. For i ∈

{1, 2, ..., n1} and j ∈ {2, ..., k}, declare the following order:

• vji ≤ vj−1i

• vji ≤ vj−1
i+2j−2, when i+ 2j−2 ≤ n1

• vji ≤ vj−1
i+2j−2−n1

, when i+ 2j−2 > n1

4. Add m nodes below the lowest row. This will be Tc, and declare the following

order:

• For all i ∈ {1, 2, ..., n1}, vc1 ≤ vki

• For all j ∈ {2, ...,m}, vcj ≤ vcj−1

For n < 4, n = 2k +m, where k = 0 and m = 0, 1, 2. In this case, Construct Pn by

only performing steps 1 and 4, as stated above.



7

•

P1

• •
•

P2

• • •
•
•

P3

• • • •
• •
•
•

P4

• • • • •
• •
•
•
•

P5

• • • • • •
• • •
• • •

•
•

P6

• • • • • • •
• • •
• • •

•
•
•

P7

• • • • • • • •
• • • •
• • • •

•
•
•
•

P8

• • • • • • • • •
• • • •
• • • •

•
•
•
•
•

P9

• • • • • • • • • •
• • • • •
• • • • •
• • • • •

•
•

P10

• • • • • • • • • • •
• • • • •
• • • • •
• • • • •

•
•
•

P11

• • • • • • • • • • • • • • • • • •
• • • • • • • • •
• • • • • • • • •

• • • • • • • • •

• • • • • • • • •
•
•
P18

Figure 2.2: Early Examples of Pn



CHAPTER 3: A New Lower Bound

3.1 Properties of Pn

Now that we have constructed a sequence of partially ordered sets, we will show

that this sequence yields a new lower bound for H(n). To do this, we will make some

observations about the construction of these sets, and then use the observations to

prove that for any natural number n, Pn does not have a partition of size greater than

n.

Observation 3.1.1. For a given Pn, recall from the construction that n = 2k + m

for specific k and m. Let v ∈ Tj, j ≤ k. Then we can observe that there exist at least

2j total v∗ ∈ T0 such that v ≤ v∗. Furthermore, for each u ∈ Ti, i < j, if v ≤ u,

then there exist at least 2j − 2i total v∗ ∈ T0 such that v ≤ v∗, but u and v∗ are not

comparable.

• • • • • • • • • •
• • • • •
• • • • •
• • • • •

•
•

Observation 3.1.2. Let v∗ ∈ T0. Then for all i = 1, ..., k, we have that |{v ∈

Ti : v ≤ v∗}| = 2i−1. Furthermore, for all u ∈ Tj, where j = 1, ..., i, we have that

|{v ∈ Ti : v ≤ u}| = 2i−j

• • • • • • • • • •
• • • • •
• • • • •
• • • • •

•
•
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Observation 3.1.3. For a given Pn, Let A0 be a collection of vertices v ∈ T0. For

i ≥ 1, Define Ai to be the set of all u ∈ Pn such that {v ∈ T0 : u ≤ v} ⊆ A0. Then

|Ai| ≤ |A0|
2
− 2i−1 + 1.

• • • • • • • • • •
• • • • •
• • • • •
• • • • •

•
•

3.2 |Pn| ≤ H(n)

Lemma 3.2.1. Let D be a partition for some Pn. Then |D| ≤ n.

Proof. First, we will consider |D ∩ T0|.

Clearly |D ∩ T0| ≤ |T0| = n.

Next, we shall consider |D ∩ (T0 ∪ T1)|.

Let v ∈ D ∩ T1. By 3.1.1, there exist 2 v∗ ∈ T0 such that v ≤ v∗. Since v ∈ D, this

implies that one of those vertices cannot be in D. Since this is true for all v ∈ T1∩D,

we have that

|D ∩ (T0 ∪ T1)| = |D ∩ T0|+ |D ∩ T1| ≤ |T0| − |D ∩ T1|+ |D ∩ T1| = |T0| = n

We will now look at |D ∩ (T0 ∪ T1 ∪ T2)|.

Let v ∈ T2 ∩ D. By 3.1.1 there exist 4 v∗ ∈ T0 such that v ≤ v∗. Note that 2 of

these vertices were not observed in the previous cases.

Since D is maximal, there exists a u ∈ T1 such that v ≤ u. Define

A = {v∗ ∈ T0 : u ≤ v∗}

and

A0 = {v∗ ∈ T0 : v ≤ v∗}\A
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By 3.1.3, |A1| ≤ 1. Define

B = {u ∈ D ∩ T2 : u ≤ a ∈ A1}

Note that v ∈ B. Then, by 3.1.2, |B| ≤ 2. Since this is true for all v ∈ D ∩ T2, we

have that |D ∩ T0| ≤ |T0| − |D ∩ T1| − |D ∩ T2|. So

|D ∩ (T0 ∪ T1 ∪ T2)| = |D ∩ T0|+ |D ∩ T1|+ |D ∩ T2|

≤ |T0| − |D ∩ T1| − |D ∩ T2|+ |D ∩ T1|+ |D ∩ T2| = |T0| = n

Induct on these subsets of D up to Tj, j ≤ k. Consider

∣∣D ∩ ( j⋃
i=0

Ti
)∣∣

where |D ∩ T0| ≤ |T0| −
∑j−1

i=1 |D ∩ Ti|.

Let v ∈ D ∩ Tj. By 3.1.1, there exist 2j total v∗ ∈ T0 such that v ≤ v∗. Note that

2j−1 of these vertices have not yet been observed.

Since D is maximal, there exists a u ∈ T1 such that v ≤ u. Define

A = {v∗ ∈ T0 : u ≤ v∗}

and

A0 = {v∗ ∈ T0 : v ≤ v∗}\A

Then |A0| ≤ 2j − 2 and, by 3.1.3,

|Aj−1| ≤
A0

2
− 2j−2 + 1 =

2j − 2

2
− 2j−2 + 1 = 2j−1 − 1− 2j−2 + 1 = 2j−2
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Define

B = {u ∈ D ∩ Tj : u ≤ a ∈ Aj−1}

Note that v ∈ B. Then, by 3.1.2, |B| ≤ 2|Aj−1| = 2j−1. Since this is true for all

v ∈ D ∩ Tj, we have that |D ∩ T0| ≤ |T0| − |
⋃j

i=1D ∩ Ti|. So

∣∣D ∩ ( j⋃
i=0

Ti
)∣∣ = j∑

i=0

|D ∩ Ti| = |D ∩ T0|+
j∑

i=1

|D ∩ Ti|

≤ |T0| −
j∑

i=1

|D ∩ Ti|+
j∑

i=1

|D ∩ Ti| = |T0| = n

Lastly, Consider |D|. If there are no v ∈ D ∩ Tc, then it follows from above that

|D| ≤ n. Suppose that there exists a v ∈ D ∩ Tc. Then we know that

• Tc ⊂ D

• |D ∩ T0| = 1

Thus,

|D| = 1 +
k∑

i=1

|D ∩ Ti|+ |Tc|

= 1 +
k∑

i=1

2i−1 +m

= 1 + 2k − 1 +m

= 2k +m = n

Theorem 3.2.2. For any natural number, n, |Pn| ≤ H(n), and as a result

H(n) > 2n+
n− 1

2
(log2(n− 2)− 1)− 2log2(n−2)−1 for n ≥ 4
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Proof. Let n ∈ N. Let (Vn,H) be the hypergraph whose proset conversion is Pn.

Then by 3.2.1, (Vn,H) has no partition of size greater than n and |Vn| = |Pn|. Thus,

|Pn| ≤ H(n).

Now assume that n ≥ 4. Recall that from the construction of Pn, there exist k ≥ 1

and m ∈ [2, 2k + 1] such that n = 2k +m. Then,

|Pn| = |T0|+
k∑

j=1

|Tj|+ |Tc| = n+
k∑

j=1

bn
2
c+m

= n+ kbn
2
c+m = n+ kbn

2
c+ n− 2k ≥ 2n+

n− 1

2
k − 2k

> 2n+
n− 1

2
(log2(n− 2)− 1)− 2log2(n−2)−1

3.3 Comparing Lower Bounds

Here, we have all three bounds, with the new lower bound shown in red. As we

can see by comparing this lower bound with the original, the new one is at least as

large as the original at all times. In fact, the only time when they agree is when n is

near a power of two.

[2]

Figure 3.1: |Pn| alongside the bounds of H(n)
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