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ABSTRACT

ARJUN VISHNU YERAVDEKAR. Modelling Human-Automation interactions in a
Haptic Shared Control Framework. (Under the direction of

DR. AMIR H. GHASEMI)

This thesis is focused on modeling the interaction between a human driver and an

automation system . While numerous companies and academic groups are pushing

to develop autonomous vehicles with the aim of freeing up attention for drivers and

improving safety on the road; barriers remain for deployment of fully autonomous

vehicles, including technical, legal, and social barriers. The challenge of meeting

human capabilities for sensing, perceiving, and predicting the environment on the

road is formidable, even more challenging is the hand-off problem of how to achieve

a smooth transition of control authority between a human driver and automation

system. Combining the best capacities of a human driver with the speed, accuracy,

and tirelessness of automation will require a shared control framework that is intuitive

for the driver.

In this thesis, we explore the interaction of a human driver and an automation

system in a haptic shared control framework. In a haptic shared control framework,

the human driver and automation system both act on the steering wheel, exerting

control on the vehicle but also communicating with each other using haptic cues and

signals. Both the human driver and automation system act with limited impedance:

the human by biomechanics and the automation system by design, with the use of

proportional control.

In this thesis, the interaction between the two agents (i.e., the human driver and

automation system) are modeled using a game-theoretic approach. The human and

automation system are both modeled with a similar structure. Specifically, the hu-

man model consists of a higher-level controller representing his cognitive controller,

as well as a lower-level controller representing his biomechanics. Similarly, the au-
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tomation system is modeled with a higher-level controller (AI) as well as a lower-level

impedance controller. Since the human and automation dynamics can adaptively

change by modulating their impedance (lower-level controller), the higher-level con-

troller of the human and automation system is modeled using an adaptive model

predictive controller.

When there exist two controllers, that is, the human driver and the automation sys-

tem, there is the possibility that their objectives in terms of target paths are conflict-

ing, and the corresponding control actions are thereby non-cooperative. To explore

the interaction between the driver and the automation system under such conditions,

two-games equilibrium strategies known as non-cooperative Nash and Stackelberg are

derived, and some simulation results related to these equilibrium types are presented

and discussed. The Nash paradigm represents a scheme where both agents act as

leaders (i.e., leader-leader) in performing a task. On the other hand, the Stackelberg

paradigm presents a case where one agent acts as a leader, while the other acts as a

follower. It is shown that for the same impedance, the Stackelberg solution achieves

a possibly better path-following performance than the corresponding Nash solution.
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CHAPTER 1: INTRODUCTION

People all around the globe are enthusiastic about the development of autonomous

vehicles. Autonomous vehicles are controlled by algorithms, which will take much

danger out of the equation. These algorithms determine the appropriate stopping

distance, distance from another vehicle, and other data that decreases the chance of

a vehicle accident. There is no scope for the computer to get distracted, which is

a leading cause of road accidents. Studies suggest that 81% of vehicle crashes are

because of human errors. Vehicle automation has great potential to improve driver

safety and efficiency and reduce driver fatigue.

The conventional view of automated driving is a vehicle that is a hands-off foot-

off system where the driver is completely disengaged from the controls and from

monitoring the situation. However, until such systems are available, the driver will

need to be in the loop, ready and capable of safely taking over control at all times. A

shared control system, where an automated system and a driver concurrently control

the vehicle, might accomplish this requirement.

In haptic shared control, the human and automation are physically coupled, and

this coupling allows them to exchange the control authority dynamically. The driver

is not only aware of the actions of the system but can also choose to overrule the

system’s activity. In this research, we aim to develop a model for cooperative and

non-cooperative interactions between the human driver and the automation system

using game theory.
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1.1 Motivation

Semi-autonomous vehicles can keep in lane and even change lanes, and they may

also be able to park themselves, but they are not driver-less/Autonomous. An au-

tonomous vehicle is a vehicle that can drive itself without any human conduction. In

most cases, drivers must keep their hands on the wheel at all times. These types of ve-

hicles hold great potentials for both military and commercial applications. From the

military perspective, they increase personnel safety, increase mission performance,

and reduce cost. Similarly, from a commercial point of view, autonomous vehicles

increase road safety, life quality, and increase mobility.

Although it is not clear by using autonomous vehicles to what extent human lives

can be saved, it’s obvious that human-driven vehicles come at a very high cost in

terms of danger. According to the U.S. Department of transportation, the use of

autonomous vehicles can save a significant amount in many different aspects like

health insurance and vehicle insurance associated with accident recovery alone. The

use of Autonomous vehicles will also help to reduce traffic congestion, which in return

will reduce commute time for drivers in the high traffic area, thereby reducing gasoline

consumption. Disabled individuals can now travel with more freedom and enhanced

mobility. They will not have to rely on public transport and assistance from others

to get around.

1.2 Levels of Autonomy

In recent years, the use of unmanned systems has increased a lot ranging from

battlefields to the mars operation. Due to this increase in the number of programs

for developing unmanned systems, there was a growing need for characterizing the

autonomy of these systems. This gave birth to ’Autonomy Level for Unmanned Sys-

tems’ (ALFUS). ALFUS provides a complex and comprehensive measure of autonomy

level and autonomous performance for a specific mission and environment. It focuses
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Figure 1.1: ALFUS Framework

on an unmanned system’s ability of sensing, perceiving, analyzing, communicating,

planning, decision-making, and acting to achieve its goals as assigned by its human

operator.

As shown in figure 1.1 ALFUS framework defined three different levels for any

unmanned systems: These levels are mission complexity, environment complexity,

and human independence. For instance, an autonomous vehicle should be able to

address missions with a time constraint, consider the terrain variation and mobility

constraints along with proper planning with a particular skill set to complete the

mission.

ALFUS was initially presented at the 2004 International Society for Optics and

Photonics (SPIE) Defence and Security Symposium since then it has been continu-

ously developed and refined. ALFUS uses the three-axis method of the Contextual

Autonomous Capability for accurately assessing the autonomy level. Each axis refers

to a metric group, which is mission complexity, environmental complexity, and human

independence. For a given mission and environment, metrics are measured for the

mission complexity, environmental complexity, and human independence, and these

metrics are combined to form a level of autonomy. It consists of a 0 to 10 numeric

scale to decide the autonomy level for a given autonomous vehicle, where 0 is the

fully human-driven vehicle and 10 being a fully autonomous vehicle [3]. But ALFUS



4

Figure 1.2: Levels of Autonomy [1]

framework has some drawbacks. It allows the metrics to be standardized in scoring

scales, which causes subjective evaluation and criteria to influence the results across

different robots. It integrates the metrics for a concise set of indices for the autonomy

level, and it was mainly developed army’s unmanned ground vehicles.

Recently the Society of Automotive Engineers proposed a five-level classification

for autonomous vehicles [1]. Not all the vehicles running on roads are alike; there

can few manually driven vehicles, while few can be semi-autonomous, and few can

be autonomous. Thus there are different levels of autonomy. To make it easy for the

government, the users and for the automotive engineers to get a better understanding

of the control authority and gain a better knowledge of this new technology, SAE

defined five different levels of automobile autonomy which is as given below: [1]

1] Level 0: The vehicle is manually driven with no robot intervention.

2] Level 1: A single function is automated, but has nothing to do with the driving

environment, for example, cruise control.

3] Level 2: Acceleration, Deceleration, and steering are automated, uses sensory input

from the environment to make decisions, but still, the driver is responsible for the

safe operations of the vehicle. For example, lane tracking and lane changing systems,

and also collision-avoidance braking.

4] Level 3: In this level, all the safety functions are automated, but the driver is
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still required to kick and take control in case of an emergency. This is the most

controversial level because it requires the human driver to be present continuously in

the loop even though the vehicle is doing everything. Many automakers are thinking

of skipping the level 3 and going directly to level 4 because if the human drive losses

his/her attention from the task at hand, then it might lead to catastrophic results.

For example, the autopilot mode in the Tesla vehicle.

5] Level 4 and Level 5: These levels handle entirely autonomous vehicles. The robot

is responsible for making all the decisions. The only difference between 4 and 5 is that

level 4 is restricted to city, suburban, and highway driving while the level 5 vehicles

can handle every type of situation.

1.3 Shared Control

Vehicle automation has the potential to improve driving safety and efficiency and

reduce driver fatigue. The conventional view of automated driving is a vehicle that is

hands-off feet off system where the driver is completely disengaged from the controls

and from monitoring the situation. However, until such systems are available, the

driver will need to be in the loop, ready and capable of safely taking over control at

all times.

From figure 1.3 we can see that autonomous vehicle covers a short range of mission

complexity and environmental complexity but is human independent. On the other

hand, the manually driven vehicle because of the experience, decision-making capa-

bilities, judgment is capable of handling more complex scenarios very effectively but

is human dependent. We want a system that can address a wide range of mission

complexity and environmental complexity and should also be human independent.

The question is then until we have this perfect autonomous vehicle, how can we

combine the best capabilities of the human with the best of the automation? Stud-

ies have shown that Shared Control Frameworks have a high potential to solve this

problem [4–9].
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Figure 1.3: Shared Control

Figure 1.4: Types of Shared Control

1.3.1 Types of Shared Control Framework

A wide range of shared control frameworks has been proposed. One of the new

shared control frameworks is the supervisory control framework, where the human is

acting like a boss and responsible for decisions, and the automation is responsible for

performing the task. As we can see from figure 1.4, dad acts as a leader while the son

is responsible for performing the task. The golf club is the vehicle in our case.

Another type of shared control framework is switching control. Active safety is an

example of such a framework. Human is primarily responsible for performing the task.
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Figure 1.5: Input Mixing Shared Control

However, in a dangerous situation, the automation kicks in and takes the control, for

example, the Traction control system, which gets activated when the throttle input

and engine torque are mismatched to road surface conditions. Another example of

switching control is Autopilot. Where the automation is primarily responsible for the

task and in dangerous situations, humans can kick in to take control, as shown in

figure 1.4.

But there is one major problem with switching authority strategy that it cannot

deal with automation failure when the automation is unaware that it is failed, thus

to increase the human’s awareness, frameworks have been proposed in which both

the agents have some level of control authority, and it is continuously transitioning

between the human and automation and have been implemented in two ways: Input-

mixing shared control and the haptic shared control. As we can see in figure 1.4 Dad

and son both have some control of the Golf club, and therefore, they can edit the

other one’s movement if necessary.

Input-Mixing shared control, as shown in figure 1.5, the vehicle is controlled based

on some weighted combination of the automated controller input and driver input. If

this alpha is controlled by the human driver, then the human driver cannot relax, he

will always be there in the loop. So generally, this alpha is governed by the automation



8

system. But if the automation system fails or it sets a wrong value of alpha, then the

human driver cannot intervene and change the value of alpha; this might lead to a

fatal accident.

An example is a lane-keeping assistance in which the desired tire angle is controlled

by a steer-by-wire system (steer-by-wire system replaces the mechanical linkage be-

tween the column and rack with actuators which supports autonomous and manual

driving), which combines the drivers desired steering angle with the steering angle

from the assistance system. In other words, when the drivers’ actions agree with the

goal of the assistance system, the system generates no additional steering input. But

when the driver disagrees with the assistance system (i.e., steers out of the lane), ad-

ditional steering input is generated by the steer-by-wire system so that the command

to the tires will ensure good lane-keeping performance. One major drawback of this

system is that the driver cannot overrule the system, i.e., alpha is modulated by the

automation. So if the automation fails, then the driver cannot gain the authority.

1.4 Haptic Shared Control

In haptic shared control, the human and automation are physically coupled, and

this coupling allows them to exchange the control authority dynamically. The driver

is not only aware of the actions of the system but can also choose to overrule the

activity of the system. In this framework, the drivers’ hands remain on the steering

wheel while the automation system exerts control through a motor on the steering

column. By haptic feedback or feel of touch, the driver can monitor the automation’s

actions and the automation’s authority (impedance) thus the higher-level controller

(brain) can afford to relax while the lower level controller (human body) can still be

in the loop sensing the output of the automation. When the driver wants to take

over, he can impose torques and can express his desire for increased authority by

increasing his impedance. The automation system can be designed to monitor the

drivers’ actions and impedance and either yield authority or retain authority as a
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Figure 1.6: Risk in Haptic Shared Control

function of sensed threats to safety.

One of the significant risks associated, as shown in figure 1.6 with haptic shared

control framework, is when both human and automation are detecting an obstacle

but decides a different path for avoiding it, that is they have different intents for a

fixed impedance value. This situation will result in the vehicle going exactly straight

into the obstacle, causing an accident. We have developed models for interactions

between the human driver and the automation system for such situations using game

theory.

1.5 Game Theory

In dynamic games, players can condition their optimal actions on what other players

have done in the past. Players can observe the actions of other players before deciding

upon their optimal response. A dynamic game can be classified based on the mode of

the play: whether the two agents are non-cooperating and only thinking about their

primary goal or its cooperative. The player’s strategy: An example of the player’s

strategy is Nash strategy where both the agents (driver and automation) wants to
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be a leader, or we can say that both the players give their output at the same time,

while in a Stackelberg strategy one agent (human) acts as an initiator while the other

agent acts as the conductor. By conductor agent, we mean an agent who considers

the optimal input of the initiator to determine its control input. In Stackelberg’s

strategy, the conductor waits for the leader to give his/her optimal output and, after

a short delay, gives his optimal output. The players are defined as possessing the

open-loop information pattern when only the initial states of the game are known to

them. If the dynamic states or outputs are available during the gameplay, players are

considered as having the closed-loop information pattern.

1.6 The contribution of the thesis

The contribution of this thesis is

• (1) Developed a comprehensive mathematical model for a haptic shared con-

trol framework considering the back-drivability of the human and automation

system.

• (2) Analyzed the differences in interaction between a driver and an automation

system for different shared information patterns.

1.7 The outline of the thesis

Modeling of a comprehensive system that includes the human driver, automation

driver, steering wheel, and the vehicle is mentioned in Chapter 2, The control theory

and the types of control logic used to control the comprehensive model of a haptic

shared control framework are described in Chapter 3. Once we know about the con-

troller and the plant, we will go forward with modeling the interactions between the

two agents using the control theory and game theory, which is mentioned in Chapter

4. Numerical results are presented in the Results Chapter 5, Which is followed by

the Conclusion and Future Works.



CHAPTER 2: Dynamic Model of a Haptic Shared Control Framework

Vehicles generally operate in closed-loop with the driver. Thus, realistic driver

steering control models are needed to allow dynamic vehicle behavior to be opti-

mized. Macadam [10,11] used predictive control theory to derive an optimal preview

steering controller. A linear vehicle model was assumed, and a time-invariant con-

troller was derived, which minimized a cost function involving lateral path error.

The preview distance could be specified, and the controller was optimized on the

basis that the steering angle was held constant over the preview distance. Peng [12]

extended Macadam’s use of predictive control theory to include path-following yaw

displacement errors in the cost function and to allow for non-constant steer angle

control. At present, there is little understanding of how the human neuromuscular

system operates in closed-loop tracking tasks. The best that is likely to be achieved in

the near future is the identification of model structures that closely match measured

human responses. Understanding the neural processes by which the human achieves

the control is likely to remain a challenge for some time.

Figure 2.1: Three torque in-
puts on the steering wheel
with their associated back-
drive impedance’s

Figure 2.1 highlights in a high-level schematic how

three entities each impose a torque on the steering

column: a human driver through his hands, and

automation system through a motor, and the road

through the steering linkage. But each of these enti-

ties imposes a torque through a certain back-drive

impedance, insofar that they are not ideal torque

sources. The human is certainly back driveable, and

his back-drive impedance we label ZH. To indicate
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that driver impedance varies with changes in grip on the steering wheel, use of one

hand or two, muscle co-contraction, or posture changes, we have drawn an arrow

through ZH. The road and vehicle steering linkage make up a load for the human

(and/or automation) that may be described using the impedance ZV. By design

(possibly involving power steering assist), ZV is approximately matched to ZH. The

crux of this thesis lies in the design of a back-drive impedance ZA for the automation

that is modest rather than infinite. That is, the automation is not designed to behave

as an ideal torque source. Rather, the automation imposes its command torque τA

through an impedance ZA that is approximately matched to the human impedance

ZH (and for that matter matched to ZV). But we further propose that ZA shall be

varied under control of the automation so as to express the automation’s current level

of control authority.

In below, a detailed model of a haptic shared control paradigm is derived. Specifi-

cally, we derive the equations of motions for four main elements of the haptic shared

control paradigm: human driver, automation system, steering wheel (interface), and

the vehicle.

2.1 Modeling the Human Driver

To describe how a driver places his or her hands on the steering wheel and sets

the angle of the tires, the altogether simplest driver model would consist of a motion

source acting on the steering wheel. However, we have to ask whether excursions

would be produced in the hands and steering wheel by torques arising from tire/road

interaction or other sources. Certainly, when the tires encounter an unexpected curb

or rut in the road, excursions from the nominal steering angle can be observed. That

is, the driver’s hands and arms are back driven by the torques arriving at the steering

wheel. Thus a motion source model for the driver must be rejected. Even the self-

centering torque will produce excursions if it is unexpectedly removed. Also, while

power steering may reduce the torque response of the vehicle, that torque is by design
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not eliminated in steering assist system designs as it vehicles valuable information for

the driver. With these observations in mind, we adopt a finite impedance model for

the driver.

The time-varying impedance (or admittance) that describes the response of a

driver’s hands and arms to perturbation at the steering wheel owes its origins to

the passive dynamics, reflex responses, and volitional responses of the driver’s biome-

chanics and Central Nervous System (CNS). In particular, the passive response is due

to the inertia in the hands and arms and the elastic and damping properties in muscle

and other tissues. Note that the passive dynamics is a strong function of posture and

the state of muscle contraction or co-contraction [2, 13].

Consider a steering wheel with inertia JS and steering angle θS as shown in Fig.

2.2(A). A driver imposes a torque τH on the steering wheel through his/her hands

while the vehicle/tire/road imposes a torque τV through the steering column. To

describe the finite impedance of the driver, we use a simple second-order model com-

prising inertia JH, stiffness kH, and damping bH, taking our lead from previous charac-

terizations of human backdrive impedance [14–16]. Values for these elements can be

determined by system identification and describe the backdrivability or “give” of the

driver’s hands under load. In the interest of simplicity, we assume the contributions

of reflex loops are included in the backdrive impedance described by elements JH, kH,

and bH.

To describe the steering command issued by the driver’s CNS, we equip the spring-

mass-damper model with a proximal motion source θH(t) as shown in Fig. 2.2(B).

Muscles with elasticity kH and damping bH are driven under neural control to manip-

ulate, act, and perform mechanical work. The motion source θH(t) can be considered

a kind of desired steering angle or virtual trajectory, as the spring kH has zero rest

length and the hand/wheel position θS will equal θH under no-load conditions (τV = 0)

and after transients have died out. This model allows us to describe the role of the



14

Figure 2.2: Model of the backdrivable human motor system steering a vehicle. (A)
The angular displacement of the driver’s hands and the steering wheel are described
by the (easily measured) variable θS whereas (B) the driver’s steering command θH

that acts through the compliance kH and damping bH of muscle cannot be measured.
(C) An equivalent block diagram with ZH = JHs

2 + bHs+ kH and ZS = JSs
2.

driver’s body in the loop, both as a dynamic subsystem that becomes coupled to the

vehicle dynamics, and as a dynamic subsystem, whose sensing capacity relies in part

on its states being excited by power transmitted from the steering wheel.

The equations of motion for the steering system are then

JSθ̈S = τH − τV = −JHθ̈S − bH(θ̇H − θ̇S) + kH(θH − θS)− τV

⇒ ZSθS = ZH(θH − θS)− τV (2.1)

where ZS
4
= (JS + JH)s2 describes the steering wheel inertia plus the human’s inertia

and ZH
4
= bHs + kH represents the effective impedance of the hand and arms on the

steering wheel.

Figure2.2(C) shows a block diagram that includes the dynamics of the human

model and the steering wheel. It follows from Eq. (2.1) that the steering angle θS is

a function of θH (and ZH) from the driver and τV from the vehicle and environment.
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The transfer function from the two inputs θH and τV to the response θS is

θS =
ZH

ZH + ZS

θH −
1

ZH + ZS

τV (2.2)

For this research we have assumed that there are no disturbances in the system

from the vehicle and the environment. Thus the above equation can be rewritten as;

θS =
ZH

ZH + ZS

θH (2.3)

In a series of experiments, Pick and Cole characterized the backdrive impedance ZH

of a driver’s hands on the steering wheel [13]. These characterizations included elec-

tromyographic (EMG) measurements and revealed a significant range of impedance

that varies directly with muscle co-contraction. A driver can also vary impedance

by modulating reflex gains and changing posture [2, 13]. To develop adaptive haptic

support, which considers individual and changing driving behavior, it is necessary

to identify the time-varying human biomechanics in real-time. Several approaches,

including wavelet transforms, recursive least squares, and linear time-varying pa-

rameter estimation techniques, have been proposed to estimate human backdrive

impedance [17–19]. Nominally, identification of the driver’s impedance would require

excitation signals (pulses or sinusoids). However, such signals might be annoying to

the driver or, worse, perturb steering control. An alternative approach is to deter-

mine a correlation between the impedance ZH and the driver’s grip force and use this

correlation to derive an on-line estimate of human biomechanics [16,20].

2.2 Modeling the Automation System

Next, the equations for the automation system are derived. We consider the au-

tomation system to have the same structure as the human driver. A high-level con-

troller that generates the desired steering angle θA and the low-level controller that
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Figure 2.3: Automation Steering Vehicle Model

derives the motorized steering wheel. Considering no human driver, the equations of

motion for the motorized steering wheel is

JAθ̈M = τA − F1rM, (2.4)

where JS and JM is the steering wheel and motor inertia, respectively; θS and θM

are the steering angle and motor angle of rotation and rSθS = rMθM is the kinematic

constraint. We define ZS
4
= JSs

2.

Next, let τA be

τA = k̃A(θA − θS)− b̃A(θ̇S), (2.5)

where k̃A and b̃A are proportional and derivative gains. We define ZA
4
=
(
rS
rM

)2

JMs
2 +

bAs+ kA and kA
4
= rS

rM
k̃A and bA

4
= rS

rM
b̃A.

The transfer function from the two inputs θH and θA to θS is

θS =
ZA

JSs2 + ZA

θA. (2.6)
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Figure 2.4: Human-Automation-Steering Wheel

2.3 Human-Automation Steering Model

Next, we aim to combine the models developed from the human model and au-

tomation model to derive the equations of motions for the human-automation-steering

wheel system. Note that for the rest of this thesis, we assume JH and JA is negligible

with respect to JS.

The equations of motion for the steering wheel when two agents are acting simul-

taneously can be written as;

JSθ̈S + bS θ̇S = τA + τH (2.7)

where τH and τA are the human and automation agents torque applied on the steering

wheel respectively. But we know that τH = ZH(θH − θS) and τA = ZA(θA − θS), thus

we can write;

JSθ̈S + bS θ̇S = ZA(θA − θS) + ZH(θH − θS) (2.8)

Substituting the value for human impedance ZH = bHs + kH and ZA = bAs + kA we
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get;

JSθ̈S + bS θ̇S = bS(θ̇H − θ̇S) + kH(θH − θS) + bA(θ̇A − θ̇S) + kA(θA − θS) (2.9)

We can represent the above equation using a state-space representation. State-

space representation in control theory is used to represent any mathematical model.

θ̇S(t)

θ̈S(t)

 =

 0 1

−kH−kA
JS

−bH−bA−bS
JS


θS(t)

θ̇S(t)

+

 0 0 0 0

kH
JS

bH
JS

kA
JS

bA
JS




θH(t)

θ̇H(t)

θA(t)

θ̇A(t)


YS(t) =

[
1 0

]θS(t)

θ̇S(t)

 (2.10)

This state-space representation can be simplified to

ẋS(t) = ASxS(t) +BSUS(t)

YS(t) = CSxS(t) (2.11)

where

AS =

 0 1

−kH−kA
JS

−bH−bA−bS
JS

BS =

 0 0 0 0

kH
JS

bH
JS

kA
JS

bA
JS

CS =

[
1 0

]
US =



θH(t)

θ̇H(t)

θA(t)

θ̇A(t)
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Figure 2.5: bicycle model [2]

2.4 Vehicle Dynamics

The directional vehicle dynamics are represented using the well-known yaw-side

slip bicycle model shown in 2.5. Yaw-side slip bicycle model is based on Newton’s

second law of motion and moment balance about the z axis.

Iϕ̈ = a× Fyf − b× Fyr (2.12)

m× ay = Fyf + Fyr (2.13)

where Fyf and Fyr are the lateral tire forces of the front and rear , a and b are the

distances of the front and rear tire respectively from the C.G., ay is the inertial acceler-

ation at C.G. in y direction. There are two terms which contribute to ay, they are the

ÿ in the y direction itself and the centripetal acceleration which is V × ϕ̇ (centripetal

acceleration is rate of change of tangential velocity = V 2
x

r
= Vx×Vx

r
= Vx × ω = Vx × ϕ̇

where Vx is the longitudinal velocity and ϕ̇ is the heading angle). Lateral force is di-
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rectly proportional to the slip angle( provided that slip angles are small). Slip angle

is the difference between the orientation of tire and orientation of velocity vector.

Thus, Fyf = Cf × (θS − θvf ) and Fyr = Cr × −θvr, where Cf and Cr are the

cornering stiffness of the front axle and rear axle respectively.

tan θvf =
Vy + lf × ω̇

Vx
(2.14)

tan θvr =
Vy − lr × ω̇

Vx
(2.15)

Considering small slip angles θvf and θvr, and substituting these values of Fyf and

Fyr in the (2.12) and (2.13) We will get the equation of motion in the first order

matrix form with 2 states variable v̇ and ω̇. Yaw displacement is the direction of the

longitudinal axis of the vehicle and its rate of change is just the yaw velocity ϕ̇ = ω.

So now the yaw angle is also evaluated with the lateral and yaw velocities. In the

synthesis of the steering controllers it is usually necessary to have expressions for the

lateral and yaw deviations of the vehicle from the road path so that the path following

error can be incorporated into a cost function. The yaw deviation presents no problem

however the lateral deviation is more difficult since it depends on X and Y and the

trigonometric terms which makes a linear calculation more difficult. So, we assume

that yaw displacements are small which eliminates the trigonometric functions and

further assume that Vy << Vx. To allow the nominal direction of the road path to be

other than the X direction we define second set of x-y ground fixed axis. The x axis

is aligned with the nominal direction of the road path so that the vehicle has small

angular displacements from the x axis. We get, y = Vx × ϕ+ Vy So now we can also

evaluate lateral displacement along with yaw angle, lateral and yaw velocities. This

equation can be also written in matrix form as follows:
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υ̇(t)

ω̇(t)

ẏ(t)

ψ̇(t)


=



−(Cf+Cr)

Um

−(laCf−lbCr)

Um
− U 0 0

−(laCf−lbCr)

UI

−(l2aCf+l2bCr)

Um
0 0

1 0 0 U

0 1 0 0





υ(t)

ω(t)

y(t)

ψ(t)


+



Cf

mG

laCf

IG

0

0


θS(t) (2.16)

where υ(t) is the lateral velocity of the vehicle in the direction of vehicles lateral

axes, ω(t) is the yaw velocity of the vehicle with respect to the ground, y(t) is the

lateral displacement of the vehicle in-ground fixed axes, assuming small ψ(t); ψ(t)

the yaw angle of a vehicle with respect to ground; δ(t) is the handwheel angle; G is

the steering gear ratio (handwheel angle/road wheel angle); U is the velocity of the

vehicle in the direction of vehicles longitudinal axis (as measured by an observer in

the vehicle); m is the mass; I is the polar inertia; la is the distance from the center

of mass to the front axle; lb is the distance from the center of mass to rear axle; Cf

is the front tire cornering stiffness; and Cr is the rear tire cornering stiffness.

The lateral displacement and the yaw angle can be defined as the outputs using;

Yv(t) =

0 0 1 0

0 0 0 1




υ(t)

ω(t)

y(t)

ψ(t)


(2.17)

In matrix notation (2.5) is expressed as;

ẋv(t) = Avxv(t) +BvθS(t)

Yv(t) = Cvxv(t) (2.18)
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where

Av =



−(Cf+Cr)

Um

−(laCf−lbCr)

Um
− U 0 0

−(laCf−lbCr)

UI

−(l2aCf+l2bCr)

Um
0 0

1 0 0 U

0 1 0 0


Bv =



Cf

mG

laCf

IG

0

0


Cv =

0 0 1 0

0 0 0 1

xs =

[
υ(t) ω(t) y(t) ψ(t)

]T

2.5 Comprehensive Model of a Haptic Shared Control Framework

So till now, we have looked at the steering model and the vehicle model, so now

we will have to combine these two system models into a big system model, which

comprises both the plant models, as shown in figure 2.6. This system will have the

human intention θH and automation intention θA as the inputs while its output will

be lateral displacement y and yaw angle ψ. The state-space model can be represented

as follows;



υ̇(t)

ω̇(t)

ẏ(t)

ψ̇(t)

θ̇S(t)

θ̈S(t)



=



−(Cf+Cr)

Um

−(laCf−lbCr)

Um
− U 0 0

Cf

mG
0

−(laCf−lbCr)

UI

−(l2aCf+l2bCr)

Um
0 0

laCf

IG
0

1 0 0 U 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −kH−kA
JS

−bH−bA−bS
JS





υ(t)

ω(t)

y(t)

ψ(t)

θS(t)

θ̇S(t)



+

 0 0 0 0

kH
JS

bH
JS

kA
JS

bA
JS




θH(t)

θ̇H(t)

θA(t)

θ̇A(t)


(2.19)



23

Figure 2.6: A General Model of Haptic Shared Control
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The lateral displacement and the yaw angle can be defined as the outputs using;

Y (t) =

0 0 1 0 0 0

0 0 0 1 0 0





υ(t)

ω(t)

y(t)

ψ(t)

θS(t)

θ̇S(t)



(2.20)

We can write a simplified system model as follow;

ẋ(t) = Acx(t) +BcUS(t)

Y (t) = Cx(t) (2.21)

where

Ac =



−(Cf+Cr)

Um

−(laCf−lbCr)

Um
− U 0 0

Cf

mG
0

−(laCf−lbCr)

UI

−(l2aCf+l2bCr)

Um
0 0

laCf

IG
0

1 0 0 U 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −kH−kA
JS

−bH−bA−bS
JS


Bc =

 0 0 0 0

kH
JS

bH
JS

kA
JS

bA
JS

C =

0 0 1 0 0 0

0 0 0 1 0 0


x =

{
υ(t) ω(t) y(t) ψ(t) θS(t) θ̇S(t)

}T
US =

{
θH(t) θ̇H(t) θA(t) θ̇A(t)

}T



CHAPTER 3: Design of Impedance Modulation Controller

This chapter is focused on designing the lower-level controller for the automation

system. In particular, this chapter presents an optimal control problem that is solved

for modulating the control’s impedance to reduce the fight between the human and

automation system while ensuring safety. To this end, we designed an adaptive model-

predictive controller. Below a description of the proposed controller is given.

3.1 Model Predictive Controller

There are various mathematical methods for representing the steering control be-

havior, for example, model predictive control method, transfer function method, pro-

portional integral derivative method, linear quadratic regulator method, etc. For

this research, we have used a model predictive control method (MPC) for describ-

ing human and automation’s steering control behavior. The main feature of MPC is

that it allows the current time period to be optimized while keeping the future time

slots into account. Thus MPC can anticipate future events and can take control ac-

tions accordingly. We are using a model predictive controller to model the high-level

controllers from where we get the motion source for both the agents. In a control

problem, the goal of the controller is to calculate the input to the plant such that the

plant output follows the desired reference. MPC uses the plant model to make future

plant outputs. These future plant outputs are then fed to an optimizer, which ensures

that this plant output tracks the desired reference. In our case, we have a vehicle

as a plant, and we want the vehicle’s trajectory to match the references (human and

automation’s intents).

A detailed study for the MPC method has been performed by [21]. While perform-
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ing a steering control task, the human driver generally previews the road ahead and

then accordingly determines the target path to be followed at each time step. This

target path is expressed in terms of a sequence of vectors. This sequence of vectors

denotes the desired vehicle orientation at future time steps up to the driver’s preview

horizon. Each vector consists of two elements: the desired lateral displacement and

the desired yaw angle. Simultaneously the driver is also receiving the state-feedback

of the vehicle, and thus, on the basis of this knowledge, he/she predicts the future

vehicle orientation trajectory according to their knowledge of vehicle dynamics.

3.2 Adaptive Model Predictive Impedance Controller

In MPC, we have assumed that the Plant model, which comprises of the vehicle

dynamics and steering dynamics, is constant. But in reality, it is never constant. In

order to change the force applied on the steering wheel, we need to flex our muscles

or relax or muscle. Thus we are dynamically changing the stiffness coefficient and

the damping coefficient of our hand. This is the adaptive law which we have used

to dynamically change the impedance value for both the agents. To present how

impedance may evolve in time, we introduce the following dynamic models:

ŻH(t) = αHZH(t) + βHΓH(t) (3.1)

ŻA(t) = αAZA(t) + βAΓA(t) (3.2)

where ZH = [BH KH]T and KH and BH are the stiffness and damping associated

with humans’ biomechanics; ZA = [BA KA]T and KA and BA are the stiffness and

damping associated with the motor’s lower-level proportional-derivative controller;

ΓH = [ΓbH(t) ΓkH(t)]T is the humans control action for modulating his impedance and

ΓA = [ΓbA(t) ΓkA(t)]T is the automations control input for modulating its impedance
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[22]. Additionally,

αH =

αbH 0

0 αkH

 , βH =

βbH 0

0 βkH


αA =

αbA 0

0 αkA

 , βA =

βbA 0

0 βkA

 (3.3)

where {αbH, αkH, αbA, αkA, βbH, βkH, βbA, βkA} are constant parameters. This formu-

lation captures how impedance evolves in time. Ideally, to determine an optimal

behavior for the automation system, optimization should be performed over all con-

trol signals of the automation system (i.e., θA,ΓA); However, the focus of this research

is to determine ΓA as means for allocating the level of authority between the driver

and the automation system.

3.3 Impedance Modulation Controller Design

In this section, we present a predictive controller for modulating the automation

impedance such that the assistive behavior of the automation system improves while

the safety of the task is also guaranteed.

First, let the discrete-time model of the impedance dynamics (3.1) and (3.2) be

ZH(k + 1) = α̃HZH(k) + β̃HΓH(k) (3.4)

ZA(k + 1) = α̃AZA(k) + β̃AΓA(k) (3.5)

where α̃A = I + TsαA, α̃A = I + TsαA, β̃A = TsβA,and β̃A = TsβA and Ts is the

sampling time. Furthermore, we define

θ̇i(k) =
θi(k)− θi(k − 1)

Ts

(3.6)

where i = {SW,H,A}.
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Next, let us define a cost function J(k) in the form of

min
ΓA

J(k) =

Np∑
j=1

{‖|τH(k + j) + τA(k + j)| − ε(k + j)‖+ ‖τH(k + j)− τA(k + j)‖}

(3.7)

where τH(k) = ZH[θH(k) − θS(k)] and τA = ZA[θA(k) − θS(k)]. The first term of

the cost function is to ensure safe steering. Specifically, we define ε as a minimum

required torque that can guarantee the safe maneuver. For this paper, we assume

ε is known. The second term of the cost function is to minimize the disagreement

between a human driver and the automation system. Since the steering angle, θS and

the rate of its changes can be directly measured from the sensor; we simplify the cost

function (3.7) into

min
ΓA

J(k) =

k+Np∑
j=k+1

{‖|ZH(j)θH(j) + ZA(j)θA(j)| − ε(j)‖+ ‖ZH(j)θH(j)− ZA(j)θA(j)‖}

(3.8)

For this research, we assume ZH and θH are known and can be measured. The es-

timation of human backdrive impedance has a long and rich history in biomechanics

and more recent history in the field of haptic rendering. In the context of the adaptive

haptic shared control paradigm, parallel with this work, authors are focused on devel-

oping a method to obtain a continually-updated estimate of the backdrive impedance

of the human driver. With access to an online estimate of the driver’s time-varying

impedance, as well as the torque on the steering wheel (using a differential torque)

sensor, we can estimate the human’s intent θH.

The goal in the cost function is to determine ΓA such that the cost function J is
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minimized. To this end, we ZAθA can be presented as

ZAθA(k) = BA(k)
[θA(k)− θA(k − 1)

Ts

]
+KA(k)θA(k) (3.9)

By replacing BA and kA from Eq. xx, we will have:

ZAθA(k) = {Φ(k) + Ψ(k)}

 θA(k)

θA(k − 1)

 (3.10)

Φ(k) = α̃A

[
BA(k−1)

Ts
+KA(k − 1) −BA(k−1)

Ts

]
(3.11)

Ψ(k) = β̃A

[
ΓBA(k)
Ts

+ ΓKA(k) −ΓBA(k)
Ts

]
(3.12)

The Φ and Ψ represents intrinsic mechanical impedance and control action vectors,

respectively. By propagating the automation torque for the next time steps until Np

step, the Φ and Ψ vectors will move forward in the time. In order to create predic-

tion matrices we can rearrange the Np step automation torque vector like following

equation:

ZAΘA = ΘΩ(Φ,Ψ) (3.13)
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where

ZAΘA =



ZA(k +Np)θA(k +Np)

...

ZA(k + 1)θA(k + 1)

ZA(k)θA(k)


(3.14)

Θ
T

=



θA(k +Np) · · · 0 0

θA(k +Np − 1) · · · 0 0

... . . . ...
...

0 · · · θA(k + 1) 0

0 · · · θA(k) 0

0 · · · 0 θA(k)

0 · · · 0 θA(k − 1)



(3.15)

Ω(Φ,Ψ) =



{
(α̃A)Np [∆(k)] + (α̃A)Np−1Ψ(k + 1) + ...+ Ψ(k +Np)

}T

...

{α̃A[∆(k)] + Ψ(k + 1)}T

{∆(k)}T


(3.16)

where ∆(k) = Φ(k) + Ψ(k).

According to the second term of (3.8), in the ideal model, the value of ZHθH will be

equal to ZAθA. On the other hand, in the (3.14), the amount of automation control

action at a time step k can be determined by using methods like linear programming

(LP), quadratic programming (QP) and least square (LS). As it can be seen in the

(3.14), the solution from the optimal solver will give us the summation of Φ and Ψ.

In the LP, QP, and LS methods, it is possible to have a negative value. This means,

the haptic link on the automation side is disconnected (has zero impedance). In this



31

research, instead of these methods, the Non-Negative LS method is used, which guar-

anteed to solve the cost function with a non-negative solution. Furthermore, we used

a modified version of NNLS to solve the cost function and reduce the computational

burden. In the following section, the MNNLS method is presented.

3.3.1 Modified Non-Negative Least Squares Method

Since the impedance is a non-negative parameter, to solve cost function (3.8), the

conventional Linear Square algorithm must be rearranged. A non-negative LS is an

LS optimization problem which is subjected to non-negativity constraints. A simple,

approximate way to implement these constraints is to solve the corresponding uncon-

strained LS problem and then overwrite any negative values with zeros. However,

a challenge associated with overwriting negative values in the LS method is that it

may not result in converging to a minimum possible error on successive iterations.

To resolve this limitation, there are several mathematically proven methods to solve

Non-Negative LS problems [23–25], which impose non-negativity criteria on the so-

lution while minimizing the sum of squared residuals between the data being fitted

and their estimates in a real LS sense.

The performance of the NNLS in the large-scale problems which we have large

horizon estimation is the main consideration in controller design. Pre-computing

the cross product and pseudo-inverses (inverse) matrices are the essential tools for

improving the NNLS performance. To resolve this challenge, in this paper, we used

a modified NNLS by the following flowchart [24]. The compensatory term in the

NNLS is considered in the case of zero impedance from the driver, which means the

measurement vector is the summation of the human’s torque and predefined ε value.
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Figure 3.1: MNNLS algorithm



CHAPTER 4: Developing Game Theoretic Framework for Intent Negotiation

This chapter is mainly focused on the higher-level controller of the haptic shared

control paradigms. In particular, we develop a game-theoretic framework to explore

the interaction between the human and automation system based on different infor-

mation patterns available to them.

One of the significant risks associated with haptic shared control framework is when

both humans and automation are detecting the same obstacle but decides different

paths for avoiding it. In this thesis, we developed models for interactions between the

human driver and the automation system for such situations using a game-theoretic

framework. In-game theory, players can observe the actions of other players before

deciding upon their optimal response. Game theory can be classified based on the

mode of the play: whether the two agents are non-cooperating and only thinking

about their primary goal or its cooperative.

The players’ strategy: An example of the players’ strategy is the Nash strategy,

where both the agents(driver and automation) only think about themselves, while

in a Stackelberg strategy, one agent (human) acts as an initiator while the other

agent acts as the conductor. By conductor agent, we mean an agent who considers

the optimal input of the initiator to determine its control input. From these two

strategies, we can conclude that the two agents in Nash strategy want to be a leader,

while in Stackelberg strategy one agent is acting as a leader while the other agent is

acting as a follower.
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4.1 Non - Cooperative Mode

The equations of motion (2.21) can be described in discrete-time form as

x(k + 1) = Ax(k) +BUS(k) (4.1)

where x(k) is the discrete state for time step k, respectively.

US =

{
θH(k) θH(k − 1) θA(k) θA(k − 1)

}T
and A, B are obtained from the dis-

crete bi-linear transformation (2.21) of the corresponding continuous-time matrices

Ac, Bc.

Next, let define the output of the system dynamics (2.21) in a discrete-time form

as

Y (k) = Cx(k) (4.2)

Here, C is the output matrix which transforms x(k) into Y (k). When we propagate

the system to the next time step we get,

x(k + 2) = Ax(k + 1) +BUS(k + 1) = x(k + 2) = A2x(k) + ABUS(k) +BUS(k + 1)

(4.3)

The states of the system over the Np time steps ahead can be defined and written

as [26]
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x(k + 1)

x(k + 2)

x(k + 3)

...

x(k +NP )


=



A

A2

A3

...

ANP


x(k)

+



B 0 0 . . . 0

AB B 0 . . . 0

A2B AB B . . . 0

...
...

... . . . ...

ANP−1B ANP−2B ANP−3B . . . B





US(k)

US(k + 1)

US(k + 2)

...

US(k +NP − 1)


(4.4)

The predicted outputs are obtained as follows;



Y (k + 1)

Y (k + 2)

Y (k + 3)

...

Y (k +NP )


=



C 0 0 . . . 0

0 C 0 . . . 0

0 0 C . . . 0

...
...

... . . . ...

0 0 0 . . . C





x(k + 1)

x(k + 2)

x(k + 3)

...

x(k +NP )


(4.5)
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Thus substituting equation (4.4) in (4.5), we get;



Y (k + 1)

Y (k + 2)

Y (k + 3)

...

Y (k +NP )


=



CA

CA2

CA3

...

CANP


x(k)

+



CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0

...
...

... . . . ...

CANP−1B CANP−2B CANP−3B . . . CB





US(k)

US(k + 1)

US(k + 2)

...

US(k +NP − 1)


(4.6)

Equation (4.6) can be generalized as;

y = Ψx(k) + µuS(k) (4.7)

where

y =

{
Y (k + 1) Y (k + 2) . . . Y (k +NP )

}T
Ψ =

[
CA CA2 . . . CANP

]

µ =



CB 0 . . . 0

CAB CB . . . 0

...
... . . . ...

CANP−1B CANP−2B . . . CB


uS =



US(k)

US(k + 1)

...

US(k +NP − 1)
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4.1.1 Nash Strategy

In a haptic shared control framework, when roles and intents are not communicated,

it can be assumed that each agent will try to minimize its cost function without

considering the other agents’ input into consideration. Specifically, the optimization

problem can be written as

min
UH

JNash
H (k) = ‖YH −RH‖2

QH
+ ‖UH‖2

RH

min
UA

JNash
A (k) = ‖YA −RA‖2

QA
+ ‖UA‖2

RA

s.t.


x(k + 1) = Ax(k) +BUS(k)

YH = Cx(k)

YA = Cx(k)

(4.8)

where

RH =

[
yH ψH

]T
, RA =

[
yA ψA

]T
,

UH =

{
θH(k) θH(k − 1)

}T
and UA =

{
θA(k) θA(k − 1)

}T
QH , QA, RH , RA are the cost function matrices.

We have

US(k) =

{
θH(k) θH(k + 1) θA(k) θA(k + 1)

}T

thus we can write

US(k) =

{
UH(k) UA(k)

}T
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So equation (4.7) can be written as;

Y (k) = Ψx(k) + µHUH(k) + µAUA(k) (4.9)

To solve the optimization (4.8), we define human’s driver and automation’s tracking

errors as

EH(k) = TH −Ψx(k)− µAUA(k) (4.10)

EA(k) = TA −Ψx(k)− µHUH(k) (4.11)

where TH(k) = [rH(k + 1), · · · , rH(k + Np)]
T , TA(k) = [rA(k + 1), · · · , rA(k + Np)]

T .

Substitution of (4.10),(4.40) and (4.9) into (4.8) yields to

JH(k)
4
= ‖µHUH(k)− EH(k)‖2

QH
+ ‖UH(k)‖2

RH
, (4.12)

JA(k)
4
= ‖µAUA(k)− EA(k)‖2

QA
+ ‖UA(k)‖2

RA
. (4.13)

which can be written as [27];

JH(k) =

∥∥∥∥∥∥∥
SQH

(µHUH(k)− EH(k))

SRH
UH(k)


∥∥∥∥∥∥∥

2

(4.14)

JA(k) =

∥∥∥∥∥∥∥
SQA

(µAUA(k)− EA(k))

SRA
UA(k)


∥∥∥∥∥∥∥

2

(4.15)

where QH = STQH
SQH

, QA = STQA
SQA

, RH = STRH
SRH

and RA = STRA
SRA
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The optimum value for UH , UA will minimize JH , JA And thus is the solution of;

0 =

SQH
(µHU

∗
H(k)− EH(k))

SRH
U∗H(k)

 (4.16)

0 =

SQA
(µAU

∗
A(k)− EA(k))

SRA
U∗A(k)

 (4.17)

But we have, UH(k =

{
θH(k) θH(k − 1)

}T
and UA(k) =

{
θA(k) θA(k − 1)

}T
Thus, we can rewrite (4.43) as;

0 =

SQH
µHU

∗
H(k) + SQH

µHU
∗
H(k − 1)− SQH

EH(k)

SRH
U∗H(k) + SRH

U∗H(k − 1)

 (4.18)

0 =

SQA
µAU

∗
A(k) + SQA

µAU
∗
A(k − 1)− SQA

EA(k)

SRA
U∗A(k) + SRA

U∗A(k − 1)

 (4.19)

or equivalently;

SQH
µH

SRH

U∗H(k) =

SQH
EH − SQH

µHU
∗
H(k − 1)

−SRH
UH(k− 1)


SQA

µA

SRA

U∗A(k) =

SQA
EA − SQA

µAU
∗
A(k − 1)

−SRA
UA(k− 1)

 (4.20)

The equation (4.45) is similar to AX = B where X is unknown while A,B are

known. We solve it using a backslash operator, X = A\B. This process is called as

Least Square method [26].
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Thus,

U∗H(k) = KH (4.21)

U∗A(k) = KA (4.22)

where

KH =

SQH
µH

SRH

 \
SQH

EH − SQH
µHU

∗
H(k − 1)

−SRH
UH(k− 1)


KA =

SQA
µA

SRH

 \
SQA

EA − SQA
µAU

∗
A(k − 1)

−SRA
UA(k− 1)

 . (4.23)

The human-driver optimal control input depends on the state x(k), the desired

reference trajectory TH, and the automation’s steering control UA and vice versa. To

solve this problem, we employ the convex iteration approach shown in [28], which

involves complementing (??) and (4.46) with an auxiliary equation set. In particular,

U [p+1]
H (k)

U
[p+1]
A (k)

 =

wHI 0

0 wAI


U∗[p]H (k)

U
∗[p]
A (k)

+

(1− wH)I 0

0 (1− wA)I


U [p]

H (k)

U
[p]
A (k)


(4.24)

where wH and wA are the iteration weights which satisfy 0 < wH, wA < 1 and

wH + wA = 1 and p denotes the step of iteration.

For the first iteration at p = 0 we assume, U [0]
H (k) = 0 and U

[0]
A (k) = 0. Using this
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assumption we iterate (4.24) until

U [∞]
H (k)

U
[∞]
A (k)

 =

wHI 0

0 wAI


U∗[∞]

H (k)

U
∗[∞]
A (k)

+

(1− wH)I 0

0 (1− wA)I


U [∞]

H (k)

U
[∞]
A (k)


(4.25)

(4.25) has two equations and two unknowns (U∗H and U∗A), which can be further solved

with very ease. Using this concept of complex iteration approach we can find control

input: U∗H and U∗A.

The control input is the first element of the U∗H and U∗A sequence. Specifically,

uH(k) =

[
1 0 · · · 0

]
U∗H (4.26)

uA(k) =

[
1 0 · · · 0

]
U∗A (4.27)

uH and uA are then further substituted in (4.23) to solve for KH and KA.

From (4.21) and (4.22), we can see that optimal control input U∗H = KH and U∗A = KA.

4.1.2 Stackelberg Strategy

This section is focused on modeling the interaction within the haptic shared control,

assuming one agent acts as an initiator of the task, and the other agent act as a

conductor agent. By conductor agent, we mean an agent who considers the optimal

input of the initiator to determine its own control input. In this section, we assume

the human is an initiator. The automation system considers the “optimal" action

of the human driver U∗H(k) in planning its actions. Specifically, the optimization

problem can be written as
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min
UH

JStack
H (k) = ‖YH −RH‖2

QH
+ ‖UH‖2

RH

s.t.


x(k + 1) = Ax(k) +BUS(k)

YH = Cx(k)

min
UA

JStack
A (k) = ‖YA −RA‖2

QA
+ ‖UA‖2

RA

s.t.


x(k + 1) = Ax(k) +BUS(k)

YA = Cx(k)

(4.28)

where

RH =

[
yH ψH

]T
, RA =

[
yA ψA

]T
,

UH =

{
θH(k) θH(k − 1)

}T
and UA =

{
θA(k) θA(k − 1)

}T
QH , QA, RH , RA are the cost function matrices.

We have

US(k) =

{
θH(k) θH(k + 1) θA(k) θA(k + 1)

}T

thus we can write

US(k) =

{
UH(k) UA(k)

}T

So equation (4.7) can be written as;

YH(k) = Ψx(k) + µHUH(k) + µAUA(k) (4.29)

In Nash’s strategy, both the agents are trying to minimize the cost function at

the same time because both the agents form a Leader-Leader relationship, but in
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Stackelberg, the Human-agent acts as the initiator while the automation agents act

as a conductor. Thus the human agent solves its cost function first, and then the

automation agent solves its function because it needs to consider the optimal control

output of the human agent.

To solve the optimization 4.28, automation’s tracking error as

EH(k) = TH −Ψx(k)− µAUA(k) (4.30)

where TH(k) = [rH(k + 1), · · · , rH(k + Np)]
T . Substitution of (4.40) and (4.39) into

(4.28) yields to

JH(k)
4
= ‖µHUH(k)− EH(k)‖2

QH
+ ‖UH(k)‖2

RH
. (4.31)

which can be written as [27];

JH(k) =

∥∥∥∥∥∥∥
SQH

(µHUH(k)− EH(k))

SRH
UH(k)


∥∥∥∥∥∥∥

2

(4.32)

whereQH = STQH
SQH

and RH = STRH
SRH

The optimum value for UH will minimize JH And thus is the solution of;

0 =

SQH
(µHU

∗
H(k)− EH(k))

SRH
U∗H(k)

 (4.33)

But we have, UH(k) =

{
θH(k) θH(k − 1)

}T
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Thus, we can rewrite (4.43) as;

0 =

SQH
µHU

∗
H(k) + SQH

µHU
∗
H(k − 1)− SQH

EH(k)

SRH
U∗H(k) + SRH

U∗H(k − 1)

 (4.34)

or equivalently;

SQH
µH

SRH

U∗H(k) =

SQH
EH − SQH

µHU
∗
H(k − 1)

−SRH
UH(k− 1)

 (4.35)

The equation (4.45) is similar to AX = B where X is unknown while A,B are

known. We solve it using a backslash operator, X = A\B. This process is called as

Least Square method [26].

Thus,

U∗H(k) = KH (4.36)

where

KH =

SQH
µH

SRH

 \
SQH

EH − SQH
µHU

∗
H(k − 1)

−SRH
UH(k− 1)

 . (4.37)

The human’s steering control input depends on the state x(k), the desired reference

trajectory TH, and the automation’s steering control UA. To solve this problem, we

employ the convex iteration approach shown in (4.24). Using this concept we find

optimal control output: U∗H

The optimal control input is the first element of the U∗H sequence.Specifically,

uH(k) =

[
1 0 · · · 0

]
U∗H (4.38)
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Now, since we know the value of U∗H, we can solve for the optimal automation’s

output. Thus equation (4.7) becomes;

YA(k) = Ψx(k) + µAUA(k) + µHU
∗
H(k) (4.39)

To solve the optimization (4.28), we define human’s driver and automation’s track-

ing errors as

EA(k) = TA −Ψx(k)− µHU
∗
H(k) (4.40)

where TH(k) = [rH(k + 1), · · · , rH(k + Np)]
T Substitution of (4.40) and (4.39) into

(4.8) yields to

JA(k)
4
= ‖µAUA(k)− EA(k)‖2

QA
+ ‖UA(k)‖2

RA
. (4.41)

which can be written as [27];

JA(k) =

∥∥∥∥∥∥∥
SQA

(µAUA(k)− EA(k))

SRA
UA(k)


∥∥∥∥∥∥∥

2

(4.42)

where QA = STQA
SQA

and RA = STRA
SRA

The optimum value for UA will minimize JA And thus is the solution of;

0 =

SQA
(µAU

∗
A(k)− EA(k))

SRA
U∗A(k)

 (4.43)

But we have, UA(k) =

{
θA(k) θA(k − 1)

}T
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Thus, we can rewrite (4.43) as;

0 =

SQA
µAU

∗
A(k) + SQA

µAU
∗
A(k − 1)− SQA

EA(k)

SRA
U∗A(k) + SRA

U∗A(k − 1)

 (4.44)

or equivalently;

SQA
µA

SRA

U∗A(k) =

SQA
EA − SQA

µAU
∗
A(k − 1)

−SRA
UA(k− 1)

 (4.45)

The equation (4.45) is similar to AX = B where X is unknown while A,B are

known. We solve it using a backslash operator, X = A\B. This process is called as

Least Square method [26].

Thus,

U∗A(k) = KA (4.46)

where

KA =

SQA
µA

SRH

 \
SQA

EA − SQA
µAU

∗
A(k − 1)

−SRA
UA(k− 1)

 . (4.47)



CHAPTER 5: RESULTS

We consider a scenario in which both human and automation detects an obstacle

but choose different paths to avoid it (see Figure 5.1). The desired trajectory for the

human driver and the automation system is shown in Figure (5.1). The path for the

automation system PA can be expressed by the following curve

PA =



0 x < l1

1
2
W [cos( π

l2
X − l1+l2

l2
π) + 1], l1 < x < l1 + l2

W l1 + l2 < x < l1 + l2 + l3

1
2
W [cos( π

l2
X − l1+l2+l3

l2
π) + 1], l1 + l2 + l3 < x < l1 + 2l2 + l3

0 x > l1 + 2l2 + l3

(5.1)

where l1 = 20 m, l2 = 20 m, l3 = 30 m and w = 3m and PH = −PA.
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Figure 5.1: Drivers and Automation’s target paths
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We will be looking at two sets of results, one is without adaptive law (the system

model remains constant), and the second one is with adaptive law (the system model

changes dynamically). For these two sets of results, we will be looking for a change

in the lateral displacement of the vehicle and change in the intent of the human and

autonomous agents when we change their impedance, respectively.

5.1 Nash Strategy

In Nash Strategy, both the agents form a Leader-Leader relationship. So let’s see

how it will perform in a non-cooperative paradigm with and without Adaptive Law.

Fig. 5.2, 5.3, 5.5 and 5.6 shows the simulation outcomes for the Nash Strategies.

The figure on the top displays the automation and driver target paths and the sim-

ulated vehicle lateral displacement in relation to its longitudinal position, while the

figure in the middle depicts the driver’s and automation’s steering angles. The figure

in bottom shows how KA and BA vary with respect to different combinations for KH

with BH = 0.01, thereby displaying the adaptive law. We set horizons to be 10 steps

(0.1s). We also select qψ,H = 1, qψ,A = 1, RH = 1 and RA = 1.

5.1.1 Without Adaptive Law

Under the Nash paradigm, without considering any adaptive impedance controller,

the lateral displacement of the vehicle is equal to the average value of the summation

of the references for both agents when they have the same impedance characteristics.

Fig. 5.2 depicts the same intents for the human driver and the automation system

in the case of the same impedance for both agents. It can be observed when KH =

2KA for BH=BA(indicating no adaptive law) the two-game players struggle with each

other for the domination of the control of the vehicle, but sinceKH > 2KA, the human

agent dominates the control authority and the vehicle path shifts towards the human

reference as seen in Fig. 5.3. Similarly, when 2KH = KA for BH=BA(indicating no

adaptive law) the two-game players struggle with each other for the domination of



49

0 10 20 30 40 50 60 70 80 90 100 110

Vehicle Longitudnal Position (m)

-2

0

2

L
a
te

ra
l 
D

is
p
la

c
e
m

e
n
t 
(m

)

Reference-Automation

Reference-Human

Vehicle Output

0 10 20 30 40 50 60 70 80 90 100 110

Vehicle Longitudnal Position (m)

-0.05

0

0.05

In
te

n
t 
(r

a
d
)

U
A

U
H

0 10 20 30 40 50 60 70 80 90 100 110

Vehicle Longitudnal Position (m)

0

0.5

1

Im
p
e
d
a
n
c
e

K
a

B
a

Figure 5.2: Open loop Nash paradigm without adaptive law:
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH = KA and
BH=BA
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Figure 5.3: Open loop Nash paradigm without adaptive law:
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH = 2KA and
BH=BA
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Figure 5.4: Open loop Nash paradigm without adaptive law:
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when 2KH = KA and
BH=BA

the control of the vehicle but since KA > 2KH , the automation agent dominates the

control authority and the vehicle path shifts towards the automation reference as seen

in Fig. 5.4

5.1.2 With Adaptive Law

In the case of the Adaptive Model Predictive Impedance Controller (AMPIC), the

impedance value of the automation system will be regulated based on the human

driver behavior and the predefined reference (Fig. 5.5). The dynamic system model

will be updated based on the new impedance values of the agents based on the de-

signed supervisory algorithm. The system sample time for the AMPIC subsystem is

10 times smaller than the higher-level controller subsystem in the simulation. The

initial condition for the impedance value for the automation is equal to zero. The out-

put of the NNLS algorithm in the AMPIC subsystem is fed to the system model and

the Supervisory Model Predictive Controller (SMPC) in the higher-level controllers.
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Figure 5.5: Open loop Nash paradigm with adaptive law but constant KH :
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH = 1 and
BH = 0.01

Also, the AMPIC subsystem has access to the prediction values for the automation

horizon prediction for intention and estimated value human intention/impedance. It

can be observed that the adaptive law tries to minimize the fight by decreasing its

impedance value. The higher-level controller for the automation agent tries to in-

crease the intention value to compensate for the low impedance value. Because of the

truncation and round-off errors in the numerical calculations, there is some pulse-like

form in the stiffness value. The moving average filter with a wide window length is

not applicable for eliminating these jumps in the estimated values for the automation

stiffness since it will act as a bypass for the AMPIC subsystem. Fig. 5.5 demonstrates

the behavior of the shared control task in the Nash strategy with a supervisory al-

gorithm in the presence of an adaptive model predictive impedance controller when

the human driver has constant impedance value. The lateral location of the vehicle

follows the human driver reference in this case. By considering the generated intent

values for the agents (the middle figure in Fig. 5.5), we can see that the automation’s
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intent is multiple time bigger than the human driver’s intention while the stiffness

value of the automation is approximately equal to zero (the bottom figure in Fig.

5.5). It implies that the automation agent understands the fight and reduces its KA.
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Figure 5.6: Open loop Nash paradigm with adaptive law and varying KH :
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH is varying
and BH = 0.01

When we use the adaptive law where the KA and BA vary and KH also vary, we see

that the automation adapts properly to the change in the KH , thereby reducing the

fight for control authority in the system. In Fig 5.3, since the stiffness of the human

driver is doubled at x = 45m, the damping coefficient of the automation is increased

from 0.01 to 0.02 N.rad/s.

5.2 Stackelberg Strategy

In Stackelberg Strategy, the agents form a Leader-Follower relationship. So let’s

see how it performs in a non-cooperative paradigm with and without Adaptive Law.

Fig. 5.7, 5.8, 5.10 and 5.11 shows the simulation outcomes for the Stackelberg

Strategies. The figure on the top displays the automation and driver target paths and
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the simulated vehicle lateral displacement in relation to its longitudinal position, while

the figure in the middle depicts the driver’s and automation’s steering angles. The

figure in bottom shows how KA and BA vary with respect to different combinations

for KH with BH = 0.01, thereby displaying the adaptive law. We set horizons to be

10 steps (0.1s). We also select qψ,H = 1, qψ,A = 1, RH = 1 and RA = 1.

5.2.1 Without Adaptive Law
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Figure 5.7: Open loop Stackelberg paradigm without adaptive law:
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH = KA and
BH=BA

In Nash Strategy without considering the adaptive impedance controller, the lateral

displacement of the vehicle is equal to the average value of the summation of the

references for both agents when they have same impedance characteristics, but for

Stackelberg Strategy as we can see in Fig 5.7 the lateral displacement of the vehicle is

not equal to the average value of the summation of the references for both agents. The

lateral displacement of the vehicle tries to follow the leader’s reference path, and the

extent to which it replicates the leader’s reference path depends on the impedance



54

0 10 20 30 40 50 60 70 80 90 100 110

Vehicle Longitudnal Position (m)

-2

0

2

L
a
te

ra
l 
D

is
p
la

c
e
m

e
n
t 
(m

)

Reference-Automation

Reference-Human

Vehicle Output

0 10 20 30 40 50 60 70 80 90 100 110

Vehicle Longitudnal Position (m)

-0.05

0

0.05

In
te

n
t 
(r

a
d
)

U
A

U
H

0 10 20 30 40 50 60 70 80 90 100 110

Vehicle Longitudnal Position (m)

0

0.5

1

Im
p
e
d
a
n
c
e

K
a

B
a

Figure 5.8: Open loop Stackelberg paradigm without adaptive law:
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH = 2KA and
BH=BA
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Figure 5.9: Open loop Stackelberg paradigm without adaptive law:
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when 2KH = KA and
BH=BA



55

characteristics of both the agents. It can be observed that when KH = 2KA for

BH=BA (indicating no adaptive law) that is the follower agent is trying to gain the

control of the system as seen in Fig 5.8, the lateral displacement of the vehicle tries

to follow the human reference. With 2KH = KA for BH=BA (indicating no adaptive

law) as seen in Fig 5.9, the Leader agent tries to dominate the system which can

be verified by looking at the lateral displacement of the vehicle which approximately

replicates the automation reference.

5.2.2 With Adaptive Law
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Figure 5.10: Open loop Stackelberg paradigm with adaptive law but constant KH :
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH = 1 and
BH = 0.01

It can be observed that the adaptive law tries to minimize the fight by decreasing

its impedance value. The higher-level controller for the automation agent tries to

increase the intention value to compensate for the low impedance value. The adaptive

impedance controller works efficiently irrespective of different game theory strategies

used to model the interactions between two agents. From Fig 5.5, 5.6, 5.10 and 5.11
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Figure 5.11: Open loop Stackelberg paradigm with adaptive law and varying KH :
In (A) the blue and red solid lines represent the automation’s and human driver’s desired trajectory
respectively, while the yellow line represents the vehicle trajectory. (B) represents the intent for the
automation and the human driver, (C) represents the value for KA and BA, when KH is varying
and BH = 0.01

we can see that in spite of using different strategies the lateral displacement of the

vehicle shows similar pattern for same and varying impedance characteristics.



CHAPTER 6: CONCLUSIONS and FUTURE WORK

6.1 Conclusion

For Nash Strategy, without adaptive law, both the agents do not make any efforts

to reduce the fight as both the agents try to form a Leader-Leader relation with

each other. If the human impedance is equal to the automation’s impedance, the

resultant torque acting on the steering wheel will get nullified, and the vehicle will

go straight into the obstacle. If either of the agents’ impedance is greater than that

of the other agent, the vehicle will follow the agents’ reference, which has greater

impedance. But if we use adaptive law for the Nash strategy, we can see that the

automation agent’s intention changes with change in the impedance value of the

human agent. If the automation agent impedance is less than the human agent’s

impedance, the automation agent’s intention will be greater than that of the human

agent. This explains that the automation agent shows a greater intention to reduce

the fight between both the agent, thereby converting the non-cooperative interaction

to a cooperative one. So if we are using the Nash strategy, it is advisable to use with

adaptive law to tackle the non-cooperative situation.

For Stackelberg strategy, without adaptive law, both the agents try to form a

leader-follower relation. This helps to convert the non-cooperative situation to a

partial cooperative situation. It depends upon the impedance of the human agent.

If both the agents have same impedance characteristics, then due to leader-follower

relation, the lateral displacement of the vehicle up to some extent follows the Leader

agent’s reference. If the impedance changes the vehicle’s trajectory shifts accordingly

towards the agent with greater impedance. With the use of the Adaptive law, we

can see that the Stackelberg strategy performs similar to the Nash strategy. The
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Figure 6.1: A real time simulator

automation agent tries to understand the human agents intention and then reduces

its own impedance to convert the non-cooperative strategy to a cooperative one. Thus

for non-cooperative strategy without adaptive law, it is better to use the Stackelberg

strategy if compared with the Nash strategy. But it is recommended to use Adaptive

law, which can work effectively irrespective of the different game theory strategies

used to model the interactions between the two agents.

From simulation results, it can be concluded that the Adaptive law when used with

any of the strategies, can convert a non-cooperative situation to a cooperative one.

6.2 Future Work

• (1) To perform Numerical simulations for the Cooperative Pareto Strategy and

then try different Game theory strategies for different scenarios.

• (2) To experimentally validate the results which we have got for non-cooperative

Nash and non-cooperative Stackelberg strategy on a real-time simulator, as

shown in 6.1.
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• (3) To use haptic shared control framework along with game theory to model a

semi-automated vehicle as shown in 6.2.

figure/vehicle.jpg

(a) Human-Automation interface on a Golf vehicle

figure/vehicle2.jpg

(b) Semi-Automated Golf vehicle

Figure 6.2: Semi-Automated Golf vehicle
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